Sample records for da interface cerne

  1. PanDA for COMPASS at JINR

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. Sh.

    2016-09-01

    PanDA (Production and Distributed Analysis System) is a workload management system, widely used for data processing at experiments on Large Hadron Collider and others. COMPASS is a high-energy physics experiment at the Super Proton Synchrotron. Data processing for COMPASS runs locally at CERN, on lxbatch, the data itself stored in CASTOR. In 2014 an idea to start running COMPASS production through PanDA arose. Such transformation in experiment's data processing will allow COMPASS community to use not only CERN resources, but also Grid resources worldwide. During the spring and summer of 2015 installation, validation and migration work is being performed at JINR. Details and results of this process are presented in this paper.

  2. CERN and 60 years of science for peace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuer, Rolf-Dieter, E-mail: Rolf.Heuer@cern.ch

    2015-02-24

    This paper presents CERN as it celebrates its 60{sup th} Anniversary since its founding. The presentation first discusses the mission of CERN and its role as an inter-governmental Organization. The paper also reviews aspects of the particle physics research programme, looking at both current and future accelerator-based facilities at the high-energy and intensity frontiers. Finally, the paper considers issues beyond fundamental research, such as capacity-building and the interface between Art and Science.

  3. New directions in the CernVM file system

    NASA Astrophysics Data System (ADS)

    Blomer, Jakob; Buncic, Predrag; Ganis, Gerardo; Hardi, Nikola; Meusel, Rene; Popescu, Radu

    2017-10-01

    The CernVM File System today is commonly used to host and distribute application software stacks. In addition to this core task, recent developments expand the scope of the file system into two new areas. Firstly, CernVM-FS emerges as a good match for container engines to distribute the container image contents. Compared to native container image distribution (e.g. through the “Docker registry”), CernVM-FS massively reduces the network traffic for image distribution. This has been shown, for instance, by a prototype integration of CernVM-FS into Mesos developed by Mesosphere, Inc. We present a path for a smooth integration of CernVM-FS and Docker. Secondly, CernVM-FS recently raised new interest as an option for the distribution of experiment conditions data. Here, the focus is on improved versioning capabilities of CernVM-FS that allows to link the conditions data of a run period to the state of a CernVM-FS repository. Lastly, CernVM-FS has been extended to provide a name space for physics data for the LIGO and CMS collaborations. Searching through a data namespace is often done by a central, experiment specific database service. A name space on CernVM-FS can particularly benefit from an existing, scalable infrastructure and from the POSIX file system interface.

  4. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. FwWebViewPlus: integration of web technologies into WinCC OA based Human-Machine Interfaces at CERN

    NASA Astrophysics Data System (ADS)

    Golonka, Piotr; Fabian, Wojciech; Gonzalez-Berges, Manuel; Jasiun, Piotr; Varela-Rodriguez, Fernando

    2014-06-01

    The rapid growth in popularity of web applications gives rise to a plethora of reusable graphical components, such as Google Chart Tools and JQuery Sparklines, implemented in JavaScript and run inside a web browser. In the paper we describe the tool that allows for seamless integration of web-based widgets into WinCC Open Architecture, the SCADA system used commonly at CERN to build complex Human-Machine Interfaces. Reuse of widely available widget libraries and pushing the development efforts to a higher abstraction layer based on a scripting language allow for significant reduction in maintenance of the code in multi-platform environments compared to those currently used in C++ visualization plugins. Adequately designed interfaces allow for rapid integration of new web widgets into WinCC OA. At the same time, the mechanisms familiar to HMI developers are preserved, making the use of new widgets "native". Perspectives for further integration between the realms of WinCC OA and Web development are also discussed.

  6. The Cortex project A quasi-real-time information system to build control systems for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Barillere, R.; Cabel, H.; Chan, B.; Goulas, I.; Le Goff, J. M.; Vinot, L.; Willmott, C.; Milcent, H.; Huuskonen, P.

    1994-12-01

    The Cortex control information system framework is being developed at CERN. It offers basic functions to allow the sharing of information, control and analysis functions; it presents a uniform human interface for such information and functions; it permits upgrades and additions without code modification and it is sufficiently generic to allow its use by most of the existing or future control systems at CERN. Services will include standard interfaces to user-supplied functions, analysis, archive and event management. Cortex does not attempt to carry out the direct data acquisition or control of the devices; these are activities which are highly specific to the application and are best done by commercial systems or user-written programs. Instead, Cortex integrates these application-specific pieces and supports them by supplying other commonly needed facilities such as collaboration, analysis, diagnosis and user assistance.

  7. Data acquisition using the 168/E. [CERN ISR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, J.T.; Cittolin, S.; Demoulin, M.

    1983-03-01

    Event sizes and data rates at the CERN anti p p collider compose a formidable environment for a high level trigger. A system using three 168/E processors for experiment UA1 real-time event selection is described. With 168/E data memory expanded to 512K bytes, each processor holds a complete event allowing a FORTRAN trigger algorithm access to data from the entire detector. A smart CAMAC interface reads five Remus branches in parallel transferring one word to the target processor every 0.5 ..mu..s. The NORD host computer can simultaneously read an accepted event from another processor.

  8. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Drumm, P.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Isolde Collaboration

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows ™ through a Novell NetWare4 ™ local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  9. The evolution of the ISOLDE control system

    NASA Astrophysics Data System (ADS)

    Jonsson, O. C.; Catherall, R.; Deloose, I.; Evensen, A. H. M.; Gase, K.; Focker, G. J.; Fowler, A.; Kugler, E.; Lettry, J.; Olesen, G.; Ravn, H. L.; Drumm, P.

    1996-04-01

    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft Windows® through a Novell NetWare4® local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface.

  10. Open access for ALICE analysis based on virtualization technology

    NASA Astrophysics Data System (ADS)

    Buncic, P.; Gheata, M.; Schutz, Y.

    2015-12-01

    Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.

  11. CERN alerter—RSS based system for information broadcast to all CERN offices

    NASA Astrophysics Data System (ADS)

    Otto, R.

    2008-07-01

    Nearly every large organization uses a tool to broadcast messages and information across the internal campus (messages like alerts announcing interruption in services or just information about upcoming events). These tools typically allow administrators (operators) to send 'targeted' messages which are sent only to specific groups of users or computers, e/g only those located in a specified building or connected to a particular computing service. CERN has a long history of such tools: CERNVMS's SPM_quotMESSAGE command, Zephyr [2] and the most recent the NICE Alerter based on the NNTP protocol. The NICE Alerter used on all Windows-based computers had to be phased out as a consequence of phasing out NNTP at CERN. The new solution to broadcast information messages on the CERN campus continues to provide the service based on cross-platform technologies, hence minimizing custom developments and relying on commercial software as much as possible. The new system, called CERN Alerter, is based on RSS (Really Simple Syndication) [9] for the transport protocol and uses Microsoft SharePoint as the backend for database and posting interface. The windows-based client relies on Internet Explorer 7.0 with custom code to trigger the window pop-ups and the notifications for new events. Linux and Mac OS X clients could also rely on any RSS readers to subscribe to targeted notifications. The paper covers the architecture and implementation aspects of the new system.

  12. Next Generation Workload Management and Analysis System for Big Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Kaushik

    We report on the activities and accomplishments of a four-year project (a three-year grant followed by a one-year no cost extension) to develop a next generation workload management system for Big Data. The new system is based on the highly successful PanDA software developed for High Energy Physics (HEP) in 2005. PanDA is used by the ATLAS experiment at the Large Hadron Collider (LHC), and the AMS experiment at the space station. The program of work described here was carried out by two teams of developers working collaboratively at Brookhaven National Laboratory (BNL) and the University of Texas at Arlingtonmore » (UTA). These teams worked closely with the original PanDA team – for the sake of clarity the work of the next generation team will be referred to as the BigPanDA project. Their work has led to the adoption of BigPanDA by the COMPASS experiment at CERN, and many other experiments and science projects worldwide.« less

  13. The Shock and Vibration Digest. Volume 4. Number 7, July 1972.

    DTIC Science & Technology

    1972-07-01

    who are con- structural analysis program cerned with maximum reliability NASTRAN will be discussed, of missiles, aircraft, submarines, Contact...within a designated epsilon at the interface between air and the first fluid. Trial solutions are made until the desired solution is bracketed and then

  14. Experience with ATLAS MySQL PanDA database service

    NASA Astrophysics Data System (ADS)

    Smirnov, Y.; Wlodek, T.; De, K.; Hover, J.; Ozturk, N.; Smith, J.; Wenaus, T.; Yu, D.

    2010-04-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  15. Deploying the ATLAS Metadata Interface (AMI) on the cloud with Jenkins

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Odier, J.; Fulachier, J.; ATLAS Collaboration

    2017-10-01

    The ATLAS Metadata Interface (AMI) is a mature application of more than 15 years of existence. Mainly used by the ATLAS experiment at CERN, it consists of a very generic tool ecosystem for metadata aggregation and cataloguing. AMI is used by the ATLAS production system, therefore the service must guarantee a high level of availability. We describe our monitoring and administration systems, and the Jenkins-based strategy used to dynamically test and deploy cloud OpenStack nodes on demand.

  16. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    NASA Astrophysics Data System (ADS)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.« less

  18. COSMO 09

    ScienceCinema

    None

    2018-02-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.

  19. HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters

    NASA Astrophysics Data System (ADS)

    Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge

    2015-12-01

    In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.

  20. Distributed analysis in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.

    2015-12-01

    The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data is a challenging task for the distributed physics community. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are running daily on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We report on the impact such changes have on the DA infrastructure, describe the new DA components, and include recent performance measurements.

  1. Accelerator controls at CERN: Some converging trends

    NASA Astrophysics Data System (ADS)

    Kuiper, B.

    1990-08-01

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.

  2. Commissioning the CERN IT Agile Infrastructure with experiment workloads

    NASA Astrophysics Data System (ADS)

    Medrano Llamas, Ramón; Harald Barreiro Megino, Fernando; Kucharczyk, Katarzyna; Kamil Denis, Marek; Cinquilli, Mattia

    2014-06-01

    In order to ease the management of their infrastructure, most of the WLCG sites are adopting cloud based strategies. In the case of CERN, the Tier 0 of the WLCG, is completely restructuring the resource and configuration management of their computing center under the codename Agile Infrastructure. Its goal is to manage 15,000 Virtual Machines by means of an OpenStack middleware in order to unify all the resources in CERN's two datacenters: the one placed in Meyrin and the new on in Wigner, Hungary. During the commissioning of this infrastructure, CERN IT is offering an attractive amount of computing resources to the experiments (800 cores for ATLAS and CMS) through a private cloud interface. ATLAS and CMS have joined forces to exploit them by running stress tests and simulation workloads since November 2012. This work will describe the experience of the first deployments of the current experiment workloads on the CERN private cloud testbed. The paper is organized as follows: the first section will explain the integration of the experiment workload management systems (WMS) with the cloud resources. The second section will revisit the performance and stress testing performed with HammerCloud in order to evaluate and compare the suitability for the experiment workloads. The third section will go deeper into the dynamic provisioning techniques, such as the use of the cloud APIs directly by the WMS. The paper finishes with a review of the conclusions and the challenges ahead.

  3. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  4. Integrating Containers in the CERN Private Cloud

    NASA Astrophysics Data System (ADS)

    Noel, Bertrand; Michelino, Davide; Velten, Mathieu; Rocha, Ricardo; Trigazis, Spyridon

    2017-10-01

    Containers remain a hot topic in computing, with new use cases and tools appearing every day. Basic functionality such as spawning containers seems to have settled, but topics like volume support or networking are still evolving. Solutions like Docker Swarm, Kubernetes or Mesos provide similar functionality but target different use cases, exposing distinct interfaces and APIs. The CERN private cloud is made of thousands of nodes and users, with many different use cases. A single solution for container deployment would not cover every one of them, and supporting multiple solutions involves repeating the same process multiple times for integration with authentication services, storage services or networking. In this paper we describe OpenStack Magnum as the solution to offer container management in the CERN cloud. We will cover its main functionality and some advanced use cases using Docker Swarm and Kubernetes, highlighting some relevant differences between the two. We will describe the most common use cases in HEP and how we integrated popular services like CVMFS or AFS in the most transparent way possible, along with some limitations found. Finally we will look into ongoing work on advanced scheduling for both Swarm and Kubernetes, support for running batch like workloads and integration of container networking technologies with the CERN infrastructure.

  5. Evolution of the architecture of the ATLAS Metadata Interface (AMI)

    NASA Astrophysics Data System (ADS)

    Odier, J.; Aidel, O.; Albrand, S.; Fulachier, J.; Lambert, F.

    2015-12-01

    The ATLAS Metadata Interface (AMI) is now a mature application. Over the years, the number of users and the number of provided functions has dramatically increased. It is necessary to adapt the hardware infrastructure in a seamless way so that the quality of service re - mains high. We describe the AMI evolution since its beginning being served by a single MySQL backend database server to the current state having a cluster of virtual machines at French Tier1, an Oracle database at Lyon with complementary replication to the Oracle DB at CERN and AMI back-up server.

  6. A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment

    NASA Astrophysics Data System (ADS)

    Robertis, G. De; Fanizzi, G.; Loddo, F.; Manzari, V.; Rizzi, M.

    2018-02-01

    In this work the MOSAIC ("MOdular System for Acquisition, Interface and Control") board, designed for the readout and testing of the pixel modules for the silicon tracker upgrade of the ALICE (A Large Ion Collider Experiment) experiment at teh CERN LHC, is described. It is based on an Artix7 Field Programmable Gate Array device by Xilinx and is compliant with the six unit "Versa Modular Eurocard" standard (6U-VME) for easy housing in a standard VMEbus crate from which it takes only power supplies and cooling.

  7. Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin

    Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  8. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor-acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V-1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.

  9. Sub-wavelength modulation of χ (2) optical nonlinearity in organic thin films

    DOE PAGES

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; ...

    2017-01-27

    Modulating the second-order nonlinear optical susceptibility (χ (2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ (2) at the nanoscale. Focusing initially on a single pentacene-C 60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed viamore » second harmonic generation that is sufficient to achieve d 33 > 10pm V –1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ (2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  10. The N-Terminal Residues 43 to 60 Form the Interface for Dopamine Mediated α-Synuclein Dimerisation

    PubMed Central

    Leong, Su Ling; Hinds, Mark G.; Connor, Andrea R.; Smith, David P.; Illes-Toth, Eva; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2015-01-01

    α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson’s disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43–140) and C-terminally (1–95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA:α-syn oligomers, albeit 1–95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43–140 protein, we analysed the structural characteristics of the DA:α-syn 43–140 dimer and α-syn 43–140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers. PMID:25679387

  11. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.

  12. Resolving metal-molecule interfaces at single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Komoto, Yuki; Fujii, Shintaro; Nakamura, Hisao; Tada, Tomofumi; Nishino, Tomoaki; Kiguchi, Manabu

    2016-05-01

    Electronic and structural detail at the electrode-molecule interface have a significant influence on charge transport across molecular junctions. Despite the decisive role of the metal-molecule interface, a complete electronic and structural characterization of the interface remains a challenge. This is in no small part due to current experimental limitations. Here, we present a comprehensive approach to obtain a detailed description of the metal-molecule interface in single-molecule junctions, based on current-voltage (I-V) measurements. Contrary to conventional conductance studies, this I-V approach provides a correlated statistical description of both, the degree of electronic coupling across the metal-molecule interface, and the energy alignment between the conduction orbital and the Fermi level of the electrode. This exhaustive statistical approach was employed to study single-molecule junctions of 1,4-benzenediamine (BDA), 1,4-butanediamine (C4DA), and 1,4-benzenedithiol (BDT). A single interfacial configuration was observed for both BDA and C4DA junctions, while three different interfacial arrangements were resolved for BDT. This multiplicity is due to different molecular adsorption sites on the Au surface namely on-top, hollow, and bridge. Furthermore, C4DA junctions present a fluctuating I-V curve arising from the greater conformational freedom of the saturated alkyl chain, in sharp contrast with the rigid aromatic backbone of both BDA and BDT.

  13. The ALICE Software Release Validation cluster

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  14. Subcritical crack growth along polymer interfaces

    NASA Astrophysics Data System (ADS)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v*) decreasing.

  15. The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know.

    PubMed

    Kelly, E A; Fudge, J L

    2018-07-01

    Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. EOS developments

    NASA Astrophysics Data System (ADS)

    Sindrilaru, Elvin A.; Peters, Andreas J.; Adde, Geoffray M.; Duellmann, Dirk

    2017-10-01

    CERN has been developing and operating EOS as a disk storage solution successfully for over 6 years. The CERN deployment provides 135 PB and stores 1.2 billion replicas distributed over two computer centres. Deployment includes four LHC instances, a shared instance for smaller experiments and since last year an instance for individual user data as well. The user instance represents the backbone of the CERNBOX service for file sharing. New use cases like synchronisation and sharing, the planned migration to reduce AFS usage at CERN and the continuous growth has brought EOS to new challenges. Recent developments include the integration and evaluation of various technologies to do the transition from a single active in-memory namespace to a scale-out implementation distributed over many meta-data servers. The new architecture aims to separate the data from the application logic and user interface code, thus providing flexibility and scalability to the namespace component. Another important goal is to provide EOS as a CERN-wide mounted filesystem with strong authentication making it a single storage repository accessible via various services and front- ends (/eos initiative). This required new developments in the security infrastructure of the EOS FUSE implementation. Furthermore, there were a series of improvements targeting the end-user experience like tighter consistency and latency optimisations. In collaboration with Seagate as Openlab partner, EOS has a complete integration of OpenKinetic object drive cluster as a high-throughput, high-availability, low-cost storage solution. This contribution will discuss these three main development projects and present new performance metrics.

  17. The third level trigger and output event unit of the UA1 data-acquisition system

    NASA Astrophysics Data System (ADS)

    Cittolin, S.; Demoulin, M.; Fucci, A.; Haynes, W.; Martin, B.; Porte, J. P.; Sphicas, P.

    1989-12-01

    The upgraded UA1 experiment utilizes twelve 3081/E emulators for its third-level trigger system. The system is interfaced to VME, and is controlled by 68000 microprocessor VME boards on the input and output. The output controller communicates with an IBM 9375 mainframe via the CERN-IBM developed VICI interface. The events selected by the emulators are output on IBM-3480 cassettes. The user interface to this system is based on a series of Macintosh personal computer connected to the VME bus. These Macs are also used for developing software for the emulators and for monitoring the entire system. The same configuration has also been used for offline event reconstruction. A description of the system, together with details of both the online and offline modes of operation and an eveluation of its performance are presented.

  18. ATLAS Eventlndex monitoring system using the Kibana analytics and visualization platform

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration

    2016-10-01

    The ATLAS EventIndex is a data catalogue system that stores event-related metadata for all (real and simulated) ATLAS events, on all processing stages. As it consists of different components that depend on other applications (such as distributed storage, and different sources of information) we need to monitor the conditions of many heterogeneous subsystems, to make sure everything is working correctly. This paper describes how we gather information about the EventIndex components and related subsystems: the Producer-Consumer architecture for data collection, health parameters from the servers that run EventIndex components, EventIndex web interface status, and the Hadoop infrastructure that stores EventIndex data. This information is collected, processed, and then displayed using CERN service monitoring software based on the Kibana analytic and visualization package, provided by CERN IT Department. EventIndex monitoring is used both by the EventIndex team and ATLAS Distributed Computing shifts crew.

  19. Tape SCSI monitoring and encryption at CERN

    NASA Astrophysics Data System (ADS)

    Laskaridis, Stefanos; Bahyl, V.; Cano, E.; Leduc, J.; Murray, S.; Cancio, G.; Kruse, D.

    2017-10-01

    CERN currently manages the largest data archive in the HEP domain; over 180PB of custodial data is archived across 7 enterprise tape libraries containing more than 25,000 tapes and using over 100 tape drives. Archival storage at this scale requires a leading edge monitoring infrastructure that acquires live and lifelong metrics from the hardware in order to assess and proactively identify potential drive and media level issues. In addition, protecting the privacy of sensitive archival data is becoming increasingly important and with it the need for a scalable, compute-efficient and cost-effective solution for data encryption. In this paper, we first describe the implementation of acquiring tape medium and drive related metrics reported by the SCSI interface and its integration with our monitoring system. We then address the incorporation of tape drive real-time encryption with dedicated drive hardware into the CASTOR [1] hierarchical mass storage system.

  20. Interfacial Charge Transfer States in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  1. Perfmon2: a leap forward in performance monitoring

    NASA Astrophysics Data System (ADS)

    Jarp, S.; Jurga, R.; Nowak, A.

    2008-07-01

    This paper describes the software component, perfmon2, that is about to be added to the Linux kernel as the standard interface to the Performance Monitoring Unit (PMU) on common processors, including x86 (AMD and Intel), Sun SPARC, MIPS, IBM Power and Intel Itanium. It also describes a set of tools for doing performance monitoring in practice and details how the CERN openlab team has participated in the testing and development of these tools.

  2. Morphology of the D/A interface in vapor deposited bilayer organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Erwin, Patrick; Dimitriou, Michael; Thompson, Mark E.

    2017-08-01

    A series of bilayer films were prepared by vacuum deposition onto Silicon substrates. These films consisted of either Si/SiO2/donor/C60 or Si/SiO2/C60/donor, where the organic films were in the 20-40 nm thick range and the donors were 7,7-difluoro-14-phenyl-7H-6l4,7l4-[1,3,2]diazaborinino[4,3-a:6,1-a']diisoindole (bDIP), copper phthalocyanine (CuPC), 3,6,11,14-tetraphenyldiindeno[1,2,3-cd:1',2',3'-lm]perylene (DBP) and 2-(4-(diphenylamino)-2,6- dihydroxyphenyl)-4-(4-(diphenyliminio)-2,6-dihydroxycyclohexa-2,5-dien-1-ylidene)-3-oxocyclobut-1-en-1-olate (DPSQ). The donors chosen here have been reported to give good power efficiencies when incorporated into bilayer photovoltaic cells with a C60 acceptor. These bilayer films were examined by neutron reflectometry to characterize the interface between the donor and C60. In the SiO2/donor/C60 films, DPSQ, CuPC, and DBP show a discrete interface with C60 while bDIP shows substantial spontaneous mixing at the interface, consistent with a donor/(donor + C60)/C60 structure, where the mixed layer is 14 nm.. In the SiO2/C60/donor films, all four donors show negligible mixing at the D/A interface consistent with a discrete D/A junction.

  3. The ATLAS Software Installation System v2: a highly available system to install and validate Grid and Cloud sites via Panda

    NASA Astrophysics Data System (ADS)

    De Salvo, A.; Kataoka, M.; Sanchez Pineda, A.; Smirnov, Y.

    2015-12-01

    The ATLAS Installation System v2 is the evolution of the original system, used since 2003. The original tool has been completely re-designed in terms of database backend and components, adding support for submission to multiple backends, including the original Workload Management Service (WMS) and the new PanDA modules. The database engine has been changed from plain MySQL to Galera/Percona and the table structure has been optimized to allow a full High-Availability (HA) solution over Wide Area Network. The servlets, running on each frontend, have been also decoupled from local settings, to allow an easy scalability of the system, including the possibility of an HA system with multiple sites. The clients can also be run in multiple copies and in different geographical locations, and take care of sending the installation and validation jobs to the target Grid or Cloud sites. Moreover, the Installation Database is used as source of parameters by the automatic agents running in CVMFS, in order to install the software and distribute it to the sites. The system is in production for ATLAS since 2013, having as main sites in HA the INFN Roma Tier 2 and the CERN Agile Infrastructure. The Light Job Submission Framework for Installation (LJSFi) v2 engine is directly interfacing with PanDA for the Job Management, the Atlas Grid Information System (AGIS) for the site parameter configurations, and CVMFS for both core components and the installation of the software itself. LJSFi2 is also able to use other plugins, and is essentially Virtual Organization (VO) agnostic, so can be directly used and extended to cope with the requirements of any Grid or Cloud enabled VO. In this work we will present the architecture, performance, status and possible evolutions to the system for the LHC Run2 and beyond.

  4. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    NASA Astrophysics Data System (ADS)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  5. The Evolution of CERN EDMS

    NASA Astrophysics Data System (ADS)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  6. Monitoring tools of COMPASS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Huber, S.; Jary, V.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Tomsa, J.; Virius, M.

    2015-12-01

    This paper briefly introduces the data acquisition system of the COMPASS experiment and is mainly focused on the part that is responsible for the monitoring of the nodes in the whole newly developed data acquisition system of this experiment. The COMPASS is a high energy particle experiment with a fixed target located at the SPS of the CERN laboratory in Geneva, Switzerland. The hardware of the data acquisition system has been upgraded to use FPGA cards that are responsible for data multiplexing and event building. The software counterpart of the system includes several processes deployed in heterogenous network environment. There are two processes, namely Message Logger and Message Browser, taking care of monitoring. These tools handle messages generated by nodes in the system. While Message Logger collects and saves messages to the database, the Message Browser serves as a graphical interface over the database containing these messages. For better performance, certain database optimizations have been used. Lastly, results of performance tests are presented.

  7. Detector Control System for the AFP detector in ATLAS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  8. Data Aggregation System: A system for information retrieval on demand over relational and non-relational distributed data sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, G.; Kuznetsov, V.; Evans, D.

    We present the Data Aggregation System, a system for information retrieval and aggregation from heterogenous sources of relational and non-relational data for the Compact Muon Solenoid experiment on the CERN Large Hadron Collider. The experiment currently has a number of organically-developed data sources, including front-ends to a number of different relational databases and non-database data services which do not share common data structures or APIs (Application Programming Interfaces), and cannot at this stage be readily converged. DAS provides a single interface for querying all these services, a caching layer to speed up access to expensive underlying calls and the abilitymore » to merge records from different data services pertaining to a single primary key.« less

  9. Spherical solid model system: Exact evaluation of the van der Waals interaction between a microscopic or submacroscopic spherical solid and a deformable fluid interface

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.

    2011-03-01

    In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.

  10. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.

    2015-05-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. We will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.

  11. Tuning Optoelectronic Properties of Organic Semiconductors Via Donor-Acceptor Cocrystals and Interfacial Composites

    NASA Astrophysics Data System (ADS)

    Wang, Chen

    Organic donor-acceptor (D-A) interaction has attracted intensive research interest because of the promising applications in electronic devices and renewable energy. Depending on the interaction process, the optoelectronic properties of organic semiconductors may change dramatically. To improve their performance and expand the applications, we have investigated the structure-property relationship in D-A cocrystals and nanofibril composites. These materials provide unique D-A interface structures, thus allowing tunable charge transfer across the interface, which can be modified and controlled by exquisite molecule design and supramolecular assembly. In Chapter 2, we studied the fabrication, conductivity, and chemiresistive sensor performance of tetrathiafulvalene (TTF) - 7,7,8,8-tetracyanoquinodimethane (TCNQ) charge transfer cocrystal microfibers. Compared to TCNQ and TTF, TTF-TCNQ cocrystal has much higher conductivity under ambient conditions, due to the high yield of charge separation, which also induces high polarization at the interface, resulting in different binding intensity towards alkyl and aromatic amines. Based on this investment, we developed a TTF-TCNQ chemiresistive sensor to efficiently discriminate alkyl and aromatic amine vapors. In Chapter 3, we further designed a new series of D-A cocrystals, and studied the coassembly and optical properties. The cocrystal is composed of coronene and perylene diimide at 1:1 molar ratio and belongs to the triclinic system, as confirmed by X-ray analysis. The donor and acceptor molecules perform an alternate pi-pi stacking along the (100) direction, leading to the strong one-dimensional growth tendency of macroscopic cocrystal. Additionally, due to the charge transfer interaction, the cocrystal shows a new and largely red-shifted photoluminescence band, compared to the crystals of the components. In Chapter 4, we alternatively developed a series of donor-acceptor nanofibril composites, in which the donor and acceptor nanofibers become the building blocks. By changing the side chains into alkyl groups, the composite forms a homogeneous film with a large donor-acceptor interface and favorable photoinduced charge transfer, leading to a high photoconductivity enhancement, which is a three order magnification of the photoconductivity of the donor and acceptor nanofibers. Furthermore, our measurement proved the D-A interface with alkyl chains interdigitating is compatible and tunable to external alkane vapors, making the composite suitable for chemiresistive sensors for alkane detection.

  12. Evolution of the ATLAS PanDA Production and Distributed Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno, T.; De, K.; Wenaus, T.

    2012-12-13

    Evolution of the ATLAS PanDA Production and Distributed Analysis System T Maeno1,5, K De2, T Wenaus1, P Nilsson2, R Walker3, A Stradling2, V Fine1, M Potekhin1, S Panitkin1 and G Compostella4 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 396, Part 3 Article PDF References Citations Metrics 101 Total downloads Cited by 8 articles Turn on MathJax Share this article Article information Abstract The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDAmore » has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.« less

  13. Output control of da Vinci surgical system's surgical graspers.

    PubMed

    Johnson, Paul J; Schmidt, David E; Duvvuri, Umamaheswar

    2014-01-01

    The number of robot-assisted surgeries performed with the da Vinci surgical system has increased significantly over the past decade. The articulating movements of the robotic surgical grasper are controlled by grip controls at the master console. The user interface has been implicated as one contributing factor in surgical grasping errors. The goal of our study was to characterize and evaluate the user interface of the da Vinci surgical system in controlling surgical graspers. An angular manipulator with force sensors was used to increment the grip control angle as grasper output angles were measured. Input force at the grip control was simultaneously measured throughout the range of motion. Pressure film was used to assess the maximum grasping force achievable with the endoscopic grasping tool. The da Vinci robot's grip control angular input has a nonproportional relationship with the grasper instrument output. The grip control mechanism presents an intrinsic resistant force to the surgeon's fingertips and provides no haptic feedback. The da Vinci Maryland graspers are capable of applying up to 5.1 MPa of local pressure. The angular and force input at the grip control of the da Vinci robot's surgical graspers is nonproportional to the grasper instrument's output. Understanding the true relationship of the grip control input to grasper instrument output may help surgeons understand how to better control the surgical graspers and promote fewer grasping errors. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    NASA Astrophysics Data System (ADS)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the site with a convenient POSIX interface. This paper discusses the details of the architecture and reports performance measurements.

  15. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykstra, D.; Bockelman, B.; Blomer, J.

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliarymore » data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the site with a convenient POSIX interface. This paper discusses the details of the architecture and reports performance measurements.« less

  16. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    DOE PAGES

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; ...

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C 60 acceptor yields a rate that ismore » approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.« less

  17. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  18. CernVM WebAPI - Controlling Virtual Machines from the Web

    NASA Astrophysics Data System (ADS)

    Charalampidis, I.; Berzano, D.; Blomer, J.; Buncic, P.; Ganis, G.; Meusel, R.; Segal, B.

    2015-12-01

    Lately, there is a trend in scientific projects to look for computing resources in the volunteering community. In addition, to reduce the development effort required to port the scientific software stack to all the known platforms, the use of Virtual Machines (VMs)u is becoming increasingly popular. Unfortunately their use further complicates the software installation and operation, restricting the volunteer audience to sufficiently expert people. CernVM WebAPI is a software solution addressing this specific case in a way that opens wide new application opportunities. It offers a very simple API for setting-up, controlling and interfacing with a VM instance in the users computer, while in the same time offloading the user from all the burden of downloading, installing and configuring the hypervisor. WebAPI comes with a lightweight javascript library that guides the user through the application installation process. Malicious usage is prohibited by offering a per-domain PKI validation mechanism. In this contribution we will overview this new technology, discuss its security features and examine some test cases where it is already in use.

  19. Enhanced reaction kinetics and reactive mixing scale dynamics in mixing fronts under shear flow for arbitrary Damköhler numbers

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Le Borgne, Tanguy; Méheust, Yves; Dentz, Marco

    2017-02-01

    Mixing fronts, where fluids of different chemical compositions mix with each other, are known to represent hotspots of chemical reaction in hydrological systems. These fronts are typically subjected to velocity gradients, ranging from the pore scale due to no slip boundary conditions at fluid solid interfaces, to the catchment scale due to permeability variations and complex geometry of the Darcy velocity streamlines. A common trait of these processes is that the mixing interface is strained by shear. Depending on the Péclet number Pe , which represents the ratio of the characteristic diffusion time to the characteristic shear time, and the Damköhler number Da , which represents the ratio of the characteristic diffusion time to the characteristic reaction time, the local reaction rates can be strongly impacted by the dynamics of the mixing interface. So far, this impact has been characterized mostly either in kinetics-limited or in mixing-limited conditions, that is, for either low or high Da. Here the coupling of shear flow and chemical reactivity is investigated for arbitrary Damköhler numbers, for a bimolecular reaction and an initial interface with separated reactants. Approximate analytical expressions for the global production rate and reactive mixing scale are derived based on a reactive lamella approach that allows for a general coupling between stretching enhanced mixing and chemical reactions. While for Pe < Da , reaction kinetics and stretching effects are decoupled, a scenario which we name "weak stretching", for Pe > Da , we uncover a "strong stretching" scenario where new scaling laws emerge from the interplay between reaction kinetics, diffusion, and stretching. The analytical results are validated against numerical simulations. These findings shed light on the effect of flow heterogeneity on the enhancement of chemical reaction and the creation of spatially localized hotspots of reactivity for a broad range of systems ranging from kinetic limited to mixing limited situations.

  20. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    DOE PAGES

    Klimentov, A.; Buncic, P.; De, K.; ...

    2015-05-22

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. Finally, we will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.« less

  1. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimentov, A.; Buncic, P.; De, K.

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(10 2) sites, O(10 5) cores, O(10 8) jobs per year, O(10 3) users, and ATLAS data volume is O(10 17) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. Finally, we will present our current accomplishments with running the PanDA WMS at OLCF and other supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications.« less

  2. Development of Network Interface Cards for TRIDAQ systems with the NaNet framework

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Di Lorenzo, S.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Valente, P.; Vicini, P.

    2017-03-01

    NaNet is a framework for the development of FPGA-based PCI Express (PCIe) Network Interface Cards (NICs) with real-time data transport architecture that can be effectively employed in TRIDAQ systems. Key features of the architecture are the flexibility in the configuration of the number and kind of the I/O channels, the hardware offloading of the network protocol stack, the stream processing capability, and the zero-copy CPU and GPU Remote Direct Memory Access (RDMA). Three NIC designs have been developed with the NaNet framework: NaNet-1 and NaNet-10 for the CERN NA62 low level trigger and NaNet3 for the KM3NeT-IT underwater neutrino telescope DAQ system. We will focus our description on the NaNet-10 design, as it is the most complete of the three in terms of capabilities and integrated IPs of the framework.

  3. Organic Solar Cells: Degradation Processes and Approaches to Enhance Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fungura, Fadzai

    2016-12-17

    Intrinsic photodegradation of organic solar cells, theoretically attributed to C-H bond rearrangement/breaking, remains a key commercialization barrier. This work presents, via dark electron paramagnetic resonance (EPR), the first experimental evidence for metastable C dangling bonds (DBs) (g=2.0029±0.0004) formed by blue/UV irradiation of polymer:fullerene blend films in nitrogen. The DB density increased with irradiation and decreased ~4 fold after 2 weeks in the dark. The dark EPR also showed increased densities of other spin-active sites in photodegraded polymer, fullerene, and polymer:fullerene blend films, consistent with broad electronic measurements of fundamental properties, including defect/gap state densities. The EPR enabled identification of defectmore » states, whether in the polymer, fullerene, or at the donor/acceptor (D/A) interface. Importantly, the EPR results indicate that the DBs are at the D/A interface, as they were present only in the blend films. The role of polarons in interface DB formation is also discussed.« less

  4. Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.

    PubMed

    Vamsikrishna, K M; Dogra, Debi Prosad; Desarkar, Maunendra Sankar

    2016-05-01

    Physical rehabilitation supported by the computer-assisted-interface is gaining popularity among health-care fraternity. In this paper, we have proposed a computer-vision-assisted contactless methodology to facilitate palm and finger rehabilitation. Leap motion controller has been interfaced with a computing device to record parameters describing 3-D movements of the palm of a user undergoing rehabilitation. We have proposed an interface using Unity3D development platform. Our interface is capable of analyzing intermediate steps of rehabilitation without the help of an expert, and it can provide online feedback to the user. Isolated gestures are classified using linear discriminant analysis (DA) and support vector machines (SVM). Finally, a set of discrete hidden Markov models (HMM) have been used to classify gesture sequence performed during rehabilitation. Experimental validation using a large number of samples collected from healthy volunteers reveals that DA and SVM perform similarly while applied on isolated gesture recognition. We have compared the results of HMM-based sequence classification with CRF-based techniques. Our results confirm that both HMM and CRF perform quite similarly when tested on gesture sequences. The proposed system can be used for home-based palm or finger rehabilitation in the absence of experts.

  5. Effect of Sediment Gas Voids and Ebullition on Benthic Solute Exchange.

    PubMed

    Flury, Sabine; Glud, Ronnie N; Premke, Katrin; McGinnis, Daniel F

    2015-09-01

    The presence of free gas in sediments and ebullition events can enhance the pore water transport and solute exchange across the sediment-water interface. However, we experimentally and theoretically document that the presence of free gas in sediments can counteract this enhancement effect. The apparent diffusivities (Da) of Rhodamine WT and bromide in sediments containing 8-18% gas (Da,YE) were suppressed by 7-39% compared to the control (no gas) sediments (Da,C). The measured ratios of Da,YE:Da,C were well within the range of ratios predicted by a theoretical soil model for gas-bearing soils. Whereas gas voids in sediments reduce the Da for soluble species, they represent a shortcut for low-soluble species such as methane and oxygen. Therefore, the presence of even minor amounts of gas can increase the fluxes of low-soluble species (i.e., gases) by several factors, while simultaneously suppressing fluxes of dissolved species.

  6. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; De, K.; Jha, S.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Wells, J.; Wenaus, T.

    2016-10-01

    The.LHC, operating at CERN, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than grid can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility. Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full pro duction for the ATLAS since September 2015. We will present our current accomplishments with running PanDA at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.

  7. Distributed Automated Medical Robotics to Improve Medical Field Operations

    DTIC Science & Technology

    2010-04-01

    ROBOT PATIENT INTERFACE Robotic trauma diagnosis and intervention is performed using instruments and tools mounted on the end of a robotic manipulator...manipulator to respond quickly enough to accommodate for motion due to high inertia and inaccuracies caused by low stiffness at the tool point. Ultrasonic...program was licensed to Intuitive Surgical, Inc and subsequently morphed into the daVinci surgical system. The daVinci has been widely applied in

  8. Design principle for efficient charge separation at the donor-acceptor interface for high performance organic solar cell device

    NASA Astrophysics Data System (ADS)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team

    2014-03-01

    The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Chen, H.; Wu, W.

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  10. Optimization on fixed low latency implementation of the GBT core in FPGA

    DOE PAGES

    Chen, K.; Chen, H.; Wu, W.; ...

    2017-07-11

    We present that in the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, themore » GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. Finally, the system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.« less

  11. Optimization on fixed low latency implementation of the GBT core in FPGA

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, H.; Wu, W.; Xu, H.; Yao, L.

    2017-07-01

    In the upgrade of ATLAS experiment [1], the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link [2]. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA [3]. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system [4, 5] is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper.

  12. GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics.

    PubMed

    Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques

    2016-10-01

    The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.

  13. Percolation Model of Adhesion at Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Wool, Richard P.

    1998-03-01

    Adhesion at polymer interfaces is treated as a percolation problem, where an areal density of chains Σ, of length L, contribute a number of entanglements to the interface of thickness X. The fracture energy G, is determined by the fraction of entanglements P, fractured or disentangled in the deformation zone preceding the crack tip, via G ~ P-P_c, where Pc is the percolation threshold, given by Pc = 1- M_e/Mc . For incompatible A/B interfaces reinforced with Σ diblocks or random A-B copolymers of effective length L'(L' ~ 0 for brushes and strongly adsorbed chains), we obtain P ~ ΣL/X, Pc ~ Σ _cL/X, such that G = K(Σ - Σ _c)+ G_o, where K and Go ~ 1 J/m^2 are constants. Note that Log G vs Log Σ will have an apparent slope of about 2, incorrectly suggesting that G ~ Σ ^2. For cohesive fracture, disentanglement dominates at M M*, G = G*[1-M_c/M]. For fatigue crack propagation da/dN, at welding interfaces, we obtain da/dN ~ M-5/2(t/Tr)-5/4, where t is the welding time and Tr is the reptation time. For polymer-solid interfaces, G ~ (X/R)^2. where X is the conformational width of the first layer of chains of random coil size R. The fractal nature of the percolation process is relevant to the fracture mechanism and fractography.

  14. Integration of Panda Workload Management System with supercomputers

    NASA Astrophysics Data System (ADS)

    De, K.; Jha, S.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Nilsson, P.; Novikov, A.; Oleynik, D.; Panitkin, S.; Poyda, A.; Read, K. F.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.; Wells, J. C.; Wenaus, T.

    2016-09-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run singlethreaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accomplishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility's infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.

  15. Back-end and interface implementation of the STS-XYTER2 prototype ASIC for the CBM experiment

    NASA Astrophysics Data System (ADS)

    Kasinski, K.; Szczygiel, R.; Zabolotny, W.

    2016-11-01

    Each front-end readout ASIC for the High-Energy Physics experiments requires robust and effective hit data streaming and control mechanism. A new STS-XYTER2 full-size prototype chip for the Silicon Tracking System and Muon Chamber detectors in the Compressed Baryonic Matter experiment at Facility for Antiproton and Ion Research (FAIR, Germany) is a 128-channel time and amplitude measuring solution for silicon microstrip and gas detectors. It operates at 250 kHit/s/channel hit rate, each hit producing 27 bits of information (5-bit amplitude, 14-bit timestamp, position and diagnostics data). The chip back-end implements fast front-end channel read-out, timestamp-wise hit sorting, and data streaming via a scalable interface implementing the dedicated protocol (STS-HCTSP) for chip control and hit transfer with data bandwidth from 9.7 MHit/s up to 47 MHit/s. It also includes multiple options for link diagnostics, failure detection, and throttling features. The back-end is designed to operate with the data acquisition architecture based on the CERN GBTx transceivers. This paper presents the details of the back-end and interface design and its implementation in the UMC 180 nm CMOS process.

  16. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  17. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    PubMed

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  18. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field.

    PubMed

    Wang, Zhuo; Wang, Tian; Wang, Chun; Xiao, Yujia; Jing, Panpan; Cui, Yongfei; Pu, Yongping

    2017-08-30

    Ba(Fe 0.5 Ta 0.5 )O 3 /poly(vinylidene fluoride) (BFT/PVDF) flexible nanocomposite films are fabricated by tape casting using dopamine (DA)-modified BFT nanopowders and PVDF as a matrix polymer. After a surface modification of installing a DA layer with a thickness of 5 nm, the interfacial couple interaction between BFT and PVDF is enhanced, resulting in less hole defects at the interface. Then the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity of nanocomposite films are reduced. Meanwhile, the value of the reduced dielectric constant (Δε') and the strength of interfacial polarization (k) are introduced to illustrate the effect of DA on the dielectric behavior of nanocomposite films. Δε' can be used to calculate the magnitude of interfacial polarization, and the strength of the dielectric constant contributed by the interface can be expressed as k. Most importantly, the energy-storage density and energy-storage efficiency of nanocomposite films with a small BFT@DA filler content of 1 vol % at a low electric field of 150 MV/m are enhanced by about 15% and 120%, respectively, after DA modification. The high energy-storage density of 1.81 J/cm 3 is obtained in the sample. This value is much larger than the reported polymer-based nanocomposite films. In addition, the outstanding cycle and bending stability of the nanocomposite films make it a promising candidate for future flexible portable energy devices.

  19. Managing operational documentation in the ALICE Detector Control System

    NASA Astrophysics Data System (ADS)

    Lechman, M.; Augustinus, A.; Bond, P.; Chochula, P.; Kurepin, A.; Pinazza, O.; Rosinsky, P.

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneve, Switzerland. The experiment is composed of 18 sub-detectors controlled by an integrated Detector Control System (DCS) that is implemented using the commercial SCADA package PVSSII. The DCS includes over 1200 network devices, over 1,000,000 monitored parameters and numerous custom made software components that are prepared by over 100 developers from all around the world. This complex system is controlled by a single operator via a central user interface. One of his/her main tasks is the recovery of anomalies and errors that may occur during operation. Therefore, clear, complete and easily accessible documentation is essential to guide the shifter through the expert interfaces of different subsystems. This paper describes the idea of the management of the operational documentation in ALICE using a generic repository that is built on a relational database and is integrated with the control system. The experience gained and the conclusions drawn from the project are also presented.

  20. The LHCb Run Control

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  1. Data Mining as a Service (DMaaS)

    NASA Astrophysics Data System (ADS)

    Tejedor, E.; Piparo, D.; Mascetti, L.; Moscicki, J.; Lamanna, M.; Mato, P.

    2016-10-01

    Data Mining as a Service (DMaaS) is a software and computing infrastructure that allows interactive mining of scientific data in the cloud. It allows users to run advanced data analyses by leveraging the widely adopted Jupyter notebook interface. Furthermore, the system makes it easier to share results and scientific code, access scientific software, produce tutorials and demonstrations as well as preserve the analyses of scientists. This paper describes how a first pilot of the DMaaS service is being deployed at CERN, starting from the notebook interface that has been fully integrated with the ROOT analysis framework, in order to provide all the tools for scientists to run their analyses. Additionally, we characterise the service backend, which combines a set of IT services such as user authentication, virtual computing infrastructure, mass storage, file synchronisation, development portals or batch systems. The added value acquired by the combination of the aforementioned categories of services is discussed, focusing on the opportunities offered by the CERNBox synchronisation service and its massive storage backend, EOS.

  2. Section Editors

    NASA Astrophysics Data System (ADS)

    Groep, D. L.; Bonacorsi, D.

    2014-06-01

    1. Data Acquisition, Trigger and Controls Niko NeufeldCERNniko.neufeld@cern.ch Tassos BeliasDemokritosbelias@inp.demokritos.gr Andrew NormanFNALanorman@fnal.gov Vivian O'DellFNALodell@fnal.gov 2. Event Processing, Simulation and Analysis Rolf SeusterTRIUMFseuster@cern.ch Florian UhligGSIf.uhlig@gsi.de Lorenzo MonetaCERNLorenzo.Moneta@cern.ch Pete ElmerPrincetonpeter.elmer@cern.ch 3. Distributed Processing and Data Handling Nurcan OzturkU Texas Arlingtonnurcan@uta.edu Stefan RoiserCERNstefan.roiser@cern.ch Robert IllingworthFNAL Davide SalomoniINFN CNAFDavide.Salomoni@cnaf.infn.it Jeff TemplonNikheftemplon@nikhef.nl 4. Data Stores, Data Bases, and Storage Systems David LangeLLNLlange6@llnl.gov Wahid BhimjiU Edinburghwbhimji@staffmail.ed.ac.uk Dario BarberisGenovaDario.Barberis@cern.ch Patrick FuhrmannDESYpatrick.fuhrmann@desy.de Igor MandrichenkoFNALivm@fnal.gov Mark van de SandenSURF SARA sanden@sara.nl 5. Software Engineering, Parallelism & Multi-Core Solveig AlbrandLPSC/IN2P3solveig.albrand@lpsc.in2p3.fr Francesco GiacominiINFN CNAFfrancesco.giacomini@cnaf.infn.it Liz SextonFNALsexton@fnal.gov Benedikt HegnerCERNbenedikt.hegner@cern.ch Simon PattonLBNLSJPatton@lbl.gov Jim KowalkowskiFNAL jbk@fnal.gov 6. Facilities, Infrastructures, Networking and Collaborative Tools Maria GironeCERNMaria.Girone@cern.ch Ian CollierSTFC RALian.collier@stfc.ac.uk Burt HolzmanFNALburt@fnal.gov Brian Bockelman U Nebraskabbockelm@cse.unl.edu Alessandro de SalvoRoma 1Alessandro.DeSalvo@ROMA1.INFN.IT Helge MeinhardCERN Helge.Meinhard@cern.ch Ray PasetesFNAL rayp@fnal.gov Steven GoldfarbU Michigan Steven.Goldfarb@cern.ch

  3. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, K; Jha, S; Klimentov, A

    2016-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms for ALICE and ATLAS experiments and it is in full production for the ATLAS experiment since September 2015. We will present our current accomplishments with running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facilities infrastructure for High Energy and Nuclear Physics as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less

  4. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines

    PubMed Central

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W.; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods. PMID:29271779

  5. CERN and high energy physics, the grand picture

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-05-24

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  6. Distributed data analysis in ATLAS

    NASA Astrophysics Data System (ADS)

    Nilsson, Paul; Atlas Collaboration

    2012-12-01

    Data analysis using grid resources is one of the fundamental challenges to be addressed before the start of LHC data taking. The ATLAS detector will produce petabytes of data per year, and roughly one thousand users will need to run physics analyses on this data. Appropriate user interfaces and helper applications have been made available to ensure that the grid resources can be used without requiring expertise in grid technology. These tools enlarge the number of grid users from a few production administrators to potentially all participating physicists. ATLAS makes use of three grid infrastructures for the distributed analysis: the EGEE sites, the Open Science Grid, and Nordu Grid. These grids are managed by the gLite workload management system, the PanDA workload management system, and ARC middleware; many sites can be accessed via both the gLite WMS and PanDA. Users can choose between two front-end tools to access the distributed resources. Ganga is a tool co-developed with LHCb to provide a common interface to the multitude of execution backends (local, batch, and grid). The PanDA workload management system provides a set of utilities called PanDA Client; with these tools users can easily submit Athena analysis jobs to the PanDA-managed resources. Distributed data is managed by Don Quixote 2, a system developed by ATLAS; DQ2 is used to replicate datasets according to the data distribution policies and maintains a central catalog of file locations. The operation of the grid resources is continually monitored by the Ganga Robot functional testing system, and infrequent site stress tests are performed using the Hammer Cloud system. In addition, the DAST shift team is a group of power users who take shifts to provide distributed analysis user support; this team has effectively relieved the burden of support from the developers.

  7. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  8. Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface.

    PubMed

    Romaní, Anna M; Vázquez, Eusebi; Butturini, Andrea

    2006-10-01

    The evolution of dissolved organic carbon (DOC) molecular-weight fractions, DOC biodegradability (BDOC), DOC origin [fluorescence index (FI)], and enzyme activities between the stream waters (main and ephemeral channel) and ground waters (riparian and hillslope) were analyzed during the transition from drought to precipitation in a forested Mediterranean stream. After the first rains, DOC content in stream water reached its maximum value (10-18 mg L(-1)), being explained by the leaching of deciduous leaves accumulated on the stream bed during drought. During this period, the largest molecules (>10 kDa), were the most biodegradable, as indicated by high BDOC values measured during storm events and high enzymatic activities (especially for leucine-aminopeptidase). DOC >100 kDa was strongly immobilized (78%) at the stream-riparian interface, whereas the smallest molecules (<1 kDa) were highly mobile and accumulated in ground waters, indicating their greater recalcitrance. Differential enzymatic patterns between compartments showed a fast utilization of polysaccharides in the flowing water but a major protein utilization in the ground water. The results of the FI indicated a more terrestrial origin of the larger molecules in the flowing water, also suggesting that transformation of material occurs through the stream-riparian interface. Microbial immobilization and fast utilization of the most biodegradable fraction at the stream-riparian interface is suggested as a relevant DOC retention mechanism just after initial recharging of the ground water compartment. Large and rapid DOC inputs entering the intermittent river system during the transition from drought to precipitation provide available N and C sources for the heterotrophs. Heterotrophs efficiently utilize these resources that were in limited supply during the period of drought. Such changes in C cycling may highlight possible changes in organic matter dynamics under the prediction of extended drying periods in aquatic ecosystems.

  9. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  10. Controller evaluations of the descent advisor automation aid

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1989-01-01

    An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively.

  11. Católicos, fidelidade conjugal e AIDS: entre a cruz da doutrina moral e as espadas do cotidiano sexual dos adeptos1

    PubMed Central

    Rios, Luis Felipe; de Aquino, Francisca Luciana; Muñoz-Laboy, Miguel; Oliveira, Cinthia; Parker, Richard

    2009-01-01

    Neste artigo discutimos a visão da Igreja Católica sobre sexualidade na interface com a epidemia do HIV/AIDS. Nossa reflexão está embasada em pesquisa etnográfica que envolveu dois meses de observação participante do cotidiano de católicos de um bairro popular da Região Metropolitana do Recife, além de contar com entrevistas a onze dos leigos engajados nos serviços religiosos da igreja do bairro e a oito sacerdotes que realizam seus trabalhos religiosos em outras localidades. Nelas abordamos diferentes temáticas relacionadas ao enfrentamento da epidemia da AIDS. Nesse contexto, conjugalidade e fidelidade se afiguram como importantes analisadores de como aqueles lidam com a epidemia, em uma variedade de re-descrições práticas e de re-interpretações conceptuais das assertivas do discurso moral religioso – ainda que, muitos impasses permaneçam em aberto em termos das prerrogativas da Igreja e seus possíveis rebatimentos na saúde sexual dos adeptos. PMID:21765650

  12. OpenDA Open Source Generic Data Assimilation Environment and its Application in Process Models

    NASA Astrophysics Data System (ADS)

    El Serafy, Ghada; Verlaan, Martin; Hummel, Stef; Weerts, Albrecht; Dhondia, Juzer

    2010-05-01

    Data Assimilation techniques are essential elements in state-of-the-art development of models and their optimization with data in the field of groundwater, surface water and soil systems. They are essential tools in calibration of complex modelling systems and improvement of model forecasts. The OpenDA is a new and generic open source data assimilation environment for application to a choice of physical process models, applied to case dependent domains. OpenDA was introduced recently when the developers of Costa, an open-source TU Delft project [http://www.costapse.org; Van Velzen and Verlaan; 2007] and those of the DATools from the former WL|Delft Hydraulics [El Serafy et al 2007; Weerts et al. 2009] decided to join forces. OpenDA makes use of a set of interfaces that describe the interaction between models, observations and data assimilation algorithms. It focuses on flexible applications in portable systems for modelling geophysical processes. It provides a generic interfacing protocol that allows combination of the implemented data assimilation techniques with, in principle, any time-stepping model duscribing a process(atmospheric processes, 3D circulation, 2D water level, sea surface temperature, soil systems, groundwater etc.). Presently, OpenDA features filtering techniques and calibration techniques. The presentation will give an overview of the OpenDA and the results of some of its practical applications. Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment, El Serafy G.Y., H. Gerritsen, S. Hummel, A. H. Weerts, A.E. Mynett and M. Tanaka (2007), Journal of Ocean Dynamics, DOI 10.1007/s10236-007-0124-3, pp.485-499. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Van Velzen and Verlaan (2007), Meteorologische Zeitschrift, Volume 16, Number 6, December 2007 , pp. 777-793(17). Application of generic data assimilation tools (DATools) for flood forecasting purposes, A.H. Weerts, G.Y.H. El Serafy, S. Hummel, J. Dhondia, and H. Gerritsen (2009), accepted by Geoscience & Computers.

  13. Prefrontal Dopamine D1 and D2 Receptors Regulate Dissociable Aspects of Decision Making via Distinct Ventral Striatal and Amygdalar Circuits.

    PubMed

    Jenni, Nicole L; Larkin, Joshua D; Floresco, Stan B

    2017-06-28

    Mesocortical dopamine (DA) regulates a variety of cognitive functions via actions on D 1 and/or D 2 receptors. For example, risk/reward decision making is modulated differentially by these two receptors within the prefrontal cortex (PFC), with D 2 receptors enabling flexible decision making and D 1 receptors promoting persistence in choice biases. However, it is unclear how DA mediates opposing patterns of behavior by acting on different receptors within the same terminal region. We explored the possibility that DA may act on separate networks of PFC neurons that are modulated by D 1 or D 2 receptors and in turn interface with divergent downstream structures such as the basolateral amygdala (BLA) or nucleus accumbens (NAc). Decision making was assessed using a probabilistic discounting task in which well trained male rats chose between small/certain or large/risky rewards, with the odds of obtaining the larger reward changing systematically within a session. Selective disruption of D 1 or D 2 modulation of separate PFC output pathways was achieved using unilateral intra-PFC infusions of DA antagonists combined with contralateral inactivation of the BLA or NAc. Disrupting D 2 (but not D 1 ) modulation of PFC→BLA circuitry impaired adjustments in decision biases in response to changes in reward probabilities. In contrast, disrupting D 1 modulation of PFC→NAc networks reduced risky choice, attenuating reward sensitivity and increasing sensitivity to reward omissions. These findings reveal that mesocortical DA can facilitate dissociable components of reward seeking and action selection by acting on different functional networks of PFC neurons that can be distinguished by the subcortical projection targets with which they interface. SIGNIFICANCE STATEMENT Prefrontal cortical dopamine regulates a variety of executive functions governed by the frontal lobes via actions on D 1 and D 2 receptors. These receptors can in some instances mediate different patterns of behavior, but the mechanisms underlying these dissociable actions are unclear. Using a selective disconnection approach, we reveal that D 1 and D 2 receptors can facilitate diverse aspects of decision making by acting on separate networks of prefrontal neurons that interface with distinct striatal or amygdalar targets. These findings reveal an additional level of complexity in how mesocortical DA regulates different forms of cognition via actions on different receptors, highlighting how it may act upon distinct cortical microcircuits to drive different patterns of behavior. Copyright © 2017 the authors 0270-6474/17/376200-14$15.00/0.

  14. Scaling the CERN OpenStack cloud

    NASA Astrophysics Data System (ADS)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  15. Electrophoresis of small particles and fluid globules in weak electrolytes

    NASA Technical Reports Server (NTRS)

    Baygents, J. C.; Saville, D. A.

    1991-01-01

    An examination is conducted of the influence of partial ionization on the electrophoresis of small particles and fluid globules, with a view to the nature of conditions under which dissociation-association (D-A) alters electrokinetics. It is found that, since D-A processes are important in cases where double-layer polarization and relaxation would otherwise prevail, the predicted effect on electrophoretic mobility is greatest for the drops and bubbles whose surfaces are fluid and convection within the interface is significant. While the computation scheme used applies only to situations where forcing-field magnitude is small, the results obtained indicate that D-A processes involving ionogenic solutes may be significant in apolar liquids where electrokinetic phenomena are driven by strong forcing fields.

  16. The LHC timeline: a personal recollection (1980-2012)

    NASA Astrophysics Data System (ADS)

    Maiani, Luciano; Bonolis, Luisa

    2017-12-01

    The objective of this interview is to study the history of the Large Hadron Collider in the LEP tunnel at CERN, from first ideas to the discovery of the Brout-Englert-Higgs boson, seen from the point of view of a member of CERN scientific committees, of the CERN Council and a former Director General of CERN in the years of machine construction.

  17. INTEGRATION OF PANDA WORKLOAD MANAGEMENT SYSTEM WITH SUPERCOMPUTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, K; Jha, S; Maeno, T

    Abstract The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the funda- mental nature of matter and the basic forces that shape our universe, and were recently credited for the dis- covery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Datamore » Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data cen- ters are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Com- puting Facility (OLCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single- threaded workloads in parallel on Titan s multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accom- plishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility s infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics.« less

  18. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study.

    PubMed

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Gupta, Alpa; Singla, Rakesh

    2014-12-01

    To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding.

  19. Effect of rotary cutting instruments on the resin-tooth interfacial ultra structure: An in vivo study

    PubMed Central

    Sherawat, Sudhir; Tewari, Sanjay; Duhan, Jigyasa; Singla, Rakesh

    2014-01-01

    Objectives: To evaluate the effect of cutting teeth with different types of burs at various speeds on surface topography of tooth surface and interfacial gap formation at resin-tooth interface. Material and Methods: The human molars were divided into seven groups: Diamond bur in airrotor (DA) & micromotor (DM), crosscut carbide bur in airrotor (CCA) & micromotor (CCM), plain carbide bur in airrotor (CA) & micromotor (CM) and #600-grit silicon carbide paper (SiC). In five samples from each group Class II box-only cavities were restored. The occlusal surface of four teeth per group was flattened. Two out of four teeth were acid etched. Teeth were subjected for scanning electron microscopy (SEM). Results: Interfacial gap was observed in all groups with no significant difference. SEM observations revealed CA, CCA & DA were coarser than CM, CCM, DM and SiC. SEM of etched tooth surfaces revealed complete removal of amorphous smear layer in CA & CM, partial removal in CCA, CCM, DA & DM and no removal in SiC. Conclusions: Selecting an appropriate bur and its speed may not play an important role in bonding in terms of interfacial gap formation. Variable changes were observed in surface topography with different burs before and after acid etching. Key words:Surface topography, resin-tooth interface, interfacial gap, bonding. PMID:25674310

  20. Dehaloperoxidase-Hemoglobin from Amphitrite ornata Is Primarily a Monomer in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Thompson; S Franzen; M Davis

    2011-12-31

    The crystal structures of the dehaloperoxidase-hemoglobin from A. ornata (DHP A) each report a crystallographic dimer in the unit cell. Yet, the largest dimer interface observed is 450 {angstrom}{sup 2}, an area significantly smaller than the typical value of 1200-2000 {angstrom}{sup 2} and in contrast to the extensive interface region of other known dimeric hemoglobins. To examine the oligomerization state of DHP A in solution, we used gel permeation by fast protein liquid chromatography and small-angle X-ray scattering (SAXS). Gel permeation experiments demonstrate that DHP A elutes as a monomer (15.5 kDa) and can be separated from green fluorescent protein,more » which has a molar mass of 27 kDa, near the 31 kDa expected for the DHP A dimer. By SAXS, we found that DHP A is primarily monomeric in solution, but with a detectable level of dimer (10%), under all conditions studied up to a protein concentration of 3.0 mM. These concentrations are likely 10-100-fold lower than the K{sub d} for dimer formation. Additionally, there was no significant effect either on the overall conformation of DHP A or its monomer-dimer equilibrium upon addition of the DHP A inhibitor, 4-iodophenol.« less

  1. Mouthpiece ventilation in Duchenne muscular dystrophy: a rescue strategy for noncompliant patients.

    PubMed

    Fiorentino, Giuseppe; Annunziata, Anna; Cauteruccio, Rosa; Frega, Gianfranco Scotto di; Esquinas, Antonio

    2016-01-01

    To evaluate mouthpiece ventilation (MPV) in patients with Duchenne muscular dystrophy (DMD) who are noncompliant with noninvasive ventilation (NIV). We evaluated four young patients with DMD who had previously refused to undergo NIV. Each patient was reassessed and encouraged to try MPV. The four patients tolerated MPV well and were compliant with NIV at home. MPV proved to be preferable and more comfortable than NIV with any other type of interface. Two of the patients required overnight NIV and eventually agreed to use a nasal mask during the night. The advantages of MPV over other types of NIV include fewer speech problems, better appearance, and less impact on the patient, eliminating the risk of skin breakdown, gastric distension, conjunctivitis, and claustrophobia. The use of a mouthpiece interface should be always considered in patients with DMD who need to start NIV, in order to promote a positive approach and a rapid acceptance of NIV. Using MPV during the daytime makes patients feel safe and more likely to use NIV at night. In addition, MPV increases treatment compliance for those who refuse to use other types of interfaces. Avaliar a ventilação bucal (VB) em pacientes com distrofia muscular de Duchenne (DMD) não aderentes à ventilação não invasiva (VNI). Foram avaliados quatro pacientes jovens com DMD que anteriormente recusaram-se a se submeter à VNI. Cada paciente foi reavaliado e encorajado a tentar VB. Os quatro pacientes toleraram bem a VB e aderiram ao uso de VNI em casa. O uso de VB provou ser uma alternativa preferível e mais confortável que o uso de VNI com qualquer outro tipo de interface. Dois dos pacientes necessitaram de VNI noturna e eventualmente aceitaram utilizar uma máscara nasal durante a noite. As vantagens da VB sobre outros tipos de VNI incluem menores problemas na fala, melhor aparência e menor impacto no paciente, eliminando o risco de lesões na pele, distensão gástrica, conjuntivite e claustrofobia. O uso da interface bucal sempre deve ser considerado em pacientes com DMD que necessitam iniciar VNI a fim de promover uma abordagem positiva e uma rápida aceitação da VNI. O uso diurno de VB faz com que os pacientes sintam-se seguros e mais propensos a utilizar VNI à noite. Além disso, a VB aumenta a adesão ao tratamento naqueles pacientes que se recusam a utilizar outros tipos de interfaces.

  2. OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef

    2017-04-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).

  3. Rapid and Highly Sensitive Detection of Dopamine Using Conjugated Oxaborole-Based Polymer and Glycopolymer Systems.

    PubMed

    Jiang, Keren; Wang, Yinan; Thakur, Garima; Kotsuchibashi, Yohei; Naicker, Selvaraj; Narain, Ravin; Thundat, Thomas

    2017-05-10

    A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms. Using the conjugated polymer sensing layer, the SPR biosensor was capable of detecting DA in the concentration range of 1 × 10 -9 to 1 × 10 -4 mol L -1 , whereas the MCL sensor showed a limit of detection (LOD) of 5 × 10 -11 mol L -1 . We find that the sensing mechanism is based on DA-induced reversible swelling of the conjugated polymer layer and this allows regeneration and reuse of the sensor multiple times. Also, we conclude that SPR is a suitable sensor platform for DA in-line detection at clinical level considering the detection time and stability, whereas MCL can achieve a much lower LOD.

  4. QM2017: Status and Key open Questions in Ultra-Relativistic Heavy-Ion Physics

    NASA Astrophysics Data System (ADS)

    Schukraft, Jurgen

    2017-11-01

    Almost exactly 3 decades ago, in the fall of 1986, the era of experimental ultra-relativistic E / m ≫ 1) heavy ion physics started simultaneously at the SPS at CERN and the AGS at Brookhaven with first beams of light Oxygen ions at fixed target energies of 200 GeV/A and 14.6 GeV/A, respectively. The event was announced by CERN [CERN's subatomic particle accelerators: Set up world-record in energy and break new ground for physics (CERN-PR-86-11-EN) (1986) 4 p, issued on 29 September 1986. URL (http://cds.cern.ch/record/855571)

  5. Update on CERN Search based on SharePoint 2013

    NASA Astrophysics Data System (ADS)

    Alvarez, E.; Fernandez, S.; Lossent, A.; Posada, I.; Silva, B.; Wagner, A.

    2017-10-01

    CERN’s enterprise Search solution “CERN Search” provides a central search solution for users and CERN service providers. A total of about 20 million public and protected documents from a wide range of document collections is indexed, including Indico, TWiki, Drupal, SharePoint, JACOW, E-group archives, EDMS, and CERN Web pages. In spring 2015, CERN Search was migrated to a new infrastructure based on SharePoint 2013. In the context of this upgrade, the document pre-processing and indexing process was redesigned and generalised. The new data feeding framework allows to profit from new functionality and it facilitates the long term maintenance of the system.

  6. Intelligent FPGA Data Acquisition Framework

    NASA Astrophysics Data System (ADS)

    Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan

    2017-06-01

    In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.

  7. Status of the Space Radiation Monte Carlos Simulation Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Andersen, Victor; Carminati, Federico; Empl, Anton; Ferrari, Alfredo; Pinsky, Lawrence; Sala, Paola; Wilson, Thomas L.

    2002-01-01

    The NASA-funded project reported on at the first IWSSRR in Arona to develop a Monte-Carlo simulation program for use in simulating the space radiation environment based on the FLUKA and ROOT codes is well into its second year of development, and considerable progress has been made. The general tasks required to achieve the final goals include the addition of heavy-ion interactions into the FLUKA code and the provision of a ROOT-based interface to FLUKA. The most significant progress to date includes the incorporation of the DPMJET event generator code within FLUKA to handle heavy-ion interactions for incident projectile energies greater than 3GeV/A. The ongoing effort intends to extend the treatment of these interactions down to 10 MeV, and at present two alternative approaches are being explored. The ROOT interface is being pursued in conjunction with the CERN LHC ALICE software team through an adaptation of their existing AliROOT software. As a check on the validity of the code, a simulation of the recent data taken by the ATIC experiment is underway.

  8. [Mechatronic in functional endoscopic sinus surgery. First experiences with the daVinci Telemanipulatory System].

    PubMed

    Strauss, G; Winkler, D; Jacobs, S; Trantakis, C; Dietz, A; Bootz, F; Meixensberger, J; Falk, V

    2005-07-01

    This study examines the advantages and disadvantages of a commercial telemanipulator system (daVinci, Intuitive Surgical, USA) with computer-guided instruments in functional endoscopic sinus surgery (FESS). We performed five different surgical FESS steps on 14 anatomical preparation and compared them with conventional FESS. A total of 140 procedures were examined taking into account the following parameters: degrees of freedom (DOF), duration , learning curve, force feedback, human-machine-interface. Telemanipulatory instruments have more DOF available then conventional instrumentation in FESS. The average time consumed by configuration of the telemanipulator is around 9+/-2 min. Missing force feedback is evaluated mainly as a disadvantage of the telemanipulator. Scaling was evaluated as helpful. The ergonomic concept seems to be better than the conventional solution. Computer guided instruments showed better results for the available DOF of the instruments. The human-machine-interface is more adaptable and variable then in conventional instrumentation. Motion scaling and indexing are characteristics of the telemanipulator concept which are helpful for FESS in our study.

  9. Self-healable interfaces based on thermo-reversible Diels-Alder reactions in carbon fiber reinforced composites.

    PubMed

    Zhang, W; Duchet, J; Gérard, J F

    2014-09-15

    Thermo-reversible Diels-Alder (DA) bonds formed between maleimide and furan groups have been used to generate an interphase between carbon fiber surface and an epoxy matrix leading to the ability of interfacial self-healing in carbon:epoxy composite materials. The maleimide groups were grafted on an untreated T700 carbon fiber from a three step surface treatment: (i) nitric acid oxidization, (ii) tetraethylenepentamine amination, and (iii) bismaleimide grafting. The furan groups were introduced in the reactive epoxy system from furfuryl glycidyl ether. The interface between untreated carbon fiber and epoxy matrix was considered as a reference. The interfacial shear strength (IFSS) was evaluated by single fiber micro-debonding test. The debonding force was shown to have a linear dependence with embedded length. The highest healing efficiency calculated from the debonding force was found to be about 82% more compared to the value for the reference interface. All the interphases designed with reversible DA bonds have a repeatable self-healing ability. As after the fourth healing, they can recover a relatively high healing efficiency (58% for the interphase formed by T700-BMI which is oxidized for 60 min during the first treatment step). Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Big Bang Day: The Making of CERN (Episode 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-06

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  11. Big Bang Day: The Making of CERN (Episode 1)

    ScienceCinema

    None

    2017-12-09

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  12. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807

  13. DaMoScope and its internet graphics for the visual control of adjusting mathematical models describing experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V., E-mail: Yu.Kuyanov@gmail.com

    The experience of using the dynamic atlas of the experimental data and mathematical models of their description in the problems of adjusting parametric models of observable values depending on kinematic variables is presented. The functional possibilities of an image of a large number of experimental data and the models describing them are shown by examples of data and models of observable values determined by the amplitudes of elastic scattering of hadrons. The Internet implementation of an interactive tool DaMoScope and its interface with the experimental data and codes of adjusted parametric models with the parameters of the best description ofmore » data are schematically shown. The DaMoScope codes are freely available.« less

  14. DaVIE: Database for the Visualization and Integration of Epigenetic data

    PubMed Central

    Fejes, Anthony P.; Jones, Meaghan J.; Kobor, Michael S.

    2014-01-01

    One of the challenges in the analysis of large data sets, particularly in a population-based setting, is the ability to perform comparisons across projects. This has to be done in such a way that the integrity of each individual project is maintained, while ensuring that the data are comparable across projects. These issues are beginning to be observed in human DNA methylation studies, as the Illumina 450k platform and next generation sequencing-based assays grow in popularity and decrease in price. This increase in productivity is enabling new insights into epigenetics, but also requires the development of pipelines and software capable of handling the large volumes of data. The specific problems inherent in creating a platform for the storage, comparison, integration, and visualization of DNA methylation data include data storage, algorithm efficiency and ability to interpret the results to derive biological meaning from them. Databases provide a ready-made solution to these issues, but as yet no tools exist that that leverage these advantages while providing an intuitive user interface for interpreting results in a genomic context. We have addressed this void by integrating a database to store DNA methylation data with a web interface to query and visualize the database and a set of libraries for more complex analysis. The resulting platform is called DaVIE: Database for the Visualization and Integration of Epigenetics data. DaVIE can use data culled from a variety of sources, and the web interface includes the ability to group samples by sub-type, compare multiple projects and visualize genomic features in relation to sites of interest. We have used DaVIE to identify patterns of DNA methylation in specific projects and across different projects, identify outlier samples, and cross-check differentially methylated CpG sites identified in specific projects across large numbers of samples. A demonstration server has been setup using GEO data at http://echelon.cmmt.ubc.ca/dbaccess/, with login “guest” and password “guest.” Groups may download and install their own version of the server following the instructions on the project's wiki. PMID:25278960

  15. Applying Unmanned Ground Vehicle Technologies To Unmanned Surface Vehicles

    DTIC Science & Technology

    2005-01-01

    PCI or ISA bus interface • 7 UARTs • 3 USB ports • CAN bus • I2C Bus • 1 RS232 Serial Port • Two 12-bit D-A output • Two 8-bit D-A...two of the seven UARTs and the CAN bus interface. It is also used to preprocess some sensor data before sending it to the FPGA. The daughterboard...modification of the Kalman Filter and PID parameters for use in a marine environment. 2.2.1 Architecture The Small Robot Technology ( SMART ) software

  16. CERN welcomes new members

    NASA Astrophysics Data System (ADS)

    2017-08-01

    Lithuania is on course to become an associate member of CERN, pending final approval by the Lithuanian parliament. Associate membership will allow representatives of the Baltic nation to take part in meetings of the CERN Council, which oversees the Geneva-based physics lab.

  17. Analysis of CERN computing infrastructure and monitoring data

    NASA Astrophysics Data System (ADS)

    Nieke, C.; Lassnig, M.; Menichetti, L.; Motesnitsalis, E.; Duellmann, D.

    2015-12-01

    Optimizing a computing infrastructure on the scale of LHC requires a quantitative understanding of a complex network of many different resources and services. For this purpose the CERN IT department and the LHC experiments are collecting a large multitude of logs and performance probes, which are already successfully used for short-term analysis (e.g. operational dashboards) within each group. The IT analytics working group has been created with the goal to bring data sources from different services and on different abstraction levels together and to implement a suitable infrastructure for mid- to long-term statistical analysis. It further provides a forum for joint optimization across single service boundaries and the exchange of analysis methods and tools. To simplify access to the collected data, we implemented an automated repository for cleaned and aggregated data sources based on the Hadoop ecosystem. This contribution describes some of the challenges encountered, such as dealing with heterogeneous data formats, selecting an efficient storage format for map reduce and external access, and will describe the repository user interface. Using this infrastructure we were able to quantitatively analyze the relationship between CPU/wall fraction, latency/throughput constraints of network and disk and the effective job throughput. In this contribution we will first describe the design of the shared analysis infrastructure and then present a summary of first analysis results from the combined data sources.

  18. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  19. EFQPSK Versus CERN: A Comparative Study

    NASA Technical Reports Server (NTRS)

    Borah, Deva K.; Horan, Stephen

    2001-01-01

    This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK signals with not too much increase in computational complexity. When a nonlinear amplifier is used, the bit error rate (BER) performance of the CERN signals with a matched filter receiver is found to be more than one decibel (dB) worse compared to the bit error performance of EFQPSK signals. Although channel coding is found to provide BER performance improvement for both EFQPSK and CERN signals, the performance of EFQPSK signals remains better than that of CERN. Optimal receiver structures for CERN signals with nonlinear equalization is left as a possible future work. Based on the numerical results, it is concluded that, in nonlinear channels, CERN processing leads towards better bandwidth efficiency with a compromise in power efficiency. Hence for bandwidth efficient communications needs, CERN is a good solution provided effective adaptive predistorters can be realized. On the other hand, EFQPSK signals provide a good power efficient solution with a compromise in band width efficiency.

  20. Sharing scientific discovery globally: toward a CERN virtual visit service

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.; Hatzifotiadou, D.; Lapka, M.; Papanestis, A.

    2017-10-01

    The installation of virtual visit services by the LHC collaborations began shortly after the first high-energy collisions were provided by the CERN accelerator in 2010. The experiments: ATLAS [1], CMS [2], LHCb [3], and ALICE [4] have all joined in this popular and effective method to bring the excitement of scientific exploration and discovery into classrooms and other public venues around the world. Their programmes, which use a combination of video conference, webcast, and video recording to communicate with remote audiences have already reached tens of thousands of viewers, and the demand only continues to grow. Other venues, such as the CERN Control Centre, are also considering similar permanent installations. We present a summary of the development of the various systems in use around CERN today, including the technology deployed and a variety of use cases. We then lay down the arguments for the creation of a CERN-wide service that would support these programmes in a more coherent and effective manner. Potential services include a central booking system and operational management similar to what is currently provided for the common CERN video conference facilities. Certain choices in technology could be made to support programmes based on popular tools including (but not limited to) Skype™ [5], Google Hangouts [6], Facebook Live [7], and Periscope [8]. Successful implementation of the project, which relies on close partnership between the experiments, CERN IT CDA [9], and CERN IR ECO [10], has the potential to reach an even larger, global audience, more effectively than ever before.

  1. COSMO 09

    ScienceCinema

    None

    2018-06-20

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin). List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle. Dark matter, convenor: Marco Cirelli. Dark energy and modified gravity, convenor: Kazuya Koyama. CMB, LSS and cosmological parameters/models, convenor: Licia Verde. String cosmology, convenor: Jim Cline. Baryogenesis and leptogenesis, convenor: Mariano Quiros. The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  2. COSMO 09

    ScienceCinema

    Peiris, Hiranya

    2018-06-12

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise.The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  3. COSMO 09

    ScienceCinema

    Knapp, Johannes

    2018-06-14

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference(price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  4. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin). List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle. Dark matter, convenor: Marco Cirelli. Dark energy and modified gravity, convenor: Kazuya Koyama. CMB, LSS and cosmological parameters/models, convenor: Licia Verde. String cosmology, convenor: Jim Cline. Baryogenesis and leptogenesis, convenor: Mariano Quiros. The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  5. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  6. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiris, Hiranya

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise.The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  7. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salati, Pierre

    Part 5 lecture. Outline 1) Evidence for primary cosmic ray positrons 2) DM species with quite special properties 3) The effect of clumpiness on DM annihilaion 4) Decaying dark matter 5) perpectives more than conclusions. This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, themore » Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees.[Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  8. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, Johannes

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference(price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  9. COSMO 09

    ScienceCinema

    None

    2018-06-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  10. COSMO 09

    ScienceCinema

    Salati, Pierre

    2018-05-24

    Part 5 lecture. Outline 1) Evidence for primary cosmic ray positrons 2) DM species with quite special properties 3) The effect of clumpiness on DM annihilaion 4) Decaying dark matter 5) perpectives more than conclusions. This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees.[Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  11. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    NASA Astrophysics Data System (ADS)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.

  12. The ATLAS PanDA Monitoring System and its Evolution

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  13. Diacetyl Induces Amphiregulin Shedding in Pulmonary Epithelial Cells and in Experimental Bronchiolitis Obliterans

    PubMed Central

    Sun, Jesse; Fischer, Bernard M.; Voynow, Judith A.; Kummarapurugu, Apparao B.; Zhang, Helen L.; Nugent, Julia L.; Beasley, Robert F.; Martinu, Tereza; Gwinn, William M.; Morgan, Daniel L.; Palmer, Scott M.

    2014-01-01

    Diacetyl (DA), a component of artificial butter flavoring, has been linked to the development of bronchiolitis obliterans (BO), a disease of airway epithelial injury and airway fibrosis. The epidermal growth factor receptor ligand, amphiregulin (AREG), has been implicated in other types of epithelial injury and lung fibrosis. We investigated the effects of DA directly on the pulmonary epithelium, and we hypothesized that DA exposure would result in epithelial cell shedding of AREG. Consistent with this hypothesis, we demonstrate that DA increases AREG by the pulmonary epithelial cell line NCI-H292 and by multiple independent primary human airway epithelial donors grown under physiologically relevant conditions at the air–liquid interface. Furthermore, we demonstrate that AREG shedding occurs through a TNF-α–converting enzyme (TACE)-dependent mechanism via inhibition of TACE activity in epithelial cells using the small molecule inhibitor, TNF-α protease inhibitor-1, as well as TACE-specific small inhibitor RNA. Finally, we demonstrate supportive in vivo results showing increased AREG transcript and protein levels in the lungs of rodents with DA-induced BO. In summary, our novel in vitro and in vivo observations suggest that further study of AREG is warranted in the pathogenesis of DA-induced BO. PMID:24816162

  14. Learning with the ATLAS Experiment at CERN

    ERIC Educational Resources Information Center

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  15. First experience with the new .cern Top Level Domain

    NASA Astrophysics Data System (ADS)

    Alvarez, E.; Malo de Molina, M.; Salwerowicz, M.; Silva De Sousa, B.; Smith, T.; Wagner, A.

    2017-10-01

    In October 2015, CERN’s core website has been moved to a new address, http://home.cern, marking the launch of the brand new top-level domain .cern. In combination with a formal governance and registration policy, the IT infrastructure needed to be extended to accommodate the hosting of Web sites in this new top level domain. We will present the technical implementation in the framework of the CERN Web Services that allows to provide virtual hosting, a reverse proxy solution and that also includes the provisioning of SSL server certificates for secure communications.

  16. Analysis of counting data: Development of the SATLAS Python package

    NASA Astrophysics Data System (ADS)

    Gins, W.; de Groote, R. P.; Bissell, M. L.; Granados Buitrago, C.; Ferrer, R.; Lynch, K. M.; Neyens, G.; Sels, S.

    2018-01-01

    For the analysis of low-statistics counting experiments, a traditional nonlinear least squares minimization routine may not always provide correct parameter and uncertainty estimates due to the assumptions inherent in the algorithm(s). In response to this, a user-friendly Python package (SATLAS) was written to provide an easy interface between the data and a variety of minimization algorithms which are suited for analyzinglow, as well as high, statistics data. The advantage of this package is that it allows the user to define their own model function and then compare different minimization routines to determine the optimal parameter values and their respective (correlated) errors. Experimental validation of the different approaches in the package is done through analysis of hyperfine structure data of 203Fr gathered by the CRIS experiment at ISOLDE, CERN.

  17. BnmrOffice: A Free Software for β-nmr Data Analysis

    NASA Astrophysics Data System (ADS)

    Saadaoui, Hassan

    A data-analysis framework with a graphical user interface (GUI) is developed to analyze β-nmr spectra in an automated and intuitive way. This program, named BnmrOffice is written in C++ and employs the QT libraries and tools for designing the GUI, and the CERN's Minuit optimization routines for minimization. The program runs under multiple platforms, and is available for free under the terms of the GNU GPL standards. The GUI is structured in tabs to search, plot and analyze data, along other functionalities. The user can tweak the minimization options; and fit multiple data files (or runs) using single or global fitting routines with pre-defined or new models. Currently, BnmrOffice reads TRIUMF's MUD data and ASCII files, and can be extended to other formats.

  18. Hangout with CERN: a direct conversation with the public

    NASA Astrophysics Data System (ADS)

    Rao, Achintya; Goldfarb, Steven; Kahle, Kate

    2016-04-01

    Hangout with CERN refers to a weekly, half-hour-long, topical webcast hosted at CERN. The aim of the programme is threefold: (i) to provide a virtual tour of various locations and facilities at CERN, (ii) to discuss the latest scientific results from the laboratory, and, most importantly, (iii) to engage in conversation with the public and answer their questions. For each ;episode;, scientists gather around webcam-enabled computers at CERN and partner institutes/universities, connecting to one another using the Google+ social network's ;Hangouts; tool. The show is structured as a conversation mediated by a host, usually a scientist, and viewers can ask questions to the experts in real time through a Twitter hashtag or YouTube comments. The history of Hangout with CERN can be traced back to ICHEP 2012, where several physicists crowded in front of a laptop connected to Google+, using a ;Hangout On Air; webcast to explain to the world the importance of the discovery of the Higgs-like boson, announced just two days before at the same conference. Hangout with CERN has also drawn inspiration from two existing outreach endeavours: (i) ATLAS Virtual Visits, which connected remote visitors with scientists in the ATLAS Control Room via video conference, and (ii) the Large Hangout Collider, in which CMS scientists gave underground tours via Hangouts to groups of schools and members of the public around the world. In this paper, we discuss the role of Hangout with CERN as a bi-directional outreach medium and an opportunity to train scientists in effective communication.

  19. A Customizable Importer for the Clinical Data Warehouses PaDaWaN and I2B2.

    PubMed

    Fette, Georg; Kaspar, Mathias; Dietrich, Georg; Ertl, Maximilian; Krebs, Jonathan; Stoerk, Stefan; Puppe, Frank

    2017-01-01

    In recent years, clinical data warehouses (CDW) storing routine patient data have become more and more popular to support scientific work in the medical domain. Although CDW systems provide interfaces to import new data, these interfaces have to be used by processing tools that are often not included in the systems themselves. In order to establish an extraction-transformation-load (ETL) workflow, already existing components have to be taken or new components have to be developed to perform the load part of the ETL. We present a customizable importer for the two CDW systems PaDaWaN and I2B2, which is able to import the most common import formats (plain text, CSV and XML files). In order to be run, the importer only needs a configuration file with the user credentials for the target CDW and a list of XML import configuration files, which determine how already exported data is indented to be imported. The importer is provided as a Java program, which has no further software requirements.

  20. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-15

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.

  1. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010)

    NASA Astrophysics Data System (ADS)

    Lin, Simon C.; Shen, Stella; Neufeld, Niko; Gutsche, Oliver; Cattaneo, Marco; Fisk, Ian; Panzer-Steindel, Bernd; Di Meglio, Alberto; Lokajicek, Milos

    2011-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at Academia Sinica in Taipei from 18-22 October 2010. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18 month intervals, alternating between Europe, Asia, America and other parts of the world. Recent CHEP conferences have been held in Prauge, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, California(2003); Beijing, China (2001); Padova, Italy (2000) CHEP 2010 was organized by Academia Sinica Grid Computing Centre. There was an International Advisory Committee (IAC) setting the overall themes of the conference, a Programme Committee (PC) responsible for the content, as well as Conference Secretariat responsible for the conference infrastructure. There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 260 oral and 200 poster presentations, and industrial exhibitions. We thank all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Engineering, Data Stores, and Databases, Distributed Processing and Analysis, Computing Fabrics and Networking Technologies, Grid and Cloud Middleware, and Collaborative Tools. The conference included excursions to various attractions in Northern Taiwan, including Sanhsia Tsu Shih Temple, Yingko, Chiufen Village, the Northeast Coast National Scenic Area, Keelung, Yehliu Geopark, and Wulai Aboriginal Village, as well as two banquets held at the Grand Hotel and Grand Formosa Regent in Taipei. The next CHEP conference will be held in New York, the United States on 21-25 May 2012. We would like to thank the National Science Council of Taiwan, the EU ACEOLE project, commercial sponsors, and the International Advisory Committee and the Programme Committee members for all their support and help. Special thanks to the Programme Committee members for their careful choice of conference contributions and enormous effort in reviewing and editing about 340 post conference proceedings papers. Simon C Lin CHEP 2010 Conference Chair and Proceedings Editor Taipei, Taiwan November 2011 Track Editors/ Programme Committee Chair Simon C Lin, Academia Sinica, Taiwan Online Computing Track Y H Chang, National Central University, Taiwan Harry Cheung, Fermilab, USA Niko Neufeld, CERN, Switzerland Event Processing Track Fabio Cossutti, INFN Trieste, Italy Oliver Gutsche, Fermilab, USA Ryosuke Itoh, KEK, Japan Software Engineering, Data Stores, and Databases Track Marco Cattaneo, CERN, Switzerland Gang Chen, Chinese Academy of Sciences, China Stefan Roiser, CERN, Switzerland Distributed Processing and Analysis Track Kai-Feng Chen, National Taiwan University, Taiwan Ulrik Egede, Imperial College London, UK Ian Fisk, Fermilab, USA Fons Rademakers, CERN, Switzerland Torre Wenaus, BNL, USA Computing Fabrics and Networking Technologies Track Harvey Newman, Caltech, USA Bernd Panzer-Steindel, CERN, Switzerland Antonio Wong, BNL, USA Ian Fisk, Fermilab, USA Niko Neufeld, CERN, Switzerland Grid and Cloud Middleware Track Alberto Di Meglio, CERN, Switzerland Markus Schulz, CERN, Switzerland Collaborative Tools Track Joao Correia Fernandes, CERN, Switzerland Philippe Galvez, Caltech, USA Milos Lokajicek, FZU Prague, Czech Republic International Advisory Committee Chair: Simon C. Lin , Academia Sinica, Taiwan Members: Mohammad Al-Turany , FAIR, Germany Sunanda Banerjee, Fermilab, USA Dario Barberis, CERN & Genoa University/INFN, Switzerland Lothar Bauerdick, Fermilab, USA Ian Bird, CERN, Switzerland Amber Boehnlein, US Department of Energy, USA Kors Bos, CERN, Switzerland Federico Carminati, CERN, Switzerland Philippe Charpentier, CERN, Switzerland Gang Chen, Institute of High Energy Physics, China Peter Clarke, University of Edinburgh, UK Michael Ernst, Brookhaven National Laboratory, USA David Foster, CERN, Switzerland Merino Gonzalo, CIEMAT, Spain John Gordon, STFC-RAL, UK Volker Guelzow, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany John Harvey, CERN, Switzerland Frederic Hemmer, CERN, Switzerland Hafeez Hoorani, NCP, Pakistan Viatcheslav Ilyin, Moscow State University, Russia Matthias Kasemann, DESY, Germany Nobuhiko Katayama, KEK, Japan Milos Lokajícek, FZU Prague, Czech Republic David Malon, ANL, USA Pere Mato Vila, CERN, Switzerland Mirco Mazzucato, INFN CNAF, Italy Richard Mount, SLAC, USA Harvey Newman, Caltech, USA Mitsuaki Nozaki, KEK, Japan Farid Ould-Saada, University of Oslo, Norway Ruth Pordes, Fermilab, USA Hiroshi Sakamoto, The University of Tokyo, Japan Alberto Santoro, UERJ, Brazil Jim Shank, Boston University, USA Alan Silverman, CERN, Switzerland Randy Sobie , University of Victoria, Canada Dongchul Son, Kyungpook National University, South Korea Reda Tafirout , TRIUMF, Canada Victoria White, Fermilab, USA Guy Wormser, LAL, France Frank Wuerthwein, UCSD, USA Charles Young, SLAC, USA

  2. CERN@school: bringing CERN into the classroom

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Cook, J.; Coupe, A.; Fickling, R. L.; Parker, B.; Shearer, N.

    2016-04-01

    CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.

  3. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  4. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  5. Signature CERN-URSS

    ScienceCinema

    None

    2017-12-09

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  6. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    NASA Astrophysics Data System (ADS)

    Marian, Babik; Ivan, Fedorko; Nicholas, Hook; Hector, Lansdale Thomas; Daniel, Lenkes; Miroslav, Siket; Denis, Waldron

    2011-12-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  7. Hands on CERN: A Well-Used Physics Education Project

    ERIC Educational Resources Information Center

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  8. Indico 1.0

    NASA Astrophysics Data System (ADS)

    Gonzalez Lopez, J. B.; Avilés, A.; Baron, T.; Ferreira, P.; Kolobara, B.; Pugh, M. A.; Resco, A.; Trzaskoma, J. P.

    2014-06-01

    Indico has evolved into the main event organization software, room booking tool and collaboration hub for CERN. The growth in its usage has only accelerated during the past 9 years, and today Indico holds more that 215,000 events and 1,100,000 files. The growth was also substantial in terms of functionalities and improvements. In the last year alone, Indico has matured considerably in 3 key areas: enhanced usability, optimized performance and additional features, especially those related to meeting collaboration. Along the course of 2012, much activity has centred around consolidating all this effort and investment into "version 1.0", recently released in 2013.Version 1.0 brings along new features, such as the Microsoft Exchange calendar synchronization for participants, many new and clean interfaces (badges and poster generation, list of contributions, abstracts, etc) and so forth. But most importantly, it brings a message: Indico is now stable, consolidated and mature after more than 10 years of non-stop development. This message is addressed not only to CERN users but also to the many organisations, in or outside HEP, which have already installed the software, and to others who might soon join this community. In this document, we describe the current state of the art of Indico, and how it was built. This does not mean that the Indico software is complete, far from it! We have plenty of new ideas and projects that we are working on and which we have shared during CHEP 2013.

  9. Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO2 and Polydopamine for Degradation of Tetracycline under Visible Light.

    PubMed

    Wang, Chen; Wu, Yilin; Lu, Jian; Zhao, Juan; Cui, Jiuyun; Wu, Xiuling; Yan, Yongsheng; Huo, Pengwei

    2017-07-19

    A bioinspired photocatalytic nanocomposite membrane was successfully prepared via polydopamine (pDA)-coated poly(vinylidene fluoride) (PVDF) membrane, as a secondary platform for vacuum-filtrated Au-TiO 2 nanocomposites, with enhanced photocatalytic activity. The degradation efficiency of Au-TiO 2 /pDA/PVDF membranes reached 92% when exposed to visible light for 120 min, and the degradation efficiency of Au-TiO 2 /pDA/PVDF membranes increased by 26% compared to that of Au-TiO 2 powder and increased by 51% compared to that of TiO 2 /pDA/PVDF nanocomposite membranes. The degradation efficiency remained about 90% after five cycle experiments, and the Au-TiO 2 /pDA/PVDF nanocomposite membranes showed good stability, regeneration performance, and easy recycling. The pDA coating not only served as a bioadhesion interface to improve the bonding force between the catalyst and the membrane substrate but also acted as a photosensitizer to broaden the wavelength response range of TiO 2 , and the structure of Au-TiO 2 /pDA/PVDF also improves the transfer rate of photogenerated electrons; the surface plasmon resonance effect of Au also played a positive role in improving the activity of the catalyst. Therefore, we believe that this study opens up a new strategy in preparing the bioinspired photocatalytic nanocomposite membrane for potential wastewater purification, catalysis, and as a membrane separation field.

  10. Comparison and extension of free dendritic growth models through application to silver-15 mass percent copper alloy

    NASA Astrophysics Data System (ADS)

    Onel, Selis

    Modeling free dendritic growth in supercooled alloys is a critical requirement in controlling the microstructure of materials during rapid solidification processing of materials. Recent models developed to predict the growth of a dendrite in a highly supercooled melt adopt modifications that account for the interface kinetics and thermodynamics at high interface velocities, but the assumptions necessary to simplify the mathematical problem impose inherent restrictions. The assumption of straight phase boundaries adopted in early models often loses validity at high supercoolings, where phase boundaries are often curved. The use of equations with Henrian restrictions, such as the Baker-Cahn equation for the interfacial driving force and the Aziz equation for solute trapping confine these models to dilute solutions. Turnbull's collision-limited linear kinetic equation for interface growth may not apply to large interfacial driving forces. Therefore, a useful application and modification of free dendritic growth models require a thorough understanding of their limitations in producing consistent results. One of the objectives of this research is to numerically compare the free dendritic growth models derived from the earlier LGK model developed by Lipton et al. The subsequent LKT model by Lipton et al., the TLK model by Trivedi et al., and the BCT model by Boettinger et al., together with a modification of the TLK model, and the DA model by DiVenuti and Ando are compared through application to an Ag-15 mass % Cu alloy. In addition, a new model to extend the DA model is developed by incorporating a thermodynamic solution model for the calculation of the interfacial driving force, thereby eliminating the Baker-Cahn equation that limits the use of the correct BCT and DA models to dilute solutions. Direct computation of the interfacial driving force by calculating a metastable phase diagram for the Ag-Cu system using a temperature dependent subregular solution model is carried out. Comparison of the results of the new model with the DA model confirms that the Baker-Cahn equation is applicable at low solute concentrations. As a future research direction, the new model can be extended to apply to higher concentration alloys by using a new solute trapping equation to further eliminate the dilute solution limitations.

  11. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  12. Using Tablet PC's for the Final Test of Baccalaureate

    ERIC Educational Resources Information Center

    Laborda, Jesús García; Royo, Teresa Magal

    2016-01-01

    Online testing is becoming a popular way to deliver language tests, partly because of its reduced cost, partly because of the high quality of test data collection. In language tests, interface validation has received a limited attention in professional literature (García, Magal, da Rocha, & Fernández, 2010). This paper will show the validation…

  13. A New Concept of Controller for Accelerators' Magnet Power Supplies

    NASA Astrophysics Data System (ADS)

    Visintini, Roberto; Cleva, Stefano; Cautero, Marco; Ciesla, Tomasz

    2016-04-01

    The complexity of a particle accelerator implies the remote control of very large numbers of devices, with many different typologies, either distributed along the accelerator or concentrated in locations, often far away from each other. Local and global control systems handle the devices through dedicated communication channels and interfaces. Each controlled device is practically a “smart node” performing a specific task. In addition, very often, those tasks are managed in real-time mode. The performances required to the control interface has an influence on the cost of the distributed nodes as well as on their hardware and software implementation. In large facilities (e.g. CERN) the “smart nodes” derive from specific in-house developments. Alternatively, it is possible to find on the market commercial devices, whose performances (and prices) are spread over a broad range, and spanning from proprietary design (customizable to the user's needs) to open source/design. In this paper, we will describe some applications of smart nodes in the particle accelerators field, with special focus on the power supplies for magnets. In modern accelerators, in fact, magnets and their associated power supplies constitute systems distributed along the accelerator itself, and strongly interfaced with the remote control system as well as with more specific (and often more demanding) orbit/trajectory feedback systems. We will give examples of actual systems, installed and operational on two light sources, Elettra and FERMI, located in the Elettra Research Center in Trieste, Italy.

  14. Advanced liquid chromatography-mass spectrometry interface based on electron ionization.

    PubMed

    Cappiello, A; Famiglini, G; Pierini, E; Palma, P; Trufelli, H

    2007-07-15

    Major progress in interfacing liquid chromatography and electron ionization mass spectrometry is presented. The minimalism of the first prototype, called the Direct-EI interface, has been widely refined, improved, and applied to modern instrumentation. The simple interfacing principle is based on the straight connection between a nanoHPLC system and a mass spectrometer equipped with an EI source forming a solid and reliable unicum resembling the immediacy and straightforwardness of GC/MS. The interface shows a superior performance in the analysis of small-medium molecular weight compounds, especially when compared to its predecessors, and a unique trait that excels particularly in the following aspects: (1) It delivers high-quality, fully library matchable mass spectra of most sub-1 kDa molecules amenable by HPLC. (2) It is a chemical ionization free interface (unless operated intentionally) with accurate reproduction of the expected isotope ion abundances. (3) Response is never influenced by matrix components in the sample or in the mobile phase (nonvolatile salts are also well accepted). A deep evaluation of these aspects is presented and discussed in detail. Other characteristics of the interface performance such as limits of detections, range of linear response, and intra- and interday signal stability were also considered. The usefulness of the interface has been tested in a few real-world applications where matrix components played a detrimental role with other LC/MS techniques.

  15. 25th Birthday Cern- Amphi

    ScienceCinema

    None

    2017-12-09

    Cérémonie du 25ème anniversaire du Cern avec 2 orateurs: le Prof.Weisskopf parle de la signification et le rôle du Cern et le Prof.Casimir(?) fait un exposé sur les rélations entre la science pure et la science appliquée et la "big science" (science légère)

  16. Prototype Automatic Target Screener.

    DTIC Science & Technology

    1980-05-19

    JLIST OF TABLES I Table Page 1 PATS Modules 4 2 Vector Read/Write Command Format ( SEL4 ) 29 1 3 Read Vector Data Command Format ( SEL4 ) 30 J 4 Use Matrix...VECTOR READ/WRITE COMMAND FORMAT ( SEL4 ) S 1,4A Output 15 14 1:3 12 11 10 9 8 7 6 5 4 3 2 1 0 Da taI To VNUM VDIR V LEN InterfaceIT TNT = 1 Intensify...elements ! | 29 I TABLE 3. READ VECTOR DATA COMMAND FORMAT ( SEL4 ) SEL4 Read Vector Data Input 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Da ta D D V To 0 A D

  17. 1987 Nuclear Science Symposium, 34th, and 1987 Symposium on Nuclear Power Systems, 19th, San Francisco, CA, Oct. 21-23, 1987, Proceedings

    NASA Astrophysics Data System (ADS)

    Armantrout, Guy A.

    1988-02-01

    The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.

  18. A multi-port 10GbE PCIe NIC featuring UDP offload and GPUDirect capabilities.

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Stanislao Paolucci, Pier; Pastorelli, Elena; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Tosoratto, Laura; Vicini, Piero

    2015-12-01

    NaNet-10 is a four-ports 10GbE PCIe Network Interface Card designed for low-latency real-time operations with GPU systems. To this purpose the design includes an UDP offload module, for fast and clock-cycle deterministic handling of the transport layer protocol, plus a GPUDirect P2P/RDMA engine for low-latency communication with NVIDIA Tesla GPU devices. A dedicated module (Multi-Stream) can optionally process input UDP streams before data is delivered through PCIe DMA to their destination devices, re-organizing data from different streams guaranteeing computational optimization. NaNet-10 is going to be integrated in the NA62 CERN experiment in order to assess the suitability of GPGPU systems as real-time triggers; results and lessons learned while performing this activity will be reported herein.

  19. Global EOS: exploring the 300-ms-latency region

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Jericho, D.; Hsu, C.-Y.

    2017-10-01

    EOS, the CERN open-source distributed disk storage system, provides the highperformance storage solution for HEP analysis and the back-end for various work-flows. Recently EOS became the back-end of CERNBox, the cloud synchronisation service for CERN users. EOS can be used to take advantage of wide-area distributed installations: for the last few years CERN EOS uses a common deployment across two computer centres (Geneva-Meyrin and Budapest-Wigner) about 1,000 km apart (∼20-ms latency) with about 200 PB of disk (JBOD). In late 2015, the CERN-IT Storage group and AARNET (Australia) set-up a challenging R&D project: a single EOS instance between CERN and AARNET with more than 300ms latency (16,500 km apart). This paper will report about the success in deploy and run a distributed storage system between Europe (Geneva, Budapest), Australia (Melbourne) and later in Asia (ASGC Taipei), allowing different type of data placement and data access across these four sites.

  20. Introduction to CERN

    ScienceCinema

    Heuer, R.-D.

    2018-02-19

    Summer Student Lecture Programme Introduction. The mission of CERN; push back the frontiers of knowledge, e.g. the secrets of the Big Bang...what was the matter like within the first moments of the Universe's existence? You have to develop new technologies for accelerators and detectors (also information technology--the Web and the GRID and medicine--diagnosis and therapy). There are three key technology areas at CERN; accelerating, particle detection, large-scale computing.

  1. HIGH ENERGY PHYSICS: Bulgarians Sue CERN for Leniency.

    PubMed

    Koenig, R

    2000-10-13

    In cash-strapped Bulgaria, scientists are wondering whether a ticket for a front-row seat in high-energy physics is worth the price: Membership dues in CERN, the European particle physics lab, nearly equal the country's entire budget for competitive research grants. Faced with that grim statistic and a plea for leniency from Bulgaria's government, CERN's governing council is considering slashing the country's membership dues for the next 2 years.

  2. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-14

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  3. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  4. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-06-28

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  5. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  6. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2017-12-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  7. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-24

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher

  8. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2018-04-27

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.

  9. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  10. Service management at CERN with Service-Now

    NASA Astrophysics Data System (ADS)

    Toteva, Z.; Alvarez Alonso, R.; Alvarez Granda, E.; Cheimariou, M.-E.; Fedorko, I.; Hefferman, J.; Lemaitre, S.; Clavo, D. Martin; Martinez Pedreira, P.; Pera Mira, O.

    2012-12-01

    The Information Technology (IT) and the General Services (GS) departments at CERN have decided to combine their extensive experience in support for IT and non-IT services towards a common goal - to bring the services closer to the end user based on Information Technology Infrastructure Library (ITIL) best practice. The collaborative efforts have so far produced definitions for the incident and the request fulfilment processes which are based on a unique two-dimensional service catalogue that combines both the user and the support team views of all services. After an extensive evaluation of the available industrial solutions, Service-now was selected as the tool to implement the CERN Service-Management processes. The initial release of the tool provided an attractive web portal for the users and successfully implemented two basic ITIL processes; the incident management and the request fulfilment processes. It also integrated with the CERN personnel databases and the LHC GRID ticketing system. Subsequent releases continued to integrate with other third-party tools like the facility management systems of CERN as well as to implement new processes such as change management. Independently from those new development activities it was decided to simplify the request fulfilment process in order to achieve easier acceptance by the CERN user community. We believe that due to the high modularity of the Service-now tool, the parallel design of ITIL processes e.g., event management and non-ITIL processes, e.g., computer centre hardware management, will be easily achieved. This presentation will describe the experience that we have acquired and the techniques that were followed to achieve the CERN customization of the Service-Now tool.

  11. Vidyo@CERN: A Service Update

    NASA Astrophysics Data System (ADS)

    Fernandes, J.; Baron, T.

    2015-12-01

    We will present an overview of the current real-time video service offering for the LHC, in particular the operation of the CERN Vidyo service will be described in terms of consolidated performance and scale: The service is an increasingly critical part of the daily activity of the LHC collaborations, topping recently more than 50 million minutes of communication in one year, with peaks of up to 852 simultaneous connections. We will elaborate on the improvement of some front-end key features such as the integration with CERN Indico, or the enhancements of the Unified Client and also on new ones, released or in the pipeline, such as a new WebRTC client and CERN SSO/Federated SSO integration. An overview of future infrastructure improvements, such as virtualization techniques of Vidyo routers and geo-location mechanisms for load-balancing and optimum user distribution across the service infrastructure will also be discussed. The work done by CERN to improve the monitoring of its Vidyo network will also be presented and demoed. As a last point, we will touch the roadmap and strategy established by CERN and Vidyo with a clear objective of optimizing the service both on the end client and backend infrastructure to make it truly universal, to serve Global Science. To achieve those actions, the introduction of the multitenant concept to serve different communities is needed. This is one of the consequences of CERN's decision to offer the Vidyo service currently operated for the LHC, to other Sciences, Institutions and Virtual Organizations beyond HEP that might express interest for it.

  12. Comparison of Expert-Based and Empirical Evaluation Methodologies in the Case of a CBL Environment: The ''Orestis'' Experience

    ERIC Educational Resources Information Center

    Karoulis, Athanasis; Demetriadis, Stavros; Pombortsis, Andreas

    2006-01-01

    This paper compares several interface evaluation methods applied in the case of a computer based learning (CBL) environment, during a longitudinal study performed in three European countries, Greece, Germany, and Holland, and within the framework of an EC funded Leonardo da Vinci program. The paper firstly considers the particularities of the CBL…

  13. Does location of rotation center in artificial disc affect cervical biomechanics?

    PubMed

    Mo, Zhongjun; Zhao, Yanbin; Du, Chengfei; Sun, Yu; Zhang, Ming; Fan, Yubo

    2015-04-15

    A 3-dimensional finite element investigation. To compare the biomechanical performances of different rotation centers (RCs) in the prevalent artificial cervical discs. Various configurations are applied in artificial discs. Design parameters may influence the biomechanics of implanted spine. The RC is a primary variation in the popular artificial discs. Implantation of 5 prostheses was simulated at C5-C6 on the basis of a validated finite element cervical model (C3-C7). The prostheses included ball-in-socket design with a fixed RC located on the inferior endplate (BS-FI) and on the superior endplate (BS-FS), with a mobile RC at the inferior endplate (BS-MI), dual articulation with a mobile RC between the endplates (DA-M), and sliding articulation with various RCs (SA-V). The spinal motions in flexion and extension served as a displacement loading at the C3 vertebrae. Total disc replacements reduced extension moment. The ball-in-socket designs required less flexion moment, whereas the flexion stiffness of the spines with DA-M and SA-V was similar to that of the healthy model. The contributions of the implanted level to the global motions increased in the total disc replacements, except in the SA-V and DA-M models (in flexion). Ball-in-socket designs produced severe stress distributions in facet cartilage, whereas DA-M and SA-V produced more severe stress distribution on the bone-implant interface. Cervical stability was extremely affected in extension and partially affected in flexion by total disc replacement. With the prostheses with mobile RC, cervical curvature was readjusted under a low follower load. The SA-V and BS-FS designs exhibited better performances in the entire segmental stiffness and in the stability of the operative level than the BS-MI and BS-FI designs in flexion. The 5 designs demonstrated varying advantages relative to the stress distribution in the facet cartilages and on the bone-implant interface. 5.

  14. Public Lecture

    ScienceCinema

    None

    2017-12-09

    An outreach activity is being organized by the Turkish community at CERN, on 5 June 2010 at CERN Main Auditorium. The activity consists of several talks that will take 1.5h in total. The main goal of the activity will be describing the CERN based activities and experiments as well as stimulating the public's attention to the science related topics. We believe the wide communication of the event has certain advantages especially for the proceeding membership process of Turkey.

  15. Prospects for observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Hahn, F.; NA62 Collaboration; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brook, N.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gatignon, L.; Gianoli, A.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Leitner, R.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Massarotti, P.; Massri, K.; Matak, P.; Mazza, G.; Menichetti, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, V.; Velghe, B.; Veltri, M.; Venditti, S.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2015-07-01

    The rare decays are excellent processes to probe the Standard Model and indirectly search for new physics complementary to the direct LHC searches. The NA62 experiment at CERN SPS aims to collect and analyse O(1013) kaon decays before the CERN long-shutdown 2 (in 2018). This will allow to measure the branching ratio to a level of 10% accuracy. The experimental apparatus has been commissioned during a first run in autumn 2014.

  16. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  17. Interface-related attributes of the Maillard reaction-born glycoproteins.

    PubMed

    Karbasi, Mehri; Madadlou, Ashkan

    2017-01-19

    Interfacial behavior of proteins which is a chief parameter to their emulsifying and foaming properties can be tailored through the Maillard reaction. The reaction can increase protein solubility at isoelectric point and ought to be controlled for example by high pressure processing to suppress melanoidins formation. Branched and long saccharides bring considerable steric hindrance which is associated with their site of conjugation to proteins. Conjugation with high molecular weight polysaccharides (such as 440 kDa dextran) may indeed increase the thickness of globular proteins interfacial film up to approximately 25 nm. However, an overly long saccharide can shield protein charge and slow down the electrophoretic mobility of conjugate. Maillard conjugation may decrease the diffusion rate of proteins to interface, allowing further unfolding at interface. As well, it can increase desorption iteration of proteins from interface. In addition to tempering proteins adsorption to interface, Maillard conjugation influences the rheology of protein membranes. Oligosaccharides (especially at higher glycation degrees) decrease the elastic modulus and Huggins constant of protein film; whereas, monosaccharides yield a more elastic interface. Accordingly, glycation of random coil proteins has been exploited to stiffen the corresponding interfacial membrane. Partial hydrolysis of proteins accompanied with anti-solvent-triggered nanoparticulation either before or after conjugation is a feasible way to enhance their emulsifying activity.

  18. Structural and Functional Characterization of the Interaction of Snapin with the Dopamine Transporter: Differential Modulation of Psychostimulant Actions.

    PubMed

    Erdozain, Amaia M; De Gois, Stéphanie; Bernard, Véronique; Gorgievski, Victor; Pietrancosta, Nicolas; Dumas, Sylvie; Macedo, Carlos E; Vanhoutte, Peter; Ortega, Jorge E; Meana, J Javier; Tzavara, Eleni T; Vialou, Vincent; Giros, Bruno

    2018-04-01

    The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.

  19. Meeting Jentschke

    ScienceCinema

    None

    2018-05-18

    After an introduction about the latest research and news at CERN, the DG W. Jentschke speaks about future management of CERN with two new general managers, who will be in charge for the next 5 years: Dr. J.B. Adams who will focus on the administration of CERN and also the construction of buildings and equipment, and Dr. L. Van Hove who will be responsible for research activities. The DG speaks about expected changes, shared services, different divisions and their leaders, etc.

  20. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2017-12-18

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  1. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-02-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  2. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  3. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  4. [Deforestation in the state of Mato Grosso in the book Journey around Brazil 1875-1878, by the doctor João Severiano da Fonseca].

    PubMed

    Ferraro, Mário Roberto; Figueirôa, Silvia Fernanda de Mendonça

    2017-01-01

    This presents reflections on scientific production issued by the Commission for the Demarcation of the Empire's Border Limits with Bolivia, with a focus on the environmental destruction of Mato Grosso state, as reported in João Severiano da Fonseca's book, Journey around Brazil 1875-1878. Fonseca reported severe deforestation on the banks of the river Paraguay and advocated for protectionist measures from the state government. He set out a vision for Mato Grosso's development that involved better use of the state's natural resources, raw materials exports, and regional industrialization support. The methodology created an interface between environmental history and history of the sciences.

  5. Loop Group Parakeet Virtual Cable Concept Demonstrator

    NASA Astrophysics Data System (ADS)

    Dowsett, T.; McNeill, T. C.; Reynolds, A. B.; Blair, W. D.

    2002-07-01

    The Parakeet Virtual Cable (PVC) concept demonstrator uses the Ethernet Local Area Network (LAN) laid for the Battle Command Support System (BCSS) to connect the Parakeet DVT(DA) (voice terminal) to the Parakeet multiplexer. This currently requires pairs of PVC interface units to be installed for each DVT(DA) . To reduce the cost of a PVC installation, the concept of a Loop Group Parakeet Virtual Cable (LGPVC) was proposed. This device was designed to replace the up to 30 PVC boxes and the multiplexer at the multiplexer side of a PVC installation. While the demonstrator is largely complete, testing has revealed an incomplete understanding of how to emulate the proprietary handshaking occurring between the circuit switch and the multiplexer. The LGPVC concept cannot yet be demonstrated.

  6. Reconfigurable PCI Express cards for low-latency data transport in HEP experiments

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pontisso, L.; Simula, F.; Vicini, P.

    2017-01-01

    State-of-the-art technology supports the High Energy Physics community in addressing the problem of managing an overwhelming amount of experimental data. From the point of view of communication between the detectors' readout system and computing nodes, the critical issues are the following: latency, moving data in a deterministic and low amount of time; bandwidth, guaranteeing the maximum capability of the link and communication protocol adopted; endpoint consolidation, tight aggregation of channels on a single board. This contribution describes the status and performances of the NaNet project, whose goal is the design of a family of FPGA-based PCIe network interface cards. The efforts of the team are focused on implementing a low-latency, real-time data transport mechanism between the board network multi-channel system and CPU and GPU accelerators memories on the host. Several opportunities concerning technical solutions and scientific applications have been explored: NaNet-1 with a single GbE I/O interface, and NaNet-10, offering four 10GbE ports, for activities related to the GPU-based real-time trigger of NA62 experiment at CERN; NaNet ^3 , with four 2.5Gbit optical channels, developed for the KM3NeT-ITALIA underwater neutrino telescope.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.« less

  8. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D/A interface can be higher than that to CT(1s) as expected from energy resonance arguments. We suggest a design principle in organic heterojunction solar cells: there must be strong electronic coupling between molecular excitons in the donor and hot CT excitons across the D/A interface.

  9. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR.

    PubMed

    Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming

    2017-09-16

    Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.

  10. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  11. CERN: A European laboratory for a global project

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger

    2015-06-01

    In the most important shift of paradigm of its membership rules in 60 years, CERN in 2010 introduced a policy of “Geographical Enlargement” which for the first time opened the door for membership of non-European States in the Organization. This short article reviews briefly the history of CERN's membership rules, discusses the rationale behind the new policy, its relationship with the emerging global roadmap of particle physics, and gives a short overview of the status of the enlargement process.

  12. Review of CERN Data Centre Infrastructure

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Bell, T.; van Eldik, J.; McCance, G.; Panzer-Steindel, B.; Coelho dos Santos, M.; Traylen and, S.; Schwickerath, U.

    2012-12-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project's motivations, current status and areas for future investigation.

  13. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    PubMed

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  14. Assessment of thermal loads in the CERN SPS crab cavities cryomodule1

    NASA Astrophysics Data System (ADS)

    Carra, F.; Apeland, J.; Calaga, R.; Capatina, O.; Capelli, T.; Verdú-Andrés, S.; Zanoni, C.

    2017-07-01

    As a part of the HL-LHC upgrade, a cryomodule is designed to host two crab cavities for a first test with protons in the SPS machine. The evaluation of the cryomodule heat loads is essential to dimension the cryogenic infrastructure of the system. The current design features two cryogenic circuits. The first circuit adopts superfluid helium at 2 K to maintain the cavities in the superconducting state. The second circuit, based on helium gas at a temperature between 50 K and 70 K, is connected to the thermal screen, also serving as heat intercept for all the interfaces between the cold mass and the external environment. An overview of the heat loads to both circuits, and the combined numerical and analytical estimations, is presented. The heat load of each element is detailed for the static and dynamic scenarios, with considerations on the design choices for the thermal optimization of the most critical components.

  15. A World Wide Web (WWW) server database engine for an organelle database, MitoDat.

    PubMed

    Lemkin, P F; Chipperfield, M; Merril, C; Zullo, S

    1996-03-01

    We describe a simple database search engine "dbEngine" which may be used to quickly create a searchable database on a World Wide Web (WWW) server. Data may be prepared from spreadsheet programs (such as Excel, etc.) or from tables exported from relationship database systems. This Common Gateway Interface (CGI-BIN) program is used with a WWW server such as available commercially, or from National Center for Supercomputer Algorithms (NCSA) or CERN. Its capabilities include: (i) searching records by combinations of terms connected with ANDs or ORs; (ii) returning search results as hypertext links to other WWW database servers; (iii) mapping lists of literature reference identifiers to the full references; (iv) creating bidirectional hypertext links between pictures and the database. DbEngine has been used to support the MitoDat database (Mendelian and non-Mendelian inheritance associated with the Mitochondrion) on the WWW.

  16. Basic concepts and architectural details of the Delphi trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocci, V.; Booth, P.S.L.; Bozzo, M.

    1995-08-01

    Delphi (DEtector with Lepton, Photon and Hadron Identification) is one of the four experiments of the LEP (Large Electron Positron) collider at CERN. The detector is laid out to provide a nearly 4 {pi} coverage for charged particle tracking, electromagnetic, hadronic calorimetry and extended particle identification. The trigger system consists of four levels. The first two are synchronous with the BCO (Beam Cross Over) and rely on hardwired control units, while the last two are performed asynchronously with respect to the BCO and are driven by the Delphi host computers. The aim of this paper is to give a comprehensivemore » global view of the trigger system architecture, presenting in detail the first two levels, their various hardware components and the latest modifications introduced in order to improve their performance and make more user friendly the whole software user interface.« less

  17. Réunion publique HR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-04-30

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanéemore » de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie CatherinHead, Human Resources Department« less

  18. Réunion publique HR

    ScienceCinema

    None

    2017-12-09

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanée de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie CatherinHead, Human Resources Department

  19. The inner CSF–brain barrier: developmentally controlled access to the brain via intercellular junctions

    PubMed Central

    Whish, Sophie; Dziegielewska, Katarzyna M.; Møllgård, Kjeld; Noor, Natassya M.; Liddelow, Shane A.; Habgood, Mark D.; Richardson, Samantha J.; Saunders, Norman R.

    2015-01-01

    In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by “strap” junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development. PMID:25729345

  20. CERN launches high-school internship programme

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2017-07-01

    The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.

  1. Commissioning of a CERN Production and Analysis Facility Based on xrootd

    NASA Astrophysics Data System (ADS)

    Campana, Simone; van der Ster, Daniel C.; Di Girolamo, Alessandro; Peters, Andreas J.; Duellmann, Dirk; Coelho Dos Santos, Miguel; Iven, Jan; Bell, Tim

    2011-12-01

    The CERN facility hosts the Tier-0 of the four LHC experiments, but as part of WLCG it also offers a platform for production activities and user analysis. The CERN CASTOR storage technology has been extensively tested and utilized for LHC data recording and exporting to external sites according to experiments computing model. On the other hand, to accommodate Grid data processing activities and, more importantly, chaotic user analysis, it was realized that additional functionality was needed including a different throttling mechanism for file access. This paper will describe the xroot-based CERN production and analysis facility for the ATLAS experiment and in particular the experiment use case and data access scenario, the xrootd redirector setup on top of the CASTOR storage system, the commissioning of the system and real life experience for data processing and data analysis.

  2. OBITUARY: Maurice Jacob (1933 2007)

    NASA Astrophysics Data System (ADS)

    Quercigh, Emanuele; Šándor, Ladislav

    2008-04-01

    Maurice Jacob passed away on 2 May 2007. With his death, we have lost one of the founding fathers of the ultra-relativistic heavy ion programme. His interest in high-energy nuclear physics started in 1981 when alpha alpha collisions could first be studied in the CERN ISR. An enthusiastic supporter of ion beam experiments at CERN, Maurice was at the origin of the 1982 Quark Matter meeting in Bielefeld [1] which brought together more than 100 participants from both sides of the Atlantic, showing a good enthusiastic constituency for such research. There were twice as many the following year at Brookhaven. Finally in the mid-eighties, a heavy ion programme was approved both at CERN and at Brookhaven involving as many nuclear as particle physicists. It was the start of a fruitful interdisciplinary collaboration which is nowadays continuing both at RHIC and at LHC. Maurice followed actively the development of this field, reporting at a number of conferences and meetings (Les Arcs, Bielefeld, Beijing, Brookhaven, Lenox, Singapore, Taormina,...). This activity culminated in 2000, when Maurice, together with Ulrich Heinz, summarized the main results of the CERN SPS heavy-ion experiments and the evidence was obtained for a new state of matter [2]. Maurice was a brilliant theoretical physicist. His many contributions have been summarized in a recent article in the CERN Courier by two leading CERN theorists, John Ellis and Andre Martin [3]. The following is an excerpt from their article: `He began his research career at Saclay and, while still a PhD student, he continued brilliantly during a stay at Brookhaven. It was there in 1959 that Maurice, together with Giancarlo Wick, developed the helicity amplitude formalism that is the basis of many modern theoretical calculations. Maurice obtained his PhD in 1961 and, after a stay at Caltech, returned to Saclay. A second American foray was to SLAC, where he and Sam Berman made the crucial observation that the point-like structures (partons) seen in deep-inelastic scattering implied the existence of high-transverse-momentum processes in proton proton collisions, as the ISR at CERN subsequently discovered. In 1967 Maurice joined CERN, where he remained, apart from influential visits to Yale, Fermilab and elsewhere, until his retirement in 1998. He became one of the most respected international experts on the phenomenology of strong interactions, including diffraction, scaling, high-transverse-momentum processes and the formation of quark gluon plasma. In particular, he pioneered the studies of inclusive hadron-production processes, including scaling and its violations. Also, working with Ron Horgan, he made detailed predictions for the production of jets at CERN's proton antiproton collider. The UA2 and UA1 experiments subsequently discovered these. He was also interested in electron positron colliders, making pioneering calculations, together with Tai Wu, of radiation in high-energy collisions. Maurice was one of the scientific pillars of CERN, working closely with experimental colleagues in predicting and interpreting results from successive CERN colliders. He was indefatigable in organizing regular meetings on ISR physics, bringing together theorists and experimentalists to debate the meaning of new results and propose new measurements. He was one of the strongest advocates of Carlo Rubbia's proposal for a proton antiproton collider at CERN, and was influential in preparing and advertising its physics. In 1978 he organized the Les Houches workshop that brought the LEP project to the attention of the wider European particle physics community. He also organized the ECFA workshop at Lausanne in 1984 that made the first exploration of the possible physics of the LHC. It is a tragedy that Maurice has not lived to enjoy data from the LHC.' References [1] Maurice Jacob and Helmut Satz (eds) 1982 Proc. Workshop on Quark Matter Formation and Heavy Ion Collisions, Bielefeld, 10 14 May 1982 (Singapore: World Scientific Publishing) [2] Heinz Ulrich W and Jacob Maurice 2000 Evidence for a new state of matter: An assessment of the results from the CERN lead beam program. Preprint nucl-th/0002042 [3] Ellis J and Martin A 2007 CERN Courier 47 issue 6

  3. CERN automatic audio-conference service

    NASA Astrophysics Data System (ADS)

    Sierra Moral, Rodrigo

    2010-04-01

    Scientists from all over the world need to collaborate with CERN on a daily basis. They must be able to communicate effectively on their joint projects at any time; as a result telephone conferences have become indispensable and widely used. Managed by 6 operators, CERN already has more than 20000 hours and 5700 audio-conferences per year. However, the traditional telephone based audio-conference system needed to be modernized in three ways. Firstly, to provide the participants with more autonomy in the organization of their conferences; secondly, to eliminate the constraints of manual intervention by operators; and thirdly, to integrate the audio-conferences into a collaborative working framework. The large number, and hence cost, of the conferences prohibited externalization and so the CERN telecommunications team drew up a specification to implement a new system. It was decided to use a new commercial collaborative audio-conference solution based on the SIP protocol. The system was tested as the first European pilot and several improvements (such as billing, security, redundancy...) were implemented based on CERN's recommendations. The new automatic conference system has been operational since the second half of 2006. It is very popular for the users and has doubled the number of conferences in the past two years.

  4. CERN openlab: Engaging industry for innovation in the LHC Run 3-4 R&D programme

    NASA Astrophysics Data System (ADS)

    Girone, M.; Purcell, A.; Di Meglio, A.; Rademakers, F.; Gunne, K.; Pachou, M.; Pavlou, S.

    2017-10-01

    LHC Run3 and Run4 represent an unprecedented challenge for HEP computing in terms of both data volume and complexity. New approaches are needed for how data is collected and filtered, processed, moved, stored and analysed if these challenges are to be met with a realistic budget. To develop innovative techniques we are fostering relationships with industry leaders. CERN openlab is a unique resource for public-private partnership between CERN and leading Information Communication and Technology (ICT) companies. Its mission is to accelerate the development of cutting-edge solutions to be used by the worldwide HEP community. In 2015, CERN openlab started its phase V with a strong focus on tackling the upcoming LHC challenges. Several R&D programs are ongoing in the areas of data acquisition, networks and connectivity, data storage architectures, computing provisioning, computing platforms and code optimisation and data analytics. This paper gives an overview of the various innovative technologies that are currently being explored by CERN openlab V and discusses the long-term strategies that are pursued by the LHC communities with the help of industry in closing the technological gap in processing and storage needs expected in Run3 and Run4.

  5. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  6. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.

    PubMed

    Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia

    2014-06-01

    Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Monte Carlo Methods in Materials Science Based on FLUKA and ROOT

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence; Wilson, Thomas; Empl, Anton; Andersen, Victor

    2003-01-01

    A comprehensive understanding of mitigation measures for space radiation protection necessarily involves the relevant fields of nuclear physics and particle transport modeling. One method of modeling the interaction of radiation traversing matter is Monte Carlo analysis, a subject that has been evolving since the very advent of nuclear reactors and particle accelerators in experimental physics. Countermeasures for radiation protection from neutrons near nuclear reactors, for example, were an early application and Monte Carlo methods were quickly adapted to this general field of investigation. The project discussed here is concerned with taking the latest tools and technology in Monte Carlo analysis and adapting them to space applications such as radiation shielding design for spacecraft, as well as investigating how next-generation Monte Carlos can complement the existing analytical methods currently used by NASA. We have chosen to employ the Monte Carlo program known as FLUKA (A legacy acronym based on the German for FLUctuating KAscade) used to simulate all of the particle transport, and the CERN developed graphical-interface object-oriented analysis software called ROOT. One aspect of space radiation analysis for which the Monte Carlo s are particularly suited is the study of secondary radiation produced as albedoes in the vicinity of the structural geometry involved. This broad goal of simulating space radiation transport through the relevant materials employing the FLUKA code necessarily requires the addition of the capability to simulate all heavy-ion interactions from 10 MeV/A up to the highest conceivable energies. For all energies above 3 GeV/A the Dual Parton Model (DPM) is currently used, although the possible improvement of the DPMJET event generator for energies 3-30 GeV/A is being considered. One of the major tasks still facing us is the provision for heavy ion interactions below 3 GeV/A. The ROOT interface is being developed in conjunction with the CERN ALICE (A Large Ion Collisions Experiment) software team through an adaptation of their existing AliROOT (ALICE Using ROOT) architecture. In order to check our progress against actual data, we have chosen to simulate the ATIC14 (Advanced Thin Ionization Calorimeter) cosmic-ray astrophysics balloon payload as well as neutron fluences in the Mir spacecraft. This paper contains a summary of status of this project, and a roadmap to its successful completion.

  8. Memorial W.Gentner

    ScienceCinema

    None

    2018-05-25

    The DG H. Schopper gives an introduction for the commemoration and ceremony of the life and work of Professor Wolfgang Gentner. W. Gentner, German physicist, born in 1906 in Frankfurt and died in September 1980 in Heidelberg, was director of CERN from 1955 to 1960, president of the Scientific Policy Committee from 1968 to 1971 and president of the Council of CERN from 1972 to 1974. He was one of the founders of CERN and four people who knew him well pay tribute to him, among others one of his students, as well as J.B. Adams and O. Sheffard.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DG H. Schopper gives an introduction for the commemoration and ceremony of the life and work of Professor Wolfgang Gentner. W. Gentner, German physicist, born in 1906 in Frankfurt and died in September 1980 in Heidelberg, was director of CERN from 1955 to 1960, president of the Scientific Policy Committee from 1968 to 1971 and president of the Council of CERN from 1972 to 1974. He was one of the founders of CERN and four people who knew him well pay tribute to him, among others one of his students, as well as J.B. Adams and O. Sheffard.

  10. OPERA - First Beam Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.

    2008-02-21

    OPERA is a long base-line neutrino oscillation experiment to detect tau-neutrino appearance and to prove that the origin of the atmospheric muon neutrino deficit observed by Kamiokande is the neutrino oscillation. A Hybrid emulsion detector, of which weight is about 1.3 kton, has been installed in Gran Sasso laboratory. New muon neutrino beam line, CNGS, has been constructed at CERN to send neutrinos to Gran Sasso, 730 km apart from CERN. In 2006, first neutrinos were sent from CERN to LNGS and were detected by the OPERA detector successfully as planned.

  11. Supramolecular control of the spin-dependent dynamics of long-lived charge-separated states at the micellar interface as studied by magnetic field effect.

    PubMed

    Miura, Tomoaki

    2013-05-30

    Spin selectivity in long-lived charge separation at the micellar interface is studied using the magnetic field effect (MFE). An amphiphilic viologen is complexed with a nonionic surfactant to form a supramolecular acceptor cage, of which the size is controlled by the acceptor concentration, as confirmed by dynamic light scattering measurement. Photoinduced electron transfer (ET) from a guest polyaromatic molecule to the viologen moiety is observed spin-dependently with time-resolved fluorescence (trFL) and transient absorption (TA). A negative MFE on the radical yield is successfully observed, which indicates generation of singlet-born long-lived radical pair that is realized by supramolecular control of the donor-acceptor (D-A) distances. The dominance of the singlet-precursor MFE is sensitive to the acceptor concentration, which presumably affects the D-A distance as well as the cage size. However, theoretical analysis of the MFE gives large recombination rates of ca. 10(8) s(-1), which indicate the contribution of spin-allowed recombination of the pseudocontact radical pair generated by still active in-cage diffusion. Dependence of the viologen concentration and alkyl chain length on the recombination and escape dynamics is discussed in terms of precursor spin states and the microenvironments in the cage.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Rio, Nicola; Robberto, Massimo, E-mail: ndario@rssd.esa.int

    We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as amore » pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.« less

  13. Membership Finland

    ScienceCinema

    None

    2018-05-18

    The DG C. Rubbia and the vice president of the council of CERN gives a warm welcome to the membership of Finland, as the 15th member of CERN since January 1 1991 in the presence of the Secretary-General and the ambassador.

  14. Visit CD

    ScienceCinema

    None

    2017-12-09

    Le DG H.Schopper souhaite la bienvenue aux ambassadeurs des pays membres et aux représentants des pays avec lesquels le Cern entretient des relations proches et fait un exposé sur les activités au Cern

  15. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    NASA Astrophysics Data System (ADS)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  16. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  17. Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN

    NASA Astrophysics Data System (ADS)

    Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero

    The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.

  18. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    NASA Astrophysics Data System (ADS)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other physical systems described by quantum field theory, for instance in the context of a condensed matter system. The lectures by S Hartnoll provided an introduction to this recent development with an emphasis on the dual holographic description of superconductivity. Finally, ideas inspired by the AdS/CFT correspondence are yielding deep insights into fundamental questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. The lectures by S Mathur reviewed the black hole entropy and information paradox, and the proposal for its resolution in terms of `fuzzball' microstates. Further sets of lectures, not included in this special section, by F Zwirner and V Mukhanov, covered phenomenological aspects of high energy physics beyond the Standard Model and of cosmology. The coming experimental data in these two fields are expected to foster new developments in connecting string theory to the real world. The conference was financially supported by CERN and partially by the Arnold Sommerfeld Center for Theoretical Physics of the Ludwig Maximilians University of Munich. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. A M Uranga CERN, Switzerland Guest Editor

  19. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  20. Offering Global Collaboration Services beyond CERN and HEP

    NASA Astrophysics Data System (ADS)

    Fernandes, J.; Ferreira, P.; Baron, T.

    2015-12-01

    The CERN IT department has built over the years a performant and integrated ecosystem of collaboration tools, from videoconference and webcast services to event management software. These services have been designed and evolved in very close collaboration with the various communities surrounding the laboratory and have been massively adopted by CERN users. To cope with this very heavy usage, global infrastructures have been deployed which take full advantage of CERN's international and global nature. If these services and tools are instrumental in enabling the worldwide collaboration which generates major HEP breakthroughs, they would certainly also benefit other sectors of science in which globalization has already taken place. Some of these services are driven by commercial software (Vidyo or Wowza for example), some others have been developed internally and have already been made available to the world as Open Source Software in line with CERN's spirit and mission. Indico for example is now installed in 100+ institutes worldwide. But providing the software is often not enough and institutes, collaborations and project teams do not always possess the expertise, or human or material resources that are needed to set up and maintain such services. Regional and national institutions have to answer needs, which are growingly global and often contradict their operational capabilities or organizational mandate and so are looking at existing worldwide service offers such as CERN's. We believe that the accumulated experience obtained through the operation of a large scale worldwide collaboration service combined with CERN's global network and its recently- deployed Agile Infrastructure would allow the Organization to set up and operate collaborative services, such as Indico and Vidyo, at a much larger scale and on behalf of worldwide research and education institutions and thus answer these pressing demands while optimizing resources at a global level. Such services would be built over a robust and massively scalable Indico server to which the concept of communities would be added, and which would then serve as a hub for accessing other collaboration services such as Vidyo, on the same simple and successful model currently in place for CERN users. This talk will describe this vision, its benefits and the steps that have already been taken to make it come to life.

  1. A multidimensional design of charge transfer interfaces via D-A-D linking fashion for electrophysiological sensing of neurotransmitters.

    PubMed

    Liu, He; Liu, Chaoyi; Gu, Yue; Li, Cong; Yan, Xiaoyi; Zhang, Tingting; Lu, Nannan; Zheng, Bo; Li, Yaru; Zhang, Zhiquan; Yang, Ming

    2018-01-15

    Donor-Acceptor (D-A) structure like host-guest pair serves as an organic charge-transfer (C-T) material with pregnant electrochemical and photochemical properties. Phenothiazine, a conjugated nitrogen-sulfur heterocyclic compound with broad pharmaceutical profile, is a strong electron donating system and applied in the synthesis of various classic antipsychotic drugs. In this proposal, a novel D-A molecule, 2,3-bis(4-(10H-phenothiazin-10-yl)phenyl)fumaronitrile (PTBFN), containig a diphenylfumaronitrile as the electrophilic central core and two phenothiazines as the peripheral electron donor functional groups is first designed and synthesized. Subsequently, the C-T layer based on the PTBFN polymer, poly(PTBFN), is obtained via a straightforward electrochemical method and used as an efficient electrocatalyst for dopamine (DA) detection. The logarithm of oxidation peak currents present an outstanding linear response to that of the DA concentration varying from 0.005 to 350μM with a detection limit down to 0.70nM, wherein the interferences of uric acid (UA) and ascorbic acid (AA) could be eliminated effectively. Moreover, the biosensor displays decent stability, excellent selectivity for different interfering compounds and applicability in real samples analysis. The favorable sensing performance suggests that the nontrivial D-A architecture is one of the promising bioaffinity catalysts for electrocatalysis and expected to provide wider application potential for biosensing construction and medical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; ...

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  3. H4DAQ: a modern and versatile data-acquisition package for calorimeter prototypes test-beams

    NASA Astrophysics Data System (ADS)

    Marini, A. C.

    2018-02-01

    The upgrade of the particle detectors for the HL-LHC or for future colliders requires an extensive program of tests to qualify different detector prototypes with dedicated test beams. A common data-acquisition system, H4DAQ, was developed for the H4 test beam line at the North Area of the CERN SPS in 2014 and it has since been adopted in various applications for the CMS experiment and AIDA project. Several calorimeter prototypes and precision timing detectors have used our system from 2014 to 2017. H4DAQ has proven to be a versatile application and has been ported to many other beam test environments. H4DAQ is fast, simple, modular and can be configured to support various kinds of setup. The functionalities of the DAQ core software are split into three configurable finite state machines: data readout, run control, and event builder. The distribution of information and data between the various computers is performed using ZEROMQ (0MQ) sockets. Plugins are available to read different types of hardware, including VME crates with many types of boards, PADE boards, custom front-end boards and beam instrumentation devices. The raw data are saved as ROOT files, using the CERN C++ ROOT libraries. A Graphical User Interface, based on the python gtk libraries, is used to operate the H4DAQ and an integrated data quality monitoring (DQM), written in C++, allows for fast processing of the events for quick feedback to the user. As the 0MQ libraries are also available for the National Instruments LabVIEW program, this environment can easily be integrated within H4DAQ applications.

  4. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Battistin, M.; Berry, S.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixturemore » ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)« less

  5. An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2012-10-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoropropane (C3F8) evaporative cooling fluid to a composite fluid with a probable 10-20% admixture of hexafluoroethane (C2F6). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C3F8/C2F6 mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound `chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C3F8/C2F6 flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semi-conductor manufacture and anesthetic gas mixtures.

  6. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  7. CERN IRRADIATION FACILITIES.

    PubMed

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Towards a 21st century telephone exchange at CERN

    NASA Astrophysics Data System (ADS)

    Valentín, F.; Hesnaux, A.; Sierra, R.; Chapron, F.

    2015-12-01

    The advent of mobile telephony and Voice over IP (VoIP) has significantly impacted the traditional telephone exchange industry—to such an extent that private branch exchanges are likely to disappear completely in the near future. For large organisations, such as CERN, it is important to be able to smooth this transition by implementing new multimedia platforms that can protect past investments and the flexibility needed to securely interconnect emerging VoIP solutions and forthcoming developments such as Voice over LTE (VoLTE). We present the results of ongoing studies and tests at CERN of the latest technologies in this area.

  9. Ageing Studies on the First Resistive-MicroMeGaS Quadruplet at GIF++ Preliminary Results

    NASA Astrophysics Data System (ADS)

    Alvarez Gonzalez, B.; Bianco, M.; Farina, E.; Iengo, P.; Kuger, F.; Lin, T.; Longo, L.; Sekhniaidze, G.; Sidiropoulou, O.; Schott, M.; Valderanis, C.; Wotschack, J.

    2018-02-01

    A resistive-MicroMeGaS quadruplet built at CERN has been installed at the new CERN Gamma Irradiation Facility (GIF++) with the aim of carrying out a long-term ageing study. Two smaller resistive bulk-MicroMeGaS produced at the CERN PCB workshop have also been installed at GIF++ in order to provide a comparison of the ageing behavior with the MicroMeGaS quadruplet. We give an overview of the ongoing tests at GIF++ in terms of particle rate, integrated charge and spatial resolution of the MicroMeGaS detectors.

  10. Media Training

    ScienceCinema

    None

    2017-12-09

    With the LHC starting up soon, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. The training is open for everybody. Make sure you arrive early enough to get a seat - there are only 200 seats in the Globe. The session will also be webcast: http://webcast.cern.ch/

  11. The significance of Cern

    ScienceCinema

    None

    2017-12-09

    Le Prof. V.Weisskopf, DG du Cern de 1961 à 1965, est né à Vienne, a fait ses études à Göttingen et a une carrière académique particulièrement riche. Il a travaillé à Berlin, Copenhague et Berlin et est parti aux Etats Unis pour participer au projet Manhattan et était Prof. au MTT jusqu'à 1960. Revenu en Europe, il a été DG du Cern et lui a donné l'impulsion que l'on sait.

  12. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    PubMed

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  13. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    NASA Astrophysics Data System (ADS)

    Bärring, O.; Bonfillou, E.; Clement, B.; Coelho Dos Santos, M.; Dore, V.; Gentit, A.; Grossir, A.; Salter, W.; Valsan, L.; Xafi, A.

    2014-05-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  14. Building an organic block storage service at CERN with Ceph

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel; Wiebalck, Arne

    2014-06-01

    Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.

  15. Self-service for software development projects and HPC activities

    NASA Astrophysics Data System (ADS)

    Husejko, M.; Høimyr, N.; Gonzalez, A.; Koloventzos, G.; Asbury, D.; Trzcinska, A.; Agtzidis, I.; Botrel, G.; Otto, J.

    2014-05-01

    This contribution describes how CERN has implemented several essential tools for agile software development processes, ranging from version control (Git) to issue tracking (Jira) and documentation (Wikis). Running such services in a large organisation like CERN requires many administrative actions both by users and service providers, such as creating software projects, managing access rights, users and groups, and performing tool-specific customisation. Dealing with these requests manually would be a time-consuming task. Another area of our CERN computing services that has required dedicated manual support has been clusters for specific user communities with special needs. Our aim is to move all our services to a layered approach, with server infrastructure running on the internal cloud computing infrastructure at CERN. This contribution illustrates how we plan to optimise the management of our of services by means of an end-user facing platform acting as a portal into all the related services for software projects, inspired by popular portals for open-source developments such as Sourceforge, GitHub and others. Furthermore, the contribution will discuss recent activities with tests and evaluations of High Performance Computing (HPC) applications on different hardware and software stacks, and plans to offer a dynamically scalable HPC service at CERN, based on affordable hardware.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ashoke

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five seriesmore » of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions";. This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ashoke

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.« less

  4. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012)

    NASA Astrophysics Data System (ADS)

    Ernst, Michael; Düllmann, Dirk; Rind, Ofer; Wong, Tony

    2012-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at New York University on 21- 25 May 2012. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community and related scientific and technical fields. The CHEP conference provides a forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18-month intervals, alternating between Europe, Asia, the Americas and other parts of the world. Recent CHEP conferences have been held in Taipei, Taiwan (2010); Prague, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, United States (2003); Beijing, China (2001); Padova, Italy (2000). CHEP 2012 was organized by Brookhaven National Laboratory (BNL) and co-sponsored by New York University. The organizational structure for CHEP consists of an International Advisory Committee (IAC) which sets the overall themes of the conference, a Program Organizing Committee (POC) that oversees the program content, and a Local Organizing Committee (LOC) that is responsible for local arrangements (lodging, transportation and social events) and conference logistics (registration, program scheduling, conference site selection and conference proceedings). There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 125 oral and 425 poster presentations and industrial exhibitions. We thank all the presenters for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Distributed Processing and Analysis on Grids and Clouds, Computer Facilities, Production Grids and Networking, Software Engineering, Data Stores and Databases and Collaborative Tools. We would like to thank Brookhaven Science Associates, New York University, Blue Nest Events, the International Advisory Committee, the Program Committee and the Local Organizing Committee members for all their support and assistance. We also would like to acknowledge the support provided by the following sponsors: ACEOLE, Data Direct Networks, Dell, the European Middleware Initiative and Nexsan. Special thanks to the Program Committee members for their careful choice of conference contributions and enormous effort in reviewing and editing the conference proceedings. The next CHEP conference will be held in Amsterdam, the Netherlands on 14-18 October 2013. Conference Chair Michael Ernst (BNL) Program Committee Daniele Bonacorsi, University of Bologna, Italy Simone Campana, CERN, Switzerland Philippe Canal, Fermilab, United States Sylvain Chapeland, CERN, Switzerland Dirk Düllmann, CERN, Switzerland Johannes Elmsheuser, Ludwig Maximilian University of Munich, Germany Maria Girone, CERN, Switzerland Steven Goldfarb, University of Michigan, United States Oliver Gutsche, Fermilab, United States Benedikt Hegner, CERN, Switzerland Andreas Heiss, Karlsruhe Institute of Technology, Germany Peter Hristov, CERN, Switzerland Tony Johnson, SLAC, United States David Lange, LLNL, United States Adam Lyon, Fermilab, United States Remigius Mommsen, Fermilab, United States Axel Naumann, CERN, Switzerland Niko Neufeld, CERN, Switzerland Rolf Seuster, TRIUMF, Canada Local Organizing Committee Maureen Anderson, John De Stefano, Mariette Faulkner, Ognian Novakov, Ofer Rind, Tony Wong (BNL) Kyle Cranmer (NYU) International Advisory Committee Mohammad Al-Turany, GSI, Germany Lothar Bauerdick, Fermilab, United States Ian Bird, CERN, Switzerland Dominique Boutigny, IN2P3, France Federico Carminati, CERN, Switzerland Marco Cattaneo, CERN, Switzerland Gang Chen, Institute of High Energy Physics, China Peter Clarke, University of Edinburgh, United Kingdom Sridhara Dasu, University of Wisconsin-Madison, United States Günter Duckeck, Ludwig Maximilian University of Munich, Germany Richard Dubois, SLAC, United States Michael Ernst, BNL, United States Ian Fisk, Fermilab, United States Gonzalo Merino, PIC, Spain John Gordon, STFC-RAL, United Kingdom Volker Gülzow, DESY, Germany Frederic Hemmer, CERN, Switzerland Viatcheslav Ilyin, Moscow State University, Russia Nobuhiko Katayama, KEK, Japan Alexei Klimentov, BNL, United States Simon C. Lin, Academia Sinica, Taiwan Milos Lokajícek, FZU Prague, Czech Republic David Malon, ANL, United States Pere Mato Vila, CERN, Switzerland Mauro Morandin, INFN CNAF, Italy Harvey Newman, Caltech, United States Farid Ould-Saada, University of Oslo, Norway Ruth Pordes, Fermilab, United States Hiroshi Sakamoto, University of Tokyo, Japan Alberto Santoro, UERJ, Brazil Jim Shank, Boston University, United States Dongchul Son, Kyungpook National University, South Korea Reda Tafirout, TRIUMF, Canada Stephen Wolbers, Fermilab, United States Frank Wuerthwein, UCSD, United States

  5. Bibliography on Future Trends in Terrorism

    DTIC Science & Technology

    1998-09-01

    Bernhard Restel, et alia. "La police en interfaces: Colloque universitaire de l’Institut Suisse de Police," Revue Internationale de Criminologie et...Convenzione di Ginevra per l’Istituzione di una Corte Penale Internazionale sul Terrorismo : Un document da tornare a leggere," Il Politico, [Rome], 62...The author, who is president of Peru , points out that terrorist organizations in Peru have struggled for a decade to erode the democratic system and

  6. Tactical Operations Analysis Support Facility.

    DTIC Science & Technology

    1981-05-01

    Punch/Reader 2 DMC-11AR DDCMP Micro Processor 2 DMC-11DA Network Link Line Unit 2 DL-11E Async Serial Line Interface 4 Intel IN-1670 448K Words MOS Memory...86 5.3 VIRTUAL PROCESSORS - VAX-11/750 ........................... 89 5.4 A RELATIONAL DATA MANAGEMENT SYSTEM - ORACLE...Central Processing Unit (CPU) is a 16 bit processor for high-speed, real time applications, and for large multi-user, multi- task, time shared

  7. Dcs Data Viewer, an Application that Accesses ATLAS DCS Historical Data

    NASA Astrophysics Data System (ADS)

    Tsarouchas, C.; Schlenker, S.; Dimitrov, G.; Jahn, G.

    2014-06-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  8. Mapping a Noncovalent Protein-Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.

    2011-08-01

    Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.

  9. CERN goes iconic

    NASA Astrophysics Data System (ADS)

    2017-06-01

    There are more than 1800 emoji that can be sent and received in text messages and e-mails. Now, the CERN particle-physics lab near Geneva has got in on the act and released its own collection of 35 images that can be used by anyone with an Apple device.

  10. Neutrino Factory Plans at CERN

    NASA Astrophysics Data System (ADS)

    Riche, J. A.

    2002-10-01

    The considerable interest raised by the discovery of neutrino oscillations and recent progress in studies of muon colliders has triggered interest in considering a neutrino factory at CERN. This paper explains the reference scenario, indicates the other possible choices and mentions the R&D that are foreseen.

  11. Wi-Fi Service enhancement at CERN

    NASA Astrophysics Data System (ADS)

    Ducret, V.; Sosnowski, A.; Gonzalez Caballero, B.; Barrand, Q.

    2017-10-01

    Since the early 2000’s, the number of mobile devices connected to CERN’s internal network has increased from just a handful to well over 10,000. Wireless access is no longer simply “nice to have” or just for conference and meeting rooms; support for mobility is expected by most, if not all, of the CERN community. In this context, a full renewal of the CERN Wi-Fi network has been launched to deliver a state-of-the-art campus-wide Wi-Fi Infrastructure. We aim to deliver, in more than 200 office buildings with a surface area of over 400,000m2 and including many high-priority and high-occupation zones, an end-user experience comparable, for most applications, to a wired connection and with seamless mobility support. We describe here the studies and tests performed at CERN to ensure the solution we are deploying can meet these goals as well as delivering a single, simple, flexible and open management platform.

  12. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    NASA Astrophysics Data System (ADS)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  13. ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization

    NASA Astrophysics Data System (ADS)

    Antcheva, I.; Ballintijn, M.; Bellenot, B.; Biskup, M.; Brun, R.; Buncic, N.; Canal, Ph.; Casadei, D.; Couet, O.; Fine, V.; Franco, L.; Ganis, G.; Gheata, A.; Maline, D. Gonzalez; Goto, M.; Iwaszkiewicz, J.; Kreshuk, A.; Segura, D. Marcos; Maunder, R.; Moneta, L.; Naumann, A.; Offermann, E.; Onuchin, V.; Panacek, S.; Rademakers, F.; Russo, P.; Tadel, M.

    2011-06-01

    A new stable version ("production version") v5.28.00 of ROOT [1] has been published [2]. It features several major improvements in many areas, most noteworthy data storage performance as well as statistics and graphics features. Some of these improvements have already been predicted in the original publication Antcheva et al. (2009) [3]. This version will be maintained for at least 6 months; new minor revisions ("patch releases") will be published [4] to solve problems reported with this version. New version program summaryProgram title: ROOT Catalogue identifier: AEFA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Lesser Public License v.2.1 No. of lines in distributed program, including test data, etc.: 2 934 693 No. of bytes in distributed program, including test data, etc.: 1009 Distribution format: tar.gz Programming language: C++ Computer: Intel i386, Intel x86-64, Motorola PPC, Sun Sparc, HP PA-RISC Operating system: GNU/Linux, Windows XP/Vista/7, Mac OS X, FreeBSD, OpenBSD, Solaris, HP-UX, AIX Has the code been vectorized or parallelized?: Yes RAM: > 55 Mbytes Classification: 4, 9, 11.9, 14 Catalogue identifier of previous version: AEFA_v1_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 2499 Does the new version supersede the previous version?: Yes Nature of problem: Storage, analysis and visualization of scientific data Solution method: Object store, wide range of analysis algorithms and visualization methods Reasons for new version: Added features and corrections of deficiencies Summary of revisions: The release notes at http://root.cern.ch/root/v528/Version528.news.html give a module-oriented overview of the changes in v5.28.00. Highlights include File format Reading of TTrees has been improved dramatically with respect to CPU time (30%) and notably with respect to disk space. Histograms A new TEfficiency class has been provided to handle the calculation of efficiencies and their uncertainties, TH2Poly for polygon-shaped bins (e.g. maps), TKDE for kernel density estimation, and TSVDUnfold for singular value decomposition. Graphics Kerning is now supported in TLatex, PostScript and PDF; a table of contents can be added to PDF files. A new font provides italic symbols. A TPad containing GL can be stored in a binary (i.e. non-vector) image file; add support for full-scene anti-aliasing. Usability enhancements to EVE. Math New interfaces for generating random number according to a given distribution, goodness of fit tests of unbinned data, binning multidimensional data, and several advanced statistical functions were added. RooFit Introduction of HistFactory; major additions to RooStats. TMVA Updated to version 4.1.0, adding e.g. the support for simultaneous classification of multiple output classes for several multivariate methods. PROOF Many new features, adding to PROOF's usability, plus improvements and fixes. PyROOT Support of Python 3 has been added. Tutorials Several new tutorials were provided for above new features (notably RooStats). A detailed list of all the changes is available at http://root.cern.ch/root/htmldoc/examples/V5. Additional comments: For an up-to-date author list see: http://root.cern.ch/drupal/content/root-development-team and http://root.cern.ch/drupal/content/former-root-developers. The distribution file for this program is over 30 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Depending on the data size and complexity of analysis algorithms. References: id="pr0100" view="all">http://root.cern.ch. http://root.cern.ch/drupal/content/production-version-528. I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph. Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata, D. Gonzalez Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder, L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S. Panacek, F. Rademakers, P. Russo, M. Tadel, ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499. http://root.cern.ch/drupal/content/root-version-v5-28-00-patch-release-notes.

  14. Highlights from the CERN/ESO/NordForsk ''Gender in Physics Day''

    NASA Astrophysics Data System (ADS)

    Primas, F.; Guinot, G.; Strandberg, L.

    2017-03-01

    In their role as observers on the EU Gender Equality Network in the European Research Area (GENERA) project, funded under the Horizon 2020 framework, CERN, ESO and NordForsk joined forces and organised a Gender in Physics Day at the CERN Globe of Science and Innovation. The one-day conference aimed to examine innovative activities promoting gender equality, and to discuss gender-oriented policies and best practice in the European Research Area (with special emphasis on intergovernmental organisations), as well as the importance of building solid networks. The event was very well attended and was declared a success. The main highlights of the meeting are reported.

  15. Dissemination of data measured at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Dupont, E.; Otuka, N.; Cabellos, O.; Aberle, O.; Aerts, G.; Altstadt, S.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Badurek, G.; Balibrea, J.; Barbagallo, M.; Barros, S.; Baumann, P.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Cardella, R.; Carrapiço, C.; Casanovas, A.; Castelluccio, D. M.; Cennini, P.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Couture, A.; Cox, J.; Damone, L. A.; David, S.; Deo, K.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Dressler, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Fernández-Domínguez, B.; Ferrant, L.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Fraval, K.; Frost, R. J. W.; Fujii, K.; Furman, W.; Ganesan, S.; Garcia, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Giubrone, G.; Glodariu, T.; Göbel, K.; Gomez-Hornillos, M. B.; Goncalves, I. F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Haight, R.; Harada, H.; Heftrich, T.; Heil, M.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Igashira, M.; Isaev, S.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Kaeppeler, F.; Kalamara, A.; Karadimos, D.; Karamanis, D.; Katabuchi, T.; Kavrigin, P.; Kerveno, M.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Konovalov, V.; Krtička, M.; Kroll, J.; Kurtulgil, D.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Naour, C. Le; Lerendegui-Marco, J.; Leong, L. S.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Lozano, M.; Macina, D.; Manousos, A.; Marganiec, J.; Martinez, T.; Marrone, S.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Montesano, S.; Moreau, C.; Mosconi, M.; Musumarra, A.; Negret, A.; Nolte, R.; O'Brien, S.; Oprea, A.; Palomo-Pinto, F. R.; Pancin, J.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perkowski, J.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, L.; Poch, A.; Porras, I.; Praena, J.; Pretel, C.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M.; Roman, F.; Rout, P. C.; Rudolf, G.; Rubbia, C.; Rullhusen, P.; Ryan, J. A.; Sabaté-Gilarte, M.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Stephan, C.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Ware, T.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Wiesher, M.; Wisshak, K.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The n_TOF neutron time-of-flight facility at CERN is used for high quality nuclear data measurements from thermal energy up to hundreds of MeV. In line with the CERN open data policy, the n_TOF Collaboration takes actions to preserve its unique data, facilitate access to them in standardised format, and allow their re-use by a wide community in the fields of nuclear physics, nuclear astrophysics and various nuclear technologies. The present contribution briefly describes the n_TOF outcomes, as well as the status of dissemination and preservation of n_TOF final data in the international EXFOR library.

  16. How to create successful Open Hardware projects — About White Rabbits and open fields

    NASA Astrophysics Data System (ADS)

    van der Bij, E.; Arruat, M.; Cattin, M.; Daniluk, G.; Gonzalez Cobas, J. D.; Gousiou, E.; Lewis, J.; Lipinski, M. M.; Serrano, J.; Stana, T.; Voumard, N.; Wlostowski, T.

    2013-12-01

    CERN's accelerator control group has embraced ''Open Hardware'' (OH) to facilitate peer review, avoid vendor lock-in and make support tasks scalable. A web-based tool for easing collaborative work was set up and the CERN OH Licence was created. New ADC, TDC, fine delay and carrier cards based on VITA and PCI-SIG standards were designed and drivers for Linux were written. Often industry was paid for developments, while quality and documentation was controlled by CERN. An innovative timing network was also developed with the OH paradigm. Industry now sells and supports these designs that find their way into new fields.

  17. Medical Applications at CERN and the ENLIGHT Network

    PubMed Central

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN. PMID:26835422

  18. Medical Applications at CERN and the ENLIGHT Network.

    PubMed

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN.

  19. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  20. JCoDA: a tool for detecting evolutionary selection.

    PubMed

    Steinway, Steven N; Dannenfelser, Ruth; Laucius, Christopher D; Hayes, James E; Nayak, Sudhir

    2010-05-27

    The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda.

  1. JCoDA: a tool for detecting evolutionary selection

    PubMed Central

    2010-01-01

    Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda. PMID:20507581

  2. Status and Roadmap of CernVM

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher. This video is Part 11 in the series.« less

  4. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  5. Numerical simulation of ion transport in an atmosphere-to-vacuum interface taking into account gas dynamics and space charge.

    PubMed

    Skoblin, Michael G; Chudinov, Alexey V; Sulimenkov, Ilia V; Brusov, Vladimir S; Makarov, Alexander A; Wouters, Eloy R; Kozlovskiy, Viacheslav I

    2017-08-01

    A two-step approach was developed for the study of ion transport in an atmospheric pressure interface. In the first step, the flow in the interface was numerically simulated using the standard gas dynamic package ANSYS CFX 15.0. In the second step, the calculated fields of pressure, temperature, and velocity were imported into a custom-built software application for simulation of ion motion under the influence of both gas dynamic and electrostatic forces. To account for space charge effects in axially symmetric interfaces an analytical expression was used for the Coulomb force. For all other types of interfaces, an iterative approach for the Coulomb force computation was developed. The simulations show that the influence of the space charge is the main contributor to the loss of ion current in the heated capillary. In addition, the maximum ion current which can be transmitted through the heated capillary (0.58 mm inner diameter and 58.5 mm length) is limited to ∼6 nA for ions with m/z = 508 Da and with reduced ion mobility 1.05 cm 2 V -1 s -1 . This limit remains practically constant and independent of the ion current at the entrance of the capillary. For a particular ion type, this limit depends on its m/z ratio and ion mobility.

  6. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    NASA Astrophysics Data System (ADS)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  7. REVEAL: Reconstruction, Enhancement, Visualization, and Ergonomic Assessment for Laparoscopy

    DTIC Science & Technology

    2008-08-01

    measurable disparity shift. Such an endoscope can be used to generate a stereoscopic view for a surgeon, as with the DaVinci robot in use today...training or surgery. We are working on the user interface issues of incorporating this measurement capability into the standard set of tools during...scope use, and in structuring a set of tasks around the use of through-the-scope measurement in order to determine how this tool can affect efficiency

  8. Mapping Remote and Multidisciplinary Learning Barriers: Lessons from "Challenge-Based Innovation" at CERN

    ERIC Educational Resources Information Center

    Jensen, Matilde Bisballe; Utriainen, Tuuli Maria; Steinert, Martin

    2018-01-01

    This paper presents the experienced difficulties of students participating in the multidisciplinary, remote collaborating engineering design course challenge-based innovation at CERN. This is with the aim to identify learning barriers and improve future learning experiences. We statistically analyse the rated differences between distinct design…

  9. DG's New Year's presentation

    ScienceCinema

    Heuer, R.-D.

    2018-05-22

    CERN general staff meeting. Looking back at key messages: Highest priority: LHC physics in 2009; Increase diversity of the scientific program; Prepare for future projects; Establish open and direct communication; Prepare CERN towards a global laboratory; Increase consolidation efforts; Financial situation--tight; Knowledge and technology transfer--proactive; Contract policy and internal mobility--lessons learned.

  10. Knowledge and Technology: Sharing With Society

    NASA Astrophysics Data System (ADS)

    Benvenuti, Cristoforo; Sutton, Christine; Wenninger, Horst

    The following sections are included: * A Core Mission of CERN * Medical Accelerators: A Tool for Tumour Therapy * Medipix: The Image is the Message * Crystal Clear: From Higgs to PET * Solar Collectors: When Nothing is Better * The TARC Experiment at CERN: Modern Alchemy * A CLOUD Chamber with a Silvery Lining * References

  11. Contextualized Magnetism in Secondary School: Learning from the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid, Ramon

    2005-01-01

    Physics teachers in secondary schools usually mention the world's largest particle physics laboratory--CERN (European Organization for Nuclear Research)--only because of the enormous size of the accelerators and detectors used there, the number of scientists involved in their activities and also the necessary international scientific…

  12. WorldWide Web: Hypertext from CERN.

    ERIC Educational Resources Information Center

    Nickerson, Gord

    1992-01-01

    Discussion of software tools for accessing information on the Internet focuses on the WorldWideWeb (WWW) system, which was developed at the European Particle Physics Laboratory (CERN) in Switzerland to build a worldwide network of hypertext links using available networking technology. Its potential for use with multimedia documents is also…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    Measurements of the production cross section of a Z boson in association with jets in proton–proton collisions at √s = 13 TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb –1 collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a Z boson decaying to electrons or muons and produced in association with up to seven jets with p T > 30 GeV and |y| < 2.5. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for upmore » to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.« less

  14. Assessment of thermal loads in the CERN SPS crab cavities cryomodule 1

    DOE PAGES

    Carra, F.; Apeland, J.; Calaga, R.; ...

    2017-07-20

    As a part of the HL-LHC upgrade, we designed a cryomodule to host two crab cavities for a first test with protons in the SPS machine. The evaluation of the cryomodule heat loads is essential to dimension the cryogenic infrastructure of the system. The current design features two cryogenic circuits. The first circuit adopts superfluid helium at 2 K to maintain the cavities in the superconducting state. The second circuit, based on helium gas at a temperature between 50 K and 70 K, is connected to the thermal screen, also serving as heat intercept for all the interfaces between themore » cold mass and the external environment. We present an overview of the heat loads to both circuits, and the combined numerical and analytical estimations. The heat load of each element is detailed for the static and dynamic scenarios, with considerations on the design choices for the thermal optimization of the most critical components.« less

  15. Investigation of High-Level Synthesis tools’ applicability to data acquisition systems design based on the CMS ECAL Data Concentrator Card example

    NASA Astrophysics Data System (ADS)

    HUSEJKO, Michal; EVANS, John; RASTEIRO DA SILVA, Jose Carlos

    2015-12-01

    High-Level Synthesis (HLS) for Field-Programmable Logic Array (FPGA) programming is becoming a practical alternative to well-established VHDL and Verilog languages. This paper describes a case study in the use of HLS tools to design FPGA-based data acquisition systems (DAQ). We will present the implementation of the CERN CMS detector ECAL Data Concentrator Card (DCC) functionality in HLS and lessons learned from using HLS design flow. The DCC functionality and a definition of the initial system-level performance requirements (latency, bandwidth, and throughput) will be presented. We will describe how its packet processing control centric algorithm was implemented with VHDL and Verilog languages. We will then show how the HLS flow could speed up design-space exploration by providing loose coupling between functions interface design and functions algorithm implementation. We conclude with results of real-life hardware tests performed with the HLS flow-generated design with a DCC Tester system.

  16. Ceph-based storage services for Run2 and beyond

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel C.; Lamanna, Massimo; Mascetti, Luca; Peters, Andreas J.; Rousseau, Hervé

    2015-12-01

    In 2013, CERN IT evaluated then deployed a petabyte-scale Ceph cluster to support OpenStack use-cases in production. With now more than a year of smooth operations, we will present our experience and tuning best-practices. Beyond the cloud storage use-cases, we have been exploring Ceph-based services to satisfy the growing storage requirements during and after Run2. First, we have developed a Ceph back-end for CASTOR, allowing this service to deploy thin disk server nodes which act as gateways to Ceph; this feature marries the strong data archival and cataloging features of CASTOR with the resilient and high performance Ceph subsystem for disk. Second, we have developed RADOSFS, a lightweight storage API which builds a POSIX-like filesystem on top of the Ceph object layer. When combined with Xrootd, RADOSFS can offer a scalable object interface compatible with our HEP data processing applications. Lastly the same object layer is being used to build a scalable and inexpensive NFS service for several user communities.

  17. NaNet: a configurable NIC bridging the gap between HPC and real-time HEP GPU computing

    NASA Astrophysics Data System (ADS)

    Lonardo, A.; Ameli, F.; Ammendola, R.; Biagioni, A.; Cotta Ramusino, A.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Pontisso, L.; Rossetti, D.; Simeone, F.; Simula, F.; Sozzi, M.; Tosoratto, L.; Vicini, P.

    2015-04-01

    NaNet is a FPGA-based PCIe Network Interface Card (NIC) design with GPUDirect and Remote Direct Memory Access (RDMA) capabilities featuring a configurable and extensible set of network channels. The design currently supports both standard—Gbe (1000BASE-T) and 10GbE (10Base-R)—and custom—34 Gbps APElink and 2.5 Gbps deterministic latency KM3link—channels, but its modularity allows for straightforward inclusion of other link technologies. The GPUDirect feature combined with a transport layer offload module and a data stream processing stage makes NaNet a low-latency NIC suitable for real-time GPU processing. In this paper we describe the NaNet architecture and its performances, exhibiting two of its use cases: the GPU-based low-level trigger for the RICH detector in the NA62 experiment at CERN and the on-/off-shore data transport system for the KM3NeT-IT underwater neutrino telescope.

  18. Graphical processors for HEP trigger systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-02-01

    General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.

  19. Applications of Emerging Parallel Optical Link Technology to High Energy Physics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chramowicz, J.; Kwan, S.; Prosser, A.

    2011-09-01

    Modern particle detectors depend upon optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from the telecommunications and storage area network market segments. These links support data transfers in each direction at rates up to 120 Gbps in packages that minimize or even eliminate edge connector requirements. Emerging products include a class of devices known as optical engines which permit assembly of the optical transceivers in close proximity to the electrical interfaces of ASICs and FPGAs which handlemore » the data in parallel electrical format. Such assemblies will reduce required printed circuit board area and minimize electromagnetic interference and susceptibility. We will present test results of some of these parallel components and report on the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.« less

  20. Preparation of a primary argon beam for the CERN fixed target physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R.

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear acceleratormore » (Linac3) at CERN.« less

  1. Deployment and Operational Experiences with CernVM-FS at the GridKa Tier-1 Center

    NASA Astrophysics Data System (ADS)

    Alef, Manfred; Jäger, Axel; Petzold and, Andreas; Verstege, Bernhard

    2012-12-01

    In 2012 the GridKa Tier-1 computing center hosts 130 kHS06 computing resources and 14PB disk and 17PB tape space. These resources are shared between the four LHC VOs and a number of national and international VOs from high energy physics and other sciences. CernVM-FS has been deployed at GridKa to supplement the existing NFS-based system to access VO software on the worker nodes. It provides a solution tailored to the requirement of the LHC VOs. We will focus on the first operational experiences and the monitoring of CernVM-FS on the worker nodes and the squid caches.

  2. Open Media Training Session

    ScienceCinema

    None

    2017-12-09

    Have you ever wondered how the media work and why some topics make it into the news and other don't? Would you like to know how to (and how not to) give an interview to a journalist? With the LHC preparing for first collisions at high energies, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. Follow the webcast: http://webcast.cern.ch/

  3. CERN - Six Decades of Science, Innovation, Cooperation, and Inspiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris

    The European Laboratory for Particle Physics, which straddles the Swiss-French border northwest of Geneva, celebrates its sixtieth birthday in 2014 CERN is the preeminent particle-physics institution in the world, currently emphasizing the study of collisions of protons and heavy nuclei at very high energies and the exploration of physics on the electroweak scale (energies where electromagnetism and the weak nuclear force merge). With brilliant accomplishments in research, innovation, and education, and a sustained history of cooperation among people from different countries and cultures, CERN ranks as one of the signal achievements of the postwar European Project. For physicists the worldmore » over, the laboratory is a source of pride and inspiration.« less

  4. The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer

    NASA Astrophysics Data System (ADS)

    Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.

    2011-12-01

    In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as

  5. More "Hands-On" Particle Physics: Learning with ATLAS at CERN

    ERIC Educational Resources Information Center

    Long, Lynne

    2011-01-01

    This article introduces teachers and students to a new portal of resources called Learning with ATLAS at CERN (http://learningwithatlas-portal.eu/), which has been developed by a European consortium of academic researchers and schools' liaison and outreach providers from countries across Europe. It includes the use of some of the mind-boggling…

  6. History of Cern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-12-20

    Cérémonie à l'occasion de l'apparition du premier volume du livre sur l'histoire du Cern, avec plusieurs personnes présentes qui jouaient un rôle important dans cette organisation européenne couronnée de succès grâce à l'esprit des membres fondateurs qui est et restera essentiel

  7. Big data analytics as a service infrastructure: challenges, desired properties and solutions

    NASA Astrophysics Data System (ADS)

    Martín-Márquez, Manuel

    2015-12-01

    CERN's accelerator complex generates a very large amount of data. A large volumen of heterogeneous data is constantly generated from control equipment and monitoring agents. These data must be stored and analysed. Over the decades, CERN's researching and engineering teams have applied different approaches, techniques and technologies for this purpose. This situation has minimised the necessary collaboration and, more relevantly, the cross data analytics over different domains. These two factors are essential to unlock hidden insights and correlations between the underlying processes, which enable better and more efficient daily-based accelerator operations and more informed decisions. The proposed Big Data Analytics as a Service Infrastructure aims to: (1) integrate the existing developments; (2) centralise and standardise the complex data analytics needs for CERN's research and engineering community; (3) deliver real-time, batch data analytics and information discovery capabilities; and (4) provide transparent access and Extract, Transform and Load (ETL), mechanisms to the various and mission-critical existing data repositories. This paper presents the desired objectives and properties resulting from the analysis of CERN's data analytics requirements; the main challenges: technological, collaborative and educational and; potential solutions.

  8. Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    NASA Astrophysics Data System (ADS)

    Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-05-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.

  9. A New PC and LabVIEW Package Based System for Electrochemical Investigations.

    PubMed

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-03-15

    The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.

  10. Information System through ANIS at CeSAM

    NASA Astrophysics Data System (ADS)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  11. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema

    Arnold, Jeffrey

    2018-05-14

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  12. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.

    PubMed

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-04-01

    The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h-1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. © The Author 2016. Published by Oxford University Press.

  13. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING

    PubMed Central

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2017-01-01

    Abstract The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h−1, whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification. PMID:27909154

  14. Deficits in the Sensitivity of Striatal Muscarinic Receptors Induced by 56Fe Heavy-Particle Irradiation: Further ’Age-Radiation’ Parallels

    DTIC Science & Technology

    1993-01-01

    behavioral func- agonists (as assessed by examining oxotremorine enhancement tions such as coordination and muscle strength [for reviews, of K4-evoked...interface and by comparing the response to oxotremorine -en- made by examining the oxotremorine (OXO)-enhanced hanced K4-evoked release of dopamine...Results showed that al- K+-evoked release of dopamine (DA) from perifused stria- though oxotremorine -enhanced K4-evoked release of dopamine tal slices

  15. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc04821a

    PubMed Central

    Gerecht, Karola; Figueiredo, Angelo Miguel

    2017-01-01

    Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised. PMID:28840203

  16. Got Questions About the Higgs Boson? Ask a Scientist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinchliffe, Ian

    Ask a scientist about the Higgs boson. There's a lot of buzz this week over new data from CERN's Large Hadron Collider (LHC) and the final data from Fermilab's Tevatron about the Higgs boson. It raises questions about what scientists have found and what still remains to be found -- and what it all means. Berkeley Lab's Ian Hinchliffe invites you to send in questions about the Higgs. He'll answer a few of your questions in a follow-up video later this week. Hinchliffe is a theoretical physicist who heads Berkeley Lab's sizable contingent with the ATLAS experiment at CERN. •more » Post your questions in the comment box • E-mail your questions to askascientist@lbl.gov • Tweet to @BerkeleyLab • Or post on our facebook page: facebook/berkeleylab Update on July 5: Ian responds to several of your questions in this video: http://youtu.be/1BkpD1IS62g. Update on 7/04: Here's CERN's press release from earlier today on the latest preliminary results in the search for the long sought Higgs particle: http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.htm. And here's a Q&A on what the news tells us: http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459460?ln=en. CERN will present the new LHC data at a seminar July 4th at 9:00 in the morning Geneva time (3:00 in the morning Eastern Daylight Time, midnight on the Pacific Coast), where the ATLAS collaboration and their rivals in the CMS experiment will announce their results. Tevatron results were announced by Fermilab on Monday morning. For more background on the LHC's search for the Higgs boson, visit http://newscenter.lbl.gov/feature-stories/2012/06/28/higgs-2012/.« less

  17. Got Questions About the Higgs Boson? Ask a Scientist

    ScienceCinema

    Hinchliffe, Ian

    2017-12-12

    Ask a scientist about the Higgs boson. There's a lot of buzz this week over new data from CERN's Large Hadron Collider (LHC) and the final data from Fermilab's Tevatron about the Higgs boson. It raises questions about what scientists have found and what still remains to be found -- and what it all means. Berkeley Lab's Ian Hinchliffe invites you to send in questions about the Higgs. He'll answer a few of your questions in a follow-up video later this week. Hinchliffe is a theoretical physicist who heads Berkeley Lab's sizable contingent with the ATLAS experiment at CERN. • Post your questions in the comment box • E-mail your questions to askascientist@lbl.gov • Tweet to @BerkeleyLab • Or post on our facebook page: facebook/berkeleylab Update on July 5: Ian responds to several of your questions in this video: http://youtu.be/1BkpD1IS62g. Update on 7/04: Here's CERN's press release from earlier today on the latest preliminary results in the search for the long sought Higgs particle: http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.htm. And here's a Q&A on what the news tells us: http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459460?ln=en. CERN will present the new LHC data at a seminar July 4th at 9:00 in the morning Geneva time (3:00 in the morning Eastern Daylight Time, midnight on the Pacific Coast), where the ATLAS collaboration and their rivals in the CMS experiment will announce their results. Tevatron results were announced by Fermilab on Monday morning. For more background on the LHC's search for the Higgs boson, visit http://newscenter.lbl.gov/feature-stories/2012/06/28/higgs-2012/.

  18. Of people, particles and prejudice

    NASA Astrophysics Data System (ADS)

    Jackson, Penny; Greene, Anne; Mears, Matt; Spacecadet1; Green, Christian; Hunt, Devin J.; Berglyd Olsen, Veronica K.; Ilya, Komarov; Pierpont, Elaine; Gillman, Matthew

    2016-05-01

    In reply to Louise Mayor's feature article “Where people and particles collide”, about the experiences of researchers at CERN who are lesbian, gay, bisexual or transgender (LGBT), efforts to make LGBT CERN an officially recognized club, and incidents where posters advertising the club have been torn down or defaced (March pp31-36, http://ow.ly/YVP2Z).

  19. The Secret Chambers in the Chephren Pyramid

    ERIC Educational Resources Information Center

    Gutowski, Bartosz; Józwiak, Witold; Joos, Markus; Kempa, Janusz; Komorowska, Kamila; Krakowski, Kamil; Pijus, Ewa; Szymczak, Kamil; Trojanowska, Malgorzata

    2018-01-01

    In 2016, we (seven high school students from a school in Plock, Poland) participated in the CERN Beamline for Schools competition. Together with our team coach, Mr. Janusz Kempa, we submitted a proposal to CERN that was selected as one of two winning proposals that year. This paper describes our experiment from the early days of brainstorming to…

  20. Lead Ions and Coulomb's Law at the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2018-01-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…

  1. From strangeness enhancement to quark-gluon plasma discovery

    NASA Astrophysics Data System (ADS)

    Koch, Peter; Müller, Berndt; Rafelski, Johann

    2017-11-01

    This is a short survey of signatures and characteristics of the quark-gluon plasma in the light of experimental results that have been obtained over the past three decades. In particular, we present an in-depth discussion of the strangeness observable, including a chronology of the experimental effort to detect QGP at CERN-SPS, BNL-RHIC, and CERN-LHC.

  2. Ceremony 25th birthday Cern

    ScienceCinema

    None

    2018-05-18

    Celebration of CERN's 25th birthday with a speech by L. Van Hove and J.B. Adams, musical interludes by Ms. Mey and her colleagues (starting with Beethoven). The general managers then proceed with the presentation of souvenirs to members of the personnel who have 25 years of service in the organization. A gesture of recognition is also given to Zwerner.

  3. Comittees

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Fritz Caspers (CERN, Switzerland), Michel Chanel (CERN, Switzerland), Håkan Danared (MSL, Sweden), Bernhard Franzke (GSI, Germany), Manfred Grieser (MPI für Kernphysik, Germany), Dieter Habs (LMU München, Germany), Jeffrey Hangst (University of Aarhus, Denmark), Takeshi Katayama (RIKEN/Univ. Tokyo, Japan), H.-Jürgen Kluge (GSI, Germany), Shyh-Yuan Lee (Indiana University, USA), Rudolf Maier (FZ Jülich, Germany), John Marriner (FNAL, USA), Igor Meshkov (JINR, Russia), Dieter Möhl (CERN, Switzerland), Vasily Parkhomchuk (BINP, Russia), Robert Pollock (Indiana University), Dieter Prasuhn (FZ Jülich, Germany), Dag Reistad (TSL, Sweden), John Schiffer (ANL, USA), Andrew Sessler (LBNL, USA), Alexander Skrinsky (BINP, Russia), Markus Steck (GSI, Germany), Jie Wei (BNL, USA), Andreas Wolf (MPI für Kernphysik, Germany), Hongwei Zhao (IMP, People's Rep. of China).

  4. Across Europe to CERN: Taking students on the ultimate physics experience

    NASA Astrophysics Data System (ADS)

    Wheeler, Sam

    2018-05-01

    In 2013, I was an Einstein Fellow with the U.S. Department of Energy and I was asked by a colleague, working in a senator's office, if I would join him in a meeting with a physicist to "translate" the science into something more understandable. That meeting turned out to be a wonderful opportunity I would never have otherwise had. During the meeting I met Michael Tuts, a physicist who was working on project ATLAS at CERN. Afterwards, I walked with him out of the Senate office building to Union Station and, in parting, he gave me his card and told me that if I were in Geneva that he could help me get a tour of CERN and the LHC.

  5. User and group storage management the CMS CERN T2 centre

    NASA Astrophysics Data System (ADS)

    Cerminara, G.; Franzoni, G.; Pfeiffer, A.

    2015-12-01

    A wide range of detector commissioning, calibration and data analysis tasks is carried out by CMS using dedicated storage resources available at the CMS CERN Tier-2 centre. Relying on the functionalities of the EOS disk-only storage technology, the optimal exploitation of the CMS user/group resources has required the introduction of policies for data access management, data protection, cleanup campaigns based on access pattern, and long term tape archival. The resource management has been organised around the definition of working groups and the delegation to an identified responsible of each group composition. In this paper we illustrate the user/group storage management, and the development and operational experience at the CMS CERN Tier-2 centre in the 2012-2015 period.

  6. [CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility].

    PubMed

    Viertl, David; Buchegger, Franz; Prior, John O; Forni, Michel; Morel, Philippe; Ratib, Osman; Bühler Léo H; Stora, Thierry

    2015-06-17

    CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.

  7. Physicochemical signatures of natural surfactant sea films from coastal Middle Adriatic stations

    NASA Astrophysics Data System (ADS)

    Frka, Sanja; Pogorzelski, Stanislaw; Kozarac, Zlatica; Ćosović, Božena

    2013-04-01

    Boundary layers between different environmental compartments represent critical interfaces for biological, chemical and physical processes. The sea surface microlayer (SSM) as a top layer of the sea surface represents natural interface between the atmosphere and ocean. Although < 1 mm in thickness the SML plays a key role in the global biogeochemical cycling because all gaseous, liquid and particulate materials must pass through this interface when exchanging between the ocean and the atmosphere. The SSM thus represents a very important driver enhancing air-water exchange processes. A variety of natural and anthropogenic organic compounds, particularly those which are surface active (SA) are generally enriched in the SML. It is widely acknowledged that the SSM is complex matrix of SA organics as carbohydrates, proteins, lipids and humic substances. Although lipid material is much less abundant than carbohydrates and proteins in the SML, their contribution to surface activity may be disproportionately large. The surfactant films at the air-sea interface change its physicochemical properties reducing air-sea exchange possesses by impeding molecular diffusion across the interface and influencing the hydrodynamic characteristics of water motion at the interface. Various biological, chemical and physical processes lead to the alteration of the film chemical composition, surface physical properties, surface concentration and spatial distribution of film-forming components. Instead of analyzing its chemical composition, it should be possible to scale the SML surface pressure-area (π-A) isotherms in terms of structural parameters which appear to be a sensitive and quantitative measure of the film physicochemical composition, surface concentration and miscibility of its film-forming components. We will present a large data set obtained by electrochemical and monolayer techniques, accompanied with the novel scaling approach for physicochemical characterization of SA substances of the natural microlayers from coastal Middle Adriatic stations including saline Rogoznica Lake and Krka river estuarine station. Higher primary production during late spring-early autumn is reflected in the presence of microlayers of higher surfactant activity containing on average molecules of lower molecular masses (Mw=0.65±0.27 kDa) and higher miscibility (y=6.46±1.33) and elasticity (E=18.33±2.02 mN/m) modulus in comparison to structural parameters (average Mw=2.15±1.58 kDa; y=3.51±1.46; E=6.41±1.97 mN/m) obtained for microlayers from period of lower organic matter production. Higher inhibition effect on the reduction process of cadmium ions is observed for natural microlayers abundant with SA material from more productive period. This kind of distribution is explained as the consequence of competitive adsorption of hydrophobic lipid-like substances of lower Mw which highly influence the surface structural properties of natural air-water interface forming there segregated surface films during more productive period. This study will offer different perspective on contemporary SML concept taking into account the lipids that act as end-members highly influencing seasonal change of SA concentration and surface structural properties of natural films at the air-water interface.

  8. LCG MCDB—a knowledgebase of Monte-Carlo simulated events

    NASA Astrophysics Data System (ADS)

    Belov, S.; Dudko, L.; Galkin, E.; Gusev, A.; Pokorski, W.; Sherstnev, A.

    2008-02-01

    In this paper we report on LCG Monte-Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC Collaborations by experts. In many cases, the modern Monte-Carlo simulation of physical processes requires expert knowledge in Monte-Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project. Program summaryProgram title: LCG Monte-Carlo Data Base Catalogue identifier: ADZX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 30 129 No. of bytes in distributed program, including test data, etc.: 216 943 Distribution format: tar.gz Programming language: Perl Computer: CPU: Intel Pentium 4, RAM: 1 Gb, HDD: 100 Gb Operating system: Scientific Linux CERN 3/4 RAM: 1 073 741 824 bytes (1 Gb) Classification: 9 External routines:perl >= 5.8.5; Perl modules DBD-mysql >= 2.9004, File::Basename, GD::SecurityImage, GD::SecurityImage::AC, Linux::Statistics, XML::LibXML > 1.6, XML::SAX, XML::NamespaceSupport; Apache HTTP Server >= 2.0.59; mod auth external >= 2.2.9; edg-utils-system RPM package; gd >= 2.0.28; rpm package CASTOR-client >= 2.1.2-4; arc-server (optional) Nature of problem: Often, different groups of experimentalists prepare similar samples of particle collision events or turn to the same group of authors of Monte-Carlo (MC) generators to prepare the events. For example, the same MC samples of Standard Model (SM) processes can be employed for the investigations either in the SM analyses (as a signal) or in searches for new phenomena in Beyond Standard Model analyses (as a background). If the samples are made available publicly and equipped with corresponding and comprehensive documentation, it can speed up cross checks of the samples themselves and physical models applied. Some event samples require a lot of computing resources for preparation. So, a central storage of the samples prevents possible waste of researcher time and computing resources, which can be used to prepare the same events many times. Solution method: Creation of a special knowledgebase (MCDB) designed to keep event samples for the LHC experimental and phenomenological community. The knowledgebase is realized as a separate web-server ( http://mcdb.cern.ch). All event samples are kept on types at CERN. Documentation describing the events is the main contents of MCDB. Users can browse the knowledgebase, read and comment articles (documentation), and download event samples. Authors can upload new event samples, create new articles, and edit own articles. Restrictions: The software is adopted to solve the problems, described in the article and there are no any additional restrictions. Unusual features: The software provides a framework to store and document large files with flexible authentication and authorization system. Different external storages with large capacity can be used to keep the files. The WEB Content Management System provides all of the necessary interfaces for the authors of the files, end-users and administrators. Running time: Real time operations. References: [1] The main LCG MCDB server, http://mcdb.cern.ch/. [2] P. Bartalini, L. Dudko, A. Kryukov, I.V. Selyuzhenkov, A. Sherstnev, A. Vologdin, LCG Monte-Carlo data base, hep-ph/0404241. [3] J.P. Baud, B. Couturier, C. Curran, J.D. Durand, E. Knezo, S. Occhetti, O. Barring, CASTOR: status and evolution, cs.oh/0305047.

  9. Transaction aware tape-infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Nikolaidis, Fotios; Kruse, Daniele Francesco

    2014-06-01

    Administrating a large scale, multi protocol, hierarchical tape infrastructure like the CERN Advanced STORage manager (CASTOR)[2], which stores now 100 PB (with an increasing step of 25 PB per year), requires an adequate monitoring system for quick spotting of malfunctions, easier debugging and on demand report generation. The main challenges for such system are: to cope with CASTOR's log format diversity and its information scattered among several log files, the need for long term information archival, the strict reliability requirements and the group based GUI visualization. For this purpose, we have designed, developed and deployed a centralized system consisting of four independent layers: the Log Transfer layer for collecting log lines from all tape servers to a single aggregation server, the Data Mining layer for combining log data into transaction context, the Storage layer for archiving the resulting transactions and finally the Web UI layer for accessing the information. Having flexibility, extensibility and maintainability in mind, each layer is designed to work as a message broker for the next layer, providing a clean and generic interface while ensuring consistency, redundancy and ultimately fault tolerance. This system unifies information previously dispersed over several monitoring tools into a single user interface, using Splunk, which also allows us to provide information visualization based on access control lists (ACL). Since its deployment, it has been successfully used by CASTOR tape operators for quick overview of transactions, performance evaluation, malfunction detection and from managers for report generation.

  10. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    NASA Technical Reports Server (NTRS)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  11. Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment

    PubMed Central

    Hastrup, Hanne; Karlin, Arthur; Javitch, Jonathan A.

    2001-01-01

    There is evidence both for and against Na+- and Cl−-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from ≈85 to ≈195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface. PMID:11526230

  12. Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment.

    PubMed

    Hastrup, H; Karlin, A; Javitch, J A

    2001-08-28

    There is evidence both for and against Na(+)- and Cl(-)-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from approximately 85 to approximately 195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface.

  13. Asymmetric B-factory note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calderon, M.

    Three main issues giving purpose to our visit to CERN, ESRF and DESY were to: assess the current thinking at CERN on whether Eta, the gas desorption coefficient, would continue to decrease with continued with continued beam cleaning, determine if the time between NEG reconditioning could be expanded, and acquire a knowledge of the basic fabrication processes and techniques for producing beam vacuum chambers of copper.

  14. The Proton Synchrotron (PS): At the Core of the CERN Accelerators

    NASA Astrophysics Data System (ADS)

    Cundy, Donald; Gilardoni, Simone

    The following sections are included: * Introduction * Extraction: Getting the Beam to Leave the Accelerator * Acceleration and Bunch Gymnastics * Boosting PS Beam Intensity * Capacitive Energy Storage Replaces Flywheel * Taking the Neutrinos by the Horns * OMEGA: Towards the Electronic Bubble Chamber * ISOLDE: Targeting a New Era in Nuclear Physics * The CERN n_TOF Facility: Catching Neutrons on the Fly * References

  15. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  16. The Higgs Boson: Is the End in Sight?

    ERIC Educational Resources Information Center

    Lincoln, Don

    2012-01-01

    This summer, perhaps while you were lounging around the pool in the blistering heat, the blogosphere was buzzing about data taken at the Large Hadron Collider at CERN. The buzz reached a crescendo in the first week of July when both Fermilab and CERN announced the results of their searches for the Higgs boson. Hard data confronted a theory nearly…

  17. The kaon identification system in the NA62 experiment at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, A.

    2015-07-01

    The main goal of the NA62 experiment at CERN is to measure the branching ratio of the ultra-rare K{sup +} → π{sup +} ν ν-bar decay with 10% accuracy. NA62 will use a 750 MHz high-energy un-separated charged hadron beam, with kaons corresponding to ∼6% of the beam, and a kaon decay-in-flight technique. The positive identification of kaons is performed with a differential Cherenkov detector (CEDAR), filled with Nitrogen gas and placed in the incoming beam. To stand the kaon rate (45 MHz average) and meet the performances required in NA62, the Cherenkov detector has been upgraded (KTAG) with newmore » photon detectors, readout, mechanics and cooling systems. The KTAG provides a fast identification of kaons with an efficiency of at least 95% and precise time information with a resolution below 100 ps. A half-equipped KTAG detector has been commissioned during a technical run at CERN in 2012, while the fully equipped detector, its readout and front-end have been commissioned during a pilot run at CERN in October 2014. The measured time resolution and efficiency are within the required performances. (authors)« less

  18. Lecture archiving on a larger scale at the University of Michigan and CERN

    NASA Astrophysics Data System (ADS)

    Herr, Jeremy; Lougheed, Robert; Neal, Homer A.

    2010-04-01

    The ATLAS Collaboratory Project at the University of Michigan has been a leader in the area of collaborative tools since 1999. Its activities include the development of standards, software and hardware tools for lecture archiving, and making recommendations for videoconferencing and remote teaching facilities. Starting in 2006 our group became involved in classroom recordings, and in early 2008 we spawned CARMA, a University-wide recording service. This service uses a new portable recording system that we developed. Capture, archiving and dissemination of rich multimedia content from lectures, tutorials and classes are increasingly widespread activities among universities and research institutes. A growing array of related commercial and open source technologies is becoming available, with several new products introduced in the last couple years. As the result of a new close partnership between U-M and CERN IT, a market survey of these products was conducted and a summary of the results are presented here. It is informing an ambitious effort in 2009 to equip many CERN rooms with automated lecture archiving systems, on a much larger scale than before. This new technology is being integrated with CERN's existing webcast, CDS, and Indico applications.

  19. A New PC and LabVIEW Package Based System for Electrochemical Investigations

    PubMed Central

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-01-01

    The paper describes a new PC and LabVIEW software package based system for electrochemical research. An overview of well known electrochemical methods, such as potential measurements, galvanostatic and potentiostatic method, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of investigated electrochemical cell, a measurement and control system was developed, based on a PC P4. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of authors own research. The software platform for desired measurement methods is LabVIEW 8.2 package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with commercially available system and ORCAD simulation. PMID:27879794

  20. DataBase on Demand

    NASA Astrophysics Data System (ADS)

    Gaspar Aparicio, R.; Gomez, D.; Coterillo Coz, I.; Wojcik, D.

    2012-12-01

    At CERN a number of key database applications are running on user-managed MySQL database services. The database on demand project was born out of an idea to provide the CERN user community with an environment to develop and run database services outside of the actual centralised Oracle based database services. The Database on Demand (DBoD) empowers the user to perform certain actions that had been traditionally done by database administrators, DBA's, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently open community version of MySQL and single instance Oracle database server. This article describes a technology approach to face this challenge, a service level agreement, the SLA that the project provides, and an evolution of possible scenarios.

  1. 65th birthday Jack Steinberger

    ScienceCinema

    None

    2017-12-09

    Laudatio pour Jack Steinberger né le 25 mai 1921, à l'occasion de son 65me anniversaire et sa retraite officielle, pour sa précieuse collaboration au Cern. Néanmoins son principal activité continuera comme avant dans sa recherche au Cern. Plusieurs orateurs prennent la parole (p.ex. E.Picasso) pour le féliciter et lui rendre hommage

  2. History of Cern

    ScienceCinema

    None

    2017-12-09

    Cérémonie à l'occasion de l'apparition du premier volume du livre sur l'histoire du Cern, avec plusieurs personnes présentes qui jouaient un rôle important dans cette organisation européenne couronnée de succès grâce à l'esprit des membres fondateurs qui est et restera essentiel

  3. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  4. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    NASA Astrophysics Data System (ADS)

    Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan

    2012-12-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

  5. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules.

    PubMed

    Mouraviev, Vladimir; Klein, Martina; Schommer, Eric; Thiel, David D; Samavedi, Srinivas; Kumar, Anup; Leveillee, Raymond J; Thomas, Raju; Pow-Sang, Julio M; Su, Li-Ming; Mui, Engy; Smith, Roger; Patel, Vipul

    2016-03-01

    In pursuit of improving the quality of residents' education, the Southeastern Section of the American Urological Association (SES AUA) hosts an annual robotic training course for its residents. The workshop involves performing a robotic live porcine nephrectomy as well as virtual reality robotic training modules. The aim of this study was to evaluate workload levels of urology residents when performing a live porcine nephrectomy and the virtual reality robotic surgery training modules employed during this workshop. Twenty-one residents from 14 SES AUA programs participated in 2015. On the first-day residents were taught with didactic lectures by faculty. On the second day, trainees were divided into two groups. Half were asked to perform training modules of the Mimic da Vinci-Trainer (MdVT, Mimic Technologies, Inc., Seattle, WA, USA) for 4 h, while the other half performed nephrectomy procedures on a live porcine model using the da Vinci Si robot (Intuitive Surgical Inc., Sunnyvale, CA, USA). After the first 4 h the groups changed places for another 4-h session. All trainees were asked to complete the NASA-TLX 1-page questionnaire following both the MdVT simulation and live animal model sessions. A significant interface and TLX interaction was observed. The interface by TLX interaction was further analyzed to determine whether the scores of each of the six TLX scales varied across the two interfaces. The means of the TLX scores observed at the two interfaces were similar. The only significant difference was observed for frustration, which was significantly higher at the simulation than the animal model, t (20) = 4.12, p = 0.001. This could be due to trainees' familiarity with live anatomical structures over skill set simulations which remain a real challenge to novice surgeons. Another reason might be that the simulator provides performance metrics for specific performance traits as well as composite scores for entire exercises. Novice trainees experienced substantial mental workload while performing tasks on both the simulator and the live animal model during the robotics course. The NASA-TLX profiles demonstrated that the live animal model and the MdVT were similar in difficulty, as indicated by their comparable workload profiles.

  6. A newly identified left-right asymmetry in larval sea urchins.

    PubMed

    Hodin, Jason; Lutek, Keegan; Heyland, Andreas

    2016-08-01

    Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.

  7. Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface.

    PubMed

    Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi

    2006-08-22

    Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.

  8. A newly identified left–right asymmetry in larval sea urchins

    PubMed Central

    Hodin, Jason; Lutek, Keegan

    2016-01-01

    Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses—including developmental constraints and water column stability—to account for this newly identified asymmetry. PMID:27853591

  9. [Effect of vacuum deposition technology on the metal-porcelain bond strength of a new type of CO-CR ceramic and framework dental alloy].

    PubMed

    Wu, Jun-ling; Chao, Yong-lie; Ji, Ping; Gao, Xu

    2007-10-01

    To investigate the effect of a new engineering technique of vacuum deposition-plasma magnetron reactive sputter deposition technique on the metal-porcelain bond strength of a new type of Co-Cr ceramic and framework dental alloy. Before porcelain painted on the specimens, the standardized metal strips made from DA9-4 dental alloy were coated with a thin Al2O3 ceramic film by plasma magnetron reactive sputter deposition technique. The conformation, structure and thickness of the ceramic film were analyzed. The specimens for three-point bending test made from DA9-4 alloy and VMK95 porcelain were used for metal-porcelain bond strength measurement, in the same time the interface of metal-porcelain and element distribution were also observed. The flexural bonding strength of metal-porcelain of sputtering group and control group were (180.55+/-16.45) MPa and (143.80+/-24.49) MPa. The flexural bonding strength of metal-porcelain of sputtering group was higher than control group significantly through statistical analysis (P<0.01). The plasma magnetron reactive sputter deposition technique has a positive effect in improving the bonding strength of DA9-4 dental alloy and ceramic.

  10. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Air liquide 1.8 K refrigeration units for CERN LHC project

    NASA Astrophysics Data System (ADS)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  12. Upgrade of the cryogenic CERN RF test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirotte, O.; Benda, V.; Brunner, O.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less

  13. Wolfgang Kummer at CERN

    NASA Astrophysics Data System (ADS)

    Schopper, Herwig

    Wolfgang Kummer was not only a great theorist but also a man with a noble spirit and extensive education, based on a fascinating long-term Austrian cultural tradition. As an experimentalist I am not sufficiently knowledgeable to evaluate his contributions to theoretical physics - this will certainly be done by more competent scientists. Nevertheless I admired him for not only being attached to fundamental and abstract problems like quantum field theory, quantum gravity or black holes, but for his interest in down to earth questions like electron-proton scattering or the toponium mass. I got to know Wolfgang Kummer very well and appreciate his human qualities during his long attachment to CERN, in particular when he served as president of the CERN Council, the highest decision taking authority of this international research centre, from 1985 to 1987 falling into my term as Director-General…

  14. Database on Demand: insight how to build your own DBaaS

    NASA Astrophysics Data System (ADS)

    Gaspar Aparicio, Ruben; Coterillo Coz, Ignacio

    2015-12-01

    At CERN, a number of key database applications are running on user-managed MySQL, PostgreSQL and Oracle database services. The Database on Demand (DBoD) project was born out of an idea to provide CERN user community with an environment to develop and run database services as a complement to the central Oracle based database service. The Database on Demand empowers the user to perform certain actions that had been traditionally done by database administrators, providing an enterprise platform for database applications. It also allows the CERN user community to run different database engines, e.g. presently three major RDBMS (relational database management system) vendors are offered. In this article we show the actual status of the service after almost three years of operations, some insight of our new redesign software engineering and near future evolution.

  15. The beam test of muon detector parameters for the SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.

    2018-01-01

    Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.

  16. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    PubMed

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-04

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  17. CERN data services for LHC computing

    NASA Astrophysics Data System (ADS)

    Espinal, X.; Bocchi, E.; Chan, B.; Fiorot, A.; Iven, J.; Lo Presti, G.; Lopez, J.; Gonzalez, H.; Lamanna, M.; Mascetti, L.; Moscicki, J.; Pace, A.; Peters, A.; Ponce, S.; Rousseau, H.; van der Ster, D.

    2017-10-01

    Dependability, resilience, adaptability and efficiency. Growing requirements require tailoring storage services and novel solutions. Unprecedented volumes of data coming from the broad number of experiments at CERN need to be quickly available in a highly scalable way for large-scale processing and data distribution while in parallel they are routed to tape for long-term archival. These activities are critical for the success of HEP experiments. Nowadays we operate at high incoming throughput (14GB/s during 2015 LHC Pb-Pb run and 11PB in July 2016) and with concurrent complex production work-loads. In parallel our systems provide the platform for the continuous user and experiment driven work-loads for large-scale data analysis, including end-user access and sharing. The storage services at CERN cover the needs of our community: EOS and CASTOR as a large-scale storage; CERNBox for end-user access and sharing; Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy distributed-file-system services. In this paper we will summarise the experience in supporting LHC experiments and the transition of our infrastructure from static monolithic systems to flexible components providing a more coherent environment with pluggable protocols, tuneable QoS, sharing capabilities and fine grained ACLs management while continuing to guarantee dependable and robust services.

  18. Commissioning results of CERN HIE-ISOLDE and INFN ALPI cryogenic control systems

    NASA Astrophysics Data System (ADS)

    Inglese, V.; Pezzetti, M.; Calore, A.; Modanese, P.; Pengo, R.

    2017-02-01

    The cryogenic systems of both accelerators, namely HIE ISOLDE (High Intensity and Energy Isotope Separator On Line DEvice) at CERN and ALPI (Acceleratore Lineare Per Ioni) at LNL, have been refurbished. HIE ISOLDE is a major upgrade of the existing ISOLDE facilities, which required the construction of a superconducting linear accelerator consisting of six cryomodules, each containing five superconductive RF cavities and superconducting solenoids. The ALPI linear accelerator, similar to HIE ISOLDE, is located at Legnaro National Laboratories (LNL) and became operational in the early 90’s. It is composed of 74 superconducting RF cavities, assembled inside 22 cryostats. The new control systems are equipped with PLC, developed on the CERN UNICOS framework, which include Schneider and Siemens PLCs and various fieldbuses (Profibus DP and PA, WorldFIP). The control systems were developed in synergy between CERN and LNL in order to build, effectively and with an optimized use of resources, control systems allowing to enhance ease of operation, maintainability, and long-term availability. This paper describes (i) the cryogenic systems, with special focus on the design of the control systems hardware and software, (ii) the strategy adopted in order to achieve a synergic approach, and (iii) the commissioning results after the cool-down to 4.5 K of the cryomodules.

  19. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    PubMed

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  20. The CMS tracker control system

    NASA Astrophysics Data System (ADS)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  1. Optimising LAN access to grid enabled storage elements

    NASA Astrophysics Data System (ADS)

    Stewart, G. A.; Cowan, G. A.; Dunne, B.; Elwell, A.; Millar, A. P.

    2008-07-01

    When operational, the Large Hadron Collider experiments at CERN will collect tens of petabytes of physics data per year. The worldwide LHC computing grid (WLCG) will distribute this data to over two hundred Tier-1 and Tier-2 computing centres, enabling particle physicists around the globe to access the data for analysis. Although different middleware solutions exist for effective management of storage systems at collaborating institutes, the patterns of access envisaged for Tier-2s fall into two distinct categories. The first involves bulk transfer of data between different Grid storage elements using protocols such as GridFTP. This data movement will principally involve writing ESD and AOD files into Tier-2 storage. Secondly, once datasets are stored at a Tier-2, physics analysis jobs will read the data from the local SE. Such jobs require a POSIX-like interface to the storage so that individual physics events can be extracted. In this paper we consider the performance of POSIX-like access to files held in Disk Pool Manager (DPM) storage elements, a popular lightweight SRM storage manager from EGEE.

  2. Interoperating Cloud-based Virtual Farms

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Colamaria, F.; Colella, D.; Casula, E.; Elia, D.; Franco, A.; Lusso, S.; Luparello, G.; Masera, M.; Miniello, G.; Mura, D.; Piano, S.; Vallero, S.; Venaruzzo, M.; Vino, G.

    2015-12-01

    The present work aims at optimizing the use of computing resources available at the grid Italian Tier-2 sites of the ALICE experiment at CERN LHC by making them accessible to interactive distributed analysis, thanks to modern solutions based on cloud computing. The scalability and elasticity of the computing resources via dynamic (“on-demand”) provisioning is essentially limited by the size of the computing site, reaching the theoretical optimum only in the asymptotic case of infinite resources. The main challenge of the project is to overcome this limitation by federating different sites through a distributed cloud facility. Storage capacities of the participating sites are seen as a single federated storage area, preventing the need of mirroring data across them: high data access efficiency is guaranteed by location-aware analysis software and storage interfaces, in a transparent way from an end-user perspective. Moreover, the interactive analysis on the federated cloud reduces the execution time with respect to grid batch jobs. The tests of the investigated solutions for both cloud computing and distributed storage on wide area network will be presented.

  3. Orthos, an alarm system for the ALICE DAQ operations

    NASA Astrophysics Data System (ADS)

    Chapeland, Sylvain; Carena, Franco; Carena, Wisla; Chibante Barroso, Vasco; Costa, Filippo; Denes, Ervin; Divia, Roberto; Fuchs, Ulrich; Grigore, Alexandru; Simonetti, Giuseppe; Soos, Csaba; Telesca, Adriana; Vande Vyvre, Pierre; von Haller, Barthelemy

    2012-12-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector studying the physics of strongly interacting matter and the quark-gluon plasma at the CERN LHC (Large Hadron Collider). The DAQ (Data Acquisition System) facilities handle the data flow from the detectors electronics up to the mass storage. The DAQ system is based on a large farm of commodity hardware consisting of more than 600 devices (Linux PCs, storage, network switches), and controls hundreds of distributed hardware and software components interacting together. This paper presents Orthos, the alarm system used to detect, log, report, and follow-up abnormal situations on the DAQ machines at the experimental area. The main objective of this package is to integrate alarm detection and notification mechanisms with a full-featured issues tracker, in order to prioritize, assign, and fix system failures optimally. This tool relies on a database repository with a logic engine, SQL interfaces to inject or query metrics, and dynamic web pages for user interaction. We describe the system architecture, the technologies used for the implementation, and the integration with existing monitoring tools.

  4. The VISPA internet platform for outreach, education and scientific research in various experiments

    NASA Astrophysics Data System (ADS)

    van Asseldonk, D.; Erdmann, M.; Fischer, B.; Fischer, R.; Glaser, C.; Heidemann, F.; Müller, G.; Quast, T.; Rieger, M.; Urban, M.; Welling, C.

    2015-12-01

    VISPA provides a graphical front-end to computing infrastructures giving its users all functionality needed for working conditions comparable to a personal computer. It is a framework that can be extended with custom applications to support individual needs, e.g. graphical interfaces for experiment-specific software. By design, VISPA serves as a multipurpose platform for many disciplines and experiments as demonstrated in the following different use-cases. A GUI to the analysis framework OFFLINE of the Pierre Auger collaboration, submission and monitoring of computing jobs, university teaching of hundreds of students, and outreach activity, especially in CERN's open data initiative. Serving heterogeneous user groups and applications gave us lots of experience. This helps us in maturing the system, i.e. improving the robustness and responsiveness, and the interplay of the components. Among the lessons learned are the choice of a file system, the implementation of websockets, efficient load balancing, and the fine-tuning of existing technologies like the RPC over SSH. We present in detail the improved server setup and report on the performance, the user acceptance and the realized applications of the system.

  5. Heat transfer at a sapphire - indium interface in the 30 mK - 300 mK temperature range

    NASA Astrophysics Data System (ADS)

    Liberadzka, J.; Koettig, T.; Bremer, J.; van der Post, C. C. W.; ter Brake, H. J. M.

    2017-02-01

    Within the framework of the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) project a direct measurement of the Earth’s gravitational acceleration on antihydrogen will be carried out. In order to obtain satisfactory precision of the measurement, the thermal movement of the particles should be reduced. Therefore a Penning trap, which is used to trap antiprotons and create antihydrogen, will be placed on a mixing chamber of an especially designed dilution refrigerator. The trap consists of 10 electrodes, which need to be electrically insulated, but thermally anchored. To ensure that the trap remains at a temperature below 100 mK, the heat transfer at the metallic-dielectric boundary is investigated. A copper - indium - sapphire - indium - copper sandwich setup was mounted on the CERN Cryolab dilution refrigerator. Keeping the mixing chamber at a constant low temperature in the range of 30 mK to 300 mK, steady-state measurements with indium in normal conducting and superconducting states have been performed. Obtained results along with a precise description of our setup are presented.

  6. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    NASA Astrophysics Data System (ADS)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  7. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  8. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges.

    PubMed

    Choi, Wuyong; Lee, Slgirim; Kim, Seung-Hyun; Jang, Jae-Hyung

    2016-06-01

    Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet-like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio-inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε-caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. About Separation of Hadron and Electromagnetic Cascades in the Pamela Calorimeter

    NASA Astrophysics Data System (ADS)

    Stozhkov, Yuri I.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Sparvoli, R.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y. T.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Mennh, W.; Simonh, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaya, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.

    Results of calibration of the PAMELA instrument at the CERN facilities are discussed. In September, 2003, the calibration of the Neutron Detector together with the Calorimeter was performed with the CERN beams of electrons and protons with energies of 20 - 180 GeV. The implementation of the Neutron Detector increases a rejection factor of hadrons from electrons about ten times. The results of calibration are in agreement with calculations.

  10. DAMPE prototype and its beam test results at CERN

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Hu, Yiming; Chang, Jin

    The first Chinese high energy cosmic particle detector(DAMPE) aims to detect electron/gamma at the range between 5GeV and 10TeV in space. A prototype of this detector is made and tested using both cosmic muons and test beam at CERN. Energy and space resolution as well as strong separation power for electron and proton are shown in the results. The detector structure is illustrated as well.

  11. Measurement of the inclusive jet cross section at the CERN pp collider

    NASA Astrophysics Data System (ADS)

    Arnison, G.; Albrow, M. G.; Allkofer, O. C.; Astbury, A.; Aubert, B.; Bacci, C.; Batley, J. R.; Bauer, G.; Bettini, A.; Bézaguet, A.; Bock, R. K.; Bos, K.; Buckley, E.; Bunn, J.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Cittolin, S.; Clarke, D.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Cox, G.; Dallman, D.; Dau, D.; Debeer, M.; Debrion, J. P.; Degiorgi, M.; della Negra, M.; Demoulin, M.; Denby, B.; Denegri, D.; Diciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J. D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Fince Keeler, M.; Flynn, P.; Fontaine, G.; Frey, R.; Frühwirth, R.; Garvey, J.; Gee, D.; Geer, S.; Ghesquière, C.; Ghez, P.; Ghio, F.; Giacomelli, P.; Gibson, W. R.; Giraud-Héraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Hansl-Kozanecka, T.; Haynes, W.; Haywood, S. J.; Hoffmann, H.; Holthuizen, D. J.; Homer, R. J.; Homer, R. J.; Honma, A.; Jank, W.; Jimack, M.; Jorat, G.; Kalmus, P. I. P.; Karimäri, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kienzle, W.; Kinnunen, R.; Kozanecki, W.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J. P.; Lees, J. P.; Leuchs, R.; Levegrun, S.; Lévêque, A.; Levi, M.; Linglin, D.; Locci, E.; Long, K.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, F.; McMahon, T.; Mendiburu, J.-P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.-N.; Mohammadi, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, Th.; Nandi, A.; Naumann, L.; Norton, A.; Paoluzi, L.; Pascoli, D.; Pauss, F.; Perault, C.; Piano Mortari, G.; Pietarinen, E.; Pigot, C.; Pimiä, M.; Pitman, D.; Placci, A.; Porte, J.-P.; Radermacher, E.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J. P.; Richman, J.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Roberts, C.; Ruhm, W.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Samyn, D.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Scott, W.; Shah, T. P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Sphicas, P.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szonczo, F.; Tao, C.; Ten Have, I.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; van Eijk, B.; Verecchia, P.; Vialle, J. P.; Virdee, T. S.; von der Schmitt, H.; von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H. D.; Watkins, P.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S. J.; Wulz, C.-E.; Wyatt, T.; Yvert, M.; Zacharov, I.; Zaganidis, N.; Zanello, L.; Zotto, P.

    1986-05-01

    The inclusive jet cross section has been measured in the UA1 experiment at the CERN pp Collider at centre-of-mass energies √s = 546 GeV and √s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √s is accounted for in terms of xT scaling.

  12. Highlights from High Energy Neutrino Experiments at CERN

    NASA Astrophysics Data System (ADS)

    Schlatter, W.-D.

    2015-07-01

    Experiments with high energy neutrino beams at CERN provided early quantitative tests of the Standard Model. This article describes results from studies of the nucleon quark structure and of the weak current, together with the precise measurement of the weak mixing angle. These results have established a new quality for tests of the electroweak model. In addition, the measurements of the nucleon structure functions in deep inelastic neutrino scattering allowed first quantitative tests of QCD.

  13. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    PubMed

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  14. An alternative model to distribute VO software to WLCG sites based on CernVM-FS: a prototype at PIC Tier1

    NASA Astrophysics Data System (ADS)

    Lanciotti, E.; Merino, G.; Bria, A.; Blomer, J.

    2011-12-01

    In a distributed computing model as WLCG the software of experiment specific application software has to be efficiently distributed to any site of the Grid. Application software is currently installed in a shared area of the site visible for all Worker Nodes (WNs) of the site through some protocol (NFS, AFS or other). The software is installed at the site by jobs which run on a privileged node of the computing farm where the shared area is mounted in write mode. This model presents several drawbacks which cause a non-negligible rate of job failure. An alternative model for software distribution based on the CERN Virtual Machine File System (CernVM-FS) has been tried at PIC, the Spanish Tierl site of WLCG. The test bed used and the results are presented in this paper.

  15. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    NASA Astrophysics Data System (ADS)

    Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.

    2014-03-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.

  16. CERN@school: demonstrating physics with the Timepix detector

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Bithray, H.; Cook, J.; Coupe, A.; Eddy, D.; Fickling, R. L.; McKenna, J.; Parker, B.; Paul, A.; Shearer, N.

    2015-10-01

    This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector's capabilities for measuring and visualising ionising radiation are examined. The classification of clusters - groups of adjacent pixels - is discussed with respect to identifying the different types of particles. Three demonstration experiments - background radiation measurements, radiation profiles and the attenuation of radiation - are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the programme's aim of inspiring the next generation of scientists and engineers.

  17. CERN's approach to public outreach

    NASA Astrophysics Data System (ADS)

    Landua, Rolf

    2016-03-01

    CERN's communication goes beyond publishing scientific results. Education and outreach are equally important ways of communicating with the general public, and in particular with the young generation. Over the last decade, CERN has significantly increased its efforts to accommodate the very large interest of the general public (about 300,000 visit requests per year), by ramping up its capacity for guided tours from 25,000 to more than 100,000 visitors per year, by creating six new of state-of-the-art exhibitions on-site, by building and operating a modern physics laboratory for school teachers and students, and by showing several traveling exhibitions in about 10 countries per year. The offer for school teachers has also been expanded, to 35-40 weeks of teacher courses with more than 1000 participants from more than 50 countries per year. The talk will give an overview about these and related activities.

  18. The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information

    NASA Astrophysics Data System (ADS)

    Harwood, A.; Lehmann Miotto, G.; Magnoni, L.; Vandelli, W.; Savu, D.

    2012-06-01

    This paper describes a new approach to the visualization of information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, it visualizes the collected data using a flexible and interactive front-end web system. Structurally, the project comprises of 3 main levels of the data collection cycle: The Level 0 represents the information sources within ATLAS. These providers do not store information in a uniform fashion. The first step of the project was to define a common interface with which to expose stored data. The interface designed for the project originates from the Google Data Protocol API. The idea is to allow read-only access to data providers, through HTTP requests similar in format to the SQL query structure. This provides a standardized way to access this different information sources within ATLAS. The Level 1 can be considered the engine of the system. The primary task of the Level 1 is to gather data from multiple data sources via the common interface, to correlate this data together, or over a defined time series, and expose the combined data as a whole to the Level 2 web interface. The Level 2 is designed to present the data in a similar style and aesthetic, despite the different data sources. Pages can be constructed, edited and personalized by users to suit the specific data being shown. Pages can show a collection of graphs displaying data potentially coming from multiple sources. The project as a whole has a great amount of scope thanks to the uniform approach chosen for exposing data, and the flexibility of the Level 2 in presenting results. The paper will describe in detail the design and implementation of this new tool. In particular we will go through the project architecture, the implementation choices and the examples of usage of the system in place within the ATLAS TDAQ infrastructure.

  19. Assessment of the usability of a digital learning technology prototype for monitoring intracranial pressure.

    PubMed

    Carvalho, Lilian Regina de; Évora, Yolanda Dora Martinez; Zem-Mascarenhas, Silvia Helena

    2016-08-29

    to assess the usability of a digital learning technology prototype as a new method for minimally invasive monitoring of intracranial pressure. descriptive study using a quantitative approach on assessing the usability of a prototype based on Nielsen's ten heuristics. Four experts in the area of Human-Computer interaction participated in the study. the evaluation delivered eight violated heuristics and 31 usability problems in the 32 screens of the prototype. the suggestions of the evaluators were critical for developing an intuitive, user-friendly interface and will be included in the final version of the digital learning technology. avaliar a usabilidade de um protótipo educacional digital sobre um novo método para monitoração da pressão intracraniana de forma minimamente invasivo para enfermeiros e médicos. estudo descritivo com abordagem quantitativa sobre a avaliação de usabilidade de um protótipo com base nas dez Heurísticas de Nielsen. Participaram quatro especialistas da área de Interação Humano Computador. a avaliação resultou em oito heurísticas violadas e 31 problemas de usabilidade nas 32 telas do protótipo. as sugestões dos avaliadores foram cruciais para o desenvolvimento de uma interface amigável e intuitiva e serão consideradas na versão final da tecnologia educacional digital. evaluar la usabilidad de un prototipo educacional digital sobre un nuevo método para monitorización de la presión intracraneal, de manera mínimamente invasiva. estudio descriptivo con abordaje cuantitativo sobre la evaluación de usabilidad de un prototipo con base en las diez reglas Heurísticas de Nielsen. Participaron cuatro especialistas del área de Interacción Humana Computador. la evaluación resultó en ocho reglas heurísticas violadas y 31 problemas de usabilidad en las 32 pantallas del prototipo. las sugestiones de los evaluadores fueron cruciales para el desarrollo de una interfaz amigable e intuitiva y éstas serán consideradas en la versión final de la tecnología educacional digital.

  20. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex.

    PubMed

    Keinan, Shahar; Nocek, Judith M; Hoffman, Brian M; Beratan, David N

    2012-10-28

    Formation of a transient [myoglobin (Mb), cytochrome b(5) (cyt b(5))] complex is required for the reductive repair of inactive ferri-Mb to its functional ferro-Mb state. The [Mb, cyt b(5)] complex exhibits dynamic docking (DD), with its cyt b(5) partner in rapid exchange at multiple sites on the Mb surface. A triple mutant (Mb(3M)) was designed as part of efforts to shift the electron-transfer process to the simple docking (SD) regime, in which reactive binding occurs at a restricted, reactive region on the Mb surface that dominates the docked ensemble. An electrostatically-guided brownian dynamics (BD) docking protocol was used to generate an initial ensemble of reactive configurations of the complex between unrelaxed partners. This ensemble samples a broad and diverse array of heme-heme distances and orientations. These configurations seeded all-atom constrained molecular dynamics simulations (MD) to generate relaxed complexes for the calculation of electron tunneling matrix elements (T(DA)) through tunneling-pathway analysis. This procedure for generating an ensemble of relaxed complexes combines the ability of BD calculations to sample the large variety of available conformations and interprotein distances, with the ability of MD to generate the atomic level information, especially regarding the structure of water molecules at the protein-protein interface, that defines electron-tunneling pathways. We used the calculated T(DA) values to compute ET rates for the [Mb(wt), cyt b(5)] complex and for the complex with a mutant that has a binding free energy strengthened by three D/E → K charge-reversal mutations, [Mb(3M), cyt b(5)]. The calculated rate constants are in agreement with the measured values, and the mutant complex ensemble has many more geometries with higher T(DA) values than does the wild-type Mb complex. Interestingly, water plays a double role in this electron-transfer system, lowering the tunneling barrier as well as inducing protein interface remodeling that screens the repulsion between the negatively-charged propionates of the two hemes.

  1. Kinetic energy budgets near the turbulent/nonturbulent interface in jets

    NASA Astrophysics Data System (ADS)

    Taveira, Rodrigo R.; da Silva, Carlos B.

    2013-01-01

    The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent kinetic energy then becomes the dominating mechanism and the so called "peak production" is located at about one Taylor micro-scale from the T/NT interface. Simple analytical estimates are given for the peaks of pressure strain, turbulent diffusion, and production near the T/NT interface. The growth of kinetic energy across the T/NT interface is an inertial process, since the viscous terms (diffusion and dissipation) are negligible during this process. The present results highlight the importance of the region near the T/NT interface in the entire jet development.

  2. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Zhang, Dongdong; Li, Lingzhi; Ma, Weina; Chen, Xia; Zhang, Yanmin

    2017-01-01

    This paper demonstrates a novel strategy for the construction of a graphene hybrid composites film, which was fabricated by electrodeposited reduced graphene oxide (ERGO) incorporating polymerization of l-lysine (PLL) onto glassy carbon electrode (GCE). Here we show that graphene films can be prepared on electrodes directly from GO dispersions by one-step electrodeposition technique based on electropolymerized PLL as a positively charged polymer interface to adsorb negatively charged GO nanosheets through electrostatic attraction. The thickness of graphene film can be easily controlled by using the electrodeposition technique, a distinct advantage over previously developed methods. The electrochemically reduced process of GO and electropolymerization of l-lysine were investigated by cyclic voltammetry with a wide potential range. The surface morphology of the modified electrode was characterized by scanning electron microscopy. The ERGO/PLL/GCE shows conducive to electron transfer kinetics for Fe(CN) 6 3- /Fe(CN) 6 4- redox probes, compared with bare GCE, PLL/GCE and ERGO/GCE. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) at ERGO/PLL/GCE were investigated by cyclic voltammetry, and the results suggest that the modified electrode exhibits enhanced electrocatalytic activity toward these important molecules. Under physiological condition and in the co-existence system of AA, DA and UA, the ERGO/PLL/GCE showed linear voltammetric responses in the concentration of 100μM-1200μM for AA, 2.0μM-60μM for DA and 20μM-200μM for UA, and with the detection limits (S/N=3) of 2.0μM, 0.10μM and 0.15μM for AA, DA and UA, respectively. The developed method has been applied to simultaneous determination of AA, DA and UA in human urine with satisfactory recoveries of 104.2%, 95.4% and 99.9%, respectively. This work demonstrates that the attractive features of ERGO/PLL provide promising applications in simultaneous determination of AA, DA and UA in physiological and pathological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Dimensionless Numbers For Morphological, Thermal And Biogeochemical Controls Of Hyporheic Processes

    NASA Astrophysics Data System (ADS)

    Bellin, Alberto; Marzadri, Alessandra; Tonina, Daniele

    2013-04-01

    Transport of solutes and heat within the hyporheic zone are interface processes that gained growing attention in the last decade, when several modelling strategies have been proposed, mainly at the local or reach scale. We propose to upscale local hyporheic biogeochemical processes to reach and network scales by means of a Lagrangian modelling framework, which allows to consider the impact of the flow structure on the processes modelled. This analysis shows that geochemical processes can be parametrized through two new Damköhler numbers, DaO, and DaT. DaO = ?up,50-?lim is defined as the ratio between the median hyporheic residence time, ?up,50 and the time of consuming dissolved oxygen to a prescribed threshold concentration, ?lim, below which reductive reactions are activated. It quantifies the biogeochemical status of the hyporheic zone and could be a metric for upscaling local hyporheic biogeochemical processes to reach and river-network scale processes. In addition, ?up,50 is the time scale of hyporheic advection; while ?lim is the representative time scale of biogeochemical reactions and indicates the distance along the streamline, measured as the time needed to travel that distance, that a particle of water travels before the dissolved oxygen concentration declines to [DO]lim, the value at which denitrification is activated. We show that DaO is representative of the redox status and indicates whether the hyporheic zone is a source or a sink of nitrate. Values of DaO larger than 1 indicate prevailing anaerobic conditions, whereas values smaller than 1 prevailing aerobic conditions. Similarly, DaT quantifies the importance of the temperature daily oscillations of the stream water on the hyporheic environment. It is defined as the ratio between ?up,50, and the time limit at which the ratio between the amplitude of the temperature oscillation within the hyporheic zone (evaluated along the streamline) and in the stream water is smaller than e-1. We show that values of DaT > 1 indicate a thermally stable hyporheic zone, where organism metabolism is not influenced by surface water thermal oscillations and biogeochemical reaction rates depend on the mean daily stream water temperature. Values smaller than 1 suggest that organisms need to adapt to the daily thermal variations and biogeochemical reaction rates will depend on the daily fluctuations induced by stream water.

  4. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  5. CERN: A global project

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger

    2017-07-01

    In the most important shift of paradigm of its membership rules in 60 years, CERN in 2010 introduced a policy of “Geographical Enlargement” which for the first time opened the door for membership of non-European States in the Organization. This short article reviews briefly the history of CERN’s membership rules, discusses the rationale behind the new policy, its relationship with the emerging global roadmap of particle physics, and gives a short overview of the status of the enlargement process.

  6. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  7. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneodo, F.; Cavanna, F.; Mitri, I. De

    2006-12-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions.

  8. Upper limits of the proton magnetic form factor in the time-like region from p¯p--> e+e- at the CERN-ISR

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Baird, S.; Bassompierre, G.; Borreani, G.; Brient, J. C.; Broll, C.; Brom, J. M.; Bugge, L.; Buran, T.; Burq, J. P.; Bussière, A.; Buzzo, A.; Cester, R.; Chemarin, M.; Chevallier, M.; Escoubes, B.; Fay, J.; Ferroni, S.; Gracco, V.; Guillaud, J. P.; Khan-Aronsen, E.; Kirsebom, K.; Ille, B.; Lambert, M.; Leistam, L.; Lundby, A.; Macri, M.; Marchetto, F.; Mattera, L.; Menichetti, E.; Mouellic, B.; Pastrone, N.; Petrillo, L.; Pia, M. G.; Poulet, M.; Pozzo, A.; Rinaudo, G.; Santroni, A.; Severi, M.; Skjevling, G.; Stapnes, S.; Stugu, B.; Tomasini, F.; Valbusa, U.

    1985-11-01

    From the measurement of e+e- pairs from the reaction p¯p-->e+e- at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q2⋍8.9(GeV/c)2 and Q2⋍12.5(GeV/c)2.

  9. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  10. Integrating new Storage Technologies into EOS

    NASA Astrophysics Data System (ADS)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  11. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  12. Biogeochemistry and Spatial Distribution of the Microbial-Mineral Interface Using I2LD-FTMS

    NASA Astrophysics Data System (ADS)

    Scott, J. R.; Kauffman, M. E.; Kauffman, M. E.; Tremblay, P. L.

    2001-12-01

    Previous studies indicate that biogeochemistry can vary within individual mineral specimens in contact with microorganisms. These same studies have shown that microcosms containing a mixture of minerals simulating a heterogeneous geologic matrix do not yield the same results as the naturally occurring rock. Therefore, it is of utmost importance to develop analytical tools that can provide spatially correlative biogeochemical data of the microbial-mineral interface within naturally occurring geologic matrices. Imaging internal laser desorption Fourier transform mass spectrometry (I2LD-FTMS) can provide elemental and molecular information of the microbial-mineral interface at a spatial resolution limited only by the optical diffraction limit of the final focusing lens (down to 2 μ m). Additionally, the I2LD-FTMS used in this study has exceptional reproducibility, which can provide successive mapping sequences for depth-profiling studies. Basalt core samples, taken from the Snake River Plain Aquifer in southeastern Idaho, were mapped prior to, and after, exposure to a bacterial culture. The bacteria-basalt interface spectra were collected using the I2LD-FTMS at the INEEL. Mass spectra were recorded over a mass-to-charge range of 30-2500 Da with an average peak resolution of 15,000 using 10 μ m spots. Two-dimensional maps were constructed depicting the spatial distribution of the minerals within the basalt as well as the spatial distribution of the bacteria on the basalt surface. This represents the first reported application of I2LD-FTMS in the field of biogeochemistry.

  13. Enhancement of two dimensional electron gas concentrations due to Si{sub 3}N{sub 4} passivation on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure: strain and interface capacitance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinara, Syed Mukulika, E-mail: smdinara.iit@gmail.com; Jana, Sanjay Kr.; Ghosh, Saptarsi

    2015-04-15

    Enhancement of two dimensional electron gas (2DEG) concentrations at Al{sub 0.3}Ga{sub 0.7}N/GaN hetero interface after a-Si{sub 3}N{sub 4} (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al{sub 0.3}Ga{sub 0.7}N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al{sub 0.3}Ga{sub 0.7}N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’smore » equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al{sub 0.3}Ga{sub 0.7}N layer and also due to the decreased surface states at the interface of SiN/Al{sub 0.3}Ga{sub 0.7}N layer, effectively improving the carrier confinement at the interface.« less

  14. Interface Design Description for the Multi-Mode Magnetic Detection System

    DTIC Science & Technology

    2008-11-21

    400001E D/A Spare H 16 0000 48 4000020 PWM Piezo A 16 6230 Formatted Table 3MDS IDD 0BSB2-03-C-0388-01 Rev I 24 21 November 2008 Relative Base...Address (bytes) FPGA Address Item Size (bits) Definition Units/LSB Value/Other 50 4000022 PWM Piezo B 16 6230 52 4000024 PWM Piezo C 16...6230 54 4000026 PWM Piezo D 16 6230 56 4000028 PWM Piezo E 16 6230 58 400002A PWM Piezo F 16 6230 60 400002C Set the starting place for temp sweep 16

  15. A novel interface for the telementoring of robotic surgery.

    PubMed

    Shin, Daniel H; Dalag, Leonard; Azhar, Raed A; Santomauro, Michael; Satkunasivam, Raj; Metcalfe, Charles; Dunn, Matthew; Berger, Andre; Djaladat, Hooman; Nguyen, Mike; Desai, Mihir M; Aron, Monish; Gill, Inderbir S; Hung, Andrew J

    2015-08-01

    To prospectively evaluate the feasibility and safety of a novel, second-generation telementoring interface (Connect(™) ; Intuitive Surgical Inc., Sunnyvale, CA, USA) for the da Vinci robot. Robotic surgery trainees were mentored during portions of robot-assisted prostatectomy and renal surgery cases. Cases were assigned as traditional in-room mentoring or remote mentoring using Connect. While viewing two-dimensional, real-time video of the surgical field, remote mentors delivered verbal and visual counsel, using two-way audio and telestration (drawing) capabilities. Perioperative and technical data were recorded. Trainee robotic performance was rated using a validated assessment tool by both mentors and trainees. The mentoring interface was rated using a multi-factorial Likert-based survey. The Mann-Whitney and t-tests were used to determine statistical differences. We enrolled 55 mentored surgical cases (29 in-room, 26 remote). Perioperative variables of operative time and blood loss were similar between in-room and remote mentored cases. Robotic skills assessment showed no significant difference (P > 0.05). Mentors preferred remote over in-room telestration (P = 0.05); otherwise no significant difference existed in evaluation of the interfaces. Remote cases using wired (vs wireless) connections had lower latency and better data transfer (P = 0.005). Three of 18 (17%) wireless sessions were disrupted; one was converted to wired, one continued after restarting Connect, and the third was aborted. A bipolar injury to the colon occurred during one (3%) in-room mentored case; no intraoperative injuries were reported during remote sessions. In a tightly controlled environment, the Connect interface allows trainee robotic surgeons to be telementored in a safe and effective manner while performing basic surgical techniques. Significant steps remain prior to widespread use of this technology. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  16. S-Band POSIX Device Drivers for RTEMS

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.

    2011-01-01

    This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).

  17. Structure-Based Drug Design Targeting a Subunit Interaction of Influenza Virus RNA Polymerase

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kanako; Obayashi, Eiji; Yoshida, Hisashi; Park, Sam-Yong

    Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. Influenza virus reproduces rapidly, mutates frequently, and occasionally crosses species barriers. The recent emergence of swine-origin influenza H1N1 and avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments. Here, we describe two crystal structures of complexes made by fragments of PA and PB1, and PB1 and PB2. These novel interfaces are surprisingly small, yet they play a crucial role in regulating the 250 kDa polymerase complex, and are completely conserved among swine, avian and human influenza viruses. Given their importance to viral replication and strict conservation, the PA/PB1 and PB1/PB2 interfaces appear to be promising targets for novel anti-influenza drugs of use against all strains of influenza A virus. It is hoped that the structures presented here will assist the search for such compounds.

  18. A Novel Imaging Method for the Cartilaginous Eustachian Tube Lumen: Computerized Tomography During the Forced Response Test.

    PubMed

    Alper, Cuneyt M; Rath, Tanya J; Teixeira, Miriam S; Swarts, J Douglas

    2018-01-01

    In vivo imaging of the open cartilaginous Eustachian tube (ET) lumen by computed tomography (CT) scan during ET function (ETF) testing to establish new methodology. Five adults underwent unilateral ETF testing of an ear with a nonintact tympanic membrane using the forced response test (FRT) to measure the opening pressure (PO), steady state pressure (PS), and flow conductance (CS). Then at baseline and during the PS phase of the FRT, a temporal-bone CT scan with continuous 0.625 mm thickness was obtained. Multiplanar oblique reformats along the axis of the ET were created, and point value and region of interest (ROI) Hounsfield unit measurements were recorded from the location of the ET lumen. At the FRT flow rate of 11 ml/min, the average PO, PS, and CS were 370.5 daPa, 119.6 daPa, and 0.16 ml/min/daPa, respectively. For flow rates of 23 and 46 ml/min, these values were 236.2, 204.2, 0.12 and 385.5, 321.1, 0.18, respectively. Although areas with lower attenuation were suggestive of air density, a distinct air-filled cartilaginous ET lumen could not be confirmed. While the current imaging parameters failed to resolve the air-soft tissue interface throughout the open cartilaginous ET, further advances in imaging may obviate this limitation.

  19. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  20. The research of laser marking control technology

    NASA Astrophysics Data System (ADS)

    Zhang, Qiue; Zhang, Rong

    2009-08-01

    In the area of Laser marking, the general control method is insert control card to computer's mother board, it can not support hot swap, it is difficult to assemble or it. Moreover, the one marking system must to equip one computer. In the system marking, the computer can not to do the other things except to transmit marking digital information. Otherwise it can affect marking precision. Based on traditional control methods existed some problems, introduced marking graphic editing and digital processing by the computer finish, high-speed digital signal processor (DSP) control marking the whole process. The laser marking controller is mainly contain DSP2812, digital memorizer, DAC (digital analog converting) transform unit circuit, USB interface control circuit, man-machine interface circuit, and other logic control circuit. Download the marking information which is processed by computer to U disk, DSP read the information by USB interface on time, then processing it, adopt the DSP inter timer control the marking time sequence, output the scanner control signal by D/A parts. Apply the technology can realize marking offline, thereby reduce the product cost, increase the product efficiency. The system have good effect in actual unit markings, the marking speed is more quickly than PCI control card to 20 percent. It has application value in practicality.

  1. Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    DOE PAGES

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.; ...

    2017-01-30

    Results on two-particle ΔηΔΦ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. Furthermore, the results are compared with the Epos and UrQMD models.

  2. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  3. Overview of LHC physics results at ICHEP

    ScienceCinema

    Mangano, Michelangelo

    2018-06-20

    This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar). For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  4. CERN at 60: giant magnet journeys through Geneva

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2014-07-01

    More than 30,000 people descended onto Geneva's harbour last month to celebrate the bicentenary of the city's integration into Switzerland with a parade through the city. Joining the 1200 participants at the Genève200 celebrations were staff from the CERN particle-physics lab, which is located on the outskirts of Geneva, who paraded a superconducting dipole magnet - similar to the thousands used in the Large Hadron Collider - through the city's narrow streets on a 20 m lorry.

  5. Astronomie, écologie et poésie par Hubert Reeves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-21

    Hubert ReevesL'astrophysicien donne une conférence puis s'entretient avec l'écrivain François Bon autour de :"Astronomie, écologie et poésie"Pour plus d'informations : http://outreach.web.cern.ch/outreach/FR/evenements/conferences.htmlNombre de places limité. Réservation obligatoire à la Réception du CERN : +41 22 767 76 76  Soirée diffusée en direct sur le Web : http://webcast.cern.ch/      

  6. Retirement Kjell Johnsen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-12-05

    A l'occasion de son 65me anniversaire plusieurs orateurs (aussi l'ambassadeur de Norvège) remercient Kjell Johnsen, né en juin 1921 en Norvège, pour ses 34 ans de service au Cern et retracent sa vie et son travail. K.Johnsen a pris part aux premières études sur les accélérateurs du futur centre de physique et fut aussi le père et le premier directeur de l'Ecole du Cern sur les accélérateurs (CAS)

  7. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  8. CERN's Common Unix and X Terminal Environment

    NASA Astrophysics Data System (ADS)

    Cass, Tony

    The Desktop Infrastructure Group of CERN's Computing and Networks Division has developed a Common Unix and X Terminal Environment to ease the migration to Unix based Interactive Computing. The CUTE architecture relies on a distributed filesystem—currently Trans arc's AFS—to enable essentially interchangeable client work-stations to access both "home directory" and program files transparently. Additionally, we provide a suite of programs to configure workstations for CUTE and to ensure continued compatibility. This paper describes the different components and the development of the CUTE architecture.

  9. News Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?

    NASA Astrophysics Data System (ADS)

    2012-07-01

    Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?

  10. Overview of LHC physics results at ICHEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  11. Measurement of the antiproton-nucleus annihilation cross-section at low energy

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; Vallazza, E.; Venturelli, L.; Yamada, H.

    2018-02-01

    Systematic measurements of the annihilation cross sections of low energy antinucleons were performed at CERN in the 80's and 90's. However the antiproton data on medium-heavy and heavy nuclear targets are scarce. The ASACUSA Collaboration at CERN has measured the antiproton annihilation cross section on carbon at 5.3 MeV: the value is (1.73 ± 0.25) barn. The result is compared with the antineutron experimental data and with the theoretical previsions.

  12. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  13. Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells.

    PubMed

    Zhou, Ke; Zhang, Rui; Liu, Jiangang; Li, Mingguang; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2015-11-18

    The correlated donor/acceptor (D/A) molecular orientation plays a crucial role in solution-processed all-polymer solar cells in term of photovoltaic performance. For the conjugated polymers PTB7-th and P(NDI2OD-T2), the preferential molecular orientation of neat PTB7-th films kept face-on regardless of the properties of processing solvents. However, an increasing content of face-on molecular orientation in the neat P(NDI2OD-T2) films could be found by changing processing solvents from chloronaphthalene (CN) and o-dichlorobenzene (oDCB) to chlorobenzene (CB). Besides, the neat P(NDI2OD-T2) films also exhibited a transformation of preferential molecular orientation from face-on to edge-on when extending film drying time by casting in the same solution. Consequently, a distribution diagram of molecular orientation for P(NDI2OD-T2) films was depicted and the same trend could be observed for the PTB7-th/P(NDI2OD-T2) blend films. By manufacture of photovoltaic devices with blend films, the relationship between the correlated D/A molecular orientation and device performance was established. The short-circuit current (Jsc) of devices processed by CN, oDCB, and CB enhanced gradually from 1.24 to 8.86 mA/cm(2) with the correlated D/A molecular orientation changing from face-on/edge-on to face-on/face-on, which could be attributed to facile exciton dissociation at D/A interface with the same molecular orientation. Therefore, the power conversion efficiency (PCE) of devices processed by CN, oDCB, and CB improved from 0.53% to 3.52% ultimately.

  14. Probing the effect of polymer molecular weight on penetration into the wood cell wall using polyethylenimine (PEI) as a model compound.

    PubMed

    Dorvel, Brian; Boopalachandran, Praveenkumar; Chen, Ida; Bowling, Andrew; Williams, Kerry; King, Steve

    2018-05-01

    Decking is one of the largest applications for the treated wood market. The most challenging property to obtain for treated wood is dimensional stability, which can be achieved, in part, by cell wall bulking, cell wall polymer crosslinking and removal of hygroscopic components in the cell wall. A commonly accepted key requirement is for the actives to infuse through the cell wall, which has a microporosity of ∼5-13 nm. Equally as challenging is being able to measure and quantify the cell wall penetration. Branched polyethylenimine (PEI) was studied as a model polymer for penetration due to its water solubility, polarity, variable molecular weight ranges, and ability to form a chelation complex with preservative metals to treat lumbers. Two different molecular weight polyethylenimines (PEI), one with a weight average molecular weight (Mw) equal to 800 Da and the other 750 000 Da, were investigated for penetration by microscopy and spectroscopy techniques. Analytical methods were developed to both create smooth interfaces and for relative quantitation and visualisation of PEI penetration into the wood. The results showed both PEI with Mw of 800 Da and PEI with Mw of 750 000 Da coated the lumens in high density. However, only the PEI with Mw of 800 appeared to penetrate the cell walls in sufficient levels. Literature has shown the hydrodynamic radii of PEI 750 000 is near 29 nm, whereas a smaller PEI at 25 K showed 4.5 nm. Most importantly the results, based on methods developed, show how molecular weight and tertiary structure of the polymer can affect its penetration, with the microporosity of the wood being the main barrier. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  15. Optical fibres in the radiation environment of CERN

    NASA Astrophysics Data System (ADS)

    Guillermain, E.

    2017-11-01

    CERN, the European Organization for Nuclear Research (in Geneva, Switzerland), is home to a complex scientific instrument: the 27-kilometre Large Hadron Collider (LHC) collides beams of high-energy particles at close to the speed of light. Optical fibres are widely used at CERN, both in surface areas (e.g. for inter-building IT networks) and in the accelerator complex underground (e.g. for cryogenics, vacuum, safety systems). Optical fibres in the accelerator are exposed to mixed radiation fields (mainly composed of protons, pions, neutrons and other hadrons, gamma rays and electrons), with dose rates depending on the particular installation zone, and with radiation levels often significantly higher than those encountered in space. In the LHC and its injector chain radiation levels range from relatively low annual doses of a few Gy up to hundreds of kGy. Optical fibres suffer from Radiation Induced Attenuation (RIA, expressed in dB per unit length) that affect light transmission and which depends on the irradiation conditions (e.g. dose rate, total dose, temperature). In the CERN accelerator complex, the failure of an optical link can affect the proper functionality of control or monitoring systems and induce the interruption of the accelerator operation. The qualification of optical fibres for installation in critical radiation areas is therefore crucial. Thus, all optical fibre types installed in radiation areas at CERN are subject to laboratory irradiation tests, in order to evaluate their RIA at different total dose and dose rates. This allows the selection of the appropriate optical fibre type (conventional or radiation resistant) compliant with the requirements of each installation. Irradiation tests are performed in collaboration with Fraunhofer INT (irradiation facilities and expert team in Euskirchen, Germany). Conventional off-the-shelf optical fibres can be installed for optical links exposed to low radiation levels (i.e. annual dose typically below few kGy). Nevertheless, the conventional optical fibres must be carefully qualified as a spread in RIA of factor 10 is observed among optical fibres of different types and dopants. In higher radiation areas, special radiation resistant optical fibres are installed. For total dose above 1 kGy, the RIA of these special optical fibres is at least 10 times lower than the conventional optical fibres RIA at same irradiation conditions. 2400 km of these special radiation resistant optical fibres were recently procured at CERN. As part of this procurement process, a quality assurance plan including the irradiation testing of all 65 produced batches was set up. This presentation will review the selection process of the appropriate optical fibre types to be installed in the radiation environment of CERN. The methodology for choosing the irradiation parameters for the laboratory tests will be discussed together with an overview of the RIA of different optical fibre types under several irradiation conditions.

  16. MCNP Output Data Analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-06-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two-step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two-dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two-dimensional data. Running time: The CPU time needed to smear a two-dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two-dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.

  17. LHC, le Big Bang en éprouvette

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Notre compréhension de l’Univers est en train de changer… Bar des Sciences - Tout public Débat modéré par Marie-Odile Montchicourt, journaliste de France Info. Evenement en vidéoconférence entre le Globe de la science et de l’innovation, le bar le Baloard de Montpellier et la Maison des Métallos à Paris. Intervenants au CERN : Philippe Charpentier et Daniel Froideveaux, physiciens au CERN. Intervenants à Paris : Vincent Bontemps, philosophe et chercheur au CEA ; Jacques Arnould, philosophe, historien des sciences et théologien, Jean-Jacques Beineix, réalisateur, producteur, scénariste de cinéma. Intervenants à Montpellier (LPTA) : André Neveu, physicien théoricien et directeur demore » recherche au CNRS ; Gilbert Moultaka, physicien théoricien et chargé de recherche au CNRS. Partenariat : CERN, CEA, IN2P3, Université MPL2 (LPTA) Dans le cadre de la Fête de la science 2008.« less

  18. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  19. First test of BNL electron beam ion source with high current density electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less

  20. Protocols for Scholarly Communication

    NASA Astrophysics Data System (ADS)

    Pepe, A.; Yeomans, J.

    2007-10-01

    CERN, the European Organization for Nuclear Research, has operated an institutional preprint repository for more than 10 years. The repository contains over 850,000 records of which more than 450,000 are full-text OA preprints, mostly in the field of particle physics, and it is integrated with the library's holdings of books, conference proceedings, journals and other grey literature. In order to encourage effective propagation and open access to scholarly material, CERN is implementing a range of innovative library services into its document repository: automatic keywording, reference extraction, collaborative management tools and bibliometric tools. Some of these services, such as user reviewing and automatic metadata extraction, could make up an interesting testbed for future publishing solutions and certainly provide an exciting environment for e-science possibilities. The future protocol for scientific communication should guide authors naturally towards OA publication, and CERN wants to help reach a full open access publishing environment for the particle physics community and related sciences in the next few years.

  1. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  2. First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB

    NASA Astrophysics Data System (ADS)

    Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter

    2018-05-01

    160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.

  3. Chicago Ebola Response Network (CERN): A Citywide Cross-hospital Collaborative for Infectious Disease Preparedness.

    PubMed

    Lateef, Omar; Hota, Bala; Landon, Emily; Kociolek, Larry K; Morita, Julie; Black, Stephanie; Noskin, Gary; Kelleher, Michael; Curell, Krista; Galat, Amy; Ansell, David; Segreti, John; Weber, Stephen G

    2015-11-15

    The 2014-2015 Ebola virus disease (EVD) epidemic and international public health emergency has been referred to as a "black swan" event, or an event that is unlikely, hard to predict, and highly impactful once it occurs. The Chicago Ebola Response Network (CERN) was formed in response to EVD and is capable of receiving and managing new cases of EVD, while also laying the foundation for a public health network that can anticipate, manage, and prevent the next black swan public health event. By sharing expertise, risk, and resources among 4 major academic centers, Chicago created a sustainable network to respond to the latest in a series of public health emergencies. In this respect, CERN is a roadmap for how a region can prepare to respond to public health emergencies, thereby preventing negative impacts through planning and implementation. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Machine Learning Interface for Medical Image Analysis.

    PubMed

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  5. x509-free access to WLCG resources

    NASA Astrophysics Data System (ADS)

    Short, H.; Manzi, A.; De Notaris, V.; Keeble, O.; Kiryanov, A.; Mikkonen, H.; Tedesco, P.; Wartel, R.

    2017-10-01

    Access to WLCG resources is authenticated using an x509 and PKI infrastructure. Even though HEP users have always been exposed to certificates directly, the development of modern Web Applications by the LHC experiments calls for simplified authentication processes keeping the underlying software unmodified. In this work we will show a solution with the goal of providing access to WLCG resources using the user’s home organisations credentials, without the need for user-acquired x509 certificates. In particular, we focus on identity providers within eduGAIN, which interconnects research and education organisations worldwide, and enables the trustworthy exchange of identity-related information. eduGAIN has been integrated at CERN in the SSO infrastructure so that users can authenticate without the need of a CERN account. This solution achieves x509-free access to Grid resources with the help of two services: STS and an online CA. The STS (Security Token Service) allows credential translation from the SAML2 format used by Identity Federations to the VOMS-enabled x509 used by most of the Grid. The IOTA CA (Identifier-Only Trust Assurance Certification Authority) is responsible for the automatic issuing of short-lived x509 certificates. The IOTA CA deployed at CERN has been accepted by EUGridPMA as the CERN LCG IOTA CA, included in the IGTF trust anchor distribution and installed by the sites in WLCG. We will also describe the first pilot projects which are integrating the solution.

  6. Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.

    1997-12-01

    Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.

  7. Enhancement in Open-Circuit Voltage in Organic Solar Cells by Using Ladder-Type Nonfullerene Acceptors

    DOE PAGES

    Cai, Zhengxu; Zhao, Donglin; Sharapov, Valerii; ...

    2018-03-28

    The open-circuit voltage (V oc) loss has always been a major factor in lowering power conversion efficiencies (PCEs) in bulk heterojunction organic photovoltaic cells (OPVs). A method to improve the V oc is indispensable to achieve high PCEs. Here in this paper, we investigated a series of perylene diimide-based ladder-type molecules as electron acceptors in nonfullerene OPVs. The D-A ladder-type structures described here lock our pi-systems into a planar structure and eliminate bond twisting associated with linear conjugated systems. This enlarges the interface energy gap (ΔE DA), extends electronic delocalization, and hence improves the V oc. More importantly, these devicesmore » showed an increase in V oc without compromising either the J sc or the FF. C5r exhibited a strong intermolecular interaction and a PCE value of 6.1%. Moreover, grazing-incident wide-angle X-ray scattering analysis and atomic force microscopy images suggested that our fused-ring acceptors showed a suitable domain size and uniform blend films, which were not affected by their rigid molecular structures.« less

  8. Enhancement in Open-Circuit Voltage in Organic Solar Cells by Using Ladder-Type Nonfullerene Acceptors.

    PubMed

    Cai, Zhengxu; Zhao, Donglin; Sharapov, Valerii; Awais, Mohammad A; Zhang, Na; Chen, Wei; Yu, Luping

    2018-04-25

    The open-circuit voltage ( V oc ) loss has always been a major factor in lowering power conversion efficiencies (PCEs) in bulk heterojunction organic photovoltaic cells (OPVs). A method to improve the V oc is indispensable to achieve high PCEs. In this paper, we investigated a series of perylene diimide-based ladder-type molecules as electron acceptors in nonfullerene OPVs. The D-A ladder-type structures described here lock our π-systems into a planar structure and eliminate bond twisting associated with linear conjugated systems. This enlarges the interface energy gap (Δ E DA ), extends electronic delocalization, and hence improves the V oc . More importantly, these devices showed an increase in V oc without compromising either the J sc or the FF. C5r exhibited a strong intermolecular interaction and a PCE value of 6.1%. Moreover, grazing-incident wide-angle X-ray scattering analysis and atomic force microscopy images suggested that our fused-ring acceptors showed a suitable domain size and uniform blend films, which were not affected by their rigid molecular structures.

  9. Enhancement in Open-Circuit Voltage in Organic Solar Cells by Using Ladder-Type Nonfullerene Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhengxu; Zhao, Donglin; Sharapov, Valerii

    The open-circuit voltage (V oc) loss has always been a major factor in lowering power conversion efficiencies (PCEs) in bulk heterojunction organic photovoltaic cells (OPVs). A method to improve the V oc is indispensable to achieve high PCEs. Here in this paper, we investigated a series of perylene diimide-based ladder-type molecules as electron acceptors in nonfullerene OPVs. The D-A ladder-type structures described here lock our pi-systems into a planar structure and eliminate bond twisting associated with linear conjugated systems. This enlarges the interface energy gap (ΔE DA), extends electronic delocalization, and hence improves the V oc. More importantly, these devicesmore » showed an increase in V oc without compromising either the J sc or the FF. C5r exhibited a strong intermolecular interaction and a PCE value of 6.1%. Moreover, grazing-incident wide-angle X-ray scattering analysis and atomic force microscopy images suggested that our fused-ring acceptors showed a suitable domain size and uniform blend films, which were not affected by their rigid molecular structures.« less

  10. News Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics

  11. AMS data production facilities at science operations center at CERN

    NASA Astrophysics Data System (ADS)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  12. Ceremony 25th birthday Cern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-05-08

    Célébration du 25ème anniversaire du Cern (jour par jour) avec discours de L.Van Hove et J.B.Adams, des interludes musicals offerts par Mme Mey et ses collègues (au debut 1.mouvement du quatuor avec piano no 3 de L.van Beethoven) Les directeurs généraux procéderont à la remise du souvenir aux membres de personnel ayant 25 années de service dans l'organisation. Un témoignage de reconnaissance est auss fait à l'interprète Mme Zwerner

  13. Experience in running relational databases on clustered storage

    NASA Astrophysics Data System (ADS)

    Gaspar Aparicio, Ruben; Potocky, Miroslav

    2015-12-01

    For past eight years, CERN IT Database group has based its backend storage on NAS (Network-Attached Storage) architecture, providing database access via NFS (Network File System) protocol. In last two and half years, our storage has evolved from a scale-up architecture to a scale-out one. This paper describes our setup and a set of functionalities providing key features to other services like Database on Demand [1] or CERN Oracle backup and recovery service. It also outlines possible trend of evolution that, storage for databases could follow.

  14. CERN Computing in Commercial Clouds

    NASA Astrophysics Data System (ADS)

    Cordeiro, C.; Field, L.; Garrido Bear, B.; Giordano, D.; Jones, B.; Keeble, O.; Manzi, A.; Martelli, E.; McCance, G.; Moreno-García, D.; Traylen, S.

    2017-10-01

    By the end of 2016 more than 10 Million core-hours of computing resources have been delivered by several commercial cloud providers to the four LHC experiments to run their production workloads, from simulation to full chain processing. In this paper we describe the experience gained at CERN in procuring and exploiting commercial cloud resources for the computing needs of the LHC experiments. The mechanisms used for provisioning, monitoring, accounting, alarming and benchmarking will be discussed, as well as the involvement of the LHC collaborations in terms of managing the workflows of the experiments within a multicloud environment.

  15. The ISOLDE LEGO® robot: building interest in frontier research

    NASA Astrophysics Data System (ADS)

    Elias Cocolios, Thomas; Lynch, Kara M.; Nichols, Emma

    2017-07-01

    An outreach programme centred around nuclear physics making use of a LEGO® Mindstorm® kit is presented. It consists of a presentation given by trained undergraduate students as science ambassadors followed by a workshop where the target audience programs the LEGO® Mindstorm® robots to familiarise themselves with the concepts in an interactive and exciting way. This programme has been coupled with the CERN-ISOLDE 50th anniversary and the launch of the CERN-MEDICIS facility in Geneva, Switzerland. The modular aspect of the programme readily allows its application to other topics.

  16. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV En 20 MeV at n TOF at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloni, F.; Milazzo, P. M.; Calviani, M.

    2012-01-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  17. The CERN-EU high-energy Reference Field (CERF) facility: applications and latest developments

    NASA Astrophysics Data System (ADS)

    Silari, Marco; Pozzi, Fabio

    2017-09-01

    The CERF facility at CERN provides an almost unique high-energy workplace reference radiation field for the calibration and test of radiation protection instrumentation employed at high-energy accelerator facilities and for aircraft and space dosimetry. This paper describes the main features of the facility and supplies a non-exhaustive list of recent (as of 2005) applications for which CERF is used. Upgrade work started in 2015 to provide the scientific and industrial communities with a state-of-the-art reference facility is also discussed.

  18. Windows Terminal Servers Orchestration

    NASA Astrophysics Data System (ADS)

    Bukowiec, Sebastian; Gaspar, Ricardo; Smith, Tim

    2017-10-01

    Windows Terminal Servers provide application gateways for various parts of the CERN accelerator complex, used by hundreds of CERN users every day. The combination of new tools such as Puppet, HAProxy and Microsoft System Center suite enable automation of provisioning workflows to provide a terminal server infrastructure that can scale up and down in an automated manner. The orchestration does not only reduce the time and effort necessary to deploy new instances, but also facilitates operations such as patching, analysis and recreation of compromised nodes as well as catering for workload peaks.

  19. Astronomie, écologie et poésie par Hubert Reeves

    ScienceCinema

    None

    2017-12-09

    Hubert ReevesL'astrophysicien donne une conférence puis s'entretient avec l'écrivain François Bon autour de :"Astronomie, écologie et poésie"Pour plus d'informations : http://outreach.web.cern.ch/outreach/FR/evenements/conferences.htmlNombre de places limité. Réservation obligatoire à la Réception du CERN : +41 22 767 76 76  Soirée diffusée en direct sur le Web : http://webcast.cern.ch/      

  20. Unified Monitoring Architecture for IT and Grid Services

    NASA Astrophysics Data System (ADS)

    Aimar, A.; Aguado Corman, A.; Andrade, P.; Belov, S.; Delgado Fernandez, J.; Garrido Bear, B.; Georgiou, M.; Karavakis, E.; Magnoni, L.; Rama Ballesteros, R.; Riahi, H.; Rodriguez Martinez, J.; Saiz, P.; Zolnai, D.

    2017-10-01

    This paper provides a detailed overview of the Unified Monitoring Architecture (UMA) that aims at merging the monitoring of the CERN IT data centres and the WLCG monitoring using common and widely-adopted open source technologies such as Flume, Elasticsearch, Hadoop, Spark, Kibana, Grafana and Zeppelin. It provides insights and details on the lessons learned, explaining the work performed in order to monitor the CERN IT data centres and the WLCG computing activities such as the job processing, data access and transfers, and the status of sites and services.

  1. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    NASA Astrophysics Data System (ADS)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  2. Commissioning and initial experience with the ALICE on-line

    NASA Astrophysics Data System (ADS)

    Altini, V.; Anticic, T.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Kiss, T.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soós, C.; Vande Vyvre, P.; von Haller, B.; ALICE Collaboration

    2010-04-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the "battle field". It will also discuss the test protocol followed to integrate and validate each sub-detector with the online systems and it will conclude with the first results of the LHC injection tests and startup in September 2008. Several papers of the same conference present in more details some elements of the ALICE DAQ system.

  3. YODA++: A proposal for a semi-automatic space mission control

    NASA Astrophysics Data System (ADS)

    Casolino, M.; de Pascale, M. P.; Nagni, M.; Picozza, P.

    YODA++ is a proposal for a semi-automated data handling and analysis system for the PAMELA space experiment. The core of the routines have been developed to process a stream of raw data downlinked from the Resurs DK1 satellite (housing PAMELA) to the ground station in Moscow. Raw data consist of scientific data and are complemented by housekeeping information. Housekeeping information will be analyzed within a short time from download (1 h) in order to monitor the status of the experiment and to foreseen the mission acquisition planning. A prototype for the data visualization will run on an APACHE TOMCAT web application server, providing an off-line analysis tool using a browser and part of code for the system maintenance. Data retrieving development is in production phase, while a GUI interface for human friendly monitoring is on preliminary phase as well as a JavaServerPages/JavaServerFaces (JSP/JSF) web application facility. On a longer timescale (1 3 h from download) scientific data are analyzed. The data storage core will be a mix of CERNs ROOT files structure and MySQL as a relational database. YODA++ is currently being used in the integration and testing on ground of PAMELA data.

  4. Mad-X a worthy successor for MAD8?

    NASA Astrophysics Data System (ADS)

    Schmidt, F.

    2006-03-01

    MAD-X is the successor at CERN to MAD8, a program for accelerator design and simulation with a long history. We had to give up on MAD8 since the code had evolved in such a way that the maintenance and upgrades had become increasingly difficult. In particular, the memory management with the Zebra banks seemed outdated. MAD-X was first released in June, 2002. It offers most of the MAD8 functionality, with some additions, corrections, and extensions. The most important of these extensions is the interface to PTC, the Polymorphic Tracking Code by E. Forest. The most relevant new features of MAD-X are: languages: C, Fortran77, and Fortran90; dynamic memory allocation: in the core program written in C; strictly modular organization, modified and extended input language; symplectic and arbitrary exact description of all elements via PTC; Taylor Maps and Normal Form techniques using PTC. It is also important to note that we have adopted a new style for program development and maintenance that relies heavily on active maintenance of modules by the users themselves. Proposals for collaboration as with KEK, Japan and GSI, Germany are therefore very welcome.

  5. Graphics Processors in HEP Low-Level Trigger Systems

    NASA Astrophysics Data System (ADS)

    Ammendola, Roberto; Biagioni, Andrea; Chiozzi, Stefano; Cotta Ramusino, Angelo; Cretaro, Paolo; Di Lorenzo, Stefano; Fantechi, Riccardo; Fiorini, Massimiliano; Frezza, Ottorino; Lamanna, Gianluca; Lo Cicero, Francesca; Lonardo, Alessandro; Martinelli, Michele; Neri, Ilaria; Paolucci, Pier Stanislao; Pastorelli, Elena; Piandani, Roberto; Pontisso, Luca; Rossetti, Davide; Simula, Francesco; Sozzi, Marco; Vicini, Piero

    2016-11-01

    Usage of Graphics Processing Units (GPUs) in the so called general-purpose computing is emerging as an effective approach in several fields of science, although so far applications have been employing GPUs typically for offline computations. Taking into account the steady performance increase of GPU architectures in terms of computing power and I/O capacity, the real-time applications of these devices can thrive in high-energy physics data acquisition and trigger systems. We will examine the use of online parallel computing on GPUs for the synchronous low-level trigger, focusing on tests performed on the trigger system of the CERN NA62 experiment. To successfully integrate GPUs in such an online environment, latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Furthermore, it is assessed how specific trigger algorithms can be parallelized and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen Large Hadron Collider (LHC) luminosity upgrade where highly selective algorithms will be essential to maintain sustainable trigger rates with very high pileup.

  6. Measurements of the production cross section of a $Z$ boson in association with jets in pp collisions at $$\\sqrt{s} = 13$$ TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-05-31

    Measurements of the production cross section of a Z boson in association with jets in proton–proton collisions at √s = 13 TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb –1 collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a Z boson decaying to electrons or muons and produced in association with up to seven jets with p T > 30 GeV and |y| < 2.5. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for upmore » to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.« less

  7. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    NASA Astrophysics Data System (ADS)

    Hołyst, R.; Litniewski, M.; Jakubczyk, D.; Kolwas, K.; Kolwas, M.; Kowalski, K.; Migacz, S.; Palesa, S.; Zientara, M.

    2013-03-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P1/(a + P2), where a is the radius of the evaporating droplet, t is time and P1 and P2 are two parameters. P1 = -λΔT/(qeffρL), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far from the interface, qeff is the enthalpy of evaporation per unit mass and ρL is the liquid density. The P2 parameter is the kinetic correction proportional to the evaporation coefficient. P2 = 0 only in the absence of temperature discontinuity at the interface. We discuss various models and problems in the determination of the evaporation coefficient and discuss evaporation scenarios in the case of single- and multi-component systems.

  8. Computer Controlled Magnetotransport Setup for the Characterization of Semiconductor Thin Films

    NASA Technical Reports Server (NTRS)

    Ducoudray, G. O.; Collazo, R.; Martinez, A.

    1997-01-01

    We have considered a computer controlled magnetotransport setup using LabWindows environment. It allows for measurements of resistivity, Hall resistance, carrier concentration and charge mobility in semiconductor thin films using a van der Pauw configuration. The setup features an electromagnet (B = 0.7 Tesla) a 80486-DX 33 computer with a National Instrument AT-MIO 16 AD/DA and a GPIB interface board. A Keithely 224 current source and a Keithley 196 digital voltmeter were also used in the setup. Plans for the addition of capabilities to allow for magnetic field sweeping and the performance of measurements as a function of temperature will be presented.

  9. AIRMICS (U.S. Army Institute for Research in Management Information, Communications and Computer Sciences) Information Center Model Site Evaluation

    DTIC Science & Technology

    1986-10-01

    34 syndrome . Five techniques for developing user self-sufficiency were discussed in-depth: (1) provide training at different proficiency levels, id provide...WY aba. 4 ’-a ’aba. @9 "a,.. I bJ~ V N- S ha. E-ii S ’a ’baa .4, .;y ’. ; . a.,. ~ ~ .: ;r YK’.- xYY I. r d’...da.4/ 4/ tq..ttf.%r./..v-./ - "cc~’ v,-r...data base, accessible through a user friendly interfaces, to correlate and deliver crime , traffic, vehicle, and personnel information to " / fixed and

  10. DaMold: A data-mining platform for variant annotation and visualization in molecular diagnostics research.

    PubMed

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2017-07-01

    Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.

  11. Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma–vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find thatmore » an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.« less

  12. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and graphs presented on the ATHENA experiment. Portable antiproton trap has been under development. The goal is to store and transport antiprotons from a production site, such as Fermilab near Chicago, to a distant site, such as Huntsville, AL, thus demonstrating the portability of antiprotons.

  13. [The Big Data Game : On the Ludic Constitution of the Collaborative Production of Knowledge in High-Energy Physics at CERN].

    PubMed

    Dippel, Anne

    2017-12-01

    This article looks at how games and play contribute to the big data-driven production of knowledge in High-Energy Physics, with a particular focus on the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), where the author has been conducting anthropological fieldwork since 2014. The ludic (playful) aspect of knowledge production is analyzed here in three different dimensions: the Symbolic, the Ontological, and the Epistemic. The first one points towards CERN as place where a cosmological game of probability is played with the help of Monte-Carlo simulations. The second one can be seen in the agonistic infrastructures of competing experimental collaborations. The third dimension unfolds in ludic platforms, such as online Challenges and citizen science games, which contribute to the development of machine learning algorithms, whose function is necessary in order to process the huge amount of data gathered from experimental events. Following Clifford Geertz, CERN itself is characterized as a site of deep play, a concept that contributes to understanding wider social and cultural orders through the analysis of ludic collective phenomena. The article also engages with Peter Galison's idea of the trading zone, proposing to comprehend it in the age of big data as a Playground. Thus the author hopes to contribute to a wider discussion in the historiographical and social study of science and technology, as well as in cultural anthropology, by recognizing the ludic in science as a central element of understanding collaborative knowledge production.

  14. Comparison of electromagnetic and hadronic models generated using Geant 4 with antiproton dose measured in CERN.

    PubMed

    Tavakoli, Mohammad Bagher; Reiazi, Reza; Mohammadi, Mohammad Mehdi; Jabbari, Keyvan

    2015-01-01

    After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP) is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.

  15. Computerized nursing process in the Intensive Care Unit: ergonomics and usability.

    PubMed

    Almeida, Sônia Regina Wagner de; Sasso, Grace Teresinha Marcon Dal; Barra, Daniela Couto Carvalho

    2016-01-01

    Analyzing the ergonomics and usability criteria of the Computerized Nursing Process based on the International Classification for Nursing Practice in the Intensive Care Unit according to International Organization for Standardization(ISO). A quantitative, quasi-experimental, before-and-after study with a sample of 16 participants performed in an Intensive Care Unit. Data collection was performed through the application of five simulated clinical cases and an evaluation instrument. Data analysis was performed by descriptive and inferential statistics. The organization, content and technical criteria were considered "excellent", and the interface criteria were considered "very good", obtaining means of 4.54, 4.60, 4.64 and 4.39, respectively. The analyzed standards obtained means above 4.0, being considered "very good" by the participants. The Computerized Nursing Processmet ergonomic and usability standards according to the standards set by ISO. This technology supports nurses' clinical decision-making by providing complete and up-to-date content for Nursing practice in the Intensive Care Unit. Analisar os critérios de ergonomia e usabilidade do Processo de Enfermagem Informatizado a partir da Classificação Internacional para as Práticas de Enfermagem, em Unidade de Terapia Intensiva, de acordo com os padrões da InternationalOrganization for Standardization (ISO). Pesquisa quantitativa, quase-experimental do tipo antes e depois, com uma amostra de 16 participantes, realizada em uma Unidade de Terapia Intensiva. Coleta de dados realizada por meio da aplicação de cinco casos clínicos simulados e instrumento de avaliação. A análise dos dados foi realizada pela estatística descritiva e inferencial. Os critérios organização, conteúdo e técnico foram considerados "excelentes", e o critério interface "muito bom", obtendo médias 4,54, 4,60, 4,64 e 4,39, respectivamente. Os padrões analisados obtiveram médias acima de 4,0, sendo considerados "muito bons" pelos participantes. O Processo de Enfermagem Informatizado possui padrões ergonômicos e de usabilidade de acordo com os padrões estabelecidos pela ISO. Esta tecnologia apoia a decisão clínica do enfermeiro fornecendo conteúdo completo e atualizado para a prática de Enfermagem em Unidade de Terapia Intensiva.

  16. Monitoring Evolution at CERN

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Fiorini, B.; Murphy, S.; Pigueiras, L.; Santos, M.

    2015-12-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous toolset by new open source technologies with large adoption and community support. This contribution describes how these improvements were delivered, present the architecture and technologies of the new monitoring tools, and review the experience of its production deployment.

  17. COMMITTEES: SQM 2007 - International Conference On Strangeness In Quark Matter SQM 2007 - International Conference On Strangeness In Quark Matter

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Local Organising Committee Ivan Králik (IEP SAS, Košice) Vojtěch Petráček (Czechoslovakia Technical University, Prague) Ján Pišút (Comenius University, Bratislava) Emanuele Quercigh (CERN) Karel Šafařík (CERN), Co-chair Ladislav v Sándor (IEP SAS, Košice), Co-chair Boris Tomášik (Mateja Bela University, Banská Bystrica) Jozef Urbán (UPJŠ Košice) International Advisory Committee Jörg Aichelin, Nantes Federico Antinori, Padova Tamás Biró, Budapest Peter Braun-Munzinger, GSI Jean Cleymans, Cape Town László Csernai, Bergen Timothy Hallman, BNL Huan Zhong Huang, UCLA Sonja Kabana, Nantes Roy A Lacey, Stony Brook Carlos Lourenço, CERN Yu-Gang Ma, Shanghai Jes Masden, Aarhus Yasuo Miake, Tsukuba Berndt Müller, Duke Grazyna Odyniec, LBNL Helmut Oeschler, Darmstadt Jan Rafelski, Arizona Hans Georg Ritter, LBNL Jack Sandweiss, Yale George S F Stephans, MIT Horst Stöcker, Frankfurt Thomas Ullrich, BNL Orlando Villalobos-Baillie, Birmingham William A Zajc, Columbia

  18. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, R.; Grenier, D.; Wollmann, D.

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less

  19. LHC, le Big Bang en éprouvette

    ScienceCinema

    None

    2017-12-09

    Notre compréhension de l’Univers est en train de changer… Bar des Sciences - Tout public Débat modéré par Marie-Odile Montchicourt, journaliste de France Info. Evenement en vidéoconférence entre le Globe de la science et de l’innovation, le bar le Baloard de Montpellier et la Maison des Métallos à Paris. Intervenants au CERN : Philippe Charpentier et Daniel Froideveaux, physiciens au CERN. Intervenants à Paris : Vincent Bontemps, philosophe et chercheur au CEA ; Jacques Arnould, philosophe, historien des sciences et théologien, Jean-Jacques Beineix, réalisateur, producteur, scénariste de cinéma. Intervenants à Montpellier (LPTA) : André Neveu, physicien théoricien et directeur de recherche au CNRS ; Gilbert Moultaka, physicien théoricien et chargé de recherche au CNRS. Partenariat : CERN, CEA, IN2P3, Université MPL2 (LPTA) Dans le cadre de la Fête de la science 2008

  20. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    NASA Astrophysics Data System (ADS)

    Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.

    2017-11-01

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  1. Outsourcing strategy and tendering methodology for the operation and maintenance of CERN’s cryogenic facilities

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.

    2017-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.

  2. Novel apparatus and methods for performing remotely controlled particle-solid interaction experiments at CERN

    NASA Astrophysics Data System (ADS)

    Krause, H. F.; Deveney, E. F.; Jones, N. L.; Vane, C. R.; Datz, S.; Knudsen, H.; Grafström, P.; Schuch, R.

    1997-04-01

    Recent atomic physics studies involving ultrarelativistic Pb ions required solid target positioners, scintillators, and a sophisticated data acquisition and control system placed in a remote location at the CERN Super Proton Synchrotron near Geneva, Switzerland. The apparatus, installed in a high-radiation zone underground, had to (i) function for months, (ii) automatically respond to failures such as power outages and particle-induced computer upsets, and (iii) communicate with the outside world via a telephone line. The heart of the apparatus developed was an Apple Macintosh-based CAMAC system that answered the telephone and interpreted and executed remote control commands that (i) sensed and set targets, (ii) controlled voltages and discriminator levels for scintillators, (iii) modified data acquisition hardware logic, (iv) reported control information, and (v) automatically synchronized data acquisition to the CERN spill cycle via a modem signal and transmitted experimental data to a remote computer. No problems were experienced using intercontinental telephone connections at 1200 baud. Our successful "virtual laboratory" approach that uses off-the-shelf electronics is generally adaptable to more conventional bench-type experiments.

  3. Novel approaches for inspiring students and electrifying the public

    NASA Astrophysics Data System (ADS)

    Lidström, Suzy; Read, Alex; Parke, Stephen; Allen, Roland; Goldfarb, Steven; Mehlhase, Sascha; Ekelöf, Tord; Walker, Alan

    2014-03-01

    We will briefly summarize a wide variety of innovative approaches for inspiring students and stimulating broad public interest in fundamental physics research, as exemplified by recent activities related to the Higgs boson discovery and Higgs-Englert Nobel Prize on behalf of the Swedish Academy, CERN, Fermilab, and the Niels Bohr Institute. Personal interactions with the scientists themselves can be particularly electrifying, and these were encouraged by the wearing of ``Higgs Boson? Ask Me!'' badges, which will be made available to those attending this talk. At CERN, activities include Virtual Visits, (Google) Hangout with CERN, initiatives to grab attention (LEGO models, music videos, art programs, pins, etc.), substantive communication (lab visits and events, museum exhibits, traveling exhibits, local visits, Masterclasses, etc.), and educational activities (summer student programs, semester abroad programs, internships, graduate programs, etc.). For serious students and their teachers, or scientists in other areas, tutorial articles are appropriate. These are most effective if they also incorporate innovative approaches - for example, attractive figures that immediately illustrate the concepts, analogies that will resonate with the reader, and a broadening of perspective. Physica Scripta, Royal Swedish Academy of Sciences.

  4. Enhancing moral agency: clinical ethics residency for nurses.

    PubMed

    Robinson, Ellen M; Lee, Susan M; Zollfrank, Angelika; Jurchak, Martha; Frost, Debra; Grace, Pamela

    2014-09-01

    One antidote to moral distress is stronger moral agency-that is, an enhanced ability to act to bring about change. The Clinical Ethics Residency for Nurses, an educational program developed and run in two large northeastern academic medical centers with funding from the Health Resources and Services Administration, intended to strengthen nurses' moral agency. Drawing on Improving Competencies in Clinical Ethics Consultation: An Education Guide, by the American Society for Bioethics and Humanities, and on the goals of the nursing profession, CERN sought to change attitudes, increase knowledge, and develop skills to act on one's knowledge. One of the key insights the faculty members brought to the design of this program is that knowledge of clinical ethics is not enough to develop moral agency. In addition to lecture-style classes, CERN employed a variety of methods based in adult learning theory, such as active application of ethics knowledge to patient scenarios in classroom discussion, simulation, and the clinical practicum. Overwhelmingly, the feedback from the participants (sixty-seven over three years of the program) indicated that CERN achieved transformative learning. © 2014 by The Hastings Center.

  5. Techniques for hazard analysis and their use at CERN.

    PubMed

    Nuttall, C; Schönbacher, H

    2001-01-01

    CERN, The European Organisation for Nuclear Research is situated near Geneva and has its accelerators and experimental facilities astride the Swiss and French frontiers attracting physicists from all over the world to this unique laboratory. The main accelerator is situated in a 27 km underground ring and the experiments take place in huge underground caverns in order to detect the fragments resulting from the collision of subatomic particles at speeds approaching that of light. These detectors contain many hundreds of tons of flammable materials, mainly plastics in cables and structural components, flammable gases in the detectors themselves, and cryogenic fluids such as helium and argon. The experiments consume high amounts of electrical power, thus the dangers involved have necessitated the use of analytical techniques to identify the hazards and quantify the risks to personnel and the infrastructure. The techniques described in the paper have been developed in the process industries where they have been to be of great value. They have been successfully applied to CERN industrial and experimental installations and, in some cases, have been instrumental in changing the philosophy of the experimentalists and their detectors.

  6. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides.

    PubMed

    Lv, Jitao; Zhang, Shuzhen; Wang, Songshan; Luo, Lei; Cao, Dong; Christie, Peter

    2016-03-01

    Adsorption by minerals is a common geochemical process of dissolved organic matter (DOM) which may induce fractionation of DOM at the mineral-water interface. Here, we examine the molecular fractionation of DOM induced by adsorption onto three common iron oxyhydroxides using electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Ferrihydrite exhibited higher affinity to DOM and induced more pronounced molecular fractionation of DOM than did goethite or lepidocrocite. High molecular weight (>500 Da) compounds and compounds high in unsaturation or rich in oxygen including polycyclic aromatics, polyphenols and carboxylic compounds had higher affinity to iron oxyhydroxides and especially to ferrihydrite. Low molecular weight compounds and compounds low in unsaturation or containing few oxygenated groups (mainly alcohols and ethers) were preferentially maintained in solution. This study confirms that the double bond equivalence and the number of oxygen atoms are valuable parameters indicating the selective fractionation of DOM at mineral and water interfaces. The results of this study provide important information for further understanding the behavior of DOM in the natural environment.

  7. Versatile Three-Dimensional Porous Cu@Cu2 O Aerogel Networks as Electrocatalysts and Mimicking Peroxidases.

    PubMed

    Ling, Pinghua; Zhang, Qiang; Cao, Tingting; Gao, Feng

    2018-06-04

    A facile strategy is presented to form 3D porous Cu@Cu 2 O aerogel networks by self-assembling Cu@Cu 2 O nanoparticles with the diameters of ca. 40 nm for constructing catalytic interfaces. Unexpectedly, the prepared Cu@Cu 2 O aerogel networks display excellent electrocatalytic activity to glucose oxidation at a low onset potential of ca. 0.25 V. Moreover, the Cu@Cu 2 O aerogels also can act as mimicking-enzymes including horseradish peroxidase and NADH peroxidase, and show obvious enzymatic catalytic activities to the oxidation of dopamine (DA), o-phenyldiamine (OPD), 3,3,5,5-tetramethylbenzidine (TMB), and dihydronicotinamide adenine dinucleotide (NADH) in the presence of H 2 O 2 . These 3D Cu@Cu 2 O aerogel networks are a new class of porous catalytic materials as mimic peroxidases and electrocatalysts and offer a novel platform to construct catalytic interfaces for promising applications in electrochemical sensors and artificial enzymatic catalytic systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evaluation results of xTCA equipment for HEP experiments at CERN

    NASA Astrophysics Data System (ADS)

    Di Cosmo, M.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.; Vichoudis, P.

    2013-12-01

    The MicroTCA and AdvancedTCA industry standards are candidate modular electronic platforms for the upgrade of the current generation of high energy physics experiments. The PH-ESE group at CERN launched in 2011 the xTCA evaluation project with the aim of performing technical evaluations and eventually providing support for commercially available components. Different devices from different vendors have been acquired, evaluated and interoperability tests have been performed. This paper presents the test procedures and facilities that have been developed and focuses on the evaluation results including electrical, thermal and interoperability aspects.

  9. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  10. Retirement Kjell Johnsen

    ScienceCinema

    None

    2017-12-09

    A l'occasion de son 65me anniversaire plusieurs orateurs (aussi l'ambassadeur de Norvège) remercient Kjell Johnsen, né en juin 1921 en Norvège, pour ses 34 ans de service au Cern et retracent sa vie et son travail. K.Johnsen a pris part aux premières études sur les accélérateurs du futur centre de physique et fut aussi le père et le premier directeur de l'Ecole du Cern sur les accélérateurs (CAS)

  11. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE PAGES

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.; ...

    2016-12-28

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  12. Future Approach to tier-0 extension

    NASA Astrophysics Data System (ADS)

    Jones, B.; McCance, G.; Cordeiro, C.; Giordano, D.; Traylen, S.; Moreno García, D.

    2017-10-01

    The current tier-0 processing at CERN is done on two managed sites, the CERN computer centre and the Wigner computer centre. With the proliferation of public cloud resources at increasingly competitive prices, we have been investigating how to transparently increase our compute capacity to include these providers. The approach taken has been to integrate these resources using our existing deployment and computer management tools and to provide them in a way that exposes them to users as part of the same site. The paper will describe the architecture, the toolset and the current production experiences of this model.

  13. Anomalous single production of the fourth generation quarks at the CERN LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, R.

    Possible anomalous single productions of the fourth standard model generation up and down type quarks at CERN Large Hadron Collider are studied. Namely, pp{yields}u{sub 4}(d{sub 4})X with subsequent u{sub 4}{yields}bW{sup +} process followed by the leptonic decay of the W boson and d{sub 4}{yields}b{gamma} (and its H.c.) decay channel are considered. Signatures of these processes and corresponding standard model backgrounds are discussed in detail. Discovery limits for the quark mass and achievable values of the anomalous coupling strength are determined.

  14. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  15. W production at large transverse momentum at the CERN Large Hadron Collider.

    PubMed

    Gonsalves, Richard J; Kidonakis, Nikolaos; Sabio Vera, Agustín

    2005-11-25

    We study the production of W bosons at large transverse momentum in pp collisions at the CERN Large Hadron Collider. We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable result.

  16. Lower limit on dark matter production at the CERN Large Hadron Collider.

    PubMed

    Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro

    2006-04-21

    We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.

  17. New radiation protection calibration facility at CERN.

    PubMed

    Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut

    2014-10-01

    The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Piezoresponse force microscopy of ferroelectric relaxors =

    NASA Astrophysics Data System (ADS)

    Kiselev, Dmitry

    Nesta tese, ferroelectricos relaxor (I dont know uf the order is correct) de base Pb das familias (Pb,La)(Zr,Ti)O3 (PLZT), Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT), Pb(Zn1/3,Nb2/3)O3-PbTiO3 (PZN-PT) foram investigados e analisados. As propriedades ferroelectricas e dielectricas das amostras foram estudadas por metodos convencionais de macro e localmente por microscopia de forca piezoelectrica (PFM). Nos cerâmicos PLZT 9.75/65/35 o contraste da PFM a escala nanometrica foi investigado em funcao do tamanho e orientacao dos graos. Apurou-se que a intensidade do sinal piezoelectrico das nanoestruturas diminui com o aumento da temperatura e desaparece a 490 K (La mol. 8%) e 420 K (9,5%). Os ciclos de histerese locais foram obtidos em funcao da temperatura. A evolucao dos parâmetros macroscopicos e locais com a temperatura de superficie sugere um forte efeito de superficie nas transicoes de fase ferroelectricas do material investigado. A rugosidade da parede de dominio e determinada por PFM para a estrutura de dominio natural existente neste ferroelectrico policristalino. Alem disso, os dominios ferroelectricos artificiais foram criados pela aplicacao de pulsos electricos a ponta do condutor PFM e o tamanho de dominio in-plane foi medido em funcao da duracao do pulso. Todas estas experiencias levaram a conclusao de que a parede de dominio em relaxors do tipo PZT e quase uma interface unidimensional. O mecanismo de contraste na superficie de relaxors do tipo PLZT e medido por PFMAs estruturas de dominio versus evolucao da profundidade foram estudadas em cristais PZN-4,5%PT, com diferentes orientacoes atraves da PFM. Padroes de dominio irregulares com tamanhos tipicos de 20-100 nm foram observados nas superficies com orientacao das amostras unpoled?. Pelo contrario, os cortes de cristal exibem dominios regulares de tamanho micron normal, com os limites do dominio orientados ao longo dos planos cristalograficos permitidos. A existencia de nanodominios em cristais com orientacao esta provisoriamente (wrong Word) atribuida a natureza relaxor de PZN-PT, onde pequenos grupos polares podem formar-se em coindicoes de zero-field-cooling (ZFC). Estes nanodominios sao considerados como os nucleos do estado de polarizacao oposta e podem ser responsaveis pelo menor campo coercitivo para este corte de cristal em particular. No entanto, a histerese local piezoeletrica realizada pelo PFM a escala nanometrica indica uma mudanca de comportamento de PZN-PT semelhante para ambas as orientacoes cristalograficas investigadas. A evolucao das estruturas de dominio com polimento abaixo da superficie do cristal foi investigada. O dominio de ramificacoes e os efeitos de polarizacao de triagem apos o polimento e as medicoes de temperatura tem sido estudados pela PFM e pela analise SEM. Alem disso, verificou-se que a intensidade do sinal piezoelectrico a partir das estruturas de nanodominio diminui com o aumento da temperatura, acabando por desaparecer aos 430 K (orientacao ) e 470 K (orientacao ). Esta diferenca de temperatura nas transicoes de fase local em cristais de diferentes orientacoes e explicada pelo forte efeito de superficie na transicao da fase ferroeletrica em relaxors. A comutacao da polarizacao em relaxor ergodico e nas fases ferroelectricas do sistema PMN-PT foram realizadas pela combinacao de tres metodos, Microscopia de Forca Piezoelectrica, medicao de um unico ponto de relaxamento eletromecânico e por ultimo mapeamento de espectroscopia de tensao. A dependencia do comportamento do relaxamento na amplitude e tempo da tensao de pulso foi encontrada para seguir um comportamento logaritmico universal com uma inclinacao quase constante. Este comportamento e indicativo da progressiva populacao dos estados de relaxamento lento, ao contrario de uma relaxacao linear na presenca de uma ampla distribuicao do tempo de relaxamento. O papel do comportamento de relaxamento, da nao-linearidade ferroelectrica e da heterogeneidade espacial do campo na ponta da sonda de AFM sobre o comportamento do ciclo de histerese e analisada em detalhe. Os ciclos de histerese para ergodica PMN- 10%PT sao mostrados como cineticamente limitados, enquanto que no PMN, com maior teor de PT, sao observados verdadeiros ciclos de histerese ferroelectrica com vies de baixa nucleacao.

  19. Structural basis of HIV-1 capsid recognition by PF74 and CPSF6

    DOE PAGES

    Bhattacharya, Akash; Alam, Steven L.; Fricke, Thomas; ...

    2014-12-17

    Upon infection of susceptible cells by HIV-1, the conical capsid formed by ~250 hexamers and 12 pentamers of the CA protein is delivered to the cytoplasm. In this study, the capsid shields the RNA genome and proteins required for reverse transcription. In addition, the surface of the capsid mediates numerous host–virus interactions, which either promote infection or enable viral restriction by innate immune responses. In the intact capsid, there is an intermolecular interface between the N-terminal domain (NTD) of one subunit and the C-terminal domain (CTD) of the adjacent subunit within the same hexameric ring. The NTD–CTD interface is criticalmore » for capsid assembly, both as an architectural element of the CA hexamer and pentamer and as a mechanistic element for generating lattice curvature. Here we report biochemical experiments showing that PF-3450074 (PF74), a drug that inhibits HIV-1 infection, as well as host proteins cleavage and polyadenylation specific factor 6 (CPSF6) and nucleoporin 153 kDa (NUP153), bind to the CA hexamer with at least 10-fold higher affinities compared with nonassembled CA or isolated CA domains. The crystal structure of PF74 in complex with the CA hexamer reveals that PF74 binds in a preformed pocket encompassing the NTD–CTD interface, suggesting that the principal inhibitory target of PF74 is the assembled capsid. Likewise, CPSF6 binds in the same pocket. Given that the NTD–CTD interface is a specific molecular signature of assembled hexamers in the capsid, binding of NUP153 at this site suggests that key features of capsid architecture remain intact upon delivery of the preintegration complex to the nucleus.« less

  20. ENLIGHT: European network for Light ion hadron therapy.

    PubMed

    Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard

    2018-04-03

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.

  1. Three-dimensional structure of nylon hydrolase and mechanism of nylon-6 hydrolysis.

    PubMed

    Negoro, Seiji; Shibata, Naoki; Tanaka, Yusuke; Yasuhira, Kengo; Shibata, Hiroshi; Hashimoto, Haruka; Lee, Young-Ho; Oshima, Shohei; Santa, Ryuji; Oshima, Shohei; Mochiji, Kozo; Goto, Yuji; Ikegami, Takahisa; Nagai, Keisuke; Kato, Dai-Ichiro; Takeo, Masahiro; Higuchi, Yoshiki

    2012-02-10

    We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of T(m) = 52 °C, enhanced the protein thermostability by 36 °C (T(m) = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000-25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500-3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed.

  2. Engineering evaluations and studies. Report for Ku-band studies, exhibit A

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Maronde, R. G.; Roberts, D.

    1981-01-01

    System performance aspects of the Ku band radar communication hardware and investigations into the Ku band/payload interfaces are discussed. The communications track problem caused by the excessive signal dynamic range at the servo input was investigated. The management/handover logic is discussed and a simplified description of the transmitter enable logic function is presented. Output noise produced by a voltage-controlled oscillator chip used in the SPA return-link channel 3 mid-bit detector is discussed. The deployed assembly (DA) and EA-2 critical design review data are evaluated. Cross coupling effects on antenna servo stability were examined. A series of meetings on the acceptance test specification for the deployed assembly is summarized.

  3. Robot Command Interface Using an Audio-Visual Speech Recognition System

    NASA Astrophysics Data System (ADS)

    Ceballos, Alexánder; Gómez, Juan; Prieto, Flavio; Redarce, Tanneguy

    In recent years audio-visual speech recognition has emerged as an active field of research thanks to advances in pattern recognition, signal processing and machine vision. Its ultimate goal is to allow human-computer communication using voice, taking into account the visual information contained in the audio-visual speech signal. This document presents a command's automatic recognition system using audio-visual information. The system is expected to control the laparoscopic robot da Vinci. The audio signal is treated using the Mel Frequency Cepstral Coefficients parametrization method. Besides, features based on the points that define the mouth's outer contour according to the MPEG-4 standard are used in order to extract the visual speech information.

  4. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A metal-linked gapped zipper model is proposed for the 90 kDa heat shock protein-estrogen receptor interface.

    PubMed

    Schwartz, J A; Mizukami, H

    1991-06-01

    A novel arrangement is proposed for the association of the 90 kDa heat shock protein (hsp 90) dimer and the human estrogen receptor (hER) monomer. Secondary structure analyses of the hsp 90 molecule reveal the presence of a cysteine-containing, leucine-rich, heptad repeat, which we refer to as region C. Similar analyses on the hER, at its hormone binding domain (HBD), have indicated the presence of a central subdomain bordered by 2 alpha-helical flanking segments which also display the heptad substructure. Due to its predicted potential for conformational change (1) we refer to this central subdomain as the Helix Conversion Unit or HCU. It contains an HX5C peptide and shares significant homology with the metal-binding domain of a gag-encoded HIV-LAV protein (2). We predict that, by virtue of its presence in duplicate, region C may be capable of simultaneous leucine zipper-like pairing with the hER at its flanking helices, as well as the formation of a shared CCHC-box-type metal binding link with the same hER at the putative HCU which lies in between.

  6. System for robot-assisted real-time laparoscopic ultrasound elastography

    NASA Astrophysics Data System (ADS)

    Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.

    2012-02-01

    Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.

  7. Security in the CernVM File System and the Frontier Distributed Database Caching System

    NASA Astrophysics Data System (ADS)

    Dykstra, D.; Blomer, J.

    2014-06-01

    Both the CernVM File System (CVMFS) and the Frontier Distributed Database Caching System (Frontier) distribute centrally updated data worldwide for LHC experiments using http proxy caches. Neither system provides privacy or access control on reading the data, but both control access to updates of the data and can guarantee the authenticity and integrity of the data transferred to clients over the internet. CVMFS has since its early days required digital signatures and secure hashes on all distributed data, and recently Frontier has added X.509-based authenticity and integrity checking. In this paper we detail and compare the security models of CVMFS and Frontier.

  8. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  9. Optimising the Active Muon Shield for the SHiP Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Baranov, A.; Burnaev, E.; Derkach, D.; Filatov, A.; Klyuchnikov, N.; Lantwin, O.; Ratnikov, F.; Ustyuzhanin, A.; Zaitsev, A.

    2017-12-01

    The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. The critical challenge for this experiment is to keep the Standard Model background level negligible. In the beam dump, around 1011 muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muoninduced backgrounds. It is demonstrated that new improved active muon shield may be used to magnetically deflect the muons out of the acceptance of the spectrometer.

  10. A Bonner Sphere Spectrometer with extended response matrix

    NASA Astrophysics Data System (ADS)

    Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.

    2010-08-01

    This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez T, Arturo

    The use of the sophisticated and large underground detectors at CERN for cosmic ray studies has been considered by several groups, e.g. UA1, LEP and LHC detectors. They offer the opportunity to provide large sensitivity area with magnetic analysis which allow a precise determination of the direction of cosmic ray muons as well as their momentum up to the order of some TeV. The aim of this article is to review the observation of high energy cosmic ray muons using precise spectrometers at CERN, mainly LEP detectors as well as the possibility of improve those measurements with LHC apparatus, givingmore » special emphasis to the ACORDE-ALICE cosmic ray physics program.« less

  12. HST at CERN an Amazing Adventure

    NASA Astrophysics Data System (ADS)

    Restivo, Evelyn

    2009-04-01

    The High School Teacher Program (HST) at the European Organization for Nuclear Research, CERN, in Geneva, Switzerland was initiated in 1998 by a group of scientists, as a multicultural international program designed to introduce high school physics teachers to high-energy physics. The goal of the program is to provide experiences and materials that will help teachers lead their students to a better understanding of the physical world. Interacting with physics teachers from around the world leads to new approaches for dealing with educational issues that all teachers encounter. The program includes a variety of tours, a series of lectures and classroom activities about the physics expected from the Large Hadron Collider.

  13. The FLUKA Code: An Overview

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fasso, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; hide

    2006-01-01

    FLUKA is a multipurpose Monte Carlo code which can transport a variety of particles over a wide energy range in complex geometries. The code is a joint project of INFN and CERN: part of its development is also supported by the University of Houston and NASA. FLUKA is successfully applied in several fields, including but not only, particle physics, cosmic ray physics, dosimetry, radioprotection, hadron therapy, space radiation, accelerator design and neutronics. The code is the standard tool used at CERN for dosimetry, radioprotection and beam-machine interaction studies. Here we give a glimpse into the code physics models with a particular emphasis to the hadronic and nuclear sector.

  14. Mechanical qualification of the support structure for MQXF, the Nb 3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb 3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structuremore » was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less

  15. Hadron-collider limits on new electroweak interactions from the heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Aguila, F.; Moreno, J.M.; Quiros, M.

    1990-01-01

    We evaluate the {ital Z}{prime}{r arrow}{ital l}{sup +}l{sup {minus}} cross section at present and future hadron colliders, for the minimal (E{sub 6}) extended electroweak models inspired by superstrings (including renormalization effects on new gauge couplings and new mixing angles). Popular models are discussed for comparison. Analytical expressions for the bounds on the mass of a new gauge boson, {ital M}{sub {ital Z}{prime}}, as a function of the bound on the ratio {ital R}{equivalent to}{sigma}({ital Z}{prime}){ital B}(Z{prime}{r arrow}l{sup +}{ital l}{sup {minus}})/{sigma}({ital Z}){ital B} ({ital Z}{r arrow}{ital l}{sup +}{ital l}{sup {minus}}), are given for the CERN S{ital p {bar p}}S, Fermilab Teva-more » tron, Serpukhov UNK, CERN Large Hadron Collider, and Superconducting Super Collider for the different models. In particular, the {ital M}{sub {ital Z}{prime}} bounds from the present {ital R} limit at CERN, as well as from the eventually available {ital R} limits at Fermilab and at the future hadron colliders (after three months of running at the expected luminosity), are given explicitly.« less

  16. Design and performance of the virtualization platform for offline computing on the ATLAS TDAQ Farm

    NASA Astrophysics Data System (ADS)

    Ballestrero, S.; Batraneanu, S. M.; Brasolin, F.; Contescu, C.; Di Girolamo, A.; Lee, C. J.; Pozo Astigarraga, M. E.; Scannicchio, D. A.; Twomey, M. S.; Zaytsev, A.

    2014-06-01

    With the LHC collider at CERN currently going through the period of Long Shutdown 1 there is an opportunity to use the computing resources of the experiments' large trigger farms for other data processing activities. In the case of the ATLAS experiment, the TDAQ farm, consisting of more than 1500 compute nodes, is suitable for running Monte Carlo (MC) production jobs that are mostly CPU and not I/O bound. This contribution gives a thorough review of the design and deployment of a virtualized platform running on this computing resource and of its use to run large groups of CernVM based virtual machines operating as a single CERN-P1 WLCG site. This platform has been designed to guarantee the security and the usability of the ATLAS private network, and to minimize interference with TDAQ's usage of the farm. Openstack has been chosen to provide a cloud management layer. The experience gained in the last 3.5 months shows that the use of the TDAQ farm for the MC simulation contributes to the ATLAS data processing at the level of a large Tier-1 WLCG site, despite the opportunistic nature of the underlying computing resources being used.

  17. Hadron Collider Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incandela, J.R.

    2000-03-07

    Experiments are being prepared at the Fermilab Tevatron and the CERN Large Hadron Collider that promise to deliver extraordinary insights into the nature of spontaneous symmetry breaking, and the role of supersymmetry in the universe. This article reviews the goals, challenges, and designs of these experiments. The first hadron collider, the ISR at CERN, has to overcome two initial obstacles. The first was low luminosity, which steadily improved over time. The second was the broad angular spread of interesting events. In this regard Maurice Jacob noted (1): The answer is ... sophisticated detectors covering at least the whole central regionmore » (45{degree} {le} {theta} {le} 135{degree}) and full azimuth. This statement, while obvious today, reflects the major revelation of the ISR period that hadrons have partonic substructure. The result was an unexpectedly strong hadronic yield at large transverse momentum (p{sub T}). Partly because of this, the ISR missed the discovery of the J/{psi} and later missed the {Upsilon}. The ISR era was therefore somewhat less auspicious than it might have been. It did however make important contributions in areas such as jet production and charm excitation and it paved the way for the SPS collider, also at CERN.« less

  18. A Simulation of the Front End Signal Digitization for the ATLAS Muon Spectrometer thin RPC trigger upgrade project

    NASA Astrophysics Data System (ADS)

    Meng, Xiangting; Chapman, John; Levin, Daniel; Dai, Tiesheng; Zhu, Junjie; Zhou, Bing; Um Atlas Group Team

    2016-03-01

    The ATLAS Muon Spectrometer Phase-I (and Phase-II) upgrade includes the BIS78 muon trigger detector project: two sets of eight very thin Resistive Place Chambers (tRPCs) combined with small Monitored Drift Tube (MDT) chambers in the pseudorapidity region 1<| η|<1.3. The tRPCs will be comprised of triplet readout layer in each of the eta and azimuthal phi coordinates, with about 400 readout strips per layer. The anticipated hit rate is 100-200 kHz per strip. Digitization of the strip signals will be done by 32-channel CERN HPTDC chips. The HPTDC is a highly configurable ASIC designed by the CERN Microelectronics group. It can work in both trigger and trigger-less modes, be readout in parallel or serially. For Phase-I operation, a stringent latency requirement of 43 bunch crossings (1075 ns) is imposed. The latency budget for the front end digitization must be kept to a minimal value, ideally less than 350 ns. We conducted detailed HPTDC latency simulations using the Behavioral Verilog code from the CERN group. We will report the results of these simulations run for the anticipated detector operating environment and for various HPTDC configurations.

  19. Analysis of SEL on Commercial SRAM Memories and Mixed-Field Characterization of a Latchup Detection Circuit for LEO Space Applications

    NASA Astrophysics Data System (ADS)

    Secondo, R.; Alía, R. Garcia; Peronnard, P.; Brugger, M.; Masi, A.; Danzeca, S.; Merlenghi, A.; Vaillé, J.-R.; Dusseau, L.

    2017-08-01

    A single event latchup (SEL) experiment based on commercial static random access memory (SRAM) memories has recently been proposed in the framework of the European Organization for Nuclear Research (CERN) Latchup Experiment and Student Satellite nanosatellite low Earth orbit (LEO) space mission. SEL characterization of three commercial SRAM memories has been carried out at the Paul Scherrer Institut (PSI) facility, using monoenergetic focused proton beams and different acquisition setups. The best target candidate was selected and a circuit for SEL detection has been proposed and tested at CERN, in the CERN High Energy AcceleRator Mixed-field facility (CHARM). Experimental results were carried out at test locations representative of the LEO environment, thus providing a full characterization of the SRAM cross sections, together with the analysis of the single-event effect and total ionizing dose of the latchup detection circuit in relation to the particle spectra expected during mission. The setups used for SEL monitoring are described, and details of the proposed circuit components and topology are presented. Experimental results obtained both at PSI and at CHARM facilities are discussed.

  20. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Fields, CERN, 15 19 January 2007

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.

    2007-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is possible that such an understanding proves crucial in the realization of supersymmetry breaking in string theory. A second long-standing obstacle, which is being tackled with recent techniques, is moduli stabilization, namely the removal of unwanted massless scalar fields from string models. The present status of this problem, and its prospects of solution via the introduction of general sets of fluxes in the compactification space, were covered in the lectures by Brian Wecht. Application of these ideas to connect string theory to particle physics will require a good understanding of the experimental situation at the forthcoming collider LHC at CERN, and the detection tools for signals of new physics, as reviewed in the lectures by Joe Lykken (not covered in the present issue). Along a different line, the role of moduli fields in string theory is expected to provide a natural explanation of models of inflation, and thus of the origin of the cosmological evolution of our universe. The lecture notes by Cliff Burgess provide a review of big bang cosmology, inflation, and its possible explanation in terms of string theory constructions, including some of the most recent results in the field (these notes also appear in the proceedings of two other schools held in the same period). A surprising recent application of string theory is the description, via the ideas of holography and duality between string theories and gauge theories, of physical properties of quantum chromodynamics at high temperature. Indeed experimental data on the physical properties of the quark gluon plasma, produced in heavy ion collision at the RHIC experiment in Brookhaven (and soon at the LHC at CERN) can be recovered, at a semi-quantitative level, from computations in a string theory dual of the system. These applications are reviewed in the lectures by David Mateos. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. A special acknowledgement also goes to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo

  1. Measurements of the production cross section of a [Formula: see text] boson in association with jets in pp collisions at [Formula: see text] TeV with the ATLAS detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Hageböck, S; Hagihara, M; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Mellado Garcia, B R; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zwalinski, L

    2017-01-01

    Measurements of the production cross section of a [Formula: see text] boson in association with jets in proton-proton collisions at [Formula: see text] TeV are presented, using data corresponding to an integrated luminosity of 3.16 fb[Formula: see text] collected by the ATLAS experiment at the CERN Large Hadron Collider in 2015. Inclusive and differential cross sections are measured for events containing a [Formula: see text] boson decaying to electrons or muons and produced in association with up to seven jets with [Formula: see text] GeV and [Formula: see text]. Predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements for up to two additional partons interfaced with parton shower and fixed-order predictions at next-to-leading order and next-to-next-to-leading order are compared with the measured cross sections. Good agreement within the uncertainties is observed for most of the modelled quantities, in particular with the generators which use next-to-leading-order matrix elements and the more recent next-to-next-to-leading-order fixed-order predictions.

  2. Storage and retrieval of digital images in dermatology.

    PubMed

    Bittorf, A; Krejci-Papa, N C; Diepgen, T L

    1995-11-01

    Differential diagnosis in dermatology relies on the interpretation of visual information in the form of clinical and histopathological images. Up until now, reference images have had to be retrieved from textbooks and/or appropriate journals. To overcome inherent limitations of those storage media with respect to the number of images stored, display, and search parameters available, we designed a computer-based database of digitized dermatologic images. Images were taken from the photo archive of the Dermatological Clinic of the University of Erlangen. A database was designed using the Entity-Relationship approach. It was implemented on a PC-Windows platform using MS Access* and MS Visual Basic®. As WWW-server a Sparc 10 workstation was used with the CERN Hypertext-Transfer-Protocol-Daemon (httpd) 3.0 pre 6 software running. For compressed storage on a hard drive, a quality factor of 60 allowed on-screen differential diagnosis and corresponded to a compression factor of 1:35 for clinical images and 1:40 for histopathological images. Hierarchical keys of clinical or histopathological criteria permitted multi-criteria searches. A script using the Common Gateway Interface (CGI) enabled remote search and image retrieval via the World-Wide-Web (W3). A dermatologic image database, featurig clinical and histopathological images was constructed which allows for multi-parameter searches and world-wide remote access.

  3. The ALICE Electronic Logbook

    NASA Astrophysics Data System (ADS)

    Altini, V.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Divià, R.; Fuchs, U.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soòs, C.; Vande Vyvre, P.; Von Haller, B.; ALICE Collaboration

    2010-04-01

    All major experiments need tools that provide a way to keep a record of the events and activities, both during commissioning and operations. In ALICE (A Large Ion Collider Experiment) at CERN, this task is performed by the Alice Electronic Logbook (eLogbook), a custom-made application developed and maintained by the Data-Acquisition group (DAQ). Started as a statistics repository, the eLogbook has evolved to become not only a fully functional electronic logbook, but also a massive information repository used to store the conditions and statistics of the several online systems. It's currently used by more than 600 users in 30 different countries and it plays an important role in the daily ALICE collaboration activities. This paper will describe the LAMP (Linux, Apache, MySQL and PHP) based architecture of the eLogbook, the database schema and the relevance of the information stored in the eLogbook to the different ALICE actors, not only for near real time procedures but also for long term data-mining and analysis. It will also present the web interface, including the different used technologies, the implemented security measures and the current main features. Finally it will present the roadmap for the future, including a migration to the web 2.0 paradigm, the handling of the database ever-increasing data volume and the deployment of data-mining tools.

  4. EDITORIAL: Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 21 25 January 2008

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Orlando, D.; Uranga, A.

    2008-11-01

    This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has been limited by the difficulties of quantizing the worldsheet theory in the presence of RR backgrounds. There is increasing hope that these difficulties can be overcome, using the pure spinor formulation of string theory. The lectures by Yaron Oz overview the present status of this proposal. The gauge/gravity correspondence is already leading to important insights into questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. These questions can be addressed in string theory, for certain classes of supersymmetric black holes. The lectures by Vijay Balasubramanian, Jan de Boer, Sheer El-Showk and Ilies Messamah review recent progress in this direction. Throughout the years, formal developments in string theory have systematically led to improved understanding on how it may relate to nature. In this respect, the lectures by Henning Samtleben describe how the formal developments on gauged supergravities can be used to describe compactification vacua in string theory, and their implications for moduli stabilization and supersymmetry breaking. Indeed, softly broken supersymmetry is one of the leading proposals to describe particle physics at the TeV energy range, as described in the lectures by Gian Giudice (not covered in this issue). This connection with TeV scale physics is most appropriate and timely, given that this energy range will shortly become experimentally accessible in the LHC at CERN. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks also go to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo

  5. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2018-05-23

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive. EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluation Cross section measurements Experimental techniques Uncertainties and covariances Fission properties Current and future facilities ; International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) ;Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco Calviani Samuel Andriamonje Eric Berthoumieux Carlos Guerrero Roberto Losito Vasilis Vlachoudis;Workshop Assistant: Geraldine Jean

  6. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2018-06-20

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive. EFNUDAT website: http://www.efnudat.eu. Topics of interest include: Data evaluation, Cross section measurements, Experimental techniques, Uncertainties and covariances, Fission properties, and Current and future facilities. International Advisory Committee: C. Barreau (CENBG, France), T. Belgya (IKI KFKI, Hungary), E. Gonzalez (CIEMAT, Spain), F. Gunsing (CEA, France), F.-J. Hambsch (IRMM, Belgium), A. Junghans (FZD, Germany), R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman), Marco Calviani, Samuel Andriamonje, Eric Berthoumieux, Carlos Guerrero, Roberto Losito, Vasilis Vlachoudis. Workshop Assistant: Geraldine Jean

  7. Final Scientific EFNUDAT Workshop

    ScienceCinema

    Garbil, Roger

    2018-04-16

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive. EFNUDAT website: http://www.efnudat.eu. Topics of interest include: Data evaluation; Cross section measurements; Experimental techniques; Uncertainties and covariances; Fission properties; Current and future facilities. International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden). Workshop Organizing Committee: Enrico Chiaveri (Chairman); Marco Calviani; Samuel Andriamonje; Eric Berthoumieux; Carlos Guerrero; Roberto Losito; Vasilis Vlachoudis; Workshop Assistant: Geraldine Jean

  8. Final Scientific EFNUDAT Workshop

    ScienceCinema

    Lantz, Mattias; Neudecker, Denise

    2018-05-25

    Part 5 of The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive. EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluation Cross section measurements Experimental techniques Uncertainties and covariances Fission properties Current and future facilities International Advisory Committee: C. Barreau (CENBG, France) T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain) F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium) A. Junghans (FZD, Germany) R. Nolte (PTB, Germany) S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco Calviani Samuel Andriamonje Eric Berthoumieux Carlos Guerrero Roberto Losito Vasilis Vlachoudis Workshop Assistant: Geraldine Jean

  9. Final Scientific EFNUDAT Workshop

    ScienceCinema

    Wilson, J.N.

    2018-05-24

    Part 7 of The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluation; Cross section measurements; Experimental techniques; Uncertainties and covariances; Fission properties; Current and future facilities;International Advisory Committee: C. Barreau (CENBG, France) T. Belgya (IKI KFKI, Hungary) E. Gonzalez (CIEMAT, Spain) F. Gunsing (CEA, France) F.-J. Hambsch (IRMM, Belgium) A. Junghans (FZD, Germany) R. Nolte (PTB, Germany) S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman) Marco Calviani Samuel Andriamonje Eric Berthoumieux Carlos Guerrero Roberto Losito Vasilis Vlachoudis Workshop Assistant: Geraldine Jean.

  10. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2015-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  11. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  12. Ian Hinchliffe Answers Your Higgs Boson Questions

    ScienceCinema

    Hinchliffe, Ian

    2017-12-09

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

  13. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    NASA Astrophysics Data System (ADS)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  14. Adam: a Unix Desktop Application Manager

    NASA Astrophysics Data System (ADS)

    LiÉBana, M.; Marquina, M.; Ramos, R.

    ADAM stands for Affordable Desktop Application Manager. It is a GUI developed at CERN with the aim to ease access to applications. The motivation to develop ADAM came from the unavailability of environments like COSE/CDE and their heavy resource consumption. ADAM has proven to be user friendly: new users are able to customize it to their needs in few minutes. Groups of users may share through ADAM a common application environment. ADAM also integrates the Unix and the PC world. PC users can access Unix applications in the same way as their usual Windows applications. This paper describes all the ADAM features, how they are used at CERN Public Services, and the future plans for ADAM.

  15. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    DOE PAGES

    Ryu, Sangwook; Paquet, Jean-Francois; Shen, Chun; ...

    2018-03-15

    Here, we describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. Finally, we further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  16. Accelerating hydrodynamic description of pseudorapidity density and the initial energy density in p +p , Cu + Cu, Au + Au, and Pb + Pb collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Ze-Fang, Jiang; Chun-Bin, Yang; Csanád, Máté; Csörgő, Tamás

    2018-06-01

    A known class of analytic, exact, accelerating solutions of prefect relativistic hydrodynamics with longitudinal acceleration is utilized to describe results on the pseudorapidity distributions for different collision systems. These results include d N /d η measured in p +p , Cu+Cu, Au+Au, and Pb+Pb collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, in a broad centrality range. Going beyond the traditional Bjorken model, from the accelerating hydrodynamic description we determine the initial energy density and other thermodynamic quantities in those collisions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch; Departamento de Investigación en Física, Universidad de Sonora, Hermosillo; Lallement, Jean-Baptiste

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directlymore » into the beam transport region has been used to modify the space charge compensation degree.« less

  18. The beam and detector of the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Cortina Gil, E.; Martín Albarrán, E.; Minucci, E.; Nüssle, G.; Padolski, S.; Petrov, P.; Szilasi, N.; Velghe, B.; Georgiev, G.; Kozhuharov, V.; Litov, L.; Husek, T.; Kampf, K.; Zamkovsky, M.; Aliberti, R.; Geib, K. H.; Khoriauli, G.; Kleinknecht, K.; Kunze, J.; Lomidze, D.; Marchevski, R.; Peruzzo, L.; Vormstein, M.; Wanke, R.; Winhart, A.; Bolognesi, M.; Carassiti, V.; Chiozzi, S.; Cotta Ramusino, A.; Gianoli, A.; Malaguti, R.; Dalpiaz, P.; Fiorini, M.; Gamberini, E.; Neri, I.; Norton, A.; Petrucci, F.; Statera, M.; Wahl, H.; Bucci, F.; Ciaranfi, R.; Lenti, M.; Maletta, F.; Volpe, R.; Bizzeti, A.; Cassese, A.; Iacopini, E.; Antonelli, A.; Capitolo, E.; Capoccia, C.; Cecchetti, A.; Corradi, G.; Fascianelli, V.; Gonnella, F.; Lamanna, G.; Lenci, R.; Mannocchi, G.; Martellotti, S.; Moulson, M.; Paglia, C.; Raggi, M.; Russo, V.; Santoni, M.; Spadaro, T.; Tagnani, D.; Valeri, S.; Vassilieva, T.; Cassese, F.; Roscilli, L.; Ambrosino, F.; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Saracino, G.; Barbanera, M.; Cenci, P.; Checcucci, B.; Duk, V.; Farnesini, L.; Gersabeck, E.; Lupi, M.; Papi, A.; Pepe, M.; Piccini, M.; Scolieri, G.; Aisa, D.; Anzivino, G.; Bizzarri, M.; Campeggi, C.; Imbergamo, E.; Piluso, A.; Santoni, C.; Berretta, L.; Bianucci, S.; Burato, A.; Cerri, C.; Fantechi, R.; Galeotti, S.; Magazzu', G.; Minuti, M.; Orsini, A.; Petragnani, G.; Pontisso, L.; Raffaelli, F.; Spinella, F.; Collazuol, G.; Mannelli, I.; Avanzini, C.; Costantini, F.; Di Lella, L.; Doble, N.; Giorgi, M.; Giudici, S.; Pedreschi, E.; Piandani, R.; Pierazzini, G.; Pinzino, J.; Sozzi, M.; Zaccarelli, L.; Biagioni, A.; Leonardi, E.; Lonardo, A.; Valente, P.; Vicini, P.; D'Agostini, G.; Ammendola, R.; Bonaiuto, V.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Salamon, A.; Salina, G.; Sargeni, F.; Biino, C.; Dellacasa, G.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; Rivetti, A.; Arcidiacono, R.; Bloch-Devaux, B.; Boretto, M.; Iacobuzio, L.; Menichetti, E.; Soldi, D.; Engelfried, J.; Estrada-Tristan, N.; Bragadireanu, A. M.; Hutanu, O. E.; Azorskiy, N.; Elsha, V.; Enik, T.; Falaleev, V.; Glonti, L.; Gusakov, Y.; Kakurin, S.; Kekelidze, V.; Kilchakovskaya, S.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Misheva, M.; Movchan, S.; Polenkevich, I.; Potrebenikov, Y.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Tarasova, L.; Zaytseva, M.; Zinchenko, A.; Bolotov, V.; Fedotov, S.; Gushin, E.; Khotjantsev, A.; Khudyakov, A.; Kleimenova, A.; Kudenko, Yu.; Shaikhiev, A.; Gorin, A.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Ostankov, A.; Rykalin, V.; Semenov, V.; Sugonyaev, V.; Yushchenko, O.; Bician, L.; Blazek, T.; Cerny, V.; Koval, M.; Lietava, R.; Aglieri Rinella, G.; Arroyo Garcia, J.; Balev, S.; Battistin, M.; Bendotti, J.; Bergsma, F.; Bonacini, S.; Butin, F.; Ceccucci, A.; Chiggiato, P.; Danielsson, H.; Degrange, J.; Dixon, N.; Döbrich, B.; Farthouat, P.; Gatignon, L.; Golonka, P.; Girod, S.; Goncalves Martins De Oliveira, A.; Guida, R.; Hahn, F.; Harrouch, E.; Hatch, M.; Jarron, P.; Jamet, O.; Jenninger, B.; Kaplon, J.; Kluge, A.; Lehmann-Miotto, G.; Lichard, P.; Maire, G.; Mapelli, A.; Morant, J.; Morel, M.; Noël, J.; Noy, M.; Palladino, V.; Pardons, A.; Perez-Gomez, F.; Perktold, L.; Perrin-Terrin, M.; Petagna, P.; Poltorak, K.; Riedler, P.; Romagnoli, G.; Ruggiero, G.; Rutter, T.; Rouet, J.; Ryjov, V.; Saputi, A.; Schneider, T.; Stefanini, G.; Theis, C.; Tiuraniemi, S.; Vareia Rodriguez, F.; Venditti, S.; Vergain, M.; Vincke, H.; Wertelaers, P.; Brunetti, M. B.; Edwards, S.; Goudzovski, E.; Hallgren, B.; Krivda, M.; Lazzeroni, C.; Lurkin, N.; Munday, D.; Newson, F.; Parkinson, C.; Pyatt, S.; Romano, A.; Serghi, X.; Sergi, A.; Staley, R.; Sturgess, A.; Heath, H.; Page, R.; Angelucci, B.; Britton, D.; Protopopescu, D.; Skillicorn, I.; Cooke, P.; Dainton, J. B.; Fry, J. R.; Fulton, L.; Hutchcroft, D.; Jones, E.; Jones, T.; Massri, K.; Maurice, E.; McCormick, K.; Sutcliffe, P.; Wrona, B.; Conovaloff, A.; Cooper, P.; Coward, D.; Rubin, P.; Winston, R.

    2017-05-01

    NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K+ → π+ ν bar nu decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data.

  19. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2018-05-24

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive. EFNUDAT website: http://www.efnudat.eu. Topics of interest include: Data evaluation; Cross section measurements; Experimental techniques; Uncertainties and covariances; Fission properties; Current and future facilities. International Advisory Committee: C. Barreau (CENBG, France) T. Belgya (IKI KFKI, Hungary) E. Gonzalez (CIEMAT, Spain) F. Gunsing (CEA, France) F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany) R. Nolte (PTB, Germany) S. Pomp (TSL UU, Sweden) & Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco Calviani Samuel Andriamonje Eric Berthoumieux Carlos Guerrero Roberto Losito Vasilis Vlachoudis; Workshop Assistant: Geraldine Jean

  20. Development of radiation tolerant components for the Quench Protection System at CERN

    NASA Astrophysics Data System (ADS)

    Bitterling, O.; Denz, R.; Steckert, J.; Uznanski, S.

    2016-01-01

    This paper describes the results of irradiation campaigns with the high resolution Analog to Digital Converter (ADC) ADS1281. This ADC will be used as part of a revised quench detection circuit for the 600 A corrector magnets at the CERN Large Hadron Collider (LHC) . To verify the radiation tolerance of the ADC an irradiation campaign using a proton beam, applying doses up to 3,4 kGy was conducted. The resulting data and an analysis of the found failure modes is discussed in this paper. Several mitigation measures are described that allow to reduce the error rate to levels acceptable for operation as part of the LHC QPS.

Top