Activation of VTA GABA neurons disrupts reward consumption
van Zessen, Ruud; Phillips, Jana L.; Budygin, Evgeny A.; Stuber, Garret D.
2012-01-01
The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors. PMID:22445345
Oleic Acid in the Ventral Tegmental Area Inhibits Feeding, Food Reward, and Dopamine Tone.
Hryhorczuk, Cecile; Sheng, Zhenyu; Décarie-Spain, Léa; Giguère, Nicolas; Ducrot, Charles; Trudeau, Louis-Éric; Routh, Vanessa H; Alquier, Thierry; Fulton, Stephanie
2018-02-01
Long-chain fatty acids (FAs) act centrally to decrease food intake and hepatic glucose production and alter hypothalamic neuronal activity in a manner that depends on FA type and cellular transport proteins. However, it is not known whether FAs are sensed by ventral tegmental area (VTA) dopamine (DA) neurons to control food-motivated behavior and DA neurotransmission. We investigated the impact of the monounsaturated FA oleate in the VTA on feeding, locomotion, food reward, and DA neuronal activity and DA neuron expression of FA-handling proteins and FA uptake. A single intra-VTA injection of oleate, but not of the saturated FA palmitate, decreased food intake and increased locomotor activity. Furthermore, intra-VTA oleate blunted the rewarding effects of high-fat/sugar food in an operant task and inhibited DA neuronal firing. Using sorted DA neuron preparations from TH-eGFP mice we found that DA neurons express FA transporter and binding proteins, and are capable of intracellular transport of long-chain FA. Finally, we demonstrate that a transporter blocker attenuates FA uptake into DA neurons and blocks the effects of intra-VTA oleate to decrease food-seeking and DA neuronal activity. Together, these results suggest that DA neurons detect FA and that oleate has actions in the VTA to suppress DA neuronal activity and food seeking following cellular incorporation. These findings highlight the capacity of DA neurons to act as metabolic sensors by responding not only to hormones but also to FA nutrient signals to modulate food-directed behavior.
Boekhoudt, Linde; Voets, Elisa S; Flores-Dourojeanni, Jacques P; Luijendijk, Mieneke Cm; Vanderschuren, Louk Jmj; Adan, Roger Ah
2017-05-01
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.
McCall, Nora M; Kotecki, Lydia; Dominguez-Lopez, Sergio; Marron Fernandez de Velasco, Ezequiel; Carlblom, Nicholas; Sharpe, Amanda L; Beckstead, Michael J; Wickman, Kevin
2017-02-01
The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K + (GIRK/Kir3) channels mediate the direct inhibitory effect of GABA B receptor (GABA B R) and D 2 DA receptor (D 2 R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D 2 R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D 2 R-dependent inhibitory somatodendritic currents and blunted the impact of D 2 R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.
Zhong, L R; Artinian, L; Rehder, V
2013-01-03
Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Ding, Shengyuan; Wei, Wei
2011-01-01
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, NaV channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming NaV1.1 and NaV1.6 subunits and regulatory NaVβ1 and Navβ4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming NaV channels conducting the transient NaV current (INaT), persistent Na current (INaP), and resurgent Na current (INaR). Nucleated patch-clamp recordings showed that INaT had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. INaT also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger INaR and INaP. Blockade of INaP induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that NaV channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities. PMID:21880943
Beyond reward prediction errors: the role of dopamine in movement kinematics
Barter, Joseph W.; Li, Suellen; Lu, Dongye; Bartholomew, Ryan A.; Rossi, Mark A.; Shoemaker, Charles T.; Salas-Meza, Daniel; Gaidis, Erin; Yin, Henry H.
2015-01-01
We recorded activity of dopamine (DA) neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left, right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of the basal ganglia (BG) in which DA functions to adjust the gain of the transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG. PMID:26074791
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.
2012-01-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S
2012-11-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru
2017-01-01
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709
Boekhoudt, Linde; Wijbrans, Ellen C; Man, Jodie H K; Luijendijk, Mieneke C M; de Jong, Johannes W; van der Plasse, Geoffrey; Vanderschuren, Louk J M J; Adan, Roger A H
2018-01-01
Motivational deficits are a key symptom in multiple psychiatric disorders, including major depressive disorder, schizophrenia and addiction. A likely neural substrate for these motivational deficits is the brain dopamine (DA) system. In particular, DA signalling in the nucleus accumbens, which originates from DA neurons in the ventral tegmental area (VTA), has been identified as a crucial substrate for effort-related and activational aspects of motivation. Unravelling how VTA DA neuronal activity relates to motivational behaviours is required to understand how motivational deficits in psychiatry can be specifically targeted. In this study, we therefore used designer receptors exclusively activated by designer drugs (DREADD) in TH:Cre rats, in order to determine the effects of chemogenetic DA neuron activation on different aspects of motivational behaviour. We found that chemogenetic activation of DA neurons in the VTA, but not substantia nigra, significantly increased responding for sucrose under a progressive ratio schedule of reinforcement. More specifically, high effort exertion was characterized by increased initiations of reward-seeking actions. This effect was dependent on effort requirements and instrumental contingencies, but was not affected by sucrose pre-feeding. Together, these findings indicate that VTA DA neuronal activation drives motivational behaviour by facilitating action initiation. With this study, we show that enhancing excitability of VTA DA neurons is a viable strategy to improve motivational behaviour. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru
2015-08-01
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.
2016-01-01
Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672
Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J
2016-11-01
Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH) + neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH) - and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH + neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D 2 -like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH + neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH + cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH + neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.
Somatodendritic dopamine release: recent mechanistic insights
Rice, Margaret E.; Patel, Jyoti C.
2015-01-01
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764
GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner
Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David
2015-01-01
G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.
Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey
2016-10-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting
Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey
2016-01-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. PMID:27440240
West, Charles Hutchison Keesor; Weiss, Jay Michael
2010-01-01
Increasing attention is now focused on reduced dopaminergic neurotransmission in the forebrain as participating in depression. The present paper assessed whether effective antidepressant (AD) treatments might counteract, or compensate for, such a change by altering the neuronal activity of dopaminergic neurons in the ventral tegmental area (VTA-DA neurons), the cell bodies of the mesocorticolimbic dopaminergic system. Eight AD drugs or vehicle were administered to rats for 14 days via subcutaneously-implanted minipumps, at which time single-unit electrophysiological activity of VTA-DA neurons was recorded under anesthesia. Also, animals received a series of five electroconvulsive shocks (ECS) or control procedures, after which VTA-DA activity was measured either three or five days after the last ECS. Results showed that the chronic administration of all AD drugs tested except for the monoamine oxidase inhibitor increased the spontaneous firing rate of VTA-DA neurons, while effects on “burst” firing activity were found to be considerably less notable or consistent. ECS increased both spontaneous firing rate and burst firing of VTA-DA neurons. It is suggested that the effects observed are consistent with reports of increased dopamine release in regions to which VTA neurons project after effective AD treatment. However, it is further suggested that changes in VTA-DA neuronal activity in response to AD treatment should be most appropriately assessed under conditions associated with depression, such as stressful conditions. PMID:20482941
Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons
Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg
2014-01-01
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca2+ channel activity, internal Ca2+, and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca2+ channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca2+ channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson’s disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca2+ channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson’s disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration. PMID:24934288
Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C; Striessnig, Joerg; Liss, Birgit
2014-08-01
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson's disease. Their selective loss causes the major motor symptoms of Parkinson's disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson's disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca(2+) channels both contribute to Parkinson's disease pathology. L-type Ca(2+) channel blockers protect SN DA neurons from degeneration in Parkinson's disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson's disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson's disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson's disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson's disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca(2+) channel activity, internal Ca(2+), and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca(2+) channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca(2+) channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson's disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca(2+) channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson's disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin
2011-05-01
We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.
De Gregorio, Danilo; Posa, Luca; Ochoa-Sanchez, Rafael; McLaughlin, Ryan; Maione, Sabatino; Comai, Stefano; Gobbi, Gabriella
2016-11-01
d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT 1 and 5-HT 2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5-20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT 2A and D 2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30-120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D 2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT 1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR 1 ) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT 1A, D 2 and TAAR 1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mejias-Aponte, Carlos A.; Ye, Changquan; Bonci, Antonello; Kiyatkin, Eugene A.
2015-01-01
Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was determined by their juxtacellular labeling and immunohistochemical detection of tyrosine hydroxylase (TH), a DA marker. We found that intravenous cocaine altered firing rates in the majority of recorded VTA neurons. Within the cocaine-responsive neurons, half of the population was excited and the other half was inhibited. Both populations had similar discharge rates and firing regularities, and most neurons did not exhibit changes in burst firing. Inhibited neurons were more abundant in the posterior VTA, whereas excited neurons were distributed evenly throughout the VTA. Cocaine-excited neurons were more likely to be excited by footshock. Within the subpopulation of TH-positive neurons, 36% were excited by cocaine and 64% were inhibited. Within the subpopulation of TH-negative neurons, 44% were excited and 28% were inhibited. Contrary to the prevailing view that all DA neurons are inhibited by cocaine, we found a subset of confirmed VTA DA neurons that is excited by systemic administration of cocaine. We provide evidence indicating that DA neurons are heterogeneous in their response to cocaine and that VTA non-DA neurons play an active role in processing systemic cocaine. PMID:25653355
Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia
2017-01-01
The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.
Steffensen, Scott C.; Taylor, Seth R.; Horton, Malia L.; Barber, Elise N.; Lyle, Laura T.; Stobbs, Sarah H.; Allison, David W.
2010-01-01
The aim of this study was to evaluate the effects of cocaine on γ-aminobutyric acid (GABA) and dopamine (DA) neurons in the ventral tegmental area (VTA). Utilizing single-unit recordings in vivo, microelectrophoretic administration of DA enhanced the firing rate of VTA GABA neurons via D2/D3 DA receptor activation. Lower doses of intravenous cocaine (0.25–0.5 mg/kg), or the DA transporter (DAT) blocker methamphetamine, enhanced VTA GABA neuron firing rate via D2/D3 receptor activation. Higher doses of cocaine (1.0–2.0 mg/kg) inhibited their firing rate, which was not sensitive to the D2/D3 antagonist eticlopride. The voltage-sensitive sodium channel (VSSC) blocker lidocaine inhibited the firing rate of VTA GABA neurons at all doses tested (0.25–2.0 mg/kg). Cocaine or lidocaine reduced VTA GABA neuron spike discharges induced by stimulation of the internal capsule (ICPSDs) at dose levels 0.25–2 mg/kg (IC50 1.2 mg/kg). There was no effect of DA or methamphetamine on ICPSDs, or of DA antagonists on cocaine inhibition of ICPSDs. In VTA GABA neurons in vitro, cocaine reduced (IC50 13 μm) current-evoked spikes and TTX-sensitive sodium currents in a use-dependent manner. In VTA DA neurons, cocaine reduced IPSCs (IC50 13 μm), increased IPSC paired-pulse facilitation and decreased spontaneous IPSC frequency, without affecting miniature IPSC frequency or amplitude. These findings suggest that cocaine acts on GABA neurons to reduce activity-dependent GABA release on DA neurons in the VTA, and that cocaine's use-dependent blockade of VTA GABA neuron VSSCs may synergize with its DAT inhibiting properties to enhance mesolimbic DA transmission implicated in cocaine reinforcement. PMID:19046384
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal
Kaufling, Jennifer
2015-01-01
Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA–VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA–VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. SIGNIFICANCE STATEMENT Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal. PMID:26180204
Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping
2015-07-24
One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.
Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation
Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.
2016-01-01
Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628
Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H
2014-09-01
Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, P<0.001) and 41±24% (n=8, P<0.05), respectively. GABA or neurotensin receptor blockade prevented leptin's effect on glucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, P<0.05) and action potentials (n=9; P<0.05) in 45% (9/20) of VTA DA neurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward-based feeding. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Tae Woo; Moon, Younghye; Kim, Kyungjin; Lee, Jeong Eun; Koh, Hyun Chul; Rhyu, Im Joo; Kim, Hyun; Sun, Woong
2011-01-01
Parkinson's disease (PD) is a common, late-onset movement disorder with selective degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Although the neurotoxin 6-hydroxydopamine (6-OHDA) has been used to induce progressive degeneration of DA neurons in various animal models of PD, the precise molecular pathway and the impact of anti-apoptotic treatment on this neurodegeneration are less understood. Following a striatal injection of 6-OHDA, we observed atrophy and progressive death of DA neurons in wild-type mice. These degenerating DA neurons never exhibited signs of apoptosis (i.e., caspase-3 activation and cytoplasmic release of cytochrome C), but rather show nuclear translocation of apoptosis-inducing factor (AIF), a hallmark of regulated necrosis. However, mice with genetic deletion of the proapoptotic gene Bax (Bax-KO) exhibited a complete absence of 6-OHDA-induced DA neuron death and nuclear translocation of AIF, indicating that 6-OHDA-induced DA neuronal death is mediated by Bax-dependent AIF activation. On the other hand, DA neurons that survived in Bax-KO mice exhibited marked neuronal atrophy, without significant improvement of PD-related behavioral deficits. These findings suggest that anti-apoptotic therapy may not be sufficient for PD treatment, and the prevention of Bax-independent neuronal atrophy may be an important therapeutic target. PMID:22043283
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
Persistent Adaptations in Afferents to Ventral Tegmental Dopamine Neurons after Opiate Withdrawal.
Kaufling, Jennifer; Aston-Jones, Gary
2015-07-15
Protracted opiate withdrawal is accompanied by altered responsiveness of midbrain dopaminergic (DA) neurons, including a loss of DA cell response to morphine, and by behavioral alterations, including affective disorders. GABAergic neurons in the tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, are important for behavioral responses to opiates. We investigated the tVTA-VTA circuit in rats after chronic morphine exposure to determine whether tVTA neurons participate in the loss of opiate-induced disinhibition of VTA DA neurons observed during protracted withdrawal. In vivo recording revealed that VTA DA neurons, but not tVTA GABAergic neurons, are tolerant to morphine after 2 weeks of withdrawal. Optogenetic stimulation of tVTA neurons inhibited VTA DA neurons similarly in opiate-naive and long-term withdrawn rats. However, tVTA inactivation increased VTA DA activity in opiate-naive rats, but not in withdrawn rats, resembling the opiate tolerance effect in DA cells. Thus, although inhibitory control of DA neurons by tVTA is maintained during protracted withdrawal, the capacity for disinhibitory control is impaired. In addition, morphine withdrawal reduced both tVTA neural activity and tonic glutamatergic input to VTA DA neurons. We propose that these changes in glutamate and GABA inputs underlie the apparent tolerance of VTA DA neurons to opiates after chronic exposure. These alterations in the tVTA-VTA DA circuit could be an important factor in opiate tolerance and addiction. Moreover, the capacity of the tVTA to inhibit, but not disinhibit, DA cells after chronic opiate exposure may contribute to long-term negative affective states during withdrawal. Dopaminergic (DA) cells of the ventral tegmental area (VTA) are the origin of a brain reward system and are critically involved in drug abuse. Morphine has long been known to affect VTA DA cells via GABAergic interneurons. Recently, GABAergic neurons caudal to the VTA were discovered and named the tail of VTA (tVTA). Here, we show that tVTA GABA neurons lose their capacity to disinhibit, but not to inhibit, VTA DA cells after chronic opiate exposure. The failure of disinhibition was associated with a loss of glutamatergic input to DA neurons after chronic morphine. These findings reveal mechanisms by which the tVTA may play a key role in long-term negative affective states during opiate withdrawal. Copyright © 2015 the authors 0270-6474/15/3510290-14$15.00/0.
Guerreiro, Serge; Florence, Clélia; Rousseau, Erwann; Hamadat, Sabah; Hirsch, Etienne C; Michel, Patrick P
2015-01-01
To determine whether orexinergic hypothalamic peptides can influence the survival of brainstem dopamine (DA) neurons, we used a model system of rat midbrain cultures in which DA neurons degenerate spontaneously and progressively as they mature. We established that orexin (OX)-B provides partial but significant protection to spontaneously dying DA neurons, whereas the homologous peptide OXA has only marginal effects. Importantly, DA neurons rescued by OXB accumulated DA efficiently by active transport, suggesting that they were functional. G-protein-coupled OX1 and OX2 receptors were both present on DA neurons, but the protective effect of OXB was attributable solely to OX2 receptors; a selective inhibitor of this receptor subtype, N-ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA), suppressed this effect, whereas a selective agonist, [Ala(11), d-Leu(15)]OXB, reproduced it. Survival promotion by OXB required intracellular calcium mobilization via inositol-1,4,5-triphosphate and ryanodine receptors. Nicotine, a well known neuroprotective molecule for DA neurons, improved OXB-mediated rescue through the activation of α-bungarotoxin-sensitive (presumably α7) nicotinic receptors, although nicotine had no effect on its own. Altogether, our data suggest that the loss of hypothalamic orexinergic neurons that occurs in Parkinson's disease might confer an increased vulnerability to midbrain DA neurons in this disorder. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Bunney, B S; Roth, R H; Aghajanian, G K
1975-01-01
The effect of molindone on the activity of dopaminergic (DA) neurons in the rat midbrain and on DA metabolism in the striatum and olfactory tubercles was studied using extracellular single unit recording and biochemical techniques respectively. Molindone in low intravenous doses (0.4-0.8 mg/kg) was found to reverse d-amphetamine and apomorphine induced depression of DA neurons and to block apomorphine induced depression of these cells. Molindone was also found to increase dopamine synthesis and dihydroxyphenylactic acid levels in the striatum and olfacotry tubercles. In all of these respects molindone behaves identically to most classical neuroleptics. However, unlike most antipsychotic drugs previously tested, molindone failed to increase the baseline firing rate of DA cells and blocked haloperidol induced increases in DA neuron activity. In this regard molindone most closely resembles thioridazine and clozapine. Possible mechanisms of action of molindone are discussed based on these findings.
Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.
Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M
2016-02-11
The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Block, M L; Wu, X; Pei, Z; Li, G; Wang, T; Qin, L; Wilson, B; Yang, J; Hong, J S; Veronesi, B
2004-10-01
The contributing role of environmental factors to the development of Parkinson's disease has become increasingly evident. We report that mesencephalic neuron-glia cultures treated with diesel exhaust particles (DEP; 0.22 microM) (5-50 microg/ml) resulted in a dose-dependent decrease in dopaminergic (DA) neurons, as determined by DA-uptake assay and tyrosine-hydroxylase immunocytochemistry (ICC). The selective toxicity of DEP for DA neurons was demonstrated by the lack of DEP effect on both GABA uptake and Neu-N immunoreactive cell number. The critical role of microglia was demonstrated by the failure of neuron-enriched cultures to exhibit DEP-induced DA neurotoxicity, where DEP-induced DA neuron death was reinstated with the addition of microglia to neuron-enriched cultures. OX-42 ICC staining of DEP treated neuron-glia cultures revealed changes in microglia morphology indicative of activation. Intracellular reactive oxygen species and superoxide were produced from enriched-microglia cultures in response to DEP. Neuron-glia cultures from NADPH oxidase deficient (PHOX-/-) mice were insensitive to DEP neurotoxicity when compared with control mice (PHOX+/+). Cytochalasin D inhibited DEP-induced superoxide production in enriched-microglia cultures, implying that DEP must be phagocytized by microglia to produce superoxide. Together, these in vitro data indicate that DEP selectively damages DA neurons through the phagocytic activation of microglial NADPH oxidase and consequent oxidative insult.
Wang, Min; Li, Min; Geng, Xiwen; Song, Zhimin; Albers, H Elliott; Yang, Maoquan; Zhang, Xiao; Xie, Jinlu; Qu, Qingyang; He, Tingting
2015-01-15
The involvement of dopamine (DA) neuron loss in the etiology of Parkinson's disease has been well documented. The neural mechanisms underlying the effects of DA loss and the resultant motor dysfunction remain unknown. To gain insights into how loss of DA disrupts the electrical processes in the cortico-subcortical network, the present study explores the effects of DA neuron depletion on electrical activity in the primary motor cortex (M1), on the external and the internal segment of the globus pallidus (GPe and GPi respectively), and on their temporal relationships. Comparison of local field potentials (LFPs) in these brain regions from unilateral hemispheric DA neuron depleted rats and neurologically intact rats revealed that the spectrum power of LFPs in 12-70Hz (for M1, and GPe) and in 25-40Hz (for GPi) was significantly greater in the DA depleted rats than that in the control group. These changes were associated with a shortening of latency in LFP activities between M1 and GPe, from several hundred milliseconds in the intact animals to close to zero in the DA depleted animals. LFP oscillations in M1 were significantly more synchronized with those in GPe in the DA depleted rats compared with those in the control rats. By contrast, the synchronization of oscillation in LFP activities between M1 and GPi did not differ between the DA depleted and intact rats. Not surprisingly, rats that had DA neuron depletion spent more time along the ladder compared with the control rats. These data suggest that enhanced oscillatory activity and increased synchronization of LFPs may contribute to movement impairment in the rat model of Parkinson's disease. Copyright © 2014 Elsevier B.V. All rights reserved.
GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.
Engberg, G; Kling-Petersen, T; Nissbrandt, H
1993-11-01
Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.
Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane
2014-09-01
Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to increased levels of Aβ. Decreasing levels of 82-kDa ChAT due to increasing age or neurodegeneration could alter the balance towards increasing Aβ production, with this potentiating the decline in function of cholinergic neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit
2015-09-18
The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.
Carta, Manolo; Tronci, Elisabetta
2014-01-01
In the recent years, the serotonin system has emerged as a key player in the induction of l-DOPA-induced dyskinesia (LID) in animal models of Parkinson’s disease. In fact, serotonin neurons possess the enzymatic machinery able to convert exogenous l-DOPA to dopamine (DA), and mediate its vesicular storage and release. However, serotonin neurons lack a feedback control mechanism able to regulate synaptic DA levels. While in a situation of partial DA depletion spared DA terminals can buffer DA released from serotonin neurons, the progression of DA neuron degeneration impairs this protective mechanism, causing swings in synaptic DA levels and pulsatile stimulation of post-synaptic DA receptors. In line with this view, removal of serotonin neurons by selective toxin, or pharmacological silencing of their activity, produced complete suppression of LID in animal models of Parkinson’s disease. In this article, we will revise the experimental evidence pointing to the important role of serotonin neurons in dyskinesia, and we will discuss the clinical implications. PMID:24904522
Tseng, Kuei Y; Kargieman, Lucila; Gacio, Sebastian; Riquelme, Luis A; Murer, M Gustavo
2005-11-01
Severe chronic dopamine (DA) depletion increases the proportion of neurons in the basal ganglia that fire rhythmic bursts of action potential (LFO units) synchronously with the cortical oscillations. Here we report on how different levels of mesencephalic DA denervation affect substantia nigra pars reticulata (SNpr) neuronal activity in the rat and its relationship to akinesia (stepping test). Chronic nigrostriatal lesion induced with 0 (control group), 4, 6 or 8 microg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle resulted in a dose-dependent decrease of tyrosine hydroxylase positive (TH+) neurons in the SN and ventral tegmental area (VTA). Although 4 microg of 6-OHDA reduced the number of TH+ neurons in the SN by approximately 60%, both stepping test performance and SNpr neuronal activity remained indistinguishable from control animals. By contrast, animals that received 6 microg of 6-OHDA showed a marked reduction of TH+ cells in the SN ( approximately 75%) and VTA ( approximately 55%), a significant stepping test deficit and an increased proportion of LFO units. These changes were not dramatically enhanced with 8 microg 6-OHDA, a dose that induced an extensive DA lesion (> 95%) in the SN and approximately 70% reduction of DA neurons in the VTA. These results suggest a threshold level of DA denervation for both the appearance of motor deficits and LFO units. Thus, the presence of LFO activity in the SNpr is not related to a complete nigrostriatal DA neuron depletion (ultimate stage parkinsonism); instead, it may reflect a functional disruption of cortico-basal ganglia dynamics associated with clinically relevant stages of the disease.
Karim, M Rezaul; Moore, Adrian W
2011-11-07
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).
Margolis, Elyssa B; Lock, Hagar; Hjelmstad, Gregory O; Fields, Howard L
2006-01-01
The ventral tegmental area (VTA) and in particular VTA dopamine (DA) neurons are postulated to play a central role in reward, motivation and drug addiction. However, most evidence implicating VTA DA neurons in these functions is based on indirect electrophysiological characterization, rather than cytochemical identification. These physiological criteria were first established in the substantia nigra pars compacta (SNc), but their validity in the VTA is uncertain. In the current study we found that while 88 ± 2% of SNc neurons labelled by the neuronal marker NeuN were co-labelled for the catecholamine enzyme tyrosine hydroxylase (TH), a much smaller percentage (55 ± 2%) of VTA neurons co-expressed TH. In addition, using in vitro whole-cell recordings we found that widely accepted physiological criteria for VTA DA neurons, including the hyperpolarization-activated inwardly rectifying non-specific cation current (Ih), spike duration, and inhibition by DA D2 receptor agonists, do not reliably predict the DA content of VTA neurons. We could not distinguish DA neurons from other VTA neurons by size, shape, input resistance, Ih size, or spontaneous firing rate. Although the absence of an Ih reliably predicted that a VTA neuron was non-dopaminergic, and Ih(−) neurons differ from Ih(+) neurons in firing rate, interspike interval (ISI) standard deviation, and ISI skew, no physiological property examined here is both sensitive and selective for DA neurons in the VTA. We conclude that reliable physiological criteria for VTA DA neuron identification have yet to be determined, and that the criteria currently being used are unreliable. PMID:16959856
Leptin regulates the reward value of nutrient
Domingos, Ana I; Vaynshteyn, Jake; Voss, Henning U; Ren, Xueying; Gradinaru, Viviana; Zang, Feng; Deisseroth, Karl; de Araujo, Ivan E; Friedman, Jeffrey
2014-01-01
We developed an assay for quantifying the reward value of nutrient and used it to analyze the effects of metabolic state and leptin. In this assay, mice chose between two sippers, one of which dispensed water and was coupled to optogenetic activation of dopaminergic (DA) neurons and the other of which dispensed natural or artificial sweeteners. This assay measured the reward value of sweeteners relative to lick-induced optogenetic activation of DA neurons. Mice preferred optogenetic stimulation of DA neurons to sucralose, but not to sucrose. However, the mice preferred sucralose plus optogenetic stimulation versus sucrose. We found that food restriction increased the value of sucrose relative to sucralose plus optogenetic stimulation, and that leptin decreased it. Our data suggest that leptin suppresses the ability of sucrose to drive taste-independent DA neuronal activation and provide new insights into the mechanism of leptin's effects on food intake. PMID:22081158
Striatal dopamine neurotransmission: regulation of release and uptake
Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.
2016-01-01
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yinxi; Liu, Dan; Zhang, Huifeng
Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPHmore » oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our findings delineated the potential role of ultrafine particles alone and in combination with pesticide rotenone in the pathogenesis of PD. - Graphical abstract: Ultrafine particles and rotenone synergistically induce the assembly of active form NADPH oxidase complex in microglia inducing oxidative damage to dopamine neurons. - Highlights: • Ultrafine carbon black promotes dopaminergic neuronal loss induced by rotenone. • The role and underlying mechanism of ultrafine particles in the pathogenesis of PD • NADPH oxidase is a potential therapeutic target of Parkinson's disease.« less
L’Episcopo, Francesca; Tirolo, Cataldo; Testa, Nunzio; Caniglia, Salvatore; Morale, Maria Concetta; Serapide, Maria Francesca; Pluchino, Stefano; Marchetti, Bianca
2014-01-01
SUMMARY Wnt/β-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson’s disease (PD) and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/β-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/β-catenin signaling. Cococulture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic β-catenin reporter mice uncovered Wnt/β-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled β-catenin signaling in predopaminergic (Nurr1+/TH−) and imperiled or rescuing DAT+ neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas β-catenin activation in situ with a specific GSK-3β antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD. PMID:24648001
Activation of serotonin 2C receptors in dopamine neurons inhibits binge-like eating in mice
Xu, Pingwen; He, Yanlin; Cao, Xuehong; Valencia-Torres, Lourdes; Yan, Xiaofeng; Saito, Kenji; Wang, Chunmei; Yang, Yongjie; Hinton, Antentor; Zhu, Liangru; Shu, Gang; Myers, Martin G.; Wu, Qi; Tong, Qingchun; Heisler, Lora K.; Xu, Yong
2016-01-01
Background Neural networks that regulate binge eating remain to be identified, and effective treatments for binge eating are limited. Methods We combined neuroanatomical, pharmacological, electrophysiological, Cre-lox, and chemogenetic approaches to investigate the functions of 5-HT 2C receptor (5-HT2CR) expressed by dopamine (DA) neurons in the regulation of binge-like eating behavior in mice. Results We showed that 5-HT stimulates DA neural activity through a 5-HT2CR-mediated mechansim, and activation of this midbrain 5-HT-DA neural circuit effectively inhibits binge-like eating behavior in mice. Notably, 5-HT medications, including fluoxetine, d-Fenfluramine, and lorcaserin (a selective 5-HT2CR agonist), act upon 5-HT2CRs expressed by DA neurons to inhibit binge-like eating in mice. Conclusions We identified the 5-HT2CR population in DA neurons as one potential target for anti-binge therapies, and provided pre-clinical evidence that 5-HT2CR agonists could be used to treat binge eating. PMID:27516377
Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E.; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L.
2013-01-01
Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson’s disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (<0.22 µM; 50µg/mL), ultrafine carbon black (ufCB, 50µg/ml), or DEP extracts (eDEP; from 50 µg/ml DEP) and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced amoeboid microglia morphology, increased H2O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2O2 production in microglia. However, pretreatment with the MAC1/CD11b inhibitor antibody blocked microglial H2O2 production in response to DEP. MAC1−/− mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2O2 production and loss of DA neuron function. PMID:23470120
Kosonsiriluk, Sunantha; Mauro, Laura J; Chaiworakul, Voravasa; Chaiseha, Yupaporn; El Halawani, Mohamed E
2013-09-01
The pathway for light transmission regulating the reproductive neuroendocrine system in temperate zone birds remains elusive. Based on the evidence provided from our studies with female turkeys, it is suggested that the circadian clock regulating reproductive seasonality is located in putatively photosensitive dopamine-melatonin (DA-MEL) neurons residing in the premammillary nucleus (PMM) of the caudal hypothalamus. Melanopsin is expressed by these neurons; a known photopigment which mediates light information pertaining to the entrainment of the clock. Exposure to a gonad stimulatory photoperiod enhances the activity of the DAergic system within DA-MEL neurons. DAergic activity encoding the light information is transmitted to the pars tuberalis, where thyroid-stimulating hormone, beta (TSHβ) cells reside, and induces the release of TSH. TSH stimulates tanycytes lining the base of the third ventricle and activates type 2 deiodinase in the ependymal which enhances triiodothyronine (T3) synthesis. T3 facilitates the release of gonadotropin-releasing hormone-I which stimulates luteinizing hormone/follicle stimulating hormone release and gonad recrudescence. These data taken together with the findings that clock genes are rhythmically expressed in the PMM where DA-MEL neurons are localized imply that endogenous oscillators containing photoreceptors within DA-MEL neurons are important in regulating the DA and MEL rhythms that drive the circadian cycle controlling seasonal reproduction. Published by Elsevier Inc.
Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry
Keiflin, Ronald; Janak, Patricia H.
2015-01-01
Summary Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error-signaling and addiction can be formulated and tested. PMID:26494275
Allison, David W; Wilcox, Rebecca S; Ellefsen, Kyle L; Askew, Caitlin E; Hansen, David M; Wilcox, Jeffrey D; Sandoval, Stephanie S; Eggett, Dennis L; Yanagawa, Yuchio; Steffensen, Scott C
2011-08-01
Connexin-36 (Cx36) gap junctions (GJs) appear to be involved in the synchronization of GABA interneurons in many brain areas. We have previously identified a population of Cx36-connected ventral tegmental area (VTA) GABA neurons that may regulate mesolimbic dopamine (DA) neurotransmission, a system implicated in reward from both natural behaviors and drugs of abuse. The aim of this study was to determine the effect mefloquine (MFQ) has on midbrain DA and GABA neuron inhibition, and the role Cx36 GJs play in regulating midbrain VTA DA neuron activity in mice. In brain slices from adolescent wild-type (WT) mice the Cx36-selective GJ blocker mefloquine (MFQ, 25 μM) increased VTA DA neuron sIPSC frequency sixfold, and mIPSC frequency threefold. However, in Cx36 KO mice, MFQ only increased sIPSC and mIPSC frequency threefold. The nonselective GJ blocker carbenoxolone (CBX, 100 μM) increased DA neuron sIPSC frequency twofold in WT mice, did not affect Cx36 KO mouse sIPSCs, and did not affect mIPSCs in WT or Cx36 KO mice. Interestingly, MFQ had no effect on VTA GABA neuron sIPSC frequency. We also examined MFQ effects on VTA DA neuron firing rate and current-evoked spiking in WT and Cx36 KO mice, and found that MFQ decreased WT DA neuron firing rate and current-evoked spiking, but did not alter these measures in Cx36 KO mice. Taken together these findings suggest that blocking Cx36 GJs increases VTA DA neuron inhibition, and that GJs play in key role in regulating inhibition of VTA DA neurons. Synapse, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.
Krenz, Wulf-Dieter C.; Parker, Anna R.; Rodgers, Edmund W.; Baro, Deborah J.
2014-01-01
Long-term intrinsic and synaptic plasticity must be coordinated to ensure stability and flexibility in neuronal circuits. Coordination might be achieved through shared transduction components. Dopamine (DA) is a well-established participant in many forms of long-term synaptic plasticity. Recent work indicates that DA is also involved in both activity-dependent and -independent forms of long-term intrinsic plasticity. We previously examined DA-enabled long-term intrinsic plasticity in a single identified neuron. The lateral pyloric (LP) neuron is a component of the pyloric network in the crustacean stomatogastric nervous system (STNS). LP expresses type 1 DA receptors (D1Rs). A 1 h bath application of 5 nM DA followed by washout produced a significant increase in the maximal conductance (Gmax) of the LP transient potassium current (IA) that peaked ~4 h after the start of DA application; furthermore, if a change in neuronal activity accompanied the DA application, then a persistent increase in the LP hyperpolarization activated current (Ih) was also observed. Here, we repeated these experiments with pharmacological and peptide inhibitors to determine the cellular processes and signaling proteins involved. We discovered that the persistent, DA-induced activity-independent (IA) and activity-dependent (Ih) changes in ionic conductances depended upon many of the same elements that enable long-term synaptic plasticity, including: the D1R-protein kinase A (PKA) axis, RNA polymerase II transcription, RNA interference (RNAi), and mechanistic target of rapamycin (mTOR)-dependent translation. We interpret the data to mean that increasing the tonic DA concentration enhances expression of a microRNA(s) (miRs), resulting in increased cap-dependent translation of an unidentified protein(s). PMID:24596543
Complexity of VTA DA neural activities in response to PFC transection in nicotine treated rats.
Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin M; Akay, Metin
2011-02-27
The dopaminergic (DA) neurons in the ventral tegmental area (VTA) are widely implicated in the addiction and natural reward circuitry of the brain. These neurons project to several areas of the brain, including prefrontal cortex (PFC), nucleus accubens (NAc) and amygdala. The functional coupling between PFC and VTA has been demonstrated, but little is known about how PFC mediates nicotinic modulation in VTA DA neurons. The objectives of this study were to investigate the effect of acute nicotine exposure on the VTA DA neuronal firing and to understand how the disruption of communication from PFC affects the firing patterns of VTA DA neurons. Extracellular single-unit recordings were performed on Sprague-Dawley rats and nicotine was administered after stable recording was established as baseline. In order to test how input from PFC affects the VTA DA neuronal firing, bilateral transections were made immediate caudal to PFC to mechanically delete the interaction between VTA and PFC. The complexity of the recorded neural firing was subsequently assessed using a method based on the Lempel-Ziv estimator. The results were compared with those obtained when computing the entropy of neural firing. Exposure to nicotine triggered a significant increase in VTA DA neurons firing complexity when communication between PFC and VTA was present, while transection obliterated the effect of nicotine. Similar results were obtained when entropy values were estimated. Our findings suggest that PFC plays a vital role in mediating VTA activity. We speculate that increased firing complexity with acute nicotine administration in PFC intact subjects is due to the close functional coupling between PFC and VTA. This hypothesis is supported by the fact that deletion of PFC results in minor alterations of VTA DA neural firing when nicotine is acutely administered.
Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R
2014-12-01
N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.
Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons.
Barik, Jacques; Marti, Fabio; Morel, Carole; Fernandez, Sebastian P; Lanteri, Christophe; Godeheu, Gérard; Tassin, Jean-Pol; Mombereau, Cédric; Faure, Philippe; Tronche, François
2013-01-18
Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.
Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L
2013-06-01
Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (< 0.22 μM; 50 μg/mL), ultrafine carbon black (ufCB, 50 μg/mL), or DEP extracts (eDEP; from 50 μg/mL DEP), and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function. © 2013 International Society for Neurochemistry.
2011-01-01
Background Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/β-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/β-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. Results In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing β-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/β-catenin signaling by unilateral infusion of a Fzd/β-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of β-catenin signaling within the SNpc. Conclusion These results defining a novel Wnt1/Fzd-1/β-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease. PMID:21752258
Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway.
Kaufling, Jennifer; Girard, Delphine; Maitre, Marlène; Leste-Lasserre, Thierry; Georges, François
2017-05-01
The anteromedial part of the bed nucleus of the stria terminalis (amBNST) is a limbic structure innervating the ventral tegmental area (VTA) that is remarkably constant across species. The amBNST modulates fear and anxiety, and activation of VTA dopamine (DA) neurons by amBNST afferents seems to be the way by which stress controls motivational states associated with reward or aversion. Because fear learning and anxiety states can be expressed differently between rats and mice, we compared the functional connectivity between amBNST and the VTA-DA neurons in both species using consistent methodological approaches. Using a combination of in vivo electrophysiological, neuroanatomical tracing and laser capture approaches we explored the BNST influences on VTA-DA neuron activity. First, we characterised in rats the molecular phenotype of the amBNST neurons projecting to the VTA. We found that this projection is complex, including both GABAergic and glutamatergic neurons. Then, VTA injections of a conventional retrograde tracer, the β-sub-unit of the cholera toxin (CTB), revealed a stronger BNST-VTA projection in mice than in rats. Finally, electrical stimulations of the BNST during VTA-DA neuron recording demonstrated a more potent excitatory influence of the amBNST on VTA-DA neuron activity in rats than in mice. These data illustrate anatomically, but also functionally, a significant difference between rats and mice in the amBNST-VTA pathway. More generally, together with previous findings, our research highlights the importance of species differences for the interpretation and the generalisation of research data. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Contribution of DA Signaling to Appetitive Odor Perception in a Drosophila Model.
Pu, Yuhan; Palombo, Melissa Megan Masserant; Shen, Ping
2018-04-13
Understanding cognitive processes that translate chemically diverse olfactory stimuli to specific appetitive drives remains challenging. We have shown that food-related odors arouse impulsive-like feeding of food media that are palatable and readily accessible in well-nourished Drosophila larvae. Here we provide evidence that two assemblies of four dopamine (DA) neurons, one per brain hemisphere, contribute to perceptual processing of the qualitative and quantitative attributes of food scents. These DA neurons receive neural representations of chemically diverse food-related odors, and their combined neuronal activities become increasingly important as the chemical complexity of an appetizing odor stimulus increases. Furthermore, in each assembly of DA neurons, integrated odor signals are transformed to one-dimensional DA outputs that have no intrinsic reward values. Finally, a genetic analysis has revealed a D1-type DA receptor (Dop1R1)-gated mechanism in neuropeptide Y-like neurons that assigns appetitive significance to selected DA outputs. Our findings suggest that fly larvae provide a useful platform for elucidation of molecular and circuit mechanisms underlying cognitive processing of olfactory and possibly other sensory cues.
Ding, Saidan; Wang, Weikan; Wang, Xuebao; Liang, Yong; Liu, Leping; Ye, Yiru; Yang, Jianjing; Gao, Hongchang; Zhuge, Qichuan
2016-10-01
Dopamine (DA)-induced learning and memory impairment is well documented in minimal hepatic encephalopathy (MHE), but the contribution of DA to neurodegeneration and the involved underlying mechanisms are not fully understood. In this study, the effect of DA on neuronal apoptosis was initially detected. The results showed that MHE/DA (10 μg)-treated rats displayed neuronal apoptosis. However, we found that DA (10 μM) treatment did not induce evident apoptosis in primary cultured neurons (PCNs) but did produce TNF-α in primary cultured astrocytes (PCAs). Furthermore, co-cultures between PCAs and PCNs exposed to DA exhibited increased astrocytic TNF-α levels and neuronal apoptosis compared with co-cultures exposed to the vehicle, indicating the attribution of the neuronal apoptosis to astrocytic TNF-α. We also demonstrated that DA enhanced TNF-α production from astrocytes by activation of the TLR4/MyD88/NF-κB pathway, and secreted astrocytic TNF-α-potentiated neuronal apoptosis through inactivation of the PI3K/Akt/mTOR pathway. Overall, the findings from this study suggest that DA stimulates substantial production and secretion of astrocytic TNF-α, consequently and indirectly triggering progressive neurodegeneration, resulting in cognitive decline and memory loss in MHE.
Tschida, Katherine; Bhandawat, Vikas
2015-01-01
Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959
McDaid, John; McElvain, Maureen A.; Brodie, Mark S.
2008-01-01
The dopaminergic neurons of the ventral tegmental area (DA VTA neurons) are important for the rewarding and reinforcing properties of drugs of abuse, including ethanol. Ethanol increases the firing frequency of DA VTA neurons from rats and mice. Because of a recent report on block of ethanol excitation in mouse DA VTA neurons with ZD7288, a selective blocker of the hyperpolarization-activated cationic current Ih, we examined the effect of ZD7288 on ethanol excitation in DA VTA neurons from C57Bl/6J and DBA/2J mice and Fisher 344 rats. Ethanol (80 mM) caused only increases in firing rate in mouse DA VTA neurons in the absence of ZD7288, but in the presence of ZD7288 (30 μM), ethanol produced a more transient excitation followed by a decrease of firing. This same biphasic phenomenon was observed in DA VTA neurons from rats in the presence of ZD7288 only at very high ethanol concentrations (160–240 mM) but not at lower pharmacologically relevant concentrations. The longer latency ethanol-induced inhibition was not observed in DA VTA neurons from mice or rats in the presence of barium (100 μM), which blocks G protein–linked potassium channels (GIRKs) and other inwardly rectifying potassium channels. Ethanol may have a direct effect to increase an inhibitory potassium conductance, but this effect of ethanol can only decrease the firing rate if Ih is blocked. PMID:18614756
An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.
Dreher, Jean-Claude; Burnod, Yves
2002-01-01
This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.
Aumann, Tim D
2016-04-01
The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2) Imbalances in midbrain DA cause symptoms associated with several prominent brain and behavioral disorders such as schizophrenia, addiction, obsessive-compulsive disorder, depression, Parkinson's disease and attention-deficit and hyperactivity disorder. Midbrain DA neurotransmitter plasticity may therefore play a role in the etiology of these symptoms, and might also offer new treatment options. Copyright © 2015 Elsevier B.V. All rights reserved.
Valdés-Baizabal, Catalina; Soto, Enrique; Vega, Rosario
2015-01-01
The cochlear inner hair cells synapse onto type I afferent terminal dendrites, constituting the main afferent pathway for auditory information flow. This pathway receives central control input from the lateral olivocochlear efferent neurons that release various neurotransmitters, among which dopamine (DA) plays a salient role. DA receptors activation exert a protective role in the over activation of the afferent glutamatergic synapses, which occurs when an animal is exposed to intense sound stimuli or during hypoxic events. However, the mechanism of action of DA at the cellular level is still not completely understood. In this work, we studied the actions of DA and its receptor agonists and antagonists on the voltage-gated sodium current (INa) in isolated cochlear afferent neurons of the rat to define the mechanisms of dopaminergic control of the afferent input in the cochlear pathway. Experiments were performed using the voltage and current clamp techniques in the whole-cell configuration in primary cultures of cochlear spiral ganglion neurons (SGNs). Recordings of the INa showed that DA receptor activation induced a significant inhibition of the peak current amplitude, leading to a significant decrease in cell excitability. Inhibition of the INa was produced by a phosphorylation of the sodium channels as shown by the use of phosphatase inhibitor that produced an inhibition analogous to that caused by DA receptor activation. Use of specific agonists and antagonists showed that inhibitory action of DA was mediated both by activation of D1- and D2-like DA receptors. The action of the D1- and D2-like receptors was shown to be mediated by a Gαs/AC/cAMP/PKA and Gαq/PLC/PKC pathways respectively. These results showed that DA receptor activation constitutes a significant modulatory input to SGNs, effectively modulating their excitability and information flow in the auditory pathway.
Huang, Chun; Zhu, Li; Li, Huan; Shi, Fu-Guo; Wang, Guo-Qing; Wei, Yi-Zheng; Liu, Jie; Zhang, Feng
2017-01-01
Parkinson’s disease (PD) is the second most neurodegenerative disorder with a regional decrease of dopamine (DA) neurons in the substantia nigra (SN). Despite intense exploration, the etiology of PD progressive process remains unclear. This study was to investigate the synergistic effects of systemic inflammation of lipopolysaccharide (LPS) and neurotoxicity of rotenone (ROT) on exacerbating DA neuron lesion. Male SD adulthood rats received a single intraperitoneal injection of LPS. Seven months later, rats were subcutaneously given ROT five times a week for consecutive 4 weeks. Rat behavior changes were assessed via rotarod and open-field tests. Brain SN was immunostained to evaluate DA neuronal loss and microglia activation. Striatum DA and its metabolites levels were determined by high performance liquid chromatography (HPLC) coupled with electrochemistry. The protein levels of α-synuclein (α-Syn), inflammatory factors and mitogen-activated protein kinase (MAPK) pathway activation were detected by western blotting analysis. Results indicated that no significant difference between the control and LPS alone groups was shown. Compared with ROT alone group, LPS combined with ROT significantly reduced motor activity and induced SN DA neurons loss accompanied by the decreased contents of striatum DA and its metabolites. Furthermore, LPS together with ROT enhanced microglia activation and the increased expressions of α-Syn and inflammatory factors and also MAPK signaling pathway activation. However, LPS alone had no significant effects on the above parameters. These findings suggest that adulthood exposure to LPS exacerbates the neurotoxic and inflammatory effects of ROT in the SN. PMID:28533741
Norepinephrine Activates Dopamine D4 Receptors in the Rat Lateral Habenula
Root, David H.; Hoffman, Alexander F.; Good, Cameron H.; Zhang, Shiliang; Gigante, Eduardo
2015-01-01
The lateral habenula (LHb) is involved in reward and aversion and is reciprocally connected with dopamine (DA)-containing brain regions, including the ventral tegmental area (VTA). We used a multidisciplinary approach to examine the properties of DA afferents to the LHb in the rat. We find that >90% of VTA tyrosine hydroxylase (TH) neurons projecting to the LHb lack vesicular monoamine transporter 2 (VMAT2) mRNA, and there is little coexpression of TH and VMAT2 protein in this mesohabenular pathway. Consistent with this, electrical stimulation of LHb did not evoke DA-like signals, assessed with fast-scan cyclic voltammetry. However, electrophysiological currents that were inhibited by L741,742, a DA-D4-receptor antagonist, were observed in LHb neurons when DA uptake or degradation was blocked. To prevent DA activation of D4 receptors, we repeated this experiment in LHb slices from DA-depleted rats. However, this did not disrupt D4 receptor activation initiated by the dopamine transporter inhibitor, GBR12935. As the LHb is also targeted by noradrenergic afferents, we examined whether GBR12935 activation of DA-D4 receptors occurred in slices depleted of norepinephrine (NE). Unlike DA, NE depletion prevented the activation of DA-D4 receptors. Moreover, direct application of NE elicited currents in LHb neurons that were blocked by L741,742, and GBR12935 was found to be a more effective blocker of NE uptake than the NE-selective transport inhibitor nisoxetine. These findings demonstrate that NE is released in the rat LHb under basal conditions and that it activates DA-D4 receptors. Therefore, NE may be an important regulator of LHb function. PMID:25716845
Jang, Jin Young; Jang, Miae; Kim, Shin Hye; Um, Ki Bum; Kang, Yun Kyung; Kim, Hyun Jin; Chung, Sungkwon; Park, Myoung Kyu
2011-03-01
Dopamine (DA) receptors generate many cellular signals and play various roles in locomotion, motivation, hormone production, and drug abuse. According to the location and expression types of the receptors in the brain, DA signals act in either stimulatory or inhibitory manners. Although DA autoreceptors in the substantia nigra pars compacta are known to regulate firing activity, the exact expression patterns and roles of DA autoreceptor types on the firing activity are highly debated. Therefore, we performed individual correlation studies between firing activity and receptor expression patterns using acutely isolated rat substantia nigra pars compacta DA neurons. When we performed single-cell RT-PCR experiments, D(1), D(2)S, D(2)L, D(3), and D(5) receptor mRNA were heterogeneously expressed in the order of D(2)L > D(2)S > D(3) > D(5) > D(1). Stimulation of D(2) receptors with quinpirole suppressed spontaneous firing similarly among all neurons expressing mRNA solely for D(2)S, D(2)L, or D(3) receptors. However, quinpirole most strongly suppressed spontaneous firing in the neurons expressing mRNA for both D(2) and D(3) receptors. These data suggest that D(2) S, D(2)L, and D(3) receptors are able to equally suppress firing activity, but that D(2) and D(3) receptors synergistically suppress firing. This diversity in DA autoreceptors could explain the various actions of DA in the brain. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons
Berthet, Amandine; Margolis, Elyssa B.; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S.; Ahmad, Jawad; Edwards, Robert H.; Sesaki, Hiromi; Huang, Eric J.
2014-01-01
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics—mitochondrial fission—in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate–putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. PMID:25339743
Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons.
Berthet, Amandine; Margolis, Elyssa B; Zhang, Jue; Hsieh, Ivy; Zhang, Jiasheng; Hnasko, Thomas S; Ahmad, Jawad; Edwards, Robert H; Sesaki, Hiromi; Huang, Eric J; Nakamura, Ken
2014-10-22
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons. Copyright © 2014 the authors 0270-6474/14/3414304-14$15.00/0.
Kramer, Edgar R; Aron, Liviu; Ramakers, Geert M. J; Seitz, Sabine; Zhuang, Xiaoxi; Beyer, Klaus; Smidt, Marten P; Klein, Rüdiger
2007-01-01
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD. PMID:17298183
Romeo, Stefania; Vitale, Flora; Viaggi, Cristina; di Marco, Stefano; Aloisi, Gabriella; Fasciani, Irene; Pardini, Carla; Pietrantoni, Ilaria; Di Paolo, Mattia; Riccitelli, Serena; Maccarone, Rita; Mattei, Claudia; Capannolo, Marta; Rossi, Mario; Capozzo, Annamaria; Corsini, Giovanni U; Scarnati, Eugenio; Lozzi, Luca; Vaglini, Francesca; Maggio, Roberto
2017-05-01
We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [ 3 H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength. Copyright © 2017 Elsevier B.V. All rights reserved.
PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.
Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng
2015-06-30
Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.
Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao
2017-09-01
Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.
Rodgers, EW; Krenz, W-D; Baro, DJ
2012-01-01
Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (IA) of identified neurons in the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus. Here we show that DA can also persistently alter IA, and that DA’s immediate and persistent effects oppose one another. The lateral pyloric neuron (LP) exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP IA, whereas tonic nanomolar DA produces a persistent increase in LP IA maximal conductance (Gmax) through a translation dependent mechanism involving target of rapamycin (TOR). The pyloric dilator neuron (PD) exclusively expresses type 2 DA receptors (D2Rs). Micromolar DA produces an immediate hyperpolarizing shift in PD IA voltage dependence of activation, whereas tonic DA persistently decreases PD IA Gmax through a translation dependent mechanism not involving TOR. The persistent effects on IA Gmax do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit. PMID:21917788
Ball, Kevin T; Budreau, Daniel; Rebec, George V
2003-12-24
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused amphetamine derivative that increases dopamine (DA) and serotonin release via a reverse transport mechanism. Changes in the activity of striatal neurons in response to increased DA transmission may shape the behavioral patterns associated with amphetamine-like stimulants. To determine how the striatum participates in MDMA-induced locomotor activation, we recorded the activity of >100 single units in the striatum of freely moving rats in response to a dose that increased motor activation (5.0 mg/kg). MDMA had a predominantly excitatory effect on neuronal activity that was positively correlated with the magnitude of locomotor activation. Categorizing neurons according to baseline locomotor responsiveness revealed that MDMA excited significantly more neurons showing movement-related increases in activity compared to units that were non-movement-related or associated with movement-related decreases in activity. Further analysis revealed that the drug-induced striatal activation was not simply secondary to the behavioral change, indicating a primary action of MDMA on striatal motor circuits. Prior administration of SCH-23390 (0.2 mg/kg), a D(1) antagonist, resulted in a late onset of MDMA-induced locomotion, which correlated positively with delayed neuronal excitations. Conversely, prior administration of eticlopride (0.2 mg/kg), a D(2) antagonist, completely abolished MDMA-induced locomotion, which paralleled its blockade of MDMA-induced excitatory neuronal responses. Our results highlight the importance of striatal neuronal activity in shaping the behavioral response to MDMA, and suggest that DA D(1) and D(2) receptors have distinct functional roles in the expression of MDMA-induced striatal and locomotor activation.
Glucose-monitoring neurons in the mediodorsal prefrontal cortex.
Nagy, Bernadett; Szabó, István; Papp, Szilárd; Takács, Gábor; Szalay, Csaba; Karádi, Zoltán
2012-03-20
The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control. Copyright © 2012 Elsevier B.V. All rights reserved.
Satish Bollimpelli, V; Kondapi, Anand K
2015-12-25
Rotenone induced neuronal toxicity in ventral mesencephalic (VM) dopaminergic (DA) neurons in culture is widely accepted as an important model for the investigation of Parkinson's disease (PD). However, little is known about developmental stage dependent toxic effects of rotenone on VM neurons in vitro. The objective of present study is to investigate the effect of rotenone on developing VM neurons at immature versus mature stages. Primary VM neurons were cultured in the absence of glial cells. Exposure of VM neurons to rotenone for 2 days induced cell death in both immature and mature neurons in a concentration-dependent manner, but to a greater extent in mature neurons. While rotenone-treated mature VM neurons showed α-synuclein aggregation and sensitivity to DA neurons, immature VM neurons exhibited only DA neuronal sensitivity but not α-synuclein aggregation. In addition, on rotenone treatment, enhancement of caspase-3 activity and reactive oxygen species (ROS) production were higher in mature VM neurons than in immature neurons. These results suggest that even though both mature and immature VM neurons are sensitive to rotenone, their manifestations differ from each other, with only mature VM neurons exhibiting Parkinsonian conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Engle, Staci E; Shih, Pei-Yu; McIntosh, J Michael; Drenan, Ryan M
2013-09-01
Tobacco addiction is a serious threat to public health in the United States and abroad, and development of new therapeutic approaches is a major priority. Nicotine activates and/or desensitizes nicotinic acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area (VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of nicotine in rodents, suggesting that they may be key mediators of nicotine's action in humans. However, it is unknown which nAChR subtypes are sufficient to activate these neurons. To test the hypothesis that nAChRs containing α6 subunits are sufficient to activate VTA DA neurons, we studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9'S mice). In voltage-clamp recordings in brain slices from adult mice, 100 nM nicotine was sufficient to elicit inward currents in VTA DA neurons via α6β2* nAChRs. In addition, we found that low concentrations of nicotine could act selectively through α6β2* nAChRs to enhance the function of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors on the surface of these cells. In contrast, α6β2* activation did not enhance N-methyl-D-aspartic acid receptor function. Finally, AMPA receptor (AMPAR) function was not similarly enhanced in brain slices from α6L9'S mice lacking α4 nAChR subunits, suggesting that α4α6β2* nAChRs are important for enhancing AMPAR function in VTA DA neurons. Together, these data suggest that activation of α4α6β2* nAChRs in VTA DA neurons is sufficient to support the initiation of cellular changes that play a role in addiction to nicotine. α4α6β2* nAChRs may be a promising target for future smoking cessation pharmacotherapy.
Song, Yuanquan; Ori-McKenney, Kassandra M.; Zheng, Yi; Han, Chun; Jan, Lily Yeh; Jan, Yuh Nung
2012-01-01
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN–Akt pathway that is also important for axon regeneration. We thus established an important new model system—the fly da neuron regeneration model that resembles the mammalian injury model—with which to study and gain novel insights into the regeneration machinery. PMID:22759636
Mejías-Aponte, Carlos A.; Kiyatkin, Eugene A.
2012-01-01
Cocaine’s multiple pharmacological substrates are ubiquitously present in the peripheral and central nervous system. Thus, upon its administration, cocaine acts in the periphery before directly acting in the brain. We determined whether cocaine alters ventral tegmental area (VTA) neuronal activity via peripheral actions, and whether this precedes its central actions. In urethane-anesthetized rats, we recorded VTA neurons responses to intravenous injections of two cocaine analogs: cocaine-hydrochloride (HCl, 0.25 mg/kg) that readily cross the blood-brain barrier (BBB) and cocaine-methiodide (MI, 0.33 mg/kg) that does not cross the BBB. Both cocaine analogs produced sustained changes in discharge rates that began 5s after the initiation of a 10s drug infusion. Within the first 90s post-injection the magnitudes of neuronal responsive of both cocaine analogs were comparable, but later in time the effects of cocaine-HCl were stronger and persisted longer than those of cocaine-MI. The proportion of neurons responsive to cocaine-HCl was twice to that of cocaine-MI (74% and 35% respectively). Both analogs also differed in the response onsets. Cocaine-MI rarely evoked responses after 1 min whereas cocaine-HCl continued to evoke responses within 3 min post-injection. VTA neurons were either excited or inhibited by both cocaine analogs. Most units responsive to cocaine-MI, regardless of excitation or inhibition, had electrophysiological characteristics of putative DA neurons. Units inhibited by cocaine-HCl also had characteristic of DA neurons whereas excited neurons had widely varying action potential durations and discharge rates. Cocaine-MI and cocaine-HCl each produced changes in VTA neuron activity under full DA receptor blockade. However, the duration of inhibition was shortened, the number of excitations increased, and they occurred with an earlier onset during DA receptor blockade. These findings indicate that cocaine acts peripherally with a short latency and alters the activity of VTA neurons prior to its well-known direct actions in the brain. PMID:22300980
Pesticides, Microglial NOX2, and Parkinson's disease
Taetzsch, Thomas; Block, Michelle L.
2013-01-01
Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology. PMID:23349115
Roles of Aminergic Neurons in Formation and Recall of Associative Memory in Crickets
Mizunami, Makoto; Matsumoto, Yukihisa
2010-01-01
We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes. PMID:21119781
Collo, Ginetta; Cavalleri, Laura; Zoli, Michele; Maskos, Uwe; Ratti, Emiliangelo; Merlo Pich, Emilio
2018-01-01
Midbrain dopamine (DA) neurons are considered a critical substrate for the reinforcing and sensitizing effects of nicotine and tobacco dependence. While the role of the α4 and β2 subunit containing nicotinic acetylcholine receptors (α4β2 ∗ nAChRs) in mediating nicotine effects on DA release and DA neuron activity has been widely explored, less information is available on their role in the morphological adaptation of the DA system to nicotine, eventually leading to dysfunctional behaviors observed in nicotine dependence. In particular, no information is available on the role of α6 ∗ nAChRs in nicotine-induced structural plasticity in rodents and no direct evidence exists regarding the occurrence of structural plasticity in human DA neurons exposed to nicotine. To approach this problem, we used two parallel in vitro systems, mouse primary DA neuron cultures from E12.5 embryos and human DA neurons differentiated from induced pluripotent stem cells (iPSCs) of healthy donors, identified using TH + immunoreactivity. In both systems, nicotine 1-10 μM produced a dose-dependent increase of maximal dendrite length, number of primary dendrites, and soma size when measured after 3 days in culture. These effects were blocked by pretreatments with the α6 ∗ nAChR antagonists α-conotoxin MII and α-conotoxin PIA, as well as by the α4β2nAChR antagonist dihydro-β-erythroidine (DHβE) in both mouse and human DA neurons. Nicotine was also ineffective when the primary DA neurons were obtained from null mutant mice for either the α6 subunit or both the α4 and α6 subunits of nAChR. When pregnant mice were exposed to nicotine from gestational day 15, structural plasticity was also observed in the midbrain DA neurons of postnatal day 1 offspring only in wild-type mice and not in both null mutant mice. This study confirmed the critical role of α4α6 ∗ nAChRs in mediating nicotine-induced structural plasticity in both mouse and human DA neurons, supporting the translational relevance of neurons differentiated from human iPSCs for pharmacological studies.
Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity.
Lu, Tao; Kim, Paul P; Greig, Nigel H; Luo, Yu
2017-08-01
p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.
Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin
van der Plasse, G; van Zessen, R; Luijendijk, M C M; Erkan, H; Stuber, G D; Ramakers, G M J; Adan, R A H
2015-01-01
Background/objectives: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. Subjects/methods: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. Results: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). Conclusions: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling. PMID:26183405
Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons
Steinkellner, Thomas; Farino, Zachary J.; Sonders, Mark S.; Villeneuve, Michael; Freyberg, Robin J.; Przedborski, Serge; Lu, Wei; Hnasko, Thomas S.
2018-01-01
Parkinson’s disease is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). DA neurons in the ventral tegmental area are more resistant to this degeneration than those in the SNc, though the mechanisms for selective resistance or vulnerability remain poorly understood. A key to elucidating these processes may lie within the subset of DA neurons that corelease glutamate and express the vesicular glutamate transporter VGLUT2. Here, we addressed the potential relationship between VGLUT expression and DA neuronal vulnerability by overexpressing VGLUT in DA neurons of flies and mice. In Drosophila, VGLUT overexpression led to loss of select DA neuron populations. Similarly, expression of VGLUT2 specifically in murine SNc DA neurons led to neuronal loss and Parkinsonian behaviors. Other neuronal cell types showed no such sensitivity, suggesting that DA neurons are distinctively vulnerable to VGLUT2 expression. Additionally, most DA neurons expressed VGLUT2 during development, and coexpression of VGLUT2 with DA markers increased following injury in the adult. Finally, conditional deletion of VGLUT2 made DA neurons more susceptible to Parkinsonian neurotoxins. These data suggest that the balance of VGLUT2 expression is a crucial determinant of DA neuron survival. Ultimately, manipulation of this VGLUT2-dependent process may represent an avenue for therapeutic development. PMID:29337309
Tufvesson-Alm, Maximilian; Schwieler, Lilly; Schwarcz, Robert; Goiny, Michel; Erhardt, Sophie; Engberg, Göran
2018-06-05
Kynurenine 3-monooxygenase (KMO) is an essential enzyme of the kynurenine pathway, converting kynurenine into 3-hydroxykynurenine. Inhibition of KMO increases kynurenine, resulting in elevated levels of kynurenic acid (KYNA), an endogenous N-methyl-d-aspartate and α*7-nicotinic receptor antagonist. The concentration of KYNA is elevated in the brain of patients with schizophrenia, possibly as a result of a reduced KMO activity. In the present study, using in vivo single cell recording techniques, we investigated the electrophysiological characteristics of ventral tegmental area dopamine (VTA DA) neurons and their response to antipsychotic drugs in a KMO knock-out (K/O) mouse model. KMO K/O mice exhibited a marked increase in spontaneous VTA DA neuron activity as compared to wild-type (WT) mice. Furthermore, VTA DA neurons showed clear-cut, yet qualitatively opposite, responses to the antipsychotic drugs haloperidol and clozapine in the two genotypes. The anti-inflammatory drug parecoxib successfully lowered the firing activity of VTA DA neurons in KMO K/O, but not in WT mice. Minocycline, an antibiotic and anti-inflammatory drug, produced no effect in this regard. Taken together, the present data further support the usefulness of KMO K/O mice for studying distinct aspects of the pathophysiology and pharmacological treatment of psychiatric disorders such as schizophrenia. Copyright © 2018. Published by Elsevier Ltd.
Krenz, Wulf-Dieter C.; Rodgers, Edmund W.; Baro, Deborah J.
2015-01-01
Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP’s first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output. PMID:25692473
Krenz, Wulf-Dieter C; Rodgers, Edmund W; Baro, Deborah J
2015-01-01
Volume transmission results in phasic and tonic modulatory signals. The actions of tonic dopamine (DA) at type 1 DA receptors (D1Rs) are largely undefined. Here we show that tonic 5nM DA acts at D1Rs to stabilize neuronal output over minutes by enabling activity-dependent regulation of the hyperpolarization activated current (I h). In the presence but not absence of 5nM DA, I h maximal conductance (G max) was adjusted according to changes in slow wave activity in order to maintain spike timing. Our study on the lateral pyloric neuron (LP), which undergoes rhythmic oscillations in membrane potential with depolarized plateaus, demonstrated that incremental, bi-directional changes in plateau duration produced corresponding alterations in LP I hG max when preparations were superfused with saline containing 5nM DA. However, when preparations were superfused with saline alone there was no linear correlation between LP I hGmax and duty cycle. Thus, tonic nM DA modulated the capacity for activity to modulate LP I h G max; this exemplifies metamodulation (modulation of modulation). Pretreatment with the Ca2+-chelator, BAPTA, or the specific PKA inhibitor, PKI, prevented all changes in LP I h in 5nM DA. Calcineurin inhibitors blocked activity-dependent changes enabled by DA and revealed a PKA-mediated, activity-independent enhancement of LP I hG max. These data suggested that tonic 5nM DA produced two simultaneous, PKA-dependent effects: a direct increase in LP I h G max and a priming event that permitted calcineurin regulation of LP I h. The latter produced graded reductions in LP I hG max with increasing duty cycles. We also demonstrated that this metamodulation preserved the timing of LP's first spike when network output was perturbed with bath-applied 4AP. In sum, 5nM DA permits slow wave activity to provide feedback that maintains spike timing, suggesting that one function of low-level, tonic modulation is to stabilize specific features of a dynamic output.
Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru
2018-02-19
Ghrelin plays roles in a wide range of central functions by activating the growth hormone secretagogue receptor (GHSR). This receptor has recently been found in the substantia nigra (SN) to control dopamine (DA)-related physiological functions. The dysregulation of DA neurons in the SN pars compacta (SNc) and the consequent depletion of striatal DA are known to underlie the motor deficits observed in Parkinson's disease (PD). In the present study, we further investigated the role of the SN-ghrelin system in motor function under the stereotaxic injection of AAV-CMV-FLEX-diphtheria toxin A (DTA) into the SN of dopamine transporter (DAT)-Cre (DAT SN ::DTA) mice to expunge DA neurons of the SNc. First, we confirmed the dominant expression of GHSR1a, which is a functional GHSR, in tyrosine hydroxylase (TH)-positive DA neurons in the SNc of control mice. In DAT SN ::DTA mice, we clearly observed motor dysfunction using several behavioral tests. An immunohistochemical study revealed a dramatic loss of TH-positive DA neurons in the SNc and DAT-labeled axon terminals in the striatum, and an absence of mRNAs for TH and DAT in the SN of DAT SN ::DTA mice. The mRNA level of GHSR1a was drastically decreased in the SN of these mice. In normal mice, we also found the mRNA expression of GHSR1a within GABAergic neurons in the SN pars reticulata (SNr). Under these conditions, a single injection of ghrelin into the SN failed to improve the motor deficits caused by ablation of the nigrostriatal DA network using DAT SN ::DTA mice, whereas intra-SN injection of ghrelin suppressed the motor dysfunction caused by the administration of haloperidol, which is associated with the transient inhibition of DA transmission. These findings suggest that phasic activation of the SNc-ghrelin system could improve the dysregulation of nigrostriatal DA transmission related to the initial stage of PD, but not the motor deficits under the depletion of nigrostriatal DA. Although GHSRs are found in non-DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function. Copyright © 2018. Published by Elsevier Inc.
Bidirectional Modulation of Substantia Nigra Activity by Motivational State
Rossi, Mark A.; Fan, David; Barter, Joseph W.; Yin, Henry H.
2013-01-01
A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra. PMID:23936522
Sugama, Shuei; Sekiyama, Kazunari; Kodama, Tohru; Takamatsu, Yoshiki; Takenouchi, Takato; Hashimoto, Makoto; Bruno, Conti; Kakinuma, Yoshihiko
2016-01-01
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and, to a lesser extent, in the noradrenergic neurons of the locus coeruleus (LC). Most cases of PD are idiopathic and sporadic and are believed to be the result of both environmental and genetic factors. Here, to the best of our knowledge, we report the first evidence that chronic restraint stress (8h/day, 5days/week) substantially reduces nigral DA and LC noradrenergic neuronal cell numbers in rats. Loss of DA neurons in the SNpc was evident after 2weeks of stress and progressed in a time-dependent manner, reaching up to 61% at 16weeks. This reduction was accompanied by robust microglial activation and oxidative stress and was marked by nitrotyrosine in the SNpc and LC of the midbrain. These results indicate that chronic stress triggers DA and noradrenergic neurodegeneration by increasing oxidative stress, and that activated microglia in the substantia nigra and LC may play an important role in modulating the neurotoxic effects of oxidative stress. Taken together, these data suggest that exposure to chronic stress triggers DA and noradrenergic neurodegeneration, which is a cause of PD. Copyright © 2015 Elsevier Inc. All rights reserved.
Organization of GABAergic synaptic circuits in the rat ventral tegmental area.
Ciccarelli, Alessandro; Calza, Arianna; Panzanelli, Patrizia; Concas, Alessandra; Giustetto, Maurizio; Sassoè-Pognetto, Marco
2012-01-01
The ventral tegmental area (VTA) is widely implicated in drug addiction and other psychiatric disorders. This brain region is densely populated by dopaminergic (DA) neurons and also contains a sparse population of γ-aminobutyric acid (GABA)ergic cells that regulate the activity of the principal neurons. Therefore, an in-depth knowledge of the organization of VTA GABAergic circuits and of the plasticity induced by drug consumption is essential for understanding the mechanisms by which drugs induce stable changes in brain reward circuits. Using immunohistochemistry, we provide a detailed description of the localization of major GABA(A) and GABA(B) receptor subunits in the rat VTA. We show that DA and GABAergic cells express both GABA(A) and GABA(B) receptors. However VTA neurons differ considerably in the expression of GABA(A) receptor subunits, as the α1 subunit is associated predominantly with non-DA cells, whereas the α3 subunit is present at low levels in both types of VTA neurons. Using an unbiased stereological method, we then demonstrate that α1-positive elements represent only a fraction of non-DA neurons and that the ratio of DA and non-DA cells is quite variable throughout the rostro-caudal extent of the VTA. Interestingly, DA and non-DA cells receive a similar density of perisomatic synapses, whereas axo-dendritic synapses are significantly more abundant in non-DA cells, indicating that local interneurons receive prominent GABAergic inhibition. These findings reveal a differential expression of GABA receptor subtypes in the two major categories of VTA neurons and provide an anatomical basis for interpreting the plasticity of inhibitory circuits induced by drug exposure.
Chung, Young C; Kim, Sang R; Jin, Byung K
2010-07-15
The present study examined whether the antidepressant paroxetine promotes the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced degeneration of nigrostriatal DA neurons and glial activation as visualized by tyrosine hydroxylase, macrophage Ag complex-1, and/or glial fibrillary acidic protein immunoreactivity. Real-time PCR, Western blotting, and immunohistochemistry showed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase and astroglial myeloperoxidase, and subsequent reactive oxygen species production and oxidative DNA damage in the MPTP-treated substantia nigra. Treatment with paroxetine prevented degeneration of nigrostriatal DA neurons, increased striatal dopamine levels, and improved motor function. This neuroprotection afforded by paroxetine was associated with the suppression of astroglial myeloperoxidase expression and/or NADPH oxidase-derived reactive oxygen species production and reduced expression of proinflammatory cytokines, including IL-1beta, TNF-alpha, and inducible NO synthase, by activated microglia. The present findings show that paroxetine may possess anti-inflammatory properties and inhibit glial activation-mediated oxidative stress, suggesting that paroxetine and its analogues may have therapeutic value in the treatment of aspects of Parkinson's disease related to neuroinflammation.
Barallobre, M J; Perier, C; Bové, J; Laguna, A; Delabar, J M; Vila, M; Arbonés, M L
2014-06-12
In the brain, programmed cell death (PCD) serves to adjust the numbers of the different types of neurons during development, and its pathological reactivation in the adult leads to neurodegeneration. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in neural proliferation and cell death, and its role during brain growth is evolutionarily conserved. Human DYRK1A lies in the Down syndrome critical region on chromosome 21, and heterozygous mutations in the gene cause microcephaly and neurological dysfunction. The mouse model for DYRK1A haploinsufficiency (the Dyrk1a(+/-) mouse) presents neuronal deficits in specific regions of the adult brain, including the substantia nigra (SN), although the mechanisms underlying these pathogenic effects remain unclear. Here we study the effect of DYRK1A copy number variation on dopaminergic cell homeostasis. We show that mesencephalic DA (mDA) neurons are generated in the embryo at normal rates in the Dyrk1a haploinsufficient model and in a model (the mBACtgDyrk1a mouse) that carries three copies of Dyrk1a. We also show that the number of mDA cells diminishes in postnatal Dyrk1a(+/-) mice and increases in mBACtgDyrk1a mice due to an abnormal activity of the mitochondrial caspase9 (Casp9)-dependent apoptotic pathway during the main wave of PCD that affects these neurons. In addition, we show that the cell death induced by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), a toxin that activates Casp9-dependent apoptosis in mDA neurons, is attenuated in adult mBACtgDyrk1a mice, leading to an increased survival of SN DA neurons 21 days after MPTP intoxication. Finally, we present data indicating that Dyrk1a phosphorylation of Casp9 at the Thr125 residue is the mechanism by which this kinase hinders both physiological and pathological PCD in mDA neurons. These data provide new insight into the mechanisms that control cell death in brain DA neurons and they show that deregulation of developmental apoptosis may contribute to the phenotype of patients with imbalanced DYRK1A gene dosage.
Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area.
Wang, Huikun; Treadway, Tyler; Covey, Daniel P; Cheer, Joseph F; Lupica, Carl R
2015-09-29
Cocaine is a highly addictive drug that acts upon the brain's reward circuitry via the inhibition of monoamine uptake. Endogenous cannabinoids (eCB) are lipid molecules released from midbrain dopamine (DA) neurons that modulate cocaine's effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arachidonoylglycerol (2-AG), in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Non-toxic derivatives of Botulinum neurotoxin A (BoNT/A) have potential use as neuron-targeting delivery vehicles, and as reagents to study intracellular trafficking. We have designed and expressed an atoxic derivative of BoNT/A (BoNT/A ad) as a full-length 150kDa molecule consisting of a 50 kDa lig...
Wu, Liang; Tian, You-Yong; Shi, Jing-Ping; Xie, Wei; Shi, Jian-Quan; Lu, Jie; Zhang, Ying-Dong
2013-08-26
Recent studies indicated that angiotensin II (Ang II) receptor blockers could reduce neurotoxins-induced dopaminergic (DA) cell death, but the underlying mechanisms are still unclear. Given that endoplasmic reticulum (ER) stress plays a major role in rotenone-induced neuronal apoptosis, we investigated whether candesartan cilexetil, a selective and high-affinity Ang II receptor antagonist, could protect the DA neuron via reducing ER stress in a chronic rotenone rat model for Parkinson's disease (PD). Our data showed that candesartan cilexetil could ameliorate the descent latency in catalepsy tests, and decrease rotenone-induced DA neuron apoptosis. Moreover, candesartan cilexetil has been found to play a protective role via down-regulating the expression of activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein (C/EBP) homologous protein (CHOP), and p53 upregulated modulator of apoptosis (Puma). Thus, our experiments strongly suggest that administration of candesartan cilexetil protects DA neuron involving blocking ER stress, possibly via inhibiting activation of the ATF4-CHOP-Puma pathway, which could provide new insight into clinical therapeutics for PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T
2013-02-13
Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.
Genetic Dissection of Midbrain Dopamine Neuron Development in vivo
Ellisor, Debra; Rieser, Caroline; Voelcker, Bettina; Machan, Jason T.; Zervas, Mark
2012-01-01
Midbrain dopamine (MbDA) neurons are partitioned into medial and lateral cohorts that control complex functions. However, the genetic underpinnings of MbDA neuron heterogeneity are unclear. While it is known that Wnt1-expressing progenitors contribute to MbDA neurons, the role of Wnt1 in MbDA neuron development in vivo is unresolved. We show that mice with a spontaneous point mutation in Wnt1 have a unique phenotype characterized by the loss of medial MbDA neurons concomitant with a severe depletion of Wnt1-expressing progenitors and diminished LMX1a-expressing progenitors. Wnt1 mutant embryos also have alterations in a hierarchical gene regulatory loop suggesting multiple gene involvement in the Wnt1 mutant MbDA neuron phenotype. To investigate this possibility, we conditionally deleted Gbx2, Fgf8, and En1/2 after their early role in patterning and asked whether these genetic manipulations phenocopied the depletion of MbDA neurons in Wnt1 mutants. The conditional deletion of Gbx2 did not result in re-positioning or distribution of MbDA neurons. The temporal deletion of Fgf8 did not result in the loss of either LMX1a-expressing progenitors nor the initial population of differentiated MbDA neurons, but did result in a complete loss of MbDA neurons at later stages. The temporal deletion and species specific manipulation of En1/2 demonstrated a continued and species specific role of Engrailed genes in MbDA neuron development. Notably, our conditional deletion experiments revealed phenotypes dissimilar to Wnt1 mutants indicating the unique role of Wnt1 in MbDA neuron development. By placing Wnt1, Fgf8, and En1/2 in the context of their temporal requirement for MbDA neuron development, we further deciphered the developmental program underpinning MbDA neuron progenitors. PMID:23041116
Luo, Sarah X; Timbang, Leah; Kim, Jae-Ick; Shang, Yulei; Sandoval, Kadellyn; Tang, Amy A; Whistler, Jennifer L; Ding, Jun B; Huang, Eric J
2016-12-20
Neural circuits involving midbrain dopaminergic (DA) neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β) signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A
2014-04-01
Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.
[Development of intellect, emotion, and intentions, and their neuronal systems].
Segawa, Masaya
2008-09-01
Intellect, emotion and intentions, the major components of the human mentality, are neurologically correlated to memory and sensorimotor integration, the neuronal system consisting of the amygdale and hypothalamus, and motivation and learning, respectively. Development of these neuronal processes was evaluated by correlating the pathophysiologies of idiopathic developmental neuropsychiatric disorders and developmental courses of sleep parameters, sleep-wake rhythm (SWR), and locomotion. The memory system and sensory pathways develop by the 9th gestational months. Habituation or dorsal bundle extinction (DBE) develop after the 34th gestational week. In the first 4 months after birth, DBE is consolidated and fine tuning of the primary sensory cortex and its neuronal connection to the unimodal sensory association area along with functional lateralization of the cortex are accomplished. After 4 months, restriction of atonia in the REM stage enables the integrative function of the brain and induces synaptogenesis of the cortex around 6 months and locomotion in late infancy by activating the dopaminergic (DA) neurons induces synaptogenesis of the frontal cortex. Locomotion in early infancy involves functional specialization of the cortex and in childhood with development of biphasic SWR activation of the areas of the prefrontal cortex. Development of emotions reflects in the development of personal communication and the arousal function of the hypothalamus. The former is shown in the mother-child relationship in the first 4 months, in communication with adults and playmates in late infancy to early childhood, and in development of social relationships with sympathy by the early school age with functional maturation of the orbitofrontal cortex. The latter is demonstrated in the secretion of melatonin during night time by 4 months, in the circadian rhythm of body temperature by 8 months, and in the secretion of the growth hormone by 4-5 years with synchronization to the SWR modulated by the brainstem aminergic neurons. For this purpose, nursing according to the day-night light-dark cycle is essential right from early infancy. The deep cerebellar nuclei involved in learning develop by the 9th gestational month. The DA neurons activated in late infancy modulate the nuclei of the basal ganglia and the association cortex for learning. Motivation starts with activation of the PPN in infancy by crawling which makes DA neurons as the lead. In late childhood, DA neurons along with 5HT neurons activate the anterior cingulate area and establish the neuronal process for learning with motivation.
Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K
2017-02-22
Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal development and function. We find that injection of oligomers of mutant superoxide dismutase 1 (SOD1) into the cytoplasm of invertebrate neurons rapidly suppresses these Na + -activated K + currents and that this effect is mediated by a MAP kinase cascade, including ASK1 and c-Jun N-terminal kinase. Because amyotrophic lateral sclerosis is a fatal adult-onset neurodegenerative disease produced by mutations in SOD1 that cause the enzyme to form toxic oligomers, our findings suggest that suppression of Slack channels may be an early step in the progression of the disease. Copyright © 2017 the authors 0270-6474/17/372258-08$15.00/0.
Khaldy, Hoda; Escames, Germaine; León, Josefa; Bikjdaouene, Leila; Acuña-Castroviejo, Darío
2003-01-01
Previous studies showed a synergistic effect of melatonin and deprenyl against dopamine (DA) autoxidation in vitro. Since oxidative stress is implicated in Parkinson's disease (PD), we explored the effects of melatonin plus deprenyl administration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in C57/Bl6 mice. Melatonin, but not deprenyl prevents the inhibition of mitochondrial complex I and the oxidative damage in nigrostriatal neurons induced by MPTP. With the dose used deprenyl recovers 50% DA levels and tyrosine hydroxylase activity depressed by the neurotoxin, normalizing locomotor activity of mice. Melatonin, which was unable to counteract MPTP-induced DA depletion and inhibition of tyrosine hydroxylase activity, potentiates the effect of deprenyl on catecholamine turnover and mice ambulatory activity. These results suggest a dissociation of complex I inhibition from DA depletion in this model of Parkinson's disease. The data also support that a combination of melatonin, which improves mitochondrial electron transport chain and reduces oxidative damage, and deprenyl, which promotes the specific function of the rescued neurons, i.e. DA turnover, may be a promising strategy for the treatment of PD.
Mastwal, Surjeet; Cao, Vania; Wang, Kuan Hong
2016-01-01
Mental functions involve coordinated activities of specific neuronal ensembles that are embedded in complex brain circuits. Aberrant neuronal ensemble dynamics is thought to form the neurobiological basis of mental disorders. A major challenge in mental health research is to identify these cellular ensembles and determine what molecular mechanisms constrain their emergence and consolidation during development and learning. Here, we provide a perspective based on recent studies that use activity-dependent gene Arc/Arg3.1 as a cellular marker to identify neuronal ensembles and a molecular probe to modulate circuit functions. These studies have demonstrated that the transcription of Arc is activated in selective groups of frontal cortical neurons in response to specific behavioral tasks. Arc expression regulates the persistent firing of individual neurons and predicts the consolidation of neuronal ensembles during repeated learning. Therefore, the Arc pathway represents a prototypical example of activity-dependent genetic feedback regulation of neuronal ensembles. The activation of this pathway in the frontal cortex starts during early postnatal development and requires dopaminergic (DA) input. Conversely, genetic disruption of Arc leads to a hypoactive mesofrontal dopamine circuit and its related cognitive deficit. This mutual interaction suggests an auto-regulatory mechanism to amplify the impact of neuromodulators and activity-regulated genes during postnatal development. Such a mechanism may contribute to the association of mutations in dopamine and Arc pathways with neurodevelopmental psychiatric disorders. As the mesofrontal dopamine circuit shows extensive activity-dependent developmental plasticity, activity-guided modulation of DA projections or Arc ensembles during development may help to repair circuit deficits related to neuropsychiatric disorders.
Ishida, Kota; Murata, Mikio; Katagiri, Nobuyuki; Ishikawa, Masago; Abe, Kenji; Kato, Masatoshi; Utsunomiya, Iku; Taguchi, Kyoji
2005-08-01
The effects of systemic administration of beta-phenylethylamine (beta-PEA) and microiontophoretically applied beta-PEA on the spontaneous discharge of dopamine (DA) neurons in the ventral tegmental area (VTA) of the anesthetized rat were examined. Intravenous administration of beta-PEA (1.0, 2.5, and 5.0 mg/kg) and microiontophoretic applications of beta-PEA caused inhibitory responses in DA neurons. Systemic administration and microiontophoretic applications of beta-PEA induced dose- or current-dependent responses. The systemic beta-PEA-induced inhibitory responses were reversed by pretreatment with the DA D(2) receptor antagonists haloperidol (0.5 mg/kg i.p.) and sulpiride (10 mg/kg i.p). Pretreatment with reserpine (5 mg/kg i.p. 24 h earlier) did not completely block the systemic administration of beta-PEA (2.5 mg/kg) inhibition. A microdialysis study of freely moving rats demonstrated that the extracellular DA level increased significantly in response to local application of beta-PEA (100 muM) in the VTA via a microdialysis probe, and local application of beta-PEA-stimulated somatodendritic DA release in the VTA. The beta-PEA-induced release of DA was calcium ion-independent and was enhanced by pretreatment with pertussis toxin. These findings indicate that beta-phenylethylamine inhibits DA neuron activity via DA D(2) autoreceptors in the rat VTA and that this inhibitory effect is mediated by the somatodendritic DA release.
Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric
2016-05-01
Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.
2013-01-01
Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950
Behr, J; Gloveli, T; Schmitz, D; Heinemann, U
2000-07-01
Schizophrenia is considered to be associated with an abnormal functioning of the hippocampal output. The high clinical potency of antipsychotics that act as antagonists at dopamine (DA) receptors indicate a hyperfunction of the dopaminergic system. The subiculum obtains information from area CA1 and the entorhinal cortex and represents the major output region of the hippocampal complex. To clarify whether an enhanced dopaminergic activity alters the hippocampal output, the effect of DA on alveus- and perforant path-evoked excitatory postsynaptic currents (EPSCs) in subicular neurons was examined using conventional intracellular and whole cell voltage-clamp recordings. Dopamine (100 microM) depressed alveus-elicited (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated EPSCs to 56 +/- 8% of control while perforant path-evoked EPSCs were attenuated to only 76 +/- 7% of control. Dopamine had no effect on the EPSC kinetics. Dopamine reduced the frequency of spontaneous miniature EPSCs without affecting their amplitudes. The sensitivity of subicular neurons to the glutamate receptor agonist (S)-alpha-amino-3-hydoxy-5-methyl-4-isoxazolepropionic acid was unchanged by DA pretreatment, excluding a postsynaptic mechanism for the observed reduction of excitatory synaptic transmission. The effect of DA on evoked EPSCs was mimicked by the D1 receptor agonist SFK 38393 and partially antagonized by the D1 receptor antagonist SCH 23390. While the D2 receptor agonist quinelorane failed to reduce the EPSCs, the D2 receptor antagonist sulpiride did not block the action of DA. The results indicate that DA strongly depresses the hippocampal and the entorhinal excitatory input onto subicular neurons by decreasing the glutamate release following activation of presynaptic D1-like DA receptors.
Jo, Junghyun; Xiao, Yixin; Sun, Alfred Xuyang; Cukuroglu, Engin; Tran, Hoang-Dai; Göke, Jonathan; Tan, Zi Ying; Saw, Tzuen Yih; Tan, Cheng-Peow; Lokman, Hidayat; Lee, Younghwan; Kim, Donghoon; Ko, Han Seok; Kim, Seong-Oh; Park, Jae Hyeon; Cho, Nam-Joon; Hyde, Thomas M; Kleinman, Joel E; Shin, Joo Heon; Weinberger, Daniel R; Tan, Eng King; Je, Hyunsoo Shawn; Ng, Huck-Hui
2016-08-04
Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Developmental analysis of the dopamine-containing neurons of the Drosophila brain
Hartenstein, Volker; Cruz, Louie; Lovick, Jennifer K.; Guo, Ming
2016-01-01
The Drosophila dopaminergic (DA) system consists of a relatively small number of neurons clustered throughout the brain and ventral nerve cord. Previous work shows that clusters of DA neurons innervate different brain compartments, which in part accounts for functional diversity of the DA system. In this paper, we analyzed the association between DA neuron clusters and specific brain lineages, developmental and structural units of the Drosophila brain which provide a framework of connections that can be followed throughout development. The hatching larval brain contains six groups of primary DA neurons (born in the embryo), which we assign to six distinct lineages. We can show that all larval DA clusters persist into the adult brain. Some clusters increase in cell number during late larval stages while others do not become DA-positive until early pupa. Ablating neuroblasts with hydroxyurea (HU) prior to onset of larval proliferation (generates secondary neurons) confirms these added DA clusters are primary neurons born in the embryo, rather than secondary neurons. A single cluster that becomes DA-positive in the late pupa, PAM1/lineage DALcm1/2, forms part of a secondary lineage which can be ablated by larval HU application. By supplying lineage information for each DA cluster, our analysis promotes further developmental and functional analyses of this important system of neurons. PMID:27350102
Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A
2014-08-01
Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.
Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.
2014-01-01
Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity. PMID:24562969
Rorabaugh, Jacki M.; Stratford, Jennifer M.; Zahniser, Nancy R.
2014-01-01
Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons. PMID:24736531
Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra.
De Pablos, Rocío M; Herrera, Antonio J; Villarán, Ruth F; Cano, Josefina; Machado, Alberto
2005-03-01
Intranigral injection of lipopolysaccharide (LPS), a potent inductor of inflammation, induces degeneration of dopaminergic neurons, along with an inflammatory process that features activation of microglial cells and loss of astrocytes. To test the involvement of dopamine (DA) in this degeneration induced by LPS, we treated albino Wistar rats with different concentrations of alpha-methyl-p-tyrosine (alpha-MPT), an inhibitor of tyrosine hydroxylase (TH) activity. Results showed that alpha-MPT prevented LPS-induced loss of TH immunostaining and expression of mRNA for TH and DA transporter; it also prevented substantial activation of microglial cells. Loss of the astroglial population, a marker of damage in our model, was also prevented. This protective effect resulted from inhibition of TH and the consequent decrease in DA concentration, because treatment with L-DOPA/benserazide, which bypasses TH inhibition induced by alpha-MPT, reversed the protective effect produced by this drug. These results point out the important contribution of DA to the vulnerability and degeneration of dopaminergic neurons of the substantia nigra. Knowledge about the involvement of DA in this process may lead to the possibility of new protection strategies against this important degenerative process.
Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A
2016-03-09
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. Copyright © 2016 the authors 0270-6474/16/362957-18$15.00/0.
Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.
Grippo, Ryan M; Purohit, Aarti M; Zhang, Qi; Zweifel, Larry S; Güler, Ali D
2017-08-21
Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice.
Mellström, Britt; Kastanauskaite, Asta; Knafo, Shira; Gonzalez, Paz; Dopazo, Xose M; Ruiz-Nuño, Ana; Jefferys, John G R; Zhuo, Min; Bliss, Tim V P; Naranjo, Jose R; DeFelipe, Javier
2016-02-29
Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca(2+)-binding protein that regulates Ca(2+) homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory. However, the possible role of DREAM in spine plasticity has not been reported. Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus granule cells. These microanatomical changes are accompanied by significant modifications in the expression of specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus. Our results strongly suggest that DREAM plays an important role in structural plasticity in the hippocampus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Guoqi; Chen Ying; Huang Yuying
2011-08-01
Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only atmore » the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: > I.p. MPTP-injection mediates death of dopaminergic neurons. > I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. > I.p. MPTP-injection does not alter basal synaptic transmission. > Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. > Attenuation of NMDA-receptors mediated fEPSPs after i.p. MPTP-injection.« less
He, Huan; Guo, Wei-Wei; Xu, Rong-Rong; Chen, Xiao-Qing; Zhang, Nan; Wu, Xia; Wang, Xiao-Min
2016-10-24
Alkaloids from Piper longum (PLA), extracted from P. longum, have potent anti-inflammatory effects. The aim of this study was to investigate whether PLA could protect dopaminergic neurons against inflammation-mediated damage by inhibiting microglial activation using a lipopolysaccharide (LPS)-induced dopaminergic neuronal damage rat model. The animal behaviors of rotational behavior, rotarod test and open-field test were investigated. The survival ratio of dopaminergic neurons and microglial activation were examined. The dopamine (DA) and its metabolite were detected by high performance liquid chromatography (HPLC). The effects of PLA on the expression of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and nitric oxide (NO) were also estimated. We showed that the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and DA content in the striatum were reduced after a single intranigral dose of LPS (10 μg) treatment. The survival rate of TH-ir neurons in the SNpc and DA levels in the striatum were significantly improved after treatment with PLA for 6 weeks. The over-activated microglial cells were suppressed by PLA treatment. We also observed that the levels of inflammatory cytokines, including TNF-α, IL-6 and IL-1β were decreased and the excessive production of ROS and NO were abolished after PLA treatment. Therefore, the behavioral dysfunctions induced by LPS were improved after PLA treatment. This study suggests that PLA plays a significant role in protecting dopaminergic neurons against inflammatory reaction induced damage.
Settivari, Raja; VanDuyn, Natalia; LeVora, Jennifer; Nass, Richard
2013-09-01
Exposure to high levels of manganese (Mn) results in a neurological condition termed manganism, which is characterized by oxidative stress, abnormal dopamine (DA) signaling, and cell death. Epidemiological evidence suggests correlations with occupational exposure to Mn and the development of the movement disorder Parkinson's disease (PD), yet the molecular determinants common between the diseases are ill-defined. Glutathione S-transferases (GSTs) of the class pi (GSTπ) are phase II detoxification enzymes that conjugate both endogenous and exogenous compounds to glutathione to reduce cellular oxidative stress, and their decreased expression has recently been implicated in PD progression. In this study we demonstrate that a Caenorhabditis elegans GSTπ homologue, GST-1, inhibits Mn-induced DA neuron degeneration. We show that GST-1 is expressed in DA neurons, Mn induces GST-1 gene and protein expression, and GST-1-mediated neuroprotection is dependent on the PD-associated transcription factor Nrf2/SKN-1, as a reduction in SKN-1 gene expression results in a decrease in GST-1 protein expression and an increase in DA neuronal death. Furthermore, decreases in gene expression of the SKN-1 inhibitor WDR-23 or the GSTπ-binding cell death activator JNK/JNK-1 result in an increase in resistance to the metal. Finally, we show that the Mn-induced DA neuron degeneration is independent of the dopamine transporter DAT, but is largely dependent on the caspases CED-3 and the novel caspase CSP-1. This study identifies a C. elegans Nrf2/SKN-1-dependent GSTπ homologue, cell death effectors of GSTπ-associated xenobiotic-induced pathology, and provides the first in vivo evidence that a phase II detoxification enzyme may modulate DA neuron vulnerability in manganism. Copyright © 2013 Elsevier Inc. All rights reserved.
Analysis of the mechanisms by which amphetamine releases dopamine from striatal dopaminergic neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.M.
1987-01-01
The goals of the studies were (1) to determine the intraneuronal transmitter pools that contribute to the efflux of dopamine (DA) elicited by amphetamine (AMPH) and (2) to determine the biochemical mechanism by which AMPH increases DA efflux from dopaminergic neurons. AMPH increased the efflux of endogenous DA and decreased the electrically-evoked overflow of (/sup 3/H) acetylcholine (ACh) from superfused rabbit striatal slices. These effects were most pronounced when both vesicular DA stores and DA synthesis were intact. Therefore, extravesicular, newly synthesized DA and vesicular stores of DA contribute to AMPH-induced DA efflux. Simultaneous inhibition of monoamine oxidase (MAO) andmore » neuronal DA uptake did not increase the efflux of endogenous DA or inhibit the electrically-evoked overflow of (/sup 3/H)ACh to the same extent as AMPH. Hence, inhibition of MAO and neuronal DA uptake are probably not the major mechanisms by which AMPH increases DA efflux. The AMPH-induced efflux of endogenous or (/sup 3/H)DA was blocked by inhibitors of neuronal DA uptake.« less
Meller, E; Friedman, E
1982-03-01
The effects of molindone (2.5, 10 and 40 mg/kg) on striatal tyrosine hydroxylase activity and dopamine (DA), 3,4-dihydroxyphenylacetic acid and homovanillic acid levels were measured as a function of time (0-72 hr). Whereas a dose of 2.5 mg/kg produced effects typical of DA receptor blockade (activation of synaptosomal tyrosine hydroxylase, increased DA metabolite levels and unchanged DA levels), a dose of 40 mg/kg produced opposite effects (decreased tyrosine hydroxylase activity and metabolite concentrations and elevated DA levels). A dose of 10 mg/kg elicited intermediate effects. The atypical effects of both higher doses were long-lasting (less than 72 hr). Molindone at doses of 10 or 40 mg/kg, but nor 2.5 mg/kg, selectively, irreversibly and dose-dependently inhibited type A monoamine oxidase. This inhibition appeared to be due to a metabolite, inasmuch as the drug itself inhibited monoamine oxidase (reversibly) only at high concentrations (less than or equal to 10(-4) M). The heretofore unsuspected inhibition of monoamine oxidase by molindone provided a consistent mechanistic interpretation of the differential dose- and time-dependent effects of the drug on dopaminergic neuronal activity. This mechanism may also serve to explain the reported efficacy of molindone in animal tests for antidepressant activity as well as its inability to produce increased DA receptor binding after chronic treatment.
Yang, Qiaoqiao; Liu, Shuxi; Yin, Min; Yin, Yanqing; Zhou, Guomin; Zhou, Jiawei
2015-11-01
Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development. © 2015 Wiley Periodicals, Inc.
Suzuki, Sadafumi; Akamatsu, Wado; Kisa, Fumihiko; Sone, Takefumi; Ishikawa, Kei-Ichi; Kuzumaki, Naoko; Katayama, Hiroyuki; Miyawaki, Atsushi; Hattori, Nobutaka; Okano, Hideyuki
2017-01-29
Patient-specific induced pluripotent stem cells (iPSCs) show promise for use as tools for in vitro modeling of Parkinson's disease. We sought to improve the efficiency of dopaminergic (DA) neuron induction from iPSCs by the using surface markers expressed in DA progenitors to increase the significance of the phenotypic analysis. By sorting for a CD184 high /CD44 - fraction during neural differentiation, we obtained a population of cells that were enriched in DA neuron precursor cells and achieved higher differentiation efficiencies than those obtained through the same protocol without sorting. This high efficiency method of DA neuronal induction enabled reliable detection of reactive oxygen species (ROS) accumulation and vulnerable phenotypes in PARK2 iPSCs-derived DA neurons. We additionally established a quantitative system using the mt-mKeima reporter system to monitor mitophagy in which mitochondria fuse with lysosomes and, by combining this system with the method of DA neuronal induction described above, determined that mitophagy is impaired in PARK2 neurons. These findings suggest that the efficiency of DA neuron induction is important for the precise detection of cellular phenotypes in modeling Parkinson's disease. Copyright © 2016. Published by Elsevier Inc.
Klejbor, Ilona; Myers, Jason M; Hausknecht, Kathy; Corso, Thomas D; Gambino, Angelo S; Morys, Janusz; Maher, Pamela A; Hard, Robert; Richards, Jerry; Stachowiak, Ewa K; Stachowiak, Michal K
2006-06-01
Developing and mature midbrain dopamine (DA) neurons express fibroblast growth factor (FGF) receptor-1 (FGFR1). To determine the role of FGFR1 signaling in the development of DA neurons, we generated transgenic mice expressing a dominant negative mutant [FGFR1(TK-)] from the catecholaminergic, neuron-specific tyrosine hydroxylase (TH) gene promoter. In homozygous th(tk-)/th(tk-) mice, significant reductions in the size of TH-immunoreactive neurons were found in the substantia nigra compacta (SNc) and the ventral tegmental area (VTA) at postnatal days 0 and 360. Newborn th(tk-)/th(tk-) mice had a reduced density of DA neurons in both SNc and VTA, and the changes in SNc were maintained into adulthood. The reduced density of DA transporter in the striatum further demonstrated an impaired development of the nigro-striatal DA system. Paradoxically, the th(tk-)/th(tk-) mice had increased levels of DA, homovanilic acid and 3-methoxytyramine in the striatum, indicative of excessive DA transmission. These structural and biochemical changes in DA neurons are similar to those reported in human patients with schizophrenia and, furthermore, these th(tk-)/th(tk-) mice displayed an impaired prepulse inhibition that was reversed by a DA receptor antagonist. Thus, this study establishes a new developmental model for a schizophrenia-like disorder in which the inhibition of FGF signaling leads to alterations in DA neurons and DA-mediated behavior.
Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?
Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor
2015-01-01
Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)–TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP–TH interneurons. Optogenetic activation of striatal EGFP–TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808
Bhogal, Balpreet; Plaza-Jennings, Amara
2016-01-01
Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. PMID:27256879
Bhogal, Balpreet; Plaza-Jennings, Amara; Gavis, Elizabeth R
2016-06-15
Dendritic arbor morphology is a key determinant of neuronal function. Once established, dendrite branching patterns must be maintained as the animal develops to ensure receptive field coverage. The translational repressors Nanos (Nos) and Pumilio (Pum) are required to maintain dendrite growth and branching of Drosophila larval class IV dendritic arborization (da) neurons, but their specific regulatory role remains unknown. We show that Nos-Pum-mediated repression of the pro-apoptotic gene head involution defective (hid) is required to maintain a balance of dendritic growth and retraction in class IV da neurons and that upregulation of hid results in decreased branching because of an increase in caspase activity. The temporal requirement for nos correlates with an ecdysone-triggered switch in sensitivity to apoptotic stimuli that occurs during the mid-L3 transition. We find that hid is required during pupariation for caspase-dependent pruning of class IV da neurons and that Nos and Pum delay pruning. Together, these results suggest that Nos and Pum provide a crucial neuroprotective regulatory layer to ensure that neurons behave appropriately in response to developmental cues. © 2016. Published by The Company of Biologists Ltd.
A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila
Cassar, Marlène; Issa, Abdul-Raouf; Riemensperger, Thomas; Petitgas, Céline; Rival, Thomas; Coulom, Hélène; Iché-Torres, Magali; Han, Kyung-An; Birman, Serge
2015-01-01
Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca2+, also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans. PMID:25158689
Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.
Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J
2014-09-01
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction.
Pascoli, Vincent; Terrier, Jean; Hiver, Agnès; Lüscher, Christian
2015-12-02
The factors causing the transition from recreational drug consumption to addiction remain largely unknown. It has not been tested whether dopamine (DA) is sufficient to trigger this process. Here we use optogenetic self-stimulation of DA neurons of the ventral tegmental area (VTA) to selectively mimic the defining commonality of addictive drugs. All mice readily acquired self-stimulation. After weeks of abstinence, cue-induced relapse was observed in parallel with a potentiation of excitatory afferents onto D1 receptor-expressing neurons of the nucleus accumbens (NAc). When the mice had to endure a mild electric foot shock to obtain a stimulation, some stopped while others persevered. The resistance to punishment was associated with enhanced neural activity in the orbitofrontal cortex (OFC) while chemogenetic inhibition of the OFC reduced compulsivity. Together, these results show that stimulating VTA DA neurons induces behavioral and cellular hallmarks of addiction, indicating sufficiency for the induction and progression of the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
SHANK3 controls maturation of social reward circuits in the VTA
Glangetas, Christelle; Prévost-Solié, Clément; Pucci, Luca; Viguié, Joanna; Bezzi, Paola; O’Connor, Eoin C.; Georges, François; Lüscher, Christian; Bellone, Camilla
2016-01-01
Summary Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of Autism Spectrum Disorder (ASD). How SHANK3 insufficiency affects specific neural circuits and this is related to specific ASD symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the Ventral Tegmental Area (VTA) of mice. We identified dopamine (DA) and GABA cell-type specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) during the first postnatal week restored DA neuron excitatory synapse transmission and rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired VTA function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy. PMID:27273769
Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen
2014-09-01
The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fitoussi, Aurelie; Zunder, Jordan; Tan, Huibing; Laviolette, Steven R
2018-05-18
Chronic or acute exposure to delta-9-tetrahydrocannabinol (THC), the main psychoactive compound in cannabis, has been associated with numerous neuropsychiatric side-effects, including dysregulation of emotional processing and associative memory formation. Clinical and pre-clinical evidence suggests that the effects of THC are due to the ability to modulate mesolimbic dopamine (DA) activity states in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Nevertheless, the mechanisms by which THC modulates mesolimbic DA function and emotional processing are not well understood. Using an olfactory associative fear memory procedure combined with in vivo neuronal electrophysiology, we examined the effects of direct THC microinfusions targeting the shell region of the NAc (NASh) and examined how THC may modulate the processing of fear-related emotional memory and concomitant activity states of the mesolimbic DA system. We report that intra-NASh THC dose-dependently potentiates the emotional salience of normally sub-threshold fear-conditioning cues. These effects were dependent upon intra-VTA transmission through GABAergic receptor mechanisms and intra-NASh DAergic transmission. Furthermore, doses of intra-NASh THC that potentiated fear memory salience were found to modulate intra-VTA neuronal network activity by increasing the spontaneous firing and bursting frequency of DAergic neurons whilst decreasing the activity levels of a subpopulation of putative GABAergic VTA neurons. These findings demonstrate that THC can act directly in the NASh to modulate mesolimbic activity states and induce disturbances in emotional salience and memory formation through modulation of VTA DAergic transmission. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Using iPSC-derived human DA neurons from opioid-dependent subjects to study dopamine dynamics.
Sheng, Yang; Filichia, Emily; Shick, Elizabeth; Preston, Kenzie L; Phillips, Karran A; Cooperman, Leslie; Lin, Zhicheng; Tesar, Paul; Hoffer, Barry; Luo, Yu
2016-08-01
The dopaminergic (DA) system plays important roles in addiction. However, human DA neurons from drug-dependent subjects were not available for study until recent development in inducible pluripotent stem cells (iPSCs) technology. In this study, we produced DA neurons differentiated using iPSCs derived from opioid-dependent and control subjects carrying different 3' VNTR (variable number tandem repeat) polymorphism in the human dopamine transporter (DAT or SLC6A3). In addition, the effects of valproic acid (VPA) exposures on iPSC-derived human DA neurons are also examined. We present the first evidence suggesting that the 3' VNTR polymorphism in the hDAT gene affects DAT expression level in iPSC-derived human DA neurons. In human DA neurons, which provide an appropriate cellular milieu, VPA treatment alters the expression of several genes important for dopaminergic neuron function including DAT, Nurr1, and TH; this might partly explain its action in regulating addictive behaviors. VPA treatment also significantly increased DA D2 receptor (Drd2) expression, especially in the opioid-dependent iPSC cell lines. Our data suggest that human iPSC-derived DA neurons may be useful in in vitro experimental model to examine the effects of genetic variation in gene regulation, to examine the underlying mechanisms in neurological disorders including drug addiction, and to serve as a platform for therapeutic development.
An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.
Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A
1996-06-01
Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.
Picconi, Barbara; De Leonibus, Elvira; Calabresi, Paolo
2018-02-28
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons located in the midbrain. The gold-standard therapy for PD is the restoration of dopamine (DA) levels through the chronic administration of the DA precursor levodopa (L-DOPA). Although levodopa therapy is the main therapeutic approach for PD, its use is limited by the development of very disabling dyskinetic movements, mainly due to the fluctuation of DA cerebral content. Experimental animal models of PD identified in DA D1/ERK-signaling pathway aberrant activation, occurring in striatal projection neurons, coupled with structural spines abnormalities, the molecular and neuronal basis of L-DOPA-induced dyskinesia (LIDs) occurrence. Different electrophysiological approaches allowed the identification of the alteration of homeostatic structural and synaptic changes, the neuronal bases of LIDs either in vivo in parkinsonian patients or in vitro in experimental animals. Here, we report the most recent studies showing electrophysiological and morphological evidence of aberrant synaptic plasticity in parkinsonian patients during LIDs in different basal ganglia nuclei and also in cortical transmission, accounting for the complexity of the synaptic changes during dyskinesias. All together, these studies suggest that LIDs are associated with a loss of homeostatic synaptic mechanisms.
Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.
2012-01-01
Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037
Wang, Hansen; Kim, Susan S.; Zhuo, Min
2010-01-01
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of α-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome. PMID:20457613
Wang, Hansen; Kim, Susan S; Zhuo, Min
2010-07-09
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome.
Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A
2017-11-01
Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.
Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A
2017-01-01
Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates. PMID:28401925
Xu, Shengwei; Zhang, Yu; Zhang, Song; Xiao, Guihua; Wang, Mixia; Song, Yilin; Gao, Fei; Li, Ziyue; Zhuang, Ping; Chan, Piu; Tao, Guoxian; Yue, Feng; Cai, Xinxia
2018-07-01
Synchronous detecting neuron spikes and dopamine (DA) activities in the non-human primate brain play an important role in understanding of Parkinson's disease (PD). At present, most experiments are carried out by combing of electrodes and commercial instruments, which are inconvenient, time-consuming and inefficient. Herein, this study describes a novel integrated system for monitoring neuron spikes and DA activities in non-human primate brain synchronously. This system integrates an implantable sensor, a dual-function head-stage and a low noise detection instrument. The system was developed efficiently by using the key technologies of noise reduction, interference protection and differential amplification. To demonstrate the utility of this system, synchronous recordings of electrophysiological signals and DA were in vivo performed in a monkey before and after treated as a Parkinson model monkey. The system typically exhibited input-referred noise levels of only ∼ 3 μV RMS , input impedance levels of up to 5.1 GΩ, and a sensitivity of 14.075 pA/μM for DA and could detect electrophysiological signals and DA without mutual interference. In monkey experiments, lower DA concentrations in the striatum and more intensive spikes of the Parkinson model monkey than the normal one were synchronously recorded efficiently. This integrated system will not only significantly simplify the experimental operation and improve the experimental efficiency, but also improve the signal quality and synchronization performance. This integrated system, which is practical, efficient and convenient, can be widely used for the study of PD and other neurological disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B
2013-01-08
It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.
The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons.
Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P
2017-07-01
Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.
Pham, A Ninh; Waite, T David
2014-08-01
Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.
Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael
2012-01-01
Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.
García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria
2015-01-01
Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction. © 2013 Society for the Study of Addiction.
Heterogeneities in Axonal Structure and Transporter Distribution Lower Dopamine Reuptake Efficiency
Block, Ethan R.; Bartol, Tom M.; Sorkin, Alexander
2018-01-01
Abstract Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila (dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neurons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity, population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular simulations. The complex morphology of axon terminals near active zones was observed to give rise to large variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase. The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopaminergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission. PMID:29430519
Wang, Xin; Li, Nuomin; Xiong, Nian; You, Qi; Li, Jie; Yu, Jinlong; Qing, Hong; Wang, Tao; Cordell, Heather J; Isacson, Ole; Vance, Jeffery M; Martin, Eden R; Zhao, Ying; Cohen, Bruce M; Buttner, Edgar A; Lin, Zhicheng
2017-05-01
The cytoskeleton not only provides structure, it is an active component of cell function, and in several neurodegenerative disorders, there is evidence of cytoskeletal collapse. Cytoskeletal proteins have been specifically implicated in the pathogenesis of Parkinson's disease (PD), where degeneration of dopaminergic (DA) neurons is the hallmark, but in which many factors may determine the resilience of DA neurons during aging and stress. Here we report that the human Microtubule Actin Cross-linking Factor 1 gene (MACF1), a downstream target of PD biochemical pathways, was significantly associated with PD in 713 nuclear families. A significant allelic association between PD and rs12118033, with P = 0.0098, was observed, and a P < 0.03 was observed in the association analysis by both a trend test and an allelic test. We further observed that it is the MACF1b isoform, not the MACF1a isoform, which is expressed in DA neurons from six human postmortem brains. In a Caenorhabditis elegans system, used to explore the effect of altered MACF1b on neurons, knockdown or knockout of the MACF1b orthologue vab-10 resulted in the selective loss of DA neurons, which validated MACF1's risk candidacy in PD. These findings strongly suggest that MACF1b may contribute to the genetic etiology and mechanistic causation of PD.
Larsen, Kristin E; Benn, Susanna C; Ay, Ilknur; Chian, Ru-Ju; Celia, Samuel A; Remington, Mary P; Bejarano, Michelle; Liu, Meiqin; Ross, Joshua; Carmillo, Paul; Sah, Dinah; Phillips, Kester A; Sulzer, David; Pepinsky, R Blake; Fishman, Paul S; Brown, Robert H; Francis, Jonathan W
2006-11-20
Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.
Maria, Sundberg; Helle, Bogetofte; Tristan, Lawson; Gaynor, Smith; Arnar, Astradsson; Michele, Moore; Teresia, Osborn; Oliver, Cooper; Roger, Spealman; Penelope, Hallett; Ole, Isacson
2013-01-01
The main motor symptoms of Parkinson’s disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson’s disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA-neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for pre-clinical evaluation of safety and efficacy of stem cell-derived DA neurons. The aim of this study was to improve the safety of human- and non-human primate-iPSC (PiPSC)-derived DA neurons. According to our results, NCAM+/CD29low sorting enriched VM DA-neurons from pluripotent stem cell-derived neural cell populations. NCAM+/CD29low DA-neurons were positive for FOXA2/TH and EN1/TH and this cell population had increased expression levels of FOXA2, LMX1A, TH, GIRK2, PITX3, EN1, NURR1 mRNA compared to unsorted neural cell populations. PiPSC-derived NCAM+/CD29low DA-neurons were able to restore motor function of 6-OHDA lesioned rats 16 weeks after transplantation. The transplanted sorted cells also integrated in the rodent brain tissue, with robust TH+/hNCAM+ neuritic innervation of the host striatum. One year after autologous transplantation, the primate iPSC-derived neural cells survived in the striatum of one primate without any immunosuppression. These neural cell grafts contained FOXA2/TH-positive neurons in the graft site. This is an important proof of concept for the feasibility and safety of iPSC-derived cell transplantation therapies in the future. PMID:23666606
Chung, Chee Yeun; Seo, Hyemyung; Sonntag, Kai Christian; Brooks, Andrew; Lin, Ling; Isacson, Ole
2005-07-01
Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.
Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping.
Beier, Kevin T; Steinberg, Elizabeth E; DeLoach, Katherine E; Xie, Stanley; Miyamichi, Kazunari; Schwarz, Lindsay; Gao, Xiaojing J; Kremer, Eric J; Malenka, Robert C; Luo, Liqun
2015-07-30
Dopamine (DA) neurons in the midbrain ventral tegmental area (VTA) integrate complex inputs to encode multiple signals that influence motivated behaviors via diverse projections. Here, we combine axon-initiated viral transduction with rabies-mediated trans-synaptic tracing and Cre-based cell-type-specific targeting to systematically map input-output relationships of VTA-DA neurons. We found that VTA-DA (and VTA-GABA) neurons receive excitatory, inhibitory, and modulatory input from diverse sources. VTA-DA neurons projecting to different forebrain regions exhibit specific biases in their input selection. VTA-DA neurons projecting to lateral and medial nucleus accumbens innervate largely non-overlapping striatal targets, with the latter also sending extensive extra-striatal axon collaterals. Using electrophysiology and behavior, we validated new circuits identified in our tracing studies, including a previously unappreciated top-down reinforcing circuit from anterior cortex to lateral nucleus accumbens via VTA-DA neurons. This study highlights the utility of our viral-genetic tracing strategies to elucidate the complex neural substrates that underlie motivated behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S; Chen, Li; Dawson, Valina L; Dawson, Ted M; Laterra, John; Ying, Mingyao
2014-08-01
Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. ©AlphaMed Press.
Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia
2014-07-01
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia
2013-01-01
β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617
Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.
Anselmi, L; Toti, L; Bove, C; Travagli, R A
2017-11-01
Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.
The Effects of Locus Coeruleus and Norepinephrine in Methamphetamine Toxicity
Ferrucci, Michela; Giorgi, Filippo S; Bartalucci, Alessia; Busceti, Carla L; Fornai, Francesco
2013-01-01
The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters. PMID:23814540
Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.
Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine
2015-08-01
Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.
Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M
2006-08-01
Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.
Phosphorylation mechanisms in dopamine transporter regulation.
Foster, James D; Vaughan, Roxanne A
2017-10-01
The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawal, Nina; Corti, Olga; CNRS, UMR 7225, Paris
Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neuronsmore » in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.« less
Jacobs, Frank M. J.; van der Linden, Annemarie J. A.; Wang, Yuhui; von Oerthel, Lars; Sul, Hei Sook; Burbach, J. Peter H.; Smidt, Marten P.
2009-01-01
The orphan nuclear receptor Nurr1 is essential for the development of meso-diencephalic dopamine (mdDA) neurons and is required, together with the homeobox transcription factor Pitx3, for the expression of genes involved in dopamine metabolism. In order to elucidate the molecular mechanisms that underlie the neuronal deficits in Nurr1-/- mice, we performed combined gene expression microarrays and ChIP-on-chip analysis and thereby identified Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in vivo. In line with the previously described cooperativity between Nurr1 and Pitx3, we show that the expression of Ptpru and Klhl1 in mdDA neurons is also dependent on Pitx3. Furthermore, we demonstrate that Nurr1 interacts with the Ptpru promoter directly and requires Pitx3 for full expression of Ptpru in mdDA neurons. By contrast, the expression of Dlk1 is maintained in Pitx3-/- embryos and is even expanded into the rostral part of the mdDA area, suggesting a unique position of Dlk1 in the Nurr1 and Pitx3 transcriptional cascades. Expression analysis in Dlk1-/- embryos reveals that Dlk1 is required to prevent premature expression of Dat in mdDA neuronal precursors as part of the multifaceted process of mdDA neuronal differentiation driven by Nurr1 and Pitx3. Taken together, the involvement of Nurr1 and Pitx3 in the expression of novel target genes involved in important neuronal processes such as neuronal patterning, axon outgrowth and terminal differentiation, opens up new avenues to study the properties of mdDA neurons during development and in neuronal pathology as observed in Parkinson's disease. PMID:19515692
Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.
2016-01-01
Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306
Otx genes in neurogenesis of mesencephalic dopaminergic neurons.
Simeone, Antonio; Puelles, Eduardo; Omodei, Daniela; Acampora, Dario; Di Giovannantonio, Luca Giovanni; Di Salvio, Michela; Mancuso, Pietro; Tomasetti, Carmine
2011-08-01
Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail. Copyright © 2011 Wiley Periodicals, Inc.
Leite-Morris, Kimberly A; Fukudome, Eugene Y; Kaplan, Gary B
2002-01-14
Recent studies suggest that gamma-aminobutyric acid type B (GABA(B)) receptors located on dopaminergic cells in the ventral tegmental area (VTA) regulate mesolimbic dopaminergic (A10) activity. In the current study, we identified GABA(B) receptor subtypes in the area of the VTA and examined their role in modulating acute opiate actions. We studied the effects of intra-VTA infusions of the selective GABA(B) agonist baclofen on morphine-induced locomotor stimulation and A10 neuronal activation. Drug treatments were followed by ambulatory activity monitoring for 180 min. Intra-VTA baclofen treatment produced a 70% inhibition of morphine-stimulated locomotor activity. Furthermore, functional activation of A10 neurons was assessed by immunohistochemical staining of c-Fos in the nucleus accumbens (NAc), where A10 neurons terminate. We found that morphine treatment increased the levels of Fos-positive nuclei in the NAc, while intra-VTA baclofen treatment reversed morphine's effects. Finally, GABA(B) receptor subtypes and isoforms were identified in the ventromedial mesencephalon using immunoblotting. We demonstrated the presence of GABA(B)R1a (130 kDa), GABA(B)R1b (100 kDa), and GABA(B)R2 (120 kDa) receptor subtypes in this region. These results suggest that GABA(B) receptor isoforms are found in the VTA and their activation results in the blockade of behavioral effects of opiates via inhibition of dopaminergic neurotransmission.
Neural, Cellular and Molecular Mechanisms of Active Forgetting
Medina, Jorge H.
2018-01-01
The neurobiology of memory formation attracts much attention in the last five decades. Conversely, the rules that govern and the mechanisms underlying forgetting are less understood. In addition to retroactive interference, retrieval-induced forgetting and passive decay of time, it has been recently demonstrated that the nervous system has a diversity of active and inherent processes involved in forgetting. In Drosophila, some operate mainly at an early stage of memory formation and involves dopamine (DA) neurons, specific postsynaptic DA receptor subtypes, Rac1 activation and induces rapid active forgetting. In mammals, others regulate forgetting and persistence of seemingly consolidated memories and implicate the activity of DA receptor subtypes and AMPA receptors in the hippocampus (HP) and related structures to activate parallel signaling pathways controlling active time-dependent forgetting. Most of them may involve plastic changes in synaptic and extrasynaptic receptors including specific removal of GluA2 AMPA receptors. Forgetting at longer timescales might also include changes in adult neurogenesis in the dentate gyrus (DG) of the HP. Therefore, based on relevance or value considerations neuronal circuits may regulate in a time-dependent manner what is formed, stored, and maintained and what is forgotten. PMID:29467630
A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress
Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi
2014-01-01
Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742
On the Origin of Cortical Dopamine: Is it a Co-Transmitter in Noradrenergic Neurons?
Devoto, Paola; Flore, Giovanna
2006-01-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA. To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter. Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas. Systemic administration or intra-cortical perfusion of α2-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex. Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC. Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced. Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of α2-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex. Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration. Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex. The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions. PMID:18615131
On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons?
Devoto, Paola; Flore, Giovanna
2006-04-01
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng
2016-01-01
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here, menthol alone exerts several neurobiological changes. We are among the first to show that menthol, by itself, increases the number of nicotinic acetylcholine receptors (nAChRs) in the mouse brain. It does so at a dose that matches nicotine in its ability to increase nAChR number. At this same dose, menthol also alters midbrain dopamine neuron function and prevents nicotine reward-related behavior. Together, our data show that menthol is more than an “inert” flavor additive and is able to change the function of midbrain dopamine neurons that are part of the mesolimbic reward pathway. PMID:26961950
Dopamine Neurons Change the Type of Excitability in Response to Stimuli
Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey
2016-01-01
The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I excitability in dopamine neurons might be important for low firing rates and fine-tuning basal dopamine levels, while switching excitability to type II during NMDAR and AMPAR activation may facilitate a transient increase in dopamine concentration, as type II neurons are more amenable to synchronization by mutual excitation. PMID:27930673
Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W
2016-03-24
Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong neuroprotection in the 6-OHDA rat PD model, suggesting that insulin signaling may be a novel therapeutic target in broad neurodegenerative disorders. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Lipton, Jack W.; Tolod, Emeline G.; Thompson, Valerie B.; Pei, Lin; Paumier, Katrina L.; Terpstra, Brian T.; Lynch, Kaari A.; Collier, Timothy J.; Sortwell, Caryl E.
2008-01-01
Summary The current study examined whether modest concentrations of MDMA could increase the survival and/or neurite outgrowth of fetal midbrain dopamine (DA) neurons in vitro since increased DA neurite outgrowth has been previously observed in vivo from prenatal exposure. MDMA concentrations in fetal brain were quantified to determine relevant in vivo concentrations to employ in vitro. A dose-response study in vitro demonstrated that MDMA, at concentrations observed in vivo, resulted in increased, DA-specific, neuron survival. Higher doses resulted in nonspecific neurotoxicity. MDMA application immediately after culture establishment resulted in greater survival than delayed application, however both were superior to control. MDMA significantly increased the expression of the slc6a3 gene (dopamine transporter; DAT) in culture. Co-application of the DAT reuptake inhibitor methylphenidate (MPH) with MDMA attenuated this effect. Progressive reductions in MPH concentrations restored the MDMA-induced survival effect. This suggests that MDMA’s action at DAT mediates the survival effect. Neurite density per neuron was unaffected by MDMA in vitro suggesting that MDMA promotes DA neuron survival but not neurite outgrowth in culture. Finally, animals prenatally exposed to MDMA and examined on postnatal day 35 showed an increase in tyrosine hydroxylase-positive (TH+) neurons in the substantia nigra but not in the ventral tegmental area. These data suggest that during development, MDMA can increase the survival of DA neurons through its action at its transporter. Understanding how MDMA increases DA neuron survival may provide insight into normal DA neuron loss during development. PMID:18655796
Martorana, Alessandro; Martella, Giuseppina; D'Angelo, Vincenza; Fusco, Francesca Romana; Spadoni, Francesca; Bernardi, Giorgio; Stefani, Alessandro
2006-10-01
The tridecapeptide neurotensin (NT) is involved in the modulation of dopamine (DA)-mediated functions in the nigrostriatal and mesocorticolimbic pathways. Its relevance in mammalian globus pallidus (GP) is questioned. A recent electrophysiological study on GP slices described NT-mediated robust membrane depolarization, depending upon the suppression of potassium conductance and/or the activation of cation current. Here, we have studied whether NT also affected high-voltage-activated calcium (Ca(2+)) currents, by means of whole-cell recordings on isolated GP neurons. In our hands, the full peptide and the segment NT8-13 reversibly inhibited N-like Ca(2+) current in about 60% of the recorded dissociated neurons, irrespective of their capacitance. The NT-mediated modulation showed no desensitization and was antagonized by the NT1 antagonists SR48692 and SR142948. These results imply an abundant expression of NTS(1) on GP cell somata. Then, we performed a light and immunofluorescence-confocal microscopy study of NTS(1) localization among GP neurons. We found that NTS(1) is localized in about 56% of GP neurons in both subpopulations of neurons, namely parvalbumin positive and negative. We conclude that NT, likely released from the striatal terminals in GP, acts through the postsynaptic NTS(1) preferentially localized in the lateral aspects of the GP. These data suggest a new implication (neither merely presynaptic nor simply "excitatory") for NT in the modulation of GP firing pattern. In addition, NT might have a role in affecting the interplay among the endogenous release of GABA/glutamate and DA. This hypothesis might have implications on both sensori-motor and associative functions of the GP and should be tested in DA-denervated disease models.
Akundi, Ravi S; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D; Zhi, Lianteng; Cass, Wayne A; Sullivan, Patrick G; Büeler, Hansruedi
2011-01-13
PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death.
Ciron, C.; Lengacher, S.; Dusonchet, J.; Aebischer, P.; Schneider, B.L.
2012-01-01
Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity. PMID:22246294
Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco
2011-02-01
Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.
Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease
Zhang, Lifen; Le, Weidong; Xie, Wenjie; Dani, John A.
2011-01-01
The nuclear receptor related 1 (Nurr1) transcription factor contributes to the development and maintenance of dopamine (DA) neurons in the brain. We found that heterozygous Nurr1 knock-out (Nurr1 +/−) influenced the age-dependent decline in the number of DA neurons and influenced DA signaling. We examined the DA marker, tyrosine hydroxylase, using immunohistochemistry, and we measured DA signaling using fast-scan cyclic voltammetry in 3 age groups of wild-type (Nurr1 +/+) and mutant (Nurr1 +/−) mice: 3–6, 9–12, and 15–23 months old. Prior to significant loss of DA neurons and to the onset of parkinsonian symptoms, young Nurr1 +/− mice (3–6 months) exhibited a decrease in peak evoked DA release that was partially countered by a decrease in the rate of DA reuptake. As peak evoked DA release declined with age for both the wild-type and Nurr1 +/− mice, both genotypes manifested decreased DA reuptake. As the DA release fell further with age, decreased DA reuptake eventually could not adequately compensate the Nurr1 +/− mice. The results indicated that Nurr1 deficiency led to impaired DA release even before significant DA neuron loss. PMID:21531044
Morrison, Thomas R.; Sikes, Robert W.; Melloni, Richard H.
2016-01-01
Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. PMID:26691962
Caldwell, Kim A.; Tucci, Michelle L.; Armagost, Jafa; Hodges, Tyler W.; Chen, Jue; Memon, Shermeen B.; Blalock, Jeana E.; DeLeon, Susan M.; Findlay, Robert H.; Ruan, Qingmin; Webber, Philip J.; Standaert, David G.; Olson, Julie B.; Caldwell, Guy A.
2009-01-01
Parkinson disease (PD) involves progressive neurodegeneration, including loss of dopamine (DA) neurons from the substantia nigra. Select genes associated with rare familial forms of PD function in cellular pathways, such as the ubiquitin-proteasome system (UPS), involved in protein degradation. The misfolding and accumulation of proteins, such as α-synuclein, into inclusions termed Lewy Bodies represents a clinical hallmark of PD. Given the predominance of sporadic PD among patient populations, environmental toxins may induce the disease, although their nature is largely unknown. Thus, an unmet challenge surrounds the discovery of causal or contributory neurotoxic factors that could account for the prevalence of sporadic PD. Bacteria within the order Actinomycetales are renowned for their robust production of secondary metabolites and might represent unidentified sources of environmental exposures. Among these, the aerobic genera, Streptomyces, produce natural proteasome inhibitors that block protein degradation and may potentially damage DA neurons. Here we demonstrate that a metabolite produced by a common soil bacterium, S. venezuelae, caused DA neurodegeneration in the nematode, Caenorhabditis elegans, which increased as animals aged. This metabolite, which disrupts UPS function, caused gradual degeneration of all neuronal classes examined, however DA neurons were particularly vulnerable to exposure. The presence of DA exacerbated toxicity because neurodegeneration was attenuated in mutant nematodes depleted for tyrosine hydroxylase (TH), the rate-limiting enzyme in DA production. Strikingly, this factor caused dose-dependent death of human SH-SY5Y neuroblastoma cells, a dopaminergic line. Efforts to purify the toxic activity revealed that it is a highly stable, lipophilic, and chemically unique small molecule. Evidence of a robust neurotoxic factor that selectively impacts neuronal survival in a progressive yet moderate manner is consistent with the etiology of age-associated neurodegenerative diseases. Collectively, these data suggest the potential for exposures to the metabolites of specific common soil bacteria to possibly represent a contributory environmental component to PD. PMID:19806188
Zheng, Xuefeng; Wu, Jiajia; Zhu, Yaofeng; Chen, Si; Chen, Zhi; Chen, Tao; Huang, Ziyun; Wei, Jiayou; Li, Yanmei; Lei, Wanlong
2018-04-16
Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xi, Ye; Feng, Dayun; Tao, Kai; Wang, Ronglin; Shi, Yajun; Qin, Huaizhou; Murphy, Michael P; Yang, Qian; Zhao, Gang
2018-05-26
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion. Copyright © 2018 Elsevier B.V. All rights reserved.
Cadoni, Cristina; Pisanu, Augusta; Simola, Nicola; Frau, Lucia; Porceddu, Pier Francesca; Corongiu, Silvia; Dessì, Christian; Sil, Annesha; Plumitallo, Antonio; Wardas, Jadwiga; Di Chiara, Gaetano
2017-09-01
Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats. MDMA reduced density of tyrosine hydroxylase (TH) positive neurons in the ventral tegmental area and in the substantia nigra pars compacta, and immunoreactivity of TH and DA transporter in the nucleus accumbens (NAc) shell and core, and caudate-putamen. This same treatment caused a reduction of basal dialysate DA in the NAc core. MDMA-pretreated rats also showed behavioral sensitization to a MDMA challenge at adulthood and potentiation of MDMA-induced increase of dialysate DA in the NAc core, but not in the NAc shell. In addition, MDMA-treated rats displayed a deficit in recognition memory. Caffeine co-administration did not affect the above outcomes. Our results show that adolescent exposure of rats to low doses of MDMA induces long-lasting and widespread reduction of DA neurons indicative of a neurotoxic effect on DA neurons and suggestive of a degeneration of the same neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine.
Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana
2016-10-11
The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R + -MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits.
Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine
Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana
2016-01-01
The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos. Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R+-MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits. PMID:27671625
Díaz-Martínez, N Emmanuel; Tamariz, Elisa; Díaz, N Fabián; García-Peña, Claudia M; Varela-Echavarría, Alfredo; Velasco, Iván
2013-01-01
Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell–derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3–expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3–treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3–directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains. PMID:23732989
Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease
Hou, Lijuan; Chen, Wei; Liu, Xiaoli; Qiao, Decai; Zhou, Fu-Ming
2017-01-01
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients. PMID:29163139
Cackovic, Juliana; Gutierrez-Luke, Susana; Call, Gerald B; Juba, Amber; O'Brien, Stephanie; Jun, Charles H; Buhlman, Lori M
2018-01-01
Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park ( Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.
Pistis, M; Muntoni, A L; Pillolla, G; Perra, S; Cignarella, G; Melis, M; Gessa, G L
2005-01-01
Gamma-hydroxybutyric acid (GHB) is a short-chain fatty acid naturally occurring in the mammalian brain, which recently emerged as a major recreational drug of abuse. GHB has multiple neuronal mechanisms including activation of both the GABA(B) receptor, and a distinct GHB-specific receptor. This complex GHB-GABA(B) receptor interaction is probably responsible for the multifaceted pharmacological, behavioral and toxicological profile of GHB. Drugs of abuse exert remarkably similar effects upon reward-related circuits, in particular the mesolimbic dopaminergic system and the nucleus accumbens (NAc). We used single unit recordings in vivo from urethane-anesthetized rats to characterize the effects of GHB on evoked firing in NAc "shell" neurons and on spontaneous activity of antidromically identified dopamine (DA) cells located in the ventral tegmental area. GHB was studied in comparison with the GABA(B) receptor agonist baclofen and antagonist (2S)(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911). Additionally, we utilized a GHB analog, gamma-(p-methoxybenzil)-gamma-hydroxybutyric acid (NCS-435), devoid of GABA(B) binding properties, but with high affinity for specific GHB binding sites. In common with other drugs of abuse, GHB depressed firing in NAc neurons evoked by the stimulation of the basolateral amygdala. On DA neurons, GHB exerted heterogeneous effects, which were correlated to the baseline firing rate of the cells but led to a moderate stimulation of the DA system. All GHB actions were mediated by GABA(B) receptors, since they were blocked by SCH50911 and were not mimicked by NCS-435. Our study indicates that the electrophysiological profile of GHB is close to typical drugs of abuse: both inhibition of NAc neurons and moderate to strong stimulation of DA transmission are distinctive features of diverse classes of abused drugs. Moreover, it is concluded that addictive and rewarding properties of GHB do not necessarily involve a putative high affinity GHB receptor.
Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons.
Zhao, Jerry; Baudry, Michel; Jones, Susan
2018-05-04
Repeated activation of N-Methyl-d-aspartate receptors (NMDARs) causes a Ca 2+ -dependent reduction in NMDAR-mediated current in dopamine (DA) neurons of the substantia nigra pars compacta (SNc) in one week old rats; however, a Ca 2+ -dependent regulatory protein has not been identified. The role of the Ca 2+ -dependent cysteine protease, calpain, in mediating NMDAR current rundown was investigated. In brain slices from rats aged postnatal day 7-9 ('P7'), bath application of either of the membrane permeable calpain inhibitors, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN, 20 μM) or MDL-28170 (30 μM) significantly reduced whole-cell NMDAR current rundown. To investigate the role of the calpain-2 isoform, the membrane permeable calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I, 200 nM), was applied; C2I application significantly reduced whole cell NMDAR current rundown. Interestingly, ALLN but not C2I significantly reduced rundown of NMDA-EPSCs. These results suggest the calpain-2 isoform mediates Ca 2+ -dependent regulation of extrasynaptic NMDAR current in the first postnatal week, while calpain-1 might mediate rundown of synaptic NMDAR currents. One week later in postnatal development, at P12-P16 ('P14'), there was significantly less rundown in SNc-DA neurons, and no significant effect on rundown of either Ca 2+ chelation or treatment with the calpain inhibitor, ALLN, suggesting that the rundown observed in SNc-DA neurons from two week-old rats might be Ca 2+ -independent. In conclusion, Ca 2+ -dependent rundown of extrasynaptic NMDAR currents in SNc DA neurons involves calpain-2 activation, but Ca 2+ - and calpain-2-dependent NMDAR current rundown is developmentally regulated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Shu; Sun, Hai-Mei; Yan, Ji-Hong; Xue, Hong; Wu, Bo; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan
2013-07-01
Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD. Copyright © 2013 Wiley Periodicals, Inc.
Timmer, Marco; Cesnulevicius, Konstantin; Winkler, Christian; Kolb, Julia; Lipokatic-Takacs, Esther; Jungnickel, Julia; Grothe, Claudia
2007-01-17
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
Omelchenko, Natalia; Sesack, Susan R.
2008-01-01
Cholinergic afferents to the ventral tegmental area (VTA) contribute substantially to the regulation of motivated behaviors and the rewarding properties of nicotine. These actions are believed to involve connections with dopamine (DA) neurons projecting to the nucleus accumbens (NAc). However, this direct synaptic link has never been investigated, nor is it known whether cholinergic inputs innervate other populations of DA and GABA neurons, including those projecting to the prefrontal cortex (PFC). We addressed these questions using electron microscopic analysis of retrograde tract-tracing and immunocytochemistry for the vesicular acetylcholine transporter (VAChT) and for tyrosine hydroxylase (TH) and GABA. In tissue labeled for TH, VAChT+ terminals frequently synapsed onto DA mesoaccumbens neurons but only seldom contacted DA mesoprefrontal cells. In tissue labeled for GABA, one third of VAChT+ terminals innervated GABA-labeled dendrites, including both mesoaccumbens and mesoprefrontal populations. VAChT+ synapses onto DA and mesoaccumbens neurons were more commonly of the asymmetric (presumed excitatory) morphological type, whereas VAChT+ synapses onto GABA cells were more frequently symmetric (presumed inhibitory or modulatory). These findings suggest that cholinergic inputs to the VTA mediate complex synaptic actions, with a major portion of this effect likely to involve an excitatory influence on DA mesoaccumbens neurons. As such, the results suggest that natural and drug rewards operating through cholinergic afferents to the VTA have a direct synaptic link to the mesoaccumbens DA neurons that modulate approach behaviors. PMID:16385486
METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS NATURALLY OCCURRING PHASIC DOPAMINE SIGNALING
Howard, Christopher D.; Daberkow, David P.; Ramsson, Eric S.; Keefe, Kristen A.; Garris, Paul A.
2013-01-01
Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson’s disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, prior studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called “spontaneous” phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these sub-second DA changes may play a role in enhancing reward-cue associations. METH-pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits. PMID:23574406
Wang, Jing; Liu, Huaide; Jin, Weihua; Zhang, Hong; Zhang, Quanbin
2016-01-01
Parkinson's disease (PD) is associated with progressive loss of dopaminergic neurons and more-widespread neuronal changes that cause complex symptoms. The aim of this study was to investigate the structure-activity relationship of sulfated hetero-polysaccharides (DF1) and sulfated galactofucan polysaccharides (DF2) on dopaminergic neuron in vivo and in vitro. Treatment with samples significantly ameliorated the depletion of both DA and TH-, Bcl-2- and Bax-positive neurons in MPTP-induced PD mice, DF1 showed the highest activity. The in vitro results found that DF1 and DF2 could reverse the decreased mitochondrial activity and the increased LDL release induced by MPP(+) (P<0.01 or P<0.001) which provides further evidence that DF1 and DF2 also exerts a direct protection against the neuronal injury caused by MPP(+). Furthermore, the administration of samples effectively decreased lipid peroxidation and increased the level/activities of GSH, GSH-PX, MDA and CAT in MPTP mice. Thus, the neuron protective effect may be mediated, in part, through antioxidant activity and the prevention of cell apoptosis. The chemical composition of DF1, DF2 and DF differed markedly, the DF1 fraction had the most complex chemical composition and showed the highest neuron protective activity. These results suggest that diverse monosaccharides and uronic acid might contribute to neuron protective activity. Copyright © 2015 Elsevier B.V. All rights reserved.
DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.
Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong
2015-01-01
In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.
VMAT2-Mediated Neurotransmission from Midbrain Leptin Receptor Neurons in Feeding Regulation
Lu, Yungang; Xu, Pingwen; Isingrini, Elsa; Xu, Yong
2017-01-01
Abstract Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unclear. Here, we showed that midbrain LepR neurons overlap with a subset of dopaminergic, GABAergic and glutamatergic neurons. Specific removal of vesicular monoamine transporter 2 (VMAT2) in midbrain LepR neurons (KO mice) disrupted DA accumulation in vesicles, but failed to cause a significant change in the evoked release of either glutamate or GABA to downstream neurons. While KO mice showed no differences on chow, they presented a reduced high-fat diet (HFD) intake and resisted to HFD-induced obesity. Specific activation of midbrain LepR neurons promoted VMAT2-dependent feeding on chow and HFD. When tested with an intermittent access to HFD where first 2.5-h HFD eating (binge-like) and 24-h HFD feeding were measured, KO mice exhibited more binge-like, but less 24-h HFD feeding. Interestingly, leptin inhibited 24-h HFD feeding in controls but not in KO mice. Thus, VMAT2-mediated neurotransmission from midbrain LepR neurons contributes to both binge-like eating and HFD feeding regulation. PMID:28560316
Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L
2015-12-21
The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Sonsalla, Patricia K.; Coleman, Christal; Wong, Lai-Yoong; Harris, Suzan L.; Richardson, Jason R.; Gadad, Bharathi S.; Li, Wenhao; German, Dwight C.
2013-01-01
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by a prominent loss of nigrostriatal dopamine (DA) neurons with an accompanying neuroinflammation. The peptide angiotensin II (AngII) plays a role in oxidative-stress induced disorders and is thought to mediate its detrimental actions via activation of AngII AT1 receptors. The brain renin-angiotensin system is implicated in neurodegenerative disorders including PD. Blockade of the angiotensin converting enzyme or AT1 receptors provides protection in acute animal models of parkinsonism. We demonstrate here that treatment of mice with the angiotensin converting enzyme inhibitor captopril protects the striatum from acutely administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP), and that chronic captopril protects the nigral DA cell bodies from degeneration in a progressive rat model of parkinsonism created by the chronic intracerebral infusion of 1-methyl-4-phenylpyridinium (MPP+). The accompanying activation of microglia in the substantia nigra of MPP+-treated rats was reduced by the chronic captopril treatment. These findings indicate that captopril is neuroprotective for nigrostriatal DA neurons in both acute and chronic rodent PD models. Targeting the brain AngII pathway may be a feasible approach to slowing neurodegeneration in PD. PMID:24184050
Fukusumi, Yoshiyasu; Meier, Florian; Götz, Sebastian; Matheus, Friederike; Irmler, Martin; Beckervordersandforth, Ruth; Faus-Kessler, Theresa; Minina, Eleonora; Rauser, Benedict; Zhang, Jingzhong; Arenas, Ernest; Andersson, Elisabet; Niehrs, Christof; Beckers, Johannes; Simeone, Antonio; Wurst, Wolfgang; Prakash, Nilima
2015-09-30
Wingless-related MMTV integration site 1 (WNT1)/β-catenin signaling plays a crucial role in the generation of mesodiencephalic dopaminergic (mdDA) neurons, including the substantia nigra pars compacta (SNc) subpopulation that preferentially degenerates in Parkinson's disease (PD). However, the precise functions of WNT1/β-catenin signaling in this context remain unknown. Stem cell-based regenerative (transplantation) therapies for PD have not been implemented widely in the clinical context, among other reasons because of the heterogeneity and incomplete differentiation of the transplanted cells. This might result in tumor formation and poor integration of the transplanted cells into the dopaminergic circuitry of the brain. Dickkopf 3 (DKK3) is a secreted glycoprotein implicated in the modulation of WNT/β-catenin signaling. Using mutant mice, primary ventral midbrain cells, and pluripotent stem cells, we show that DKK3 is necessary and sufficient for the correct differentiation of a rostrolateral mdDA neuron subset. Dkk3 transcription in the murine ventral midbrain coincides with the onset of mdDA neurogenesis and is required for the activation and/or maintenance of LMX1A (LIM homeobox transcription factor 1α) and PITX3 (paired-like homeodomain transcription factor 3) expression in the corresponding mdDA precursor subset, without affecting the proliferation or specification of their progenitors. Notably, the treatment of differentiating pluripotent stem cells with recombinant DKK3 and WNT1 proteins also increases the proportion of mdDA neurons with molecular SNc DA cell characteristics in these cultures. The specific effects of DKK3 on the differentiation of rostrolateral mdDA neurons in the murine ventral midbrain, together with its known prosurvival and anti-tumorigenic properties, make it a good candidate for the improvement of regenerative and neuroprotective strategies in the treatment of PD. Significance statement: We show here that Dickkopf 3 (DKK3), a secreted modulator of WNT (Wingless-related MMTV integration site)/β-catenin signaling, is both necessary and sufficient for the proper differentiation and survival of a rostrolateral (parabrachial pigmented nucleus and dorsomedial substantia nigra pars compacta) mesodiencephalic dopaminergic neuron subset, using Dkk3 mutant mice and murine primary ventral midbrain and pluripotent stem cells. The progressive loss of these dopamine-producing mesodiencephalic neurons is a hallmark of human Parkinson's disease, which can up to now not be halted by clinical treatments of this disease. Thus, the soluble DKK3 protein might be a promising new agent for the improvement of current protocols for the directed differentiation of pluripotent and multipotent stem cells into mesodiencephalic dopaminergic neurons and for the promotion of their survival in situ. Copyright © 2015 the authors 0270-6474/15/3513386-17$15.00/0.
Diaz-Ruiz, Oscar; Zhang, Yajun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R; Tagliaferro, Adriana; Brusco, Alicia; Bäckman, Cristina M
2012-07-20
In the present study, we analyzed mice with a targeted deletion of β-catenin in DA neurons (DA-βcat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-βcat KO mice showed significant deficits in their ability to form long-term memories and displayed reduced expression of methamphetamine-induced behavioral sensitization after subsequent challenge doses with this drug, suggesting that motor learning and drug-induced learning plasticity are altered in these mice. Morphological analyses showed no changes in the number or distribution of tyrosine hydroxylase-labeled neurons in the ventral midbrain. While electrochemical measurements in the striatum determined no changes in acute DA release and uptake, a small but significant decrease in DA release was detected in mutant animals after prolonged repetitive stimulation, suggesting a possible deficit in the DA neurotransmitter vesicle reserve pool. However, electron microscopy analyses did not reveal significant differences in the content of synaptic vesicles per terminal, and striatal DA levels were unchanged in DA-βcat KO animals. In contrast, striatal mRNA levels for several markers known to regulate synaptic plasticity and DA neurotransmission were altered in DA-βcat KO mice. This study demonstrates that ablation of β-catenin in DA neurons leads to alterations of motor and reward-associated memories and to adaptations of the DA neurotransmitter system and suggests that β-catenin signaling in DA neurons is required to facilitate the synaptic remodeling underlying the consolidation of long-term memories.
Changes in the regulation of heat shock gene expression in neuronal cell differentiation.
Oza, Jay; Yang, Jingxian; Chen, Kuang Yu; Liu, Alice Y-C
2008-01-01
Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA(hsp), and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stress-induced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Laplante, François; Zhang, Zi-Wei; Huppé-Gourgues, Frédéric; Dufresne, Marc M; Vaucher, Elvire; Sullivan, Ron M
2012-11-01
In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Selective Deletion of GRK2 Alters Psychostimulant-Induced Behaviors and Dopamine Neurotransmission
Daigle, Tanya L; Ferris, Mark J; Gainetdinov, Raul R; Sotnikova, Tatyana D; Urs, Nikhil M; Jones, Sara R; Caron, Marc G
2014-01-01
GRK2 is a G protein-coupled receptor kinase (GRK) that is broadly expressed and is known to regulate diverse types of receptors. GRK2 null animals exhibit embryonic lethality due to a severe developmental heart defect, which has precluded the study of this kinase in the adult brain. To elucidate the specific role of GRK2 in the brain dopamine (DA) system, we used a conditional gene knockout approach to selectively delete GRK2 in DA D1 receptor (D1R)-, DA D2 receptor (D2R)-, adenosine 2A receptor (A2AR)-, or DA transporter (DAT)-expressing neurons. Here we show that select GRK2-deficient mice display hyperactivity, hyposensitivity, or hypersensitivity to the psychomotor effects of cocaine, altered striatal signaling, and DA release and uptake. Mice with GRK2 deficiency in D2R-expressing neurons also exhibited increased D2 autoreceptor activity. These findings reveal a cell-type-specific role for GRK2 in the regulation of normal motor behavior, sensitivity to psychostimulants, dopamine neurotransmission, and D2 autoreceptor function. PMID:24776686
Moya, K L; Confaloni, A M; Allinquant, B
1994-11-01
We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.
O'Brien, Kylie B; Sharrief, Anjail Z; Nordstrom, Eric J; Travanty, Anthony J; Huynh, Mailee; Romero, Megan P; Bittner, Katie C; Bowser, Michael T; Burton, Frank H
2018-04-01
Tics and compulsions in comorbid Tourette's syndrome (TS) and obsessive-compulsive disorder (OCD) are associated with chronic hyperactivity of parallel cortico/amygdalo-striato-thalamo-cortical (CSTC) loop circuits. Comorbid TS- & OCD-like behaviors have likewise been observed in D1CT-7 mice, in which an artificial neuropotentiating transgene encoding the cAMP-elevating intracellular subunit of cholera toxin (CT) is chronically expressed selectively in somatosensory cortical & amygdalar dopamine (DA) D1 receptor-expressing neurons that activate cortico/amygdalo-striatal glutamate (GLU) output. We've now examined in D1CT-7 mice whether the chronic GLU output from their potentiated cortical/limbic CSTC subcircuit afferents associated with TS- & OCD-like behaviors elicits desensitizing neurochemical changes in the striatum (STR). Microdialysis-capillary electrophoresis and in situ hybridization reveal that the mice's chronic GLU-excited STR exhibits pharmacodynamic changes in three independently GLU-regulated measures of output neuron activation, co-excitation, and desensitization, signifying hyperactive striatal CSTC output and compensatory striatal glial and neuronal desensitization: 1) Striatal GABA, an output neurotransmitter induced by afferent GLU, is increased. 2) Striatal d-serine, a glial excitatory co-transmitter inhibited by afferent GLU, is decreased. 3) Striatal Period1 (Per1), which plays a non-circadian role in the STR as a GLU + DA D1- (cAMP-) dependent repressor thought to feedback-inhibit GLU + DA- triggered ultradian urges and motions, is transcriptionally abolished. These data imply that chronic cortical/limbic GLU excitation of the STR desensitizes its co-excitatory d-serine & DA inputs while freezing its GABA output in an active state to mediate chronic tics and compulsions - possibly in part by abolishing striatal Per1-dependent ultradian extinction of urges and motions. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study
Durrenberger, Pascal. F.; Grünblatt, Edna; Fernando, Francesca S.; Monoranu, Camelia Maria; Evans, Jordan; Riederer, Peter; Reynolds, Richard; Dexter, David T.
2012-01-01
The aetiology of Parkinson's disease (PD) is yet to be fully understood but it is becoming more and more evident that neuronal cell death may be multifactorial in essence. The main focus of PD research is to better understand substantia nigra homeostasis disruption, particularly in relation to the wide-spread deposition of the aberrant protein α-synuclein. Microarray technology contributed towards PD research with several studies to date and one gene, ALDH1A1 (Aldehyde dehydrogenase 1 family, member A1), consistently reappeared across studies including the present study, highlighting dopamine (DA) metabolism dysfunction resulting in oxidative stress and most probably leading to neuronal cell death. Neuronal cell death leads to increased inflammation through the activation of astrocytes and microglia. Using our dataset, we aimed to isolate some of these pathways so to offer potential novel neuroprotective therapeutic avenues. To that effect our study has focused on the upregulation of P2X7 (purinergic receptor P2X, ligand-gated ion channel, 7) receptor pathway (microglial activation) and on the NOS3 (nitric oxide synthase 3) pathway (angiogenesis). In summary, although the exact initiator of striatal DA neuronal cell death remains to be determined, based on our analysis, this event does not remain without consequence. Extracellular ATP and reactive astrocytes appear to be responsible for the activation of microglia which in turn release proinflammatory cytokines contributing further to the parkinsonian condition. In addition to tackling oxidative stress pathways we also suggest to reduce microglial and endothelial activation to support neuronal outgrowth. PMID:22548201
Lee, Jae-Kyung; Chung, Jaegwon; Druey, Kirk M.; Tansey, Malú G.
2012-01-01
Regulator of G-protein signaling-10 (RGS10) is a GTPase activating protein (GAP) for Gαi/q/z subunits that is highly expressed in the immune system and in a broad range of brain regions including the hippocampus, striatum, dorsal raphe, and ventral midbrain. Previously, we reported that RGS10-null mice display increased vulnerability to chronic systemic inflammation-induced degeneration of nigral dopaminergic (DA) neurons. Given that RGS10 is expressed in DA neurons, we investigated the extent to which RGS10 regulates cell survival under conditions of inflammatory stress. Because of the inherent limitations associated with use of primary DA neurons for biochemical analyses, we employed a well-characterized ventral mesencephalon DA neuroblastoma cell line (MN9D) for our studies. We found that stable over-expression of RGS10 rendered them resistant to TNF-induced cytotoxicity; whereas MN9D cells expressing mutant RGS10-S168A (which is resistant to phosphorylation by protein kinase A (PKA) at a serine residue that promotes its nuclear translocation) showed similar sensitivity to TNF as the parental MN9D cells. Using biochemical and pharmacological approaches, we identified protein kinase A (PKA) and the downstream phospho-cAMP response element-binding (CREB) signaling pathway (and ruled out ERK 1/2, JNK, and NFkB) as key mediators of the neuroprotective effect of RGS10 against inflammatory stress. PMID:22564151
Akundi, Ravi S.; Huang, Zhenyu; Eason, Joshua; Pandya, Jignesh D.; Zhi, Lianteng; Cass, Wayne A.; Sullivan, Patrick G.; Büeler, Hansruedi
2011-01-01
Background PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca2+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson's disease (PD) display altered activity in the nigrostriatal system of Pink1−/− mice. Methods and Findings Purified brain mitochondria of Pink1−/− mice showed impaired Ca2+ storage capacity, resulting in increased Ca2+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1−/− mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1−/− mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1−/− mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1−/− embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1−/− mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. Conclusions Increased mitochondrial Ca2+ sensitivity and JNK activity are early defects in Pink1−/− mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1−/− mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1−/− mice to inflammation and injury-induced cell death. PMID:21249202
Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Stem Cells.
Rodríguez-Traver, Eva; Solís, Oscar; Díaz-Guerra, Eva; Ortiz, Óscar; Vergaño-Vera, Eva; Méndez-Gómez, Héctor R; García-Sanz, Patricia; Moratalla, Rosario; Vicario-Abejón, Carlos
2016-07-01
NURR1 is an essential transcription factor for the differentiation, maturation, and maintenance of midbrain dopaminergic neurons (DA neurons) as it has been demonstrated using knock-out mice. DA neurons of the substantia nigra pars compacta degenerate in Parkinson's disease (PD) and mutations in the Nurr1 gene have been associated with this human disease. Thus, the study of NURR1 actions in vivo is fundamental to understand the mechanisms of neuron generation and degeneration in the dopaminergic system. Here, we present and discuss findings indicating that NURR1 is a valuable molecular tool for the in vitro generation of DA neurons which could be used for modeling and studying PD in cell culture and in transplantation approaches. Transduction of Nurr1 alone or in combination with other transcription factors such as Foxa2, Ngn2, Ascl1, and Pitx3, induces the generation of DA neurons, which upon transplantation have the capacity to survive and restore motor behavior in animal models of PD. We show that the survival of transplanted neurons is increased when the Nurr1-transduced olfactory bulb stem cells are treated with GDNF. The use of these and other factors with the induced pluripotent stem cell (iPSC)-based technology or the direct reprogramming of astrocytes or fibroblasts into human DA neurons has produced encouraging results for the study of the cellular and molecular mechanisms of neurodegeneration in PD and for the search of new treatments for this disease.
Andrews, Zane B.; Erion, Derek; Beiler, Rudolph; Liu, Zhong-Wu; Abizaid, Alfonso; Zigman, Jeffrey; Elsworth, John D.; Savitt, Joseph M.; DiMarchi, Richard; Tschoep, Matthias; Roth, Robert H.; Gao, Xiao-Bing; Horvath, Tamas L.
2010-01-01
Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors (growth hormone secretagogue receptor, GHSR) are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson’s disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, ROS production and biogenesis. Taken together, our data reveals that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. PMID:19906954
Doi, Daisuke; Samata, Bumpei; Katsukawa, Mitsuko; Kikuchi, Tetsuhiro; Morizane, Asuka; Ono, Yuichi; Sekiguchi, Kiyotoshi; Nakagawa, Masato; Parmar, Malin; Takahashi, Jun
2014-01-01
Summary Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson’s disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We induced DA neurons using scalable culture conditions on human laminin fragment, and the sorted CORIN+ cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When transplanted into 6-OHDA-lesioned rats, the CORIN+ cells survived and differentiated into midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, without tumor formation. In particular, the CORIN+ cells in a NURR1+ cell-dominant stage exhibited the best survival and function as DA neurons. Our method is a favorable strategy in terms of scalability, safety, and efficiency and may be advantageous for clinical application. PMID:24672756
TAGLIAFERRO, PATRICIA; MORALES, MARISELA
2008-01-01
Interactions between stress and the mesocorticolimbic dopamine (DA) system have been suggested from behavioral and electrophysiological studies. Because corticotropin-releasing factor (CRF) plays a role in stress responses, we investigated possible interactions between neurons containing CRF and those producing DA in the ventral tegmental area (VTA). We first investigated the cellular distribution of CRF in the VTA by immunolabeling VTA sections with anti-CRF antibodies and analyzing these sections by electron microscopy. We found CRF immunoreactivity present mostly in axon terminals establishing either symmetric or asymmetric synapses with VTA dendrites. We established that nearly all CRF asymmetric synapses are glutamatergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed the vesicular glutamate transporter 2, and that the majority of CRF symmetric synapses are GABAergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed glutamic acid decarboxylase, findings that are of functional importance. We then looked for synaptic interactions between CRF- and DA-containing neurons, by using antibodies against CRF and tyrosine hydroxylase (TH; a marker for DA neurons). We found that most synapses between CRF-immunoreactive axon terminals and TH neurons are asymmetric (in the majority likely to be glutamatergic) and suggest that glutamatergic neurons containing CRF may be part of the neuronal circuitry that mediates stress responses involving the mesocorticolimbic DA system. The presence of CRF synapses in the VTA offers a mechanism for interactions between the stress-associated neuropeptide CRF and the mesocorticolimbic DA system. PMID:18067140
FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase
Doan, Khanh V.; Kinyua, Ann W.; Yang, Dong Joo; Ko, Chang Mann; Moh, Sang Hyun; Shong, Ko Eun; Kim, Hail; Park, Sang-Kyu; Kim, Dong-Hoon; Kim, Inki; Paik, Ji-Hye; DePinho, Ronald A.; Yoon, Seul Gi; Kim, Il Yong; Seong, Je Kyung; Choi, Yun-Hee; Kim, Ki Woo
2016-01-01
Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. PMID:27681312
Chen, Ting; Zhang, Die; Dragomir, Andrei; Kobayashi, Kunikazu; Akay, Yasemin; Akay, Metin
2011-10-21
All drugs of abuse, including nicotine, activate the mesocorticolimbic system that plays critical roles in nicotine reward and reinforcement development and triggers glutamatergic synaptic plasticity on the dopamine (DA) neurons in the ventral tegmental area (VTA). The addictive behavior and firing pattern of the VTA DA neurons are thought to be controlled by the glutamatergic synaptic input from prefrontal cortex (PFC). Interrupted functional input from PFC to VTA was shown to decrease the effects of the drug on the addiction process. Nicotine treatment could enhance the AMPA/NMDA ratio in VTA DA neurons, which is thought as a common addiction mechanism. In this study, we investigate whether or not the lack of glutamate transmission from PFC to VTA could make any change in the effects of nicotine. We used the traditional AMPA/NMDA peak ratio, AMPA/NMDA area ratio, and KL (Kullback-Leibler) divergence analysis method for the present study. Our results using AMPA/NMDA peak ratio showed insignificant difference between PFC intact and transected and treated with saline. However, using AMPA/NMDA area ratio and KL divergence method, we observed a significant difference when PFC is interrupted with saline treatment. One possible reason for the significant effect that the PFC transection has on the synaptic responses (as indicated by the AMPA/NMDA area ratio and KL divergence) may be the loss of glutamatergic inputs. The glutamatergic input is one of the most important factors that contribute to the peak ratio level. Our results suggested that even within one hour after a single nicotine injection, the peak ratio of AMPA/NMDA on VTA DA neurons could be enhanced.
Synaptic Spinules in the Olfactory Circuit of Drosophila melanogaster
Gruber, Lydia; Rybak, Jürgen; Hansson, Bill S.; Cantera, Rafael
2018-01-01
Here we report on ultrastructural features of brain synapses in the fly Drosophila melanogaster and outline a perspective for the study of their functional significance. Images taken with the aid of focused ion beam-scanning electron microscopy (EM) at 20 nm intervals across olfactory glomerulus DA2 revealed that some synaptic boutons are penetrated by protrusions emanating from other neurons. Similar structures in the brain of mammals are known as synaptic spinules. A survey with transmission EM (TEM) disclosed that these structures are frequent throughout the antennal lobe. Detailed neuronal tracings revealed that spinules are formed by all three major types of neurons innervating glomerulus DA2 but the olfactory sensory neurons (OSNs) receive significantly more spinules than other olfactory neurons. Double-membrane vesicles (DMVs) that appear to represent material that has pinched-off from spinules are also most abundant in presynaptic boutons of OSNs. Inside the host neuron, a close association was observed between spinules, the endoplasmic reticulum (ER) and mitochondria. We propose that by releasing material into the host neuron, through a process triggered by synaptic activity and analogous to axonal pruning, synaptic spinules could function as a mechanism for synapse tagging, synaptic remodeling and neural plasticity. Future directions of experimental work to investigate this theory are proposed. PMID:29636666
Synaptic Spinules in the Olfactory Circuit of Drosophila melanogaster.
Gruber, Lydia; Rybak, Jürgen; Hansson, Bill S; Cantera, Rafael
2018-01-01
Here we report on ultrastructural features of brain synapses in the fly Drosophila melanogaster and outline a perspective for the study of their functional significance. Images taken with the aid of focused ion beam-scanning electron microscopy (EM) at 20 nm intervals across olfactory glomerulus DA2 revealed that some synaptic boutons are penetrated by protrusions emanating from other neurons. Similar structures in the brain of mammals are known as synaptic spinules. A survey with transmission EM (TEM) disclosed that these structures are frequent throughout the antennal lobe. Detailed neuronal tracings revealed that spinules are formed by all three major types of neurons innervating glomerulus DA2 but the olfactory sensory neurons (OSNs) receive significantly more spinules than other olfactory neurons. Double-membrane vesicles (DMVs) that appear to represent material that has pinched-off from spinules are also most abundant in presynaptic boutons of OSNs. Inside the host neuron, a close association was observed between spinules, the endoplasmic reticulum (ER) and mitochondria. We propose that by releasing material into the host neuron, through a process triggered by synaptic activity and analogous to axonal pruning, synaptic spinules could function as a mechanism for synapse tagging, synaptic remodeling and neural plasticity. Future directions of experimental work to investigate this theory are proposed.
Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate
Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian
2017-01-01
The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796
Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.
Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian
2017-07-01
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.
ERIC Educational Resources Information Center
Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah
2012-01-01
The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…
Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping
2017-11-01
Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity. © 2016 Society for the Study of Addiction.
A plastic corticostriatal circuit model of adaptation in perceptual decision making
Hsiao, Pao-Yueh; Lo, Chung-Chuan
2013-01-01
The ability to optimize decisions and adapt them to changing environments is a crucial brain function that increase survivability. Although much has been learned about the neuronal activity in various brain regions that are associated with decision making, and about how the nervous systems may learn to achieve optimization, the underlying neuronal mechanisms of how the nervous systems optimize decision strategies with preference given to speed or accuracy, and how the systems adapt to changes in the environment, remain unclear. Based on extensive empirical observations, we addressed the question by extending a previously described cortico-basal ganglia circuit model of perceptual decisions with the inclusion of a dynamic dopamine (DA) system that modulates spike-timing dependent plasticity (STDP). We found that, once an optimal model setting that maximized the reward rate was selected, the same setting automatically optimized decisions across different task environments through dynamic balancing between the facilitating and depressing components of the DA dynamics. Interestingly, other model parameters were also optimal if we considered the reward rate that was weighted by the subject's preferences for speed or accuracy. Specifically, the circuit model favored speed if we increased the phasic DA response to the reward prediction error, whereas the model favored accuracy if we reduced the tonic DA activity or the phasic DA responses to the estimated reward probability. The proposed model provides insight into the roles of different components of DA responses in decision adaptation and optimization in a changing environment. PMID:24339814
Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells
Zhao, Zhenqiang; Ma, Yanlin; Chen, Zhibin; Liu, Qian; Li, Qi; Kong, Deyan; Yuan, Kunxiong; Hu, Lan; Wang, Tan; Chen, Xiaowu; Peng, Yanan; Jiang, Weimin; Yu, Yanhong; Liu, Xinfeng
2016-01-01
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation, two hESCs lines were cultured on mixed feeder cells (MFCs, MEFs: HFFs = 1:1) and HFFs feeder, respectively, and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry, quantitative fluorescent real-time PCR, transmission and scanning electron microscopy, and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However, compared to hESCs line on MFCs feeder, hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2, PITX3, NURR1, and TH genes. In addition, the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion, HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons, but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore, feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines, but also electrophysiological properties of hESCs-derived DA neurons. PMID:28066186
Vandegrift, Bertha J; You, Chang; Satta, Rosalba; Brodie, Mark S; Lasek, Amy W
2017-01-01
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Vandegrift, Bertha J.; You, Chang; Satta, Rosalba; Brodie, Mark S.
2017-01-01
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission. PMID:29107956
Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys.
Kanaan, Nicholas M; Kordower, Jeffrey H; Collier, Timothy J
2010-06-01
Aging remains the strongest risk factor for developing Parkinson's disease (PD), and there is selective vulnerability in midbrain dopamine (DA) neuron degeneration in PD. By tracking normal aging-related changes with an emphasis on regional specificity, factors involved in selective vulnerability and resistance to degeneration can be studied. Towards this end, we sought to determine whether age-related changes in microglia and astrocytes in rhesus monkeys are region-specific, suggestive of involvement in regional differences in vulnerability to degeneration that may be relevant to PD pathogenesis. Gliosis in midbrain DA subregions was measured by estimating glia number using unbiased stereology, assessing fluorescence intensity for proteins upregulated during activation, and rating morphology. With normal aging, microglia exhibited increased staining intensity and a shift to more activated morphologies preferentially in the vulnerable substantia nigra-ventral tier (vtSN). Astrocytes did not exhibit age-related changes consistent with an involvement in regional vulnerability in any measure. Our results suggest advancing age is associated with chronic mild inflammation in the vtSN, which may render these DA neurons more vulnerable to degeneration. Copyright 2008 Elsevier Inc. All rights reserved.
2012-01-01
Background Parkinson’s disease (PD) has been linked with exposure to a variety of environmental and immunological insults (for example, infectious pathogens) in which inflammatory and oxidative processes seem to be involved. In particular, epidemiological studies have found that pesticide exposure and infections may be linked with the incidence of PD. The present study sought to determine whether exposure to a viral mimic prior to exposure to pesticides would exacerbate PD-like pathology. Methods Mice received a supra-nigral infusion of 5 μg of the double-stranded RNA viral analog, polyinosinic: polycytidylic acid (poly(I:C)), followed 2, 7 or 14 days later by administration of the pesticide, paraquat (nine 10 mg/kg injections over three weeks). Results As hypothesized, poly(I:C) pre-treatment enhanced dopamine (DA) neuron loss in the substantia nigra pars compacta elicited by subsequent paraquat treatment. The augmented neuronal loss was accompanied by robust signs of microglial activation, and by increased expression of the catalytic subunit (gp91) of the NADPH oxidase oxidative stress enzyme. However, the paraquat and poly(I:C) treatments did not appreciably affect home-cage activity, striatal DA terminals, or subventricular neurogenesis. Conclusions These findings suggest that viral agents can sensitize microglial-dependent inflammatory responses, thereby rendering nigral DA neurons vulnerable to further environmental toxin exposure. PMID:22559812
Cantrell, A R; Scheuer, T; Catterall, W A
1999-07-01
Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.
Leem, Eunju; Nam, Jin Han; Jeon, Min-Tae; Shin, Won-Ho; Won, So-Yoon; Park, Sang-Joon; Choi, Myung-Sook; Jin, Byung Kwan; Jung, Un Ju; Kim, Sang Ryong
2014-07-01
This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP(+)) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP(+) rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP(+) rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP(+)-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Arencibia-Albite, Francisco; Vázquez-Torres, Rafael; Jiménez-Rivera, Carlos A
2017-02-01
The progressive escalation of psychomotor responses that results from repeated cocaine administration is termed sensitization. This phenomenon alters the intrinsic properties of dopamine (DA) neurons from the ventral tegmental area (VTA), leading to enhanced dopaminergic transmission in the mesocorticolimbic network. The mechanisms underlying this augmented excitation are nonetheless poorly understood. DA neurons display the hyperpolarization-activated, nonselective cation current, dubbed I h We recently demonstrated that I h and membrane capacitance are substantially reduced in VTA DA cells from cocaine-sensitized rats. The present study shows that 7 days of cocaine withdrawal did not normalize I h and capacitance. In cells from cocaine-sensitized animals, the amplitude of excitatory synaptic potentials, at -70 mV, was ∼39% larger in contrast to controls. Raise and decay phases of the synaptic signal were faster under cocaine, a result associated with a reduced membrane time constant. Synaptic summation was paradoxically elevated by cocaine exposure, as it consisted of a significantly reduced summation indexed but a considerably increased depolarization. These effects are at least a consequence of the reduced capacitance. I h attenuation is unlikely to explain such observations, since at -70 mV, no statistical differences exist in I h or input resistance. The neuronal shrinkage associated with a diminished capacitance may help to understand two fundamental elements of drug addiction: incentive sensitization and negative emotional states. A reduced cell size may lead to substantial enhancement of cue-triggered bursting, which underlies drug craving and reward anticipation, whereas it could also result in DA depletion, as smaller neurons might express low levels of tyrosine hydroxylase. This work uses a new approach that directly extracts important biophysical parameters from alpha function-evoked synaptic potentials. Two of these parameters are the cell membrane capacitance (C m ) and rate at any time point of the synaptic waveform. The use of such methodology shows that cocaine sensitization reduces C m and increases the speed of synaptic signaling. Paradoxically, although synaptic potentials show a faster decay under cocaine their temporal summation is substantially elevated. Copyright © 2017 the American Physiological Society.
Specificity and impact of adrenergic projections to the midbrain dopamine system
Mejias-Aponte, Carlos A.
2016-01-01
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson’s disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. PMID:26820641
Bacci, B.; Cochran, E.; Nunzi, M. G.; Izeki, E.; Mizutani, T.; Patton, A.; Hite, S.; Sayre, L. M.; Autilio-Gambetti, L.; Gambetti, P.
1994-01-01
Dystrophic axons (DA) represent a major pathological feature of several neurodegenerative disorders, including infantile neuroaxonal dystrophy (INAD) and Alzheimer disease. We have previously presented evidence that amyloid beta precursor protein (BPP) and ubiquitin (Ub) are present in DA of different origin. We have now characterized the immunoreactivity of DA experimentally induced in rat by the administration of parabromophenylacetylurea (BPAU) and examined the subcellular localization of Ub and BPP in BPAU-induced DA and in DA present in subjects affected by INAD. BPAU-induced DA strongly immunoreacted with antisera to Ub and to COOH- and NH2-terminal regions of BPP. Immunoblots of DA-enriched brain regions were consistent with an increase in the amount of Ub and BPP in DA. Moreover, BPAU-induced DA immunoreacted with antibodies to PGP 9.5, a neuronal-specific Ub COOH-terminal hydrolase, and to the inducible heat shock protein 70. Antigenic characterization also indicated that the tubulovesicular membranes within DA derived largely from the smooth endoplasmic reticulum rather than from the Golgi system or the synaptic vesicles. Subcellular immunolocalization of Ub and BPP in both INAD- and BPAU-induced DA revealed that Ub and BPP colocalize in granulovesicular material in both conditions. In INAD DA intense Ub immunoreactivity was also detected in nonmembranous electron dense structures that were present only in these DA, probably because of the chronic course of INAD. Although BPP immunostaining may be related to accumulation of BPP-containing membranes in DA, Ub immunostaining is likely to result from activation of the Ub system by the neuron in the attempt to remove excessive and possibly abnormal proteins. A similar pathogenesis can be postulated for DA of Alzheimer disease. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7512790
Mendes-Oliveira, Julieta; Lopes Campos, Filipa; Videira, Rita Alexandra; Baltazar, Graça
2017-08-01
Increasing evidence suggest that excessive inflammatory responses from overactivated microglia play a critical role in Parkinson's disease (PD), contributing to, or exacerbating, nigral dopaminergic (DA) degeneration. Recent results from our group and others demonstrated that selective activation of G protein-coupled estrogen receptor (GPER) with the agonist G1 can protect DA neurons from 1-methyl-4-phenylpyridinium (MPP + ) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxins. However, it is not known whether modulation of microglial responses is one of the mechanisms by which G1 exerts its DA neuroprotective effects. We analyzed, in the N9 microglial cell line, the effect of G1 on microglial activation induced by lipopolysaccharide (LPS) exposure. The results revealed that G1 significantly decrease phagocytic activity, expression of inducible nitric oxide synthase (iNOS) and release of nitric oxide (NO) induced by LPS. To determine the relevance of this anti-inflammatory effect to the protection of nigral DA cells, the effect of G1 was analyzed in male mice injected unilaterally in the substantia nigra (SN) with LPS. Although G1 treatment did not decrease LPS-induced increase of ionized calcium binding adaptor molecule 1 (iba-1) positive cells it significantly reduced interleukin-1beta (IL-1β), cluster of differentiation 68 (CD68) and iNOS mRNA levels, and totally inhibited nigral DA cell loss and, as a consequence, protected the motor function. In summary, our findings demonstrated that the G1 agonist is able to modulate microglial responses and to protect DA neurons and motor functions against a lesion induced by an inflammatory insult. Since G1 lacks the feminizing effects associated with agonists of the classical estrogen receptors (ERs), the use of G1 to selectively activate the GPER may be a promising strategy for the development of new therapeutics for the treatment of PD and other neuroinflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Astrocytes produce an insulin-like neurotrophic factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadle, R.; Suksang, C.; Fellows, R.E.
1986-05-01
They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fractionmore » of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of /sup 125/I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation.« less
Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, R. S.; Kanthasamy, Anumantha G.
2009-01-01
Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V2O5). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V2O5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor ZVAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V2O5-induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V2O5-induced apoptotic cell death. Collectively, these results demonstrate vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. PMID:19646462
Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhn, Donald M.
2009-01-01
Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration. PMID:18410508
Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M
2008-07-01
Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.
Tang, Fu-Lei; Erion, Joanna R.; Tian, Yun; Liu, Wei; Yin, Dong-Min; Ye, Jian; Tang, Baisha; Mei, Lin
2015-01-01
Vacuolar protein sorting-35 (VPS35) is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with autosomal dominant PD. However, it remains poorly understood if and how VPS35 deficiency or mutation contributes to PD pathogenesis. Here we provide evidence that links VPS35 deficiency to PD-like neuropathology. VPS35 was expressed in mouse dopamine (DA) neurons in substantia nigra pars compacta (SNpc) and STR (striatum)—regions that are PD vulnerable. VPS35-deficient mice exhibited PD-relevant deficits including accumulation of α-synuclein in SNpc-DA neurons, loss of DA transmitter and DA neurons in SNpc and STR, and impairment of locomotor behavior. Further mechanical studies showed that VPS35-deficient DA neurons or DA neurons expressing PD-linked VPS35 mutant (D620N) had impaired endosome-to-Golgi retrieval of lysosome-associated membrane glycoprotein 2a (Lamp2a) and accelerated Lamp2a degradation. Expression of Lamp2a in VPS35-deficient DA neurons reduced α-synuclein, supporting the view for Lamp2a as a receptor of chaperone-mediated autophagy to be critical for α-synuclein degradation. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. SIGNIFICANCE STATEMENT VPS35 is a key component of the retromer complex that is essential for endosome-to-Golgi retrieval of membrane proteins. Mutations in the VPS35 gene have been identified in patients with PD. However, if and how VPS35 deficiency or mutation contributes to PD pathogenesis remains unclear. We demonstrated that VPS35 deficiency or mutation (D620N) in mice leads to α-synuclein accumulation and aggregation in the substantia nigra, accompanied with DA neurodegeneration. VPS35-deficient DA neurons exhibit impaired endosome-to-Golgi retrieval of Lamp2a, which may contribute to the reduced α-synuclein degradation through chaperone-mediated autophagy. These results suggest that VPS35 deficiency or mutation promotes PD pathogenesis, and reveals a crucial pathway, VPS35-Lamp2a-α-synuclein, to prevent PD pathogenesis. PMID:26203154
VanDuyn, Natalia; Nass, Richard
2013-01-01
Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans (C. elegans) modulates whole animal and DA neuron sensitivity to MeHg. In this study we demonstrate that genetic knockdown of MRP-7 results in a 2-fold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. PMID:24266639
VanDuyn, Natalia; Nass, Richard
2014-03-01
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here, we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans modulates whole animal and DA neuron sensitivity to MeHg. In this study, we demonstrate that genetic knockdown of MRP-7 results in a twofold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. © 2013 International Society for Neurochemistry.
Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.
Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo
2006-06-01
The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.
Khalki, Hanane; Navailles, Sylvia; Piron, Camille L; De Deurwaerdère, Philippe
2013-06-07
It has been suggested that minor alkaloids in plants play a role in the biological and neuronal actions of nicotine. We hypothesized that these molecules modulate the effect of nicotine on the activity of central dopamine (DA) neurons, one of the main cellular targets in addiction to drugs. In this study the effect of a single intraperitoneal injection of either nicotine or an alkaloid extract of the tobacco plant (0.5 mg/kg) on the efflux of DA were investigated. DA was measured in vivo by intracerebral microdialysis in the nucleus accumbens and the striatum of freely-moving rats. Results show that nicotine enhanced accumbal and striatal DA extracellular levels (+47 and 20% above baseline, respectively). The extract also evoked a significant increase in DA extracellular levels in both regions (+33 and +38% above baseline). However, this effect was significantly higher compared to nicotine in the striatum only. In conclusion, the tobacco extract enhanced the neurochemical effect of nicotine alone in the striatum, a response that could underlie the higher propensity of developing addictive-like behavior using nicotine with tobacco alkaloids. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Renard, Justine; Norris, Christopher; Rushlow, Walter; Laviolette, Steven R
2017-04-01
Growing clinical and pre-clinical evidence points to a critical role for cannabidiol (CBD), the largest phytochemical component of cannabis, as a potential pharmacotherapy for various neuropsychiatric disorders. In contrast to delta-9-tetrahydrocannabinol (THC), which is associated with acute and neurodevelopmental pro-psychotic side-effects, CBD possesses no known psychoactive or dependence-producing properties. However, evidence has demonstrated that CBD strongly modulates the mesolimbic dopamine (DA) system and may possess promising anti-psychotic properties. Despite the psychotropic differences between CBD and THC, little is known regarding their molecular and neuronal effects on the mesolimbic DA system, nor how these differential effects may relate to their potential pro vs. anti-psychotic properties. This review summarizes clinical and pre-clinical evidence demonstrating CBD's modulatory effects on DA activity states within the mesolimbic pathway, functional interactions with the serotonin 5-HT 1A receptor system, and their downstream molecular signaling effects. Together with clinical evidence showing that CBD may normalize affective and cognitive deficits associated with schizophrenia, CBD may represent a promising treatment for schizophrenia, acting through novel molecular and neuronal mesolimbic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar
Domingos, Ana I; Sordillo, Aylesse; Dietrich, Marcelo O; Liu, Zhong-Wu; Tellez, Luis A; Vaynshteyn, Jake; Ferreira, Jozelia G; Ekstrand, Mats I; Horvath, Tamas L; de Araujo, Ivan E; Friedman, Jeffrey M
2013-01-01
Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose. Conversely, animals with ablation of MCH neurons no longer prefer sucrose to sucralose and show reduced striatal DA release upon sucrose ingestion. We further show that MCH neurons project to reward areas and are required for the post-ingestive rewarding effect of sucrose in sweet-blind Trpm5−/− mice. These studies identify an essential component of the neural pathways linking nutrient sensing and food reward. DOI: http://dx.doi.org/10.7554/eLife.01462.001 PMID:24381247
Deehan, Gerald A.; Knight, Christopher P.; Waeiss, R. Aaron; Engleman, Eric A.; Toalston, Jamie E.; McBride, William J.; Hauser, Sheketha R.; Rodd, Zachary A.
2016-01-01
Aims Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. Methods Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7–9 per group) that were treated with 0–3.0 g/kg EtOH (intraperitoneally). Results Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose–response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose–response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. Conclusion The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. Short summary Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system. PMID:27307055
Grison, Alice; Zucchelli, Silvia; Urzì, Alice; Zamparo, Ilaria; Lazarevic, Dejan; Pascarella, Giovanni; Roncaglia, Paola; Giorgetti, Alejandro; Garcia-Esparcia, Paula; Vlachouli, Christina; Simone, Roberto; Persichetti, Francesca; Forrest, Alistair R R; Hayashizaki, Yoshihide; Carloni, Paolo; Ferrer, Isidro; Lodovichi, Claudia; Plessy, Charles; Carninci, Piero; Gustincich, Stefano
2014-08-27
The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.
Cesca, Fabrizia; Satapathy, Annyesha; Ferrea, Enrico; Nieus, Thierry; Benfenati, Fabio; Scholz-Starke, Joachim
2015-07-17
Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.
Kita, Hitoshi; Kita, Takako
2011-07-13
The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.
Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-01-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972
Amphetamine self-administration attenuates dopamine D2 autoreceptor function.
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-07-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.
Adil, Maroof M.; Rodrigues, Gonçalo M. C.; Kulkarni, Rishikesh U.; Rao, Antara T.; Chernavsky, Nicole E.; Miller, Evan W.; Schaffer, David V.
2017-01-01
Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson’s Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research. PMID:28091566
d’Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José
2015-01-01
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD. PMID:25762899
Perinatal methadone exposure affects dopamine, norepinephrine, and serotonin in the weanling rat.
Robinson, S E; Maher, J R; Wallace, M J; Kunko, P M
1997-01-01
On gestational day 7 pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. On postnatal day 21, dopamine (DA), norepinephrine (NE), serotonin (5-HT), and their metabolites were analyzed. Perinatal methadone exposure disrupted dopaminergic, noradrenergic, and serotonergic activity in a brain region- and gender-specific fashion. The ratio of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) to DA was reduced in the frontal cortex of males exposed to methadone postnatally. No effects of perinatal methadone exposure were observed on DA and DOPAC in the striatum. The ratio of 3-methoxy-4-hydroxyphenylglycol (MOPEG) to NE in the hippocampus was increased significantly in males exposed to methadone prenatally. Striatal and parietal cortical 5-hydroxyindoleacetic acid (5-HIAA), but not its ratio to 5-HT, was increased slightly in rats exposed to methadone postnatally. Although parietal cortical 5-HT, 5-HIAA, and 5-hydroxytryptophan were all affected by perinatal methadone exposure, the ratios of metabolite and precursor to 5-HT were not affected. Effects of methadone exposure appeared to depend upon the developmental stage at which exposure occurred and did not appear to result from the phenomenon of neonatal withdrawal. Changes in activity of these three neurotransmitter systems may contribute to the effect of perinatal methadone on the activity of other neurons, such as cholinergic neurons.
Liu, Haixia; Jia, Lu; Chen, Xiaoyan; Shi, Limin; Xie, Junxia
2018-03-01
The excitability of dopaminergic neurons in the substantia nigra pars compacta (SNc) that supply the striatum with dopamine (DA) determines the function of the nigrostriatal system for motor coordination. We previously showed that 4-pyridinylmethyl-9(10H)-anthracenone (XE991), a specific blocker of Kv7/KCNQ channels, enhanced the excitability of nigral DA neurons and resulted in attenuation of haloperidol-induced catalepsy in a Parkinson's disease (PD) rat model. However, whether XE991 exhibits neuroprotective effects towards DA neuron degeneration remains unknown. The aim of this study was to investigate the effects of Kv7/KCNQ channel blocker, XE991, on 6-hydroxydopamine (6-OHDA)-induced nigral DA neuron degeneration and motor dysfunction. Using immunofluorescence staining and western blotting, we showed that intracerebroventricular administration of XE991 prevented the 6-OHDA-induced decrease in tyrosine hydroxylase (TH)-positive neurons and TH protein expression in the SNc. High-performance liquid chromatography with electrochemical detection (HPLC-ECD) also revealed that XE991 partly restored the levels of DA and its metabolites in the striatum. Moreover, XE991 decreased apomorphine (APO)-induced contralateral rotations, enhanced balance and coordination, and attenuated muscle rigidity in 6-OHDA-treated rats. Importantly, all neuroprotective effects by XE991 were abolished by co-application of Kv7/KCNQ channel opener retigabine and XE991. Thus, Kv7/KCNQ channel inhibition by XE991 can exert neuroprotective effects against 6-OHDA-induced degeneration of the nigrostriatal DA system and motor dysfunction. Copyright © 2017. Published by Elsevier Inc.
Tucker, Kristal R; Block, Ethan R; Levitan, Edwin S
2015-08-11
Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.R.; Merchant, K.; Gibb, J.W.
1986-03-05
The authors have previously reported that multiple high doses of methamphetamine (METH) alter neuronal monoamine metabolism and release. Recently, Hokfelt et al. showed that neurotensin, a tridecapeptide, has neurotransmitter properties which may be involved with DA neuronal activity. In the present study they investigated the possible effects of METH on the CNS neurotensin system. Five doses of METH (15 mg/kg) were administered every 6 h; control and treated rats were sacrificed 18 h after the last dose and concentrations of neurotensin-like immuno-reactivity (NTLI) were measured by radioimmunoassay. NTLI was elevated 200-300% in the nucleus accumbens, neostriatum, and substantia nigra; 30-40%more » increases in NTLI were measured in the hippocampus and hypothalamus. No change was observed in amygdala, A-10 or periaqueductal gray. In contrast to the above measured areas, the frontal lobe and olfactory bulb showed decreases of 25-35%. These findings demonstrate that METH treatment alters the activities of several CNS neurotensin systems, possibly due to the influence of this drug on DA pathways. The variability in the type and magnitude of these responses suggests that DA and neurotensin systems interact by more than one mechanism.« less
Yasuda, Toru; Hayakawa, Hideki; Nihira, Tomoko; Ren, Yong-Ri; Nakata, Yasuto; Nagai, Makiko; Hattori, Nobutaka; Miyake, Koichi; Takada, Masahiko; Shimada, Takashi; Mizuno, Yoshikuni; Mochizuki, Hideki
2011-08-01
Loss-of-function mutations in the ubiquitin ligase parkin are the major cause of recessively inherited early-onset Parkinson disease (PD). Impairment of parkin activity caused by nitrosative or dopamine-related modifications may also be responsible for the loss of dopaminergic (DA) neurons in sporadic PD. Previous studies have shown that viral vector-mediated delivery of parkin prevented DA neurodegeneration in several animal models, but little is known about the neuroprotective actions of parkin in vivo. Here, we investigated mechanisms of neuroprotection of overexpressed parkin in a modified long-term mouse model of PD using osmotic minipump administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Recombinant adeno-associated viral vector-mediated intranigral delivery of parkin prevented motor deficits and DA cell loss in the mice. Ser129-phosphorylated α-synuclein-immunoreactive cells were increased in the substantia nigra of parkin-treated mice. Moreover, delivery of parkin alleviated the MPTP-induced decrease of the active phosphorylated form of Akt. On the other hand, upregulation of p53 and mitochondrial alterations induced by chronic MPTP administration were barely suppressed by parkin. These results suggest that the neuroprotective actions of parkin may be impaired in severe PD.
Dysfunctions in Dopamine Systems and ADHD: Evidence From Animals and Modeling
Viggiano, Davide; Vallone, Daniela; Sadile, Adolfo
2004-01-01
Animal models are useful for characterizing neural substrates of neuropsychiatric disorders. Several models have been proposed for the study of Attention Deficit Hyperactivity Disorder (ADHD). The models can be divided into various groups: (i) genetically derived hyperactivity/ inattention, (ii) animal models showing symptoms after pharmacological intervention, and (iii) those based on spontaneous variations in a random population. Spontaneously hypertensive (SHR) and Naples High Excitability (NHE) rats show behavioral traits featuring the main aspects of ADHD in humans but show different changes in dopamine (DA) systems. In fact, the enzyme tyrosine hydroxylase is hyperexpressed in NHE rats and hypoexpressed in SHR. The DA transporter is hyperexpressed in both lines, although in the SHR, DAT activity is low (reduced DA uptake). The DA levels in the striatum and prefrontal cortex are increased in the juvenile SHR, but are decreased in handled young and non-handled older animals. The mRNA of the D1 DA receptor is upregulated in the prefrontal cortex of SHR and downregulated in NHE. The D2 DA receptors are likely to be hypofunctioning in SHR, although the experimental evidence is not univocal, whereas their mRNA is hyperexpressed in NHE. Thus, in SHR both the mesocortical and mesolimbic DA pathways appear to be involved, whereas in NHE only the mesocortical system. To understand the effects of methylphenidate, the elective ADHD drug treatment in humans, in a dysfunctioning DA system, we realized a simple mathematical model of DA regulation based on experimental data from electrophysiological, cyclic voltammetry, and microdialysis studies. This model allows the estimation of a higher firing frequency of DA neurons in SHR rats and suggests that methylphenidate increases attentive processes by regulating the firing rate of DA neurons. PMID:15303308
miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling
Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.
2014-01-01
Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646
Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease
2014-01-01
Background Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells. Methods Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured. To further investigate a possible link between the neuronal Hsp60 response and PD-related cellular stress, Hsp60 immunoblot analysis and quantification in cell lysates from SH-SY5Y after treatment with 100 μM MPP+ (1-methyl-4-phenylpyridinium) at different time points (6, 12, 24 and 48 hours) compared to control cells were performed. Additional MTT and LDH assay were used. We next addressed the question as to whether Hsp60 influences the survival of TH+ neurons in mesencephalic neuron-glia cultures treated either with MPP+ (1 μM), hHsp60 (10 μg/ml) or a combination of both. Finally, we measured IL-1β, IL-6, TNF-α and NO-release by ELISA in primary microglial cell cultures following treatment with different hHsp60 preparations. Control cultures were exposed to LPS. Results In the mesencephalon and striatum of mice treated with MPTP and also in the SN of PD patients, we found that Hsp60 mRNA was up-regulated. MPP+, the active metabolite of MPTP, also caused an increased expression and release of Hsp60 in the human dopaminergic cell line SH-SY5Y. Interestingly, in addition to being toxic to DA neurons in primary mesencephalic cultures, exogenous Hsp60 aggravated the effects of MPP+. Yet, although we demonstrated that Hsp60 specifically binds to microglial cells, it failed to stimulate the production of pro-inflammatory cytokines or NO by these cells. Conclusions Overall, our data suggest that Hsp60 is likely to participate in DA cell death in PD but via a mechanism unrelated to cytokine release. PMID:24886419
Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.
Ferreira, Tiago; Ou, Yimiao; Li, Sally; Giniger, Edward; van Meyel, Donald J
2014-02-01
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Prefrontal Dopamine in Associative Learning and Memory
Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.
2014-01-01
Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063
Prefrontal dopamine in associative learning and memory.
Puig, M V; Antzoulatos, E G; Miller, E K
2014-12-12
Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Xu, Xin; Brechbiel, Jillian L.
2013-01-01
Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts. PMID:24027279
Xu, Xin; Brechbiel, Jillian L; Gavis, Elizabeth R
2013-09-11
Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.
Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian
2017-10-10
Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP + mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP + cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP + mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.
NF-κB regulates neuronal ankyrin-G via a negative feedback loop.
König, Hans-Georg; Schwamborn, Robert; Andresen, Silke; Kinsella, Sinéad; Watters, Orla; Fenner, Beau; Prehn, Jochen H M
2017-02-09
The axon initial segment (AIS) is a neuronal compartment defined by ankyrin-G expression. We here demonstrate that the IKK-complex co-localizes and interacts with the cytoskeletal anchor protein ankyrin-G in immunoprecipitation and proximity-ligation experiments in cortical neurons. Overexpression of the 270 kDa variant of ankyrin-G suppressed, while gene-silencing of ankyrin-G expression increased nuclear factor-κB (NF-κB) activity in primary neurons, suggesting that ankyrin-G sequesters the transcription factor in the AIS. We also found that p65 bound to the ank3 (ankyrin-G) promoter sequence in chromatin immunoprecipitation analyses thereby increasing ank3 expression and ankyrin-G levels at the AIS. Gene-silencing of p65 or ankyrin-G overexpression suppressed ank3 reporter activity. Collectively these data demonstrate that p65/NF-κB controls ankyrin-G levels via a negative feedback loop, thereby linking NF-κB signaling with neuronal polarity and axonal plasticity.
Lane, D.A.; Reed, B.; Kreek, M.J.; Pickel, V.M.
2011-01-01
Cocaine-induced plasticity of mesocorticolimbic dopamine (DA) neurons, originating in the ventral tegmental area (VTA), persists in the absence of cocaine and may contribute to both drug-craving and relapse. Glutamate AMPA receptors (AMPARs) in these neurons are implicated in this plasticity. However, there is no ultrastructural evidence that the absence of cocaine following repeated administrations affects the critical surface/synaptic availability of AMPAR GluR1 subunits in either DA or non-DA, putative GABAergic neurons within the VTA. To assess this, we used electron microscopic immunolabeling in the VTA of adult male mice sacrificed at 30 minutes or 72 hours after receiving the final of six (15 mg/kg) cocaine injections, a dosing paradigm that resulted in development of locomotor sensitization. At each time point, both cocaine- and saline-injected mice showed AMPAR GluR1 immunogold labeling in somatodendritic profiles, many of which contained immunoperoxidase labeling for the DA-synthesizing enzyme, tyrosine hydroxylase (TH). At 30 minutes after the last injection, when cocaine was systemically present, only the non-TH labeled dendrites showed a significant increase in the synaptic/plasmalemmal density of GluR1 immunogold particles. At 72 hours, when systemic cocaine was depleted, synaptic GluR1 labeling was greatly enhanced in TH-containing dendrites throughout the VTA and in non-TH dendrites of the limbic-associated paranigral VTA. Our results demonstrate that systemic cocaine produces GluR1 trafficking specifically in non-DA neurons of the VTA, which may subsequently contribute to the abstinent-induced enhancement of AMPA receptor synaptic transmission in mesocorticolimbic DA neurons leading to heightened drug seeking behavior. PMID:21215761
Belujon, Pauline; Grace, Anthony A
2014-12-15
One of the most novel and exciting findings in major depressive disorder research over the last decade is the discovery of the fast-acting and long-lasting antidepressant effects of ketamine. Indeed, the therapeutic effects of classic antidepressants, such as selective serotonin reuptake inhibitors, require a month or longer to be expressed, with about a third of major depressive disorder patients resistant to treatment. Clinical studies have shown that a low dose of ketamine exhibits fast-acting relatively sustained antidepressant action, even in treatment-resistant patients. However, the mechanisms of ketamine action at a systems level remain unclear. Wistar-Kyoto rats were exposed to inescapable, uncontrollable footshocks. To evaluate learned helplessness behavior, we used an active avoidance task in a shuttle box equipped with an electrical grid floor. After helplessness assessment, we performed in vivo electrophysiological recordings first from ventral tegmental area dopaminergic (DA) neurons and second from accumbens neurons responsive to fimbria stimulation. Ketamine was injected and tested on helpless behavior and electrophysiological recordings. We show that ketamine is able to restore the integrity of a network by acting on the DA system and restoring synaptic dysfunction observed in stress-induced depression. We show that part of the antidepressant effect of ketamine is via the DA system. Indeed, injection of ketamine restores a decreased dopamine neuron population activity, as well as synaptic plasticity (long-term potentiation) in the hippocampus-accumbens pathway, via, in part, activation of D1 receptors. This work provides a unique systems perspective on the mechanisms of ketamine on a disrupted limbic system. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Arezki, F; Afailal, I; Bosler, O; Steinbusch, H W; Calas, A
1987-01-01
In an attempt to define cytophysiological criteria with which to establish whether or not a given neuron is serotoninergic, radioautography was combined with serotonin (5-HT) immunocytochemistry on the same sections from the nucleus raphe dorsalis (NRD) and/or nucleus dorsomedialis hypothalami (NDM) in rats subjected to intraventricular administrations of (3H)-5-HT or (3H)-dopamine (DA). All the (3H)-5-HT-accumulating neurons (cell bodies, dendrites and terminals) were found to be distinct from the (3H)-DA labeled ones and invariably immunostained for 5-HT in both regions studied. However, some immunoreactive neuronal elements within the area of tracer diffusion did not exhibit significant radioautographic labeling. In the NDM where 5-HT immunoreactive nerve cells could be detected only after intraventricular administration of 5-HT, these were found to be definitely distinct from the tyrosine hydroxylase immunoreactive and (3H)-DA labeled neurons of the dopaminergic periventricular-arcuate complex. After immunostaining for GAD at the electron microscopic level, (3H)-5-HT labeled nerve cells and terminals were not found to exhibit any significant immunoreactivity. Associations between (3H)-DA labeled and GAD immunoreactive processes with 5-HT immunoreactive or (3H)-5-HT-accumulating neurons, respectively, could also be observed in the NDM. When considered as a whole along with previous observations by other authors indicating a probable synthesis of 5-HT within NDM neurons, our data suggest that a given neuron can be classified as serotoninergic on the sole basis of its ability to selectively take up exogenous 5-HT under experimental conditions compatible with non interspecific labeling of catecholaminergic neurons. They also provide valuable information on the neurochemical environment and possible control of central serotoninergic neurons.
Rhee, Yong-Hee; Ko, Ji-Yun; Chang, Mi-Yoon; Yi, Sang-Hoon; Kim, Dohoon; Kim, Chun-Hyung; Shim, Jae-Won; Jo, A-Young; Kim, Byung-Woo; Lee, Hyunsu; Lee, Suk-Ho; Suh, Wonhee; Park, Chang-Hwan; Koh, Hyun-Chul; Lee, Yong-Sung; Lanza, Robert; Kim, Kwang-Soo; Lee, Sang-Hun
2011-06-01
Parkinson disease (PD) involves the selective loss of midbrain dopamine (mDA) neurons and is a possible target disease for stem cell-based therapy. Human induced pluripotent stem cells (hiPSCs) are a potentially unlimited source of patient-specific cells for transplantation. However, it is critical to evaluate the safety of hiPSCs generated by different reprogramming methods. Here, we compared multiple hiPSC lines derived by virus- and protein-based reprogramming to human ES cells (hESCs). Neuronal precursor cells (NPCs) and dopamine (DA) neurons delivered from lentivirus-based hiPSCs exhibited residual expression of exogenous reprogramming genes, but those cells derived from retrovirus- and protein-based hiPSCs did not. Furthermore, NPCs derived from virus-based hiPSCs exhibited early senescence and apoptotic cell death during passaging, which was preceded by abrupt induction of p53. In contrast, NPCs derived from hESCs and protein-based hiPSCs were highly expandable without senescence. DA neurons derived from protein-based hiPSCs exhibited gene expression, physiological, and electrophysiological properties similar to those of mDA neurons. Transplantation of these cells into rats with striatal lesions, a model of PD, significantly rescued motor deficits. These data support the clinical potential of protein-based hiPSCs for personalized cell therapy of PD.
ERIC Educational Resources Information Center
Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.
2012-01-01
In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…
Choi, Dong-Hee; Kim, Ji-Hye; Seo, Joo-Ha; Lee, Jongmin; Choi, Wahn Soo; Kim, Yoon-Seong
2014-01-01
In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach.
Modafinil Activates Phasic Dopamine Signaling in Dorsal and Ventral Striata
Bobak, Martin J.; Weber, Matthew W.; Doellman, Melissa A.; Schuweiler, Douglas R.; Athens, Jeana M.; Juliano, Steven A.
2016-01-01
Modafinil (MOD) exhibits therapeutic efficacy for treating sleep and psychiatric disorders; however, its mechanism is not completely understood. Compared with other psychostimulants inhibiting dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and modestly elevates striatal dialysate DA, suggesting additional targets besides DAT. However, the ability of MOD to induce wakefulness is abolished with DAT knockout, conversely suggesting that DAT is necessary for MOD action. Another psychostimulant target, but one not established for MOD, is activation of phasic DA signaling. This communication mode during which burst firing of DA neurons generates rapid changes in extracellular DA, the so-called DA transients, is critically implicated in reward learning. Here, we investigate MOD effects on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic voltammetry. We found that MOD (30–300 mg/kg i.p.) robustly increases the amplitude of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with greater effects in dorsal versus ventral striata. MOD-induced enhancement of these electrically evoked amplitudes was mediated preferentially by increased DA release compared with decreased DA uptake. Principal component regression of nonelectrically evoked recordings revealed negligible changes in basal DA with high-dose MOD (300 mg/kg i.p.). Finally, in the presence of the D2 DA antagonist, raclopride, low-dose MOD (30 mg/kg i.p.) robustly elicited DA transients in dorsal and ventral striata. Taken together, these results suggest that activation of phasic DA signaling is an important mechanism underlying the clinical efficacy of MOD. PMID:27733628
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.; Cubeddu, L.
1986-03-05
A is thought to exert its stimulant effects by releasing DA from a newly synthesized transmitter pool. This hypothesis was evaluated directly by measuring the basal efflux and electrically-evoked release of endogenous DA and dihydroxyphenylacetic acid (DOPAC). In striatal slices from reserpine-treated rabbits A increased DA efflux, reduced DOPAC efflux, and inhibited electrically-evoked /sup 3/H-ACh release in a concentration-dependent manner. These effects could not be mimicked by inhibition of neuronal uptake or MAO, but were blocked by inhibition of DA synthesis or neuronal uptake, and were potentiated by inhibition of MAO. In slices with intact vesicular transmitter stores A inducedmore » DA efflux was 2-fold greater than that seen in slices having no vesicular stores. Inhibition of DA synthesis reduced A-induced DA efflux by 60%, but had little effect on the ability of A to inhibit /sup 3/H-ACh release. A also increased the electrical stimulation-evoked overflow of DA (an effect which was attenuated slightly by synthesis inhibition), and potently inhibited DOPAC overflow. These results suggest that: 1) A facilitates efflux of axoplasmic DA by an accelerated exchange diffusion mechanism. The releasable axoplasmic pool is derived from newly synthesized and vesicular transmitter pools; 2) postsynaptic indices of transmitter release may be misleading; and 3) A increases electrically-evoked DA release possibly by inhibiting neuronal uptake.« less
Oginsky, Max F; Rodgers, Edmund W; Clark, Merry C; Simmons, Robert; Krenz, Wulf-Dieter C; Baro, Deborah J
2010-02-01
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D(2) receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D(2alphaPan)) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG whole-mount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D(2alphaPan) receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D(2alphaPan) receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites.
Saha, Soham; Kumar, Santosh; Singh, Uday; Singh, Omprakash; Singru, Praful S
2015-09-01
In teleosts, while neuropeptide Y (NPY) has emerged as one of the potent regulators of GnRH-LH axis, entopeduncular nucleus (EN) in the ventral telencephalon serves as major site for NPY synthesis/storage. Neurons of the EN innervate preoptic area and pituitary, respond to gonadal steroids, undergo reproduction phase-related changes, and are believed to convey sex steroid-borne information to GnRH neurons. In spite of the importance of EN, the neural circuitry associated with the nucleus has not been defined. Aim of the present study is to examine the possibility of the dopaminergic regulation of EN. NPY-immunoreactive cells and fibers were extensively distributed in the forebrain and pituitary of Cirrhinus cirrhosus. NPY immunoreactivity was observed in the olfactory receptor neurons, ganglion cells of terminal nerve, and in neurons of area ventralis telencephali/pars lateralis, EN, nucleus preopticus periventricularis (NPP), and nucleus lateralis tuberis. NPY-fibers were observed in the dorsal telencephalon, tuberal area and pituitary. While the area ventralis telencephali/pars intermedialis (Vi) located just above the EN contained a distinct population of tyrosine hydroxylase neurons, their axons seem to innervate NPY neurons in EN. Superfused brain slices containing EN were treated with DA D1- and D2-like receptor agonists. NPY-immunoreactivity in the EN showed significant increase (P<0.001) following DA D1-like receptor agonist, SKF-38393 treatment, but DA D2-like receptor agonist, quinpirole was ineffective. DA may regulate NPY neurons in EN via D1-like receptors. DA-NPY interaction in the EN might be important in the central regulation of reproduction in teleosts. Copyright © 2014 Elsevier Inc. All rights reserved.
Oginsky, Max F.; Rodgers, Edmund W.; Clark, Merry C.; Simmons, Robert; Krenz, Wulf-Dieter C.; Baro, Deborah J.
2014-01-01
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D2 receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D2αPan) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG whole-mount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D2αPan receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D2αPan receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites. PMID:19941347
Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.
Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu
2003-07-01
Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.
Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong
2010-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player in resveratrol-mediated neuroprotection. PMID:20554604
Enrico, P; Migliore, M; Spiga, S; Mulas, G; Caboni, F; Diana, M
2016-05-13
Dopamine (DA) neurons of the ventral tegmental area (VTA) play a key role in the neurobiological basis of goal-directed behaviors and addiction. Morphine (MOR) withdrawal induces acute and long-term changes in the morphology and physiology of VTA DA cells, but the mechanisms underlying these modifications are poorly understood. Because of their predictive value, computational models are a powerful tool in neurobiological research, and are often used to gain further insights and deeper understanding on the molecular and physiological mechanisms underlying the development of various psychiatric disorders. Here we present a biophysical model of a DA VTA neuron based on 3D morphological reconstruction and electrophysiological data, showing how opiates withdrawal-driven morphological and electrophysiological changes could affect the firing rate and discharge pattern. The model findings suggest how and to what extent a change in the balance of GABA/GLU inputs can take into account the experimentally observed hypofunction of VTA DA neurons during acute and prolonged withdrawal, whereas morphological changes may play a role in the increased excitability of VTA DA cell to opiate administration observed during opiate withdrawal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Further insights into cortactin conformational regulation
Evans, Jason V; Kelley, Laura C; Hayes, Karen E; Ammer, Amanda Gatesman; Martin, Karen H
2011-01-01
The actin regulatory protein cortactin is involved in multiple signaling pathways impinging on the cortical actin cytoskeleton. Cortactin is phosphorylated by ERK1/2 and Src family tyrosine kinases, resulting in neuronal Wiskott Aldrich Syndrome protein (N-WASp) activation and enhanced actin related protein (Arp)2/3-mediated actin nucleation. Cortactin migrates as an 80/85 kDa doublet when analyzed by SDS-PAGE. Phosphorylation by ERK1/2 is associated with conversion of the 80 kDa to the 85 kDa form, postulated to occur by inducing a conformational alteration that releases the carboxyl-terminal SH3 domain from autoinhibition. Our recent analysis of the 80–85 kDa cortactin “shift” in tumor cells indicates that while ERK1/2 phosphorylation is associated with the 85 kDa shift, this phosphorylation event is not required for the shift to occur, nor does ERK1/2 phosphorylation appreciably alter global cortactin confirmation. These data indicate that additional factors besides ERK1/2 phosphorylation contribute to generating and/or maintaining the activated 85 kDa cortactin form in stimulated cells. PMID:21866257
Poe, Amy R; Tang, Lingfeng; Wang, Bei; Li, Yun; Sapar, Maria L; Han, Chun
2017-09-19
Neurons sometimes completely fill available space in their receptive fields with evenly spaced dendrites to uniformly sample sensory or synaptic information. The mechanisms that enable neurons to sense and innervate all space in their target tissues are poorly understood. Using Drosophila somatosensory neurons as a model, we show that heparan sulfate proteoglycans (HSPGs) Dally and Syndecan on the surface of epidermal cells act as local permissive signals for the dendritic growth and maintenance of space-filling nociceptive C4da neurons, allowing them to innervate the entire skin. Using long-term time-lapse imaging with intact Drosophila larvae, we found that dendrites grow into HSPG-deficient areas but fail to stay there. HSPGs are necessary to stabilize microtubules in newly formed high-order dendrites. In contrast to C4da neurons, non-space-filling sensory neurons that develop in the same microenvironment do not rely on HSPGs for their dendritic growth. Furthermore, HSPGs do not act by transporting extracellular diffusible ligands or require leukocyte antigen-related (Lar), a receptor protein tyrosine phosphatase (RPTP) and the only known Drosophila HSPG receptor, for promoting dendritic growth of space-filling neurons. Interestingly, another RPTP, Ptp69D, promotes dendritic growth of C4da neurons in parallel to HSPGs. Together, our data reveal an HSPG-dependent pathway that specifically allows dendrites of space-filling neurons to innervate all target tissues in Drosophila .
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank
2017-12-01
Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.
Zhou, F C; Chiang, Y H; Wang, Y
1996-11-01
The physical repair and restoration of a completely damaged pathway in the brain has not been achieved previously. In a previous study, using excitatory amino acid bridging and fetal neural transplantation, we demonstrated that a bridged mesencephalic transplant in the substantia nigra generated an artificial nerve pathway that reinnervated the striatum of 6-hydroxydopamine (6-OHDA)-lesioned rats. In the current study, we report that a bridged mesencephalic transplant can anatomically, neurochemically, and functionally reinstate the 6-OHDA-eradicated nigro-striatal pathway. An excitatory amino acid, kainic acid, laid down in a track during the transplant generated a trophic environment that effectively guided the robust growth of transplanted neuronal fibers in a bundle to innervate the distal striatum. Growth occurred at the remarkable speed of approximately 200 microm/d. Two separate and distinct types of dopamine (DA) innervation from the transplant have been achieved for the first time: (1) DA innervation of the striatum, and (2) DA innervation of the pars reticularis of the substantia nigra. In addition, neuronal tracing revealed that reciprocal connections were achieved. The grafted DA neurons in the SNr innervated the host's striatum, whereas the host's striatal neurons, in turn, innervated the graft within 3-8 weeks. Electrochemical volt- ammetry recording revealed the restoration of DA release and clearance in a broad striatal area associated with the DA reinnervation. Furthermore, the amphetamine-induced rotation was attenuated, which indicates that the artificial pathways were motor functional. This study provides additional evidences that our bridged transplantation technique is a potential means for the repair of a completely damaged neuronal pathway.
Sugama, Shuei; Kakinuma, Yoshihiko
2016-10-01
Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of dopaminergic (DA) neurons in the nigrostriatal and mesolimbic pathways including ventral tegmental area (VTA). Although several factors for the neuronal loss have been suggested, most of the PD cases are sporadic and idiopathic. In our previous study, we demonstrated the first evidence that solely chronic restraint stress (RS) induced the DA neuronal loss in the substantia nigra (SN). In this study, we further investigated whether chronic stress could affect other major DA systems, VTA and tuberoinfundibular system (TIDA), by using immunohistochemical and in situ hybridization techniques. The present study showed that, in the VTA, tyrosine hydroxylase (TH) immunoreactive neurons decreased by 9.8% at 2nd week, 19.2% at 4th week, 39.5% at 8th week, and 40.6% at 16th week during chronic RS as compared to control. Similarly, in the TIDA, the TH neurons decreased by 10.9% at 2nd week, 38.2% at 4th week, 56.3% at 8th week, and 57.1% at 16th week. The in situ hybridization results consistently demonstrated decreases in Th mRNA expressing cells in the VTA and TIDA in a comparable time dependent manner. Thus, exposure to chronic stress may simultaneously induce multiple neuronal loss of DA systems. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Nimitvilai, Sudarat; Arora, Devinder S.; McElvain, Maureen A.; Brodie, Mark S.
2012-01-01
Neurons of the ventral tegmental area (VTA) are critical in the rewarding and reinforcing properties of drugs of abuse. Desensitization of VTA neurons to moderate extracellular concentrations of dopamine (DA) is dependent on protein kinase C (PKC) and intracellular calcium levels. This desensitization is called DA inhibition reversal (DIR), as it requires concurrent activation of D2 and D1-like receptors; activation of D2 receptors alone does not result in desensitization. Activation of other G-protein linked receptors can substitute for D1 activation. Like D2 receptors, GABAB receptors in the VTA are coupled to G-protein-linked potassium channels. In the present study, we examined interactions between a GABAB agonist, baclofen, and dopamine agonists, dopamine and quinpirole, to determine whether there was some interaction in the processes of desensitization of GABAB and D2 responses. Long-duration administration of baclofen alone produced reversal of the baclofen-induced inhibition indicative of desensitization, and this desensitization persisted for at least 60 min after baclofen washout. Desensitization to baclofen was dependent on protein kinase C. Dopamine inhibition was reduced for 30 min after baclofen-induced desensitization and conversely, the magnitude of baclofen inhibition was reduced for 30 min by long-duration application of dopamine, but not quinpirole. These results indicate that D2 and GABAB receptors share some protein kinase C-dependent mechanisms of receptor desensitization. PMID:22986166
Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi
2006-08-22
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.
Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.
Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota
2007-08-31
Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.
Horner, Kristen A.; Gilbert, Yamiece E.; Cline, Susan D.
2011-01-01
Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system. PMID:21602916
Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron
Yu, Hung-Hsiang
2016-01-01
In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry. PMID:27163287
Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron.
Shen, Hung-Chang; Wei, Jia-Yi; Chu, Sao-Yu; Chung, Pei-Chi; Hsu, Tsai-Chi; Yu, Hung-Hsiang
2016-01-01
In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry.
Gβγ subunit activation promotes dopamine efflux through the dopamine transporter
Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE
2018-01-01
The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302
Evidence That Dopamine Acts via Kisspeptin to Hold GnRH Pulse Frequency in Check in Anestrous Ewes
Maltby, Matthew J.; Millar, Robert P.; Hileman, Stanley M.; Nestor, Casey C; Whited, Brant; Tseng, Ashlie S.; Coolen, Lique M.; Lehman, Michael N.
2012-01-01
Recent work has implicated stimulatory kisspeptin neurons in the arcuate nucleus (ARC) as important for seasonal changes in reproductive function in sheep, but earlier studies support a role for inhibitory A15 dopaminergic (DA) neurons in the suppression of GnRH (and LH) pulse frequency in the nonbreeding (anestrous) season. Because A15 neurons project to the ARC, we performed three experiments to test the hypothesis that A15 neurons act via ARC kisspeptin neurons to inhibit LH in anestrus: 1) we used dual immunocytochemistry to determine whether these ARC neurons contain D2 dopamine receptor (D2-R), the receptor responsible for inhibition of LH in anestrus; 2) we tested the ability of local administration of sulpiride, a D2-R antagonist, into the ARC to increase LH secretion in anestrus; and 3) we determined whether an antagonist to the kisspeptin receptor could block the increase in LH secretion induced by sulpiride in anestrus. In experiment 1, 40% of this ARC neuronal subpopulation contained D2-R in breeding season ewes, but this increased to approximately 80% in anestrus. In experiment 2, local microinjection of the two highest doses (10 and 50 nmol) of sulpiride into the ARC significantly increased LH pulse frequency to levels 3 times that seen with vehicle injections. Finally, intracerebroventricular infusion of a kisspeptin receptor antagonist completely blocked the increase in LH pulse frequency induced by systemic administration of sulpiride to anestrous ewes. These results support the hypothesis that DA acts to inhibit GnRH (and LH) secretion in anestrus by suppressing the activity of ARC kisspeptin neurons. PMID:23038740
Quizon, Pamela M.; Sun, Wei-Lun; Yuan, Yaxia; Midde, Narasimha M.; Zhan, Chang-Guo; Zhu, Jun
2016-01-01
Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission. PMID:27966610
Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.
2016-01-01
The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691
Aversa, Daniela; Martini, Alessandro; Guatteo, Ezia; Pisani, Antonio; Mercuri, Nicola Biagio; Berretta, Nicola
2018-06-22
One of the hallmarks of ventral midbrain dopamine (DA)-releasing neurons is membrane hyperpolarization in response to somato-dendritic D 2 receptors (D 2 Rs) stimulation. At early postnatal age, under sustained DA, this inhibitory response is followed by a slow recovery, resulting in dopamine inhibition reversal (DIR). In the present investigation we aimed to get a better insight onto the cellular mechanisms underlying DIR. We performed single unit extracellular recordings with a multi-electrode array (MEA) device and conventional patch-clamp recordings on midbrain mouse slices. While continuous DA (100 μM) perfusion gave rise to firing inhibition that recovered in 10 to 15 min, the same effect was not obtained with the D 2 R agonist quinpirole (100 nM). Moreover, firing inhibition caused by the GABA B receptor agonist baclofen (300 nM), was reverted by DA (100 μM), albeit D 2 Rs had been blocked by sulpiride (10 μM). Conversely, the block of the DA transporter (DAT) with cocaine (30 μM) prevented firing recovery by DA under GABA B receptor stimulation. Accordingly, in whole cell recordings from single cells the baclofen-induced outward current was counteracted by DA (100 μM) in the presence of sulpiride (10 μM), and this effect was prevented by the DAT antagonists cocaine (30 μM) and GBR12909 (2 μM). Our results indicate a major role played by DAT in causing DIR under conditions of sustained DA exposure and point to DAT as an important target for pharmacological therapies leading to prolonged enhancement of the DAergic signal. This article is protected by copyright. All rights reserved.
Pignatelli, Angela; Ackman, James B; Vigetti, Davide; Beltrami, Antonio P; Zucchini, Silvia; Belluzzi, Ottorino
2009-02-01
A significant fraction of the interneurons added in adulthood to the glomerular layer (GL) of the olfactory bulb (OB) are dopaminergic (DA). In the OB, DA neurons are restricted to the GL, but using transgenic mice expressing eGFP under the tyrosine hydroxylase (TH) promoter, we also detected the presence of TH-GFP+ cells in the mitral and external plexiform layers. We hypothesized that these could be adult-generated neurons committed to become DA but not yet entirely differentiated. Accordingly, TH-GFP+ cells outside the GL exhibit functional properties (appearance of pacemaker currents, synaptic connection with the olfactory nerve, intracellular chloride concentration, and other) marking a gradient of maturity toward the dopaminergic phenotype along the mitral-glomerular axis. Finally, we propose that the establishment of a synaptic contact with the olfactory nerve is the key event allowing these cells to complete their differentiation toward the DA phenotype and to reach their final destination.
Delattre, Ana Marcia; Kiss, Agata; Szawka, Raphael E; Anselmo-Franci, Janete A; Bagatini, Pamela Brambilla; Xavier, Léder Leal; Rigon, Paula; Achaval, Matilde; Iagher, Fabíola; de David, Cíntia; Marroni, Norma A P; Ferraz, Anete Curte
2010-03-01
Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been widely associated to beneficial effects over different neuropathologies, but only a few studies associate them to Parkinson's disease (PD). Rats were submitted to chronic supplementation (21-90 days of life) with fish oil, rich in omega-3 PUFAs, and were uni- or bilaterally lesioned with 4microg of the neurotoxin 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle. Although lipid incorporation was evidenced in neuronal membranes, it was not sufficient to compensate motor deficits induced by 6-OHDA. In contrast, omega-3 PUFAs were capable of reducing rotational behavior induced by apomorphine, suggesting neuroprotection over dyskinesia. The beneficial effects of omega-3 PUFAs were also evident in the maintenance of thiobarbituric acid reactive substances index from animals lesioned with 6-OHDA similar to levels from SHAM and intact animals. Although omega-3 PUFAs did not modify the tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area, nor the depletion of dopamine (DA) and its metabolites in the striatum, DA turnover was increased after omega-3 PUFAs chronic supplementation. Therefore, it is proposed that omega-3 PUFAs action characterizes the adaptation of remaining neurons activity, altering striatal DA turnover without modifying the estimated neuronal population.
Gantner, Carlos W.; Alsanie, Walaa F.; McDougall, Stuart J.; Bye, Chris R.; Elefanty, Andrew G.; Stanley, Edouard G.; Haynes, John M.; Pouton, Colin W.; Thompson, Lachlan H.
2016-01-01
Abstract Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937–948 PMID:28297587
Venkataraman, Sidish; Claussen, Catherine; Dafny, Nachum
2017-02-01
The psychostimulant, methylphenidate (MPD), is the first line treatment as a pharmacotherapy to treat behavioral disorders such as attention deficit hyperactivity disorder (ADHD). MPD is commonly misused in non-ADHD (normal) youth and young adults both as a recreational drug and for cognitive enhancing effects to improve their grades. MPD is known to act on the reward circuit; including the caudate nucleus (CN). The CN is comprised of medium spiny neurons containing largely dopamine (DA) D1 and D2 receptors. It has been widely shown that the DA system plays an important role in the response to MPD exposure. We investigated the role of both D1 and D2 DA receptors in the CN response to chronic MPD administration using specific D1 and D2 DA antagonist. Four groups of young adult, male SD rats were used: a saline (control) and three MPD dose groups (0.6, 2.5, and 10.0 mg/kg). The experiment lasted 11 consecutive days. Each MPD dose group was randomly divided into two subgroups to receive either a 0.4 mg/kg SCH-23390 selective D1 DA antagonist or a 0.3 mg/kg raclopride selective D2 DA antagonist prior to their final (repetitive) MPD rechallenge administration. It was observed that selective D1 DA antagonist (SCH-23390) given 30 min prior to the last MPD exposure at ED11 partially reduced or prevented the effect induced by MPD exposure in CN neuronal firing rates across all MPD doses. Selective D2 DA antagonist (raclopride) resulted in less obvious trends; some CN neuronal firing rates exhibited a slight increase in all MPD doses.
Role of dopamine receptors in the ventral tegmental area in conditioned fear.
de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira
2009-05-16
The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.
Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.
Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O
2015-12-01
Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.
Arnerić, S P; Chow, S A; Bhatnagar, R K; Webb, R L; Fischer, L J; Long, J P
1984-02-01
Previous reports suggest that analogs of dopamine (DA) can produce hyperglycemia in rats by interacting with DA receptors. Experiments reported here indicate the site of action and describe the metabolic sequalae associated with the hyperglycemic effect of apomorphine (APO), produced in conscious unrestrained rats. Apomorphine was more potent when administered by intracerebroventricular (i.c.v.) injection than when given subcutaneously (s.c.). Very small doses of the DA receptor antagonist pimozide, given intraventricularly, blocked the hyperglycemic effect of apomorphine administered subcutaneously. Sectioning of the spinal cord at thoracic vertebra T1-2 or sectioning the greater splanchnic nerve blocked apomorphine-induced hyperglycemia; whereas section of the superior colliculus or section at T5-6 had no effect. A dose of apomorphine or epinephrine (EPI) producing a similar degree of hyperglycemia elevated the concentration of EPI in serum to a similar degree, and the increase in EPI in serum preceded the increase in glucose in serum. Fasting animals for 2 or 18 hr had no significant effect on EPI- or apomorphine-induced hyperglycemia despite a reduction (91-93%) of the glycogen content of liver and skeletal muscle during the 18 hr fast. 5-Methoxyindole-2-carboxylic acid (MICA), an inhibitor of gluconeogenesis, blocked EPI- and apomorphine-induced hyperglycemia in rats fasted for 18 hr. However, 5-methoxyindole-2-carboxylic acid was ineffective in blocking hyperglycemia in animals fasted for 2 hr. Changes in insulin or glucagon in serum alone cannot account for the hyperglycemic action of apomorphine. These data demonstrate that apomorphine interacts with central DA receptors located in the hindbrain to activate sympathetic neuronal activity to the adrenal gland which subsequently releases epinephrine to alter homeostasis of glucose. Epinephrine may then, depending on the nutritional status, facilitate glycogenolytic or gluconeogenic processes to produce hyperglycemia.
Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance
Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R
2015-01-01
Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling. PMID:25035079
Hannich, J Thomas; Entchev, Eugeni V; Mende, Fanny; Boytchev, Hristio; Martin, René; Zagoriy, Vyacheslav; Theumer, Gabriele; Riezman, Isabelle; Riezman, Howard; Knölker, Hans-Joachim; Kurzchalia, Teymuras V
2009-06-01
In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.
Novel botanical drug DA-9803 prevents deficits in Alzheimer's mouse models.
Pagnier, Guillaume J; Kastanenka, Ksenia V; Sohn, Miwon; Choi, Sangzin; Choi, Song-Hyen; Soh, HyeYeon; Bacskai, Brian J
2018-01-29
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deposition of amyloid plaques and disruption of neural circuitry, leading to cognitive decline. Animal models of AD deposit senile plaques and exhibit structural and functional deficits in neurons and neural networks. An effective treatment would prevent or restore these deficits, including calcium dyshomeostasis observed with in-vivo imaging. We examined the effects of DA-9803, a multimodal botanical drug, in 5XFAD and APP/PS1 transgenic mice which underwent daily oral treatment with 30 or 100 mg/kg DA-9803 or vehicle alone. Behavioral testing and longitudinal imaging of amyloid deposits and intracellular calcium in neurons with multiphoton microscopy was performed. Chronic administration of DA-9803 restored behavioral deficits in 5XFAD mice and reduced amyloid-β levels. DA-9803 also prevented progressive amyloid plaque deposition in APP/PS1 mice. Elevated calcium, detected in a subset of neurons before the treatment, was restored and served as a functional indicator of treatment efficacy in addition to the behavioral readout. In contrast, mice treated with vehicle alone continued to progressively accumulate amyloid plaques and calcium overload. In summary, treatment with DA-9803 prevented structural and functional outcome measures in mouse models of AD. Thus, DA-9803 shows promise as a novel therapeutic approach for Alzheimer's disease.
Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C
2015-08-27
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M
2008-10-01
Methamphetamine (METH) is well known for its ability to cause damage to dopamine (DA) nerve endings of the striatum. The mechanisms by which METH causes neurotoxicity are not fully understood, but likely candidates are increased oxidative and nitrosative stress and mitochondrial dysfunction. Microglial activation is also emerging as an important element of the METH neurotoxic cascade, and it appears that extensive cross-talk between these cells and DA nerve endings is an early event in this process. It may seem paradoxical, but DA itself is also thought to be an essential factor in the neuronal damaging effects of METH, but issues relating to its precise role in this regard remain unanswered. We present in this overview a summary of studies that tested how alterations in the disposition of presynaptic DA (injections of reserpine, L-DOPA, or clorgyline) modulate METH neurotoxicity. In all cases, these drugs significantly increased the magnitude of microglial activation as well as the severity of damage to striatal DA nerve endings caused by METH. The enhancement of METH effects in striatum by reserpine, L-DOPA, and clorgyline persisted for 14 days and showed no evidence of recovery. These data establish that subtle shifts in the newly synthesized pool of DA can cause substantial changes in the severity of METH-induced neurotoxicity. DA released into the synapse by METH is very likely the source of downstream reactants that provoke microglial activation and the ensuing damage to DA nerve endings.
p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease
Jha, Saurabh Kumar; Jha, Niraj Kumar; Kar, Rohan; Ambasta, Rashmi K; Kumar, Pravir
2015-01-01
Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of the several factors contributing to PD prognosis, the role of p38 MAPK (Mitogen activated protein-kinase) and PI3K/AKT signalling module in PD brains is crucial because the impaired balance between the pro- apoptotic and anti-apoptotic pathways trigger unwanted phenotypes such as microglia activation, neuroinflammation, oxidative stress and apoptosis. These factors continue challenging the brain homeostasis in initial stages thereby essentially assisting the dopaminergic (DA) neurons towards progressive degeneration in PD. Neurotherapeutics against PD shall then be targeted against the misregulated accomplices of the p38 and PI3K/AKT cascades. In this review, we have outlined many such established mechanisms involving the p38 MAPK and PI3K/AKT pathways which can offer therapeutic windows for the rectification of aberrant DA neuronal dynamics in PD brains. PMID:26261796
Farrand, Ariana Q; Helke, Kristi L; Gregory, Rebecca A; Gooz, Monika; Hinson, Vanessa K; Boger, Heather A
Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic. To assess therapeutic potential of VNS in a PD model. To mimic the progression of PD degeneration, rats received a systemic injection of noradrenergic neurotoxin DSP-4, followed one week later by bilateral intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine. At this time, a subset of rats also had vagus cuffs implanted. After eleven days, rats received a precise VNS regimen twice a day for ten days, and locomotion was measured during each afternoon session. Immediately following final stimulation, rats were euthanized, and left dorsal striatum, bilateral SN and LC were sectioned for immunohistochemical detection of monoaminergic neurons (tyrosine hydroxylase, TH), α-synuclein, astrocytes (GFAP) and microglia (Iba-1). VNS significantly increased locomotion of lesioned rats. VNS also resulted in increased expression of TH in striatum, SN, and LC; decreased SN α-synuclein expression; and decreased expression of glial markers in the SN and LC of lesioned rats. Additionally, saline-treated rats after VNS, had higher LC TH and lower SN Iba-1. Our findings of increased locomotion, beneficial effects on LC-NE and SN-DA neurons, decreased α-synuclein density in SN TH-positive neurons, and neuroinflammation suggest VNS has potential as a novel PD therapeutic. Copyright © 2017 Elsevier Inc. All rights reserved.
[Walking abnormalities in children].
Segawa, Masaya
2010-11-01
Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional specialization of the cortex through the spinal stepping generator-fastigial nucleus-thalamus-cortex pathway. Early detection of locomotion failure and early adjustment of this condition through environmental factors can prevent the development of higher cortical dysfunction.
Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release
Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.
2014-01-01
Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305
Lavoute, Cécile; Weiss, Michel; Risso, Jean-Jacques; Rostain, Jean-Claude
2014-02-01
The purpose of this study was to investigate the change in the striatal dopamine (DA) level in freely-moving rat exposed to different partial pressure of oxygen (from 1 to 5 ATA). Some works have suggested that DA release by the substantia nigra pars compacta (SNc) neurons in the striatum could be disturbed by hyperbaric oxygen (HBO) exposure, altering therefore the basal ganglia activity. Such changes could result in a change in glutamatergic and GABAergic control of the dopaminergic neurons into the SNc. Such alterations could provide more information about the oxygen-induced seizures observed at 5 ATA in rat. DA-sensitive electrodes were implanted into the striatum under general anesthesia. After 1 week rest, awaked rats were exposed to oxygen-nitrogen mixture at a partial pressure of oxygen of 1, 2, 3, 4 and 5 ATA. DA level was monitored continuously (every 3 min) by in vivo voltammetry before and during HBO exposure. HBO induced a decrease in DA level in relationship to the increase in partial pressure of oxygen from 1 ATA to 4 ATA (-15 % at 1 ATA, -30 % at 2 ATA, -40 % at 3 ATA, -45 % at 4 ATA), without signs of oxygen toxicity. At 5 ATA, DA level strongly decreases (-75 %) before seizure which occurred after 27 min ± 7 HBO exposure. After the epileptic seizure the decrease in DA level disappeared. These changes and the biphasic effect of HBO were discussed in function of HBO action on neurochemical regulations of the nigro striatal pathway.
Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.
2010-01-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968
Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M
2010-11-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.
de Guglielmo, Giordano; Melis, Miriam; De Luca, Maria Antonietta; Kallupi, Marsida; Li, Hong Wu; Niswender, Kevin; Giordano, Antonio; Senzacqua, Martina; Somaini, Lorenzo; Cippitelli, Andrea; Gaitanaris, George; Demopulos, Gregory; Damadzic, Ruslan; Tapocik, Jenica; Heilig, Markus; Ciccocioppo, Roberto
2015-03-01
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang
2017-08-01
Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.
Francesconi, Walter; Berton, Fulvia; Koob, George F.; Sanna, Pietro Paolo
2010-01-01
The juxtacapsular nucleus of the anterior division of the BNST (jcBNST) receives robust glutamatergic projections from the basolateral nucleus of the amygdala (BLA), the postpiriform transition area, and the insular cortex as well as dopamine (DA) inputs from the midbrain. In turn the jcBNST sends GABAergic projections to the medial division of the central nucleus of the amygdala (CEAm) as well as other brain regions. We recently described a form of long-term potentiation of the intrinsic excitability (LTP-IE) of neurons of the juxtacapsular nucleus of BNST (jcBNST) in response to high-frequency stimulation (HFS) of the stria terminalis that was impaired during protracted withdrawal from alcohol, cocaine, and heroin and in rats chronically treated with corticotropin releasing factor (CRF) intracerebroventricularly. Here we show that DAergic neurotransmission is required for the induction of LTP-IE of jcBNTS neurons through dopamine (DA) D1 receptors. Thus, activation of the central CRF stress system and altered DAergic neurotransmission during protracted withdrawal from alcohol and drugs of abuse may contribute to the disruption of LTP-IE in the jcBNST. Impairment of this form of intrinsic neuronal plasticity in the jcBNST could result in inadequate neuronal integration and reduced inhibition of the CEA, contributing to the negative affective state that characterizes protracted abstinence in post-dependent individuals. These results provide a novel neurobiological target for vulnerability to alcohol and drug dependence. PMID:19683025
Krajnak, K; Sriram, K; Johnson, C; Roberts, J R; Mercer, R; Miller, G R; Wirth, O; Antonini, J M
2017-01-01
Exposure to welding fumes may result in disorders of the pulmonary, cardiovascular, and reproductive systems. Welders are also at a greater risk of developing symptoms similar to those seen in individuals with idiopathic Parkinson's disease. In welders, there are studies that suggest that alterations in circulating prolactin concentrations may be indicative of injury to the dopamine (DA) neurons in the substantia nigra. The goal of these studies was to use an established model of welding particulate exposure to mimic the effects of welding fume inhalation on reproductive functions. Since previous investigators suggested that changes in circulating prolactin may be an early marker of DA neuron injury, movement disorders, and reproductive dysfunction, prolactin, hypothalamic tyrosine hydroxylase (TH) levels (a marker of DA synthesis), and other measures of hypothalamic-pituitary-gonadal (HPG) function were measured after repetitive instillation of welding fume particulates generated by flux core arc-hard surfacing (FCA-HS), manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) welding, or manganese chloride (MnCl 2 ). Exposure to welding fume particulate resulted in the accumulation of various metals in the pituitary and testes of rats, along with changes in hypothalamic TH and serum prolactin levels. Exposure to particulates with high concentrations of soluble manganese (Mn) appeared to exert the greatest influence on TH activity levels and serum prolactin concentrations. Thus, circulating prolactin levels may serve as a biomarker for welding fume/Mn-induced neurotoxicity. Other reproductive measures were collected, and these data were consistent with epidemiological findings that prolactin and testosterone may serve as biomarkers of welding particulate induced DA neuron and reproductive dysfunction.
Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M
2017-01-01
The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.
Haissaguerre, Magalie; Ferrière, Amandine; Simon, Vincent; Saucisse, Nicolas; Dupuy, Nathalie; André, Caroline; Clark, Samantha; Guzman-Quevedo, Omar; Tabarin, Antoine; Cota, Daniela
2018-06-01
Nutrient availability modulates reactive oxygen species (ROS) production in the hypothalamus. In turn, ROS regulate hypothalamic neuronal activity and feeding behavior. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is an important cellular integrator of the action of nutrients and hormones. Here we tested the hypothesis that modulation of mTORC1 activity, particularly in Proopiomelanocortin (POMC)-expressing neurons, mediates the cellular and behavioral effects of ROS. C57BL/6J mice or controls and their knockout (KO) littermates deficient either for the mTORC1 downstream target 70-kDa ribosomal protein S6 kinase 1 (S6K1) or for the mTORC1 component Rptor specifically in POMC neurons (POMC-rptor-KO) were treated with an intracerebroventricular (icv) injection of the ROS hydrogen peroxide (H 2 O 2 ) or the ROS scavenger honokiol, alone or, respectively, in combination with the mTORC1 inhibitor rapamycin or the mTORC1 activator leptin. Oxidant-related signal in POMC neurons was assessed using dihydroethidium (DHE) fluorescence. Icv administration of H 2 O 2 decreased food intake, while co-administration of rapamycin, whole-body deletion of S6K1, or deletion of rptor in POMC neurons impeded the anorectic action of H 2 O 2 . H 2 O 2 also increased oxidant levels in POMC neurons, an effect that hinged on functional mTORC1 in these neurons. Finally, scavenging ROS prevented the hypophagic action of leptin, which in turn required mTORC1 to increase oxidant levels in POMC neurons and to inhibit food intake. Our results demonstrate that ROS and leptin require mTORC1 pathway activity in POMC neurons to increase oxidant levels in POMC neurons and consequently decrease food intake. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S
2018-03-01
Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.
Alteration of Striatal Tetrahydrobiopterin in Iron-Induced Unilateral Model of Parkinson's Disease
Aryal, Bijay; Lee, Jin-Koo; Kim, Hak Rim
2014-01-01
It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin (BH4) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of BH4 into neuron would induce the neuronal toxicity in vitro. To elucidate a role of BH4 in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and BH4 at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and BH4 levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of BH4 was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of BH4 in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both BH4 and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of BH4 can deteriorate the disease progression in early phase of PD, and the inhibition of BH4 increase could be a strategy for PD treatment. PMID:24757374
Hu, Zhan-Ying; Chen, Bo; Zhang, Jing-Pu; Ma, Yuan-Yuan
2017-11-03
Parkinson's disease (PD) is one of the most epidemic neurodegenerative diseases and is characterized by movement disorders arising from loss of midbrain dopaminergic (DA) neurons. Recently, the relationship between PD and autophagy has received considerable attention, but information about the mechanisms involved is lacking. Here, we report that autophagy-related gene 5 ( ATG5 ) is potentially important in protecting dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model in zebrafish. Using analyses of zebrafish swimming behavior, in situ hybridization, immunofluorescence, and expressions of genes and proteins related to PD and autophagy, we found that the ATG5 expression level was decreased and autophagy flux was blocked in this model. The ATG5 down-regulation led to the upgrade of PD-associated proteins, such as β-synuclein, Parkin, and PINK1, aggravation of MPTP-induced PD-mimicking pathological locomotor behavior, DA neuron loss labeled by tyrosine hydroxylase (TH) or dopamine transporter (DAT), and blocked autophagy flux in the zebrafish model. ATG5 overexpression alleviated or reversed these PD pathological features, rescued DA neuron cells as indicated by elevated TH/DAT levels, and restored autophagy flux. The role of ATG5 in protecting DA neurons was confirmed by expression of the human atg5 gene in the zebrafish model. Our findings reveal that ATG5 has a role in neuroprotection, and up-regulation of ATG5 may serve as a goal in the development of drugs for PD prevention and management. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Yao, Yu; Vieira, Amandio
2007-01-01
Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, P<0.01) with reported Vaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction, and provide a basis for in vivo testing of these flavonoids and their physiological metabolites in the context of neuro- and mitochondrio-protective effects.
Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission.
Hurd, Y L; Lindefors, N; Brodin, E; Brené, S; Persson, H; Ungerstedt, U; Hökfelt, T
1992-04-24
The effects of acute and repeated amphetamine administration on mesolimbic dopamine (DA) neurons was assessed by studying DA and cholecystokinin (CCK) release in the nucleus accumbens (Acc), as well as effects on mRNA genes regulating DA and CCK synthesis in ventral tegmental area (VTA) cells in rats. Amphetamine (1.5 mg/kg) markedly increased extracellular levels of DA in the medial Acc (assessed by in vivo microdialysis) in drug-naive animals, about twice the amount released in animals repeatedly administered the drug for the previous 7 days (twice daily). CCK overflow was found to mirror the DA responses in that the very transient elevation of CCK monitored in drug-naive animals was attenuated in those with prior amphetamine use. The attenuation of both DA and CCK overflow in the medial Acc was found to be associated with a decrease in the number of CCK mRNA-positive VTA neurons (assessed by in situ hybridization histochemistry). Although the number of cells expressing CCK mRNA were decreased, the gene expression in those positive CCK and tyrosine hydroxylase mRNA cells in the VTA was significantly increased. The CCK mRNA neurons in the VTA were positively identified as those projecting to the medial Acc by the local perfusion of Fluoro-gold retrograde tracer via microdialysis probes located in the Acc.
The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons
2014-01-01
6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling degeneration of dopaminergic (DA) neurons in Parkinson's disease. 6-OHDA also causes axonal degeneration, a process that appears to precede the death of DA neurons. To understand the processes involved in 6-OHDA-mediated axonal degeneration, a microdevice designed to isolate axons fluidically from cell bodies was used in conjunction with green fluorescent protein (GFP)-labeled DA neurons. Results showed that 6-OHDA quickly induced mitochondrial transport dysfunction in both DA and non-DA axons. This appeared to be a general effect on transport function since 6-OHDA also disrupted transport of synaptophysin-tagged vesicles. The effects of 6-OHDA on mitochondrial transport were blocked by the addition of the SOD1-mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-oxidant N-acetyl-cysteine (NAC) suggesting that free radical species played a role in this process. Temporally, microtubule disruption and autophagy occurred after transport dysfunction yet before DA cell death following 6-OHDA treatment. The results from the study suggest that ROS-mediated transport dysfunction occurs early and plays a significant role in inducing axonal degeneration in response to 6-OHDA treatment. PMID:24885281
Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M
2008-05-01
The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.
Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François
2016-04-20
The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.
The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration.
VanDuyn, Natalia; Settivari, Raja; LeVora, Jennifer; Zhou, Shaoyu; Unrine, Jason; Nass, Richard
2013-01-01
Aluminum (Al(3+)) is the most prevalent metal in the earth's crust and is a known human neurotoxicant. Al(3+) has been shown to accumulate in the substantia nigra of patients with Parkinson's disease (PD), and epidemiological studies suggest correlations between Al(3+) exposure and the propensity to develop both PD and the amyloid plaque-associated disorder Alzheimer's disease (AD). Although Al(3+) exposures have been associated with the development of the most common neurodegenerative disorders, the molecular mechanism involved in Al(3+) transport in neurons and subsequent cellular death has remained elusive. In this study, we show that a brief exposure to Al(3+) decreases mitochondrial membrane potential and cellular ATP levels, and confers dopamine (DA) neuron degeneration in the genetically tractable nematode Caenorhabditis elegans (C. elegans). Al(3+) exposure also exacerbates DA neuronal death conferred by the human PD-associated protein α-synuclein. DA neurodegeneration is dependent on SMF-3, a homologue to the human divalent metal transporter (DMT-1), as a functional null mutation partially inhibits the cell death. We also show that SMF-3 is expressed in DA neurons, Al(3+) exposure results in a significant decrease in protein levels, and the neurodegeneration is partially dependent on the PD-associated transcription factor Nrf2/SKN-1 and caspase Apaf1/CED-4. Furthermore, we provide evidence that the deletion of SMF-3 confers Al(3+) resistance due to sequestration of Al(3+) into an intracellular compartment. This study describes a novel model for Al(3+)-induced DA neurodegeneration and provides the first molecular evidence of an animal Al(3+) transporter. © 2012 International Society for Neurochemistry.
Pure uptake blockers of dopamine can reduce prolactin secretion: studies with diclofensine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Renzo, G.; Amoroso, S.; Taglialatela, M.
1988-01-01
The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) /sup 3/H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 ..mu..M caused a marked decrease of /sup 3/H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration. On the other hand, diclofensine caused a 3 fold enhancement on K+-evoked DA release. Finally, the compound, whenmore » administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.« less
Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho
2013-01-01
Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. PMID:24073226
Yan, Bing Chun; Park, Joon Ha; Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho
2013-01-01
Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
Buckmaster, Paul S.; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M. D.; Van Bonn, William
2014-01-01
California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and the pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin-immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. PMID:24638960
Kim, Eun Young; Kim, Hyunjin; Lee, Yoonjeong; Min, Boram; Son, Jin H.; Park, Hwan Tae; Chung, Jongkyeong
2017-01-01
DJ-1 is one of the causative genes for early onset familiar Parkinson’s disease (PD) and is also considered to influence the pathogenesis of sporadic PD. DJ-1 has various physiological functions which converge on controlling intracellular reactive oxygen species (ROS) levels. In RNA-sequencing analyses searching for novel anti-oxidant genes downstream of DJ-1, a gene encoding NADP+-dependent isocitrate dehydrogenase (IDH), which converts isocitrate into α-ketoglutarate, was detected. Loss of IDH induced hyper-sensitivity to oxidative stress accompanying age-dependent mitochondrial defects and dopaminergic (DA) neuron degeneration in Drosophila, indicating its critical roles in maintaining mitochondrial integrity and DA neuron survival. Further genetic analysis suggested that DJ-1 controls IDH gene expression through nuclear factor-E2-related factor2 (Nrf2). Using Drosophila and mammalian DA models, we found that IDH suppresses intracellular and mitochondrial ROS level and subsequent DA neuron loss downstream of DJ-1. Consistently, trimethyl isocitrate (TIC), a cell permeable isocitrate, protected mammalian DJ-1 null DA cells from oxidative stress in an IDH-dependent manner. These results suggest that isocitrate and its derivatives are novel treatments for PD associated with DJ-1 dysfunction. PMID:28827794
Lim, M. A.; Selak, M. A.; Xiang, Z.; Krainc, D.; Neve, R. L.; Kraemer, B. C.; Watts, J. L.
2012-01-01
A growing body of research indicates that amyotrophic lateral sclerosis (ALS) patients and mouse models of ALS exhibit metabolic dysfunction. A subpopulation of ALS patients possesses higher levels of resting energy expenditure and lower fat-free mass compared to healthy controls. Similarly, two mutant copper zinc superoxide dismutase 1 (mSOD1) mouse models of familial ALS possess a hypermetabolic phenotype. The pathophysiological relevance of the bioenergetic defects observed in ALS remains largely elusive. AMP-activated protein kinase (AMPK) is a key sensor of cellular energy status and thus might be activated in various models of ALS. Here, we report that AMPK activity is increased in spinal cord cultures expressing mSOD1, as well as in spinal cord lysates from mSOD1 mice. Reducing AMPK activity either pharmacologically or genetically prevents mSOD1-induced motor neuron death in vitro. To investigate the role of AMPK in vivo, we used Caenorhabditis elegans models of motor neuron disease. C. elegans engineered to express human mSOD1 (G85R) in neurons develops locomotor dysfunction and severe fecundity defects when compared to transgenic worms expressing human wild-type SOD1. Genetic reduction of aak-2, the ortholog of the AMPK α2 catalytic subunit in nematodes, improved locomotor behavior and fecundity in G85R animals. Similar observations were made with nematodes engineered to express mutant tat-activating regulatory (TAR) DNA-binding protein of 43 kDa molecular weight. Altogether, these data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant to motor neuron disease. PMID:22262909
Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-derived Human Neurons
Ren, Yong; Jiang, Houbo; Hu, Zhixing; Fan, Kevin; Wang, Jun; Janoschka, Stephen; Wang, Xiaomin; Ge, Shaoyu; Feng, Jian
2015-01-01
Parkinson’s disease (PD) is characterized by the degeneration of nigral dopaminergic (DA) neurons and non-DA neurons in many parts of the brain. Mutations of parkin, an E3 ubiquitin ligase that strongly binds to microtubules, are the most frequent cause of recessively inherited Parkinson’s disease. The lack of robust PD phenotype in parkin knockout mice suggests a unique vulnerability of human neurons to parkin mutations. Here, we show that the complexity of neuronal processes as measured by total neurite length, number of terminals, number of branch points and Sholl analysis, was greatly reduced in induced pluripotent stem cell (iPSC)-derived TH+ or TH− neurons from PD patients with parkin mutations. Consistent with these, microtubule stability was significantly decreased by parkin mutations in iPSC-derived neurons. Overexpression of parkin, but not its PD-linked mutant nor GFP, restored the complexity of neuronal processes and the stability of microtubules. Consistent with these, the microtubule-depolymerizing agent colchicine mimicked the effect of parkin mutations by decreasing neurite length and complexity in control neurons while the microtubule-stabilizing drug taxol mimicked the effect of parkin overexpression by enhancing the morphology of parkin-deficient neurons. The results suggest that parkin maintains the morphological complexity of human neurons by stabilizing microtubules. PMID:25332110
Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhnt, Donald M.
2016-01-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate–putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure. PMID:19457119
Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M
2009-06-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.
Liu, Zheng; Cai, Wei; Lang, Ming; Yan, Ruizuo; Li, Zhenshen; Zhang, Gaoxiao; Yu, Pei; Wang, Yuqiang; Sun, Yewei; Zhang, Zaijun
2017-04-01
Parkinson's disease (PD) is a complex neurodegenerative disorder with multifactorial pathologies, including progressive loss of dopaminergic (DA) neurons, oxidative stress, mitochondrial dysfunction, and increased monoamine oxidase (MAO) enzyme activity. There are currently only a few agents approved to ameliorate the symptoms of PD; however, no agent is able to reverse the progression of the disease. Due to the multifactorial pathologies, it is necessary to develop multifunctional agents that can affect more than one target involved in the disease pathology. We have designed and synthesized a series of new multifunctional anti-Parkinson's compounds which can protect cerebral granular neurons from 1-methyl-4-phenylpyridinium (MPP + ) insult, scavenge free radicals, and inhibit monoamine oxidase (MAO)/cholinesterase (ChE) activities. Among them, MT-20R exhibited the most potent MAO-B inhibition both in vitro and in vivo. We further investigated the neuroprotective effects of MT-20R using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. In vivo, MT-20R alleviated MPTP-induced motor deficits, raised the striatal contents of dopamine and its metabolites, and restored the expression of tyrosine hydroxylase (TH) and the number of TH-positive DA neurons in the substantia nigra. Additionally, MT-20R enhanced the expression of Bcl-2, decreased the expression of Bax and Caspase 3, and activated the AKT/Nrf2/HO-1 signaling pathway. These findings suggest that MT-20R may be a novel therapeutic candidate for treatment of PD.
A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain
Tedjakumala, Stevanus R.; Rouquette, Jacques; Boizeau, Marie-Laure; Mesce, Karen A.; Hotier, Lucie; Massou, Isabelle; Giurfa, Martin
2017-01-01
Dopamine (DA) plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US). Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH) immunoreactivity (ir) to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES) and the antennal lobe (AL); the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL) of the mushroom body (MB); the C3 cluster is located below the calyces (CA) of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning. PMID:28740466
Altier, N; Stewart, J
1998-04-01
In the present study, we examined the effects of dopamine (DA) receptor antagonists infused into the nucleus accumbens septi (NAS) on analgesia induced by intra-ventral tegmental area (VTA) infusions of the substance P (SP) analog, DiMe-C7 or morphine and intra-NAS infusions of amphetamine. Rats received intra-NAS infusions of either the mixed DA receptor antagonist flupenthixol (1.5 or 3.0 microg/0.5 microl/side; DiMe-C7 only), the DA D1/D5 receptor antagonist SCH 23390 (0.1 microg/0.5 microl/side; DiMe-C7 only) or the DA D2-type receptor antagonist raclopride (1.0, 3.0 or 5.0 microg/0.5 microl/side). Ten minutes later, rats received intra-VTA infusions of DiMe-C7 (3.0 microg/0.5 microl/side) or morphine (3.0 microg/0.5 microl/side) or intra-NAS infusions of amphetamine (2.5 microg/0.5 microl/side). Animals were then administered the formalin test for tonic pain. Intra-NAS raclopride prevented analgesia induced by intra-VTA DiMe-C7, intra-VTA morphine and intra-NAS amphetamine. Similarly, intra-NAS flupenthixol or SCH 23390 attenuated the analgesia induced by intra-VTA DiMe-C7. These findings suggest that tonic pain is inhibited, at least in part, by enhanced DA released from terminals of mesolimbic neurons. Furthermore, the evidence that SP and opioids in the VTA mediate stress-induced analgesia suggests that the pain-suppression system involving the activation of mesolimbic DA neurons is naturally triggered by exposure to stress, pain or both.
Sulkowski, Mikolaj J.; Iyer, Srividya Chandramouli; Kurosawa, Mathieu S.; Iyer, Eswar Prasad R.; Cox, Daniel N.
2011-01-01
Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development. PMID:21811639
Park, Gunhyuk; Kim, Hyo Geun; Ju, Mi Sun; Ha, Sang Keun; Park, Yongkon; Kim, Sun Yeou; Oh, Myung Sook
2013-01-01
Aim: 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown various neurobiological and anti-inflammatory effects. The aim of this study was to examine the effects of 6-shogaol on neuroinflammatory-induced damage of dopaminergic (DA) neurons in Parkinson's disease (PD) models. Methods: Cultured rat mesencephalic cells were treated with 6-shogaol (0.001 and 0.01 μmol/L) for 1 h, then with MPP+(10 μmol/L) for another 23 h. The levels of TNF-α and NO in medium were analyzed spectrophotometrically. C57/BL mice were administered 6-shogaol (10 mg·kg−1·d−1, po) for 3 d, and then MPTP (30 mg/kg, ip) for 5 d. Seven days after the last MPTP injection, behavioral testings were performed. The levels of tyrosine hydroxylase (TH) and macrophage antigen (MAC)-1 were determined with immunohistochemistry. The expression of iNOS and COX-2 was measured using RT PCR. Results: In MPP+-treated rat mesencephalic cultures, 6-shogaol significantly increased the number of TH-IR neurons and suppressed TNF-α and NO levels. In C57/BL mice, treatment with 6-shogaol reversed MPTP-induced changes in motor coordination and bradykinesia. Furthermore, 6-shogaol reversed MPTP-induced reductions in TH-positive cell number in the substantia nigra pars compacta (SNpc) and TH-IR fiber intensity in stratum (ST). Moreover, 6-shogaol significantly inhibited the MPTP-induced microglial activation and increases in the levels of TNF-α, NO, iNOS, and COX-2 in both SNpc and ST. Conclusion: 6-Shogaol exerts neuroprotective effects on DA neurons in in vitro and in vivo PD models. PMID:23811724
Park, Gunhyuk; Kim, Hyo Geun; Ju, Mi Sun; Ha, Sang Keun; Park, Yongkon; Kim, Sun Yeou; Oh, Myung Sook
2013-09-01
6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown various neurobiological and anti-inflammatory effects. The aim of this study was to examine the effects of 6-shogaol on neuroinflammatory-induced damage of dopaminergic (DA) neurons in Parkinson's disease (PD) models. Cultured rat mesencephalic cells were treated with 6-shogaol (0.001 and 0.01 μmol/L) for 1 h, then with MPP(+)(10 μmol/L) for another 23 h. The levels of TNF-α and NO in medium were analyzed spectrophotometrically. C57/BL mice were administered 6-shogaol (10 mg·kg(-1)·d(-1), po) for 3 d, and then MPTP (30 mg/kg, ip) for 5 d. Seven days after the last MPTP injection, behavioral testings were performed. The levels of tyrosine hydroxylase (TH) and macrophage antigen (MAC)-1 were determined with immunohistochemistry. The expression of iNOS and COX-2 was measured using RT PCR. In MPP(+)-treated rat mesencephalic cultures, 6-shogaol significantly increased the number of TH-IR neurons and suppressed TNF-α and NO levels. In C57/BL mice, treatment with 6-shogaol reversed MPTP-induced changes in motor coordination and bradykinesia. Furthermore, 6-shogaol reversed MPTP-induced reductions in TH-positive cell number in the substantia nigra pars compacta (SNpc) and TH-IR fiber intensity in stratum (ST). Moreover, 6-shogaol significantly inhibited the MPTP-induced microglial activation and increases in the levels of TNF-α, NO, iNOS, and COX-2 in both SNpc and ST. 6-Shogaol exerts neuroprotective effects on DA neurons in in vitro and in vivo PD models.
Mancini, Maria; Ghiglieri, Veronica; Bagetta, Vincenza; Pendolino, Valentina; Vannelli, Anna; Cacace, Fabrizio; Mineo, Desireé; Calabresi, Paolo; Picconi, Barbara
2016-02-01
Memantine is an open channel blocker that antagonizes NMDA receptors reducing the inappropriate calcium (Ca(2+)) influx occurring in presence of moderately increased glutamate levels. At the same time, memantine has the ability to preserve the transient physiological activation of NMDA receptor, essential for learning and memory formation at synaptic level. In the present study we investigated the effects exerted by memantine on striatal synaptic plasticity in rat striatal spiny projection neurons (SPNs). In vitro application of memantine in striatal slices elicited a disruption of long-term potentiation (LTP) induction and maintenance, and revealed, in the majority of the recorded neurons, a long-term depression (LTD), whose amplitude was concentration-dependent (0.3-10 μM). Interestingly, preincubation with the dopamine (DA) D2 receptor antagonist sulpiride (10 μM) prevented memantine-induced LTD and restored LTP. Moreover, the DA D2 agonist quinpirole (10 μM), similarly to memantine, induced LTD in a subgroup of SPNs. In addition, memantine-induced LTD was also prevented by the CB1 endocannabinoid receptor antagonist AM 251 (1 μM). These results suggest that the actions exerted by memantine on striatal synaptic plasticity, and in particular the induction of LTD observed in SPNs, could be attributed to its ability to activate DA D2 receptors. By contrast, blockade of NMDA receptor is not involved in memantine-induced LTD since APV (30 μM) and MK801 (10 μM), two NMDA receptor antagonists, failed to induce this form of synaptic plasticity. Our data indicate that memantine could be used as treatment of neurological disorders in which DA D2 receptor represents a possible therapeutic target. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ishikawa, Taizo; Imamura, Keiko; Kondo, Takayuki; Koshiba, Yasushi; Hara, Satoshi; Ichinose, Hiroshi; Furujo, Mahoko; Kinoshita, Masako; Oeda, Tomoko; Takahashi, Jun; Takahashi, Ryosuke; Inoue, Haruhisa
2016-12-01
Dopamine (DA) is a neurotransmitter in the brain, playing a central role in several disease conditions, including tetrahydrobiopterin (BH4) metabolism disorders and Parkinson's disease (PD). BH4 metabolism disorders present a variety of clinical manifestations including motor disturbance via altered DA metabolism, since BH4 is a cofactor for tyrosine hydroxylase (TH), a rate-limiting enzyme for DA synthesis. Genetically, BH4 metabolism disorders are, in an autosomal recessive pattern, caused by a variant in genes encoding enzymes for BH4 synthesis or recycling, including 6-pyruvoyltetrahydropterin synthase (PTPS) or dihydropteridine reductase (DHPR), respectively. Although BH4 metabolism disorders and its metabolisms have been studied, it is unclear how gene variants cause aberrant DA synthesis in patient neurons. Here, we generated induced pluripotent stem cells (iPSCs) from BH4 metabolism disorder patients with PTPS or DHPR variants, corrected the gene variant in the iPSCs using the CRISPR/Cas9 system, and differentiated the BH4 metabolism disorder patient- and isogenic control iPSCs into midbrain DA neurons. We found that by the gene correction, the BH4 amount, TH protein level and extracellular DA level were restored in DA neuronal culture using PTPS deficiency iPSCs. Furthermore, the pharmacological correction by BH4 precursor sepiapterin treatment also improved the phenotypes of PTPS deficiency. These results suggest that patient iPSCs with BH4 metabolism disorders provide an opportunity for screening substances for treating aberrant DA synthesis-related disorders. © The Author 2016. Published by Oxford University Press.
Effects of CDP-choline on striatal dopamine level and behavior in rats.
Shibuya, M; Kageyama, N; Taniguchi, T; Hidaka, H; Fujiwara, M
1981-02-01
To further assess the effects of CDP (cytidine diphosphate)-choline on Parkinsonian symptoms, striatal dopamine (DA) was measured fluorometrically in rats after injection of CDP-choline. CDP-choline (300 mg/kg, i.p.) increased the DA content in the striatum (p less than 0.05) one hour after injection. The behavioral effect of CDP-choline was then tested in rats in which the unilateral nigro-striatal DA neurons had degenerated following an intranigral injection of 6-hydroxydopamine (6-OHDA). CDP-choline alone did not produce behavioral changes in these rats. However, pretreatment with a single dose of CDP-choline (900 mg/kg, i.p.) suppressed both the apomorphine-induced contralateral and the d-amphetamine-induced ipsilateral circling. The same dose of CDP-choline suppressed the number of treadmill revolutions in mice. On the other hand, a 7-day consecutive treatment with 300 mg/kg of CDP-choline enhanced the apomorphine-induced contralateral circling (by 42%, p less than 0.05). The same treatment with CDP-choline raised the striatal DA content by 29% (p less than 0.05) on the intact side, but not on the 6-OHDA injected side. These results indicate that CDP-choline has either a direct nor an indirect DA agonistic effect. The increase in DA content, decrease in locomotion and enhancement of the effect of apomorphine can be explained on the hypothesis that CDP-choline may act as an antagonist on the DA neurons and receptors. The validity of this apparently paradoxical use of CDP-choline with antagonistic effect on DA neurons in the treatment of Parkinson's disease is discussed.
Goodson, James L; Kabelik, David; Kelly, Aubrey M; Rinaldi, Jacob; Klatt, James D
2009-05-26
Mesolimbic dopamine (DA) circuits mediate a wide range of goal-oriented behavioral processes, and DA strongly influences appetitive and consummatory aspects of male sexual behavior. In both birds and mammals, mesolimbic projections arise primarily from the ventral tegmental area (VTA), with a smaller contribution from the midbrain central gray (CG). Despite the well known importance of the VTA cell group for incentive motivation functions, relationships of VTA subpopulations to specific aspects of social phenotype remain wholly undescribed. We now show that in male zebra finches (Estrildidae: Taeniopygia guttata), Fos activity within a subpopulation of tyrosine hydroxylase-immunoreactive (TH-ir; presumably dopaminergic) neurons in the caudal VTA is significantly correlated with courtship singing and coupled to gonadal state. In addition, the number of TH-ir neurons in this caudal subpopulation dichotomously differentiates courting from non-courting male phenotypes, and evolves in relation to sociality (flocking vs. territorial) across several related finch species. Combined, these findings for the VTA suggest that divergent social phenotypes may arise due to the differential assignment of "incentive value" to conspecific stimuli. TH-ir neurons of the CG (a population of unknown function in mammals) exhibit properties that are even more selectively and tightly coupled to the expression of courtship phenotypes (and appetitive courtship singing), both in terms of TH-ir cell number, which correlates significantly with constitutive levels of courtship motivation, and with TH-Fos colocalization, which increases in direct proportion to the phasic expression of song. We propose that these neurons may be core components of social communication circuits across diverse vertebrate taxa.
Morrison, Brad E.; Marcondes, Maria Cecilia Garibaldi; Nomura, Daniel K.; Sanchez-Alavez, Manuel; Sanchez-Gonzalez, Alejandro; Saar, Indrek; Kim, Kwang-Soo; Bartfai, Tamas; Maher, Pamela; Sugama, Shuei; Conti, Bruno
2012-01-01
Inflammation and its mediators, including cytokines and reactive oxigen species, are believed to contribute to neurodegeneration. In the mouse brain, we found that the interleukin 13 receptor alpha 1 chain (IL-13Rα1) was expressed in the dopaminergic (DA) neurons of the substantia nigra pars compacta which are preferentially lost in human Parkinson’s disease (PD). Mice deficient for Il13ra1 exhibited resistance to loss of DA neurons in a model of chronic peripheral inflammation using bacterial lipopolysaccharide. Interleukin-13, as well as interleukin-4, potentiated the cytotoxic effects of t-butyl hydroperoxide and hydrogen peroxide on mouse dopaminergic MN9D cells. Collectively, our data indicate that expression of IL-13Rα1 on DA neurons can increase their susceptibility to oxidative stress-mediated damage thereby contributing to their preferential loss. In humans, Il13ra1 lies on the X chromosome within the PARK12 locus of susceptibility to PD suggesting that IL-13Rα1 may have a role in the pathogenesis of this neurodegenerative disease. PMID:23169588
Hsieh, Wen-Ting; Chiang, Been-Huang
2014-07-09
Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.
Manitt, C; Eng, C; Pokinko, M; Ryan, R T; Torres-Berrío, A; Lopez, J P; Yogendran, S V; Daubaras, M J J; Grant, A; Schmidt, E R E; Tronche, F; Krimpenfort, P; Cooper, H M; Pasterkamp, R J; Kolb, B; Turecki, G; Wong, T P; Nestler, E J; Giros, B; Flores, C
2013-12-17
Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.
Sex, Drugs and Gluttony: How the Brain Controls Motivated Behaviors
Hull, Elaine M.
2011-01-01
Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornicalLH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel’s emphasis on neural systems and interactions among brain areas and neurotransmitters. PMID:21554895
Dobbs, Lauren K.; Mark, Gregory P.
2012-01-01
Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297
Lei, Yu; Wang, Chengkun; Jiang, Quan; Sun, Xiaoyi; Du, Yongzhong; Zhu, Yaofeng; Lu, Yingmei
2018-01-01
The toxicity of engineered nanoparticles remains a concern. The knowledge of biohazards associated with particular nanoparticles is crucial to make this cutting-edge technology more beneficial and safe. Here, we evaluated the toxicity of Ga 2 O 3 nanoparticles (NPs), which are frequently used to enhance the performance of metal catalysts in a variety of catalytic reactions. The potential inflammatory signaling associated with the toxicity of HA/β-Ga 2 O 3 :Cr 3+ NPs in primary cortical neurons was examined. We observed a dose-dependent decrease in cell viability and an increase in apoptosis in neurons following various concentrations (0, 1, 5, 25, 50, 100 µg/ml) of HA/β-Ga 2 O 3 :Cr 3+ NPs treatment. Consistently, constitutively active forms of calcineurin (48 kDa) were significantly elevated in cultured primary cortical neurons, which was consistent with calpain activation indicated by the breakdown products of spectrin. Moreover, HA/β-Ga 2 O 3 :Cr 3+ NPs result in the elevation of LC3-II formation, SQSTM/p62, and Cathepsin B, whereas phosphorylation of CaMKII (Thr286) and Synapsin I (Ser603) were downregulated in the same context. Taken together, these results demonstrate for the first time that calpain activation and a disturbance of autophagy signaling are evoked by exposure to HA/β-Ga 2 O 3 :Cr 3+ NPs, which may contribute to neuronal injury in vitro .
Jiang, Quan; Sun, Xiaoyi; Du, Yongzhong
2018-01-01
The toxicity of engineered nanoparticles remains a concern. The knowledge of biohazards associated with particular nanoparticles is crucial to make this cutting-edge technology more beneficial and safe. Here, we evaluated the toxicity of Ga2O3 nanoparticles (NPs), which are frequently used to enhance the performance of metal catalysts in a variety of catalytic reactions. The potential inflammatory signaling associated with the toxicity of HA/β-Ga2O3:Cr3+ NPs in primary cortical neurons was examined. We observed a dose-dependent decrease in cell viability and an increase in apoptosis in neurons following various concentrations (0, 1, 5, 25, 50, 100 µg/ml) of HA/β-Ga2O3:Cr3+ NPs treatment. Consistently, constitutively active forms of calcineurin (48 kDa) were significantly elevated in cultured primary cortical neurons, which was consistent with calpain activation indicated by the breakdown products of spectrin. Moreover, HA/β-Ga2O3:Cr3+ NPs result in the elevation of LC3-II formation, SQSTM/p62, and Cathepsin B, whereas phosphorylation of CaMKII (Thr286) and Synapsin I (Ser603) were downregulated in the same context. Taken together, these results demonstrate for the first time that calpain activation and a disturbance of autophagy signaling are evoked by exposure to HA/β-Ga2O3:Cr3+ NPs, which may contribute to neuronal injury in vitro. PMID:29441243
Erdozain, Amaia M; De Gois, Stéphanie; Bernard, Véronique; Gorgievski, Victor; Pietrancosta, Nicolas; Dumas, Sylvie; Macedo, Carlos E; Vanhoutte, Peter; Ortega, Jorge E; Meana, J Javier; Tzavara, Eleni T; Vialou, Vincent; Giros, Bruno
2018-04-01
The importance of dopamine (DA) neurotransmission is emphasized by its direct implication in several neurological and psychiatric disorders. The DA transporter (DAT), target of psychostimulant drugs, is the key protein that regulates spatial and temporal activity of DA in the synaptic cleft via the rapid reuptake of DA into the presynaptic terminal. There is strong evidence suggesting that DAT-interacting proteins may have a role in its function and regulation. Performing a two-hybrid screening, we identified snapin, a SNARE-associated protein implicated in synaptic transmission, as a new binding partner of the carboxyl terminal of DAT. Our data show that snapin is a direct partner and regulator of DAT. First, we determined the domains required for this interaction in both proteins and characterized the DAT-snapin interface by generating a 3D model. Using different approaches, we demonstrated that (i) snapin is expressed in vivo in dopaminergic neurons along with DAT; (ii) both proteins colocalize in cultured cells and brain and, (iii) DAT and snapin are present in the same protein complex. Moreover, by functional studies we showed that snapin produces a significant decrease in DAT uptake activity. Finally, snapin downregulation in mice produces an increase in DAT levels and transport activity, hence increasing DA concentration and locomotor response to amphetamine. In conclusion, snapin/DAT interaction represents a direct link between exocytotic and reuptake mechanisms and is a potential target for DA transmission modulation.
González, Begoña; de Miguel, Rosario; Martín, Sonsoles; Pérez-Rosado, Alberto; Romero, Julián; García-Lecumberri, Carmen; Fernández-Ruiz, Javier; Ramos, José Antonio; Ambrosio, Emilio
2003-06-01
The present study examined the effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) when administered during the perinatal period on morphine self-administration in adulthood. To this end, pregnant Wistar rats were daily exposed to Delta(9)-THC from the fifth day of gestation up to pup weaning, when they were separated by gender and left to mature to be used for analyses of operant food- and morphine-reinforced behavior in a progressive ratio (PR) schedule. We also analyzed dopaminergic activity (DOPAC/DA) in reward-related structures during specific phases of the behavioral study. In both reinforcement paradigms, food and morphine, females always reached higher patterns of self-administration than males, but this occurred for the two treatment groups, Delta(9)-THC or vehicle. These higher patterns measured in females corresponded with a higher DOPAC/DA in the nucleus accumbens prior to the onset of morphine self-administration in comparison to males. Interestingly, DOPAC/DA was lower in Delta(9)-THC-exposed females compared to oil-exposed females and similar to oil- and Delta(9)-THC-exposed males. In addition, Delta(9)-THC-exposed females also exhibited a reduction in DOPAC/DA in the ventral tegmental area, which did not exist in males. All these changes, however, disappeared after 15 days of morphine self-administration and they did not reappear after 15 additional days of extinction of this response. Our data suggest that females are more vulnerable than males in a PR schedule for operant food and morphine self-administration; perinatal Delta(9)-THC exposure is not a factor influencing this vulnerability. The neurochemical analysis revealed that the activity of limbic dopaminergic neurons prior to morphine self-administration was higher in females than males, as well as that the perinatal Delta(9)-THC treatment reduced the activity of these neurons only in females, although this had no influence on morphine vulnerability in these animals.
Caspase-like activity is essential for long-term synaptic plasticity in the terrestrial snail Helix.
Bravarenko, N I; Onufriev, M V; Stepanichev, M Yu; Ierusalimsky, V N; Balaban, P M; Gulyaeva, N V
2006-01-01
Although caspase activity in the nervous system of mollusks has not been described before, we suggested that these cysteine proteases might be involved in the phenomena of neuroplasticity in mollusks. We directly measured caspase-3 (DEVDase) activity in the Helix lucorum central nervous system (CNS) using a fluorometrical approach and showed that the caspase-3-like immunoreactivity is present in the central neurons of Helix. Western blots revealed the presence of caspase-3-immunoreactive proteins with a molecular mass of 29 kDa. Staurosporin application, routinely used to induce apoptosis in mammalian neurons through the activating cleavage of caspase-3, did not result in the appearance of a smaller subunit corresponding to the active caspase in the snail. However, it did increase the enzyme activity in the snail CNS. This suggests differences in the regulation of caspase-3 activity in mammals and snails. In the snail CNS, the caspase homolog seems to possess an active center without activating cleavage typical for mammals. In electrophysiological experiments with identified snail neurons, selective blockade of the caspase-3 with the irreversible and cell-permeable inhibitor of caspase-3 N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp-(OMe)-fluoro-methylketone prevented development of the long-term stage of synaptic input sensitization, suggesting that caspase is necessary for normal synaptic plasticity in snails. The results of our study give the first direct evidence that the caspase-3-like activity is essential for long-term plasticity in the invertebrate neurons. This activity is presumably involved in removing inhibitory constraints on the storage of long-term memory.
Neurochemical and behavioral indices of exercise reward are independent of exercise controllability
Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N
2016-01-01
Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary and forced wheel running protect rats against anxiety- and depression-like behavioral consequences of stress. Voluntary exercise is a natural reward, but whether rats find forced wheel running rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, voluntary running (VR), or forced running (FR) groups. FR rats were forced to run in a pattern resembling rats' natural wheel running behavior. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum (DS) and nucleus accumbens (NAc), and increased activity of DA neurons in the lateral ventral tegmental area (VTA), as revealed by immunohistochemistry for tyrosine hydroxylase (TH) and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct pathway (dynorphin-positive) neurons in the DS and NAc in both VR and FR rats, and in TH-positive neurons in the lateral VTA of VR rats only. Results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance. PMID:26833814
Silibinin attenuates MPP⁺-induced neurotoxicity in the substantia nigra in vivo.
Jung, Un Ju; Jeon, Min-Tae; Choi, Myung-Sook; Kim, Sang Ryong
2014-05-01
Parkinson's disease (PD) is characterized by degeneration of the nigrostriatal dopaminergic (DA) pathway. The cause of neuronal death in PD is largely unknown, but it is becoming clear that inflammation plays a significant role in the pathophysiology of PD. Silibinin is a major flavonoid in milk thistle which has an anti-inflammatory activity. We investigated whether silibinin could have neuroprotective effects on DA neurons in the 1-methyl-4-phenylpyridinium ion (MPP(+))-treated animal model of PD in vivo. To address this question, animals received intraperitoneal (i.p.) injections 10, 50, or 100 mg/kg of silibinin, starting 1 day before MPP(+) injection and continued daily until 6 days post-lesion for tyrosine hydroxylase (TH) staining, or until 1 hour prior to the MPP(+) injection to examine the expression levels of inflammatory proteins. Finally, their brains were harvested at the indicated time points for the analyses. Silibinin treatment with 10 mg/kg had no significantly neuroprotective effects in the substantia nigra (SN). However, 50 and 100 mg/kg of silibinin ameliorated the MPP(+)-induced neurotoxicity in the SN in a dose-dependent manner, and the increased levels of inflammatory molecules such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) by MPP(+) treatment were attenuated by treatment with 100 mg/kg of silibinin. These results indicate that silibinin could be a useful and beneficial natural product offering promise for the prevention of DA neuronal degeneration involved in PD.
Crisp, Kevin M; Mesce, Karen A
2004-12-01
It is widely appreciated that the selection and modulation of locomotor circuits are dependent on the actions of higher-order projection neurons. In the leech, Hirudo medicinalis, locomotion is modulated by a number of cephalic projection neurons that descend from the subesophageal ganglion in the head. Specifically, descending brain interneuron Tr2 functions as a command-like neuron that can terminate or sometimes trigger fictive swimming. In this study, we demonstrate that Tr2 is dye coupled to the dopaminergic neural network distributed in the head brain. These findings represent the first anatomical evidence in support of dopamine (DA) playing a role in the modulation of locomotion in the leech. In addition, we have determined that bath application of DA to the brain and entire nerve cord reliably and rapidly terminates swimming in all preparations exhibiting fictive swimming. By contrast, DA application to nerve cords expressing ongoing fictive crawling does not inhibit this motor rhythm. Furthermore, we show that Tr2 receives rhythmic feedback from the crawl central pattern generator. For example, Tr2 receives inhibitory post-synaptic potentials during the elongation phase of each crawl cycle. When crawling is not expressed, spontaneous inhibitory post-synaptic potentials in Tr2 correlate in time with spontaneous excitatory post-synaptic potentials in the CV motor neuron, a circular muscle excitor that bursts during the elongation phase of crawling. Our data are consistent with the idea that DA biases the nervous system to produce locomotion in the form of crawling.
Buckmaster, Paul S; Wen, Xiling; Toyoda, Izumi; Gulland, Frances M D; Van Bonn, William
2014-05-01
California sea lions (Zalophus californianus) are abundant human-sized carnivores with large gyrencephalic brains. They develop epilepsy after experiencing status epilepticus when naturally exposed to domoic acid. We tested whether sea lions previously exposed to DA (chronic DA sea lions) display hippocampal neuropathology similar to that of human patients with temporal lobe epilepsy. Hippocampi were obtained from control and chronic DA sea lions. Stereology was used to estimate numbers of Nissl-stained neurons per hippocampus in the granule cell layer, hilus, and pyramidal cell layer of CA3, CA2, and CA1 subfields. Adjacent sections were processed for somatostatin immunoreactivity or Timm-stained, and the extent of mossy fiber sprouting was measured stereologically. Chronic DA sea lions displayed hippocampal neuron loss in patterns and extents similar but not identical to those reported previously for human patients with temporal lobe epilepsy. Similar to human patients, hippocampal sclerosis in sea lions was unilateral in 79% of cases, mossy fiber sprouting was a common neuropathological abnormality, and somatostatin-immunoreactive axons were exuberant in the dentate gyrus despite loss of immunopositive hilar neurons. Thus, hippocampal neuropathology of chronic DA sea lions is similar to that of human patients with temporal lobe epilepsy. Copyright © 2013 Wiley Periodicals, Inc.
Rodriguez-Menchaca, Aldo A; Solis Jr, Ernesto; Cameron, Krasnodara; De Felice, Louis J
2012-01-01
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na+ carry the initial S(+)AMPH-induced current, whereas Na+ and Cl- carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na+ and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse. PMID:22014068
Guimarães, Francisco S.; Grace, Anthony A.
2015-01-01
Background: Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing, or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia. Methods: This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2mg/kg) was extended over 25 days throughout puberty (postnatal days 40–65) in control and MAM rats. The rats received 20 injections, which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons. Results: MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration, and an increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats (Sal). Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states. Conclusions: Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted. PMID:25522381
Stereotaxical Infusion of Rotenone: A Reliable Rodent Model for Parkinson's Disease
Xiong, Nian; Huang, Jinsha; Zhang, Zhentao; Zhang, Zhaowen; Xiong, Jing; Liu, Xingyuan; Jia, Min; Wang, Fang; Chen, Chunnuan; Cao, Xuebing; Liang, Zhihou; Sun, Shenggang; Lin, Zhicheng; Wang, Tao
2009-01-01
A clinically-related animal model of Parkinson's disease (PD) may enable the elucidation of the etiology of the disease and assist the development of medications. However, none of the current neurotoxin-based models recapitulates the main clinical features of the disease or the pathological hallmarks, such as dopamine (DA) neuron specificity of degeneration and Lewy body formation, which limits the use of these models in PD research. To overcome these limitations, we developed a rat model by stereotaxically (ST) infusing small doses of the mitochondrial complex-I inhibitor, rotenone, into two brain sites: the right ventral tegmental area and the substantia nigra. Four weeks after ST rotenone administration, tyrosine hydroxylase (TH) immunoreactivity in the infusion side decreased by 43.7%, in contrast to a 75.8% decrease observed in rats treated systemically with rotenone (SYS). The rotenone infusion also reduced the DA content, the glutathione and superoxide dismutase activities, and induced alpha-synuclein expression, when compared to the contralateral side. This ST model displays neither peripheral toxicity or mortality and has a high success rate. This rotenone-based ST model thus recapitulates the slow and specific loss of DA neurons and better mimics the clinical features of idiopathic PD, representing a reliable and more clinically-related model for PD research. PMID:19924288
[Hunger and satiety factors in the regulation of pleasure associated with feeding behavior].
Fetissov, Sergueï O
2016-01-01
Feeding is an instinctive behavior accompanied by rewarding feeling of pleasure during obtaining and ingesting food, corresponding to the preparatory and consummatory phases of motivated behavior, respectively. Perception of this emotional state together with alternating feelings of hunger and satiety drives the feeding behavior. Because alterations of feeding behavior including either overeating or anorexia may lead to obesity and cachexia, respectively, understanding the neurochemical mechanisms of regulation of feeding pleasure may help to develop new therapies of these diseases. The dopamine (DA) system of the mesolimbic projections plays a key role in behavioral reward in general and is also involved in regulating feeding-associated pleasure in the forebrain including the nucleus accumbens (NAc) and the lateral hypothalamic area (LHA). It suggests that this DA system can be selectively activated by factors specific to different types of motivated behavior including hunger- and satiety- related hormones. Indeed, central administrations of either orexigenic ghrelin or anorexigenic α-melanocyte-stimulating hormone (α-MSH) increase DA release in the NAc. However, DA has also been shown to inhibit food intake when injected into the LHA, historically known as a « hunger center », indicating DA functional involvement in regulation of both appetite and feeding pleasure. Although both NAc and LHA contain neurons expressing melanocortin receptors, only the LHA receives the α-MSH containing nerve terminals from the α-MSH producing neurons of the hypothalamic arcuate nucleus, the main relay of the peripheral hunger and satiety signals to the brain. A recent study showed that α-MSH in the LHA enhances satiety and inhibits feeding pleasure while potently stimulating DA release in this area during both preparatory and consummatory phases of feeding. It suggests that altered signaling by α-MSH to the DA system in the LHA may be involved in the pathophysiology of obesity and anorexia and the possible underlying mechanisms are discussed. © Société de Biologie, 2017.
Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.
Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo
2013-02-04
"Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH-SY5Y cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Goldberg, Natalie R.S.; Meshul, Charles K.
2011-01-01
Our goal was to extend our understanding of the neural changes behind motor recovery with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse. We determined the extent of dopamine (DA) terminal changes using western immunoblotting [striatal dopamine transporter (DAT) and tyrosine hydroxylase (TH)] and alterations in the mean number of DA cells/section by immunohistochemistry and Nissl staining [TH-labeled cells and thionin-stained cells in the substantia nigra pars compacta (SN-PC)]. We measured recovery of gait performance and amount of spontaneous physical activity using the parallel rod activity chamber (PRAC). We hypothesized that the decrease in TH-labeled neurons in the SN-PC due to MPTP will be partially reversed by treadmill exercise, leading to recovery of motor behavior as measured by the PRAC. Following MPTP or vehicle administration, mice ran on the treadmill for 1 hour per day at 18 cm/s, 5 days per week. Results showed that treadmill exercise improves gait performance and increases physical activity while promoting increased protein expression of striatal DAT and TH. Exercise was effective for all mice, however effects of early treadmill-based intervention appear to have an additional and unique benefit in mice who received MPTP. We are the first to show that, even following a nearly 50% decrease in the mean number of TH-labeled neurons/section in the SN-PC following MPTP, treadmill exercise leads to an increase of neurons in the SN-PC and improved motor behavior. PMID:21315689
Jang, Eun Young; Yang, Chae Ha; Hedges, David M; Kim, Soo Phil; Lee, Jun Yeon; Ekins, Tyler G; Garcia, Brandon T; Kim, Hee Young; Nelson, Ashley C; Kim, Nam Jun; Steffensen, Scott C
2017-09-01
Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH. © 2016 Society for the Study of Addiction.
Kuroiwa, Mahomi; Hamada, Miho; Hieda, Eriko; Shuto, Takahide; Sotogaku, Naoki; Flajolet, Marc; Snyder, Gretchen L; Hendrick, Joseph P; Fienberg, Allen; Nishi, Akinori
2012-12-01
Muscarinic receptors, activated by acetylcholine, play critical roles in the functional regulation of medium spiny neurons in the striatum. However, the muscarinic receptor signaling pathways are not fully elucidated due to their complexity. In this study, we investigated the function of muscarinic receptors in the striatum by monitoring DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa) phosphorylation at Thr34 (the PKA-site) using mouse striatal slices. Treatment of slices with a non-selective muscarinic receptor agonist, oxotremorine (10 μM), rapidly and transiently increased DARPP-32 phosphorylation. The increase in DARPP-32 phosphorylation was completely abolished either by a dopamine D(1) receptor antagonist (SCH23390), tetrodotoxin, genetic deletion of M5 receptors, muscarinic toxins for M1 and M4 receptors, or 6-hydroxydopamine lesioning of dopaminergic neurons, whereas it was enhanced by nicotine. Analysis in D(1)-DARPP-32-Flag/D(2)-DARPP-32-Myc transgenic mice revealed that oxotremorine increases DARPP-32 phosphorylation selectively in D(1)-type/striatonigral, but not in D(2)-type/striatopallidal, neurons. When D(1) and D(2) receptors were blocked by selective antagonists to exclude the effects of released dopamine, oxotremorine increased DARPP-32 Thr34 phosphorylation only in D(2)-type/striatopallidal neurons. This increase required activation of M1 receptors and was dependent upon adenosine A(2A) receptor activity. The results demonstrate that muscarinic receptors, especially M5 receptors, act at presynaptic dopaminergic terminals, regulate the release of dopamine in cooperation with nicotinic receptors, and activate D(1) receptor/DARPP-32 signaling in the striatonigral neurons. Muscarinic M1 receptors expressed in striatopallidal neurons interact with adenosine A(2A) receptors and activate DARPP-32 signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.
Genetics Home Reference: CLN2 disease
... Z, Mole SE, Noher de Halac I, Pearce DA, Poupetova H, Schulz A, Specchio N, Xin W, ... Jul 25. Citation on PubMed Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: ...
Elliott, P J; Alpert, J E; Bannon, M J; Iversen, S D
1986-01-15
Microinfusion of the metabolically stable substance P (SP) agonist, [pGlu5,MePhe8,Sar9]-SP5-11 (DiMe-C7), into the ventral tegmental area (VTA) of rat brain increased levels of the dopamine (DA) metabolite dihydroxyphenylacetic acid in the prefrontal cortex (+ 120%) and nucleus accumbens (+30%) but not in other regions of forebrain. In contrast, infusions of DiMe-C7 or SP into the lateral ventricles or microinfusions of SP into VTA failed to elicit increases in DOPAC levels in forebrain. DA levels were unaffected by SP or DiMe-C7 regardless of the route of administration. These data and previous studies suggest a role for endogenous SP in the modulation of mesocortical and mesolimbic DA neurones.
Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A
2017-11-15
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking. Copyright © 2017 the authors 0270-6474/17/3711166-15$15.00/0.
Cholinergic modulation of mesolimbic dopamine function and reward.
Mark, Gregory P; Shabani, Shkelzen; Dobbs, Lauren K; Hansen, Stephen T
2011-07-25
The substantial health risk posed by obesity and compulsive drug use has compelled a serious research effort to identify the neurobiological substrates that underlie the development these pathological conditions. Despite substantial progress, an understanding of the neurochemical systems that mediate the motivational aspects of drug-seeking and craving remains incomplete. Important work from the laboratory of Bart Hoebel has provided key information on neurochemical systems that interact with dopamine (DA) as potentially important components in both the development of addiction and the expression of compulsive behaviors such as binge eating. One such modulatory system appears to be cholinergic pathways that interact with DA systems at all levels of the reward circuit. Cholinergic cells in the pons project to DA-rich cell body regions in the ventral tegmental area (VTA) and substantial nigra (SN) where they modulate the activity of dopaminergic neurons and reward processing. The DA terminal region of the nucleus accumbens (NAc) contains a small but particularly important group of cholinergic interneurons, which have extensive dendritic arbors that make synapses with a vast majority of NAc neurons and afferents. Together with acetylcholine (ACh) input onto DA cell bodies, cholinergic systems could serve a vital role in gating information flow concerning the motivational value of stimuli through the mesolimbic system. In this report we highlight evidence that CNS cholinergic systems play a pivotal role in behaviors that are motivated by both natural and drug rewards. We argue that the search for underlying neurochemical substrates of compulsive behaviors, as well as attempts to identify potential pharmacotherapeutic targets to combat them, must include a consideration of central cholinergic systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Effects of progesterone administered after MPTP on dopaminergic neurons of male mice.
Litim, Nadhir; Morissette, Marc; Di Paolo, Thérèse
2017-05-01
Progesterone neuroprotection of striatal dopamine (DA) in male mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was previously reported when administered before MPTP or an hour after. A dose of MPTP to induce a partial lesion was used to model early stages or prodromal Parkinson. We hypothesized that brain DA can be restored by progesterone administered early (24 h) or later (5 days) after MPTP. Male mice received 4 injections of MPTP (8 mg/kg) and progesterone (8 mg/kg) once daily for 5 days started 24 h or 5 days after MPTP. The lesion decreased striatal DA and its metabolites but not serotonin contents. MPTP mice treated with progesterone starting 24 h but not 5 days after MPTP had higher striatal DA and its metabolites content than vehicle-treated MPTP mice. Striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) specific binding decreased in lesioned mice and were corrected with progesterone treatment starting 24 h but not 5 days after MPTP. Striatal glial fibrillary acidic protein (GFAP) levels, a marker of activated astrocytes, were elevated by the MPTP lesion and were corrected with progesterone treatment starting 24 h after MPTP. Striatal brain derived neurotrophic factor (BDNF) levels were decreased by the MPTP lesion and were prevented by progesterone treatments whereas no change of Akt, GSK3β, ERK1 and 2 and their phosphorylated forms were observed. Thus, progesterone administered after MPTP in mice protected dopaminergic neurons through modulation of neuroinflammation and BDNF. In humans, progesterone could possibly be used as a disease-modifying drug in prodromal Parkinson. Copyright © 2017 Elsevier Ltd. All rights reserved.
The N-terminal Set-β Protein Isoform Induces Neuronal Death*
Trakhtenberg, Ephraim F.; Morkin, Melina I.; Patel, Karan H.; Fernandez, Stephanie G.; Sang, Alan; Shaw, Peter; Liu, Xiongfei; Wang, Yan; Mlacker, Gregory M.; Gao, Han; Velmeshev, Dmitry; Dombrowski, Susan M.; Vitek, Michael P.; Goldberg, Jeffrey L.
2015-01-01
Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death. PMID:25833944
Sex, drugs and gluttony: how the brain controls motivated behaviors.
Hull, Elaine M
2011-07-25
Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornical LH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel's emphasis on neural systems and interactions among brain areas and neurotransmitters. Copyright © 2011 Elsevier Inc. All rights reserved.
Wakeman, Dustin R; Redmond, D Eugene; Dodiya, Hemraj B; Sladek, John R; Leranth, Csaba; Teng, Yang D; Samulski, R Jude; Snyder, Evan Y
2014-06-01
Transplanted multipotent human fetal neural stem cells (hfNSCs) significantly improved the function of parkinsonian monkeys in a prior study primarily by neuroprotection, with only 3%-5% of cells expressing a dopamine (DA) phenotype. In this paper, we sought to determine whether further manipulation of the neural microenvironment by overexpression of a developmentally critical molecule, glial cell-derived neurotrophic factor (GDNF), in the host striatum could enhance DA differentiation of hfNSCs injected into the substantia nigra and elicit growth of their axons to the GDNF-expressing target. hfNSCs were transplanted into the midbrain of 10 green monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. GDNF was delivered concomitantly to the striatum via an adeno-associated virus serotype 5 vector, and the fate of grafted cells was assessed after 11 months. Donor cells remained predominantly within the midbrain at the injection site and sprouted numerous neurofilament-immunoreactive fibers that appeared to course rostrally toward the striatum in parallel with tyrosine hydroxylase-immunoreactive fibers from the host substantia nigra but did not mature into DA neurons. This work suggests that hfNSCs can generate neurons that project long fibers in the adult primate brain. However, in the absence of region-specific signals and despite GDNF overexpression, hfNSCs did not differentiate into mature DA neurons in large numbers. It is encouraging, however, that the adult primate brain appeared to retain axonal guidance cues. We believe that transplantation of stem cells, specifically instructed ex vivo to yield DA neurons, could lead to reconstruction of some portion of the nigrostriatal pathway and prove beneficial for the parkinsonian condition. ©AlphaMed Press.
Repairing the Aged Parkinsonian Striatum: Lessons from the Lab and Clinic.
Mercado, Natosha M; Collier, Timothy J; Freeman, Thomas; Steece-Collier, Kathy
2016-12-01
The primary risk factor associated with Parkinson's disease (PD) is advanced age. While there are symptomatic therapies for PD, efficacy of these eventually wane and/or side-effects develop over time. An alternative experimental therapy that has received a great deal of attention over the past several decades has been neural transplantation aimed at replacing nigral dopamine (DA) neurons that degenerate in PD. However, in PD patients and parkinsonian rats, advanced age is associated with inferior benefit following intrastriatal grafting of embryonic DA neurons. Traditionally it has been thought that decreased therapeutic benefit results from the decreased survival of grafted DA neurons and the accompanying poor reinnervation observed in the aged host. However, recent clinical and preclinical data suggest that factors inherent to the aged striatum per se limit successful brain repair. In this short communication, we focus discussion on the implications of our recent grafting study in aged parkinsonian rats, with additional emphasis on a recent clinical report of the outcome of cell therapy in an aged PD patient with long-term (24 years) survival of DA neuron grafts. To address aging as a limiting factor in successful brain repair, we use the example of cell transplantation as a means to interrogate the environment of the aged striatum and identify factors that may, or may not, respond to interventions aimed at improving the prospects for adequate repair of the aged brain. We offer discussion of how these recent reports, in the context of other historical grafting studies, might provide new insight into specific risk factors that have potential to negatively impact all DA cell or terminal replacement strategies for clinical use in PD.
Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.
2010-01-01
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668
Molecular pathways of pannexin1-mediated neurotoxicity
Shestopalov, Valery I.; Slepak, Vladlen Z.
2014-01-01
Pannexin1 (Panx1) forms non-selective membrane channels, structurally similar to gap junction hemichannels, and are permeable to ions, nucleotides, and other small molecules below 900 Da. Panx1 activity has been implicated in paracrine signaling and inflammasome regulation. Recent studies in different animal models showed that overactivation of Panx1 correlates with a selective demise of several types of neurons, including retinal ganglion cells, brain pyramidal, and enteric neurons. The list of Panx1 activators includes extracellular ATP, glutamate, high K+, Zn2+, fibroblast growth factors (FGFs),pro-inflammatory cytokines, and elevation of intracellular Ca2+. Most of these molecules are released following mechanical, ischemic, or inflammatory injury of the CNS, and rapidly activate the Panx1 channel. Prolonged opening of Panx1 channel induced by these “danger signals” triggers a cascade of neurotoxic events capable of killing cells. The most vulnerable cell type are neurons that express high levels of Panx1. Experimental evidence suggests that Panx1 channels mediate at least two distinct neurotoxic processes: increased permeability of the plasma membrane and activation of the inflammasome in neurons and glia. Importantly, both pharmacological and genetic inactivation of Panx1 suppresses both these processes, providing a marked protection in several disease and injury models. These findings indicate that external danger signals generated after diverse types of injuries converge to activate Panx1. In this review we discuss molecular mechanisms associated with Panx1 toxicity and the crosstalk between different pathways. PMID:24575045
Hami, Javad; Hosseini, Mehran; Shahi, Sekineh; Lotfi, Nassim; Talebi, Abolfazl; Afshar, Mohammad
2015-01-01
Background: Parkinson’s disease (PD) is a common neurodegenerative disease resulting from the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Increasing evidence demonstrated that mice treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) suffered impairments in motor functions associated with disruption of DA neurons in SNc conceivably analogous to those observed in PD. L-arginine has been proposed as a novel neuroprotective agent that plays protective roles in several models of neuronal cellular damage. This study aimed to evaluate the effects of L-arginine on the numerical density of dark neurons (DNs) in the SNc of Balb/c mice subjected to MPTP administration. Methods: In the present study, we demonstrated that repeated treatment with L-arginine (300 mg/kg, i.p.) during 7 consecutive days attenuated the production of DNs in SNc of adult male Balb/c mice infused with a single intranasal administration of MPTP (1 mg/nostril). Results: Pre-treatment with L-arginine significantly decreased the numerical density of DNs in SNc of mice 21 days after intranasal MPTP administration. Conclusion: This investigation provides new insights in experimental models of PD, indicating that L-arginine represents a potential neuroprotective agent for the prevention of DA neuron degeneration in SNc observed in PD patients. PMID:26885338
Bernhard, Nirit; van der Kooy, Derek
2000-01-01
Continuous presentation of an olfactory stimulus causes a decrement of the chemotaxis response in the nematode Caenorhabditis elegans. However, the differences between the learning process of habituation (a readily reversible decrease in behavioral response) and other types of olfactory plasticity such as adaptation (a decrement in response due to sensory fatigue, which cannot be dishabituated) have not been addressed. The volatile odorant diacetyl (DA) was used within a single paradigm to assess the distinct processes of olfactory adaptation and habituation. Preexposing and testing worms to 100% DA vapors caused a chemotaxis decrement that was not reversible despite the presentation of potentially dishabituating stimuli. This DA adaptation was abolished in worms with an odr-10 mutation (encoding a high-affinity DA receptor on the AWA neuron), even though naive chemotaxis remained unaffected. Conversely, DA adaptation remained intact in odr-1 mutants (defective in AWC neuron-mediated olfactory behavior), even though naive chemotaxis to DA decreased. Surprisingly, exposure to vapors of intermediate concentrations of DA (0.01% and 25%) did not cause worms to exhibit any response decrement. In contrast to preexposure to high DA concentrations, preexposure to low DA concentrations (0.001%) produced habituation of the chemotaxis response (a dishabituating stimulus could reverse the response decrement back to baseline levels). The distinct behavioral effects produced by DA preexposure highlight a concentration-dependent dissociation between two decremental olfactory processes: adaptation at high DA concentrations versus habituation at low DA concentrations. PMID:10940320
A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons
Han, Ye; Khodr, Christina E.; Sapru, Mohan K.; Pedapati, Jyothi; Bohn, Martha C.
2011-01-01
Alpha-synuclein (SNCA), an abundantly expressed presynaptic protein, is implicated in Parkinson disease (PD). Since over-expression of human SNCA (hSNCA) leads to death of dopaminergic (DA) neurons in human, rodent and fly brain, hSNCA gene silencing may reduce levels of toxic forms of SNCA and ameliorate degeneration of DA neurons in PD. To begin to develop a gene therapy for PD based on hSNCA gene silencing, two AAV gene silencing vectors were designed, and tested for efficiency and specificity of silencing, as well as toxicity in vitro. The same hSNCA silencing sequence (shRNA) was used in both vectors, but in one vector, the shRNA was embedded in a microRNA backbone and driven by a pol II promoter, and in the other the shRNA was not embedded in a microRNA and was driven by a pol III promoter. Both vectors silenced hSNCA to the same extent in 293T cells transfected with hSNCA. In DA PC12 cells, neither vector decreased expression of rat SNCA, tyrosine hydroxylase (TH), dopamine transporter (DAT) or the vesicular monoamine transporter (VMAT). However, the mir30 embedded vector was significantly less toxic to both PC12 and SH-SY5Y cells. Our in vitro data suggest that this miRNA-embedded silencing vector may be ideal for chronic in vivo SNCA gene silencing in DA neurons. PMID:21338582
Role of Inflammation in MPTP-Induced Dopaminergic Neuronal Death
2008-12-01
treated mouse . We found that indeed both microglia and astrocytes are activated in the SNpc, that certain enzymes, such as NADPH oxidase and...different time points in the MPTP mouse model of PD using both normal and NADPH oxidase -deficient mice was the plan. This included assessing...superoxide radical can be produced in several different ways. First of all, DA itself is metabolized by monoamine oxidase (MAO), an outer
Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents.
McGuier, Natalie S; Rinker, Jennifer A; Cannady, Reginald; Fulmer, Diana B; Jones, Sara R; Hoffman, Michaela; Mulholland, Patrick J
2018-05-24
Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode K V 7 channels influence alcohol intake and dependence. K V 7 channels are a class of slowly activating voltage-dependent K + channels that regulate neuronal excitability. Studies indicate that the K V 7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and K V 7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA K V 7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective K V 7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that K V 7.4 channels are a critical mediator of excessive alcohol drinking. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration.
Zhou, Xuan; Cui, Haitao; Nowicki, Margaret; Miao, Shida; Lee, Se-Jun; Masood, Fahed; Harris, Brent T; Zhang, Lijie Grace
2018-03-14
Central nerve repair and regeneration remain challenging problems worldwide, largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to the unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds. Gelatin methacrylate (GelMA) possesses excellent biocompatible and biodegradable properties because it contains many arginine-glycine-aspartic acids (RGD) and matrix metalloproteinase sequences. Dopamine (DA), as an essential neurotransmitter, has proven effective in regulating neuronal development and enhancing neurite outgrowth. In this study, GelMA-DA neural scaffolds with hierarchical structures were 3D-fabricated using our custom-designed stereolithography-based printer. DA was functionalized on GelMA to synthesize a biocompatible printable ink (GelMA-DA) for improving neural differentiation. Additionally, neural stem cells (NSCs) were employed as the primary cell source for these scaffolds because of their ability to terminally differentiate into a variety of cell types including neurons, astrocytes, and oligodendrocytes. The resultant GelMA-DA scaffolds exhibited a highly porous and interconnected 3D environment, which is favorable for supporting NSC growth. Confocal microscopy analysis of neural differentiation demonstrated that a distinct neural network was formed on the GelMA-DA scaffolds. In particular, the most significant improvements were the enhanced neuron gene expression of TUJ1 and MAP2. Overall, our results demonstrated that 3D-printed customizable GelMA-DA scaffolds have a positive role in promoting neural differentiation, which is promising for advancing nerve repair and regeneration in the future.
Asymmetric TDP pathology in primary progressive aphasia with right hemisphere language dominance.
Kim, Garam; Vahedi, Shahrooz; Gefen, Tamar; Weintraub, Sandra; Bigio, Eileen H; Mesulam, Marek-Marsel; Geula, Changiz
2018-01-30
To quantitatively examine the regional densities and hemispheric distribution of the 43-kDa transactive response DNA-binding protein (TDP-43) inclusions, neurons, and activated microglia in a left-handed patient with right hemisphere language dominance and logopenic-variant primary progressive aphasia (PPA). Phosphorylated TDP-43 inclusions, neurons, and activated microglia were visualized with immunohistochemical and histologic methods. Markers were quantified bilaterally with unbiased stereology in language- and memory-related cortical regions. Clinical MRI indicated cortical atrophy in the right hemisphere, mostly in the temporal lobe. Significantly higher densities of TDP-43 inclusions were present in right language-related temporal regions compared to the left or to other right hemisphere regions. The memory-related entorhinal cortex (ERC) and language regions without significant atrophy showed no asymmetry. Activated microglia displayed extensive asymmetry (R > L). A substantial density of neurons remained in all areas and showed no hemispheric asymmetry. However, perikaryal size was significantly smaller in the right hemisphere across all regions except the ERC. To demonstrate the specificity of this finding, sizes of residual neurons were measured in a right-handed case with PPA and were found to be smaller in the language-dominant left hemisphere. The distribution of TDP-43 inclusions and microglial activation in right temporal language regions showed concordance with anatomic distribution of cortical atrophy and clinical presentation. The results revealed no direct relationship between density of TDP-43 inclusions and activated microglia. Reduced size of the remaining neurons is likely to contribute to cortical atrophy detected by MRI. These findings support the conclusion that there is no obligatory relationship between logopenic PPA and Alzheimer pathology. © 2018 American Academy of Neurology.
Lofrumento, Dario D; Nicolardi, Giuseppe; Cianciulli, Antonia; De Nuccio, Francesco; La Pesa, Velia; Carofiglio, Vito; Dragone, Teresa; Calvello, Rosa; Panaro, Maria A
2014-04-01
In the present study we used a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model to analyze resveratrol neuroprotective effects. The MPTP-induced PD model is characterized by chronic inflammation, oxidative stress and loss of the dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). We observed that resveratrol treatment significantly reduced glial activation, decreasing the levels of IL-1β, IL-6 and TNF-α, as well as their respective receptors in the SNpc of MPTP-treated mice, as demonstrated by Western blotting, RT-PCR and quantitative PCR analysis. This reduction is related to possible neuroprotection as we also observed that resveratrol administration limited the decline of tyrosine hydroxylase-immunoreactivity induced in the striatum and SNpc by MPTP injection. Consistent with these data, resveratrol treatment up-regulated the expression of the suppressor of cytokine signaling-1 (SOCS-1), supporting the hypothesis that resveratrol protects DA neurons of the SNpc against MPTP-induced cell loss by regulating inflammatory reactions, possibly through SOCS-1 induction.
Demars, Fanny; Clark, Kristen; Wyeth, Megan S; Abrams, Emily; Buckmaster, Paul S
2018-05-01
Harmful blooms of domoic acid (DA)-producing algae are a problem in oceans worldwide. DA is a potent glutamate receptor agonist that can cause status epilepticus and in survivors, temporal lobe epilepsy. In mice, one-time low-dose in utero exposure to DA was reported to cause hippocampal damage and epileptiform activity, leading to the hypothesis that unrecognized exposure to DA from contaminated seafood in pregnant women can damage the fetal hippocampus and initiate temporal lobe epileptogenesis. However, development of epilepsy (i.e., spontaneous recurrent seizures) has not been tested. In the present study, long-term seizure monitoring and histology was used to test for temporal lobe epilepsy following prenatal exposure to DA. In Experiment One, the previous study's in utero DA treatment protocol was replicated, including use of the CD-1 mouse strain. Afterward, mice were video-monitored for convulsive seizures from 2 to 6 months old. None of the CD-1 mice treated in utero with vehicle or DA was observed to experience spontaneous convulsive seizures. After seizure monitoring, mice were evaluated for pathological evidence of temporal lobe epilepsy. None of the mice treated in utero with DA displayed the hilar neuron loss that occurs in patients with temporal lobe epilepsy and in the mouse pilocarpine model of temporal lobe epilepsy. In Experiment Two, a higher dose of DA was administered to pregnant FVB mice. FVB mice were tested as a potentially more sensitive strain, because they have a lower seizure threshold, and some females spontaneously develop epilepsy. Female offspring were monitored with continuous video and telemetric bilateral hippocampal local field potential recording at 1-11 months old. A similar proportion of vehicle- and DA-treated female FVB mice spontaneously developed epilepsy, beginning in the fourth month of life. Average seizure frequency and duration were similar in both groups. Seizure frequency was lower than that of positive-control pilocarpine-treated mice, but seizure duration was similar. None of the mice treated in utero with vehicle or DA displayed hilar neuron loss or intense mossy fiber sprouting, a form of aberrant synaptic reorganization that develops in patients with temporal lobe epilepsy and in pilocarpine-treated mice. FVB mice that developed epilepsy (vehicle- and DA-treated) displayed mild mossy fiber sprouting. Results of this study suggest that a single subconvulsive dose of DA at mid-gestation does not cause temporal lobe epilepsy in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Hanna; Perentis, Rylee J; Caldwell, Guy A; Caldwell, Kim A
2018-05-10
Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.
Popesku, Jason T; Martyniuk, Christopher J; Trudeau, Vance L
2012-01-01
Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15-40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons' disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems.
Popesku, Jason T.; Martyniuk, Christopher J.; Trudeau, Vance L.
2012-01-01
Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15–40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons’ disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems. PMID:23130016
Javed, Hayate; Azimullah, Sheikh; Haque, M. Emdadul; Ojha, Shreesh K.
2016-01-01
The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP. The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors. PMID:27531971
Vines, D J; Warburton, M J
1999-01-25
Tripeptidyl peptidase I (TPP-I) is a lysosomal enzyme that cleaves tripeptides from the N-terminus of polypeptides. A comparison of TPP-I amino acid sequences with sequences derived from an EST database suggested that TPP-I is identical to a pepstatin-insensitive carboxyl proteinase of unknown specificity which is mutated in classical late infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal storage disease. Both TPP-I and the carboxyl proteinase have an M(r) of about 46 kDa and are, or are predicted to be, resistant to inhibitors of the four major classes of proteinases. Fibroblasts from LINCL patients have less than 5% of the normal TPP-I activity. The activities of other lysosomal enzymes, including proteinases, are in the normal range. LINCL fibroblasts are also defective at degrading short polypeptides and this defect can be induced in normal fibroblasts by treatment with a specific inhibitor or TPP-I. These results suggest that the cell damage, especially neuronal, observed in LINCL results from the defective degradation and consequent lysosomal storage of small peptides.
Lin, Chung-Yin; Hsieh, Han-Yi; Chen, Chiung-Mei; Wu, Shang-Rung; Tsai, Chih-Hung; Huang, Chiung-Yin; Hua, Mu-Yi; Wei, Kuo-Chen; Yeh, Chih-Kuang; Liu, Hao-Li
2016-08-10
Focused ultrasound (FUS)-induced with microbubbles (MBs) is a promising technique for noninvasive opening of the blood-brain barrier (BBB) to allow targeted delivery of therapeutic substances into the brain and thus the noninvasive delivery of gene vectors for CNS treatment. We have previously demonstrated that a separated gene-carrying liposome and MBs administration plus FUS exposure can deliver genes into the brain, with the successful expression of the reporter gene and glial cell line-derived neurotrophic factor (GDNF) gene. In this study, we further modify the delivery system by conjugating gene-carrying liposomes with MBs to improve the GDNF gene-delivery efficiency, and to verify the possibility of using this system to perform treatment in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced animal disease model. FUS-BBB opening was verified by contrast-enhanced MRI, and GFP gene expression was verified via in vivo imaging system (IVIS). Western blots as well as enzyme-linked immunosorbent assay (ELISA) were conducted to measure protein expression, and immunohistochemistry (IHC) was conducted to test the Tyrosine hydroxylase (TH)-neuron distribution. Dopamine (DA) and its metabolites as well as dopamine active transporter (DAT) were quantitatively analyzed to show dopaminergic neuronal dopamine secretion/activity/metabolism. Motor performance was evaluated by rotarod test weekly. Results demonstrated that the LpDNA-MBs (gene-liposome-MBs) complexes successfully serve as gene carrier and BBB-opening catalyst, and outperformed the separated LpDNA/MBs administration both in terms of gene delivery and expression. TH-positive IHC and measurement of DA and its metabolites DOPAC and HVA confirmed improved neuronal function, and the proposed system also provided the best neuroprotective effect to retard the progression of motor-related behavioral abnormalities. Immunoblotting and histological staining further confirmed the expression of reporter genes in neuronal cells. This study suggests that FUS exposures with the administration of LpDNA-MBs complexes synergistically can serve as an effective gene therapy strategy for MPTP-animal treatment, and may have potential for further application to perform gene therapy for neurodegenerative disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease
Bridi, Jessika C.; Hirth, Frank
2018-01-01
Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease. PMID:29515354
Morrow, Bret A.; Roth, Robert H.; Redmond, D. Eugene; Sladek, John R.; Elsworth, John D.
2012-01-01
Natural cell death (NCD) by apoptosis is a normal developmental event in most neuronal populations, and is a determinant of the eventual size of a population. We decided to examine the timing and extent of NCD of the midbrain dopamine system in a primate species, as dopamine deficiency or excess has been implicated in several disorders. Genetic or environmental differences may alter the extent of NCD and predispose individuals to neurological or psychiatric diseases. In developing rats, NCD in the midbrain dopamine system has been observed to start at the end of gestation and peak in the postnatal period. In fetal monkey brains, apoptosis in midbrain DA neurons was identified histologically by chromatin clumping in tyrosine hydroxylase-positive cells, and confirmed by TUNEL and active caspase-3 staining. A distinct peak of NCD occurred at about E80, midway through gestation in this species. We estimate that at least 50% of the population may be lost in this process. In other brains we determined biochemically that the onset of apoptosis coincides with the time of greatest rate of increase of striatal DA concentration. Thus, marked apoptotic NCD occurs in the primate midbrain dopamine system half-way through gestation, and appears to be associated with the rapid developmental increase in striatal dopamine innervation. PMID:17313945
The Role of Dopamine in Normal Rodent Motor Cortex: Physiological Effects and Structural Correlates
1999-04-05
things she does on a daily basis made the lab a great place to do research. Susan’s expertise in molecular techniques was evident from day one , and I...applied OA on the spontaneous activity (SA) of PTNs. the receptors that mediate these effects, and DA’s effects on glutamate induced excitation of PTNs...numerous neurons in the motor cortex and may have profound effects on motor cortex activity, through its influence on PTNs. iv The Role of Dopamine in
Tang, Xiaolu; Jiao, Luyan; Zheng, Meige; Yan, Yan; Nie, Qi; Wu, Ting; Wan, Xiaomei; Zhang, Guofeng; Li, Yonglin; Wu, Song; Jiang, Bin; Cai, Huaibin; Xu, Pingyi; Duan, Jinhai; Lin, Xian
2018-01-01
Tau protein participates in microtubule stabilization, axonal transport, and protein trafficking. Loss of normal tau function will exert a negative effect. However, current knowledge on the impact of tau deficiency on the motor behavior and related neurobiological changes is controversial. In this study, we examined motor functions and analyzed several proteins implicated in the maintenance of midbrain dopaminergic (DA) neurons (mDANs) function of adult and aged tau+/+, tau+/−, tau−/− mice. We found tau deficiency could not induce significant motor disorders. However, we discovered lower expression levels of transcription factors Orthodenticle homeobox 2 (OTX2) of mDANs in older aged mice. Compared with age-matched tau+/+ mice, there were 54.1% lower (p = 0.0192) OTX2 protein (OTX2-fluorescence intensity) in VTA DA neurons of tau+/−mice and 43.6% lower (p = 0.0249) OTX2 protein in VTA DA neurons of tau−/−mice at 18 months old. Combined with the relevant reports, our results suggested that tau deficiency alone might not be enough to mimic the pathology of Parkinson’s disease. However, OTX2 down-regulation indicates that mDANs of tau-deficient mice will be more sensitive to toxic damage from MPTP. PMID:29337233
Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation.
Valencia-Torres, Lourdes; Olarte-Sánchez, Cristian M; Lyons, David J; Georgescu, Teodora; Greenwald-Yarnell, Megan; Myers, Martin G; Bradshaw, Christopher M; Heisler, Lora K
2017-06-01
Obesity is primarily due to food intake in excess of the body's energetic requirements, intake that is not only associated with hunger but also the incentive value of food. The 5-hydroxytryptamine 2C receptor (5-HT 2C R) is a target for the treatment of human obesity. Mechanistically, 5-HT 2C Rs are positioned to influence both homeostatic feeding circuits within the hypothalamus and reward circuits within the ventral tegmental area (VTA). Here we investigated the role of 5-HT 2C Rs in incentive motivation using a mathematical model of progressive ratio (PR) responding in mice. We found that the 5-HT 2C R agonist lorcaserin significantly reduced both ad libitum chow intake and PR responding for chocolate pellets and increased c-fos expression in VTA 5-HT 2C R expressing γ-aminobutyric acid (GABA) neurons, but not 5-HT 2C R expressing dopamine (DA) neurons. We next adopted a chemogenetic approach using a 5-HT 2C R CRE line to clarify the function of subset of 5-HT 2C receptor expressing VTA neurons in the modulation of appetite and food-motivated behavior. Activation of VTA 5-HT 2C receptor expressing neurons significantly reduced ad libitum chow intake, operant responding for chocolate pellets, and the incentive value of food. In contrast, chemogenetic inhibition of VTA 5-HT 2C receptor expressing neurons had no effect on the feeding behavior. These results indicate that activation of the subpopulation of 5-HT 2C R neurons within the VTA is sufficient to significantly reduce homeostatic feeding and effort-based intake of palatable food, and that this subset has an inhibitory role in motivational processes. These findings are relevant to the treatment of obesity.
Samantaray, Supriti; Knaryan, Varduhi H.; Shields, Donald C.; Cox, April A.; Haque, Azizul; Banik, Naren L.
2015-01-01
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, resulting in dopaminergic (DA) neuronal loss in the substantia nigra pars compacta (SNpc) and damage to extranigral spinal cord neurons. Current therapies do not prevent the disease progression. Hence, developing efficacious therapeutic strategies for treatment of PD is of utmost importance. The goal of this study is to delineate the involvement of calpain-mediated inflammation and neurodegeneration in SN and spinal cord in MPTP-induced parkinsonian mice (C57BL/6N), thereby elucidating potential therapeutic target(s). Increased calpain expression was found localized to tyrosine hydroxylase (TH+) neurons in SN alongside with significantly increased TUNEL positive neurons in SN and spinal cord neurons in MPTP mice. Inflammatory markers Cox-2, caspase-1, and NOS-2 were significantly up-regulated in MPTP mice spinal cord as compared to control. These parameters correlated with the activation of astrocytes, microglia, infiltration of CD4+ / CD8+ T cells and macrophages. We found that subpopulations of CD4+ cells (Th1 & Tregs) were differentially expanded in MPTP mice, which could be regulated by inhibition of calpain with the potent inhibitor calpeptin. Pre-treatment with calpeptin (25 μg/kg, i.p.) attenuated glial activation, T cell infiltration, nigral dopaminergic degeneration in SN, and neuronal death in spinal cord. Importantly, calpeptin ameliorated MPTP-induced altered gait parameters (e.g. reduced stride length and increased stride frequency) as demonstrated by analyses of spatio-temporal gait indices using ventral plane videography. These findings suggest that calpain plays a pivotal role in MPTP-induced nigral and extranigral neurodegenerative processes, and may be a valid therapeutic target in PD. PMID:26108182
Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation
Valencia-Torres, Lourdes; Olarte-Sánchez, Cristian M; Lyons, David J; Georgescu, Teodora; Greenwald-Yarnell, Megan; Myers, Martin G; Bradshaw, Christopher M; Heisler, Lora K
2017-01-01
Obesity is primarily due to food intake in excess of the body's energetic requirements, intake that is not only associated with hunger but also the incentive value of food. The 5-hydroxytryptamine 2C receptor (5-HT2CR) is a target for the treatment of human obesity. Mechanistically, 5-HT2CRs are positioned to influence both homeostatic feeding circuits within the hypothalamus and reward circuits within the ventral tegmental area (VTA). Here we investigated the role of 5-HT2CRs in incentive motivation using a mathematical model of progressive ratio (PR) responding in mice. We found that the 5-HT2CR agonist lorcaserin significantly reduced both ad libitum chow intake and PR responding for chocolate pellets and increased c-fos expression in VTA 5-HT2CR expressing γ-aminobutyric acid (GABA) neurons, but not 5-HT2CR expressing dopamine (DA) neurons. We next adopted a chemogenetic approach using a 5-HT2CRCRE line to clarify the function of subset of 5-HT2C receptor expressing VTA neurons in the modulation of appetite and food-motivated behavior. Activation of VTA 5-HT2C receptor expressing neurons significantly reduced ad libitum chow intake, operant responding for chocolate pellets, and the incentive value of food. In contrast, chemogenetic inhibition of VTA 5-HT2C receptor expressing neurons had no effect on the feeding behavior. These results indicate that activation of the subpopulation of 5-HT2CR neurons within the VTA is sufficient to significantly reduce homeostatic feeding and effort-based intake of palatable food, and that this subset has an inhibitory role in motivational processes. These findings are relevant to the treatment of obesity. PMID:27882999
Rosenberg, R L; Isaacson, J S; Tsien, R W
1989-01-01
These experiments provide a starting point for biochemical characterization of Ca channels from neuronal membranes, using omega-CgTX as a specific marker. The purification of the omega-CgTX receptors is far from complete. Each of the purification steps described results in only a two- to fivefold enrichment of the receptor proteins, and is accompanied by a loss of receptor concentration and stability, so the maximal specific activity achieved by a combination of these steps falls several orders of magnitude short of that of a large, homogeneous, active protein. Nevertheless, these studies have yielded important information about the omega-CgTX receptor. The Stokes' radius, determined from gel exclusion chromatography, is approximately 87 A, and the sedimentation coefficient, determined from sucrose gradient sedimentation, is approximately 19 S. These values are similar to those found for the DHP receptors solubilized in digitonin. We have also found that at least some of the omega-CgTX receptors have complex carbohydrate moieties that are recognized by WGA, together with evidence of heterogeneity of receptor glycosylation. Additionally, we have been able to use the solubilized, partially purified receptors in cross-linking experiments to tentatively identify the molecular weights of the omega-CgTX targets from rat brain. A large peptide of approximately 300 kDa, similar to that identified in photoaffinity studies, is very clearly labeled by the chemical incorporation of [125I]omega-CgTX into partially purified receptor preparations, but some ambiguity remains because of the faint labeling of peptides in the 120-170-kDa range. The approximately 300-kDa peptide is much larger than any single peptide component of DHP receptors from skeletal muscle, and it may be related to a molecular combination of the 170-kDa and 135-kDa subunits of the DHP receptor. Because [125I]omega-CgTX presumably labels both N- and L-type neuronal Ca channels, both channel types will probably be found in the purified preparations. Thus, at some time, it will be necessary to separate DHP-sensitive L-type channels from preparations of L- and N-type channels identified by omega-CgTX binding.
Psychotropic drugs and bruxism.
Falisi, Giovanni; Rastelli, Claudio; Panti, Fabrizio; Maglione, Horacio; Quezada Arcega, Raul
2014-10-01
Sleep and awake bruxism is defined as 'a parafunctional activity including clenching, bracing, gnashing, and grinding of the teeth'. Some evidence suggests that bruxism may be caused by, or associated with, alterations in the CNS neurotransmission. Several classes of psychotropic drugs interfering with CNS activity may potentially contribute to bruxism. Thus, the purpose of this study was to examine relevant peer-reviewed papers to identify and describe the various classes of psychotropic substances that may cause, exacerbate or reduce bruxism as the result of their pharmacological action in CNS neurons. A literature search from 1980 to the present was performed using PubMed database. The term 'bruxism' was used in association with 'psychotropic', 'dopamine (DA)', 'serotonin', 'histamine', 'antipsychotics', 'antidepressants', 'antihistaminergics' and 'stimulants'. Studies on the effects of DA agonists (Levo-DOPA, psychostimulants) and antagonists (antipsychotics) identified a central role of DA in the pathogenesis of pharmacologically induced bruxism. Important information from studies on drugs acting on serotonin neurotransmission (antidepressants) was recognized. Other mechanisms involving different neurotransmitters are emerging. This is the case of antihistaminergic drugs which may induce bruxism as a consequence of their disinhibitory effect on the serotonergic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu; Lansdell, Theresa A., E-mail: lansdel1@msu.edu; Lookingland, Keith J., E-mail: lookingl@msu.edu
This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC).more » At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.« less
Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda
2010-01-01
Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702
Sears, James C.; Broihier, Heather T.
2016-01-01
The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity. PMID:27546375
Yu, Rui; Yi, Shaoqiong; Yu, Changming; Fang, Ting; Liu, Shuling; Yu, Ting; Song, Xiaohong; Fu, Ling; Hou, Lihua; Chen, Wei
2011-01-01
The C fragment of tetanus neurotoxin (TeNT-Hc) with different conformations was observed due to the four cysteine residues within it which could form different intramolecular disulfide bonds. In this study, we prepared and compared three types of monomeric TeNT-Hc with different conformational components: free sulfhydryls (50 kDa), bound sulfhydryls (44 kDa), and a mixture of the two conformational proteins (half 50 kDa and half 44 kDa). TeNT-Hc with bound sulfhydryls reduced its binding activity to ganglioside GT1b and neuronal PC-12 cells compared to what was seen for TeNT-Hc with free sulfhydryls. However, there was no significant difference among their immunogenicities in mice, including induction of antitetanus toxoid IgG titers, antibody types, and protective capacities against tetanus neurotoxin challenge. Our results showed that the conformational changes of TeNT-Hc resulting from disulfide bond formation reduced its ganglioside-binding activity but did not destroy its immunogenicity, and the protein still retained continuous B cell and T cell epitopes; that is, the presence of the ganglioside-binding site within TeNT-Hc may be not essential for the induction of a fully protective antitetanus response. TeNT-Hc with bound sulfhydryls may be developed into an ideal human vaccine with a lower potential for side effects. PMID:21813664
Renard, Justine; Loureiro, Michael; Rosen, Laura G.; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J.
2016-01-01
Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. SIGNIFICANCE STATEMENT The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway. PMID:27147666
Renard, Justine; Loureiro, Michael; Rosen, Laura G; Zunder, Jordan; de Oliveira, Cleusa; Schmid, Susanne; Rushlow, Walter J; Laviolette, Steven R
2016-05-04
Schizophrenia-related psychosis is associated with disturbances in mesolimbic dopamine (DA) transmission, characterized by hyperdopaminergic activity in the mesolimbic pathway. Currently, the only clinically effective treatment for schizophrenia involves the use of antipsychotic medications that block DA receptor transmission. However, these medications produce serious side effects leading to poor compliance and treatment outcomes. Emerging evidence points to the involvement of a specific phytochemical component of marijuana called cannabidiol (CBD), which possesses promising therapeutic properties for the treatment of schizophrenia-related psychoses. However, the neuronal and molecular mechanisms through which CBD may exert these effects are entirely unknown. We used amphetamine (AMPH)-induced sensitization and sensorimotor gating in rats, two preclinical procedures relevant to schizophrenia-related psychopathology, combined with in vivo single-unit neuronal electrophysiology recordings in the ventral tegmental area, and molecular analyses to characterize the actions of CBD directly in the nucleus accumbens shell (NASh), a brain region that is the current target of most effective antipsychotics. We demonstrate that Intra-NASh CBD attenuates AMPH-induced sensitization, both in terms of DAergic neuronal activity measured in the ventral tegmental area and psychotomimetic behavioral analyses. We further report that CBD controls downstream phosphorylation of the mTOR/p70S6 kinase signaling pathways directly within the NASh. Our findings demonstrate a novel mechanism for the putative antipsychotic-like properties of CBD in the mesolimbic circuitry. We identify the molecular signaling pathways through which CBD may functionally reduce schizophrenia-like neuropsychopathology. The cannabis-derived phytochemical, cannabidiol (CBD), has been shown to have pharmacotherapeutic efficacy for the treatment of schizophrenia. However, the mechanisms by which CBD may produce antipsychotic effects are entirely unknown. Using preclinical behavioral procedures combined with molecular analyses and in vivo neuronal electrophysiology, our findings identify a functional role for the nucleus accumbens as a critical brain region whereby CBD can produce effects similar to antipsychotic medications by triggering molecular signaling pathways associated with the effects of classic antipsychotic medications. Specifically, we report that CBD can attenuate both behavioral and dopaminergic neuronal correlates of mesolimbic dopaminergic sensitization, via a direct interaction with mTOR/p70S6 kinase signaling within the mesolimbic pathway. Copyright © 2016 the authors 0270-6474/16/365160-10$15.00/0.
Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R
2016-05-01
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system
Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge
2011-01-01
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381
Tan, Can Ozan; Bullock, Daniel
2008-10-01
Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) were found to exhibit sustained responses related to reward uncertainty, in addition to the phasic responses related to reward-prediction errors (RPEs). Thus, cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of DA signals. Here we simulate a local circuit model to show how learned uncertainty responses are generated, along with phasic RPE responses, on single trials. Both types of simulated DA responses exhibit the empirically observed dependencies on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model's three major pathways compute expected values of cues, timed predictions of reward magnitudes, and uncertainties associated with these predictions. The first two pathways' computations refine those modeled by Brown et al. (1999). The third, newly modeled, pathway involves medium spiny projection neurons (MSPNs) of the striatal matrix, whose axons corelease GABA and substance P, both at synapses with GABAergic neurons in the substantia nigra pars reticulata (SNr) and with distal dendrites (in SNr) of DA neurons whose somas are located in ventral SNc. Corelease enables efficient computation of uncertainty responses that are a nonmonotonic function of the conditional probability of reward, and variability in striatal cholinergic transmission can explain observed individual differences in the amplitudes of uncertainty responses. The involvement of matricial MSPNs and cholinergic transmission within the striatum implies a relation between uncertainty in cue-reward contingencies and action-selection functions of the basal ganglia.
Ahmad, Tasha; Laviolette, Steven R
2017-08-01
The ventral tegmental area (VTA) and its projections to the basolateral amygdala (BLA) and nucleus accumbens (NAc) are critical for cannabinoid-related motivational effects. Cannabinoid CB1 receptor (CB1R) transmission modulates VTA dopamine (DA) neuron activity and previous reports demonstrate anatomically segregated effects of CB1R transmission in the VTA. However, the underlying pharmacological and anatomical regions responsible for these effects are currently unknown. The objective of the study is to characterize the motivational effects of localized anterior vs. posterior intra-VTA activation vs. blockade of CB1R transmission and the potential role of intra-BLA and intra-NAc DA transmission in these phenomena. Using a conditioned place preference (CPP) procedure, we administered a CB1 agonist (WIN-55,212-2) or antagonist (AM 251) into the posterior VTA (pVTA) or anterior VTA (aVTA) of rats, combined with intra-BLA or intra-NAc DA receptor blockade and intra-VTA co-administration of selective mu vs. kappa opiate-receptor antagonists. Intra-pVTA CB1R activation produced robust rewarding effects through a mu-opiate receptor mechanism whereas CB1R blockade produced conditioned place aversions (CPA) through a kappa-opiate receptor substrate. In contrast, modulation of aVTA CB1R transmission produced no observable effects. Intra-BLA DA receptor blockade prevented the rewarding effects of pVTA CB1R activation, but had no effects on CB1R blockade-induced aversions. In contrast, intra-NAc DA receptor blockade selectively blocked the aversive effects of pVTA CB1R antagonism. Activation vs. blockade of CB1R transmission in the posterior VTA produces bivalent rewarding or aversive effects through separate mu vs. kappa-opiate receptor substrates. These dissociable effects depend on separate DA receptor transmission substrates in the BLA or NAc, respectively.
Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence.
Mazzulli, Joseph R; Burbulla, Lena F; Krainc, Dimitri; Ischiropoulos, Harry
2016-02-16
Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.
Oyanagi, Kiyomitsu; Yamazaki, Mineo; Hashimoto, Tomoyo; Asakawa, Mika; Wakabayashi, Koichi; Takahashi, Hitoshi
2015-06-01
The cornu ammonis 1 (CA1) area in the hippocampus of the parkinsonism-dementia complex (PDC) of Guam was examined quantitatively with special references to the number of neurons, intraneuronal (i) and extracellular (e) neurofibirillary tangles (NFTs), and TDP-43 (43-kDa trans-activation-responsive region DNA-binding protein)-immunopositive structures, in 24 Chamorro patients with PDC of Guam and seven control Chamorro Guamanians (both groups having no ischemic or anoxic complications). The results were that: (i) in the patients with mildly involved PDC, total numbers of neurons, iNFTs and eNFTs were almost the same as those of neurons of controls; (ii) in patients severely involved, total numbers of neurons, iNFTs and eNFTs decreased markedly; (iii) the decrease of the number of pyramidal neurons in CA1 with positive nuclear TDP-43 was intimately correlated with the decrease in total neuron numbers; (iv) whereas the numbers of neurons and TDP-43-immunopositive intracytoplasmic aggregation in the CA1 area were inversely correlated; and (v) depression of nuclear TDP-43 immuonostainability was not affected by the presence or absence of NFTs. In conclusion, hippocampal sclerosis exists in PDC; there is a possibility of elimination of eNFTs which appeared in the CA1 in patients with PDC and loss of the neurons correlates with disappearance of nuclear TDP-43, but not with appearance of intraneurocytoplasmic TDP-43 aggregation or iNFTs. © 2015 Japanese Society of Neuropathology.
Hamer, R D; Nicholas, S C; Tranchina, D; Liebman, P A; Lamb, T D
2003-10-01
Single-photon responses (SPRs) in vertebrate rods are considerably less variable than expected if isomerized rhodopsin (R*) inactivated in a single, memoryless step, and no other variability-reducing mechanisms were available. We present a new stochastic model, the core of which is the successive ratcheting down of R* activity, and a concomitant increase in the probability of quenching of R* by arrestin (Arr), with each phosphorylation of R* (Gibson, S.K., J.H. Parkes, and P.A. Liebman. 2000. Biochemistry. 39:5738-5749.). We evaluated the model by means of Monte-Carlo simulations of dim-flash responses, and compared the response statistics derived from them with those obtained from empirical dim-flash data (Whitlock, G.G., and T.D. Lamb. 1999. Neuron. 23:337-351.). The model accounts for four quantitative measures of SPR reproducibility. It also reproduces qualitative features of rod responses obtained with altered nucleotide levels, and thus contradicts the conclusion that such responses imply that phosphorylation cannot dominate R* inactivation (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Moreover, the model is able to reproduce the salient qualitative features of SPRs obtained from mouse rods that had been genetically modified with specific pathways of R* inactivation or Ca2+ feedback disabled. We present a theoretical analysis showing that the variability of the area under the SPR estimates the variability of integrated R* activity, and can provide a valid gauge of the number of R* inactivation steps. We show that there is a heretofore unappreciated tradeoff between variability of SPR amplitude and SPR duration that depends critically on the kinetics of inactivation of R* relative to the net kinetics of the downstream reactions in the cascade. Because of this dependence, neither the variability of SPR amplitude nor duration provides a reliable estimate of the underlying variability of integrated R* activity, and cannot be used to estimate the minimum number of R* inactivation steps. We conclude that multiple phosphorylation-dependent decrements in R* activity (with Arr-quench) can confer the observed reproducibility of rod SPRs; there is no compelling need to invoke a long series of non-phosphorylation dependent state changes in R* (as in Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.). Our analyses, plus data and modeling of others (Rieke, F., and D.A. Baylor. 1998a. Biophys. J. 75:1836-1857; Field, G.D., and F. Rieke. 2002. Neuron. 35:733-747.), also argue strongly against either feedback (including Ca2+-feedback) or depletion of any molecular species downstream to R* as the dominant cause of SPR reproducibility.
Glutamatergic neurons are present in the rat ventral tegmental area
Yamaguchi, Tsuyoshi; Sheen, Whitney; Morales, Marisela
2010-01-01
The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or γ-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co–expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic. PMID:17241272
Effects of Chronic Sleep Fragmentation on Wake-Active Neurons and the Hypercapnic Arousal Response
Li, Yanpeng; Panossian, Lori A.; Zhang, Jing; Zhu, Yan; Zhan, Guanxia; Chou, Yu-Ting; Fenik, Polina; Bhatnagar, Seema; Piel, David A.; Beck, Sheryl G.; Veasey, Sigrid
2014-01-01
Study Objectives: Delayed hypercapnic arousals may occur in obstructive sleep apnea. The impaired arousal response is expected to promote more pronounced oxyhemoglobin desaturations. We hypothesized that long-term sleep fragmentation (SF) results in injury to or dysfunction of wake-active neurons that manifests, in part, as a delayed hypercapnic arousal response. Design: Adult male mice were implanted for behavioral state recordings and randomly assigned to 4 weeks of either orbital platform SF (SF4wk, 30 events/h) or control conditions (Ct4wk) prior to behavioral, histological, and locus coeruleus (LC) whole cell electrophysiological evaluations. Measurements and Results: SF was successfully achieved across the 4 week study, as evidenced by a persistently increased arousal index, P < 0.01 and shortened sleep bouts, P < 0.05, while total sleep/wake times and plasma corticosterone levels were unaffected. A multiple sleep latency test performed at the onset of the dark period showed a reduced latency to sleep in SF4wk mice (P < 0.05). The hypercapnic arousal latency was increased, Ct4wk 64 ± 5 sec vs. SF4wk 154 ± 6 sec, P < 0.001, and remained elevated after a 2 week recovery (101 ± 4 sec, P < 0.001). C-fos activation in noradrenergic, orexinergic, histaminergic, and cholinergic wake-active neurons was reduced in response to hypercapnia (P < 0.05-0.001). Catecholaminergic and orexinergic projections into the cingulate cortex were also reduced in SF4wk (P < 0.01). In addition, SF4wk resulted in impaired LC neuron excitability (P < 0.01). Conclusions: Four weeks of sleep fragmentation (SF4wk) impairs arousal responses to hypercapnia, reduces wake neuron projections and locus coeruleus neuronal excitability, supporting the concepts that some effects of sleep fragmentation may contribute to impaired arousal responses in sleep apnea, which may not reverse immediately with therapy. Citation: Li Y; Panossian LA; Zhang J; Zhu Y; Zhan G; Chou YT; Fenik P; Bhatnagar S; Piel DA; Beck SG; Veasey S. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. SLEEP 2014;37(1):51-64. PMID:24470695
Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity
Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.
2016-01-01
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149
Nucleus accumbens invulnerability to methamphetamine neurotoxicity.
Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M
2011-01-01
Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.
Li, Xiang-Hong; Wang, Jin-Yan; Gao, Ge; Chang, Jing-Yu; Woodward, Donald J; Luo, Fei
2010-05-15
Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico-basal ganglia circuits. (c) 2009 Wiley-Liss, Inc.
The posterior ventral tegmental area mediates alcohol-seeking behavior in alcohol-preferring rats.
Hauser, Sheketha R; Ding, Zheng-Ming; Getachew, Bruk; Toalston, Jamie E; Oster, Scott M; McBride, William J; Rodd, Zachary A
2011-03-01
The mesolimbic dopamine (DA) system is involved in the rewarding process of drugs of abuse and is activated during the anticipation of drug availability. However, the neurocircuitry that regulates ethanol (EtOH)-seeking has not been adequately investigated. The objectives of the present study were to determine 1) whether the posterior ventral tegmental area (p-VTA) mediates EtOH-seeking, 2) whether microinjections of EtOH into the p-VTA could stimulate EtOH-seeking, and (3) the involvement of p-VTA DA neurons in EtOH-seeking. Alcohol-preferring rats were trained to self-administer 15% EtOH and water. After 10 weeks, rats underwent extinction training, followed by 2 weeks in their home cages. During the home-cage period, rats were then bilaterally implanted with guide cannulae aimed at the p-VTA or anterior ventral tegmental area (a-VTA). EtOH-seeking was assessed by the Pavlovian spontaneous recovery model. Separate experiments examined the effects of: 1) microinjection of quinpirole into the p-VTA, 2) EtOH microinjected into the p-VTA, 3) coadministration of EtOH and quinpirole into the p-VTA, 4) microinjection of quinpirole into the a-VTA, and 5) microinjection of EtOH into the a-VTA. Quinpirole microinjected into the p-VTA reduced EtOH-seeking. Microinjections of EtOH into the p-VTA increased EtOH-seeking. Pretreatment with both quinpirole and EtOH into the p-VTA reduced EtOH-seeking. Microinjections of quinpirole or EtOH into the a-VTA did not alter EtOH-seeking. Overall, the results suggest that the p-VTA is a neuroanatomical substrate mediating alcohol-seeking behavior and that activation of local DA neurons is involved.
Dhanda, Saurabh; Sandhir, Rajat
2015-06-01
The present study was designed to evaluate the role of biogenic amines in behavioral alterations observed in rat model of hepatic encephalopathy (HE) following bile duct ligation (BDL). Male Wistar rats subjected to BDL developed biliary fibrosis after four weeks which was supported by altered liver function tests, increased ammonia levels and histological staining (Sirius red). Animals were assessed for their behavioral performance in terms of cognitive, anxiety and motor functions. The levels of dopamine (DA), serotonin (5-HT), epinephrine and norepinephrine (NE) were estimated in different regions of brain viz. cortex, hippocampus, striatum and cerebellum using HPLC along with activity of monoamine oxidase (MAO). Cognitive assessment of BDL rats revealed a progressive decline in learning, memory formation, retrieval, exploration of novel environment and spontaneous locomotor activity along with decrease in 5-HT and NE levels. This was accompanied by an increase in MAO activity. Motor functions of BDL rats were also altered which were evident from decrease in the time spent on the rotating rod and higher foot faults assessed using narrow beam walk task. A global decrease was observed in the DA content along with an increase in MAO activity. Histopathological studies using hematoxylin-eosin (H&E) and cresyl violet exhibited marked neuronal degeneration, wherein neurons appeared more pyknotic, condensed and damaged. The results reveal that dopaminergic and serotonergic pathways are disturbed in chronic liver failure post-BDL which may be responsible for behavioral impairments observed in HE. Copyright © 2015 Elsevier B.V. All rights reserved.
Gusel'nikova, E A; Pastukhov, Iu F
2008-03-01
Recently it was indicated that microinjections of heat shock proteins 70 kDa (Hsp70) into the third ventricle of brain in pigeons results in an increase in the duration of slow wave sleep and a decrease in somato-visceral indices. It is suggested that Hsp70 effect may be related to GABA(A) receptors activation in the preoptic area of the hypothalamus. However, what transmitter mechanisms of activation are related to the removal effect (in 2-3 hrs) of rapid eye movement sleep inhibition still remains poorly understood. To solve this problem in the present study, microinjections of Hsp70 into the Nucleus reticularis pontis oralis (NRPO) were done. It is well known that cholinergic neurons of the NRPO are crucial for rapid eye movement sleep generation. The data show that Hsp70 produces more early (for first two hrs) a decrease in number of episodes and total time of rapid eye movement sleep, a diminution of electroencephalogram (EEG) power spectra in the 9-14 Hz band, a decrease in contractile muscle activity and brain temperature. It is suggested that Hsp70 effects are realized due to activation of GABA(A) receptors in the NRPO and induced inhibition of cholinergic mechanisms of rapid eye movement sleep triggering. The microinjections of Hsp70 into the NRPO increase the slow wave sleep total time with long latency (for 8-12 hrs). This effect may be related to influence of Hsp70 on neurons population, which are responsible for slow wave sleep maintenance outside the NRPO.
Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia
2010-01-01
Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids), the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction. PMID:21187978
Parillaud, Vincent R; Lornet, Guillaume; Monnet, Yann; Privat, Anne-Laure; Haddad, Andrei T; Brochard, Vanessa; Bekaert, Amaury; de Chanville, Camille Baudesson; Hirsch, Etienne C; Combadière, Christophe; Hunot, Stéphane; Lobsiger, Christian S
2017-03-21
Evidence from mice suggests that brain infiltrating immune cells contribute to neurodegeneration, and we previously identified a deleterious lymphocyte infiltration in Parkinson's disease mice. However, this remains controversial for monocytes, due to artifact-prone techniques used to distinguish them from microglia. Our aim was to reassess this open question, by taking advantage of the recent recognition that chemokine receptors CCR2 and CX3CR1 can differentiate between inflammatory monocytes and microglia, enabling to test whether CCR2 + monocytes infiltrate the brain during dopaminergic (DA) neurodegeneration and whether they contribute to neuronal death. This revealed unexpected insights into possible regulation of monocyte-attracting CCL2 induction. We used acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice and assessed monocyte infiltration by combining laser microdissection-guided chemokine RNA profiling of the substantia nigra (SN) with immunohistochemistry and CCR2-GFP reporter mice. To determine contribution to neuronal loss, we used CCR2-deletion and CCL2-overexpression, to reduce and increase CCR2 + monocyte infiltration, and CX3CR1-deletion to assess a potential implication in CCL2 regulation. Nigral chemokine profiling revealed early CCL2/7/12-CCR2 axis induction, suggesting monocyte infiltration in MPTP mice. CCL2 protein showed early peak induction in nigral astrocytes, while CCR2-GFP mice revealed early but limited nigral monocyte infiltration. However, blocking infiltration by CCR2 deletion did not influence DA neuronal loss. In contrast, transgenic astrocytic CCL2 over-induction increased CCR2 + monocyte infiltration and DA neuronal loss in MPTP mice. Surprisingly, CCL2 over-induction was also detected in MPTP intoxicated CX3CR1-deleted mice, which are known to present increased DA neuronal loss. Importantly, CX3CR1/CCL2 double-deletion suggested that increased neurotoxicity was driven by astrocytic CCL2 over-induction. We show that CCR2 + monocytes infiltrate the affected CNS, but at the level observed in acute MPTP mice, this does not contribute to DA neuronal loss. In contrast, the underlying astrocytic CCL2 induction seemed to be tightly controled, as already moderate CCL2 over-induction led to increased neurotoxicity in MPTP mice, likely due to the increased CCR2 + monocyte infiltration. Importantly, we found evidence suggesting that during DA neurodegeneration, this control was mediated by microglial CX3CR1 signaling, which protects against such neurotoxic CCL2 over-induction by astrocytes, thus hinting at an endogenous mechanism to limit neurotoxic effects of the CCL2-CCR2 axis.
Pharmacological action of DA-9701 on the motility of feline stomach circular smooth muscle.
Nguyen, Thanh Thao; Song, Hyun Ju; Ko, Sung Kwon; Sohn, Uy Dong
2015-03-01
DA-9701, a new prokinetic agent for the treatment of functional dyspepsia, is formulated with Pharbitis semen and Corydalis tuber. This study wasconducted to determine the pharmacological action of DA-9701 and to identify the receptors involved in DA-9701 -induced contractile responsesin the feline gastric corporal, fundic and antral circular smooth muscle. Concentration-response curve to DA-9701 was established. The tissue trips were exposed to methylsergide, ketanserin, ondansetron, GR 113808, atropine and dopamine before administration of DA-9701. The contractile force was determined before and after administration of drugs by a polygraph.DA-9701 enhanced the spontaneous contractile amplitude of antrum, corpus and fundus. However, it did not change the spontaneous contractile frequency of antrum and corpus, but concentration-dependently reduced that of fundus. In the fundus, DA-9701 -induced tonic contractions were inhibited by dopamine, methylsergide, ketanserine, ondansetron or GR 113808 respectively, but not by atropine, indicating that the contractile responses are mediated by multiple receptors: 5-HT2, 5-HT3, 5-HT4, and dopamine receptors. In the corpus, DA-9701-induced contractions were blocked by atropine, dopamine or GR 113808, but not by methysergide, ketanserin or ondansetron, indicating that they are involved in receptors on both, smooth muscles and neurons: 5-HT4 and dopamine receptors. However, contractile responses to DA-9701 are mainly mediated by dopamine receptors in the antrum. These results suggest that DA-9701 has important roles in gastric accommodation by enhancing tonic activity of fundus, and in gastric emptying and gastrointestinal transit by phasic contractions of corpus and antrum mediated by multiple receptors.
Oh, Jungkyun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik
2017-11-15
Dopamine (DA), a catecholamine hormone, is an important neurotransmitter that controls renal and cardiovascular organizations and regulates physiological activities. Abnormal concentrations of DA cause unfavorable neuronal illnesses such as Parkinson's disease, schizophrenia, and attention deficit hyperactivity disorder/attention deficit disorder. However, the DA concentration is exceedingly low in patients and difficult to detect with existing biosensors. In this study, we developed an organic field-effect-transistor-type (OFET) nonenzyme biosensor using platinum nanoparticle-decorated reduced graphene oxide (Pt_rGO) for ultrasensitive and selective DA detection. The Pt_rGOs were fabricated by reducing GO aqueous solution-containing Pt precursors (PtCl 4 ) with a chemical reducing agent. The Pt_rGOs were immobilized on a graphene substrate by π-π interactions and a conducting-polymer source-drain electrode was patterned on the substrate to form the DA sensor. The resulting OFET sensor showed a high sensitivity to remarkably low DA concentrations (100 × 10 -18 M) and selectivity among interfering molecules. Good stability was expected for the OFET sensor because it was fabricated without an enzymatic receptor, and π-π conjugation is a part of the immobilization process. Furthermore, the OFET sensors are flexible and offer the possibility of wide application as wearable and portable sensors.
Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun
2016-01-01
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. PMID:26790349
Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong
2016-11-16
Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.
Li, Fengrui; Tian, Xiaofei; Zhou, Yishu; Zhu, Lanhui; Wang, Baojie; Ding, Mei; Pang, Hao
2012-12-01
The neurotoxins paraquat (PQ) and dopamine (DA or 6-OHDA) cause apoptosis of dopaminergic neurons in the substantia nigra pars compacta (SNpc), reproducing an important pathological feature of Parkinson's disease (PD). Secretogranin III (SCG3), a member of the multifunctional granin family, plays a key role in neurotransmitter storage and transport and in secretory granule biogenesis, which involves the uptake of exogenous toxins and endogenous "toxins" in neuroendocrine cells. However, the molecular mechanisms of neurotoxin-induced apoptosis in dopaminergic neurons and the role of SCG3-associated signaling pathways in neuroendocrine regulation are unclear. To address this, we used PQ- and DA-induced apoptosis in SH-SY5Y human dopaminergic cells as an in vitro model to investigate the association between SCG3 expression level and apoptosis. SCG3 was highly expressed in SH-SY5Y cells, and SCG3 mRNA and protein levels were dramatically decreased after PQ treatment. Apoptosis induced by PQ is associated with caspase activation and decreased SCG3 expression, and restoration of SCG3 expression is observed after treatment with caspase inhibitors. Overexpressed SCG3 in nonneuronal cells and endogenous SCG3 in SH-SY5Y cells are cleaved into specific fragments by recombinant caspase-3 and -7, but the fragments were not detected in PQ-treated SH-SY5Y cells. Therefore, SCG3 may be involved in apoptosis signal transduction as a caspase substrate, leading to loss of its original biological functions. In addition, SCG3 may be a pivotal component of the neuroendocrine pathway and play an important role in neuronal communication and neurotransmitter release, possibly representing a new potential target in the course of PD pathogenesis. Copyright © 2012 Wiley Periodicals, Inc.
VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation
USDA-ARS?s Scientific Manuscript database
Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...
LeBlanc, A
1995-12-01
The etiology of the amyloid beta peptide in sporadic Alzheimer's disease (AD) is not known. Amyloid beta peptide (A beta), a proteolytic product of the amyloid precursor protein (APP), is deposited in the senile plaques and cerebrovascular tissues of individuals with either sporadic or familial AD (FAD). Increased A beta production from mutant APPs in FAD fosters the hypothesis that overexpression of A beta plays a primary role in the pathogenesis of AD. The absence of APP mutations in sporadic AD which displays identical pathological features than FAD such as synapse and neuronal loss, senile plaques and neurofibrillary tangles, suggests other causes for overexpression and/or deposition of A beta. To investigate the effect of neuronal death on APP metabolism and A beta secretion, human primary neuron cultures were induced to undergo apoptosis by serum deprivation. Serum deprived neurons display shrunken and rounded morphology, contain condensed chromatine and fragmented DNA, which are characteristic of apoptosis. In serum deprived neurons, metabolism of APP through the nonamyloidogenic secretory pathway is decreased to 20% from 40% in control cultures whereas 4kDa A beta is increased three- to fourfold. The results suggest that human neurons undergoing apoptosis generate excess A beta and indicates a possible mechanism for increased A beta in the absence of APP mutations.
Brunzell, Darlene H; Boschen, Karen E; Hendrick, Elizabeth S; Beardsley, Patrick M; McIntosh, J Michael
2010-01-01
β2 subunit containing nicotinic acetylcholine receptors (β2*nAChRs; asterisk (*) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The α6 subunit assembles with β2 on DA neurons where α6β2*nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of α-conotoxin MII (α-CTX MII), an antagonist with selectivity for α6β2*nAChRs, the purpose of these experiments was to determine if α6β2*nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of α-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. α-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of α-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion α-CTX MII did not affect locomotor activity in an open field. These data suggest that α6β2*nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation. PMID:19890263
Freedman, John C; McClane, Bruce A; Uzal, Francisco A
2016-10-01
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is responsible for diseases that occur mostly in ruminants. ETX is produced in the form of an inactive prototoxin that becomes proteolytically-activated by several proteases. A recent ex vivo study using caprine intestinal contents demonstrated that ETX prototoxin is processed in a step-wise fashion into a stable, active ∼27 kDa band on SDS-PAGE. When characterized further by mass spectrometry, the stable ∼27 kDa band was shown to contain three ETX species with varying C-terminal residues; each of these ETX species is cytotoxic. This study also demonstrated that, in addition to trypsin and chymotrypsin, proteases such as carboxypeptidases are involved in processing ETX prototoxin. Once absorbed, activated ETX species travel to several internal organs, including the brain, where this toxin acts on the vasculature to cross the blood-brain barrier, produces perivascular edema and affects several types of brain cells including neurons, astrocytes, and oligodendrocytes. In addition to perivascular edema, affected animals show edema within the vascular walls. This edema separates the astrocytic end-feet from affected blood vessels, causing hypoxia of nervous system tissue. Astrocytes of rats and sheep affected by ETX show overexpression of aquaporin-4, a membrane channel protein that is believed to help remove water from affected perivascular spaces in an attempt to resolve the perivascular edema. Amyloid precursor protein, an early astrocyte damage indicator, is also observed in the brains of affected sheep. These results show that ETX activation in vivo seems to be more complex than previously thought and this toxin acts on the brain, affecting vascular permeability, but also damaging neurons and other cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth.
Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W
2017-03-16
Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
Budygin, Evgeny A.; Oleson, Erik B.; Lee, Yun Beom; Blume, Lawrence C.; Bruno, Michael J.; Howlett, Allyn C.; Thompson, Alexis C.; Bass, Caroline E.
2017-01-01
Recent studies have used conditional knockout mice to selectively delete the D2 autoreceptor; however, these approaches result in global deletion of D2 autoreceptors early in development. The present study takes a different approach using RNA interference (RNAi) to knockdown the expression of the D2 receptors (D2R) in the substantia nigra (SN), including dopaminergic neurons, which project primarily to the dorsal striatum (dStr) in adult rats. This approach restricts the knockdown primarily to nigrostriatal pathways, leaving mesolimbic D2 autoreceptors intact. Analyses of dopamine (DA) kinetics in the dStr reveal a decrease in DA transporter (DAT) function in the knockdown rats, an effect not observed in D2 autoreceptor knockout mouse models. SN D2 knockdown rats exhibit a behavioral phenotype characterized by persistent enhancement of locomotor activity in a familiar open field, reduced locomotor responsiveness to high doses of cocaine and the ability to overcome haloperidol-induced immobility on the bar test. Together these results demonstrate that presynaptic D2R can be depleted from specific neuronal populations and implicates nigrostriatal D2R in different behavioral responses to psychotropic drugs. PMID:28154530
Pauly, Thorsten; Ratliff, Miriam; Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen
2008-07-16
Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS.
Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen
2008-01-01
Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS. PMID:18629001
Cenci, M Angela
2014-01-01
The dopamine (DA) precursor l-DOPA has been the most effective treatment for Parkinson's disease (PD) for over 40 years. However, the response to this treatment changes with disease progression, and most patients develop dyskinesias (abnormal involuntary movements) and motor fluctuations within a few years of l-DOPA therapy. There is wide consensus that these motor complications depend on both pre- and post-synaptic disturbances of nigrostriatal DA transmission. Several presynaptic mechanisms converge to generate large DA swings in the brain concomitant with the peaks-and-troughs of plasma l-DOPA levels, while post-synaptic changes engender abnormal functional responses in dopaminoceptive neurons. While this general picture is well-accepted, the relative contribution of different factors remains a matter of debate. A particularly animated debate has been growing around putative players on the presynaptic side of the cascade. To what extent do presynaptic disturbances in DA transmission depend on deficiency/dysfunction of the DA transporter, aberrant release of DA from serotonin neurons, or gliovascular mechanisms? And does noradrenaline (which is synthetized from DA) play a role? This review article will summarize key findings, controversies, and pending questions regarding the presynaptic mechanisms of l-DOPA-induced dyskinesia. Intriguingly, the debate around these mechanisms has spurred research into previously unexplored facets of brain plasticity that have far-reaching implications to the treatment of neuropsychiatric disease.
Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan
2017-01-01
Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95–nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95–nNOS interactions in MHE. PMID:28932186
Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice
Darvish-Ghane, Soroush; Yamanaka, Manabu
2016-01-01
Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578
Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan
2017-01-01
Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95-nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95-nNOS interactions in MHE.
Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.
2011-01-01
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Y.S.; Fowler, J.S.; Volkow, N.D.
1994-05-01
Methylphenidate (MP, ritalin) is a psychostimulant drug widely used to treat attention deficit hyperactivity disorder and narcolepsy. Its therapeutic properties are attributed to inhibition of the dopamine (DA) transporter enhancing synaptic DA. MP has two chiral centers and is marketed as the dl-threo racemic form. However, its pharmacological activity is believed due solely to the d-enantiomer. We have synthesized [{sup 11}C]d,l-threo-methylphenidate ([{sup 11}C]MP) in order to examine its pharmacokinetics in vivo and to examine its suitability as a radioligand for PET studies of the presynaptic DA neuron. [{sup 11}C]MP was prepared by O-{sup 11}C-alkylation of a protected derivative of ritalinicmore » acid with labeled methyl iodide. Serial studies at baseline and after treatment with methylphenidate (0.5 mg/kg, 20 min prior); GBR 12909 (1.5 mg/kg; 30 min prior); tomoxetine (1.5 mg/kg, 20 min prior) and citalopram (2.0 mg/kg, 30 min prior) were performed to assess non-specific binding and binding to the DA, norepinephrine and serotonin transporters respectively. Only MP and GBR 12909 changed the SR/CB distribution volume ratio (decrease of 38 and 37% respectively) demonstrating selectivity for DA transporters over other monoamine transporters. We then pursued the synthesis of enantiomerically pure C-{sup 11} labeled d- and l-MP by using enantiomerically pure protected d- and l-ritalinic acids as precursors. A striking difference in SR/CB ratio (3.3 and 1.1 for d- and l-respectively at 1 hr. after i.v. injections) strongly suggests that the pharmacological specificity of MP resides entirely in the d-isomer and the binding of l-isomer was mostly non-specific. Further evaluations are underway. Radioligand reversibility, selectivity and the fact that MP is an approved drug are advantages of using [{sup 11}C]MP.« less
Youdim, Moussa B H; Stephenson, Galia; Ben Shachar, Dorit
2004-03-01
In Parkinson's disease (PD) and its neurotoxin-induced models, 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), significant accumulation of iron occurs in the substantia nigra pars compacta. The iron is thought to be in a labile pool, unbound to ferritin, and is thought to have a pivotal role to induce oxidative stress-dependent neurodegeneration of dopamine neurons via Fenton chemistry. The consequence of this is its interaction with H(2)O(2) to generate the most reactive radical oxygen species, the hydroxyl radical. This scenario is supported by studies in both human and neurotoxin-induced parkinsonism showing that disposition of H(2)O(2) is compromised via depletion of glutathione (GSH), the rate-limiting cofactor of glutathione peroxide, the major enzyme source to dispose H(2)O(2) as water in the brain. Further, radical scavengers have been shown to prevent the neurotoxic action of the above neurotoxins and depletion of GSH. However, our group was the first to demonstrate that the prototype iron chelator, desferal, is a potent neuroprotective agent in the 6-OHDA model. We have extended these studies and examined the neuroprotective effect of intracerebraventricular (ICV) pretreatment with the prototype iron chelator, desferal (1.3, 13, 134 mg), on ICV induced 6-OHDA (250 micro g) lesion of striatal dopamine neurons. Desferal alone at the doses studied did not affect striatal tyrosine hydroxylase (TH) activity or dopamine (DA) metabolism. All three pretreatment (30 min) doses of desferal prevented the fall in striatal and frontal cortex DA, dihydroxyphenylacetic acid, and homovalinic acid, as well as the left and right striatum TH activity and DA turnover resulting from 6-OHDA lesion of dopaminergic neurons. A concentration bell-shaped neuroprotective effect of desferal was observed in the striatum, with 13 micro g being the most effective. Neither desferal nor 6-OHDA affected striatal serotonin, 5-hydroxyindole acetic acid, or noradrenaline. Desferal also protected against 6-OHDA-induced deficit in locomotor activity, rearing, and exploratory behavior (sniffing) in a novel environment. Since the lowest neuroprotective dose (1.3 micro g) of desferal was 200 times less than 6-OHDA, its neuroprotective activity may not be attributed to interference with the neurotoxin activity, but rather iron chelation. These studies led us to develop novel brain-permeable iron chelators, the VK-28 series, with iron chelating and neuroprotective activity similar to desferal for ironing iron out from PD and other neurodegenerative diseases, such as Alzheimer's disease, Friedreich's ataxia, and Huntington's disease.
Aguirre, Jose A; Kehr, Jan; Yoshitake, Takashi; Liu, Fang-Ling; Rivera, Alicia; Fernandez-Espinola, Sergio; Andbjer, Beth; Leo, Giuseppina; Medhurst, Andrew D; Agnati, Luigi F; Fuxe, Kjell
2005-02-08
The mGluR5 antagonist MPEP was used to study the role of mGluR5 in MPTP-induced injury of the nigrostriatal DA neurons. The findings indicate that acute blockade of mGluR5 may result in neuroprotective actions against MPTP neurotoxicity on nigral DA cell bodies and striatal DA terminals using stereological analysis of TH immunoreactivity and microdensitometry. Biochemical analysis showed no restoration of DA levels and metabolism indicating a maintained reduction of DA transmission.
Kramer, Edgar R.
2015-01-01
Background & Aims The brain dopaminergic (DA) system is involved in fine tuning many behaviors and several human diseases are associated with pathological alterations of the DA system such as Parkinson’s disease (PD) and drug addiction. Because of its complex network integration, detailed analyses of physiological and pathophysiological conditions are only possible in a whole organism with a sophisticated tool box for visualization and functional modification. Methods & Results Here, we have generated transgenic mice expressing the tetracycline-regulated transactivator (tTA) or the reverse tetracycline-regulated transactivator (rtTA) under control of the tyrosine hydroxylase (TH) promoter, TH-tTA (tet-OFF) and TH-rtTA (tet-ON) mice, to visualize and genetically modify DA neurons. We show their tight regulation and efficient use to overexpress proteins under the control of tet-responsive elements or to delete genes of interest with tet-responsive Cre. In combination with mice encoding tet-responsive luciferase, we visualized the DA system in living mice progressively over time. Conclusion These experiments establish TH-tTA and TH-rtTA mice as a powerful tool to generate and monitor mouse models for DA system diseases. PMID:26291828
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-09-26
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha-gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions.
Tamano, Haruna; Nishio, Ryusuke; Morioka, Hiroki; Takeda, Atsushi
2018-04-29
Parkinson's disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic neurodegeneration, in which extracellular Zn 2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-OHDA) in rats. 6-OHDA rapidly increased intracellular Zn 2+ only in the substantia nigra pars compacta (SNpc) of brain slices and this increase was blocked in the presence of CaEDTA, an extracellular Zn 2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA rapidly increases extracellular Zn 2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn 2+ concentration was decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusion with CNQX, supporting 6-OHDA-induced Zn 2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn 2+ chelators, i.e., ZnAF-2DA and N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-OHDA-induced increase in intracellular Zn 2+ but not in intracellular Ca 2+ . These results suggest that the rapid influx of extracellular Zn 2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neurodegeneration, resulting in 6-OHDA-induced PD in rats.
Cheng, Baohua; Yang, Xinxin; An, Liangxiang; Gao, Bo; Liu, Xia; Liu, Shuwei
2009-08-25
The high-fat ketogenic diet (KD) leads to an increase of blood ketone bodies (KB) level and has been used to treat refractory childhood seizures for over 80 years. Recent reports show that KD, KB and their components (d-beta-hydroxybutyrate, acetoacetate and acetone) have neuroprotective for acute and chronic neurological disorders. In our present work, we examined whether KD protected dopaminergic neurons of substantia nigra (SN) against 6-hydroxydopamine (6-OHDA) neurotoxicity in a rat model of Parkinson's disease (PD) using Nissl staining and tyrosine hydroxylase (TH) immunohistochemistry. At the same time we measured dopamine (DA) and its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum. To elucidate the mechanism, we also measured the level of glutathione (GSH) of striatum. Our data showed that Nissl and TH-positive neurons increased in rats fed with KD compared to rats with normal diet (ND) after intrastriatal 6-OHDA injection, so did DA and its metabolite DOPAC. While HVA had not changed significantly. The change of GSH was significantly similar to DA. We concluded that KD had neuroprotective against 6-OHDA neurotoxicity and in this period GSH played an important role.
Benskey, Matthew J.; Sellnow, Rhyomi C.; Sandoval, Ivette M.; Sortwell, Caryl E.; Lipton, Jack W.; Manfredsson, Fredric P.
2018-01-01
Human studies and preclinical models of Parkinson’s disease implicate the involvement of both the innate and adaptive immune systems in disease progression. Further, pro-inflammatory markers are highly enriched near neurons containing pathological forms of alpha synuclein (α-syn), and α-syn overexpression recapitulates neuroinflammatory changes in models of Parkinson’s disease. These data suggest that α-syn may initiate a pathological inflammatory response, however the mechanism by which α-syn initiates neuroinflammation is poorly understood. Silencing endogenous α-syn results in a similar pattern of nigral degeneration observed following α-syn overexpression. Here we aimed to test the hypothesis that loss of α-syn function within nigrostriatal neurons results in neuronal dysfunction, which subsequently stimulates neuroinflammation. Adeno-associated virus (AAV) expressing an short hairpin RNA (shRNA) targeting endogenous α-syn was unilaterally injected into the substantia nigra pars compacta (SNc) of adult rats, after which nigrostriatal pathology and indices of neuroinflammation were examined at 7, 10, 14 and 21 days post-surgery. Removing endogenous α-syn from nigrostriatal neurons resulted in a rapid up-regulation of the major histocompatibility complex class 1 (MHC-1) within transduced nigral neurons. Nigral MHC-1 expression occurred prior to any overt cell death and coincided with the recruitment of reactive microglia and T-cells to affected neurons. Following the induction of neuroinflammation, α-syn knockdown resulted in a 50% loss of nigrostriatal neurons in the SNc and a corresponding loss of nigrostriatal terminals and dopamine (DA) concentrations within the striatum. Expression of a control shRNA did not elicit any pathological changes. Silencing α-syn within glutamatergic neurons of the cerebellum did not elicit inflammation or cell death, suggesting that toxicity initiated by α-syn silencing is specific to DA neurons. These data provide evidence that loss of α-syn function within nigrostriatal neurons initiates a neuronal-mediated neuroinflammatory cascade, involving both the innate and adaptive immune systems, which ultimately results in the death of affected neurons. PMID:29497361
Hudson, Roger; Rushlow, Walter; Laviolette, Steven R
2018-02-01
Growing clinical and preclinical evidence suggests a potential role for the phytocannabinoid cannabidiol (CBD) as a pharmacotherapy for various neuropsychiatric disorders. In contrast, delta-9-tetrahydrocannabinol (THC), the primary psychoactive component in cannabis, is associated with acute and neurodevelopmental propsychotic side effects through its interaction with central cannabinoid type 1 receptors (CB1Rs). CB1R stimulation in the ventral hippocampus (VHipp) potentiates affective memory formation through inputs to the mesolimbic dopamine (DA) system, thereby altering emotional salience attribution. These changes in DA activity and salience attribution, evoked by dysfunctional VHipp regulatory actions and THC exposure, could predispose susceptible individuals to psychotic symptoms. Although THC can accelerate the onset of schizophrenia, CBD displays antipsychotic properties, can prevent the acquisition of emotionally irrelevant memories, and reverses amphetamine-induced neuronal sensitization through selective phosphorylation of the mechanistic target of rapamycin (mTOR) molecular signaling pathway. This review summarizes clinical and preclinical evidence demonstrating that distinct phytocannabinoids act within the VHipp and associated corticolimbic structures to modulate emotional memory processing through changes in mesolimbic DA activity states, salience attribution, and signal transduction pathways associated with schizophrenia-related pathology.
Nagatsu, T; Sawada, M
2006-01-01
Monoamine oxidases A and B (MAO A and MAO B) are the major enzymes that catalyze the oxidative deamination of monoamine neurotaransmitters such as dopamine (DA), noradrenaline, and serotonin in the central and peripheral nervous systems. MAO B is mainly localized in glial cells. MAO B also oxidizes the xenobiotic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to a parkinsonism-producing neurotoxin, 1-methyl-4-phenyl-pyridinium (MPP+). MAO B may be closely related to the pathogenesis of Parkinson's disease (PD), in which neuromelanin-containing DA neurons in the substantia nigra projecting to the striatum in the brain selectively degenerate. MAO B degrades the neurotransmitter DA that is deficient in the nigro-striatal region in PD, and forms H2O2 and toxic aldehyde metabolites of DA. H2O2 produces highly toxic reactive oxygen species (ROS) by Fenton reaction that is catalyzed by iron and neuromelanin. MAO B inhibitors such as L-(-)-deprenyl (selegiline) and rasagiline are effective for the treatment of PD. Concerning the mechanism of the clinical efficacy of MAO B inhibitors in PD, the inhibition of DA degradation (a symptomatic effect) and also the prevention of the formation of neurotoxic DA metabolites, i.e., ROS and dopamine derived aldehydes have been speculated. As another mechanism of clinical efficacy, MAO B inhibitors such as selegiline are speculated to have neuroprotective effects to prevent progress of PD. The possible mechanism of neuroprotection of MAO B inhibitors may be related not only to MAO B inhibition but also to induction and activation of multiple factors for anti-oxidative stress and anti-apoptosis: i.e., catalase, superoxide dismutase 1 and 2, thioredoxin, Bcl-2, the cellular poly(ADP-ribosyl)ation, and binding to glyceraldehydes-3-phosphate dehydrogenase (GAPDH). Furthermore, it should be noted that selegiline increases production of neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrphic factor (GDNF), possibly from glial cells, to protect neurons from inflammatory process.
Robertson, G S; Damsma, G; Fibiger, H C
1991-07-01
Dopamine (DA) is released not only from the terminals of the nigrostriatal projection, but also from the dendrites of these neurons, which arborize in the substantia nigra pars reticulata (SNR). Although striatal DA release has been extensively studied by in vivo microdialysis, dendritic DA release in the SNR has not been characterized by this technique. Extracellular DA was monitored simultaneously in the ipsilateral striatum and SNR. The nigral probe was implanted at a 50 degree angle, permitting 2.5 mm of SNR to be dialyzed. Delivery of the tracer Fluoro-Gold into the striatal probe retrogradely labeled tyrosine hydroxylase-positive cell bodies and dendrites in the vicinity of the nigral probe. Hence, it could be demonstrated that dopaminergic neurons near the nigral probe projected to the vicinity of the striatal probe. Addition of 50 mM KCl to the SNR perfusion solution produced a 3.5-fold increase in DA and a 50% reduction in dihydroxyphenylacetic acid (DOPAC) in the SNR; in contrast, this manipulation in the SNR caused DA release in the striatum to be decreased by 20%, while striatal DOPAC was increased by 50%. Local administration of nomifensine (10 microM) in the SNR produced a sevenfold increase in SNR DA but had no effect on striatal DA. Systemic injection of d-amphetamine (2 mg/kg, s.c.) elevated DA in the SNR and striatum five- to sevenfold, while DOPAC was decreased in both structures by at least 40%. To determine the effect of tetrodotoxin (TTX), basal concentrations of DA in the SNR were first elevated threefold by including nomifensine (1 microM) in the nigral perfusion solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Brief exposure to obesogenic diet disrupts brain dopamine networks
Williams, Jason M.; Siuta, Michael A.; Tantawy, Mohammed N.; Speed, Nicole K.; Saunders, Christine; Galli, Aurelio; Niswender, Kevin D.; Avison, Malcolm J.
2018-01-01
Objective We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). Methods We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). Results We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens–anterior cingulate) and sensorimotor circuits (caudate/putamen–thalamus–sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. Conclusion These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding. PMID:29698491
Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.
Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne
2015-06-23
The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Batool, Farhat; Shah, Asad Hussain; Ahmed, Syed Dilnawaz; Saify, Zafar Saeid; Haleem, Darakhshan Jabeen
2010-08-01
Long-term treatment of haloperidol, a neuroleptic, induces neurodegeneration specifically in the striatum (caudate and putamen), which plays an important role in the development of orofacial dyskinesia, a putative model of tardive dyskinesia (TD). This study investigated the protective effects of a concomitant treatment of aqueous fruit extract of Sea buckthorn (Hippophae rhamnoides L. spp. Turkestanica) (SBT-FE) (40 mg/kg, orally) plus haloperidol (3.0 mg/kg, ip) administration on an animal model of TD and on striatal neuronal alterations. Rats received daily haloperidol (3.0 mg/kg ip) and saline injections for 15 days. Seven-day posttreatment, aqueous SBT-FE (40 mg/kg) was administered daily via a feeding tube. Hypolocomotive effects (home cage activity, exploratory activity, catalepsy, and vacuous chewing movements) were monitored consecutively in each group. On the last day of the experiments, changes in extracellular levels of striatal dopamine (DA), dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. Aqueous SBT-FE attenuated haloperidol-induced VCMs after second week of treatment and locomotor activity was greater in rats treated with SBT-FE compared with the controls. The results indicate that DA and HVA levels in the striatum were significantly (P <.01) altered in rats given SBT-FE before injections of haloperidol. Hippophae rhamnoides fruit extract has a protective role against haloperidol-induced orofacial dyskinesia. Consequently, use of Hippophae rhamnoides as a possible therapeutic agent for the treatment of tardive dyskinesia should be considered.
Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.
2012-01-01
Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 = 41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078
Florica, Roxana Oriana; Hipolito, Victoria; Bautista, Stephen; Anvari, Homa; Rapp, Chloe; El-Rass, Suzan; Asgharian, Alimohammad; Antonescu, Costin N; Killeen, Marie T
2017-10-01
The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun
2016-06-15
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.
Sheng, J G; Boop, F A; Mrak, R E; Griffin, W S
1994-11-01
Levels of immunoreactive beta-amyloid precursor protein and interleukin-1 alpha were found to be elevated in surgically resected human temporal lobe tissue from patients with intractable epilepsy compared with postmortem tissue from neurologically unaffected patients (controls). In tissue from epileptics, the levels of the 135-kDa beta-amyloid precursor protein isoform were elevated to fourfold (p < 0.05) those of controls and those of the 130-kDa isoform to threefold (p < 0.05), whereas those of the 120-kDa isoform (p > 0.05) were not different from control values. beta-Amyloid precursor protein-immunoreactive neurons were 16 times more numerous, and their cytoplasm and proximal processes were more intensely immunoreactive in tissue sections from epileptics than controls (133 +/- 12 vs. 8 +/- 3/mm2; p < 0.001). However, neither beta-amyloid precursor protein-immunoreactive dystrophic neurites nor beta-amyloid deposits were found in this tissue. Interleukin-1 alpha-immunoreactive cells (microglia) were three times more numerous in epileptics than in controls (80 +/- 8 vs. 25 +/- 5/mm2; p < 0.001), and these cells were often found adjacent to beta-amyloid precursor protein-immunoreactive neuronal cell bodies. Our findings, together with functions established in vitro for interleukin-1, suggest that increased expression of this protein contributes to the increased levels of beta-amyloid precursor protein in epileptics, thus indicating a potential role for both of these proteins in the neuronal dysfunctions, e.g., hyperexcitability, characteristic of epilepsy.
Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.
Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa
2015-11-25
Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical subunits of NMDARs and AMPARs expressed either in dopamine neurons or in dopamine receptor D1-containing neurons play an important role in the alcohol deprivation effect (the increase in alcohol intake after a period of abstinence) while having no impact on context- plus cue-induced reinstatement of alcohol-seeking responses. Medications targeting glutamatergic neurotransmission by selective inactivation of these glutamate receptors might have therapeutic efficacy. Copyright © 2015 the authors 0270-6474/15/3515523-16$15.00/0.
Pre-Clinical Testing of New Hydroxybutyrate Analogues
2013-08-01
change in phosphorylation state afforded protection to the SNpc TH+neurons. One drawback to the use of DBHB is that it is short-acting. In our...etiology is not known. However, thus far, we do know that, aside from the death of the DA neurons in the SNpc, 1) there is a greater loss of dopaminergic ...terminals in the striatum than the loss of dopaminergic neurons in the SNpc (Fahn and Przedborski, 2009); 2) there is an neuroinflammatory component
Natalwala, Ammar; Kunath, Tilo
2017-01-01
Parkinson's disease is a complex and progressive neurodegenerative condition that is characterized by the severe loss of midbrain dopaminergic (mDA) neurons, which innervate the striatum. Cell transplantation therapies to rebuild this dopaminergic network have been attempted for over 30 years. The most promising outcomes were observed when human fetal mesencephalic tissue was used as the source of cells for transplantation. However, reliance on terminations for a Parkinson's therapy presents significant logistical and ethical hurdles. An alternative source of transplantable mDA neurons is urgently needed, and the solution may come from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Protocols to differentiate hESCs/iPSCs toward mDA neurons are now robust and efficient, and upon grafting the cells rescue preclinical animal models of Parkinson's disease. The challenge now is to apply Good Manufacturing Practice (GMP) to the academic discoveries and protocols to produce clinical-grade transplantable mDA cells. Major technical and logistical considerations include (i) source of hESC or iPSC line, (ii) GMP compliance of the differentiation protocol and all reagents, (iii) characterization of the cell product in terms of identity, safety, and efficacy, (iv) characterization of genomic state and stability, and (v) banking of a transplantation-ready cell product. Approaches and solutions to these challenges are reviewed here. © 2017 Elsevier B.V. All rights reserved.
Oh, Yoonbae; Park, Cheonho; Kim, Do Hyoung; Shin, Hojin; Kang, Yu Min; DeWaele, Mark; Lee, Jeyeon; Min, Hoon-Ki; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo
2016-11-15
Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.
Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong
2016-02-01
We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Xianting; Patel, Jyoti C; Wang, Jing; Avshalumov, Marat V; Nicholson, Charles; Buxbaum, Joseph D; Elder, Gregory A; Rice, Margaret E; Yue, Zhenyu
2010-02-03
PARK8/LRRK2 (leucine-rich repeat kinase 2) was recently identified as a causative gene for autosomal dominant Parkinson's disease (PD), with LRRK2 mutation G2019S linked to the most frequent familial form of PD. Emerging in vitro evidence indicates that aberrant enzymatic activity of LRRK2 protein carrying this mutation can cause neurotoxicity. However, the physiological and pathophysiological functions of LRRK2 in vivo remain elusive. Here we characterize two bacterial artificial chromosome (BAC) transgenic mouse strains overexpressing LRRK2 wild-type (Wt) or mutant G2019S. Transgenic LRRK2-Wt mice had elevated striatal dopamine (DA) release with unaltered DA uptake or tissue content. Consistent with this result, LRRK2-Wt mice were hyperactive and showed enhanced performance in motor function tests. These results suggest a role for LRRK2 in striatal DA transmission and the consequent motor function. In contrast, LRRK2-G2019S mice showed an age-dependent decrease in striatal DA content, as well as decreased striatal DA release and uptake. Despite increased brain kinase activity, LRRK2-G2019S overexpression was not associated with loss of DAergic neurons in substantia nigra or degeneration of nigrostriatal terminals at 12 months. Our results thus reveal a pivotal role for LRRK2 in regulating striatal DA transmission and consequent control of motor function. The PD-associated mutation G2019S may exert pathogenic effects by impairing these functions of LRRK2. Our LRRK2 BAC transgenic mice, therefore, could provide a useful model for understanding early PD pathological events.
Spatially tuned normalization explains attention modulation variance within neurons.
Ni, Amy M; Maunsell, John H R
2017-09-01
Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical area can be largely explained by between-neuron differences in normalization strength. Here we demonstrate that attention modulation size varies within neurons as well and that this variance is largely explained by within-neuron differences in normalization strength. We provide a new spatially tuned normalization model that explains this broad range of observed normalization and attention effects. Copyright © 2017 the American Physiological Society.
Fieblinger, Tim; Sebastianutto, Irene; Alcacer, Cristina; Bimpisidis, Zisis; Maslava, Natallia; Sandberg, Sabina; Engblom, David; Cenci, M Angela
2014-03-26
In animal models of Parkinson's disease, striatal overactivation of ERK1/2 via dopamine (DA) D1 receptors is the hallmark of a supersensitive molecular response associated with dyskinetic behaviors. Here we investigate the pathways involved in D1 receptor-dependent ERK1/2 activation using acute striatal slices from rodents with unilateral 6-hydroxydopamine (6-OHDA) lesions. Application of the dopamine D1-like receptor agonist SKF38393 induced ERK1/2 phosphorylation and downstream signaling in the DA-denervated but not the intact striatum. This response was mediated through a canonical D1R/PKA/MEK1/2 pathway and independent of ionotropic glutamate receptors but blocked by antagonists of L-type calcium channels. Coapplication of an antagonist of metabotropic glutamate receptor type 5 (mGluR5) or its downstream signaling molecules (PLC, PKC, IP3 receptors) markedly attenuated SKF38393-induced ERK1/2 activation. The role of striatal mGluR5 in D1-dependent ERK1/2 activation was confirmed in vivo in 6-OHDA-lesioned animals treated systemically with SKF38393. In one experiment, local infusion of the mGluR5 antagonist MTEP in the DA-denervated rat striatum attenuated the activation of ERK1/2 signaling by SKF38393. In another experiment, 6-OHDA lesions were applied to transgenic mice with a cell-specific knockdown of mGluR5 in D1 receptor-expressing neurons. These mice showed a blunted striatal ERK1/2 activation in response to SFK38393 treatment. Our results reveal that D1-dependent ERK1/2 activation in the DA-denervated striatum depends on a complex interaction between PKA- and Ca(2+)-dependent signaling pathways that is critically modulated by striatal mGluR5.
Brain Region-Specific Trafficking of the Dopamine Transporter
Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.
2015-01-01
The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from the knock-in mouse expressing epitope-tagged DAT. For the first time, the fluorescence imaging analysis of DAT was combined with the immunogold labeling of DAT and quantitative electron microscopy. In contrast to numerous studies of DAT trafficking in heterologous expression systems and dissociated cultured neurons, studies in intact neurons revealed a surprisingly low amount of endocytic trafficking of DAT at steady state and after acute amphetamine treatment and suggested that non-vesicular transport could be the main mechanism establishing DAT distribution within the dopaminergic neuron. PMID:26377471
Sheikh, Muhammad Abid; Malik, Yousra Saeed; Xing, Zhenkai; Guo, Zhaopei; Tian, Huayu; Zhu, Xiaojuan; Chen, Xuesi
2017-05-01
Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by motor deficits which result from the progressive loss of dopaminergic neurons. Gene therapy using growth factors such as VEGF seems to be a viable approach for potential therapeutic treatment of PD. In this study, we utilized a novel non-viral gene carrier designated as PEI-PLL synthesized by our laboratory to deliver VEGF gene to study its effect by using both cell culture as well as animal models of PD. For cell culture experiments, we utilized 6-hydroxydopamine (6-OHDA) mediated cell death model of MN9D cells following transfection with either a control plasmid or VEGF expressing plasmid. As compared to control transfected cells, PEI-PLL mediated VEGF gene delivery to MN9D cells resulted in increased cell viability, increase in the number of Tyrosine hydroxylase (TH) positive cells and decreased apoptosis following 6-OHDA insult. Next, we studied the therapeutic potential of PEI-PLL mediated VEGF gene delivery in SNPc by using unilateral 6-OHDA Medial forebrain bundle (MFB) lesion model of PD in rats. VEGF administration prevented the loss of motor functions induced by 6-OHDA as determined by behavior analysis. Similarly, VEGF inhibited the 6-OHDA mediated loss of DA neurons in Substantia Nigra Pars Compacta (SNPc) as well as DA nerve fibers in striatum as determined by TH immunostaining. In addition, PEI-PLL mediated VEGF gene delivery also prevented apoptosis and microglial activation in PD rat models. Together, these results clearly demonstrated the beneficial effects of PEI-PLL mediated VEGF gene delivery on dopaminergic system in both cell culture and animal models of PD. In this report, we exploited the potential of PEI-PLL to deliver VEGF gene for the potential therapeutic treatment of PD by using both cell culture and animal models of PD. To the best of our knowledge, this is the first report describing the use of novel polymeric gene carriers for the delivery of VEGF gene to DA neurons with improved transfection efficiency. Finally, the study will lead to a significant advancement in the field of non-viral PD gene therapy treatment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J
2008-01-01
Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.
Malave, Lauren B; Broderick, Patricia A
2014-06-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE ® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo , in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine
Malave, Lauren B.
2014-01-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079
Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori
2016-07-01
In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Dong, Yulin; Li, Jinlian; Zhang, Fuxing; Li, Yunqing
2011-01-01
It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals. PMID:21980505
Vergara, Macarena D; Keller, Victor N; Fuentealba, José A; Gysling, Katia
2017-05-01
The prelimbic area (PL) of the medial Prefrontal cortex (mPFC) is involved in the acquisition and expression of conditioned and innate fear. Both types of fear share several neuronal pathways. It has been documented that dopamine (DA) plays an important role in the regulation of aversive memories in the mPFC. The exposure to an aversive stimulus, such as the smell of a predator odor or the exposure to footshock stress is accompanied by an increase in mPFC DA release. Evidence suggests that the type 4 dopaminergic receptor (D4R) is the molecular target through which DA modulates fear expression. In fact, the mPFC is the brain region with the highest expression of D4R; however, the role of D4R in the expression of innate fear has not been fully elucidated. Therefore, the principal objective of this work was to evaluate the participation of mPFC D4R in the expression of innate fear. Rats were exposed to the elevated plus-maze (EPM) and to the cat odor paradigm after the intra PL injection of L-745,870, selective D4R antagonist, to measure the expression of fear-related behaviors. Intra PL injection of L-745,870 increased the time spent in the EPM open arms and decreased freezing behavior in the cat odor paradigm. Our results also showed that D4R is expressed in GABAergic and pyramidal neurons in the PL region of PFC. Thus, D4R antagonism in the PL decreases the expression of innate fear-behavior indicating that the activation of D4R in the PL is necessary for the expression of innate fear-behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
Proteomic Analysis of the Neurotrophic Effect of Gelidium amansii in Primary Cultured Neurons.
Hannan, Md Abdul; Mohibbullah, Md; Hong, Yong-Ki; Moon, Il Soo
2017-03-01
Gelidium amansii is an edible and economically important red alga consumed in South Eastern Asia. In previous studies, we reported that the ethanol extracts of G. amansii (GAE) has promising modulatory activity with respect to the morphological and functional maturation of hippocampal neurons in culture. In this study, we show that the chloroform (CHCl 3 ) subfraction of GAE and the ethyl acetate (EtOAc) fraction dose-dependently promoted neurite outgrowth, and their effects were comparable with that of GAE. We further assessed in cultured cortical neurons, proteins differentially expressed in the presence/absence of the GAE, CHCl 3 subfraction, and the EtOAc fraction by 2D-PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proteomic data revealed that a number of proteins responsible for multiple cellular and biochemical functions vital for neuronal development and maturation were significantly upregulated in neurons treated with the GAE, CHCl 3 subfraction, and the EtOAc fraction. Of the identified proteins, profilin 2a, septin 7, cdc42, protein phosphatase 2A, DA11, eukaryotic translation initiation factor 5A-1, and γ-enolase are known to play important roles in neuritogenesis and dendritic arborization. Immunofluorescence data demonstrate that GAE-treated hippocampal neurons showed greater intensity ratios in the expressions of the septin 7 and cdc42 compared to vehicle control, validating their proteomic profiles. Together these results suggest that the GAE/CHCl 3 subfraction and EtOAc fraction promote neurite development by up or downregulating several key proteins.
Synthesis and Neuroprotective Action of Xyloketal Derivatives in Parkinson’s Disease Models
Li, Shichang; Shen, Cunzhou; Guo, Wenyuan; Zhang, Xuefei; Liu, Shixin; Liang, Fengyin; Xu, Zhongliang; Pei, Zhong; Song, Huacan; Qiu, Liqin; Lin, Yongcheng; Pang, Jiyan
2013-01-01
Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting people over age 55. Oxidative stress actively participates in the dopaminergic (DA) neuron degeneration of PD. Xyloketals are a series of natural compounds from marine mangrove fungus strain No. 2508 that have been reported to protect against neurotoxicity through their antioxidant properties. However, their protection versus 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity is only modest, and appropriate structural modifications are necessary to discover better candidates for treating PD. In this work, we designed and synthesized 39 novel xyloketal derivatives (1–39) in addition to the previously reported compound, xyloketal B. The neuroprotective activities of all 40 compounds were evaluated in vivo via respiratory burst assays and longevity-extending assays. During the zebrafish respiratory burst assay, compounds 1, 9, 23, 24, 36 and 39 strongly attenuated reactive oxygen species (ROS) generation at 50 μM. In the Caenorhabditis elegans longevity-extending assay, compounds 1, 8, 15, 16 and 36 significantly extended the survival rates (p < 0.005 vs. dimethyl sulfoxide (DMSO)). A total of 15 compounds were tested for the treatment of Parkinson’s disease using the MPP+-induced C. elegans model, and compounds 1 and 8 exhibited the highest activities (p < 0.005 vs. MPP+). In the MPP+-induced C57BL/6 mouse PD model, 40 mg/kg of 1 and 8 protected against MPP+-induced dopaminergic neurodegeneration and increased the number of DA neurons from 53% for the MPP+ group to 78% and 74%, respectively (p < 0.001 vs. MPP+ group). Thus, these derivatives are novel candidates for the treatment of PD. PMID:24351912
Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu
2016-01-01
Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha–gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions. DOI: http://dx.doi.org/10.7554/eLife.13451.001 PMID:27669146
Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum
2012-01-01
Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal’s neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effects of MPD on the firing rates of NAc neuronal units in freely behaving rats. On experimental day 1 (ED1), following a saline injection (control), a 30 minute baseline neuronal recording was obtained immediately followed by a 2.5 mg/kg i.p. MPD injection and subsequent 60 min neuronal recording. Daily 2.5 mg/kg MPD injections were given on ED2 through ED6 followed by 3 washout days (ED7 to 9). On ED10, neuronal recordings were resumed from the same animal after a saline and MPD (rechallenge) injection exactly as obtained on ED1. Sixty-seven NAc neuronal units exhibited similar wave shape, form and amplitude on ED1 and ED10 and their firing rates were used for analysis. MPD administration on ED1 elicited firing rate increases and decreases in 54% of NAc units when compared to their baselines. Six consecutive MPD administrations altered the neuronal baseline firing rates of 85% of NAc units. MPD rechallenge on ED10 elicited significant changes in 63% of NAc units. These alterations in firing rates are hypothesized to be through mechanisms that include D1 and D2-like DA receptor induced cellular adaptation and homeostatic adaptations/deregulation caused by acute and chronic MPD administration. PMID:22248440
Cao, Lijun; Li, Dongfang; Feng, Peng; Li, Lin; Xue, Guo-Fang; Li, Guanglai; Hölscher, Christian
2016-04-13
The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are growth factors. GLP-1 mimetics are on the market as treatments for type 2 diabetes. Both GLP-1 and GIP mimetics have shown neuroprotective properties in previous studies. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed to treat diabetes. Here, we report the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once daily (20 mg/kg intraperitoneally) for 7 days and the dual agonist was coinjected once daily (50 nmol/kg intraperitoneally). We found that the drug reduced most of the MPTP-induced motor impairments in the rotarod, open-field locomotion, and muscle strength test. The number of tyrosine hydroxylase-positive neurons in the substantia nigra and striatum was reduced by MPTP and increased by DA-JC1. Synapse numbers (synaptophysin expression) were reduced in the substantia nigra and the striatum by MPTP and DA-JC1 reversed this effect. The activation of a chronic inflammation response by MPTP was considerably reduced by the dual agonist (DA) (astroglia and microglia activation). Therefore, dual agonists show promise as a novel treatment of PD.
Differential excitability and modulation of striatal medium spiny neuron dendrites
Day, Michelle; Wokosin, David; Plotkin, Joshua L.; Tian, Xinyoung; Surmeier, D. James
2011-01-01
The loss of striatal dopamine (DA) in Parkinson's disease (PD) models triggers a cell-type specific reduction in the density of dendritic spines in D2 receptor-expressing striatopallidal medium spiny neurons (D2 MSNs). How the intrinsic properties of MSN dendrites, where the vast majority of DA receptors are found, contribute to this adaptation is not clear. To address this question, two-photon laser scanning microscopy (2PLSM) was performed in patch-clamped mouse MSNs identified in striatal slices by expression of green fluorescent protein (eGFP) controlled by DA receptor promoters. These studies revealed that single back-propagating action potentials (bAP) produced more reliable elevations in cytosolic Ca2+ concentration at distal dendritic locations in D2 MSNs than at similar locations in D1 receptor-expressing striatonigral MSNs (D1 MSNs). In both cell types, the dendritic Ca2+ entry elicited by bAPs was enhanced by pharmacological blockade of Kv4, but not Kv1 K+ channels. Local application of DA depressed dendritic bAP-evoked Ca2+ transients, whereas application of ACh increased these Ca2+ transients in D2 MSNs—but not in D1 MSNs. Following DA depletion, bAP-evoked Ca2+ transients were enhanced in distal dendrites and spines in D2 MSNs. Taken together, these results suggest that normally D2 MSN dendrites are more excitable than those of D1 MSNs and that DA depletion exaggerates this asymmetry, potentially contributing to adaptations in PD models. PMID:18987196
Zhang, Jingping; Saur, Taixiang; Duke, Angela N; Grant, Seth G N; Platt, Donna M; Rowlett, James K; Isacson, Ole; Yao, Wei-Dong
2014-01-01
Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Eun; Hanyang Biomedical Research Institute, Seoul; Park, Jae Hyeon
2012-09-01
Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity asmore » well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.« less