Sample records for daily average temperature

  1. On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan

    2017-12-01

    Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).

  2. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE PAGES

    Chylek, Petr; Augustine, John A.; Klett, James D.; ...

    2017-09-30

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  3. Daily mean temperature estimate at the US SUFRAD stations as an average of the maximum and minimum temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chylek, Petr; Augustine, John A.; Klett, James D.

    At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less

  4. Evaluation of the Environmental Bias on Accelerometer-Measured Total Daily Activity Counts and Owner Survey Responses in Dogs with Osteoarthritis.

    PubMed

    Katz, Erin M; Scott, Ruth M; Thomson, Christopher B; Mesa, Eileen; Evans, Richard; Conzemius, Michael G

    2017-11-01

    Objective  To determine if environmental variables affect the average daily activity counts (AC) of dogs with osteoarthritis (OA) and/or owners' perception of their dog's clinical signs or quality of life. Methods  The AC and Canine Brief Pain Inventory (CBPI) owner questionnaires of 62 dogs with OA were compared with daily environmental variables including the following: average temperature (°C), high temperature (°C), low temperature (°C), relative humidity (%), total precipitation (mm), average barometric pressure (hPa) and total daylight hours. Results  Daily AC significantly correlated with average temperature and total daylight hours, but average temperature and total daylight hours accounted for less than 1% of variation in AC. No other significant relationships were found between daily AC and daily high temperature, low temperature, relative humidity, total precipitation or average barometric pressure. No statistical relationship was found between daily AC and the CBPI, nor between environmental variables and the CBPI. Canine Brief Pain Inventory scores for pain severity and pain interference decreased significantly over the test period. Clinical Significance  The relationship between daily AC and average temperature and total daylight hours was significant, but unlikely to be clinically significant. Thus, environmental variables do not appear to have a clinically relevant bias on AC or owner CBPI questionnaires. The decrease over time in CBPI pain severity and pain interference values suggests owners completing the CBPI in this study were influenced by a caregiver placebo effect. Schattauer GmbH Stuttgart.

  5. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    NASA Astrophysics Data System (ADS)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  6. 40 CFR 65.162 - Nonflare control and recovery device monitoring records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). For catalytic incinerators, record the daily average of the temperature upstream of the catalyst bed and the daily average of the temperature differential across the bed. For halogen scrubbers, record... regeneration stream flow and carbon bed regeneration temperature are monitored, the following records shall be...

  7. Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Miin; Liu, Wen-Pin; Chou, Sze-Yuan; Kuo, Hsien-Wen

    2008-01-01

    Acute coronary syndrome (ACS) is an important public health problem around the world. Since there is a considerable seasonal fluctuation in the incidence of ACS, climatic temperature may have an impact on the onset of this disease. The objective of this study was to assess the relationship between the average daily temperature, diurnal temperature range and emergency room (ER) admissions for ACS in an ER in Taichung City, Taiwan. A longitudinal study was conducted which assessed the correlation of the average daily temperature and the diurnal temperature range to ACS admissions to the ER of the city’s largest hospital. Daily ER admissions for ACS and ambient temperature were collected from 1 January 2000 to 31 March 2003. The Poisson regression model was used in the analysis after adjusting for the effects of holiday, season, and air pollutant concentrations. The results showed that there was a negative significant association between the average daily temperature and ER admissions for ACS. ACS admissions to the ER increased 30% to 70% when the average daily temperature was lower than 26.2°C. A positive association between the diurnal temperature range and ACS admissions was also noted. ACS admissions increased 15% when the diurnal temperature range was over 8.3°C. The data indicate that patients suffering from cardiovascular disease must be made aware of the increased risk posed by lower temperatures and larger changes in temperature. Hospitals and ERs should take into account the increased demand of specific facilities during colder weather and wider temperature variations.

  8. Systematic review of the relationship of Helicobacter pylori infection with geographical latitude, average annual temperature and average daily sunshine.

    PubMed

    Lu, Chao; Yu, Ye; Li, Lan; Yu, Chaohui; Xu, Ping

    2018-04-17

    Helicobacter pylori (H. pylori) infection is a worldwide threat to human health with high prevalence. In this study, we analyzed the relationship between latitude, average annual temperature, average daily sunshine time and H. pylori infection. The PubMed, ClinicalTrials.gov , EBSCO and Web of Science databases were searched to identify studies reporting H. pylori infection. Latitude 30° was the cut-off level for low and mid-latitude areas. We obtained information for latitude, average annual temperature, average daily sunshine, and Human Development Index (HDI) from reports of studies of the relationships with H. pylori infection. Of the 51 studies included, there was significant difference in H. pylori infection between the low- and mid-latitude areas (P = 0.05). There was no significant difference in the prevalence of H. pylori infection in each 15°-latitude zone analyzed (P = 0.061). Subgroup analysis revealed the highest and lowest H. pylori infection rates in the developing regions at > 30° latitude subgroup and the developed regions at < 30° latitude subgroup, respectively (P < 0.001). Multivariate analysis showed that average annual temperature, average daily sunshine time and HDI were significantly correlated with H. pylori infection (P = 0.009, P < 0.001, P < 0.001), while there was no correlation between H. pylori infection and latitude. Our analysis showed that higher average annual temperature was associated with lower H. pylori infection rates, while average daily sunshine time correlated positively with H. pylori infection. HDI was also found to be a significant factor, with higher HDI associated with lower infection rates. These findings provide evidence that can be used to devise strategies for the prevention and control of H. pylori.

  9. Canadian crop calendars in support of the early warning project

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Hodges, T. (Principal Investigator)

    1980-01-01

    The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.

  10. Analytical Assessment of the Relationship between 100MWp Large-scale Grid-connected Photovoltaic Plant Performance and Meteorological Parameters

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang

    2017-05-01

    This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.

  11. Warmer is healthier: effects on mortality rates of changes in average fine particulate matter (PM2.5) concentrations and temperatures in 100 U.S. cities.

    PubMed

    Cox, Louis A; Popken, Douglas A; Ricci, Paolo F

    2013-08-01

    Recent studies have indicated that reducing particulate pollution would substantially reduce average daily mortality rates, prolonging lives, especially among the elderly (age ≥ 75). These benefits are projected by statistical models of significant positive associations between levels of fine particulate matter (PM2.5) levels and daily mortality rates. We examine the empirical correspondence between changes in average PM2.5 levels and temperatures from 1999 to 2000, and corresponding changes in average daily mortality rates, in each of 100 U.S. cities in the National Mortality and Morbidity Air Pollution Study (NMMAPS) data base, which has extensive PM2.5, temperature, and mortality data for those 2 years. Increases in average daily temperatures appear to significantly reduce average daily mortality rates, as expected from previous research. Unexpectedly, reductions in PM2.5 do not appear to cause any reductions in mortality rates. PM2.5 and mortality rates are both elevated on cold winter days, creating a significant positive statistical relation between their levels, but we find no evidence that reductions in PM2.5 concentrations cause reductions in mortality rates. For all concerned, it is crucial to use causal relations, rather than statistical associations, to project the changes in human health risks due to interventions such as reductions in particulate air pollution. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. On nonstationarity and antipersistency in global temperature series

    NASA Astrophysics Data System (ADS)

    KäRner, O.

    2002-10-01

    Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.

  13. Association between temperature and maternal stress during pregnancy.

    PubMed

    Lin, Yanfen; Hu, Wenjing; Xu, Jian; Luo, Zhongcheng; Ye, Xiaofang; Yan, Chonghuai; Liu, Zhiwei; Tong, Shilu

    2017-10-01

    Maternal psychological stress during pregnancy has essentially been conceptualized as a teratogen. However, little is known about the effect of temperature on maternal stress during pregnancy. The aim of this study is to investigate the relationship between temperature and maternal stress during pregnancy. In 2010, a total of 1931 eligible pregnant women were enrolled across Shanghai from four prenatal-care clinics during their mid-to-late pregnancy. Maternal life-event stress and emotional stress levels during pregnancy were assessed by the "Life Event Scale for Pregnant Women" (LESPW) and "Symptom Checklist-90-Revised Scale" (SCL-90-R), respectively. Exposure to ambient temperature was evaluated based on daily regional average in different moving average and lag days. The generalized estimating equations were used to evaluate the relationship between daily average temperature/temperature difference and maternal stress. After adjusting for relevant confounders, an U-shaped relationship was observed between daily average temperature and maternal Global-Severity-Index (GSI) of the SCL-90-R. Cumulative exposures to extremely low temperatures (< P5, 1.4-10.5℃, lag 0-1 days, 0-2 days and 0-5 days) and extremely high temperatures (≥ P95, 31.2-34.1℃, lag 0-1 days and 0-2 days), and acute exposures to extremely low (lag day 0, 1, 2 and 3) and high (lag day 0, 1) temperatures, all induced higher risks of high GSI (the highest tertile), compared to the risk induced by exposed to an optimal temperature range (20-25℃) (P< 0.05). Increased temperature difference was associated with high maternal GSI (P< 0.05). However, non-significant associations were observed between daily average temperatures/temperature differences and maternal log-transferred LESPW scores. Cumulative and acute exposures to extremely low/high temperatures may both induce emotional stress during pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Temperature-induced excess mortality in Moscow, Russia.

    PubMed

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality-temperature relationship indicated that this relationship was V-shaped with the minimum around 18 degrees C. Each 1 degree C increment of average daily temperature above 18 degrees C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1 degrees C drop of average daily temperature from +18 degrees C to -10 degrees C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13-30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1 degrees C increase of variation of temperature throughout the day, mortality increased by 0.3-1.9%, depending on other assumptions of the model.

  15. Temperature-induced excess mortality in Moscow, Russia

    NASA Astrophysics Data System (ADS)

    Revich, Boris; Shaposhnikov, Dmitri

    2008-05-01

    After considering the observed long-term trends in average monthly temperatures distribution in Moscow, the authors evaluated how acute mortality responded to changes in daily average, minimum and maximum temperatures throughout the year, and identified vulnerable population groups, by age and causes of death. A plot of the basic mortality temperature relationship indicated that this relationship was V-shaped with the minimum around 18°C. Each 1°C increment of average daily temperature above 18°C resulted in an increase in deaths from all non-accidental causes by 2.8%, from coronary heart disease by 2.7%, from cerebrovascular diseases by 4.7%, and from respiratory diseases by 8.7%, with a lag of 0 or 1 day. Each 1°C drop of average daily temperature from +18°C to -10°C resulted in an increase in deaths from all non-accidental causes by 0.49%, from coronary heart disease by 0.57%, from cerebrovascular diseases by 0.78%, and from respiratory diseases by 1.5%, with lags of maximum association varying from 3 days for non-accidental mortality to 6 days for cerebrovascular mortality. In the age group 75+ years, corresponding risks were consistently higher by 13 30%. The authors also estimated the increase in non-accidental deaths against the variation of daily temperatures. For each 1°C increase of variation of temperature throughout the day, mortality increased by 0.3 1.9%, depending on other assumptions of the model.

  16. Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao

    PubMed Central

    Tixier, Philippe; Germon, Amandine; Rakotobe, Veromanitra; Phillips-Mora, Wilbert; Maximova, Siela; Avelino, Jacques

    2017-01-01

    Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008–2013 average). A total of 55 cohorts totaling 2,268 pods of 3–10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen’s long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods. PMID:28972981

  17. Effects of microclimatic variables on the symptoms and signs onset of Moniliophthora roreri, causal agent of Moniliophthora pod rot in cacao.

    PubMed

    Leandro-Muñoz, Mariela E; Tixier, Philippe; Germon, Amandine; Rakotobe, Veromanitra; Phillips-Mora, Wilbert; Maximova, Siela; Avelino, Jacques

    2017-01-01

    Moniliophthora Pod Rot (MPR) caused by the fungus Moniliophthora roreri (Cif.) Evans et al., is one of the main limiting factors of cocoa production in Latin America. Currently insufficient information on the biology and epidemiology of the pathogen limits the development of efficient management options to control MPR. This research aims to elucidate MPR development through the following daily microclimatic variables: minimum and maximum temperatures, wetness frequency, average temperature and relative humidity in the highly susceptible cacao clone Pound-7 (incidence = 86% 2008-2013 average). A total of 55 cohorts totaling 2,268 pods of 3-10 cm length, one to two months of age, were tagged weekly. Pods were assessed throughout their lifetime, every one or two weeks, and classified in 3 different categories: healthy, diseased with no sporulation, diseased with sporulating lesions. As a first step, we used Generalized Linear Mixed Models (GLMM) to determine with no a priori the period (when and for how long) each climatic variable was better related with the appearance of symptoms and sporulation. Then the significance of the candidate variables was tested in a complete GLMM. Daily average wetness frequency from day 14 to day 1, before tagging, and daily average maximum temperature from day 4 to day 21, after tagging, were the most explanatory variables of the symptoms appearance. The former was positively linked with the symptoms appearance when the latter exhibited a maximum at 30°C. The most important variables influencing sporulation were daily average minimum temperature from day 35 to day 58 and daily average maximum temperature from day 37 to day 48, both after tagging. Minimum temperature was negatively linked with the sporulation while maximum temperature was positively linked. Results indicated that the fungal microclimatic requirements vary from the early to the late cycle stages, possibly due to the pathogen's long latent period. This information is valuable for development of new conceptual models for MPR and improvement of control methods.

  18. Crowdsourcing urban air temperatures from smartphone battery temperatures

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James C. R.; Leijnse, Hidde; Steeneveld, Gert-Jan; Horn, Berthold K. P.; Uijlenhoet, Remko

    2014-05-01

    Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on human health. However, the availability of temperature observations in cities is often limited. Here we show that relatively accurate air temperature information for the urban canopy layer can be obtained from an alternative, nowadays omnipresent source: smartphones. In this study, battery temperatures were collected by an Android application for smartphones. It has been shown that a straightforward heat transfer model can be employed to estimate daily mean air temperatures from smartphone battery temperatures for eight major cities around the world. The results demonstrate the enormous potential of this crowdsourcing application for real-time temperature monitoring in densely populated areas. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. The methodology has been applied to Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. This study will particularly focus on new results: The methodology has been applied to data from three cities in the Netherlands (Amsterdam, Rotterdam, and Utrecht) for the period June - August 2013. It is shown that on average 282 battery temperature readings per day are already sufficient to accurately estimate daily-averaged air temperatures. Results clearly deteriorate when on average only 80 battery temperature readings are available. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps over the continents.

  19. The impact of reforestation in the northeast United States on precipitation and surface temperature

    NASA Astrophysics Data System (ADS)

    Clark, Allyson

    Since the 1920s, forest coverage in the northeastern United States has recovered from disease, clearing for agricultural and urban development, and the demands of the timber industry. Such a dramatic change in ground cover can influence heat and moisture fluxes to the atmosphere, as measured in altered landscapes in Australia, Israel, and the Amazon. In this study, the impacts of recent reforestation in the northeastern United States on summertime precipitation and surface temperature were quantified by comparing average modern values to 1950s values. Weak positive (negative) relationships between reforestation and average monthly precipitation and daily minimum temperatures (average daily maximum surface temperature) were found. There was no relationship between reforestation and average surface temperature. Results of the observational analysis were compared with results obtained from reforestation scenarios simulated with the BUGS5 global climate model. The single difference between the model runs was the amount of forest coverage in the northeast United States; three levels of forest were defined - a grassland state, with 0% forest coverage, a completely forested state, with approximately 100% forest coverage, and a control state, with forest coverage closely resembling modern forest coverage. The three simulations were compared, and had larger magnitude average changes in precipitation and in all temperature variables. The difference in magnitudes between the model simulations observations was much larger than the difference in the amount of reforestation in each case. Additionally, unlike in observations, a negative relationship was found between average daily minimum temperature and amount of forest coverage, implying that additional factors influence temperature and precipitation in the real world that are not accounted for in the model.

  20. EnviroAtlas - Biological nitrogen fixation in natural/semi-natural ecosystems by 12-digit HUC for the Conterminous United States, 2006

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains data on the mean biological nitrogen fixation in natural/semi-natural ecosystems per 12-digit Hydrologic Unit (HUC) in 2006. Biological N fixation (BNF) in natural/semi-natural ecosystems was estimated using a correlation with actual evapotranspiration (AET). This correlation is based on a global meta-analysis of BNF in natural/semi-natural ecosystems (Cleveland et al. 1999). AET estimates for 2006 were calculated using a regression equation describing the correlation of AET with climate (average annual daily temperature, average annual minimum daily temperature, average annual maximum daily temperature, and annual precipitation) and land use/land cover variables in the conterminous US (Sanford and Selnick 2013). Data describing annual average minimum and maximum daily temperatures and total precipitation for 2006 were acquired from the PRISM climate dataset (http://prism.oregonstate.edu). Average annual climate data were then calculated for individual 12-digit USGS Hydrologic Unit Codes (HUC12s; http://water.usgs.gov/GIS/huc.html; 22 March 2011 release) using the Zonal Statistics tool in ArcMap 10.0. AET for individual HUC12s was estimated using equations described in Sanford and Selnick (2013). BNF in natural/semi-natural ecosystems within individual HUC12s was modeled with an equation describing the statistical relationship between BNF (kg N ha-1 yr-1) and actual evapotranspiration (AET; cm yr-1) and scaled to the proportion

  1. Weather, season, and daily stroke admissions in Hong Kong

    NASA Astrophysics Data System (ADS)

    Goggins, William B.; Woo, Jean; Ho, Suzanne; Chan, Emily Y. Y.; Chau, P. H.

    2012-09-01

    Previous studies examining daily temperature and stroke incidence have given conflicting results. We undertook this retrospective study of all stroke admissions in those aged 35 years old and above to Hong Kong public hospitals from 1999 through 2006 in order to better understand the effects of meteorological conditions on stroke risk in a subtropical setting. We used Poisson Generalized Additive Models with daily hemorrhagic (HS) and ischemic stroke (IS) counts separately as outcomes, and daily mean temperature, humidity, solar radiation, rainfall, air pressure, pollutants, flu consultation rates, day of week, holidays, time trend and seasonality as predictors. Lagged effects of temperature, humidity and pollutants were also considered. A total of 23,457 HS and 107,505 IS admissions were analyzed. Mean daily temperature had a strong, consistent, negative linear association with HS admissions over the range (8.2-31.8°C) observed. A 1°C lower average temperature over the same day and previous 4 days (lags 0-4) being associated with a 2.7% (95% CI: 2.0-3.4%, P < .0.0001) higher admission rate after controlling for other variables. This association was stronger among older subjects and females. Higher lag 0-4 average change in air pressure from previous day was modestly associated with higher HS risk. The association between IS and temperature was weaker and apparent only below 22°C, with a 1°C lower average temperature (lags 0-13) below this threshold being associated with a 1.6% (95% CI:1.0-2.2%, P < 0.0001) higher IS admission rate. Pollutant levels were not associated with HS or IS. Future studies should examine HS and IS risk separately.

  2. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  3. Additive effects of mean temperature, temperature variability, and chlorothalonil to red-eyed treefrog (Agalychnis callidryas) larvae.

    PubMed

    Alza, Carissa M; Donnelly, Maureen A; Whitfield, Steven M

    2016-12-01

    Amphibian populations are declining globally, and multiple anthropogenic stressors, including contamination by pesticides and shifting climates, are driving these declines. Climate change may increase average temperatures or increase temperature variability, either of which may affect the susceptibility of nontarget organisms to contaminants. Eight-day ecotoxicological assays were conducted with red-eyed treefrog (Agalychnis callidryas) larvae to test for additive and interactive effects of exposure to the fungicide chlorothalonil, average temperature, and temperature variability on tadpole growth and survival. Egg masses were collected from seasonal ponds at La Selva Biological Station in Costa Rica, and tadpoles were exposed to a series of chlorothalonil concentrations across a range of ecologically relevant mean temperatures (23.4-27.3 °C) and daily temperature fluctuations (1.1-9.9 °C). Survival was measured each day, and tadpole growth was measured at the end of each trial. Concentrations of chlorothalonil ≥60 µg/L reduced survival, although survival was not affected by mean temperature or daily temperature range, and there were no synergistic interactions between chlorothalonil and temperature regime on survival. Chlorothalonil suppressed tadpole growth at relatively low concentrations (∼15 µg/L). There were impacts of both average temperature and daily temperature range on tadpole growth, although there were no synergistic interactions between temperature regimes and chlorothalonil. The results should inform efforts to manage ecosystems impacted by multiple large-scale anthropogenic stressors as well as methods for the design of ecologically appropriate toxicology trials. Environ Toxicol Chem 2016;35:2998-3004. © 2016 SETAC. © 2016 SETAC.

  4. Daily torpor and hibernation in birds and mammals

    PubMed Central

    RUF, THOMAS; GEISER, FRITZ

    2014-01-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e., the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e., hypometabolic states associated with low body temperatures (torpor), have been distinguished: Daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged however, suggesting that these phenotypes may merely represent the extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species, 43 birds and 171 mammals form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms are small on average, but hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30-g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the BMR in daily heterotherms but only 6% of basal metabolic rate in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. PMID:25123049

  5. TEMPERATURE SCENARIO DEVELOPMENT USING REGRESSION METHODS

    EPA Science Inventory

    A method of developing scenarios of future temperature conditions resulting from climatic change is presented. he method is straightforward and can be used to provide information about daily temperature variations and diurnal ranges, monthly average high, and low temperatures, an...

  6. Air drying of softwood lumber, Fairbanks, Alaska.

    Treesearch

    George R Sampson; Forrest A. Ruppert

    1985-01-01

    Air-drying rates for two stacks of 2-inch-thick white spruce were observed in the Fairbanks area during summer 1982. The air-drying rate for the same size lumber was also observed during winter 1982-83. Very little drying occurred during the winter. Drying rates in summer were correlated with average daily temperature and average daily dew point to derive predictive...

  7. [Temperature modifies the acute effect of particulate air pollution on mortality in Jiang'an district of Wuhan].

    PubMed

    Zhu, Y H; Wu, R; Zhong, P R; Zhu, C H; Ma, L

    2016-06-01

    To analyze the temperature modification effect on acute mortality due to particulate air pollution. Daily non-accidental mortality, cardiovascular mortality, and respiratory mortality data were obtained from Jiang'an District Center for Disease Control and Prevention. Daily meteorological data on mean temperature and relative humidity were collected from China Meteorological Data Sharing Service System. The daily concentration of particulate matter was collected from Wuhan Environmental Monitoring center. By using the stratified time-series models, we analyzed effects of particulate air pollution on mortality under different temperature zone from 2002 to 2010, meanwhile comparing the difference of age, gender and educational level, in Wuhan city of China. High temperature (daily average temperature > 33.4 ℃) obviously enhanced the effect of PM10 on mortality. With 10 μg/m(3) increase in PM10 concentrations, non-accidental, cardiovascular, and respiratory mortality increased 2.95% (95%CI: 1.68%-4.24%), 3.58% (95%CI: 1.72%-5.49%), and 5.07% (95%CI: 2.03%-9.51%) respectively. However, low temperature (daily average temperature <-0.21 ℃) enhanced PM10 effect on respiratory mortality with 3.31% (95% CI: 0.07%-6.64%) increase. At high temperature, PM10 had significantly stronger effect on non-accidental mortality of female aged over 65 and people with high educational level groups. With an increase of 10 μg/m(3), daily non-accidental mortality increased 4.27% (95% CI:2.45%-6.12%), 3.38% (95% CI:1.93%-4.86%) and 3.47% (95% CI:1.79%-5.18%), respectively. Whereas people with low educational level were more susceptible to low temperature. A 10 μg/m(3) increase in PM10 was associated with 2.11% (95% CI: 0.20%-4.04%) for non-accidental mortality. Temperature factor can modify the association between the PM10 level and cause-specific mortality. Moreover, the differences were apparent after considering the age, gender and education groups.

  8. 40 CFR 63.1439 - General recordkeeping and reporting provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for 6 hours, then the daily average is the average of the temperature measurements taken during those... operating conditions, considering typical variability of the specific process and combustion, recovery, or... temperature reading of −200 °C on a boiler), and will alert the operator by alarm or other means. The owner or...

  9. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers.

    PubMed

    Liu, Q W; Feng, J H; Chao, Z; Chen, Y; Wei, L M; Wang, F; Sun, R P; Zhang, M H

    2016-04-01

    This study was undertaken to investigate the effects of ambient temperature, crude protein levels and their interaction on performance and serum biochemical parameters of broiler chickens. A total of 216 Arbor Acre broiler chickens (108 males and 108 females) were used in a 2 × 3 factorial arrangement and randomly reared at two temperatures (normal temperature: 23 °C; daily cyclic high temperature: 28-32 °C) and fed on three diets with different crude protein levels (153.3, 183.3 or 213.3 g/kg, with constant essential amino acids) from 28 to 42 days of age. Daily cyclic high ambient temperature decreased final body weight, average daily weight gain, average daily feed intake and serum total protein contents (p < 0.001, p < 0.001, p < 0.001, p = 0.008 respectively), but increased feed/gain, mortality, respiratory rate, rectal temperature, serum uric acid contents and serum creatine kinase activity (p = 0.008, p = 0.003, p < 0.0001, p < 0.0001, p < 0.0001, p = 0.003 respectively), irrespective of crude protein levels. At the ambient temperature, reducing crude protein levels resulted in an increase in feed/gain (p < 0.001), but a decrease in serum total protein and uric acid contents. Only serum creatine kinase activity in broiler chickens was interacted by daily cyclic high ambient temperature and dietary crude protein levels (p = 0.003). These results indicated that daily cyclic high ambient temperature had a great effect on performance and serum biochemical parameters in broiler chickens, whereas dietary crude protein levels affected them partially. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  10. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  11. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  12. The impact of daily temperature on renal disease incidence: an ecological study.

    PubMed

    Borg, Matthew; Bi, Peng; Nitschke, Monika; Williams, Susan; McDonald, Stephen

    2017-10-27

    Extremely high temperatures over many consecutive days have been linked to an increase in renal disease in several cities. This is becoming increasingly relevant with heatwaves becoming longer, more intense, and more frequent with climate change. This study aimed to extend the known relationship between daily temperature and kidney disease to include the incidence of eight temperature-prone specific renal disease categories - total renal disease, urolithiasis, renal failure, acute kidney injury (AKI), chronic kidney disease (CKD), urinary tract infections (UTIs), lower urinary tract infections (LUTIs) and pyelonephritis. Daily data was acquired for maximum, minimum and average temperature over the period of 1 July 2003 to 31 March 2014 during the warm season (October to March) in Adelaide, South Australia. Data for daily admissions to all metropolitan hospitals for renal disease, including 83,519 emergency department admissions and 42,957 inpatient admissions, was also obtained. Renal outcomes were analyzed using time-stratified negative binomial regression models, with the results aggregated by day. Incidence rate ratios (IRR) and 95% confidence intervals (CI) were estimated for associations between the number of admissions and daily temperature. Increases in daily temperature per 1 °C were associated with an increased incidence for all renal disease categories except for pyelonephritis. Minimum temperature was associated with the greatest increase in renal disease followed by average temperature and then maximum temperature. A 1°C increase in daily minimum temperature was associated with an increase in daily emergency department admissions for AKI (IRR 1.037, 95% CI: 1.026-1.048), renal failure (IRR 1.030, 95% CI: 1.022-1.039), CKD (IRR 1.017, 95% CI: 1.001-1.033) urolithiasis (IRR 1.015, 95% CI: 1.010-1.020), total renal disease (IRR 1.009, 95% CI: 1.006-1.011), UTIs (IRR 1.004, 95% CI: 1.000-1.007) and LUTIs (IRR 1.003, 95% CI: 1.000-1.006). An increased frequency of renal disease, including urolithiasis, acute kidney injury and urinary tract infections, is predicted with increasing temperatures from climate change. These results have clinical and public health implications for the management of renal diseases and demand tailored health services. Future research is warranted to analyze individual renal diseases with more comprehensive information regarding renal risk factors, and studies examining mortality for specific renal diseases.

  13. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    NASA Astrophysics Data System (ADS)

    Žaknić-Ćatović, Ana; Gough, William A.

    2018-04-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  14. Short-term load forecasting of power system

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin

    2017-05-01

    In order to ensure the scientific nature of optimization about power system, it is necessary to improve the load forecasting accuracy. Power system load forecasting is based on accurate statistical data and survey data, starting from the history and current situation of electricity consumption, with a scientific method to predict the future development trend of power load and change the law of science. Short-term load forecasting is the basis of power system operation and analysis, which is of great significance to unit combination, economic dispatch and safety check. Therefore, the load forecasting of the power system is explained in detail in this paper. First, we use the data from 2012 to 2014 to establish the partial least squares model to regression analysis the relationship between daily maximum load, daily minimum load, daily average load and each meteorological factor, and select the highest peak by observing the regression coefficient histogram Day maximum temperature, daily minimum temperature and daily average temperature as the meteorological factors to improve the accuracy of load forecasting indicators. Secondly, in the case of uncertain climate impact, we use the time series model to predict the load data for 2015, respectively, the 2009-2014 load data were sorted out, through the previous six years of the data to forecast the data for this time in 2015. The criterion for the accuracy of the prediction is the average of the standard deviations for the prediction results and average load for the previous six years. Finally, considering the climate effect, we use the BP neural network model to predict the data in 2015, and optimize the forecast results on the basis of the time series model.

  15. Influence of air temperature on the first flowering date of Prunus yedoensis Matsum

    PubMed Central

    Shi, Peijian; Chen, Zhenghong; Yang, Qingpei; Harris, Marvin K; Xiao, Mei

    2014-01-01

    Climate change is expected to have a significant effect on the first flowering date (FFD) in plants flowering in early spring. Prunus yedoensis Matsum is a good model plant for analyzing this effect. In this study, we used a degree day model to analyze the effect of air temperatures on the FFDs of P. yedoensis at Wuhan University from a long-time series from 1951 to 2012. First, the starting date (=7 February) is determined according to the lowest correlation coefficient between the FFD and the daily average accumulated degree days (ADD). Second, the base temperature (=−1.2°C) is determined according to the lowest root mean square error (RMSE) between the observed and predicted FFDs based on the mean of 62-year ADDs. Finally, based on this combination of starting date and base temperature, the daily average ADD of every year was calculated. Performing a linear fit of the daily average ADD to year, we find that there is an increasing trend that indicates climate warming from a biological climatic indicator. In addition, we find that the minimum annual temperature also has a significant effect on the FFD of P. yedoensis using the generalized additive model. This study provides a method for analyzing the climate change on the FFD in plants' flowering in early spring. PMID:24558585

  16. Monthly mean forecast experiments with the GISS model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R. M.; Kuo, E.

    1976-01-01

    The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.

  17. Intermediate photovoltaic system application experiment operational performance report. Volume 6: Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.

  18. Diel stream temperature regimes of Bukovsky regions of the conterminous United States

    NASA Astrophysics Data System (ADS)

    Ferencz, Stephen B.; Cardenas, M. Bayani

    2017-03-01

    Stream temperature which varies over daily to seasonal timescales is a primary control on myriad ecological, biogeochemical, and physical processes. Yet geographic patterns of its diel variations have not been fully characterized. Using daily temperature records spanning 15 years (2000-2014), monthly averaged mean daily temperature and diel temperature range were calculated for streams distributed across six Bukovsky regions of the conterminous U.S. Across all six regions, diel temperature fluctuations were lowest during the winter, around 1-2°C. During the summer there was wide distribution in diel temperatures (2°C-12°C). The regions revealed distinct differences in diel patterns for small and medium streams, but not for large streams. Small and medium streams exhibited notable hysteresis in their annual progression of diel temperature ranges, with larger diel temperature fluctuations in the spring than in the fall.

  19. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  20. Predicting apricot phenology using meteorological data.

    PubMed

    Ruml, Mirjana; Milatović, Dragan; Vulić, Todor; Vuković, Ana

    2011-09-01

    The main objective of this study was to develop feasible, easy to apply models for early prediction of full flowering (FF) and maturing (MA) in apricot (Prunus armeniaca L.). Phenological data for 20 apricot cultivars grown in the Belgrade region were modeled against averages of daily temperature records over ten seasons for FF and eight seasons for MA. A much stronger correlation was found between the phenological timing and temperature at the very beginning than at the end of phenophases. Also, the length of developmental periods were better correlated to daily maximum than to daily minimum and mean air temperatures. Using prediction models based on daily maximum temperatures averaged over 30-, 45- and 60-day periods, starting from 1 January for FF prediction and from the date of FF for MA prediction, the onset of examined phenophases in apricot cultivars could be predicted from a few weeks to up to 2 months ahead with acceptable accuracy. The mean absolute differences between the observations and cross-validated predictions obtained by 30-, 45- and 60-day models were 8.6, 6.9 and 5.7 days for FF and 6.1, 3.6 and 2.8 days for MA, respectively. The validity of the results was confirmed using an independent data set for the year 2009.

  1. Predicting apricot phenology using meteorological data

    NASA Astrophysics Data System (ADS)

    Ruml, Mirjana; Milatović, Dragan; Vulić, Todor; Vuković, Ana

    2011-09-01

    The main objective of this study was to develop feasible, easy to apply models for early prediction of full flowering (FF) and maturing (MA) in apricot ( Prunus armeniaca L.). Phenological data for 20 apricot cultivars grown in the Belgrade region were modeled against averages of daily temperature records over ten seasons for FF and eight seasons for MA. A much stronger correlation was found between the phenological timing and temperature at the very beginning than at the end of phenophases. Also, the length of developmental periods were better correlated to daily maximum than to daily minimum and mean air temperatures. Using prediction models based on daily maximum temperatures averaged over 30-, 45- and 60-day periods, starting from 1 January for FF prediction and from the date of FF for MA prediction, the onset of examined phenophases in apricot cultivars could be predicted from a few weeks to up to 2 months ahead with acceptable accuracy. The mean absolute differences between the observations and cross-validated predictions obtained by 30-, 45- and 60-day models were 8.6, 6.9 and 5.7 days for FF and 6.1, 3.6 and 2.8 days for MA, respectively. The validity of the results was confirmed using an independent data set for the year 2009.

  2. Differences between true mean daily, monthly and annual air temperatures and air temperatures calculated with three equations: a case study from three Croatian stations

    NASA Astrophysics Data System (ADS)

    Bonacci, Ognjen; Željković, Ivana; Trogrlić, Robert Šakić; Milković, Janja

    2013-10-01

    Differences between true mean daily, monthly and annual air temperatures T0 [Eq. (1)] and temperatures calculated with three different equations [(2), (3) and (4)] (commonly used in climatological practice) were investigated at three main meteorological Croatian stations from 1 January 1999 to 31 December 2011. The stations are situated in the following three climatically distinct areas: (1) Zagreb-Grič (mild continental climate), (2) Zavižan (cold mountain climate), and (3) Dubrovnik (hot Mediterranean climate). T1 [Eq. (2)] and T3 [Eq. (4)] mean temperatures are defined by the algorithms based on the weighted means of temperatures measured at irregularly spaced, yet fixed hours. T2 [Eq. (3)] is the mean temperature defined as the average of daily maximum and minimum temperature. The equation as well as the time of observations used introduces a bias into mean temperatures. The largest differences occur for mean daily temperatures. The calculated daily difference value from all three equations and all analysed stations varies from -3.73 °C to +3.56 °C, from -1.39 °C to +0.79 °C for monthly differences and from -0.76 °C to +0.30 °C for annual differences.

  3. Downscaled soil moisture from SMAP evaluated using high density observations

    USDA-ARS?s Scientific Manuscript database

    Recently, a soil moisture downscaling algorithm based on a regression relationship between daily temperature changes and daily average soil moisture was developed to produce an enhanced spatial resolution on soil moisture product for the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) satellite ...

  4. Association between temperature and death in residential populations in Shanghai

    NASA Astrophysics Data System (ADS)

    Hsia, L. B.; Lu, J. K.

    1988-03-01

    The study is focused on patterns of daily deaths in Shanghai for the period from 1 May 1979 to 30 April 1980. From May to September the deaths in all age groups are lower, but increase gradually from October and reach to a peak in February. This confirms results found in other countries, namely the death rate is increased in winter. The peak for the population aged over 70 is the highest of the three different age groups. Correlation analyses were carried out on three temperature parameters (daily minimum, maximum and mean temperatures) and six categories of death (heart disease, coronary heart disease, cerebrovascular disease, cancer, respiratory disease and total deaths). The results reveal that the average daily temperature is very significant for the six categories of death. There are three correlations: straight line relationship, parabolic relationship and exponential relationship. These different types arise from the different morbidity rates. Death from the different disease is also increased during days when the daily maximum temperature is over 35° C or the daily minimum temperature is below 0°C. This shows, in general, that days of extreme temperature lead to an increase in the death rate.

  5. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions.

    PubMed

    Jaichansukkit, Teerapong; Suwanasopee, Thanathip; Koonawootrittriron, Skorn; Tummaruk, Padet; Elzo, Mauricio A

    2017-03-01

    The aim of this study was to determine the effects of daily ranges and maximum ambient temperatures, and other risk factors on reproductive failure of Landrace (L) and Yorkshire (Y) sows under an open-house system in Thailand. Daily ambient temperatures were added to information on 35,579 litters from 5929 L sows and 1057 Y sows from three commercial herds. The average daily temperature ranges (ADT) and the average daily maximum temperatures (PEAK) in three gestation periods from the 35th day of gestation to parturition were classified. The considered reproductive failure traits were the occurrences of mummified fetuses (MM), stillborn piglets (STB), and piglet death losses (PDL) and an indicator trait for number of piglets born alive below the population mean (LBA). A multiple logistic regression model included farrowing herd-year-season (HYS), breed group of sow (BG), parity group (PAR), number of total piglets born (NTB), ADT1, ADT2, ADT3, PEAK1, PEAK2, and PEAK3 as fixed effects, while random effects were animal, repeated observations, and residual. Yorkshire sows had a higher occurrence of LBA than L sows (P = 0.01). The second to fifth parities sows had lower reproductive failures than other parities. The NTB regression coefficients of log-odds were positive (P < 0.01) for all traits. Narrower ranges of ADT3 increased the occurrence of MM, STB, and PDL (P < 0.01), while higher PEAK3 increased the occurrence of MM, STB, PDL, and LBA (P < 0.001). To reduce the risk of reproductive failures, particularly late in gestation, producers would need to closely monitor their temperature management strategies.

  6. Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Spencer, Roy W.; McNider, Richard T.

    1996-01-01

    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by almost 50% and 35%. respectively, by analyzing and adjusting (if necessary) for errors due to 1) missing data, 2) residual harmonics of the annual cycle unique to particular satellites, 3) lack of filtering, and 4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C. or about 0.03 C per decade cooler than previously calculated.

  7. Reducing Noise in the MSU Daily Lower-Tropospheric Global Temperature Dataset

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Spencer, Roy W.; McNider, Richard T.

    1995-01-01

    The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by, almost 50% and 35%, respectively, by analyzing and adjusting (if necessary) for errors due to (1) missing data, (2) residual harmonics of the annual cycle unique to particular satellites, (3) lack of filtering, and (4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes -0.058 C, or about 0.03 C per decade cooler than previously calculated.

  8. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis.

    PubMed

    Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H

    2015-10-01

    This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p < 0.01) and 3-day average humidity (B = 0.004, p = 0.01). A significant interaction effect was found between daily average humidity and temperature on joint pain. The effect of humidity on pain was stronger in relatively cold weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.

  9. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    PubMed

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  10. 40 CFR 62.14455 - What if my HMIWI goes outside of a parameter limit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature (3-hour rolling average) simultaneously The PM, CO, and dioxin/furan emission limits. (c) Except..., daily average for batch HMIWI), and below the minimum dioxin/furan sorbent flow rate (3-hour rolling average) simultaneously The dioxin/furan emission limit. (3) Operates above the maximum charge rate (3...

  11. [Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes].

    PubMed

    Chacón, María M; Segnini, Samuel; Briceño, Daniela

    2016-03-01

    Daily emergence of mayflies in Neotropical rivers and their causes have been poorly studied. In temperate zones, this process is better known and attributed to several factors. In this work, we studied the daily emergence of subimagines of several Ephemeroptera genera in La Picón River of a Venezuelan Andean cloud forest and its relation with changes of environmental temperature. Four emergence traps were placed along a reach of 50 m of the stream, each one was examined each two hours in a 24 hr cycle to capture the newly emerged subimagos. This procedure was repeated for eight dates between November-2007 and February-2008 for a total of 32 observations in each sampling hour. The subimagos were reared to adults and identified to genus. The relative density of emergence per trap was calculated for each genus and sampling hour. Water and air temperature were measured each hour during the daily cycle of observation, and the averages of temperature and hour-degrees of air and water were calculated for each hour from the eight dates studied. Seven genera were identified: Leptohyphes Eaton, 1882 and Haplohyphes Allen 1966 (Leptophlebiidae); Prebaetodes Lugo-Ortiz and McCafferty, 1996, Andesiops Lugo-Ortiz and McCafferty, 1999, Baetodes Needham and Murphy, 1924 and Americabaetis Kluge, 1992 (Baetidae); and Thraulodes Ulmer, 1920 (Leptophlebiidae); being the more abundant Leptohyphes (38.4 %) and Thraulodes (20.5 %). The emergence occurred between 11:00 am and 23:00 pm showing the following: a) an emergence initiated during daylight hours by organisms of Leptohyphes, Prebaetodes and Haplohyphes; b) a nocturnal emergence, in Thraulodes, Andesiops, Baetodes and Americabaetis; and c) two peaks: one diurnal produced by Leptohyphes and other nocturnal with predominance of Thraulodes. These results are the first records on the diurnal daily emergence in Andesiops, Prebaetodes, Americabaetis, Haplohyphes, and Leptohyphes, as well as the nocturnal emergence in Thraulodes. It was evidenced that Leptohyphes, with small nymphs (average head width = 1.05 mm) needed to accumulate less hour-degrees to initiate the emergence than those required by Thraulodes whose nymphs are larger (average head width = 2.01 mm). This disparity in the emergence energy requirements must be consequence of differences between the sizes of mature nymphs of both genera; facts which rely on the constancy of sizes shown by these taxa along an altitudinal-thermal gradient and the little daily and seasonal variability of water temperature in La Picón River. In the daily lapse when the emergence occurred, the air and water average temperatures were higher than those registered in the no-emergence lapse; therefore; it is suggested that during the daily lapse, when this process occurs, the environment is thermally favorable for the emergence of subimagos and their survival out of water.

  12. Trends in Middle East climate extreme indices from 1950 to 2003

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  13. Weekly Oscillation of Daily Climatology of Air Temperature: Implication for Anthropogenic Attribution

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Wang, K.

    2016-12-01

    During national holiday and weekend, human activity and anthropogenic emission are expected to be much less than those during workday. Therefore, the contrast of environmental factors (i.e., air temperature and air quality) between national holiday (or weekend) and workday has been attributed to anthropogenic impact. For example, daily maximum (Tmax), minimum (Tmin) and mean (Tmean) air temperatures during the Chinese Spring Festival holiday were found to be 0. 6°C less than those of nearby workdays. We evaluated the contrasts using daily meteorological observations collected at 2479 stations in China from 1961 to 2015. The contrasts were evaluated with two methods. The first directly compared air temperatures between Chinese Spring Festival holiday and nearby workdays. The second first composited a daily climatology of air temperatures centered on the first day of Chinese Spring Festival holiday, and the seasonal cycles of air temperatures were then removed using polynomial regressions. The average of the derived daily deviation of air temperatures can be regarded as anthropogenic impact of Chinese Spring Festival holiday. We found that these two methods obtained nearly the same results. However, we found that the so-called anthropogenic impact during Chinese Spring Festival was not unique because the daily deviations of air temperatures had obvious weekly oscillations. The daily deviations of air temperature had periods of 7 days and 9 days, which explain 60% of the variance of daily deviations of Tmax, Tmin, and Tmean. These results indicate that the so-called anthropogenic impacts are primarily caused by natural variability, i.e., weekly oscillations of the air temperatures. This study also has great implication for the studies on weekend effect of the environmental factors.

  14. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  15. Characteristics of Atmospheric Pollution in Handan, China

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Wang, L.; Zhao, X.; Yang, J.; Wei, Z.; Su, J.; Zhang, F.; Meng, C.

    2013-12-01

    Handan, located in the southern edge of Hebei province, is one of the cities with worst air pollution in China. Based on the data from our comprehensive air quality monitoring station in Handan from August 2012 to January 2013, a series studies on the characteristics of air pollution in Handan were conducted. The daily mean concentration of PM10 and PM2.5 was 231.5 μg/m3 and 125.8 μg/m3 which exceeded daily National Ambient Air Quality Standard II (NAAQS) of China by 54.3% and 67.7% respectively. The highest daily concentration of them was 863.9 μg/m3 and 643.0 μg/m3, appeared on January 11, 2013, exceeding NAAQS by 475.9% and 757.3% respectively. Mean ratio of PM2.5/PM10 was 0.53. High PM2.5/PM10 ratio frequently occurred in winter, especially January (0.63) and February (0.65). Average daily concentration of SO2, NOx, NO2 and CO was 118 μg/m3, 133 μg/m3, 60.4 μg/m3 and 3210 μg/m3 respectively. The maximum daily average concentration of them was 393 μg/m3, 352 μg/m3, 135 μg/m3, 9660 μg/m3 which was 2.62, 3.52, 2.69, 2.42 times of daily NAAQS. The average concentration of total water soluble ions (TWSI) in PM2.5 from October 13 to December 21, 2012 was 69.57 μg/m3 which accounted for 61.67% of PM2.5. NO3-, SO42-, Cl- and NH4+ were the most important components of water soluble ionic composition in PM2.5.their concentration was 21.20 μg/m3, 16.96 μg/m3,8.43 μg/m3 and 14.81 μg/m3, accounted for 18.8%, 15.03% ,7.47% and 13.13% in PM2.5, respectively. Concentration of NO3- and SO42- had a good correlation (R2 = 0.807). The daily average concentration of OC and EC was 22.17 μg/m3, 6.29 μg/m3, accounted for 19.65%, 5.58% in PM2.5 respectively. The average ratio of OC/EC was 3.44, which shows that there is secondary organic carbon (SOC) in carbonaceous aerosol. Chemical characteristics of PM2.5 in Beijing, Tianjin and Handan were very similar. Most of Daily visibility values (67.4%) were lower than 5 km from August 2012 to January 2013. Daily visibility above 16 km was very scarce in Handan. Mean value of daily visibility was only 4.4×3.5 km in the range of 0.3 to 15.6 km. Average daily value of BC, NO, O3, RH, temperature, pressure was 9.3 μg/m3, 35.7 ppb, 20.6 ppb, 64.4%, 12.1 degree and 1011.2 hPa respectively. During the most polluted period from January 6 to January 31, 2013, mean daily visibility was 0.9 km. Average value of BC, NO, RH, temperature and pressure was 20.4 μg/m3, 98.4 ppb, 89.2%, -1.9 degree and 1015.9 hPa respectively. Visibility showed negative correlation with BC, RH, NO2, PM2.5, NOx, PM10, NO, CO, SO2, pressure and showed positive correlation with O3 and temperature. The most related four parameters with visibility were BC, RH, NO2 and PM2.5. The least related four parameters with visibility were O3, temperature, SO2 and pressure. Empirical model was developed to investigate the complex relationships between visibility, meteorological and pollutant parameters. The modeling result was as following: The model computed visibility had good consistence with the observed values.

  16. Continuous selection pressure to improve temperature acclimation of Tisochrysis lutea

    PubMed Central

    Grimaud, Ghjuvan; Rumin, Judith; Bougaran, Gaël; Talec, Amélie; Gachelin, Manon; Boutoute, Marc; Pruvost, Eric; Bernard, Olivier; Sciandra, Antoine

    2017-01-01

    Temperature plays a key role in outdoor industrial cultivation of microalgae. Improving the thermal tolerance of microalgae to both daily and seasonal temperature fluctuations can thus contribute to increase their annual productivity. A long term selection experiment was carried out to increase the thermal niche (temperature range for which the growth is possible) of a neutral lipid overproducing strain of Tisochrysis lutea. The experimental protocol consisted to submit cells to daily variations of temperature for 7 months. The stress intensity, defined as the amplitude of daily temperature variations, was progressively increased along successive selection cycles. Only the amplitude of the temperature variations were increased, the daily average temperature was kept constant along the experiment. This protocol resulted in a thermal niche increase by 3°C (+16.5%), with an enhancement by 9% of the maximal growth rate. The selection process also affected T. lutea physiology, with a feature generally observed for ‘cold-temperature’ type of adaptation. The amount of total and neutral lipids was significantly increased, and eventually productivity was increased by 34%. This seven month selection experiment, carried out in a highly dynamic environment, challenges some of the hypotheses classically advanced to explain the temperature response of microalgae. PMID:28902878

  17. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate.

    PubMed

    Ikäheimo, Tiina M; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J K

    2016-09-02

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was -9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m³. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00-1.15)) and maximal (OR 1.08 (1.01-1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03-1.40)) and maximal decrease (OR 1.13 (CI 0.96-1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m³ decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00-1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects.

  18. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in a Cold Climate

    PubMed Central

    Ikäheimo, Tiina M.; Jaakkola, Kari; Jokelainen, Jari; Saukkoriipi, Annika; Roivainen, Merja; Juvonen, Raija; Vainio, Olli; Jaakkola, Jouni J.K.

    2016-01-01

    Both temperature and humidity may independently or jointly contribute to the risk of human rhinovirus (HRV) infections, either through altered survival and spread of viruses in the environment or due to changes in host susceptibility. This study examined the relationship between short-term variations in temperature and humidity and the risk of HRV infections in a subarctic climate. We conducted a case-crossover study among conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training and identified 147 HRV cases by real-time PCR. An average temperature, a decline in daily ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods (a week prior and after the onset) were obtained. The average daily temperature preceding HRV infections was −9.9 ± 4.9 °C and the average AH was 2.2 ± 0.9 g/m3. An average (odds ratios (OR) 1.07 (95% confidence interval (CI) 1.00–1.15)) and maximal (OR 1.08 (1.01–1.17)) change in temperature increased the risk of HRV infections by 8% per 1 °C decrease. An average (OR 1.20 (CI 1.03–1.40)) and maximal decrease (OR 1.13 (CI 0.96–1.34)) in AH increased the risk of HRV infection by 13% and 20% per 0.5 g/m3 decrease. A higher average temperature during the three preceding days was positively associated with HRV infections (OR 1.07 (CI 1.00–1.15)). A decrease rather than low temperature and humidity per se during the preceding few days increases the risk of HRV infections in a cold climate. The information is applicable to populations residing in cold climates for appropriate personal protection and prevention of adverse health effects. PMID:27598190

  19. [Acute effect of daily mean temperature on ischemic heart disease mortality: a multivariable meta-analysis from 12 counties across Hubei Province, China].

    PubMed

    Zhang, Y Q; Yu, C H; Bao, J Z

    2016-11-06

    Objective: To evaluate the acute effects of daily mean temperature on ischemic heart disease (IHD) mortality in 12 counties across Hubei Province, China. Methods: We obtained the daily IHD mortality data and meteorological data of the 12 counties for 2009-2012. The distributed lag nonlinear model (DLNM) was used to estimate the community-specific association between mean temperature and IHD mortality. A multivariate meta-analysis was then applied to pool the community-specific relationship between temperature and IHD mortality, and the effects of cold and heat on mortality risk. Results: In 2009-2012, of the 6 702 012 people included in this study, 19 688 died of IHD. A daily average of 1.2 IHD deaths occurred in each community. The annual average mean temperature was 16.6 ℃ during the study period. A nonlinear temperature-IHD mortality relationship was observed for different cumulative lag days at the provincial level. The pooled heat effect was acute but attenuated within 2 days. In contrast, the cold effect was delayed and persisted for more than 2 weeks. Compared with a reference temperature (25 th percentile of mean temperature during the study period, P 25 ), the cold effect for P 10 of mean temperature was associated with IHD mortality, the RR (95% CI ) was 1.084 (1.008-1.167) at lag 0-14, and 1.149 (1.053-1.253) at lag 0-21. For the P 1 cold temperature, the mortality RR (95% CI ) values were 1.116 (0.975-1.276) and 1.220 (1.04-1.428), respectively. We found no significant association between high temperatures and IHD mortality in the present study at different lag days. Conclusion: In Hubei Province, low temperature was associated with increased IHD mortality risk, and cold effects lasted for several days; no significant effect of high temperature was observed.

  20. Inverse correlation between daily outdoor temperature and blood pressure in six US cities.

    PubMed

    Radin, Jennifer M; Neems, Daniel; Goglia, Ross; Siddiqui, Khan; Steinhubl, Steven R

    2018-06-01

    This study aims to evaluate the relationship between mean outdoor temperature and mean daily blood pressure (BP) and heart rate (HR) among six, large, geographically and climatically diverse US cities. We collected BP and HR data from Higi stations, located in a wide range of neighborhood grocery stores and retail pharmacies, from six US cities (Houston, Los Angeles, Miami, Boise, Chicago, and New York City). Outdoor daily temperature data were collected from the National Centers for Environmental Information's database. Pearson's correlation was used to assess the linear relationship between mean daily outdoor temperature and mean daily BP and HR for each city from May 2016 through April 2017. A total of 2 140 626 BP and HR readings were recorded in the six study cities. Mean outdoor temperature was inversely correlated with both mean daily average systolic (r=-0.69, P<0.0001) and diastolic (r=-0.71; P<0.0001) BPs, but not HR (r<0.0001, P=0.48). We also found that temperature change had a larger impact on BP in equatorial climates such as Miami compared with colder and more temperature variable cities like Chicago and Boise. Previous studies have found that BP varies seasonally, but few have looked at the impact of daily temperature on both BP and HR changes. Our study is one of the largest and most climatically diverse populations ever looking at this relationship. Our results suggest that temperature, and perhaps geography, should play a role in tailoring individualized evaluation and treatment for hypertensive diseases.

  1. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    PubMed

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation, and hindered the spikelet degeneration.

  2. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    NASA Astrophysics Data System (ADS)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude greater. This indicates a possible tipping point in the stream temperature-water temperature relationship at which increased urbanization overpowers increasing stream thermal inertia.

  3. Forecast of Frost Days Based on Monthly Temperatures

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  4. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change.

    PubMed

    Shakya, S K; Goss, E M; Dufault, N S; van Bruggen, A H C

    2015-02-01

    Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P < 0.005), as hypothesized. Infection efficiency, lesion growth rate, and sporulation increased under small temperature oscillations compared with constant temperatures but decreased when temperature oscillations were large. Thus, diurnal amplitude in temperature should be considered in models of potato late blight, particularly when predicting effects of global climate change on disease development.

  5. Thermal Energy Exchange Model and Water Loss of a Barrel Cactus, Ferocactus acanthodes1

    PubMed Central

    Lewis, Donald A.; Nobel, Park S.

    1977-01-01

    The influences of various diurnal stomatal opening patterns, spines, and ribs on the stem surface temperature and water economy of a CAM succulent, the barrel cactus Ferocactus acanthodes, were examined using an energy budget model. To incorporate energy exchanges by shortwave and longwave irradiation, latent heat, conduction, and convection as well as the heat storage in the massive stem, the plant was subdivided into over 100 internal and external regions in the model. This enabled the average surface temperature to be predicted within 1 C of the measured temperature for both winter and summer days. Reducing the stem water vapor conductance from the values observed in the field to zero caused the average daily stem surface temperature to increase only 0.7 C for a winter day and 0.3 C for a summer day. Thus, latent heat loss does not substantially reduce stem temperature. Although the surface temperatures averaged 18 C warmer for the summer day than for the winter day for a plant 41 cm tall, the temperature dependence of stomatal opening caused the simulated nighttime water loss rates to be about the same for the 2 days. Spines moderated the amplitude of the diurnal temperature changes of the stem surface, since the daily variation was 17 C for the winter day and 25 C for the summer day with spines compared with 23 C and 41 C, respectively, in their simulated absence. Ribs reduced the daytime temperature rise by providing 54% more area for convective heat loss than for a smooth circumscribing surface. In a simulation where both spines and ribs were eliminated, the daytime average surface temperature rose by 5 C. PMID:16660148

  6. Daily torpor and hibernation in birds and mammals.

    PubMed

    Ruf, Thomas; Geiser, Fritz

    2015-08-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (∼35°) than daily heterotherms (∼25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ∼13°C, and the mean minimum torpor metabolic rate was ∼35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators. © 2014 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  7. Do contrails significantly reduce daily temperature range?

    NASA Astrophysics Data System (ADS)

    Hong, Gang; Yang, Ping; Minnis, Patrick; Hu, Yong X.; North, Gerald

    2008-12-01

    One of the most visible anthropogenic phenomena in the atmosphere is the occurrence of contrails. The direct effects of contrails on surface temperature are investigated on the basis of the data sets for the cloud cover and surface temperature over the conterminous United States for the period 1971-2001. It is shown that the increase of the average daily temperature range (DTR) over the United States during the three-day grounding period of 11-14 September 2001 cannot be attributed to the absence of contrails, a subject was debated in several previous studies. The present analysis suggests that the DTR is attributed to the change of low cloudiness.

  8. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part III: reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.

    2017-07-01

    We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.

  9. The role of temperature in the variability and extremes of electricity and gas demand in Great Britain

    NASA Astrophysics Data System (ADS)

    Thornton, H. E.; Hoskins, B. J.; Scaife, A. A.

    2016-11-01

    The daily relationship of electricity and gas demand with temperature in Great Britain is analysed from 1975 to 2013 and 1996 to 2013 respectively. The annual mean and annual cycle amplitude of electricity demand exhibit low frequency variability. This low frequency variability is thought to be predominantly driven by socio-economic changes rather than temperature variation. Once this variability is removed, both daily electricity and gas demand have a strong anti-correlation with temperature (r elec = -0.90 , r gas = -0.94). However these correlations are inflated by the changing demand-temperature relationship during spring and autumn. Once the annual cycles of temperature and demand are removed, the correlations are {r}{{elec}}=-0.60 and {r}{{gas}}=-0.83. Winter then has the strongest demand-temperature relationship, during which a 1 °C reduction in daily temperature typically gives a ˜1% increase in daily electricity demand and a 3%-4% increase in gas demand. Extreme demand periods are assessed using detrended daily temperature observations from 1772. The 1 in 20 year peak day electricity and gas demand estimates are, respectively, 15% (range 14%-16%) and 46% (range 44%-49%) above their average winter day demand during the last decade. The risk of demand exceeding recent extreme events, such as during the winter of 2009/2010, is also quantified.

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Catchments by Major River Basins in the Conterminous United States: 30-Year Average Daily Minimum Temperature, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents thecatchment-average for the 30-year (1971-2000) average daily minimum temperature in Celsius multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Temperature, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  12. Large deviation probabilities for correlated Gaussian stochastic processes and daily temperature anomalies

    NASA Astrophysics Data System (ADS)

    Massah, Mozhdeh; Kantz, Holger

    2016-04-01

    As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).

  13. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    USGS Publications Warehouse

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B.V. 2009.

  14. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  15. A Community Terrain-Following Ocean Modeling System (ROMS)

    DTIC Science & Technology

    2015-09-30

    funded NOPP project titled: Toward the Development of a Coupled COAMPS-ROMS Ensemble Kalman filter and adjoint with a focus on the Indian Ocean and the...surface temperature and surface salinity daily averages for 31-Jan-2014. Similarly, Figure 3 shows the sea surface height averaged solution for 31-Jan... temperature (upper panel; Celsius) and surface salinity (lower panel) for 31-Jan-2014. The refined solution for the Hudson Canyon grid is overlaid on

  16. New NOAA-15 Advanced Microwave Sounding Unit (AMSU) Datasets for Stratospheric Research

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1999-01-01

    The NOAA-15 spacecraft launched in May 1998 carried the first Advanced Microwave Sounding Unit (AMSU). The AMSU has eleven oxygen absorption channels with weighting functions peaking from near the surface to 2 mb. Twice-daily, limb-corrected I degree gridded datasets of layer temperatures have been constructed since the AMSU went operational in early August 1998. Examples of AMSU imagery will be shown, as will preliminary analyses of daily fluctuations in tropical stratospheric temperatures and their relationship to daily variations in tropical-average rainfall measured by the Special Sensor Microwave Imager (SSM/I). The AMSU datasets are now available for other researchers to utilize.

  17. [The short-term effects of air pollution on mortality: the results of the EMECAM project in the city of Pamplona, 1991-95. Estudio Multicéntrico Español sobre la Relación entre la Contaminación Atmosférica y la Mortalidad].

    PubMed

    Aguinaga Ontoso, I; Guillén Grima, F; Oviedo de Sola, P J; Floristan Floristan, M Y; Laborda Santesteban, M S; Martínez Ramírez, M T; Martínez González, M A

    1999-01-01

    To assess the short-term impact of air pollution on the daily death rate in the city of Pamplona. Ecological study with a population of 212,000 inhabitants. A time series data analysis is conducted by means of multiple linear regression and Poisson regression, with the daily death rate data, air pollution levels for Particles and SO2, weather parameters of average relative humidity and temperature daily and number of cases weekly of flu for the 1991-1995 period. The average number of deaths daily for non-external causes is that of 4.15 deaths, with a range from zero to 13 deaths. The city of Pamplona has a mean annual temperature of 12.7 degrees C (-2.3 degrees C to 31.6 degrees C) and a relative humidity of 68.5%. In the model, the temperature (with a one-day time lag and a six-day time lag temperature squared) and the humidity (with a one-day time lag) is related to the death rate for all causes. But the death rate for non-external causes is only related in the model with the temperature (one-day time lag, P: 0.035) and five-day time lag with temperature squared (p: 0.028). The timely estimates of the relative particle-related risk show that the highest risk of dying stems from respiratory causes with a relative risk of 1.13. However, none of these relationships is statistically significant. In the case of Sulfur Dioxide, the estimates closely near the zero figure, and none of them is significant. The Temperature has an impact of the death rate for all causes, both external and non-external, and the relative humidity solely has an impact on the death rate for non-external causes. It has not been possible to prove any influence of the daily environmental pollution levels on the daily death rate.

  18. The 2011 heat wave in Greater Houston: Effects of land use on temperature.

    PubMed

    Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai

    2014-11-01

    Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland

    USGS Publications Warehouse

    Pluhowski, E.J.

    1981-01-01

    Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)

  20. Associations between Changes in City and Address Specific Temperature and QT Interval - The VA Normative Aging Study

    PubMed Central

    Mehta, Amar J.; Kloog, Itai; Zanobetti, Antonella; Coull, Brent A.; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Background The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men. Methods This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000–2008 (n = 743). We analyzed associations between QTc and moving averages (1–7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated. Results Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease. Conclusion/Significance In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature-related cardiovascular morbidity and mortality in an older population. PMID:25238150

  1. Biological Treatment of Composition B Wastewaters. 2. Analysis of Performance of Holston Army Ammunition Plant Wastewater Treatment Facility, January 1985 through August 1986

    DTIC Science & Technology

    1988-08-18

    CONTENTS (cont.) C. Daily Average Nitrate Nitrogen, Upper Neutralization Basin .................................. 44 D . Daily Average Temperature (°C...PLANr WASTEWATER TREATMENT FACILITY, JANUARY 1985 THROUGH AUGUST 1986 W. DICKINSON BURROWS, Ph.D., P.E. in- T C ELIZABetH T. PAULSONS D ROBERT P...CARNAHAN, Ph.D., P.E.:.EL E C-T E FEB 0 6 1990. D Prepared for U.S. ARMY TOXIC AND PAZARDOUS MATERIALS AGENCY ABERDEEN PROVING GROUND, D ) 21010-5401 by U S

  2. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015

    NASA Astrophysics Data System (ADS)

    Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna

    2018-03-01

    The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.

  3. Projections of Temperature-Attributable Premature Deaths in 209 U.S. Cities Using a Cluster-Based Poisson Approach

    NASA Technical Reports Server (NTRS)

    Schwartz, Joel D.; Lee, Mihye; Kinney, Patrick L.; Yang, Suijia; Mills, David; Sarofim, Marcus C.; Jones, Russell; Streeter, Richard; St. Juliana, Alexis; Peers, Jennifer; hide

    2015-01-01

    Background: A warming climate will affect future temperature-attributable premature deaths. This analysis is the first to project these deaths at a near national scale for the United States using city and month-specific temperature-mortality relationships. Methods: We used Poisson regressions to model temperature-attributable premature mortality as a function of daily average temperature in 209 U.S. cities by month. We used climate data to group cities into clusters and applied an Empirical Bayes adjustment to improve model stability and calculate cluster-based month-specific temperature-mortality functions. Using data from two climate models, we calculated future daily average temperatures in each city under Representative Concentration Pathway 6.0. Holding population constant at 2010 levels, we combined the temperature data and cluster-based temperature-mortality functions to project city-specific temperature-attributable premature deaths for multiple future years which correspond to a single reporting year. Results within the reporting periods are then averaged to account for potential climate variability and reported as a change from a 1990 baseline in the future reporting years of 2030, 2050 and 2100. Results: We found temperature-mortality relationships that vary by location and time of year. In general, the largest mortality response during hotter months (April - September) was in July in cities with cooler average conditions. The largest mortality response during colder months (October-March) was at the beginning (October) and end (March) of the period. Using data from two global climate models, we projected a net increase in premature deaths, aggregated across all 209 cities, in all future periods compared to 1990. However, the magnitude and sign of the change varied by cluster and city. Conclusions: We found increasing future premature deaths across the 209 modeled U.S. cities using two climate model projections, based on constant temperature-mortality relationships from 1997 to 2006 without any future adaptation. However, results varied by location, with some locations showing net reductions in premature temperature-attributable deaths with climate change.

  4. Diameter-growth model across shortleaf pine range using regression tree analysis

    Treesearch

    Daniel Yaussy; Louis Iverson; Anantha Prasad

    1999-01-01

    Diameter growth of a tree in most gap-phase models is limited by light, nutrients, moisture, and temperature. Growing-season temperature is represented by growing degree days (gdd), which is the sum of the average daily temperatures above a baseline temperature. Gap-phase models determine the north-south range of a species by the gdd limits at the north and south...

  5. Temperature experienced during incubation affects antioxidant capacity but not oxidative damage in hatchling red-eared slider turtles (Trachemys scripta elegans).

    PubMed

    Treidel, L A; Carter, A W; Bowden, R M

    2016-02-01

    Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.

  6. Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalizations for sickle cell crisis.

    PubMed

    Smith, Wally R; Coyne, Patrick; Smith, Virginia S; Mercier, Bruce

    2003-09-01

    Weather changes are among the proposed precursors of painful sickle cell crises. However, epidemiologic data are mixed regarding the relationship between ambient temperature and crisis frequency. To study this relationship among a local sickle cell disease population, emergency department (ED) visits and admissions were evaluated in adults with sickle cell crisis as the primary diagnosis at a major teaching hospital in a temperate climate. Official daily ambient temperatures (average for that day) were obtained from the National Climate Data Center for the days patients visited the ED or were hospitalized, and for 24 or 48 hours prior. Daily ED visit counts and admission counts were correlated with the visit/admission day's ambient temperature, with the ambient temperature 24 hours before admission, and with the magnitude of change in daily ambient temperature over the prior 24 or 48 hours. For all correlations, statistical significance was defined as a p value of <0.01 and clinical significance was defined as a moderate or greater correlation, absolute value of r >/= 0.30. ED visits or admissions correlated statistically, but not clinically, with daily temperatures. On days when temperatures were <32 degrees F or >80 degrees F, these correlations were statistically significant, but clinical significance was variable. ED visits or admissions correlated only statistically with temperatures 24 hours prior, even on days when temperatures were <32 degrees F. When temperatures were >80 degrees F, the correlations were statistically significant, but there was a reverse, clinically significant correlation between admissions and temperatures. Finally, only statistically significant correlations were found between ED visits or admissions and change in temperature over the prior 24 or 48 hours. Weak or inconsistent confirmation of a relationship was found between daily ambient temperatures and ED visits or hospital admissions for sickle cell crises.

  7. Delineation of soil temperature regimes from HCMM data

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W. (Principal Investigator)

    1982-01-01

    The subsetting of HCMM data into ORSER format was completed for four dates using a modified SUBSET program. Large areas (approximately 2500 scan lines, 1680 elements) were selected to increase the occurrence of suitable control points for registration. Average daily temperatures (ADT) were calculated for each date. The MERGE program combined registered daytime temperature (DAY-IR) with nighttime temperature (NIGHT-IR) to form a separate two-channel data set. The SUBTRAN program averaged the DAY-IR and NIGHT-IR creating a third ADT channel. Registration equations for the four ADT data sets were generated. A one dimensional soil heat flow equation was modified to allow for mean annual soil temperature predictions using merged ADT data sets.

  8. Average Revisited in Context

    ERIC Educational Resources Information Center

    Watson, Jane; Chick, Helen

    2012-01-01

    This paper analyses the responses of 247 middle school students to items requiring the concept of average in three different contexts: a city's weather reported in maximum daily temperature, the number of children in a family, and the price of houses. The mixed but overall disappointing performance on the six items in the three contexts indicates…

  9. [Association between ambient temperature and hospital emergency room visits for cardiovascular diseases: a case-crossover study].

    PubMed

    Guo, Yu-Ming; Wang, Jia-Jia; Li, Guo-Xing; Zheng, Ya-An; He, Wichmann; Pan, Xiao-Chuan

    2009-08-01

    To explore the association between ambient average temperature and hospital emergency room visits for cardiovascular diseases (International Classification of Diseases, Tenth Vision ICD-10: I00 - I99) in Beijing, China. Data was collected on daily hospital emergency room visits for cardiovascular diseases from Peking University Third Hospital, including meteorological data (daily average temperature, relative humidity, wind speed, and atmospheric pressure) from the China Meteorological Data Sharing Service System, and on air pollution from the Beijing Municipal Environmental Monitoring Center. Time-stratified case-crossover design was used to analyze data on 4 seasons. After adjusting data on air pollution, 1 degree ( degrees C) increase of ambient average temperature would associate with the emergency room visits of odds ratio (ORs) as 1.282 (95%CI: 1.250 - 1.315), 1.027 (95%CI: 1.001 - 1.055), 0.661 (95%CI: 0.637 - 0.687), and 0.960 (95%CI: 0.937 - 0.984) in spring, summer, autumn, and winter respectively. After controlling the influence of relative humidity, wind speed, and atmospheric pressure, 1 degrees C increase in the ambient average temperature would be associated with the emergency room visits on ORs value as 1.423 (95%CI: 1.377 - 1.471), 1.082 (95%CI: 1.041 - 1.124), 0.633 (95%CI: 0.607 - 0.660) and 0.971 (95%CI: 0.944 - 1.000) in spring, summer, autumn, and winter respectively. These data on outcomes suggested that the elevated level of ambient temperature would increase the hospital emergency room visits for cardiovascular diseases in spring and summer while the elevated level of ambient temperature would decrease the hospital emergency room visits for the cardiovascular diseases in autumn and winter, suggesting that patients with cardiovascular diseases should pay attention to the climate change.

  10. Modeling the Response of Anopheles gambiae (Diptera: Culicidae) Populations in the Kenya Highlands to a Rise in Mean Annual Temperature.

    PubMed

    Wallace, Dorothy; Prosper, Olivia; Savos, Jacob; Dunham, Ann M; Chipman, Jonathan W; Shi, Xun; Ndenga, Bryson; Githeko, Andrew

    2017-03-01

    A dynamical model of Anopheles gambiae larval and adult populations is constructed that matches temperature-dependent maturation times and mortality measured experimentally as well as larval instar and adult mosquito emergence data from field studies in the Kenya Highlands. Spectral classification of high-resolution satellite imagery is used to estimate household density. Indoor resting densities collected over a period of one year combined with predictions of the dynamical model give estimates of both aquatic habitat and total adult mosquito densities. Temperature and precipitation patterns are derived from monthly records. Precipitation patterns are compared with average and extreme habitat estimates to estimate available aquatic habitat in an annual cycle. These estimates are coupled with the original model to produce estimates of adult and larval populations dependent on changing aquatic carrying capacity for larvae and changing maturation and mortality dependent on temperature. This paper offers a general method for estimating the total area of aquatic habitat in a given region, based on larval counts, emergence rates, indoor resting density data, and number of households.Altering the average daily temperature and the average daily rainfall simulates the effect of climate change on annual cycles of prevalence of An. gambiae adults. We show that small increases in average annual temperature have a large impact on adult mosquito density, whether measured at model equilibrium values for a single square meter of habitat or tracked over the course of a year of varying habitat availability and temperature. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    PubMed

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles. Copyright 2004 Springer-Verlag

  12. Robust increase in extreme summer rainfall intensity during the past four decades observed in China

    NASA Astrophysics Data System (ADS)

    Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun

    2016-12-01

    Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.

  13. Effects of reproductive condition, roost microclimate, and weather patterns on summer torpor use by a vespertilionid bat

    PubMed Central

    Johnson, Joseph S; Lacki, Michael J

    2014-01-01

    A growing number of mammal species are recognized as heterothermic, capable of maintaining a high-core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big-eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day-roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day-roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context. PMID:24558571

  14. Weather and age-gender effects on the projection of future emergency ambulance demand in Hong Kong.

    PubMed

    Lai, Poh-Chin; Wong, Ho-Ting

    2015-03-01

    An accurate projection for ambulance demand is essential to enable better resource planning for the future that strives to either maintain current levels of services or reconsider future standards and expectations. More than 2 million cases of emergency room attendance in 2008 were obtained from the Hong Kong Hospital Authority to project the demand for its ambulance services in 2036. The projection of ambulance demand in 2036 was computed in consideration of changes in the age-gender structure between 2008 and 2036. The quadratic relation between average daily temperature and daily ambulance demand in 2036 was further explored by including and excluding age-gender demographic changes. Without accounting for changes in the age-gender structure, the 2036 ambulance demand for age groups of 65 and above were consistently underestimated (by 38%-65%), whereas those of younger age groups were overestimated (by 6%-37%). Moreover, changes in the 2008 to 2036 age-gender structure also shift upward and emphasize relationships between average daily temperature and daily ambulance demand at both ends of the quadratic U-shaped curve. Our study reveals a potential societal implication of ageing population on the demand for ambulance services. © 2012 APJPH.

  15. The key to winter survival: daily torpor in a small arid-zone marsupial

    NASA Astrophysics Data System (ADS)

    Körtner, Gerhard; Geiser, Fritz

    2009-04-01

    Mammalian hibernation, which lasts on average for about 6 months, can reduce energy expenditure by >90% in comparison to active individuals. In contrast, the widely held view is that daily torpor reduces energy expenditure usually by about 30%, is employed for a few hours every few days, and often occurs only under acute energetic stress. This interpretation is largely based on laboratory studies, whereas knowledge on daily torpor in the field is scant. We used temperature telemetry to quantify thermal biology and activity patterns of a small arid-zone marsupial, the stripe-faced dunnart Sminthopsis macroura (16.9 g), in the wild and to test the hypothesis that daily torpor is a crucial survival strategy of this species in winter. All individuals entered torpor daily with the exception of a single male that remained normothermic for a single day (torpor on 212 of 213 observation days, 99.5%). Torpor was employed at air temperatures ( T a) ranging from approximately -1°C to 36°C. Dunnarts usually entered torpor during the night and aroused at midday with the daily increase of T a. Torpor was on average about twice as long (mean 11.0 ± 4.7 h, n = 8) than in captivity. Animals employed sun basking during rewarming, reduced foraging time significantly, and occasionally omitted activity for several days in sequence. Consequently, we estimate that daily torpor in this species can reduce daily energy expenditure by up to 90%. Our study shows that for wild stripe-faced dunnarts daily torpor is an essential mechanism for overcoming energetic challenges during winter and that torpor data obtained in the laboratory can substantially underestimate the ecological significance of daily torpor in the wild.

  16. The creation of future daily gridded datasets of precipitation and temperature with a spatial weather generator, Cyprus 2020-2050

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred

    2014-05-01

    High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were created with the identified best interpolation methods. The difference between the input and simulated mean daily rainfall, averaged over all the stations, was 0.03 mm (2.2%), while the error related to the number of dry days was 2 (0.6%). For mean daily minimum temperature the error was 0.005 ºC (0.04%), while for maximum temperature it was 0.01 ºC (0.04%). Overall, the weather generators were found to be reliable instruments for the downscaling of precipitation and temperature. The resulting datasets indicate a decrease of the mean annual rainfall over the study area between 5 and 70 mm (1-15%) for 2020-2050, relative to 1980-2010. Average annual minimum and maximum temperature over the Republic of Cyprus are projected to increase between 1.2 and 1.5 ºC. The dataset is currently used to compute agricultural production and water use indicators, as part of the AGWATER project (AEIFORIA/GEORGO/0311(BIE)/06), co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation. Burton, A., Kilsby, C.G., Fowler, H.J., Cowpertwait, P.S.P., and O'Connell, P.E.: RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Software 23, 1356-1369, 2008 Richardson, C.W.: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 17, 182-190, 1981.

  17. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Minnett, P. J.; Berkelmans, R.; Hendee, J.; Manfrino, C.

    2014-07-01

    A good understanding of diurnal warming in the upper ocean is important for the validation of satellite-derived sea surface temperature (SST) against in-situ buoy data and for merging satellite SSTs taken at different times of the same day. For shallow coastal regions, better understanding of diurnal heating could also help improve monitoring and prediction of ecosystem health, such as coral reef bleaching. Compared to its open ocean counterpart which has been studied extensively and modeled with good success, coastal diurnal warming has complicating localized characteristics, including coastline geometry, bathymetry, water types, tidal and wave mixing. Our goal is to characterize coastal diurnal warming using two extensive in-situ temperature and weather datasets from the Caribbean and Great Barrier Reef (GBR), Australia. Results showed clear daily warming patterns in most stations from both datasets. For the three Caribbean stations where solar radiation is the main cause of daily warming, the mean diurnal warming amplitudes were about 0.4 K at depths of 4-7 m and 0.6-0.7 K at shallower depths of 1-2 m; the largest warming value was 2.1 K. For coral top temperatures of the GBR, 20% of days had warming amplitudes >1 K, with the largest >4 K. The bottom warming at shallower sites has higher daily maximum temperatures and lower daily minimum temperatures than deeper sites nearby. The averaged daily warming amplitudes were shown to be closely related to daily average wind speed and maximum insolation, as found in the open ocean. Diurnal heating also depends on local features including water depth, location on different sections of the reef (reef flat vs. reef slope), the relative distance from the barrier reef chain (coast vs. lagoon stations vs. inner barrier reef sites vs. outer rim sites); and the proximity to the tidal inlets. In addition, the influence of tides on daily temperature changes and its relative importance compared to solar radiation was quantified by calculating the ratio of power spectrum densities at the principal lunar semidiurnal M2 tide versus 24-hour cycle frequency representing mainly solar radiation forcing, i.e., (PSDM2/PSD24). Despite the fact that GBR stations are generally located at regions with large tidal changes, the tidal effects were modest: 80% of stations showed value of (PSDM2/PSD24) of less than 10%.

  18. [Impact of daily mean temperature, cold spells, and heat waves on stroke mortality a multivariable Meta-analysis from 12 counties of Hubei province, China].

    PubMed

    Zhang, Y Q; Yu, C H; Bao, J Z

    2017-04-10

    Objective: To assess the acute effects of daily mean temperature, cold spells, and heat waves on stroke mortality in 12 counties across Hubei province, China. Methods: Data related to daily mortality from stroke and meteorology in 12 counties across Hubei province during 2009-2012, were gathered. Distributed lag nonlinear model (DLNM) was first used, to estimate the county-specific associations between daily mean temperature, cold spells, heat waves and stroke mortality. Multivariate Meta-analysis was then applied to pool the community-specific relationships between temperature and stroke mortality (exposure-response relationship) as well as both cold- and- heat-associated risks on mortality at different lag days (lag-response relationship). Results: During 2009-2012, a total population of 6.7 million was included in this study with 42 739 persons died of stroke. An average of 2.7 (from 0.5 to 6.0) stroke deaths occurred daily in each county, with annual average mean temperature as 16.6 ℃ (from 14.7 ℃ to 17.4 ℃) during the study period. An inverse J-shaped association between temperature and stroke mortality was observed at the provincial level. Pooled mortality effect of cold spells showed a 2-3-day delay and lasted about 10 days, while effect of heat waves appeared acute but attenuated within a few days. The mortality risks on cold-spell days ranged from 0.968 to 1.523 in 12 counties at lag 3-14, with pooled effect as 1.180 (95 %CI: 1.043-1.336). The pooled mortality risk (ranged from 0.675 to 2.066) on heat-wave days at lag 0-2 was 1.114 (95 %CI: 1.012-1.227). Conclusions: An inverse J-shaped association between temperature and stroke mortality was observed in Hubei province, China. Both cold spells and heat waves were associated with increased stroke mortality, while different lag patterns were observed in the mortality effects of heat waves and cold spells.

  19. Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, H.; Xiao, Z.; Wei, J.

    2016-12-01

    Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan PlateauHongyi Li 1, Ziniu Xiao 2 and Junhong Wei31 China Meteorological Administration Training Centre, Beijing, China2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Theory of Atmospheric Dynamics and Climate, Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Campus Riedberg, GermanyAbstract:Based on the field observation data over the grasslands in the southeastern Tibetan Plateau and the observational datasets in Nyingchi weather station for the period from May 20 to July 9, 2013, the variation characteristics of the basic meteorological elements in Nyingchi weather station, the surface turbulent fluxes and the components of radiation balance over the grasslands, as well as their relationships, are analyzed in this paper. The results show that in Nyingchi weather station, the daily variations of relative humidity and average total cloud cover are consistent with that of precipitation, but that those of daily average air temperature, daily average ground temperature, daily average wind speed and daily sunshine duration have an opposite change to that of precipitation. During the observation period, latent heat exchange is greater than sensible heat exchange, and latent heat flux is significantly higher when there is rainfall, but sensible heat flux and soil heat flux are lower. The daily variation of the total solar radiation (DR) is synchronous with that of sensible heat flux, and the daily variations of reflective solar radiation (UR), long wave radiation by earth (ULR), net radiation (Rn) and surface albedo are consistent with DR, but that of the long wave radiation by atmosphere (DLR) has an opposite change. The diurnal variations of sensible heat flux, latent heat flux, soil heat flux and the components of surface radiation balance over the grasslands are characterized by higher values at noon and lower values in the morning and evening. Keywords: surface turbulent flux, components of radiation balance, grasslands, southeastern Tibetan Plateau

  20. Comparison of dew point temperature estimation methods in Southwestern Georgia

    Treesearch

    Marcus D. Williams; Scott L. Goodrick; Andrew Grundstein; Marshall Shepherd

    2015-01-01

    Recent upward trends in acres irrigated have been linked to increasing near-surface moisture. Unfortunately, stations with dew point data for monitoring near-surface moisture are sparse. Thus, models that estimate dew points from more readily observed data sources are useful. Daily average dew temperatures were estimated and evaluated at 14 stations in...

  1. Daily Temperature and Precipitation Data for 223 Former-USSR Stations (NDP-040)

    DOE Data Explorer

    Razuvaev, V. N. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Apasova, E. B. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Martuganov, R. A. [Russian Research Institute of Hydrometeorological Information-World Data Centre

    1990-01-01

    The stations in this dataset are considered by RIHMI to comprise one of the best networks suitable for temperature and precipitation monitoring over the the former-USSR. Factors involved in choosing these 223 stations included length or record, amount of missing data, and achieving reasonably good geographic coverage. There are indeed many more stations with daily data over this part of the world, and hundreds more station records are available through NOAA's Global Historical Climatology Network - Daily (GHCND) database. The 223 stations comprising this database are included in GHCND, but different data processing, updating, and quality assurance methods/checks mean that the agreement between records will vary depending on the station. The relative quality and accuracy of the common station records in the two databases also cannot be easily assessed. As of this writing, most of the common stations contained in the GHCND have more recent records, but not necessarily records starting as early as the records available here. This database contains four variables: daily mean, minimum, and maximum temperature, and daily total precipitation (liquid equivalent). Temperature were taken three times a day from 1881-1935, four times a day from 1936-65, and eight times a day since 1966. Daily mean temperature is defined as the average of all observations for each calendar day. Daily maximum/minimum temperatures are derived from maximum/minimum thermometer measurements. See the measurement description file for further details. Daily precipitation totals are also available (to the nearest tenth of a millimeter) for each station. Throughout the record, daily precipitation is defined as the total amount of precipitation recorded during a 24-h period, snowfall being converted to a liquid total by melting the snow in the gauge. From 1936 on, rain gauges were checked several times each day; the cumulative total of all observations during a calendar day was presumably used as the daily total. Again, see the measurement description file for further details.

  2. Can wastewater-based epidemiology be used to evaluate the health impact of temperature? - An exploratory study in an Australian population.

    PubMed

    Phung, Dung; Mueller, Jochen; Lai, Foon Yin; O'Brien, Jake; Dang, Nhung; Morawska, Lidia; Thai, Phong K

    2017-07-01

    Ambient temperature is known to have impact on population health but assessing its impact by the traditional cohort approach is resource intensive. Wastewater-based epidemiology (WBE) could be an alternative for the traditional approach. This study was to provide the first evaluation to see if WBE can be used to assess the impact of temperature exposure to a population in South East Queensland, Australia using selected pharmaceuticals and personal care products (PPCPs) as biomarkers. Daily loads of eight PPCPs in wastewater collected from a wastewater treatment plant were measured from February 2011 to June 2012. Corresponding daily weather data were obtained from the closest weather station. Missing data of PPCPs were handled using the multiple imputation (MI) method, then we used a one-way between-groups analysis of variance to examine the seasonal effect on daily variation of PPCPs by seasons. Finally, an MI estimate was performed to evaluate the continuous relationship between daily average temperature and each multiply-imputed PPCP using time-series regression analysis. The results indicated that an increase of 1°C in average temperature associated with decrease at 1.3g/d (95% CI: -2.2 to (-0.4), p<0.05) for atenolol, increase at 36.5g/d (95% CI: 25.2-47.8, p<0.01) for acesulfame, and increase at 0.8g/d (95% CI: 0.02-1.55, p=0.05) for naproxen. No significant association was observed between temperature and the remaining PPCPs, comprising: caffeine, carbamazepine, codeine, hydrochlorothiazide, and salicylic acid. The findings suggested that consumption of sweetened drinks, risk of worsening cardiovascular conditions and pains are associated with variation in ambient temperature. WBE can thus be used as a complementary method to traditional cohort studies in epidemiological evaluation of the association between environmental factors and health outcomes provided that specific biomarkers of such health outcomes can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. SWATS: Diurnal Trends in the Soil Temperature Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David; Theisen, Adam

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cmmore » SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.« less

  4. Instream habitat restoration and stream temperature reduction in a whirling disease-positive Spring Creek in the Blackfoot River Basin, Montana

    USGS Publications Warehouse

    Pierce, Ron; Podner, Craig; Marczak, Laurie B; Jones, Leslie A.

    2014-01-01

    Anthropogenic warming of stream temperature and the presence of exotic diseases such as whirling disease are both contemporary threats to coldwater salmonids across western North America. We examined stream temperature reduction over a 15-year prerestoration and postrestoration period and the severity of Myxobolus cerebralisinfection (agent of whirling disease) over a 7-year prerestoration and postrestoration period in Kleinschmidt Creek, a fully reconstructed spring creek in the Blackfoot River basin of western Montana. Stream restoration increased channel length by 36% and reduced the wetted surface area by 69% by narrowing and renaturalizing the channel. Following channel restoration, average maximum daily summer stream temperatures decreased from 15.7°C to 12.5°C, average daily temperature decreased from 11.2°C to 10.0°C, and the range of daily temperatures narrowed by 3.3°C. Despite large changes in channel morphology and reductions in summer stream temperature, the prevalence and severity of M. cerebralis infection for hatchery Rainbow Trout Oncorhynchus mykiss remained high (98–100% test fish with grade > 3 infection) versus minimal for hatchery Brown Trout Salmo trutta (2% of test fish with grade-1 infection). This study shows channel renaturalization can reduce summer stream temperatures in small low-elevation, groundwater-dominated streams in the Blackfoot basin to levels more suitable to native trout. However, because of continuous high infections associated with groundwater-dominated systems, the restoration of Kleinschmidt Creek favors brown trout Salmo trutta given their innate resistance to the parasite and the higher relative susceptibility of other salmonids.

  5. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  6. [Influence of weather in the incidence of acute myocardial infarction in Galicia (Spain)].

    PubMed

    Fernández-García, José Manuel; Dosil Díaz, Olga; Taboada Hidalgo, Juan José; Fernández, José Ramón; Sánchez-Santos, Luis

    2015-08-07

    To assess the interactions between weather and the impact of each individual meteorological parameters in the incidence of acute myocardial infarctions (AMI) in Galicia. Retrospective study analyzing the number of AMI diagnosed and transferred to the hospital by the Emergencies Sanitary System of Galicia between 2002 and 2009. We included patients with clinical and ECG findings of AMI. The correlation between 10-minute meteorological variables (temperature, humidity, pressure, accumulated rainfall and wind speed) recorded by MeteoGalicia and the incidence of AMI was assessed. A total of 4,717 AMI were registered (72.8% men, 27.2% women). No seasonal variations were found. No significant correlations were detected with regard to average daily temperature (P=.683) or wind speed (P=.895). Correlation between atmospheric pressure and incidence of AMI was significant (P<.005), as well as with the daily relative humidity average (P=.005). Our study showed a statistical significant association with atmospheric pressure and with the daily relative humidity average. Since the local conditions of weather are widely variable, future studies should establish the relationship between weather patterns (including combinations of meteorological parameters), rather than seasonal variations, and the incidence of AMI. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  7. A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    2002-01-01

    A water-quality standard for temperature is critical for the protection of threatened and endangered salmonids, which need cold, clean water to sustain life. The Idaho Department of Environmental Quality has established temperature standards to protect salmonids, yet little is known about the normal range of temperatures of most Idaho streams. A single temperature standard for all streams does not take into account the natural temperature variation of streams or the existence of naturally warm waters. To address these issues and to help the Idaho Department of Environmental Quality revise the existing State temperature standards for aquatic life, temperature data from more than 200 streams and rivers in the salmon and Clearwater River Basins were collected. From these data, a statistical model was developed for estimating stream temperatures on the basis of subbasin and site characteristics and climatic factors. Stream temperatures were monitored hourly for approximately 58 days during July, August, and September 2000 at relatively undisturbed sites in subbasins in the Salmon and Clearwater River Basins in central Idaho. The monitored subbasins vary widely in size, elevation, drainage area, vegetation cover, and other characteristics. The resulting data were analyzed for statistical correlations with subbasin and site characteristics to establish the most important factors affecting stream temperature. Maximum daily average stream temperatures were strongly correlated with elevation and total upstream drainage area; weaker correlations were noted with stream depth and width and aver-age subbasin slope. Stream temperatures also were correlated with certain types of vegetation cover, but these variables were not significant in the final model. The model takes into account seasonal temperature fluctuations, site elevation, total drainage area, average subbasin slope, and the deviation of daily average air temperature from a 30-year normal daily average air temperature. The goodness-of-fit of the model varies with day of the year. Overall, temperatures can be estimated with 95-percent confidence to within approximately plus or minus 4 degrees Celsius. The model performed well when tested on independent stream-temperature data previously collected by the U.S. Geological Survey and other agencies. Although the model provides insight into the natural temperature potential of a wide variety of streams and rivers in the Salmon and Clearwater River Basins, it has limitations. It is based on data collected in only one summer, during which temperatures were higher and streamflows were lower than normal. The effects of changes in streamflow on the effectiveness of the model are not known. Because the model is based on data from minimally disturbed or undisturbed streams, it should not be applied to streams known to be significantly affected by human activities such as disturbance of the streambed, diversion and return of water by irrigation ditches, and removal of riparian vegetation. Finally, because the model is based on data from streams in the Salmon and Clearwater River Basins and reflects climatological and landscape characteristics of those basins, it should not be applied to streams outside this region.

  8. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    USGS Publications Warehouse

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 73 percent of the months. Use of the unmodified USWB method is appealing because it means estimates of average daily reservoir evaporation can be made from air temperature, relative humidity, wind speed, and solar radiation data collected from remote weather stations without the need to develop site-specific coefficients from historical pan data. Site-specific coefficients would need to be developed for the modified version of the Hamon method.

  9. Annual and Semi-Annual Temperature Oscillations in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Niciejewski, R. J.; Killeen, T. L.

    1995-01-01

    Fourier transform spectrometer observations of the mesosphere have been performed at the University of Michigan (latitude: 42.5 N) on a long term basis. A database of near infrared Meinel hydroxyl spectra has been accumulated from which rotational temperatures have been determined. Harmonic analysis of one-day averaged temperatures for the period 1992.0 to 1994.5 has shown a distinct annual and semi-annual variation. Subsequent fitting of a five term periodic function characterizing the annual and semi-annual temperature oscillations to the daily averaged temperatures was performed. The resultant mean temperature and the amplitudes and phases of the annual and semi-annual variations are shown to coincide with an emission height slightly above 85 km which is consistent with the mean rocket derived altitude for peak nocturnal hydroxyl emission.

  10. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  11. Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.

    2007-12-01

    Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  12. Stochastic generators of multi-site daily temperature: comparison of performances in various applications

    NASA Astrophysics Data System (ADS)

    Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit

    2018-02-01

    We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).

  13. Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada, 2002-05

    USGS Publications Warehouse

    DeMeo, Guy A.; Flint, Alan L.; Laczniak, Randell J.; Nylund, Walter E.

    2006-01-01

    Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002 - August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.

  14. Efficacy of tilmicosin in the control of experimentally induced Actinobacillus pleuropneumoniae infection in swine

    PubMed Central

    2004-01-01

    Abstract The efficacy of tilmicosin administered in the feed to control Actinobacillus pleuropneumoniae infections in pigs was evaluated through a multisite, multitrial study. For each of 6 trials, 48 pigs (stratified by weight and sex) were randomly assigned to 6 to 8 pens. Medicated feed containing tilmicosin (200 g/t) and unmedicated feed were randomly assigned at the pen level and were provided ad libitum from day −7 to trial termination (day 14). Seeder pigs (inoculated intranasally with A. pleuropneumoniae serotype 1 and showing signs of clinical disease) were introduced to each pen on day 0. Rates of death, gross lesions, and culture of A. pleuropneumoniae at necropsy, clinical scores, average daily gain in weight, and average body temperature were compared between the medicated and unmedicated pigs. Compared with the unmedicated pigs, significantly fewer (P < 0.05) pigs given tilmicosin had lesions typical of A. pleuropneumoniae or had A. pleuropneumoniae isolated from their tissues at necropsy. Together with a significant reduction (P < 0.05) in the average percentage of pneumonic lung involvement (both visually and by weight), there were reductions in the numbers of pigs with moderate and severe pneumonic lung lesions and with A. pleuropneumoniae associated mortality. With tilmicosin treatment, the average daily weight gain, daily temperature, abdominal appearance, attitude, and respiration were also significantly better (P < 0.05). The results of this study demonstrate the in vivo effectiveness of tilmicosin (200 g/t) in controlling pleuropneumonia among swine experimentally infected with A. pleuropneumoniae. PMID:14979429

  15. Efficacy of tilmicosin in the control of experimentally induced Actinobacillus pleuropneumoniae infection in swine.

    PubMed

    Paradis, Marie-Anne; Vessie, Gordon H; Merrill, John K; Dick, C Paul; Moore, Camille; Charbonneau, George; Gottschalk, M; MacInnes, Janet I; Higgins, Robert; Mittal, K R; Girard, C; Aramini, Jeffery J; Wilson, Jeffrey B

    2004-01-01

    The efficacy of tilmicosin administered in the feed to control Actinobacillus pleuropneumoniae infections in pigs was evaluated through a multisite, multitrial study. For each of 6 trials, 48 pigs (stratified by weight and sex) were randomly assigned to 6 to 8 pens. Medicated feed containing tilmicosin (200 g/t) and unmedicated feed were randomly assigned at the pen level and were provided ad libitum from day -7 to trial termination (day 14). Seeder pigs (inoculated intranasally with A. pleuropneumoniae serotype 1 and showing signs of clinical disease) were introduced to each pen on day 0. Rates of death, gross lesions, and culture of A. pleuropneumoniae at necropsy, clinical scores, average daily gain in weight, and average body temperature were compared between the medicated and unmedicated pigs. Compared with the unmedicated pigs, significantly fewer (P < 0.05) pigs given tilmicosin had lesions typical of A. pleuropneumoniae or had A. pleuropneumoniae isolated from their tissues at necropsy. Together with a significant reduction (P < 0.05) in the average percentage of pneumonic lung involvement (both visually and by weight), there were reductions in the numbers of pigs with moderate and severe pneumonic lung lesions and with A. pleuropneumoniae associated mortality. With tilmicosin treatment, the average daily weight gain, daily temperature, abdominal appearance, attitude, and respiration were also significantly better (P < 0.05). The results of this study demonstrate the in vivo effectiveness of tilmicosin (200 g/t) in controlling pleuropneumonia among swine experimentally infected with A. pleuropneumoniae.

  16. Effect of average growing season temperature on seedling germination, survival and growth in jack pine (Pinus banksiana Lamb.)

    Treesearch

    A. David; E. Humenberger

    2017-01-01

    Because jack pine (Pinus banksiana Lamb.) is serotinous, it retains multiple years of cones until environmental conditions are favorable for releasing seed. These cones, which contain seed cohorts that developed under a variety of growing seasons, can be accurately aged using bud scale scars on twigs and branches. By calculating the average daily...

  17. Incubation behavior of Spectacled Eiders on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Grand, J.B.

    1999-01-01

    We studied incubation behavior of Spectacled Eiders (Somateria fischeri) on the Yukon-Kuskokwim Delta in 1996. We trapped 19 females on their nests and weighed them in early incubation and again at hatch. Average daily weight loss for incubating females was 16.6 ?? 1.0 g day-1, which resulted in a cumulative loss of 26% of body weight throughout incubation. Nest attendance was monitored for a portion of the incubation period using temperature sensing artificial eggs. Incubation constancy averaged 90 ?? 1%. Average recess length was 37.1 ?? 0.9 min, and nests cooled an average of 4.2 ?? 0.1??C during recesses. Recess frequency averaged 2.5 ?? 0.1 recesses day-1, and most recesses (70%) occurred between 10:00 and 22: 00. Incubation constancy varied among females, but was not related to changes in body weight or incubation period. There was no influence of ambient temperature on incubation recess length, however most recesses were taken during the warmest part of the day. We found considerable variation among females in patterns of daily incubation constancy, nest cooling, recess frequency, and recess length. It is not clear from our results what factors constrain incubation behavior of Spectacled Eiders, but we suggest that individual females respond to a complex suite of variables.

  18. Life cycle and fecundity analysis of Lutzomyia shannoni (Dyar) (Diptera: Psychodidae).

    PubMed

    Ferro, C; Cárdenas, E; Corredor, D; Morales, A; Munstermann, L E

    1998-01-01

    The life cycle of Lutzomyia shannoni (Dyar), was described for laboratory conditions with maximum daily temperature of 27-30 degree C, minimum daily temperatures of 22-27 degree C and relative humidity between 87-99%. Life cycle in each stage was as follows: egg 6-12 days (ave, 8.5 days); first stage larva 5-13 days (ave. 9.6 days); second stage larva 4-13 days (ave. 9.2 days); third stage larva 5-19 days (ave. 11.8 days); fourth stage larva 7-37 days (ave. 19.9 days); pupa 7-32 days (ave. 15.2 days). The life expectancy of adults ranged from 4 to 15 days (ave. 8.6 days). The entire egg to adult period ranged from 36 to 74 days (ave. 54.6 days). On average, each female oviposited 22.7 eggs; the average egg retention per female was 24.3 eggs.

  19. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005-2010

    NASA Astrophysics Data System (ADS)

    Wood, Wendy H.; Marshall, Shawn J.; Whitehead, Terri L.; Fargey, Shannon E.

    2018-03-01

    Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  20. Forecasting daily meteorological time series using ARIMA and regression models

    NASA Astrophysics Data System (ADS)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  1. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    PubMed Central

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-01-01

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675

  2. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.

    PubMed

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-02-03

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.

  3. Which metric of ambient ozone to predict daily mortality?

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Hutter, Hans-Peter; Kundi, Michael

    2013-02-01

    It is well known that ozone concentration is associated with daily cause specific mortality. But which ozone metric is the best predictor of the daily variability in mortality? We performed a time series analysis on daily deaths (all causes, respiratory and cardiovascular causes as well as death in elderly 65+) in Vienna for the years 1991-2009. We controlled for seasonal and long term trend, day of the week, temperature and humidity using the same basic model for all pollutant metrics. We found model fit was best for same day variability of ozone concentration (calculated as the difference between daily hourly maximum and minimum) and hourly maximum. Of these the variability displayed a more linear dose-response function. Maximum 8 h moving average and daily mean value performed not so well. Nitrogen dioxide (daily mean) in comparison performed better when previous day values were assessed. Same day ozone and previous day nitrogen dioxide effect estimates did not confound each other. Variability in daily ozone levels or peak ozone levels seem to be a better proxy of a complex reactive secondary pollutant mixture than daily average ozone levels in the Middle European setting. If this finding is confirmed this would have implications for the setting of legally binding limit values.

  4. Map showing length of freeze-free season in the Salina quadrangle, Utah

    USGS Publications Warehouse

    Covington, Harry R.

    1972-01-01

    In general, long freeze-free periods occur at low elevations, and short freeze-free periods occur at high elevations. But some valley floors have shorter freeze-free seasons than the glancing foothills because air cooled at high elevations flows downward and is trapped in the valleys. This temperature pattern occurs in the western part of the quadrangle in Rabbit Valley, Grass Valley, and the Sevier River Valley near Salina.Because year-round weather stations are sparse in Utah, a special technique for estimating length of freeze-free season was developed by Dr. Gaylen L. Ashcroft, Assistant Professor of Climatology, Utah State University, and E. Arlo Richardson, State Climatologist, U.S. Weather Bureau, based on average annual temperature, average annual temperature range, average daily temperature range, and average july maximum temperature. This technique was used in preparation of the map showing “Length of 32°F freeze-free season for Utah,” figure 23 in Hydrologic Atlas of Utah (Utah State University and Utah Division of Water Resources, 1968), from which the data for this map were taken.

  5. Age, circadian rhythms, and sleep loss in flight crews

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Nguyen, DE; Rosekind, Mark R.; Connell, Linda J.

    1993-01-01

    Age-related changes in trip-induced sleep loss, personality, and the preduty temperature rhythm were analyzed in crews from various flight operations. Eveningness decreased with age. The minimum of the baseline temperature rhythm occurred earlier with age. The amplitude of the baseline temperature rhythm declined with age. Average daily percentage sleep loss during trips increased with age. Among crewmembers flying longhaul flight operations, subjects aged 50-60 averaged 3.5 times more sleep loss per day than subjects aged 20-30. These studies support previous findings that evening types and subjects with later peaking temperature rhythms adapt better to shift work and time zone changes. Age and circadian type may be important considerations for duty schedules and fatigue countermeasures.

  6. Simplified Preliminary Economic Analysis for Passive Solar Heating.

    DTIC Science & Technology

    1983-09-01

    requirements of a space kept at approxi- mately 700 F is directly proportional to the number of degrees the average daily outside temperature falls...January 1979. conservation in sit* es byf Architetural Educsto R esearch, lston, Va., Jim. 1978.

  7. Environmental triggers of acute myocardial infarction: results of a nationwide multiple-factorial population study.

    PubMed

    Claeys, Marc J; Coenen, Sarah; Colpaert, Charlotte; Bilcke, Joke; Beutels, Phillip; Wouters, Kristien; Legrand, Victor; Van Damme, Pierre; Vrints, Christiaan

    2015-12-01

    The objective of this study was to study the independent environmental triggers of ST-elevation myocardial infarction (STEMI) in a multifactorial environmental population model. Daily counts of all STEMI patients who underwent urgent percutaneous coronary intervention over the period 2006-2009 in Belgium were associated with average daily meteorological data and influenza-like illness incidence data. The following meteorological measures were investigated: particulate matter less than 10 μM (PM10) and less than 2.5 μM (PM(2.5)), ozone, black smoke, temperature and relative humidity. During the study period a total of 15,964 STEMI patients (mean age 63, 75% male) were admitted with a daily average admission rate of 11 ± 4 patients. A multivariate Poisson regression analysis showed that only the temperature was significantly correlated with STEMI, with an 8% increase in the risk of STEMI for each 10°C decrease in temperature (adjusted incidence risk ratio (IRR) 0.92, 95% CI 0.89-0.96). The effects of temperature were consistent among several subpopulations but the strongest effect was seen in diabetic patients (IRR 0.85, 95% CI 0.78 -0.95). There was a trend for an incremental risk of STEMI for each 10 μg/m³ PM(2.5) increase and during influenza epidemics with IRR of 1.02 (95% CI 1.00-1.04) and 1.07 (95% CI 0.98-1.16), respectively. In a global environmental model, low temperature is the most important environmental trigger for STEMI, whereas air pollution and influenza epidemics only seem to have a modest effect.

  8. 40 CFR 63.8005 - What requirements apply to my process vessels?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature, as required by § 63.1257(d)(3)(iii)(B), you may elect to measure the liquid temperature in the... the daily averages specified in § 63.998(b)(3). An operating block is a period of time that is equal to the time from the beginning to end of an emission episode or sequence of emission episodes. (g...

  9. 40 CFR 63.8005 - What requirements apply to my process vessels?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... temperature, as required by § 63.1257(d)(3)(iii)(B), you may elect to measure the liquid temperature in the... the daily averages specified in § 63.998(b)(3). An operating block is a period of time that is equal to the time from the beginning to end of an emission episode or sequence of emission episodes. (g...

  10. 40 CFR 63.8005 - What requirements apply to my process vessels?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature, as required by § 63.1257(d)(3)(iii)(B), you may elect to measure the liquid temperature in the... the daily averages specified in § 63.998(b)(3). An operating block is a period of time that is equal to the time from the beginning to end of an emission episode or sequence of emission episodes. (g...

  11. Estimation of stream temperature in support of fish production modeling under future climates in the Klamath River Basin

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature projections for the 21st century could be underestimating the actual change.

  12. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Institut national de santé publique du Québec

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures inmore » 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder temperate zones. - Highlights: • 259 heat-related compensated illnesses were modeled with ambient temperature • An overall risk ratio of 1.419 (95% CI 1.326–1.520) for every 1 °C increase was found • Risk estimates were similar for men and women and by large age groups. • There were little lag effects (IRRs of 1.206 to 1.471 for every 1 °C increase)« less

  13. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    NASA Astrophysics Data System (ADS)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  14. Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar years 1990 and 1991

    USGS Publications Warehouse

    Wood, James L.; Andraski, Brian J.

    1995-01-01

    Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar years 1990 and 1991. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, barometric pressure, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1990, the average hourly air temperatures ranged from -16.2 degrees Celsius, in December, to 44.2 degrees Celsius, in July. Hourly averaged relative humidity ranged from 6 percent to more than 90 percent. Hourly vapor pressures ranged from 0.08 to 1.84 kilopascals. Daily maximum incident solar radiation values ranged from 192 to 1,028 watts per square meter. Daily mean windspeed ranged from less than 1 to 8.7 meters per second. Wind direction was primarily from the northwest in fall, winter, and spring and varied from southeast, southwest, or northwest during the summer. Hourly barometric pressures ranged from 99.47 to 103.12 kilopascals. Total precipitation for 1990 was 32.4 millimeters; almost 45 percent was in September.In 1991, the average hourly air temperatures ranged from -9.2 degrees Celsius, in January, to 43.7 degrees Celsius, in July. Hourly averaged relative humidity ranged from 3 percent to more than 95 percent. Hourly vapor pressures ranged from 0.07 to 2.22 kilopascals. Daily maximum incident solar radiation values ranged from 143 to 1,041 watts per square meter. Daily mean windspeed ranged from 1.2 to 8.4 meters per second. Wind direction was primarily from the northwest in fall, winter, and spring and varied from southeast, southwest, or northwest during the summer. Hourly barometric pressures ranged from 99.52 to 103.40 kilopascals. Total precipitation for 1991 was 103.6 millimeters; almost 60 percent was in March.

  15. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory

    NASA Astrophysics Data System (ADS)

    Shen, L.; Mickley, L. J.; Gilleland, E.

    2016-04-01

    We develop a statistical model using extreme value theory to estimate the 2000-2050 changes in ozone episodes across the United States. We model the relationships between daily maximum temperature (Tmax) and maximum daily 8 h average (MDA8) ozone in May-September over 2003-2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model sometimes fails to capture ozone-Tmax relationships, so we refit the ozone-Tmax slope using logistic regression and a generalized Pareto distribution model. We then apply the resulting hybrid-extreme value theory model to projections of Tmax from an ensemble of downscaled climate models. Assuming constant anthropogenic emissions at the present level, we find an average increase of 2.3 d a-1 in ozone episodes (>75 ppbv) across the United States by the 2050s, with a change of +3-9 d a-1 at many sites.

  16. Impact of flow regulation and power plant effluents on the flow and temperature regimes of the Chattahoochee River; Atlanta to Whitesburg, Georgia

    USGS Publications Warehouse

    Faye, Robert E.; Jobson, Harvey E.; Land, Larry F.

    1978-01-01

    A calibrated and verified transient-flow temperature model was used to evaluate the effects of flow regulation and powerplant loadings on the natural temperature regime of the Chattahoochee River in northeast Georgia. Estimates were made of both instantaneous and average natural temperatures in the river during an 8-day period in August 1976. Differences between the computed average natural temperature and an independent estimateof natural temperature based on observed equilibrium temperatures were less than 0.5C. The combined thermal effects of flow regulation and powerplant effluents resulted in mean daily river temperatures downstreams of the powerplants about equal to or less than computed mean natural temperatures. The range and rates of change of computed natural diurnal temperature fluctuations were considerably less than those presently observed (1976) in the river. Except during periods of peak water-supply demand, differences between computed year 2000 river temperatures and observed present-day temperatures were less than 2C. (Woodard-USGS)

  17. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis.

    PubMed

    Breitner, Susanne; Wolf, Kathrin; Devlin, Robert B; Diaz-Sanchez, David; Peters, Annette; Schneider, Alexandra

    2014-07-01

    Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we investigated effect modification by age and ambient air pollution. We obtained data from Munich, Nuremberg as well as Augsburg, Germany, for the period 1990 to 2006. Data included daily cause-specific death counts, mean daily meteorology and air pollution concentrations (particulate matter with a diameter<10 μm [PM10] and maximum 8-h ozone). We used Poisson regression models combined with distributed lag non-linear models adjusting for long-term trend, calendar effects, and meteorological factors. Air pollutant concentrations were categorized into three levels, and an interaction term was included to quantify potential effect modification of the air temperature effects. The temperature-mortality relationships were non-linear for all cause-specific mortality categories showing U- or J-shaped curves. An increase from the 90th (20.0 °C) to the 99th percentile (24.8 °C) of 2-day average temperature led to an increase in non-accidental mortality by 11.4% (95% CI: 7.6%-15.3%), whereas a decrease from the 10th (-1.0 °C) to the 1st percentile (-7.5 °C) in the 15-day average temperature resulted in an increase of 6.2% (95% CI: 1.8%-10.8%). The very old were found to be most susceptible to heat effects. Results also suggested some effect modification by ozone, but not for PM10. Results indicate that both very low and very high air temperature increase cause-specific mortality in Bavaria. Results also pointed to the importance of considering effect modification by age and ozone in assessing temperature effects on mortality. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Early meteorological results from the viking 2 lander.

    PubMed

    Hess, S L; Henry, R M; Leovy, C B; Mitchell, J L; Ryan, J A; Tillman, J E

    1976-12-11

    Early results from the meteorological instruments on the Viking 2 lander are presented. As on lander 1, the daily patterns of temperature, wind, and pressure have been highly repetitive during the early summer period. The average daily maximum temperature was 241 degrees K and the diurnal minimum was 191 degrees K. The wind has a vector mean of 0.7 meter per second from the southeast with a diurnal amplitude of 3 meters per second. Pressure exhibits both diurnal and semidiurnal oscillations, although of substantially smaller amplitude than those of lander 1. Departures from the repetitive diurnal patterns begin to appear on sol 37.

  19. Ozone and its projection in regard to climate change

    NASA Astrophysics Data System (ADS)

    Melkonyan, Ani; Wagner, Patrick

    2013-03-01

    In this paper, the dependence of ozone-forming potential on temperature was analysed based on data from two stations (with an industrial and rural background, respectively) in North Rhine-Westphalia, Germany, for the period of 1983-2007. After examining the interrelations between ozone, NOx and temperature, a projection of the days with ozone exceedance (over a limit value of a daily maximum 8-h average ≥ 120 μg m-3 for 25 days per year averaged for 3 years) in terms of global climate change was made using probability theory and an autoregression integrated moving average (ARIMA) model. The results show that with a temperature increase of 3 K, the frequency of days when ozone exceeds its limit value will increase by 135% at the industrial station and by 87% at the rural background station.

  20. Coupled long term simulation of reach scale water and heat fluxes across the river groundwater interface and hyporheic temperature dynamics

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-04-01

    Flow pattern and seasonal as well as diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many microbial processes. In this study we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high frequent observations of hydraulic heads and temperatures for quantifying reach scale water and heat flux across the river groundwater interface and hyporheic temperature dynamics of a lowland gravel-bed river. The magnitude and dynamics of simulated temperatures matched the observed with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. Our results highlight that the average temperature in the hyporheic zone follows the temperature in the river which is characterized by distinct seasonal and daily temperature cycles. Individual hyporheic flow path temperature substantially varies around the average hyporheic temperature. Hyporheic flow path temperature was found to strongly depend on the flow path residence time and the temperature gradient between river and groundwater; that is, in winter the average flow path temperature of long flow paths is potentially higher compared to short flow paths. Based on the simulation results we derived a general empirical relationship, estimating the influence of hyporheic flow path residence time on hyporheic flow path temperature. Furthermore we used an empirical temperature relationship between effective temperature and respiration rate to estimate the influence of hyporheic flow path residence time and temperature on hyporheic oxygen consumption. This study highlights the relation between complex hyporheic temperature patterns, hyporheic residence times and their implications on temperature sensitive biogeochemical processes.

  1. Cold-related mortality vs heat-related mortality in a changing climate: A case study in Vilnius (Lithuania).

    PubMed

    Martinez, Gerardo Sanchez; Diaz, Julio; Hooyberghs, Hans; Lauwaet, Dirk; De Ridder, Koen; Linares, Cristina; Carmona, Rocio; Ortiz, Cristina; Kendrovski, Vladimir; Adamonyte, Dovile

    2018-06-21

    Direct health effects of extreme temperatures are a significant environmental health problem in Lithuania, and could worsen further under climate change. This paper attempts to describe the change in environmental temperature conditions that the urban population of Vilnius could experience under climate change, and the effects such change could have on excess heat-related and cold-related mortality in two future periods within the 21st century. We modelled the urban climate of Vilnius for the summer and winter seasons during a sample period (2009-2015) and projected summertime and wintertime daily temperatures for two prospective periods, one in the near (2030-2045) and one in the far future (2085-2100), under the Representative Concentration Pathway (RCP) 8.5. We then analysed the historical relationship between temperature and mortality for the period 2009-2015, and estimated the projected mortality in the near future and far future periods under a changing climate and population, assuming alternatively no acclimatisation and acclimatisation to heat and cold based on a constant-percentile threshold temperature. During the sample period 2009-2015 in summertime we observed an increase in daily mortality from a maximum daily temperature of 30 °C (the 96th percentile of the series), with an average of around 7 deaths per year. Under a no acclimatisation scenario, annual average heat-related mortality would rise to 24 deaths/year (95% CI: 8.4-38.4) in the near future and to 46 deaths/year (95% CI: 16.4-74.4) in the far future. Under a heat acclimatisation scenario, mortality would not increase significantly in the near or in the far future. Regarding wintertime cold-related mortality in the sample period 2009-2015, we observed increased mortality on days on which the minimum daily temperature fell below - 12 °C (the 7th percentile of the series), with an average of around 10 deaths a year. Keeping the threshold temperature constant, annual average cold-related mortality would decrease markedly in the near future, to 5 deaths/year (95% CI: 0.8-7.9) and even more in the far future, down to 0.44 deaths/year (95% C: 0.1-0.8). Assuming a "middle ground" between the acclimatisation and non-acclimatisation scenarios, the decrease in cold-related mortality will not compensate the increase in heat-related mortality. Thermal extremes, both heat and cold, constitute a serious public health threat in Vilnius, and in a changing climate the decrease in mortality attributable to cold will not compensate for the increase in mortality attributable to heat. Study results reinforce the notion that public health prevention against thermal extremes should be designed as a dynamic, adaptive process from the inception. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Solar energy potential in the United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, A.; Alnajjar, A.

    1995-12-31

    In the present study, the global, direct and diffuse components of solar radiation as well as temperature, relative humidity and wind speed have been continuously monitored and analyzed on hourly, daily and monthly basis. Experimental data is compared to the predictions of different theoretical models as functions of declination and hour angles. Correlations are obtained describing the variation of hourly, daily and monthly averages of total and diffuse solar radiation using polynomial expressions. Empirical correlations describing the dependence of the daily average diffuse to total radiation ratio on the clearness index are also obtained. Data of daily diffuse to totalmore » radiation ratio is compared to correlations obtained by other investigators. The comparison shows a reasonable agreement with some scatter due to the seasonal dependence of the correlation. Comparison of calculations with experimental measurements under clear sky conditions show excellent agreement with a maximum error of 8%. The measured ratio of hourly to daily insolation is in excellent agreement with the model of Hottel which is expressed as a function of the clearness index, hour and the sunset hour angles.« less

  3. Estimating wheat and maize daily evapotranspiration using artificial neural network

    NASA Astrophysics Data System (ADS)

    Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein

    2018-02-01

    In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.

  4. Can brook trout survive climate change in large rivers? If it rains.

    PubMed

    Merriam, Eric R; Fernandez, Rodrigo; Petty, J Todd; Zegre, Nicolas

    2017-12-31

    We provide an assessment of thermal characteristics and climate change vulnerability for brook trout (Salvelinus fontinalis) habitats in the upper Shavers Fork sub-watershed, West Virginia. Spatial and temporal (2001-2015) variability in observed summer (6/1-8/31) stream temperatures was quantified in 23 (9 tributary, 14 main-stem) reaches. We developed a mixed effects model to predict site-specific mean daily stream temperature from air temperature and discharge and coupled this model with a hydrologic model to predict future (2016-2100) changes in stream temperature under low (RCP 4.5) and high (RCP 8.5) emissions scenarios. Observed mean daily stream temperature exceeded the 21°C brook trout physiological threshold in all but one main-stem site, and 3 sites exceeded proposed thermal limits for either 63- and 7-day mean stream temperature. We modeled mean daily stream temperature with a high degree of certainty (R 2 =0.93; RMSE=0.76°C). Predicted increases in mean daily stream temperature in main-stem and tributary reaches ranged from 0.2°C (RCP 4.5) to 1.2°C (RCP 8.5). Between 2091 and 2100, the average number of days with mean daily stream temperature>21°C increased within main-stem sites under the RCP 4.5 (0-1.2days) and 8.5 (0-13) scenarios; however, no site is expected to exceed 63- or 7-day thermal limits. During the warmest 10years, ≥5 main-stem sites exceeded the 63- or 7-day thermal tolerance limits under both climate emissions scenarios. Years with the greatest increases in stream temperature were characterized by low mean daily discharge. Main-stem reaches below major tributaries never exceed thermal limits, despite neighboring reaches having among the highest observed and predicted stream temperatures. Persistence of thermal refugia within upper Shavers Fork would enable persistence of metapopulation structure and life history processes. However, this will only be possible if projected increases in discharge are realized and offset expected increases in air temperature. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. A regional neural network model for predicting mean daily river water temperature

    USGS Publications Warehouse

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate and land use changes, thereby providing information that is valuable to management of river ecosystems and biota such as brook trout.

  6. Heat and health in Antwerp under climate change: Projected impacts and implications for prevention.

    PubMed

    Martinez, Gerardo Sanchez; Diaz, Julio; Hooyberghs, Hans; Lauwaet, Dirk; De Ridder, Koen; Linares, Cristina; Carmona, Rocio; Ortiz, Cristina; Kendrovski, Vladimir; Aerts, Raf; Van Nieuwenhuyse, An; Dunbar, Maria Bekker-Nielsen

    2018-02-01

    Excessive summer heat is a serious environmental health problem in several European cities. Heat-related mortality and morbidity is likely to increase under climate change scenarios without adequate prevention based on locally relevant evidence. We modelled the urban climate of Antwerp for the summer season during the period 1986-2015, and projected summer daily temperatures for two periods, one in the near (2026-2045) and one in the far future (2081-2100), under the Representative Concentration Pathway (RCP) 8.5. We then analysed the relationship between temperature and mortality, as well as with hospital admissions for the period 2009-2013, and estimated the projected mortality in the near future and far future periods under changing climate and population, assuming alternatively no acclimatization and acclimatization based on a constant threshold percentile temperature. During the sample period 2009-2013 we observed an increase in daily mortality from a maximum daily temperature of 26°C, or the 89th percentile of the maximum daily temperature series. The annual average heat-related mortality in this period was 13.4 persons (95% CI: 3.8-23.4). No effect of heat was observed in the case of hospital admissions due to cardiorespiratory causes. Under a no acclimatization scenario, annual average heat-related mortality is multiplied by a factor of 1.7 in the near future (24.1deaths/year CI 95%: 6.78-41.94) and by a factor of 4.5 in the far future (60.38deaths/year CI 95%: 17.00-105.11). Under a heat acclimatization scenario, mortality does not increase significantly in the near or in the far future. These results highlight the importance of a long-term perspective in the public health prevention of heat exposure, particularly in the context of a changing climate, and the calibration of existing prevention activities in light of locally relevant evidence. Copyright © 2017. Published by Elsevier Ltd.

  7. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  8. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval, resampling and filtering of MODIS images—are anticipated.

  9. THE EFFECT OF TEMPERATURE AND HUMIDITY ON THE TOBACCO POWDERY MILDEW FUNGUS

    DTIC Science & Technology

    The influence of temperature on the germination of conidia and on the infection of tobacco by powdery mildew was determined. For the former the...The existence of a very close correlation between the occurrence of powdery mildew in certain tobacco areas and the average daily maximum-minimum...temperatures prevailing in those areas could be shown. It was found, for example, that powdery mildew did not occur in areas in which the prevailing

  10. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2017-11-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  11. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-11-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  12. Evaluating the Impact of Global Warming on Water Balance of Maize by High-precision Controlled Experiment and MLCan model

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Kumar, P.; Wu, Y.; Woo, D.; Le, P. V.; Ma, C.

    2016-12-01

    Increased temperature affects the agricultural hydrologic cycle not only by changing precipitation levels, evapotranspiration and the magnitude and timing of run-off, but also by impacting water flows and soil water dynamics. Accurate prediction of hydrologic change under global warming requires high-precision experiment and mathematical model to determine water interaction between interfaces in the soil-plant-atmosphere continuum. In this study, the weighting lysimeter and chamber were coupled to monitor water balance component dynamics of maize under controlled ambient temperature and elevated temperature of 2°C conditions. A mechanistic multilayer canopy-soil-root system model (MLCan) was used to predict hydrologic fluxes variation under different elevated temperature scenarios after calibration with experimental results. The results showed that maize growth period reduced 8 days under increased temperature of 2°C. The mean daily evapotranspiration, soil water storage change, and drainage was 2.66 mm, -2.75 mm, and 0.22 mm under controlled temperature condition, respectively. When temperature was elevated by 2°C, the average daily ET for maize significantly increased about 6.7% (p<0.05). However, there were non-significant impacts of increased temperature on the daily soil water storage change and drainage (p>0.05). Quantification of changes in water balance components induced by temperature increase for maize is critical for optimizing irrigation water management practices and improving water use efficiency.

  13. Spatial disaggregation of POWER-NASA air temperatures and effects on grass reference evapotranspiration in Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Negm, Amro; Minacapilli, Mario; Provenzano, Giuseppe

    2017-04-01

    The accurate estimation of grass reference evapotranspiration (ET0) is important for many fields, including hydrology and irrigation water management. Being direct measure of ET0 difficult, expensive and time consuming, application of simplified approaches and web-based meteorological information are often preferred. The Prediction of Worldwide Energy Resource project developed by the American National Aeronautics and Space Administration (POWER-NASA) provides meteorological observations and surface energy fluxes on 1° latitude by 1° longitude grid, with a continuous daily coverage and for the entire globe. However, the broad spatial resolution of these data represents a limiting factor, for example when they have to be used for local estimations of reference ET0. In this work, a procedure for the spatial disaggregation of POWER-NASA daily average air temperature was proposed. In particular, a daily scaling factor was initially defined as the ratio between disaggregated average air temperature and the corresponding native value. This ratio was then modeled with a cosine function, characterized by three parameters depending on elevation, so to account for seasonal and regional variability. The proposed model was calibrated with three years of ground measurements (2006-2008) and then validated over six years (2009-2014). The suitability of the procedure was finally assessed by applying two simplified empirical models to estimate ET0 (Turc, 1961; Hargreaves, 1975). When compared to ET0 values obtained with FAO-56 PM equation, both simplified equations associated to downscaled meteorological observations, were characterized by RMSE ranging between 0.44 and 1.08 mm (average of 0.72-0.74 mm), and average MBE of -0.06 (Turc equation) and 0.13 mm (Hargreaves equation). These results indicated the strength of the proposed procedure to estimate ET0, even for regions characterized by the lack of detailed meteorological information.

  14. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas

    PubMed Central

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298

  15. Temperature environment for 9975 packages stored in KAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. Themore » long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.« less

  16. Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.

    2014-01-01

    Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.

  17. Heat-related Emergency Hospitalizations for Respiratory Diseases in the Medicare Population

    PubMed Central

    Anderson, G. Brooke; Dominici, Francesca; Wang, Yun; McCormack, Meredith C.; Bell, Michelle L.

    2013-01-01

    Rationale: The heat-related risk of hospitalization for respiratory diseases among the elderly has not been quantified in the United States on a national scale. With climate change predictions of more frequent and more intense heat waves, it is of paramount importance to quantify the health risks related to heat, especially for the most vulnerable. Objectives: To estimate the risk of hospitalization for respiratory diseases associated with outdoor heat in the U.S. elderly. Methods: An observational study of approximately 12.5 million Medicare beneficiaries in 213 United States counties, January 1, 1999 to December 31, 2008. We estimate a national average relative risk of hospitalization for each 10°F (5.6°C) increase in daily outdoor temperature using Bayesian hierarchical models. Measurements and Main Results: We obtained daily county-level rates of Medicare emergency respiratory hospitalizations (International Classification of Diseases, Ninth Revision, 464–466, 480–487, 490–492) in 213 U.S. counties from 1999 through 2008. Overall, each 10°F increase in daily temperature was associated with a 4.3% increase in same-day emergency hospitalizations for respiratory diseases (95% posterior interval, 3.8, 4.8%). Counties’ relative risks were significantly higher in counties with cooler average summer temperatures. Conclusions: We found strong evidence of an association between outdoor heat and respiratory hospitalizations in the largest population of elderly studied to date. Given projections of increasing temperatures from climate change and the increasing global prevalence of chronic pulmonary disease, the relationship between heat and respiratory morbidity is a growing concern. PMID:23491405

  18. Does Weather Matter? The Effect of Weather Patterns and Temporal Factors on Pediatric Orthopedic Trauma Volume

    PubMed Central

    Livingston, Kristin S.; Miller, Patricia E.; Lierhaus, Anneliese; Matheney, Travis H.; Mahan, Susan T.

    2016-01-01

    Objectives: Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? Methods: With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. Results: High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Conclusion: Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year. PMID:27990193

  19. Does Weather Matter? The Effect of Weather Patterns and Temporal Factors on Pediatric Orthopedic Trauma Volume.

    PubMed

    Livingston, Kristin S; Miller, Patricia E; Lierhaus, Anneliese; Matheney, Travis H; Mahan, Susan T

    2016-01-01

    Orthopaedists often speculate how weather and school schedule may influence pediatric orthopedic trauma volume, but few studies have examined this. This study aims to determine: how do weather patterns, day, month, season and public school schedule influence the daily frequency of pediatric orthopedic trauma consults and admissions? With IRB approval, orthopedic trauma data from a level 1 pediatric trauma center, including number of daily orthopedic trauma consults and admissions, were collected from July 2009 to March 2012. Historical weather data (high temperatures, precipitation and hours of daylight), along with local public school schedule data were collected for the same time period. Univariate and multivariate regression models were used to show the average number of orthopedic trauma consults and admissions as a function of weather and temporal variables. High temperature, precipitation, month and day of the week significantly affected the number of daily consults and admissions. The number of consults and admissions increased by 1% for each degree increase in temperature (p=0.001 and p<0.001, respectively), and decreased by 21% for each inch of precipitation (p<0.001, p=0.006). Daily consults on snowy days decreased by an additional 16% compared to days with no precipitation. November had the lowest daily consult and admission rate, while September had the highest. Daily consult rate was lowest on Wednesdays and highest on Saturdays. Holiday schedule was not independently significant. Pediatric orthopedic trauma consultations and admissions are highly linked to temperature and precipitation, as well as day of the week and time of year.

  20. From Air Temperature to Lake Evaporation on a Daily Time Step: A New Empirical Approach

    NASA Astrophysics Data System (ADS)

    Welch, C.; Holmes, T. L.; Stadnyk, T. A.

    2016-12-01

    Lake evaporation is a key component of the water balance in much of Canada due to the vast surface area covered by open water. Hence, incorporating this flux effectively into hydrological simulation frameworks is essential to effective water management. Inclusion has historically been limited by the intensive data required to apply the energy budget methods previously demonstrated to most effectively capture the timing and volume of the evaporative flux. Widespread, consistent, lake water temperature and net radiation data are not available across much of Canada, particularly the sparsely populated boreal shield. We present a method to estimate lake evaporation on a daily time step that consists of a series of empirical equations applicable to lakes of widely varying morphologies. Specifically, estimation methods that require the single meteorological variable of air temperature are presented for lake water temperature, net radiation, and heat flux. The methods were developed using measured data collected at two small Boreal shield lakes, Lake Winnipeg North and South basins, and Lake Superior in 2008 and 2009. The mean average error (MAE) of the lake water temperature estimates is generally 1.5°C, and the MAE of the heat flux method is 50 W m-2. The simulated values are combined to estimate daily lake evaporation using the Priestley-Taylor method. Heat storage within the lake is tracked and limits the potential heat flux from a lake. Five-day running averages compare well to measured evaporation at the two small shield lakes (Bowen Ratio Energy Balance) and adequately to Lake Superior (eddy covariance). In addition to air temperature, the method requires a mean depth for each lake. The method demonstrably improves the timing and volume of evaporative flux in comparison to existing evaporation methods that depend only on temperature. The method will be further tested in a semi-distributed hydrological model to assess the cumulative effects across a lake-dominated catchment in the Lower Nelson River basin.

  1. Effects of temperature-dependent NOx emissions on continental ozone production

    NASA Astrophysics Data System (ADS)

    Romer, Paul S.; Duffey, Kaitlin C.; Wooldridge, Paul J.; Edgerton, Eric; Baumann, Karsten; Feiner, Philip A.; Miller, David O.; Brune, William H.; Koss, Abigail R.; de Gouw, Joost A.; Misztal, Pawel K.; Goldstein, Allen H.; Cohen, Ronald C.

    2018-02-01

    Surface ozone concentrations are observed to increase with rising temperatures, but the mechanisms responsible for this effect in rural and remote continental regions remain uncertain. Better understanding of the effects of temperature on ozone is crucial to understanding global air quality and how it may be affected by climate change. We combine measurements from a focused ground campaign in summer 2013 with a long-term record from a forested site in the rural southeastern United States, to examine how daily average temperature affects ozone production. We find that changes to local chemistry are key drivers of increased ozone concentrations on hotter days, with integrated daily ozone production increasing by 2.3 ppb °C-1. Nearly half of this increase is attributable to temperature-driven increases in emissions of nitrogen oxides (NOx), most likely by soil microbes. The increase of soil NOx emissions with temperature suggests that ozone will continue to increase with temperature in the future, even as direct anthropogenic NOx emissions decrease dramatically. The links between temperature, soil NOx, and ozone form a positive climate feedback.

  2. Genetic variation for farrowing rate in pigs in response to change in photoperiod and ambient temperature.

    PubMed

    Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F

    2016-08-01

    Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.

  3. Estimation of stream conditions in tributaries of the Klamath River, northern California

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Jones, Edward C.; Perry, Russell W.

    2018-01-01

    Because of their critical ecological role, stream temperature and discharge are requisite inputs for models of salmonid population dynamics. Coho Salmon inhabiting the Klamath Basin spend much of their freshwater life cycle inhabiting tributaries, but environmental data are often absent or only seasonally available at these locations. To address this information gap, we constructed daily averaged water temperature models that used simulated meteorological data to estimate daily tributary temperatures, and we used flow differentials recorded on the mainstem Klamath River to estimate daily tributary discharge. Observed temperature data were available for fourteen of the major salmon bearing tributaries, which enabled estimation of tributary-specific model parameters at those locations. Water temperature data from six mid-Klamath Basin tributaries were used to estimate a global set of parameters for predicting water temperatures in the remaining tributaries. The resulting parameter sets were used to simulate water temperatures for each of 75 tributaries from 1980-2015. Goodness-of-fit statistics computed from a cross-validation analysis demonstrated a high precision of the tributary-specific models in predicting temperature in unobserved years and of the global model in predicting temperatures in unobserved streams. Klamath River discharge has been monitored by four gages that broadly intersperse the 292 kilometers from the Iron Gate Dam to the Klamath River mouth. These gages defined the upstream and downstream margins of three reaches. Daily discharge of tributaries within a reach was estimated from 1980-2015 based on drainage-area proportionate allocations of the discharge differential between the upstream and downstream margin. Comparisons with measured discharge on Indian Creek, a moderate-sized tributary with naturally regulated flows, revealed that the estimates effectively approximated both the variability and magnitude of discharge.

  4. Climate Variation at Flagstaff, Arizona - 1950 to 2007

    USGS Publications Warehouse

    Hereford, Richard

    2007-01-01

    INTRODUCTION Much scientific research demonstrates the existence of recent climate variation, particularly global warming. Climate prediction models forecast that climate will change; it will become warmer, droughts will increase in number and severity, and extreme climate events will recur often?desiccating aridity, extremely wet, unusually warm, or even frigid at times. However, the global models apply to average conditions in large grids approximately 150 miles on an edge (Thorpe, 2005), and how or whether specific areas within a grid are affected is unclear. Flagstaff's climate is mentioned in the context of global change, but information is lacking on the amount and trend of changes in precipitation, snowfall, and temperature. The purpose of this report is to understand what may be happening to Flagstaff's climate by reviewing local climate history. Flagstaff is in north-central Arizona south of San Francisco Mountain, which reaches 12,633 feet, the highest in Arizona (fig. 1). At 6,900 feet, surrounded by ponderosa pine forest, Flagstaff enjoys a four-season climate; winter-daytime temperatures are cool, averaging 45 degrees (Fahrenheit). Summer-daytime temperatures are comfortable, averaging 80 degrees, which is pleasant compared with nearby low-elevation deserts. Flagstaff?s precipitation averages 22-inches per year with a range of 9 to 39 inches. Snowfall occurs each season, averaging 97 inches annually. This report, written for the non-technical reader, interprets climate variation at Flagstaff as observed at the National Weather Service (NWS) station at Pulliam Field (or Airport), a first-order weather station staffed by meteorologists (Staudenmaier and others, 2007). The station is on a flat-topped ridge surrounded by forest 5-miles south of Flagstaff at an elevation of 7,003 feet. Data used in this analysis are daily measurements of precipitation (including snowfall) and temperature (maximum and minimum) covering the period from 1950, when the station began operation, through spring 2007. Conversations with Byron Peterson and Michael Staudenmaier of the NWS helped us understand the difficulties of collecting consistent weather data, operation of the station, and Flagstaff's climate. Weather is the daily or even instantaneous state of temperature and precipitation. Climate is the average or accumulation of these parameters over longer time scales such as a week, month, or year. Seasonal (winter, spring, summer, and fall) and annual averages of temperature and accumulated precipitation describe the temporal variation of Flagstaff's climate, which is shown graphically with time series (figs. 2, 4, 6, 8-15). These plots show precipitation or temperature on the ordinate plotted against time on the abscissa, which is a year for annually repeating data or the year of a particular season. The plots reveal changing patterns of precipitation and temperature related to droughts, wet episodes, and rising temperatures.

  5. Analysis of temperature trends in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag

    2017-04-01

    An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.

  6. Reproductive strategy, spawning induction, spawning temperatures and early life history of captive sicklefin chub Macrhybopsis meeki

    USGS Publications Warehouse

    Albers, Janice; Wildhaber, Mark L.

    2017-01-01

    Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water-hardened eggs were semi-buoyant and non-adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.

  7. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development of holistic strategies to address water supply and demand challenges under changing climate. These strategies can consist of, but not limited to, advancing water, crop and soil management, and genetic improvements and their relationships with the climatic variables on large scales.

  8. Thermal tolerances of fishes occupying groundwater and surface-water dominated streams

    USGS Publications Warehouse

    Farless, Nicole; Brewer, Shannon K.

    2017-01-01

    A thermal tolerance study mimicking different stream environments could improve our ecological understanding of how increasing water temperatures affect stream ectotherms and improve our ability to predict organism responses based on river classification schemes. Our objective was to compare the thermal tolerances of stream fishes of different habitat guilds among 3 exposure periods: critical thermal maximum (CTmax, increase of 2°C/h until loss of equilibrium [LOE] and death [D]), and 2 longer-term treatments (net daily increase of 1°C) that mimicked spring-fed (SF; 4°C daily increase) and non-spring-fed (NSF; 8°C daily increase) conditions. Fishes in the pelagic habitat guild had a 1°C higher average CTmax than benthic fishes. Thermal responses of species depended on exposure period with higher and increased variation in tolerances associated with the SF and NSF exposure periods. Logperch, Orangebelly Darter, Orangethroat Darter, and Southern Redbelly Dace were more sensitive to thermal increases regardless of SF or NSF treatment than were the 3 remaining species (Brook Silverside, Central Stoneroller, and Redspot Chub), which represented average thermal responses among the species tested. The 3 species that had a higher thermal response to CTmax-D (lethal endpoint of death) also were able to increase their tolerances more than other species in both SF and NSF treatments. Our data indicate finer guild designations may be useful for predicting thermal-response patterns. A diel thermal refuge increases the thermal responses of ectotherms to daily maxima, but the patterns across our SF and NSF treatments were similar suggesting minimum refuge temperatures may be more important than maximums. Nonetheless, stream temperature cooling over a 24-h period is important to ectotherm thermal tolerances, a result suggesting that sources of cooler water to streams might benefit from protection.

  9. Modification of the degree-day formula for diurnal meltwater generation and refreezing

    NASA Astrophysics Data System (ADS)

    Žaknić-Ćatović, Ana; Howard, Ken W. F.; Ćatović, Zlatko

    2018-02-01

    The standard degree-day, temperature-index approach to calculating snowmelt generation and refreezing (the SDD method) is convenient and popularly used but seriously miscalculates the volumes of water that change phase on days when temperatures fluctuate either side of the freezing point. Additionally, the SDD method does not provide any estimate of the duration of daily melting and refreezing events. A modified version of the standard formula is introduced (the MDD method) that overcomes such problems by removing dependence on a single temperature index (the average daily temperature estimated over a 24-h period beginning at midnight) and instead transfers reliance onto daily air temperature extremes (maximum and minimum temperatures) at known times of occurrence. In this way, the modified formula retains the simplicity of the standard approach while targeting those segments of the diurnal air temperature curve that directly relate to periods of melting and freezing. Newly introduced temperature and time degree-day parameters allow the duration of melting and refreezing events to be estimated. The MDD method was evaluated for two sites in the snow-belt region of Canada where the availability of hourly records of daily temperature allowed the required MDD input parameters to be calculated reliably and thus used for comparative purposes. During testing, the MDD input parameters were obtained from daily temperature extremes and their times of occurrence, using two alternative approaches to synthetic air temperature curve generation, one linear, the other trigonometric. Very good agreement was obtained in both cases and confirms the value of the MDD approach. However, there is no significant benefit to be gained by using air temperature approximating functions more complicated than the linear method for supplementing the missing continuous air temperature measurements. Finally, the MDD approach is not seen as a replacement for the regular SDD method, so much as tool that can be applied when the SDD methodology is likely to become unreliable. This is best achieved by using a hybrid SDD-MDD algorithm that invokes the MDD approach only when the necessary conditions arise.

  10. Effect of climatological factors on respiratory syncytial virus epidemics

    PubMed Central

    NOYOLA, D. E.; MANDEVILLE, P. B.

    2008-01-01

    SUMMARY Respiratory syncytial virus (RSV) presents as yearly epidemics in temperate climates. We analysed the association of atmospheric conditions to RSV epidemics in San Luis Potosí, S.L.P., Mexico. The weekly number of RSV detections between October 2002 and May 2006 were correlated to ambient temperature, barometric pressure, relative humidity, vapour tension, dew point, precipitation, and hours of light using time-series and regression analyses. Of the variation in RSV cases, 49·8% was explained by the study variables. Of the explained variation in RSV cases, 32·5% was explained by the study week and 17·3% was explained by meteorological variables (average daily temperature, maximum daily temperature, temperature at 08:00 hours, and relative humidity at 08:00 hours). We concluded that atmospheric conditions, particularly temperature, partly explain the year to year variability in RSV activity. Identification of additional factors that affect RSV seasonality may help develop a model to predict the onset of RSV epidemics. PMID:18177520

  11. A hybrid model for river water temperature as a function of air temperature and discharge

    NASA Astrophysics Data System (ADS)

    Toffolon, Marco; Piccolroaz, Sebastiano

    2015-11-01

    Water temperature controls many biochemical and ecological processes in rivers, and theoretically depends on multiple factors. Here we formulate a model to predict daily averaged river water temperature as a function of air temperature and discharge, with the latter variable being more relevant in some specific cases (e.g., snowmelt-fed rivers, rivers impacted by hydropower production). The model uses a hybrid formulation characterized by a physically based structure associated with a stochastic calibration of the parameters. The interpretation of the parameter values allows for better understanding of river thermal dynamics and the identification of the most relevant factors affecting it. The satisfactory agreement of different versions of the model with measurements in three different rivers (root mean square error smaller than 1oC, at a daily timescale) suggests that the proposed model can represent a useful tool to synthetically describe medium- and long-term behavior, and capture the changes induced by varying external conditions.

  12. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  13. Long-term ozone and temperature correlations above SANAE, Antarctica

    NASA Technical Reports Server (NTRS)

    Bodeker, Gregory E.; Scourfield, Malcolm W. J.

    1994-01-01

    A significant decline in Antarctic total column ozone and upper air temperatures has been observed in recent years. Furthermore, high correlations between monthly mean values of ozone and stratospheric temperature have been measured above Syowa, Antarctica. For the observations reported here, data from TOMS (Total Ozone Mapping Spectrometer) aboard the Nimbus 7 satellite have been used to examine the 1980 to 1990 decrease in total column ozone above the South African Antarctic base of SANAE (70 deg 18 min S, 2 deg 21 min W). The cooling of the Antarctic stratosphere above SANAE during this period has been investigated by examining upper air temperatures at the 150, 100, 70, 50, and 30 hPa levels obtained from daily radiosonde balloon launches. Furthermore, these two data sets have been used to examine long-term, medium-term, and short-term correlations between total column ozone and the temperatures at each of the five levels. The trend in SANAE total column ozone has been found to be -4.9 DU/year, while upper air temperatures have been found to decrease at around 0.3 C/year. An analysis of monthly average SANAE total column ozone has shown the decrease to be most severe during the month of September with a trend of -7.7 DU/year. A strong correlation (r(exp 2) = 0.92) has been found between yearly average total column ozone and temperature at the 100 hPa level. Daily ozone and temperature correlations show high values from September to November, at a time when the polar vortex is breaking down.

  14. Mortality related to air pollution with the moscow heat wave and wildfire of 2010.

    PubMed

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia; Pershagen, Göran

    2014-05-01

    Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006-2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change.

  15. Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Khwarahm, Nabaz; Dash, Jadunandan; Atkinson, Peter M.; Newnham, R. M.; Skjøth, C. A.; Adams-Groom, B.; Caulton, Eric; Head, K.

    2014-05-01

    Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000-2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257-265, 1952). The pollen season (start date, finish date) for grass and birch were determined using a first derivative method. Meteorological variables such as daily rainfall; maximum, minimum and average temperatures; cumulative sum of Sunshine duration; wind speed; and relative humidity were related to the grass and birch pollen counts for the pre-peak, post peak and the entire pollen season. The meteorological variables were correlated with the pollen count data for the following temporal supports: same-day, 1-day prior, 1-day mean prior, 3-day mean prior, 7-day mean prior. The direction of influence (positive/negative) of meteorological variables on pollen count varied for birch and grass, and also varied when the pollen season was treated as a whole season, or was segmented into the pre-peak and post-peak seasons. Maximum temperature, sunshine duration and rainfall were the most important variables influencing the count of grass pollen in the atmosphere. Both maximum temperature (pre-peak) and sunshine produced a strong positive correlation, and rain produced a strong negative correlation with grass pollen count in the air. Similarly, average temperature, wind speed and rainfall were the most important variables influencing the count of birch pollen in the air. Both wind speed and rain produced a negative correlation with birch pollen count in the air and average temperature produced a positive correlation.

  16. [Prediction of heat-related mortality impacts under climate change scenarios in Shanghai].

    PubMed

    Guo, Ya-fei; Li, Tian-tian; Cheng, Yan-li; Ge, Tan-xi; Chen, Chen; Liu, Fan

    2012-11-01

    To project the future impacts of climate change on heat-related mortality in shanghai. The statistical downscaling techniques were applied to simulate the daily mean temperatures of Shanghai in the middle and farther future under the changing climate. Based on the published exposure-reaction relationship of temperature and mortality in Shanghai, we projected the heat-related mortality in the middle and farther future under the circumstance of high speed increase of carbon e mission (A2) and low speed increase of carbon emission (B2). The data of 1961 to 1990 was used to establish the model, and the data of 1991 - 2001 was used to testify the model, and then the daily mean temperature from 2030 to 2059 and from 2070 to 2099 were simulated and the heat-related mortality was projected. The data resources were from U.S. National Climatic Data Center (NCDC), U.S. National Centers for Environmental Prediction Reanalysis Data in SDSM Website and UK Hadley Centre Coupled Model Data in SDSM Website. The explained variance and the standard error of the established model was separately 98.1% and 1.24°C. The R(2) value of the simulated trend line equaled to 0.978 in Shanghai, as testified by the model. Therefore, the temperature prediction model simulated daily mean temperatures well. Under A2 scenario, the daily mean temperature in 2030 - 2059 and 2070 - 2099 were projected to be 17.9°C and 20.4°C, respectively, increasing by 1.1°C and 3.6°C when compared to baseline period (16.8°C). Under B2 scenario, the daily mean temperature in 2030 - 2059 and 2070 - 2099 were projected to be 17.8°C and 19.1°C, respectively, increasing by 1.0°C and 2.3°C when compared to baseline period (16.8°C). Under A2 scenario, annual average heat-related mortality were projected to be 516 cases and 1191 cases in 2030 - 2059 and 2070 - 2099, respectively, increasing 53.6% and 254.5% when compared with baseline period (336 cases). Under B2 scenario, annual average heat-related mortality were projected to be 498 cases and 832 cases in 2030 - 2059 and 2070 - 2099, respectively, increasing 48.2% and 147.6% when compared with baseline period (336 cases). Under the changing climate, heat-related mortality is projected to increase in the future;and the increase will be more obvious in year 2070 - 2099 than in year 2030 - 2059.

  17. Habitual physical activity and health in the elderly: the Nakanojo Study.

    PubMed

    Aoyagi, Yukitoshi; Shephard, Roy J

    2010-07-01

    This article provides a detailed overview of both factors influencing habitual physical activity, and relationships between such activity and health in the elderly. Current cross-sectional data from the Nakanojo Study, which we have been carrying out since 2000, indicate substantial associations between the overall health of participants, and both the year-averaged daily step count and the year-averaged daily duration of effort undertaken at an intensity >3 metabolic equivalents (MET). In men, the extent of health is associated more closely with the daily duration of activity >3 MET than with the daily step count, whereas in women the association is closer for the step count than for the duration of activity >3 MET. In both sexes, the threshold amount of physical activity associated with better health is greater for physical than for mental benefits: >8000 vs >4000 steps/day and/or >20 vs >5 min/day at >3 MET, respectively. In other words, physical health is better in those spending at least 20 min/day in moderate walking (at a pace of around 1.4 m/s [5 km/h]) and a further >60 min of light activity per day. In contrast, better mental health is associated with much smaller amounts of deliberate physical activity. Both the intensity and the total volume of physical activity are influenced by meteorological factors, particularly precipitation and mean ambient temperature. Activity decreases exponentially to about 4000 steps/day as precipitation increases. Excluding the influence of rainfall, the daily step count peaks at a mean outdoor temperature of around 17 degrees C; above and especially below such readings, physical activity decreases as a quadratic function of temperature. Seasonal changes in the microclimate should thus be considered when designing interventions intended to increase the habitual physical activity of older adults. Based on these findings, we are now developing preventive tactics that should contribute to health promotion, disease prevention and thus a reduction in medical expenses for elderly people.

  18. [Time-series analysis of ambient PM₁₀ pollution on residential mortality in Beijing].

    PubMed

    Xue, Jiang-li; Wang, Qi; Cai, Yue; Zhou, Mai-geng

    2012-05-01

    To explore the short-term impact of ambient PM(10) on daily non-accidental death, cardiovascular and respiratory death of residents in Beijing. Mortality data of residents in Beijing during 2006 to 2009 were obtained from public health surveillance and information service center of Chinese Center for Disease Control and Prevention, contemporaneous data of average daily air concentration of PM(10), SO(2), NO(2) were obtained from Beijing Environment Protection Bureau (year 2005 - 2006) and public website of Beijing environmental protection (year 2007 - 2009), respectively, contemporaneous meteorological data were obtained from china meteorological data sharing service system. Generalized addictive model (GAM) of time serial analysis was applied. In additional to the control of confounding factors such as long-term trend, day of the week effect, meteorological factors, lag effect and the effects of other atmospheric pollutants were also analyzed. During year 2006 to 2009, the number of average daily non-accidental death, respiratory disease caused death, cardiovascular and cerebrovascular diseases caused death among Beijing residents were 140.1, 15.0, 65.8, respectively;contemporaneous medians of average daily air concentration of PM(10), SO(2), NO(2) were 123.0, 26.0, 58.0 µg/m(3), respectively;contemporaneous average atmosphere pressure, temperature and relative humidity were 10.1 kPa, 13.5°C and 51.9%, respectively. An exposure-response relationship between exposure to ambient PM(10) and increased daily death number was found as every 10 µg/m(3) increase in daily average concentration of PM(10), there was a 0.1267% (95%CI: 0.0824% - 0.1710%) increase in daily non-accidental death of residents, 0.1365% (95%CI: 0.0010% - 0.2720%) increase in respiratory death and 0.1239% (95%CI: 0.0589% - 0.1889%) increase in cardiovascular death. Ambient PM(10) had greatest influence on daily non-accidental and cardiovascular death of the same day, while its greatest influence on respiratory death occurred 5 days later. The ambient PM(10) pollution increased daily non-accidental, respiratory disease caused, cardiovascular and cerebrovascular diseases caused deaths among residents in Beijing, and lag effect existed as for the effect of ambient PM(10) pollution on respiratory disease caused death.

  19. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    USGS Publications Warehouse

    Letcher, Benjamin; Hocking, Daniel; O'Neil, Kyle; Whiteley, Andrew R.; Nislow, Keith H.; O'Donnell, Matthew

    2016-01-01

    Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C), identified a clear warming trend (0.63 °C decade−1) and a widening of the synchronized period (29 d decade−1). We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data). Missing all data for a year decreased performance (∼0.6 °C jump in RMSE), but this decrease was moderated when data were available from other streams in the network.

  20. Is reticular temperature a useful indicator of heat stress in dairy cattle?

    PubMed

    Ammer, S; Lambertz, C; Gauly, M

    2016-12-01

    The present study investigated whether reticular temperature (RT) in dairy cattle is a useful indicator of heat stress considering the effects of milk yield and water intake (WI). In total, 28 Holstein-Friesian dairy cows raised on 3 farms in Lower Saxony, Germany, were studied from March to December 2013. During the study, RT and barn climate parameters (air temperature, relative humidity) were measured continuously and individual milk yield was recorded daily. Both the daily temperature-humidity index (THI) and the daily median RT per cow were calculated. Additionally, the individual WI (amount and frequency) of 10 cows during 100d of the study was recorded on 1 farm. Averaged over all farms, daily THI ranged between 35.4 and 78.9 with a mean (±standard deviation) of 60.2 (±8.7). Dairy cows were on average (±standard deviation) 110.9d in milk (±79.3) with a mean (±standard deviation) milk yield of 35.2kg/d (±9.1). The RT was affected by THI, milk yield, days in milk, and WI. Up to a THI threshold of 65, RT remained constant at 39.2°C. Above this threshold, RT increased to 39.3°C and further to 39.4°C when THI ≥70. The correlation between THI ≥70 and RT was 0.22, whereas the coefficient ranged between r=-0.08 to +0.06 when THI <70. With increasing milk yield, RT decreased slightly from 39.3°C (<30kg/d) to 39.2°C (≥40kg/d). For daily milk yields of ≥40kg, the median RT and daily milk yield were correlated at r=-0.18. The RT was greater when dairy cows yielded ≥30kg/d and THI ≥70 (39.5°C) compared with milk yields <30kg and THI <70 (39.3°C). The WI, which averaged (±standard deviation) 11.5 l (±5.7) per drinking bout, caused a mean decrease in RT of 3.2°C and was affected by the amount of WI (r=0.60). After WI, it took up to 2h until RT reached the initial level before drinking. In conclusion, RT increased when the THI threshold of 65 was exceeded. A further increase was noted when THI ≥70. Nevertheless, the effects of WI and milk yield have to be considered carefully when RT is used to detect hyperthermia in dairy cattle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. [Impact of low temperature in young ear formation stage on rice seed setting.

    PubMed

    Ma, Shu Qing; Liu, Xiao Hang; Deng, Kui Cai; Quan, Hu Jie; Tong, Li Yuan; Xi, Zhu Xiang; Chai, Qing Rong; Yang, Jun

    2018-01-01

    A low temperature treatment in rice booting key period was executed on the north slope of Changbai Mountains to construct the impact model of low temperature on rice shell rate, and to reveal the effects of low temperature at different stages of rice young panicle on seed setting. The results showed that effects of low temperature in the young ear formation stage on rice shell rate generally followed the logarithmic function, the lower the temperature was, the greater the temperature influence coefficient was, and the longer the low temperature duration was, the higher rice shell rate was. The seed setting rate was most sensitive to low temperature in the middle time of booting stage (the period from formation to meiosis of the pollen mother cell), followed by the early and later stages. During the booting stage, with 1 ℃ decrease of daily temperature under 2-, 3- and 5-day low temperature treatments, the shell rate increased by 0.5, 1.7 and 4.3 percentage, respectively, and with 1 ℃ decrease of daily minimum temperature, the shell rate increased by 0.4,1.8 and 4.5 percentage, respectively. The impact of 2-day low temperature was smaller than that of 3 days or more. The impact of accumulative cold-temperature on the shell rate followed exponential function. In the range of harmful low temperature, rice shell rate increased about 8.5 percentage with the accumulative cold-temperature increasing 10 ℃·d. When the 3 days average temperature dropped to 21.6, 18.0 and 15.0 ℃, or the 5 days average temperature dropped to 22.0, 20.4 and 18.5 ℃, or the accumulative cold-temperature was more than 8, 19, 26 ℃·d, the light, moderate and severe booting stage chilling injury would occur, respectively. In Northeast China, low temperature within 2 d in rice booting stage might not cause moderate and severe chilling injury.

  2. Development of an effective and potentially scalable weather generator for temperature and growing degree days

    NASA Astrophysics Data System (ADS)

    Rahmani, Elham; Friederichs, Petra; Keller, Jan; Hense, Andreas

    2016-05-01

    The main purpose of this study is to develop an easy-to-use weather generator (WG) for the downscaling of gridded data to point measurements at regional scale. The WG is applied to daily averaged temperatures and annual growing degree days (GDD) of wheat. This particular choice of variables is motivated by future investigations on temperature impacts as the most important climate variable for wheat cultivation under irrigation in Iran. The proposed statistical downscaling relates large-scale ERA-40 reanalysis to local daily temperature and annual GDD. Long-term local observations in Iran are used at 16 synoptic stations from 1961 to 2001, which is the common period with ERA-40 data. We perform downscaling using two approaches: the first is a linear regression model that uses the ERA-40 fingerprints (FP) defined by the squared correlation with local variability, and the second employs a linear multiple regression (MR) analysis to relate the large-scale information at the neighboring grid points to the station data. Extending the usual downscaling, we implement a WG providing uncertainty information and realizations of the local temperatures and GDD by adding a Gaussian random noise. ERA-40 reanalysis well represents the local daily temperature as well as the annual GDD variability. For 2-m temperature, the FPs are more localized during the warm compared with the cold season. While MR is slightly superior for daily temperature time series, FP seems to perform best for annual GDD. We further assess the quality of the WGs applying probabilistic verification scores like the continuous ranked probability score (CRPS) and the respective skill score. They clearly demonstrate the superiority of WGs compared with a deterministic downscaling.

  3. Weather and Climate Indicators for Coffee Rust Disease

    NASA Astrophysics Data System (ADS)

    Georgiou, S.; Imbach, P. A.; Avelino, J.; Anzueto, F.; del Carmen Calderón, G.

    2014-12-01

    Coffee rust is a disease that has significant impacts on the livelihoods of those who are dependent on the Central American coffee sector. Our investigation has focussed on the weather and climate indicators that favoured the high incidence of coffee rust disease in Central America in 2012 by assessing daily temperature and precipitation data available from 81 weather stations in the INSIVUMEH and ANACAFE networks located in Guatemala. The temperature data were interpolated to determine the corresponding daily data at 1250 farms located across Guatemala, between 400 and 1800 m elevation. Additionally, CHIRPS five day (pentad) data has been used to assess the anomalies between the 2012 and the climatological average precipitation data at farm locations. The weather conditions in 2012 displayed considerable variations from the climatological data. In general the minimum daily temperatures were higher than the corresponding climatology while the maximum temperatures were lower. As a result, the daily diurnal temperature range was generally lower than the corresponding climatological range, leading to an increased number of days where the temperatures fell within the optimal range for either influencing the susceptibility of the coffee plants to coffee rust development during the dry season, or for the development of lesions on the coffee leaves during the wet season. The coffee rust latency period was probably shortened as a result, and farms at high altitudes were impacted due to these increases in minimum temperature. Factors taken into consideration in developing indicators for coffee rust development include: the diurnal temperature range, altitude, the environmental lapse rate and the phenology. We will present the results of our study and discuss the potential for each of the derived weather and climatological indicators to be used within risk assessments and to eventually be considered for use within an early warning system for coffee rust disease.

  4. Documentation of a deep percolation model for estimating ground-water recharge

    USGS Publications Warehouse

    Bauer, H.H.; Vaccaro, J.J.

    1987-01-01

    A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)

  5. High-resolution daily gridded data sets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, Sven; Krähenmann, Stefan; Bissolli, Peter

    2016-10-01

    New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of 0.044° (≈ 5km) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al.(2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 K and 1-1.5 ms-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The data sets presented in this article are published at doi:10.5676/DWD_CDC/DECREG0110v2.

  6. Development of a winter wheat adjustable crop calendar model. [Colorado, Idaho, Oklahoma, Montana, Kansas, Missouri, North Dakota and Texas

    NASA Technical Reports Server (NTRS)

    Baker, J. R. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Least squares techniques were applied for parameter estimation of functions to predict winter wheat phenological stage with daily maximum temperature, minimum temperature, daylength, and precipitation as independent variables. After parameter estimation, tests were conducted using independent data. It may generally be concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson triquadratic form, in general use for spring wheat, yielded good results, but special techniques and care are required. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with averaged daily environmental values as independent variables.

  7. Technical note: Differences in the diurnal pattern of soil respiration under adjacent Miscanthus × giganteus and barley crops reveal potential flaws in accepted sampling strategies

    NASA Astrophysics Data System (ADS)

    Ben Keane, J.; Ineson, Phil

    2017-03-01

    For convenience, measurements used to compare soil respiration (Rs) from different land uses, crops or management practices are often made between 09:00 and 16:00 UTC, convenience which is justified by an implicit assumption that Rs is largely controlled by temperature. Three months of continuous data presented here show distinctly different diurnal patterns of Rs between barley (Hordeum vulgare) and Miscanthus × giganteus (Miscanthus) grown on adjacent fields. Maximum Rs in barley occurred during the afternoon and correlated with soil temperature, whereas in Miscanthus after an initial early evening decline, Rs increased above the daily average during the night and in July maximum daily rates of Rs were seen at 22:00 and was significantly correlated with earlier levels of solar radiation, probably due to delays in translocation of recent photosynthate. Since the time of the daily mean Rs in Miscanthus occurred when Rs in the barley was 40 % greater than the daily mean, it is vital to select appropriate times to measure Rs especially if only single daily measurements are to be made.

  8. Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues.

    PubMed

    Moore, Julia L; Remais, Justin V

    2014-03-01

    Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.

  9. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  10. Climate change and malaria risk in Russia in 21st century

    NASA Astrophysics Data System (ADS)

    Malkhazova, S.; Shartova, N.

    2010-09-01

    The purpose of this research is development of prognostic model of malaria risk for Russia in the 21st century according to climate scenario IPCC "А2". The following issues have been formulated to reach the goal of the research: - define the basic epidemiological parameters describing malaria situation and methods of data processing; - creating of maps of malaria risk; - analysis of changes in malaria distribution for predictable future climate conditions in comparison with conditions of a modern climate. A lot of reasons (biological, social and economic) impact on malaria distribution. Nevertheless, incubation period of the parasite first of all depends on temperature. This is a primary factor that defines a potential area of infection, ability and specificity to transmit malaria. According to this, the model is based on the relationship between climate (average daily temperature) and the intensity of malaria transmission. The object of research is malaria parasite Plasmodium vivax, which has for Russia the greatest importance because it has the lowest minimal temperature threshold for development. Climate data is presented by daily average temperatures of air for three analyzed periods. 1961 -1989 describes a modern climate and corresponds to the minimum 30-year period that is necessary for an assessment of climate and changes connected with biotic components. Prognostic malaria model is based on predicted daily average temperatures for 2046-2065 (the middle of century) and 2089-2100 (the end of century). All data sets are presented in the grid 2х20. The conclusion on possible changes in malaria distribution and transmission in the middle and the end of the 21st century: There is going to be the increase of duration of effective temperatures period (period when parasite development is possible), period of effective susceptibility to infection of mosquitoes (period when malaria transmission cycle is possible); shift of the beginning of malaria transmission period to earlier time as well as the end of this period's shift to later time is connected to increase of effective temperatures annual sum. Northern bounds of the territory where temperature conditions allow parasite's development and disease transmission are going to move significantly to the north. Accordingly there will be an expansion of potential disease distribution area. Annual development of parasite and malaria transmission will probably be possible on nearly whole European part of Russia. The probability of malaria transmission and its intensity will increase. The results of the research indicate growth of malaria risk in Russia in 21st century.

  11. A biometeorological model of an encephalitis vector

    NASA Astrophysics Data System (ADS)

    Raddatz, R. L.

    1986-01-01

    Multiple linear regression techniques and seven years of data were used to build a biometeorological model of Winnipeg's mean daily levels of Culex tarsalis Coquillett. An eighth year of data was used to test the model. Hydrologic accounting of precipitation, evapotranspiration and runoff provided estimates of wetness while the warmness of the season was gauged in terms of the average temperature difference from normal and a threshold antecedent temperature regime. These factors were found to be highly correlated with the time-series of Cx. tarsalis counts. The impact of mosquito adulticiding measures was included in the model via a control effectiveness parameter. An activity-level adjustment, based on mean daily temperatures, was also made to the counts. This model can, by monitoring the weather, provide forecasts of Cx. tarsalis populations for Winnipeg with a lead-time of three weeks, thereby, contributing to an early warning of an impending Western Equine Encephalitis outbreak.

  12. Assessing the accuracy of ANFIS, EEMD-GRNN, PCR, and MLR models in predicting PM2.5

    NASA Astrophysics Data System (ADS)

    Ausati, Shadi; Amanollahi, Jamil

    2016-10-01

    Since Sanandaj is considered one of polluted cities of Iran, prediction of any type of pollution especially prediction of suspended particles of PM2.5, which are the cause of many diseases, could contribute to health of society by timely announcements and prior to increase of PM2.5. In order to predict PM2.5 concentration in the Sanandaj air the hybrid models consisting of an ensemble empirical mode decomposition and general regression neural network (EEMD-GRNN), Adaptive Neuro-Fuzzy Inference System (ANFIS), principal component regression (PCR), and linear model such as multiple liner regression (MLR) model were used. In these models the data of suspended particles of PM2.5 were the dependent variable and the data related to air quality including PM2.5, PM10, SO2, NO2, CO, O3 and meteorological data including average minimum temperature (Min T), average maximum temperature (Max T), average atmospheric pressure (AP), daily total precipitation (TP), daily relative humidity level of the air (RH) and daily wind speed (WS) for the year 2014 in Sanandaj were the independent variables. Among the used models, EEMD-GRNN model with values of R2 = 0.90, root mean square error (RMSE) = 4.9218 and mean absolute error (MAE) = 3.4644 in the training phase and with values of R2 = 0.79, RMSE = 5.0324 and MAE = 3.2565 in the testing phase, exhibited the best function in predicting this phenomenon. It can be concluded that hybrid models have accurate results to predict PM2.5 concentration compared with linear model.

  13. Soil temperature investigations using satellite acquired thermal-infrared data in semi-arid regions. Thesis. Final Report; [Utah

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W.

    1983-01-01

    Thermal-infrared data from the Heat Capacity Mapping Mission satellite were used to map the spatial distribution of diurnal surface temperatures and to estimate mean annual soil temperatures (MAST) and annual surface temperature amplitudes (AMP) in semi-arid east central Utah. Diurnal data with minimal snow and cloud cover were selected for five dates throughout a yearly period and geometrically co-registered. Rubber-sheet stretching was aided by the WARP program which allowed preview of image transformations. Daytime maximum and nighttime minimum temperatures were averaged to generation average daily temperature (ADT) data set for each of the five dates. Five ADT values for each pixel were used to fit a sine curve describing the theoretical annual surface temperature response as defined by a solution of a one-dimensinal heat flow equation. Linearization of the equation produced estimates of MAST and AMP plus associated confidence statistics. MAST values were grouped into classes and displayed on a color video screen. Diurnal surface temperatures and MAST were primarily correlated with elevation.

  14. [Estimating and projecting the acute effect of cold spells on excess mortality under climate change in Guangzhou].

    PubMed

    Sun, Q H; Wang, W T; Wang, Y W; Li, T T

    2018-04-06

    Objective: To estimate future excess mortality attributable to cold spells in Guangzhou, China. Methods: We collected the mortality data and metrological data from 2009-2013 of Guangzhou to calculated the association between cold spell days and non-accidental mortality with GLM model. Then we projected future daily average temperatures (2020-2039 (2020s) , 2050-2069 (2050s) , 2080-2099 (2080s) ) with 5 GCMs models and 2 RCPs (RCP4.5 and RCP8.5) to identify cold spell days. The baseline period was the 1980s (1980-1999). Finally, calculated the yearly cold spells related excess death of 1980s, 2020s, 2050s, and 2080s with average daily death count of non-cold spell days, exposure-response relationship, and yearly number of cold spell days. Results: The average of daily non-accidental mortality in Guangzhou from 2009 to 2013 was 96, and the average of daily average was 22.0 ℃. Cold spell days were associated with 3.3% (95% CI: 0.4%-6.2%) increase in non-accidental mortality. In 1980s, yearly cold spells related deaths were 34 (95% CI: 4-64). In 2020s, the number will increase by 0-10; in 2050s, the number will increase by 1-9; and in 2080s, will increase by 1-9 under the RCP4.5 scenario. In 2020s, the number will increase by 0-9; in 2050s, the number will increase by 1-6; and in 2080s, will increase by 0-11 under the RCP8.5 scenario. Conclusion: The cold spells related non-accidental deaths in Guangzhou will increase in future under climate change.

  15. Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1988

    USGS Publications Warehouse

    Wood, James L.; Hill, Kevin J.; Andraski, Brian J.

    1992-01-01

    Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty/ Nevada, for calendar year 1988. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1988, the average hourly air temperatures ranged from -10.2 degrees Celsius, in December, to 45.3 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.09 to 2.22 kilopascals. Daily values for maximum incident solar radiation ranged from 63 to 1,064 watts per square meter. Daily mean windspeed ranged from 1.2 to 7.8 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1988 was 104.5 millimeters, with over 70 percent occurring from January through May.

  16. Using air/water/sediment temperature contrasts to identify groundwater seepage locations in small streams

    NASA Astrophysics Data System (ADS)

    Karan, S.; Sebok, E.; Engesgaard, P. K.

    2016-12-01

    For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.

  17. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010

    PubMed Central

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia

    2014-01-01

    Background: Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. Methods: We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006–2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. Results: The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m3 on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Conclusions: Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change. PMID:24598414

  18. The Differential Warming Response of Britain’s Rivers (1982–2011)

    PubMed Central

    Jonkers, Art R. T.; Sharkey, Kieran J.

    2016-01-01

    River water temperature is a hydrological feature primarily controlled by topographical, meteorological, climatological, and anthropogenic factors. For Britain, the study of freshwater temperatures has focussed mainly on observations made in England and Wales; similar comprehensive data sets for Scotland are currently unavailable. Here we present a model for the whole of mainland Britain over three recent decades (1982–2011) that incorporates geographical extrapolation to Scotland. The model estimates daily mean freshwater temperature for every river segment and for any day in the studied period, based upon physico-geographical features, daily mean air and sea temperatures, and available freshwater temperature measurements. We also extrapolate the model temporally to predict future warming of Britain’s rivers given current observed trends. Our results highlight the spatial and temporal diversity of British freshwater temperatures and warming rates. Over the studied period, Britain’s rivers had a mean temperature of 9.84°C and experienced a mean warming of +0.22°C per decade, with lower rates for segments near lakes and in coastal regions. Model results indicate April as the fastest-warming month (+0.63°C per decade on average), and show that most rivers spend on average ever more days of the year at temperatures exceeding 10°C, a critical threshold for several fish pathogens. Our results also identify exceptional warming in parts of the Scottish Highlands (in April and September) and pervasive cooling episodes, in December throughout Britain and in July in the southwest of England (in Wales, Cornwall, Devon, and Dorset). This regional heterogeneity in rates of change has ramifications for current and future water quality, aquatic ecosystems, as well as for the spread of waterborne diseases. PMID:27832108

  19. The Differential Warming Response of Britain's Rivers (1982-2011).

    PubMed

    Jonkers, Art R T; Sharkey, Kieran J

    2016-01-01

    River water temperature is a hydrological feature primarily controlled by topographical, meteorological, climatological, and anthropogenic factors. For Britain, the study of freshwater temperatures has focussed mainly on observations made in England and Wales; similar comprehensive data sets for Scotland are currently unavailable. Here we present a model for the whole of mainland Britain over three recent decades (1982-2011) that incorporates geographical extrapolation to Scotland. The model estimates daily mean freshwater temperature for every river segment and for any day in the studied period, based upon physico-geographical features, daily mean air and sea temperatures, and available freshwater temperature measurements. We also extrapolate the model temporally to predict future warming of Britain's rivers given current observed trends. Our results highlight the spatial and temporal diversity of British freshwater temperatures and warming rates. Over the studied period, Britain's rivers had a mean temperature of 9.84°C and experienced a mean warming of +0.22°C per decade, with lower rates for segments near lakes and in coastal regions. Model results indicate April as the fastest-warming month (+0.63°C per decade on average), and show that most rivers spend on average ever more days of the year at temperatures exceeding 10°C, a critical threshold for several fish pathogens. Our results also identify exceptional warming in parts of the Scottish Highlands (in April and September) and pervasive cooling episodes, in December throughout Britain and in July in the southwest of England (in Wales, Cornwall, Devon, and Dorset). This regional heterogeneity in rates of change has ramifications for current and future water quality, aquatic ecosystems, as well as for the spread of waterborne diseases.

  20. Development of a fire weather index using meteorological observations within the Northeast United States

    Treesearch

    Michael J. Erickson; Joseph J. Charney; Brian A. Colle

    2016-01-01

    A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily...

  1. 40 CFR 63.1350 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zero and 1.5 times the average temperature established according to the requirements in § 63.1349(b)(3... absolute PM loadings. (v) The BLDS must be equipped with a device to continuously record the output signal... must have provisions to determine the daily zero and upscale calibration drift (CD) (see sections 3.1...

  2. 40 CFR 63.1350 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero and 1.5 times the average temperature established according to the requirements in § 63.1349(b)(3... absolute PM loadings. (v) The BLDS must be equipped with a device to continuously record the output signal... must have provisions to determine the daily zero and upscale calibration drift (CD) (see sections 3.1...

  3. Coupled Long-Term Simulation of Reach-Scale Water and Heat Fluxes Across the River-Groundwater Interface for Retrieving Hyporheic Residence Times and Temperature Dynamics

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2017-11-01

    Flow patterns in conjunction with seasonal and diurnal temperature variations control ecological and biogeochemical conditions in hyporheic sediments. In particular, hyporheic temperatures have a great impact on many temperature-sensitive microbial processes. In this study, we used 3-D coupled water flow and heat transport simulations applying the HydroGeoSphere code in combination with high-resolution observations of hydraulic heads and temperatures to quantify reach-scale water and heat flux across the river-groundwater interface and hyporheic temperature dynamics of a lowland gravel bed river. The model was calibrated in order to constrain estimates of the most sensitive model parameters. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7°C and an average Nash Sutcliffe efficiency of 0.87. Our results indicate that nonsubmerged streambed structures such as gravel bars cause substantial thermal heterogeneity within the saturated sediment at the reach scale. Individual hyporheic flow path temperatures strongly depend on the flow path residence time, flow path depth, river, and groundwater temperature. Variations in individual hyporheic flow path temperatures were up to 7.9°C, significantly higher than the daily average (2.8°C), but still lower than the average seasonal hyporheic temperature difference (19.2°C). The distribution between flow path temperatures and residence times follows a power law relationship with exponent of about 0.37. Based on this empirical relation, we further estimated the influence of hyporheic flow path residence time and temperature on oxygen consumption which was found to partly increase by up to 29% in simulations.

  4. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased significantly with the indoor air temperatures ( r = 0.66). Daily CH 4 emissions were negatively correlated to the indoor air temperature ( r = -0.84). This suggests that increased daily indoor air temperatures due to seasonal changes may bring about decreased animal activity which may decrease the release of CH 4 from dairy cows. Finally, changes in daily NH 3 emissions were influenced more by the indoor air temperature than by the activity of the cows.

  5. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, Joseph D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  6. Development of a database-driven system for simulating water temperature in the lower Yakima River main stem, Washington, for various climate scenarios

    USGS Publications Warehouse

    Voss, Frank; Maule, Alec

    2013-01-01

    A model for simulating daily maximum and mean water temperatures was developed by linking two existing models: one developed by the U.S. Geological Survey and one developed by the Bureau of Reclamation. The study area included the lower Yakima River main stem between the Roza Dam and West Richland, Washington. To automate execution of the labor-intensive models, a database-driven model automation program was developed to decrease operation costs, to reduce user error, and to provide the capability to perform simulations quickly for multiple management and climate change scenarios. Microsoft© SQL Server 2008 R2 Integration Services packages were developed to (1) integrate climate, flow, and stream geometry data from diverse sources (such as weather stations, a hydrologic model, and field measurements) into a single relational database; (2) programmatically generate heavily formatted model input files; (3) iteratively run water temperature simulations; (4) process simulation results for export to other models; and (5) create a database-driven infrastructure that facilitated experimentation with a variety of scenarios, node permutations, weather data, and hydrologic conditions while minimizing costs of running the model with various model configurations. As a proof-of-concept exercise, water temperatures were simulated for a "Current Conditions" scenario, where local weather data from 1980 through 2005 were used as input, and for "Plus 1" and "Plus 2" climate warming scenarios, where the average annual air temperatures used in the Current Conditions scenario were increased by 1degree Celsius (°C) and by 2°C, respectively. Average monthly mean daily water temperatures simulated for the Current Conditions scenario were compared to measured values at the Bureau of Reclamation Hydromet gage at Kiona, Washington, for 2002-05. Differences ranged between 1.9° and 1.1°C for February, March, May, and June, and were less than 0.8°C for the remaining months of the year. The difference between current conditions and measured monthly values for the two warmest months (July and August) were 0.5°C and 0.2°C, respectively. The model predicted that water temperature generally becomes less sensitive to air temperature increases as the distance from the mouth of the river decreases. As a consequence, the difference between climate warming scenarios also decreased. The pattern of decreasing sensitivity is most pronounced from August to October. Interactive graphing tools were developed to explore the relative sensitivity of average monthly and mean daily water temperature to increases in air temperature for model output locations along the lower Yakima River main stem.

  7. Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort

    NASA Astrophysics Data System (ADS)

    López-Moreno, Juan Ignacio; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisan, S.; Revuelto, J.; Pons, M.; Vicente-Serrano, S. M.

    2018-03-01

    A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb < - 2 °C), lapse rates, and the occurrence of thermal inversions at the Formigal ski resort (Spanish Pyrenees) from December to March during three consecutive ski seasons (2012-2013, 2013-2014, and 2014-2015). The Tair and Twb lapse rates showed strong hourly and daily variability, with both exhibiting almost identical temporal fluctuations. The Twb exhibited average lapse rates that were slightly steeper (- 5.2 °C/km) than those observed for Tair (- 4.9 °C/km). The less steep lapse rates and most thermal inversions were observed in December. Days having less (more) steep Tair and Twb lapse rates were observed under low (high) wind speeds and high (low) relative humidity and air pressure. The temporal dynamics of the SM lapse rates was more complex, as this involved consideration of the average Tair in the ski resort, in addition to the driving factors of the spatio-temporal variability of Twb. Thus, on a number of cold (warm) days, snowmaking was feasible at all elevations at the ski resort, independently of the slopes of the lapse rates. The SM exhibited an average daily lapse rate of 8.2 h/km, with a progressive trend of increase from December to March. Weather types over the Iberian Peninsula tightly control the driving factors of the Tair, Twb, and SM lapse rates (wind speed, relative humidity, and Tair), so the slopes of the lapse rates and the frequency of inversions in relation to elevation for the three variables are very dependent on the occurrence of specific weather types. The less steep lapse rates occurred associated with advections from the southeast, although low lapse rates also occurred during advections from the east and south, and under anticyclonic conditions. The steepest Tair and Twb lapse rates were observed during north and northwest advections, while the steepest rates for SM were observed during days of cyclonic circulation and advections from the northeast.

  8. Extreme pressure differences at 0900 NZST and winds across New Zealand

    NASA Astrophysics Data System (ADS)

    Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita

    2005-07-01

    Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.

  9. 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated.

    PubMed

    Yamaguchi, Hironori; Tsurita, Giichirou; Ueno, Shoogo; Watanabe, Soichi; Wake, Kanako; Taki, Masao; Nagawa, Hirokazu

    2003-05-01

    This study sought to clarify the effects of exposure to electromagnetic waves (EMW) used in cellular phones on learning and memory processes. Sprague-Dawley rats were exposed for either 1 h daily for 4 days or for 4 weeks to a pulsed 1439 MHz time division multiple access (TDMA) field in a carousel type exposure system. At the brain, average specific absorption rate (SAR) was 7.5 W/kg, and the whole body average SAR was 1.7 W/kg. Other subjects were exposed at the brain average SAR of 25 W/kg and the whole body average SAR of 5.7 W/kg for 45 min daily for 4 days. Learning and memory were evaluated by reversal learning in a food rewarded T-maze, in which rats learned the location of food (right or left) by using environmental cues. The animals exposed to EMW with the brain average SAR of 25 W/kg for 4 days showed statistically significant decreases in the transition in number of correct choices in the reversal task, compared to sham exposed or cage control animals. However, rats exposed to the brain average SAR of 7.5 W/kg for either 4 days or for 4 weeks showed no T-maze performance impairments. Intraperitoneal temperatures, as measured by a fiber optic thermometer, increased in the rats exposed to the brain average SAR of 25 W/kg but remained the same for the brain average SAR of 7.5 W/kg. The SAR of a standard cellular phone is restricted to a maximum of 2 W/kg averaged over 10 g tissue. These results suggest that the exposure to a TDMA field at levels about four times stronger than emitted by cellular phones does not affect the learning and memory processes when there are no thermal effects. Copyright 2003 Wiley-Liss, Inc.

  10. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin

    USGS Publications Warehouse

    Selbig, William R.

    2015-01-01

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2 °C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery.

  11. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin.

    PubMed

    Selbig, William R

    2015-07-15

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2°C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery. Published by Elsevier B.V.

  12. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    PubMed

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  13. Correlation Dimension Estimates of Global and Local Temperature Data.

    NASA Astrophysics Data System (ADS)

    Wang, Qiang

    1995-11-01

    The author has attempted to detect the presence of low-dimensional deterministic chaos in temperature data by estimating the correlation dimension with the Hill estimate that has been recently developed by Mikosch and Wang. There is no convincing evidence of low dimensionality with either global dataset (Southern Hemisphere monthly average temperatures from 1858 to 1984) or local temperature dataset (daily minimums at Auckland, New Zealand). Any apparent reduction in the dimension estimates appears to be due large1y, if not entirely, to effects of statistical bias, but neither is it a purely random stochastic process. The dimension of the climatic attractor may be significantly larger than 10.

  14. Regional climate change study requires new temperature datasets

    NASA Astrophysics Data System (ADS)

    Wang, K.; Zhou, C.

    2016-12-01

    Analyses of global mean air temperature (Ta), i. e., NCDC GHCN, GISS, and CRUTEM4, are the fundamental datasets for climate change study and provide key evidence for global warming. All of the global temperature analyses over land are primarily based on meteorological observations of the daily maximum and minimum temperatures (Tmax and Tmin) and their averages (T2) because in most weather stations, the measurements of Tmax and Tmin may be the only choice for a homogenous century-long analysis of mean temperature. Our studies show that these datasets are suitable for long-term global warming studies. However, they may introduce substantial bias in quantifying local and regional warming rates, i.e., with a root mean square error of more than 25% at 5°x 5° grids. From 1973 to 1997, the current datasets tend to significantly underestimate the warming rate over the central U.S. and overestimate the warming rate over the northern high latitudes. Similar results revealed during the period 1998-2013, the warming hiatus period, indicate the use of T2 enlarges the spatial contrast of temperature trends. This because T2 over land only sample air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. For better regional climate change detection and attribution, we suggest creating new global mean air temperature datasets based on the recently available high spatiotemporal resolution meteorological observations, i.e., daily four observations weather station since 1960s, These datasets will not only help investigate dynamical processes on temperature variances but also help better evaluate the reanalyzed and modeled simulations of temperature and make some substantial improvements for other related climate variables in models, especially over regional and seasonal aspects.

  15. Regional climate change study requires new temperature datasets

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Zhou, Chunlüe

    2017-04-01

    Analyses of global mean air temperature (Ta), i. e., NCDC GHCN, GISS, and CRUTEM4, are the fundamental datasets for climate change study and provide key evidence for global warming. All of the global temperature analyses over land are primarily based on meteorological observations of the daily maximum and minimum temperatures (Tmax and Tmin) and their averages (T2) because in most weather stations, the measurements of Tmax and Tmin may be the only choice for a homogenous century-long analysis of mean temperature. Our studies show that these datasets are suitable for long-term global warming studies. However, they may have substantial biases in quantifying local and regional warming rates, i.e., with a root mean square error of more than 25% at 5 degree grids. From 1973 to 1997, the current datasets tend to significantly underestimate the warming rate over the central U.S. and overestimate the warming rate over the northern high latitudes. Similar results revealed during the period 1998-2013, the warming hiatus period, indicate the use of T2 enlarges the spatial contrast of temperature trends. This is because T2 over land only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. For better regional climate change detection and attribution, we suggest creating new global mean air temperature datasets based on the recently available high spatiotemporal resolution meteorological observations, i.e., daily four observations weather station since 1960s. These datasets will not only help investigate dynamical processes on temperature variances but also help better evaluate the reanalyzed and modeled simulations of temperature and make some substantial improvements for other related climate variables in models, especially over regional and seasonal aspects.

  16. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse

    PubMed Central

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Derous, Davina; Green, Cara L.; Chen, Luonan; Han, Jing-Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Douglas, Alex; Lusseau, David; Speakman, John R.

    2015-01-01

    A commonly observed response in mammals to calorie restriction (CR) is reduced body temperature (Tb). We explored how the Tb of male C57BL/6 mice responded to graded CR (10 to 40%), compared to the response to equivalent levels of protein restriction (PR) over 3 months. Under CR there was a dynamic change in daily Tb over the first 30–35 days, which stabilized thereafter until day 70 after which a further decline was noted. The time to reach stability was dependent on restriction level. Body mass negatively correlated with Tb under ad libitum feeding and positively correlated under CR. The average Tb over the last 20 days was significantly related to the levels of body fat, structural tissue, leptin and insulin-like growth factor-1. Some mice, particularly those under higher levels of CR, showed periods of daily torpor later in the restriction period. None of the changes in Tb under CR were recapitulated by equivalent levels of PR. We conclude that changes in Tb under CR are a response only to the shortfall in calorie intake. The linear relationship between average Tb and the level of restriction supports the idea that Tb changes are an integral aspect of the lifespan effect. PMID:26286956

  17. Shearing at the end of summer affects body temperature of free-living Angora goats ( Capra aegagrus) more than does shearing at the end of winter.

    PubMed

    Hetem, R S; de Witt, B A; Fick, L G; Fuller, A; Kerley, G I H; Maloney, S K; Meyer, L C R; Mitchell, D

    2009-07-01

    Angora goats are known to be vulnerable to cold stress, especially after shearing, but their thermoregulatory responses to shearing have not been measured. We recorded activity, and abdominal and subcutaneous temperatures, for 10 days pre-shearing and post-shearing, in 10 Angora goats inhabiting the succulent thicket of the Eastern Cape, South Africa, in both March (late summer) and September (late winter). Within each season, environmental conditions were similar pre-shearing and post-shearing, but September was an average 5°C colder than March. Shearing resulted in a decreased mean (P < 0.0001), minimum (P < 0.0001) and maximum daily abdominal temperature (P < 0.0001). Paradoxically, the decrease in daily mean (P = 0.03) and maximum (P = 0.01) abdominal temperatures, from pre-shearing to post-shearing, was greater in March than in September. Daily amplitude of body temperature rhythm (P < 0.0001) and the maximum rate of abdominal temperature rise (P < 0.0001) increased from pre-shearing to post-shearing, resulting in an earlier diurnal peak in abdominal temperature (P = 0.001) post-shearing. These changes in amplitude, rate of abdominal temperature rise and time of diurnal peak in abdominal temperature suggest that the goats' thermoregulatory system was more labile after shearing. Mean daily subcutaneous temperatures also decreased post-shearing (P < 0.0001), despite our index goat selecting more stable microclimates after shearing in March (P = 0.03). Following shearing, there was an increased difference between abdominal and subcutaneous temperatures (P < 0.0001) at night, suggesting that the goats used peripheral vasoconstriction to limit heat loss. In addition to these temperature changes, mean daily activity increased nearly two-fold after March shearing, but not September shearing. This increased activity after March shearing was likely the result of an increased foraging time, food intake and metabolic rate, as suggested by the increased water influx (P = 0.0008). Thus, Angora goats entered a heat conservation mode after shearing in both March and September. That the transition from the fleeced to the shorn state had greater thermoregulatory consequences in March than in September may provide a mechanistic explanation for Angora goats' vulnerability to cold in summer.

  18. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    PubMed

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    Fewer studies have been published on the association between daily mortality and ambient air pollution in Asia than in the United States and Europe. This study was undertaken in Wuhan, China, to investigate the acute effects of air pollution on mortality with an emphasis on particulate matter (PM*). There were three primary aims: (1) to examine the associations of daily mortality due to all natural causes and daily cause-specific mortality (cardiovascular [CVD], stroke, cardiac [CARD], respiratory [RD], cardiopulmonary [CP], and non-cardiopulmonary [non-CP] causes) with daily mean concentrations (microg/m3) of PM with an aerodynamic diameter--10 pm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), or ozone (O3); (2) to investigate the effect modification of extremely high temperature on the association between air pollution and daily mortality due to all natural causes and daily cause-specific mortality; and (3) to assess the uncertainty of effect estimates caused by the change in International Classification of Disease (ICD) coding of mortality data from Revision 9 (ICD-9) to Revision 10 (ICD-10) code. Wuhan is called an "oven city" in China because of its extremely hot summers (the average daily temperature in July is 37.2 degrees C and maximum daily temperature often exceeds 40 degrees C). Approximately 4.5 million residents live in the core city area of 201 km2, where air pollution levels are higher and ranges are wider than the levels in most cities studied in the published literature. We obtained daily mean levels of PM10, SO2, and NO2 concentrations from five fixed-site air monitoring stations operated by the Wuhan Environmental Monitoring Center (WEMC). O3 data were obtained from two stations, and 8-hour averages, from 10:00 to 18:00, were used. Daily mortality data were obtained from the Wuhan Centres for Disease Prevention and Control (WCDC) during the study period of July 1, 2000, to June 30, 2004. To achieve the first aim, we used a regression of the logarithm of daily counts of mortality due to all natural causes and cause-specific mortality on the daily mean concentrations of the four pollutants while controlling for weather, temporal factors, and other important covariates with generalized additive models (GAMs). We derived pollutant effect estimations for 0-day, 1-day, 2-day, 3-day, and 4-day lagged exposure levels, and the averages of 0-day and 1-day lags (lag 0-1 day) and of 0-day, 1-day, 2-day, and 3-day lags (lag 0-3 days) before the event of death. In addition, we used individual-level data (e.g., age and sex) to classify subgroups in stratified analyses. Furthermore, we explored the nonlinear shapes ("thresholds") of the exposure-response relations. To achieve the second aim, we tested the hypothesis that extremely high temperature modifies the associations between air pollution and daily mortality. We developed three corresponding weather indicators: "extremely hot," "extremely cold," and "normal temperatures." The estimates were obtained from the models for the main effects and for the pollutant-temperature interaction for each pollutant and each cause of mortality. To achieve the third aim, we conducted an additional analysis. We examined the concordance rates and kappa statistics between the ICD-9-coded mortality data and the ICD-10-coded mortality data for the year 2002. We also compared the magnitudes of the estimated effects resulting from the use of the two types of ICD-coded mortality data. In general, the largest pollutant effects were observed at lag 0-1 day. Therefore, for this report, we focused on the results obtained from the lag 0-1 models. We observed consistent associations between PM10 and mortality: every 10-microg/m3 increase in PM10 daily concentration at lag 0-1 day produced a statistically significant association with an increase in mortality due to all natural causes (0.43%; 95% confidence interval [CI], 0.24 to 0.62), CVD (0.57%; 95% CI, 0.31 to 0.84), stroke (0.57%; 95% CI, 0.25 to 0.88), CARD (0.49%; 95% CI, 0.04 to 0.94), RD (0.87%; 95% CI, 0.34 to 1.41), CP (0.52%; 95% CI, 0.27 to 0.77), and non-CP (0.30%; 95% CI, 0.05 to 0.54). In general, these effects were stronger in females than in males and were also stronger among the elderly (> or = 65 years) than among the young. The results of sensitivity testing over the range of exposures from 24.8 to 477.8 microg/m3 also suggest the appropriateness of assuming a linear relation between daily mortality and PM10. Among the gaseous pollutants, we also observed statistically significant associations of mortality with NO, and SO2, and that the estimated effects of these two pollutants were stronger than the PM10 effects. The patterns of NO2 and SO2 associations were similar to those of PM10 in terms of sex, age, and linearity. O3 was not associated with mortality. In the analysis of the effect modification of extremely high temperature on the association between air pollution and daily mortality, only the interaction of PM10 with temperature was statistically significant. Specifically, the interaction terms were statistically significant for mortality due to all natural (P = 0.014), CVD (P = 0.007), and CP (P = 0.014) causes. Across the three temperature groups, the strongest PM10 effects occurred mainly on days with extremely high temperatures for mortality due to all natural (2.20%; 95% CI, 0.74 to 3.68), CVD (3.28%; 95% CI, 1.24 to 5.37), and CP (3.02%; 95% CI, 1.03 to 5.04) causes. The weakest effects occurred at normal temperature days, with the effects on days with low temperatures in the middle. To assess the uncertainty of the effect estimates caused by the change from ICD-9-coded mortality data to ICD-10-coded mortality data, we compared the two sets of data and found high concordance rates (> 99.3%) and kappa statistics close to 1.0 (> 0.98). All effect estimates showed very little change. All statistically significant levels of the estimated effects remained unchanged. In conclusion, the findings for the aims from the current study are consistent with those in most previous studies of air pollution and mortality. The small differences between mortality effects for deaths coded using ICD-9 and ICD-10 show that the change in coding had a minimal impact on our study. Few published papers have reported synergistic effects of extremely high temperatures and air pollution on mortality, and further studies are needed. Establishing causal links between heat, PM10, and mortality will require further toxicologic and cohort studies.

  19. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City

    NASA Technical Reports Server (NTRS)

    Ngo, Nicole S.; Horton, Radley M.

    2015-01-01

    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  20. Geostatistical interpolation of individual average monthly temperature supported by MODIS MOD11C3 product

    NASA Astrophysics Data System (ADS)

    Perčec Tadić, M.

    2010-09-01

    The increased availability of satellite products of high spatial and temporal resolution together with developing user support, encourages the climatologists to use this data in research and practice. Since climatologists are mainly interested in monthly or even annual averages or aggregates, this high temporal resolution and hence, large amount of data, can be challenging for the less experienced users. Even if the attempt is made to aggregate e. g. the 15' (temporal) MODIS LST (land surface temperature) to daily temperature average, the development of the algorithm is not straight forward and should be done by the experts. Recent development of many temporary aggregated products on daily, several days or even monthly scale substantially decrease the amount of satellite data that needs to be processed and rise the possibility for development of various climatological applications. Here the attempt is presented in incorporating the MODIS satellite MOD11C3 product (Wan, 2009), that is monthly CMG (climate modelling 0.05 degree latitude/longitude grids) LST, as predictor in geostatistical interpolation of climatological data in Croatia. While in previous applications, e. g. in Climate Atlas of Croatia (Zaninović et al. 2008), the static predictors as digital elevation model, distance to the sea, latitude and longitude were used for the interpolation of monthly, seasonal and annual 30-years averages (reference climatology), here the monthly MOD11C3 is used to support the interpolation of the individual monthly average in the regression kriging framework. We believe that this can be a valuable show case of incorporating the remote sensed data for climatological application, especially in the areas that are under-sampled by conventional observations. Zaninović K, Gajić-Čapka M, Perčec Tadić M et al (2008) Klimatski atlas Hrvatske / Climate atlas of Croatia 1961-1990, 1971-2000. Meteorological and Hydrological Service of Croatia, Zagreb, pp 200. Wan Z, 2009: Collection-5 MODIS Land Surface Temperature Products Users' Guide, ICESS, University of California, Santa Barbara, pp 30.

  1. Generating daily weather data for ecosystem modelling in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range based on the ratio of values on rainy days and days without rain, respectively. For assessing the impact of our correction, we simulated the ecosystem behaviour using the climate data from Lastourville, Moanda and Mouilla with the mechanistic ecosystem model Biome-BGC. Differences in terms of the carbon, nitrogen and water cycle were subsequently analysed and discussed.

  2. Association Between Air Temperature and Cancer Death Rates in Florida: An Ecological Study.

    PubMed

    Hart, John

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory - that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings.

  3. Association Between Air Temperature and Cancer Death Rates in Florida

    PubMed Central

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory – that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings. PMID:26674418

  4. Effect of early feed restriction on physiological responses, performance and ascites incidence in broiler chickens raised in normal or cold environment.

    PubMed

    Mohammadalipour, R; Rahmani, H R; Jahanian, R; Riasi, A; Mohammadalipour, M; Nili, N

    2017-02-01

    Intensive selection of broilers for faster growth and better feed efficiency resulted in greater susceptibility to metabolic disorders such as ascites syndrome, which is one of the major causes of mortality and economic loss in broiler industry. Whereas cool temperature is one of the primary triggers for ascites, early feed restriction (FDR) significantly alleviates its incidence and mortality. However, little is known about effects of FDR, cold environmental temperature and their interaction on physiological responses in broiler chickens. For this purpose, 320 one-day-old male broilers were divided into two treatment groups of Ad libitum (Ad) and feed restricted (FR) with eight pen replicates each. Chickens in FR group underwent feed access limitation from days 7 to 14 of age. On day 21 half of the birds (four pens) in each group exposed to the cold temperature (CT) and the other half (four pens) continued at normal temperature (NT). Average daily feed intake, average daily weight gain and feed conversion ratio (FCR) were measured at days 7, 14, 21, 28 and 42. At 39 and 46 days of age two chicks with a BW around the pen average were selected from each pen and slaughtered after collecting blood samples. Then, relative weight of internal organs and right ventricle weight per total ventricle weight (RV : TV) ratio were calculated. Compared with NT group, CT birds had higher daily feed intake and FCR (P<0.05) from day 28 to 42. Cumulative ascites mortality in CT chickens was higher (P<0.001) than NT chicks. Within the CT group, ascites mortality in FR chickens was reduced (P<0.001) to 1.25% compared with 8.75% in Ad chicks. Birds in CT group had significantly (P<0.05) thicker right ventricle and greater relative weight of heart, hematocrit and triiodothyronine concentration. However, none of these parameters were affected by FDR. Under cold stress conditions, FDR reduced activity of alanine aminotransferase and aspartate aminotransferase (P<0.05). Serum triglyceride, cholesterol, high-density lipoprotein and total protein were not influenced by either temperature or feeding regimen. In conclusion, these findings suggest that FDR reduces ascites incidence mainly by allowing better development of internal organs, which helps them to cope with the high metabolic pressure and suffer less damage.

  5. Performance and carcass characteristics of steers fed with two levels of metabolizable energy intake during summer and winter season.

    PubMed

    Arias, R A; Keim, J P; Gandarillas, M; Velásquez, A; Alvarado-Gilis, C; Mader, T L

    2018-05-22

    Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (P<0.005). The mean values of TT were higher in steers fed with higher MEI and also in the summer season. The average daily gain was greater during summer v. winter (1.10±0.11 v. 0.36±0.06) kg/day, also when steers were fed 2.72 v. 1.85 MEI level (0.89±0.12 v. 0.57±0.10) kg/day. In summer, respiration rate increased in 41.2% in the afternoon. In winter, muddy conditions increased with time of feeding, whereas wind speed and rainfall had significant effects on TT and average daily gain. We conclude that MEI and environmental variables have direct effects on the physiology and performance of steers, including TT and average daily gain, particularly during the winter. In addition, carcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required.

  6. Adjusted monthly temperature and precipitation values for Guinea Conakry (1941-2010) using HOMER.

    NASA Astrophysics Data System (ADS)

    Aguilar, Enric; Aziz Barry, Abdoul; Mestre, Olivier

    2013-04-01

    Africa is a data sparse region and there are very few studies presenting homogenized monthly records. In this work, we introduce a dataset consisting of 12 stations spread over Guinea Conakry containing daily values of maximum and minimum temperature and accumulated rainfall for the period 1941-2010. The daily values have been quality controlled using R-Climdex routines, plus other interactive quality control applications, coded by the authors. After applying the different tests, more than 200 daily values were flagged as doubtful and carefully checked against the statistical distribution of the series and the rest of the dataset. Finally, 40 values were modified or set to missing and the rest were validated. The quality controlled daily dataset was used to produce monthly means and homogenized with HOMER, a new R-pacakge which includes the relative methods that performed better in the experiments conducted in the framework of the COST-HOME action. A total number of 38 inhomogeneities were found for temperature. As a total of 788 years of data were analyzed, the average ratio was one break every 20.7 years. The station with a larger number of inhomogeneities was Conakry (5 breaks) and one station, Kissidougou, was identified as homogeneous. The average number of breaks/station was 3.2. The mean value of the monthly factors applied to maximum (minimum) temperature was 0.17 °C (-1.08 °C) . For precipitation, due to the demand of a denser network to correctly homogenize this variable, only two major inhomogeneities in Conakry (1941-1961, -12%) and Kindia (1941-1976, -10%) were corrected. The adjusted dataset was used to compute regional series for the three variables and trends for the 1941-2010 period. The regional mean has been computed by simply averaging anomalies to 1971-2000 of the 12 time series. Two different versions have been obtained: a first one (A) makes use of the missing values interpolation made by HOMER (so all annual values in the regional series are an average of 12 anomalies); the second one (B) removes the missing values, and each value of the regional series is an average of 5 to 12 anomalies. In this case, a variance stabilization factor has been applied. As a last step a trend analysis has been applied over the regional series. This has been done using two different approaches: standard least squares regression (LS) and the implementation by Zhang of the Sen slope estimator (SEN), applied using the zyp R-package. The results for the A & B series and the different trend calculations are very similar, in terms of slopes and signification. All the identified trends are significant at the 95% confidence level or better. Using the A series and the SEN slope, the annual regional mean of maximum temperatures has increased 0.135 °C/decade (95% confidence interval: 0.087 / 0.173) and the annual regional mean of minimum temperatures 0.092 °C/decade (0.050/0.135). Maximum temperatures present high values in the 1940s to 1950s and a large increase in the last decades. In contrast, minimum temperatures were relatively cooler in the 1940s and 1950s and the increase in the last decades is more moderate. Finally, the regional mean of annual accumulated precipitation decreased between 1941 and 2010 by -2.20 mm (-3.82/-0.64). The precipitation series are dominated by the high values before 1970, followed by a well known decrease in rainfall. This homogenized monthly series will improve future analysis over this portion of Western Africa.

  7. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.

    2003-01-01

    This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS) NCEP output; (4) spatially averaged measured data used to calibrate the hydrologic model (Best-Sta) and (5) spatially averaged measured data derived from stations located within the area of the RegCM2 model output used for each basin, but excluding Best-Sta set (All-Sta). In all three basins the SDS-based simulations of daily runoff were as good as runoff produced using the Best-Sta timeseries. The NCEP, DDS, and All-Sta timeseries were able to capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all three basins, the NCEP-, DDS-, and All-Sta-based simulations of runoff showed little skill on a daily basis. When the precipitation and temperature biases were corrected in the NCEP, DDS, and All-Sta timeseries, the accuracy of the daily runoff simulations improved dramatically, but, with the exception of the bias-corrected All-Sta data set, these simulations were never as accurate as the SDS-based simulations. This need for a bias correction may be somewhat troubling, but in the case of the large station-timeseries (All-Sta), the bias correction did indeed 'correct' for the change in scale. It is unknown if bias corrections to model output will be valid in a future climate. Future work is warranted to identify the causes for (and removal of) systematic biases in DDS simulations, and improve DDS simulations of daily variability in local climate. Until then, SDS based simulations of runoff appear to be the safer downscaling choice.

  8. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  9. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  10. Severe European winters in a secular perspective

    NASA Astrophysics Data System (ADS)

    Hoy, Andreas; Hänsel, Stephanie

    2017-04-01

    Temperature conditions during the winter time are substantially shaped by a strong year-to-year variability. European winters since the late 1980s - compared to previous decades and centuries - were mainly characterised by a high temperature level, including recent record-warm winters. Yet, comparably cold winters and severe cold spells still occur nowadays, like recently observed from 2009 to 2013 and in early 2017. Central England experienced its second coldest December since start of observations more than 350 years ago in 2010, and some of the lowest temperatures ever measured in northern Europe (below -50 °C in Lapland) were recorded in January 1999. Analysing thermal characteristics and spatial distribution of severe (historical) winters - using early instrumental data - helps expanding and consolidating our knowledge of past weather extremes. This contribution presents efforts towards this direction. We focus on a) compiling and assessing a very long-term instrumental, spatially widespread and well-distributed, high-quality meteorological data set to b) investigate very cold winter temperatures in Europe from early measurements until today. In a first step, we analyse the longest available time series of monthly temperature averages within Europe. Our dataset extends from the Nordic countries up to the Mediterranean and from the British Isles up to Russia. We utilise as much as possible homogenised times series in order to ensure reliable results. Homogenised data derive from the NORDHOM (Scandinavia) and HISTALP (greater alpine region) datasets or were obtained from national weather services and universities. Other (not specifically homogenised) data were derived from the ECA&D dataset or national institutions. The employed time series often start already during the 18th century, with Paris & Central England being the longest datasets (from 1659). In a second step, daily temperature averages are involved. Only some of those series are homogenised, but those available are sufficiently distributed throughout Europe to ensure reliable results. Furthermore, the comparably dense network of long-term observations allows an appropriate quality checking within the network. Additionally, the large collective of homogenised monthly data enables assessing the quality of many daily series. Daily data are used to sum up negative values for the respective winter periods to create times series of "cold summations", which are a good indicator for the severeness of winters in most parts of Europe. Additionally, days below certain thresholds may be counted or summed up. Future work will include daily minimum and maximum temperatures, allowing calculating and applying an extensive set of climate indices, refining the work presented here.

  11. A time series study on the effects of cold temperature on road traffic injuries in Seoul, Korea.

    PubMed

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2014-07-01

    Although traffic accidents are associated with weather, the influence of temperature on injuries from traffic accidents has not been evaluated sufficiently. The objective of this study was to evaluate the effect of temperature, especially cold temperatures, on injuries from traffic accidents in Seoul, Korea. We also explored the relationship of temperature with different types of traffic accident. The daily frequencies of injuries from traffic accidents in Seoul were summarized from the integrated database established by the Korea Road Traffic Authority. Weather data included temperature, barometric pressure, rainfall, snow, and fog from May 2007 to December 2011. The qualitative relationship between daily mean temperature and injuries from traffic accidents was evaluated using a generalized additive model with Poisson distribution. Further analysis was performed using piecewise linear regression if graph the showed non-linearity with threshold. The incidence of injuries was 216 per 100,000 person-months in Seoul. The effect of temperature on injuries from traffic accidents was minimal during spring and summer. However, injuries showed a more striking relationship with temperature in winter than in other seasons. In winter, the number of injuries increased as the temperature decreased to <0°C. The injuries increased by 2.1% per 1°C decrease under the threshold of the daily average temperature -5.7°C, which is 10-fold greater than the effect of temperature above the threshold. Some groups were more susceptible to injuries, such as young and male drivers, according to the types of traffic accident when the temperature decreased to below the freezing temperature. The incidence of injuries increased sharply when the temperature decreased below freezing temperature in winter. Temperature can be effectively used to inform high risk of road traffic injuries, thus helping to prevent road traffic injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  13. Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape.

    PubMed

    Keppel, Gunnar; Anderson, Sharolyn; Williams, Craig; Kleindorfer, Sonia; O'Connell, Christopher

    2017-01-01

    Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1-5°C cooler, night temperatures were 0.5-3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity.

  14. Impacts of Future Climate Change on Ukraine Transportation System

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna

    2016-04-01

    Transportation not only affects climate, but are strongly influenced with the climate conditions, and key hubs of the transportation sector are cities. Transportation decision makers have an opportunity now to prepare for projected climate changes owing to development of emission scenarios. In the study impact of climate change on operation of road transport along highways are analyzed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean and maximum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 8 cities (Dnipropetrovsk, Khmelnytskyi, Kirovohrad, Kharkiv, Odesa, Ternopil, Vinnytsia and Voznesensk) situated down the highways. The highways of 'Odesa-Voznesensk-Dnipropetrovsk-Kharkiv' and 'Dnipropetrovsk-Kirovohrad-Vinnytsia-Khmelnytskyi-Ternopil' are considered. The first highway goes across the Black Sea Lowland, the Dnieper Upland and Dnieper Lowland, the other passes through the Dnieper and Volhynia-Podillia Uplands. The both highways are situated in steppe and forest-steppe native zones. For both scenarios, significant climate warming is registered; it is revealed in significant increase of average monthly and yearly temperature by 2-3°C in all cities in questions, and also, in considerable increment of frequency of days with maximum temperature higher than +30 and 35°C, except Kharkiv, where decrease number of days with such temperatures is observed. On the contrary, number of days with daily mean temperature being equal to or below 0°C decreases in the south of steppe, is constant in the north of steppe and increases in the forest-steppe native zone. Extreme negative temperatures don't occur in the steppe zone, but takes place in the forest-steppe zone. Results obtained shows that road surface must hold in extreme maximum temperature, and in the forest-steppe zone hazards of extreme negative temperatures must be considered. Frequency of winter events that make road surface worse such as glaze-clear ice, frozen snow that had initially melted on a warm road surface, ice and snow slippery coats etc., are high enough, especially in the forest-steppe zone. In the Black Sea Lowland among winter events the frozen snow that had initially melted on a warm road surface is most commonly observed, that is connected with high occurrence of the thaws. Because of increase in frequency of shower precipitation in all cities wet road surface is observed most frequently, especially in May and June; it must be taken into account for construction of roads, too. Monthly mean wind speed shows that in Odesa and Kharkiv significant increase in average monthly and yearly wind speeds are observed, by 0,5-1 m/s in comparison with the period of 1961 to 1990. On the contrary, in Dnipropetrovsk, wind speed decreases by 0,7 m/s. Frequency distribution of maximum wind speed shows that high wind speeds are more frequent in the winter months.

  15. Semiparametric Modeling of Daily Ammonia Levels in Naturally Ventilated Caged-Egg Facilities

    PubMed Central

    Gutiérrez-Zapata, Diana María; Galeano-Vasco, Luis Fernando; Cerón-Muñoz, Mario Fernando

    2016-01-01

    Ammonia concentration (AMC) in poultry facilities varies depending on different environmental conditions and management; however, this is a relatively unexplored subject in Colombia (South America). The objective of this study was to model daily AMC variations in a naturally ventilated caged-egg facility using generalized additive models. Four sensor nodes were used to record AMC, temperature, relative humidity and wind speed on a daily basis, with 10 minute intervals for 12 weeks. The following variables were included in the model: Heat index, Wind, Hour, Location, Height of the sensor to the ground level, and Period of manure accumulation. All effects included in the model were highly significant (p<0.001). The AMC was higher during the night and early morning when the wind was not blowing (0.0 m/s) and the heat index was extreme. The average and maximum AMC were 5.94±3.83 and 31.70 ppm, respectively. Temperatures above 25°C and humidity greater than 80% increased AMC levels. In naturally ventilated caged-egg facilities the daily variations observed in AMC primarily depend on cyclic variations of the environmental conditions and are also affected by litter handling (i.e., removal of the bedding material). PMID:26812150

  16. Downscaling GCM Output with Genetic Programming Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Dibike, Y. B.; Coulibaly, P.

    2004-05-01

    Climate change impact studies on watershed hydrology require reliable data at appropriate spatial and temporal resolution. However, the outputs of the current global climate models (GCMs) cannot be used directly because GCM do not provide hourly or daily precipitation and temperature reliable enough for hydrological modeling. Nevertheless, we can get more reliable data corresponding to future climate scenarios derived from GCM outputs using the so called 'downscaling techniques'. This study applies Genetic Programming (GP) based technique to downscale daily precipitation and temperature values at the Chute-du-Diable basin of the Saguenay watershed in Canada. In applying GP downscaling technique, the objective is to find a relationship between the large-scale predictor variables (NCEP data which provide daily information concerning the observed large-scale state of the atmosphere) and the predictand (meteorological data which describes conditions at the site scale). The selection of the most relevant predictor variables is achieved using the Pearson's coefficient of determination ( R2) (between the large-scale predictor variables and the daily meteorological data). In this case, the period (1961 - 2000) is identified to represent the current climate condition. For the forty years of data, the first 30 years (1961-1990) are considered for calibrating the models while the remaining ten years of data (1991-2000) are used to validate those models. In general, the R2 between the predictor variables and each predictand is very low in case of precipitation compared to that of maximum and minimum temperature. Moreover, the strength of individual predictors varies for every month and for each GP grammar. Therefore, the most appropriate combination of predictors has to be chosen by looking at the output analysis of all the twelve months and the different GP grammars. During the calibration of the GP model for precipitation downscaling, in addition to the mean daily precipitation and daily precipitation variability for each month, monthly average dry and wet-spell lengths are also considered as performance criteria. For the cases of Tmax and Tmin, means and variances of these variables corresponding to each month were considered as performance criteria. The GP downscaling results show satisfactory agreement between the observed daily temperature (Tmax and Tmin) and the simulated temperature. However, the downscaling results for the daily precipitation still require some improvement - suggesting further investigation of other grammars. KEY WORDS: Climate change; GP downscaling; GCM.

  17. Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1987

    USGS Publications Warehouse

    Wood, James L.; Fischer, Jeffrey M.

    1992-01-01

    Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1987. Data were collected in support of an ongoing study to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs A discussion of the instrumentation used at the site is presented. Included in the discussion are the type of sensors, their reported accuracy, and mounting height of each sensor.In 1987, the average hourly air temperatures ranged from -7.6 degrees Celsius, in December, to 43.1 degrees Celsius, in July. Hourly averaged relative humidity ranged from about 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.12 to 1.77 kilopascals. Daily values for maximum incident solar radiation ranged from 118 to 1,067 watts per square meter. Daily mean windspeed ranged from 1.4 to 9.4 meters per second. Monthly wind-direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Total precipitation for 1987 was 136.4 millimeters, more than 75 percent occurring during January-April and November-December.

  18. Hydrothermal extremes at the South-West Pribaikalie during the current climate changes

    NASA Astrophysics Data System (ADS)

    Voropay, Nadezhda

    2017-04-01

    Climatic extremes of air temperature and precipitation were analyzed for the Tunka Intermountain Depression (South-West Pribaikalie, Buryatia, Russian Federation). Intermountain depressions occupy a quarter of the territory of the Baikal region. The specific climatic conditions in the depressions are formed due to the geographic location and the influence of latitudinal zonation and altitudinal gradients. Air temperature and precipitation data records from at weather stations for the period 1940-2015 were analyzed. Long-term average annual temperature is negative and varies from -0.8 °C to -2.4 °C. Air temperature absolute minimum is -48 °C, absolute maximum is +36 °C. The long-term average annual precipitation is 370-480 mm, but in some years annual precipitation reach 760 mm. The summer months have about 70% of the total annual precipitation, in July and August the sum may reach 340 mm. Maximum daily sum of rainfalls is 80 mm. The contribution of the global and regional circulation characteristics into the variability of regional climatic characteristics was estimated.

  19. High-resolution projections of 21st century climate over the Athabasca River Basin through an integrated evaluation-classification-downscaling-based climate projection framework

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Zhu, Jinxin; Zhou, Xiong; Yao, Y.

    2017-03-01

    An evaluation-classification-downscaling-based climate projection (ECDoCP) framework is developed to fill a methodological gap of general circulation models (GCMs)-driven statistical-downscaling-based climate projections. ECDoCP includes four interconnected modules: GCM evaluation, climate classification, statistical downscaling, and climate projection. Monthly averages of daily minimum (Tmin) and maximum (Tmax) temperature and daily cumulative precipitation (Prec) over the Athabasca River Basin (ARB) at a 10 km resolution in the 21st century under four Representative Concentration Pathways (RCPs) are projected through ECDoCP. At the octodecadal scale, temperature and precipitation would increase; after bias correction, temperature would increase with a decreased increment, while precipitation would increase only under RCP 8.5. Interannual variability of climate anomalies would increase from RCPs 4.5, 2.6, 6.0 to 8.5 for temperature and from RCPs 2.6, 4.5, 6.0 to 8.5 for precipitation. Bidecadal averaged climate anomalies would decrease from December-January-February (DJF), March-April-May (MAM), September-October-November (SON) to June-July-August (JJA) for Tmin, from DJF, SON, MAM to JJA for Tmax, and from JJA, MAM, SON to DJF for Prec. Climate projection uncertainties would decrease in May to September for temperature and in November to April for precipitation. Spatial climatic variability would not obviously change with RCPs; climatic anomalies are highly correlated with climate-variable magnitudes. Climate anomalies would decrease from upstream to downstream for temperature, and precipitation would follow an opposite pattern. The north end and the other zones would have colder and warmer days, respectively; precipitation would decrease in the upstream and increase in the remaining region. Climate changes might lead to issues, e.g., accelerated glacier/snow melting, deserving attentions of researchers and the public.

  20. Climate change and malaria risk in the European part of Russia in 21st century

    NASA Astrophysics Data System (ADS)

    Shartova, N.; Malkhazova, S.

    2009-04-01

    The purpose of this research is development of prognostic model of malaria risk for European part of Russia (EPR) in the 21st century according to climate scenario IPCC "A2". The following issues have been formulated to reach the goal of the research: define the basic epidemiological parameters describing malaria situation and methods of data processing; creating of maps of malaria risk; analysis of changes in malaria distribution for predictable future climate conditions in comparison with conditions of a modern climate. A lot of reasons (biological, social and economic) impact on malaria distribution. Nevertheless, incubation period of the parasite first of all depends on temperature. This is a primary factor that defines a potential area of infection, ability and specificity to transmit malaria. According to this, the model is based on the relationship between climate (average daily temperature) and the intensity of malaria transmission. The object of research is malaria parasite Plasmodium vivax, which has for Russia (particularly for EPR) the greatest importance because it has the lowest minimal temperature threshold for development. Climate data is presented by daily average temperatures of air for three analyzed periods. 1961 -1989 describes a modern climate and corresponds to the minimum 30-year period that is necessary for an assessment of climate and changes connected with biotic components. Prognostic malaria model is based on predicted daily average temperatures for 2046-2065 (the middle of century) and 2089-2100 (the end of century). All data sets for EPR are presented in the grid 2x2. The conclusion on possible changes in malaria distribution and transmission in the middle and the end of the 21st century: There is going to be the increase of duration of effective temperatures period (period when parasite development is possible), period of effective susceptibility to infection of mosquitoes (period when malaria transmission cycle is possible); shift of the beginning of malaria transmission period to earlier time as well as the end of this period's shift to later time is connected to increase of effective temperatures annual sum. Northern bounds of the territory where temperature conditions allow parasite's development and disease transmission are going to move significantly to the north. Accordingly there will be an expansion of potential disease distribution area. Annual development of parasite and malaria transmission will probably be possible on nearly whole EPR. The probability of malaria transmission and its intensity will increase. The greatest changes in malaria situation will occur in the north of EPR. The results of the research indicate growth of malaria risk on whole European part of Russia in 21st century.

  1. [Hazard assessment of the impact of high temperature and air pollution on public health in Moscow].

    PubMed

    Revich, B A; Shaposhnikov, D A; Avaliani, S L; Rubinshtein, K G; Emelina, S V; Shiriaev, M V; Semutnikova, E G; Zakharova, P V; Kislova, O Iu

    2015-01-01

    In the article there are considered the main problems of assessing public health risks of the combined effects of high temperatures and air pollution with the account taken of the consequences of abnormally hot weather observed in summer 2010 in Moscow and without equals in the history of meteorological measurements in the city. The daily average concentrations of fine suspended particles matter (PM10) in the city during peatland fires from 4 to 9 August are emphasized to be within the range of 431-906 μ/m3, being 7.2-15.1 times the Russian maximum permissible concentration (MPCs) (60 μ/m3). The anomalous heat and high levels of air pollution in this period were shown to cause a significant increase in excess mortality among the population of Moscow. There was established the relative gain in mortality from all natural causes per 10 μg/m3 increase in daily average concentrations of PM10 and ozone, which was respectively: 0.47% (95%; CI: 0.31-0.63) and 0.41% (95%; CI: 0.31-1.13). On the base of the statistical analysis of daily mortality rates, meteorological indices, the concentrations of PM10 and ozone there was developed marking scale for the risk assessment of these indices accordingly to 4 gradings--low (permissible), warning, alert, and a hazard level. There has been substantiated the importance of the introduction of the system for the early alert for hazard weather events and the unified rating scale for the hazard of high air temperatures and high levels of air pollution with PM10 and ozone, which allows to take timely measures for the protection of the public health.

  2. Water-Quality Monitoring in Response to Young-of-the-Year Smallmouth Bass (Micropterus dolomieu) Mortality in the Susquehanna River and Major Tributaries, Pennsylvania: 2008

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.

    2009-01-01

    Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods that dissolved oxygen was less than 5.0 mg/L in microhabitats of the Susquehanna and Juniata Rivers were 8.5 and 5.5 hours, respectively. Dissolved-oxygen concentrations lower than the national criterion generally occurred during nighttime and early-morning hours between midnight and 0800. The lowest instantaneous dissolved-oxygen concentrations measured in microhabitats during the critical period were 3.3 mg/L for the Susquehanna River at Clemson Island (June 11, 2008) and 4.1 mg/L for the Juniata River at Howe Township Park (July 22, 2008). Comparison of 2008 data to available continuous-monitoring data from 1974 to 1979 in the Susquehanna River at Harrisburg, Pa., indicates the critical period of 2008 had an average daily mean dissolved-oxygen concentration that was 1.1 mg/L lower (p-value < 0.0001) than in the 1970s and an average daily mean water temperature that was 0.8 deg C warmer (p-value = 0.0056). Streamflow was not significantly different (p-value = 0.0952) between the two time periods indicating that it is not a likely explanation for the differences in water quality. During the critical period in 2008, dissolved-oxygen concentrations were lower in the Susquehanna River at Harrisburg, Pa., than in the Delaware River at Trenton, N.J., or Allegheny River at Acmetonia near Pittsburgh, Pa. Daily minimum dissolved-oxygen concentrations were below the national criterion of 5.0 mg/L on 6 days during the critical period in the Susquehanna River at Harrisburg compared to no days in the Delaware River at Trenton and the Allegheny River at Acmetonia. Average daily mean water temperature in the Susquehanna River at Harrisburg was 1.8 deg C warmer than in the Delaware River at Trenton and 3.4 deg C warmer than in the Allegheny River at Acmetonia. These results indicate that any stress induced by dissolved oxygen or other environmental conditions is likely to be magnified by elevated temperature in the Susquehanna River at Harrisburg compared to the Delaw

  3. Association between diurnal temperature range and respiratory tract infections.

    PubMed

    Ge, Wen Zhen; Xu, Feng; Zhao, Zhuo Hui; Zhao, Jin Zhuo; Kan, Hai Dong

    2013-03-01

    This study aimed to assess the association between emergency-room visits for respiratory tract infection (RTI) with diurnal temperature range (DTR), a weather parameter closely associated with urbanization and global climate change. We conducted a semiparametric time-series analysis to estimate the percentage increase in emergency-room visits for RTI associated with changes in DTR after adjustment for daily weather conditions (temperature and relative humidity) and outdoor air pollution. DTR was significantly associated with daily emergency-room visits for RTI. An increase of 1 °C in the current-day (L0) and in the 2-day moving average (L01) DTR corresponded to a 0.94% [95% confidence interval (CI), 0.34%-1.55%] and 2.08% (95% CI, 1.24%-2.93%) increase in emergency-room visits for RTI, respectively. DTR was associated with increased risk of RTI. More studies are needed to understand the impact of DTR on respiratory health. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. A statistical investigation into the relationship between meteorological parameters and suicide

    NASA Astrophysics Data System (ADS)

    Dixon, Keith W.; Shulman, Mark D.

    1983-06-01

    Many previous studies of relationships between weather and suicides have been inconclusive and contradictory. This study investigated the relationship between suicide frequency and meteorological conditions in people who are psychologically predisposed to commit suicide. Linear regressions of diurnal temperature change, departure of temperature from the climatic norm, mean daytime sky cover, and the number of hours of precipitation for each day were performed on daily suicide totals using standard computer methods. Statistical analyses of suicide data for days with and without frontal passages were also performed. Days with five or more suicides (clusterdays) were isolated, and their weather parameters compared with those of nonclusterdays. Results show that neither suicide totals nor clusterday occurrence can be predicted using these meteorological parameters, since statistically significant relationships were not found. Although the data hinted that frontal passages and large daily temperature changes may occur on days with above average suicide totals, it was concluded that the influence of the weather parameters used, on the suicide rate, is a minor one, if indeed one exists.

  5. Modeling physical and chemical climate of the northeastern United States for a geographic information system

    Treesearch

    Scott V. Ollinger; John D. Aber; Anthony C. Federer; Gary M. Lovett; Jennifer M. Ellis

    1995-01-01

    A model of physical and chemical climate was developed for New York and New England that can be used in a GIs for integration with ecosystem models. The variables included are monthly average maximum and minimum daily temperatures, precipitation, humidity, and solar radiation, as well as annual atmospheric deposition of sulfur and nitrogen. Equations generated from...

  6. An improved understanding of the Alaska coastal current: The application of a bivalve growth-temperature model to reconstruct freshwater-influenced paleoenvironments

    USGS Publications Warehouse

    Hallmann, N.; Schone, B.R.; Irvine, G.V.; Burchell, M.; Cokelet, E.D.; Hilton, M.R.

    2011-01-01

    Shells of intertidal bivalve mollusks contain sub-seasonally to interannually resolved records of temperature and salinity variations in coastal settings. Such data are essential to understand changing land-sea interactions through time, specifically atmospheric (precipitation rate, glacial meltwater, river discharge) and oceanographic circulation patterns; however, independent temperature and salinity proxies are currently not available. We established a model for reconstructing daily water temperatures with an average standard error of ???1.3 ??C based on variations in the width of lunar daily growth increments of Saxidomus gigantea from southwestern Alaska, United States. Temperature explains 70% of the variability in shell growth. When used in conjunction with stable oxygen isotope data, this approach can also be used to identify changes in past seawater salinity. This study provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). In combination with ??18Oshell values, increment-derived temperatures were used to estimate salinity changes with an average error of 1.4 ?? 1.1 PSU. Our model was calibrated and tested with modern shells and then applied to archaeological specimens. As derived from the model, the time interval of 988-1447 cal yr BP was characterized by ???1-2 ??C colder and much drier (2-5 PSU) summers. During that time, the ACC was likely flowing much more slowly than at present. In contrast, between 599-1014 cal yr BP, the Aleutian low may have been stronger, which resulted in a 3 ??C temperature decrease during summers and 1-2 PSU fresher conditions than today; the ACC was probably flowing more quickly at that time. The shell growth-temperature model can be used to estimate seasonal to interannual salinity and temperature changes in freshwater-influenced environments through time. ?? 2011 SEPM (Society for Sedimentary Geology).

  7. Forecasting daily emergency department visits using calendar variables and ambient temperature readings.

    PubMed

    Marcilio, Izabel; Hajat, Shakoor; Gouveia, Nelson

    2013-08-01

    This study aimed to develop different models to forecast the daily number of patients seeking emergency department (ED) care in a general hospital according to calendar variables and ambient temperature readings and to compare the models in terms of forecasting accuracy. The authors developed and tested six different models of ED patient visits using total daily counts of patient visits to an ED in Sao Paulo, Brazil, from January 1, 2008, to December 31, 2010. The first 33 months of the data set were used to develop the ED patient visits forecasting models (the training set), leaving the last 3 months to measure each model's forecasting accuracy by the mean absolute percentage error (MAPE). Forecasting models were developed using three different time-series analysis methods: generalized linear models (GLM), generalized estimating equations (GEE), and seasonal autoregressive integrated moving average (SARIMA). For each method, models were explored with and without the effect of mean daily temperature as a predictive variable. The daily mean number of ED visits was 389, ranging from 166 to 613. Data showed a weekly seasonal distribution, with highest patient volumes on Mondays and lowest patient volumes on weekends. There was little variation in daily visits by month. GLM and GEE models showed better forecasting accuracy than SARIMA models. For instance, the MAPEs from GLM models and GEE models at the first month of forecasting (October 2012) were 11.5 and 10.8% (models with and without control for the temperature effect, respectively), while the MAPEs from SARIMA models were 12.8 and 11.7%. For all models, controlling for the effect of temperature resulted in worse or similar forecasting ability than models with calendar variables alone, and forecasting accuracy was better for the short-term horizon (7 days in advance) than for the longer term (30 days in advance). This study indicates that time-series models can be developed to provide forecasts of daily ED patient visits, and forecasting ability was dependent on the type of model employed and the length of the time horizon being predicted. In this setting, GLM and GEE models showed better accuracy than SARIMA models. Including information about ambient temperature in the models did not improve forecasting accuracy. Forecasting models based on calendar variables alone did in general detect patterns of daily variability in ED volume and thus could be used for developing an automated system for better planning of personnel resources. © 2013 by the Society for Academic Emergency Medicine.

  8. Effect of ambient temperature on emergency department visits in Shanghai, China: a time series study.

    PubMed

    Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing

    2014-11-25

    Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged <45 years, whereas the effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.

  9. Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    PubMed Central

    Wu, Chiping; Bardakjian, Berj L.; Zhang, Liang; Eubanks, James H.

    2012-01-01

    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities. PMID:22523589

  10. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Cermak, Vladimir; Bodri, Louise

    2018-01-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, Δ T(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of Δ T(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  11. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

    NASA Astrophysics Data System (ADS)

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno

    2018-03-01

    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  12. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature.

    PubMed

    Mohammadi, Ali Akbar; Yousefi, Mahmood; Mahvi, Amir Hossein

    2017-08-01

    Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river) was in the range mg/l 0.28-10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7-16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.

  13. Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997

    NASA Astrophysics Data System (ADS)

    Díaz, J.; García, R.; Velázquez de Castro, F.; Hernández, E.; López, C.; Otero, A.

    2002-04-01

    The effects of heat waves on the population have been described by different authors and a consistent relationship between mortality and temperature has been found, especially in elderly subjects. The present paper studies this effect in Seville, a city in the south of Spain, known for its climate of mild winters and hot summers, when the temperature frequently exceeds 40 °C. This study focuses on the summer months (June to September) for the years from 1986 to 1997. The relationships between total daily mortality and different specific causes for persons older than 65 and 75 years, of each gender, were analysed. Maximum daily temperature and relative humidity at 7.00 a.m. were introduced as environmental variables. The possible confounding effect of different atmospheric pollutants, particularly ozone, were considered. The methodology employed was time series analysis using Box-Jenkins models with exogenous variables. On the basis of dispersion diagrams, we defined extremely hot days as those when the maximum daily temperature surpassed 41 °C. The ARIMA model clearly shows the relationship between temperature and mortality. Mortality for all causes increased up to 51% above the average in the group over 75 years for each degree Celsius beyond 41 °C. The effect is more noticeable for cardiovascular than for respiratory diseases, and more in women than in men. Among the atmospheric pollutants, a relation was found between mortality and concentrations of ozone, especially for men older than 75.

  14. Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment data user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Rodgers, C. D.; Nutter, S. T.; Oslik, N.

    1989-01-01

    The Stratospheric and Mesospheric Sounder (SAMS) aboard Nimbus-7 observes infrared radiation from the atmospheric limb. Global upper atmosphere temperature profiles and vertical concentrations of H2O, NO, N2O, CH4 and CO2 are derived from these measurements. The status of all channels was carefully monitored. Temperature and composition were retrieved from the measurements by linearizing the direct equation about an a priori profile and using an optimum statistical estimator to find the most likely solution. The derived temperature and composition profiles are archived on two tape products whose file structure and record formats are described in detail. The gridded retrieved temperature tape (GRID-T) contains daily day and night average temperatures at 62 pressure levels in a 2.5 degree latitude by 10 degree longitude grid extending from 67.5 degrees N to 50 degrees S. The zonal mean methane and nitrous oxide composition tape (ZMT-G) contains zonal mean day and night average CH4 and N2O mixing ratios at 31 pressure levels for 2.5 degrees latitude zones extending from 67.5 degrees N to 50 degrees S.

  15. A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings.

    PubMed

    McCulloh, Katherine A; Winter, Klaus; Meinzer, Frederick C; Garcia, Milton; Aranda, Jorge; Lachenbruch, Barbara

    2007-09-01

    Use of Granier-style heat dissipation sensors to measure sap flow is common in plant physiology, ecology and hydrology. There has been concern that any change to the original Granier design invalidates the empirical relationship between sap flux density and the temperature difference between the probes. Here, we compared daily water use estimates from gravimetric measurements with values from variable length heat dissipation sensors, which are a relatively new design. Values recorded during a one-week period were compared for three large pot-grown saplings of each of the tropical trees Pseudobombax septenatum (Jacq.) Dugand and Calophyllum longifolium Willd. For five of the six individuals, P values from paired t-tests comparing the two methods ranged from 0.12 to 0.43 and differences in estimates of total daily water use over the week of the experiment averaged < 3%. In one P. septenatum sapling, the sap flow sensors underestimated water use relative to the gravimetric measurements. This discrepancy could have been associated with naturally occurring gradients in temperature that reduced the difference in temperature between the probes, which would have caused the sensor method to underestimate water use. Our results indicate that substitution of variable length heat dissipation probes for probes of the original Granier design did not invalidate the empirical relationship determined by Granier between sap flux density and the temperature difference between probes.

  16. Surface ozone characterization at Larsemann Hills and Maitri, Antarctica.

    PubMed

    Ali, Kaushar; Trivedi, D K; Sahu, S K

    2017-04-15

    Data are analyzed in terms of daily average ozone, its diurnal variation and its relation with meteorological parameters like dry bulb temperature (T), wet bulb temperature (T w ), atmospheric pressure and wind speed based on measurement of these parameters at two Indian Antarctic stations (Larsemann Hills, and Maitri) during 28th Indian Scientific Expedition of Antarctica (ISEA) organized during Antarctic summer of the year 2008-09. The work has been carried out to investigate summer time ozone level and its day-to-day and diurnal variability at these coastal locations and to highlight possible mechanism of ozone production and destruction. The result of the analysis indicates that daily average ozone concentration at Larsemann Hills varied from ~13 and ~20ppb with overall average value of ~16ppb and at Maitri, it varied from ~16 and ~21ppb with overall average value of ~18ppb. Photochemistry is found to partially contribute occasionally to the surface layer ozone at both the stations. Lower concentration of ozone at Maitri during beginning of the observational days may be due to destruction of ozone through activated halogens, whereas higher ozone on latter days may be due to photochemistry and advective transport from east to south-east areas. Ozone concentration during blizzard episodes at both the stations is reduced due to slow photochemical production of ozone, its photochemical removal and removal through deposition of ozone molecules on precipitation particles. Diurnal variation of ozone at Larsemann Hills and Maitri has been found to be absent. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Temperature and Humidity Effects on Hospital Morbidity in Darwin, Australia.

    PubMed

    Goldie, James; Sherwood, Steven C; Green, Donna; Alexander, Lisa

    2015-01-01

    Many studies have explored the relationship between temperature and health in the context of a changing climate, but few have considered the effects of humidity, particularly in tropical locations, on human health and well-being. To investigate this potential relationship, this study assessed the main and interacting effects of daily temperature and humidity on hospital admission rates for selected heat-relevant diagnoses in Darwin, Australia. Univariate and bivariate Poisson generalized linear models were used to find statistically significant predictors and the admission rates within bins of predictors were compared to explore nonlinear effects. The analysis indicated that nighttime humidity was the most statistically significant predictor (P < 0.001), followed by daytime temperature and average daily humidity (P < 0.05). There was no evidence of a significant interaction between them or other predictors. The nighttime humidity effect appeared to be strongly nonlinear: Hot days appeared to have higher admission rates when they were preceded by high nighttime humidity. From this analysis, we suggest that heat-health policies in tropical regions similar to Darwin need to accommodate the effects of temperature and humidity at different times of day. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Indirect downscaling of global circulation model data based on atmospheric circulation and temperature for projections of future precipitation in hourly resolution

    NASA Astrophysics Data System (ADS)

    Beck, F.; Bárdossy, A.

    2013-07-01

    Many hydraulic applications like the design of urban sewage systems require projections of future precipitation in high temporal resolution. We developed a method to predict the regional distribution of hourly precipitation sums based on daily mean sea level pressure and temperature data from a Global Circulation Model. It is an indirect downscaling method avoiding uncertain precipitation data from the model. It is based on a fuzzy-logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th century run and the scenario A1B run of ECHAM5. According to ECHAM5, the summers in southwest Germany will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades.

  19. Spatial and temporal variation in daily temperature indices in summer and winter seasons over India (1969-2012)

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.

    2017-08-01

    Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.

  20. Understanding the gap between cognitive abilities and daily living skills in adolescents with autism spectrum disorders with average intelligence.

    PubMed

    Duncan, Amie W; Bishop, Somer L

    2015-01-01

    Daily living skills standard scores on the Vineland Adaptive Behavior Scales-2nd edition were examined in 417 adolescents from the Simons Simplex Collection. All participants had at least average intelligence and a diagnosis of autism spectrum disorder. Descriptive statistics and binary logistic regressions were used to examine the prevalence and predictors of a "daily living skills deficit," defined as below average daily living skills in the context of average intelligence quotient. Approximately half of the adolescents were identified as having a daily living skills deficit. Autism symptomatology, intelligence quotient, maternal education, age, and sex accounted for only 10% of the variance in predicting a daily living skills deficit. Identifying factors associated with better or worse daily living skills may help shed light on the variability in adult outcome in individuals with autism spectrum disorder with average intelligence. © The Author(s) 2013.

  1. Assessment of long-term monthly and seasonal trends of warm (cold), wet (dry) spells in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Dokoohaki, H.; Anandhi, A.

    2013-12-01

    A few recent studies have focused on trends in rainfall, temperature, and frost indicators at different temporal scales using centennial weather station data in Kansas; our study supplements this work by assessing the changes in spell indicators in Kansas. These indicators provide the duration between temperature-based (warm and cold) and precipitation-based (wet and dry) spells. For wet (dry) spell calculations, a wet day is defined as a day with precipitation ≥1 mm, and a dry day is defined as one with precipitation ≤1 mm. For warm (cold) spell calculations, a warm day is defined as a day with maximum temperature >90th percentile of daily maximum temperature, and a cold day is defined as a day with minimum temperature <10th percentile of daily minimum temperature. The percentiles are calculated for 1971-2000, and four spell indicators are calculated: Average Wet Spell Length (AWSL), Dry Spell Length (ADSL), Average Warm Spell Days (AWSD) and Average Cold Spell Days (ACSD) are calculated. Data were provided from 23 centennial weather stations across Kansas, and all calculations were done for four time periods (through 1919, 1920-1949, 1950-1979, and 1980-2009). The definitions and software provided by Expert Team on Climate Change Detection and Indices (ETCCDI) were adapted for application to Kansas. The long- and short-term trends in these indices were analyzed at monthly and seasonal timescales. Monthly results indicate that ADSL is decreasing and AWSL is increasing throughout the state. AWSD and ACSD both showed an overall decreasing trend, but AWSD trends were variable during the beginning of the Industrial Revolution. Results of seasonal analysis revealed that the fall season recorded the greatest increasing trend for ACSD and the greatest decreasing trend for AWSD across the whole state and during all time periods. Similarly, the greatest increasing and decreasing trends occurred in winter for AWSL and ADSL, respectively. These variations can be important indicators of climatic change that may not be represented in mean conditions. Detailed geographical and temporal variations of the spell indices also can be beneficial for updating management decisions and providing adaptation recommendations for local and regional agricultural production.

  2. Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts.

    PubMed

    Røssvoll, Elin; Rønning, Helene Thorsen; Granum, Per Einar; Møretrø, Trond; Hjerpekjøn, Marianne Røine; Langsrud, Solveig

    2014-08-18

    It is crucial for the quality and safety of ready-to-eat (RTE) foods to maintain the cold chain from production to consumption. The effect of temperature abuse related to daily meals and elevated refrigerator temperatures on the growth and toxin production of Bacillus cereus, Bacillus weihenstephanensis and Staphylococcus aureus and the growth of Listeria monocytogenes and Yersinia enterocolitica was studied. A case study with temperature loggings in the domestic environment during Easter and Christmas holidays was performed to select relevant time and temperature courses. A model for bacterial surface growth on food using nutrient agar plates exposed to variations in temperatures was used to simulate food stored at different temperatures and exposed to room temperature for short periods of time. The results were compared with predicted growth using the modeling tool ComBase Predictor. The consumers exposed their cold cuts to room temperatures as high as 26.5°C with an average duration of meals was 47 min daily for breakfast/brunch during the vacations. Short (≤ 2 h) daily intervals at 25°C nearly halved the time the different pathogens needed to reach levels corresponding to the levels associated with human infection or intoxication, compared with the controls continuously stored at refrigerator temperature. Although the temperature fluctuations affected growth of both B. weihenstephanensis and S. aureus, toxin production was only detected at much higher cell concentrations than what has been associated with human intoxications. Therefore, growth of L. monocytogenes and Y. enterocolitica was found to be the limiting factor for safety. In combination with data on temperature abuse in the domestic environment, modeling programs such as ComBase Predictor can be efficient tools to predict growth of some pathogens but will not predict toxin production. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  4. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis.

    PubMed

    Liu, Liqun; Breitner, Susanne; Pan, Xiaochuan; Franck, Ulrich; Leitte, Arne Marian; Wiedensohler, Alfred; von Klot, Stephanie; Wichmann, H-Erich; Peters, Annette; Schneider, Alexandra

    2011-05-25

    Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.

  5. Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    PubMed Central

    2011-01-01

    Background Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China. Methods Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models. Results We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders. Conclusions Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality. PMID:21612647

  6. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  7. Longer-Term Impact of High and Low Temperature on Mortality: An International Study to Clarify Length of Mortality Displacement

    PubMed Central

    Bell, Michelle L.; de Sousa Zanotti Stagliorio Coelho, Micheline; Leon Guo, Yue-Liang; Guo, Yuming; Goodman, Patrick; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Lavigne, Eric; Michelozzi, Paola; Hilario Nascimento Saldiva, Paulo; Schwartz, Joel; Scortichini, Matteo; Sera, Francesco; Tobias, Aurelio; Tong, Shilu; Wu, Chang-fu; Zanobetti, Antonella; Zeka, Ariana; Gasparrini, Antonio

    2017-01-01

    Background: In many places, daily mortality has been shown to increase after days with particularly high or low temperatures, but such daily time-series studies cannot identify whether such increases reflect substantial life shortening or short-term displacement of deaths (harvesting). Objectives: To clarify this issue, we estimated the association between annual mortality and annual summaries of heat and cold in 278 locations from 12 countries. Methods: Indices of annual heat and cold were used as predictors in regressions of annual mortality in each location, allowing for trends over time and clustering of annual count anomalies by country and pooling estimates using meta-regression. We used two indices of annual heat and cold based on preliminary standard daily analyses: a) mean annual degrees above/below minimum mortality temperature (MMT), and b) estimated fractions of deaths attributed to heat and cold. The first index was simpler and matched previous related research; the second was added because it allowed the interpretation that coefficients equal to 0 and 1 are consistent with none (0) or all (1) of the deaths attributable in daily analyses being displaced by at least 1 y. Results: On average, regression coefficients of annual mortality on heat and cold mean degrees were 1.7% [95% confidence interval (CI): 0.3, 3.1] and 1.1% (95% CI: 0.6, 1.6) per degree, respectively, and daily attributable fractions were 0.8 (95% CI: 0.2, 1.3) and 1.1 (95% CI: 0.9, 1.4). The proximity of the latter coefficients to 1.0 provides evidence that most deaths found attributable to heat and cold in daily analyses were brought forward by at least 1 y. Estimates were broadly robust to alternative model assumptions. Conclusions: These results provide strong evidence that most deaths associated in daily analyses with heat and cold are displaced by at least 1 y. https://doi.org/10.1289/EHP1756 PMID:29084393

  8. Transferring preterm infants from incubators to open cots at 1600 g: a multicentre randomised controlled trial.

    PubMed

    New, K; Flint, A; Bogossian, F; East, C; Davies, M W

    2012-03-01

    To determine the effects on weight gain and temperature control of transferring preterm infants from incubators to open cots at a weight of 1600 g versus a weight of 1800 g. Randomised controlled trial. One tertiary and two regional neonatal units in public hospitals in Queensland, Australia. 182 preterm infants born with a birth weight less than 1600 g, who were at least 48 h old; had not required ventilation or continuous positive airways pressure within the last 48 h; were medically stable with no oxygen requirement, or significant apnoea or bradycardia; did not require phototherapy; and were enterally fed with an intake (breast milk/formula) of at least 60 ml/kg/day. Transfer into an open cot at 1600 or 1800 g. The primary outcomes were temperature stability and average daily weight gain over the first 14 days following transfer to an open cot. 90 infants in the 1600 g group and 92 infants in the 1800 g group were included in the analysis. Over the first 72 h, more infants in the 1800 g group had temperatures <36.4°C than the 1600 g group (p=0.03). From post-transfer to discharge, the 1600 g group had more temperatures >37.1°C (p=0.02). Average daily weight gain in the 1600 g group was 17.07 (SD±4.5) g/kg/day and in the 1800 g group, 13.97 (SD±4.7) g/kg/day (p=<0.001). Medically stable, preterm infants can be transferred to open cots at a birth weight of 1600 g without any significant adverse effects on temperature stability or weight gain. ACTRN12606000518561 (http://www.anzctr.org.au).

  9. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    The solar radiation climate of Beer Sheva, Israel, is reported upon in detail. The database utilized in this analysis consisted of global radiation on a horizontal surface, normal incidence beam radiation, and global radiation on a south-facing surface tilted at 40{degree}. Monthly-average hourly and daily values are reported for each of these three types of measured radiations, together with the calculated monthly-average daily values for the components of the global radiation, viz. the horizontal beam and diffuse radiations. The monthly-average hourly and daily clearness index values have also been calculated and analyzed. Monthly-average daily frequency distributions of the clearness indexmore » values are reported for each month. The solar radiation climate of Beer Sheva has also been compared to those reported for a number of countries in this region. The annual-average daily global radiation incident on a horizontal surface is 18.91 MG/m{sup 2} and that for normal incidence beam radiation is 21.17 MG/m{sup 2}. The annual-average daily fraction of the horizontal global radiation that is beam is 0.72. The annual-average daily value for the clearness index is 0.587 and the average frequency of clear days annually is 58.6%. The authors conclude, based upon the above analysis, that Beer Sheva and its environs are characterized by relatively high, average-daily irradiation rates, both global and beam, and a relatively high frequency of clear days.« less

  10. Investigating the relationship between weather and violence in Baltimore, Maryland, USA.

    PubMed

    Michel, Samuel J; Wang, Han; Selvarajah, Shalini; Canner, Joseph K; Murrill, Matthew; Chi, Albert; Efron, David T; Schneider, Eric B

    2016-01-01

    It is a common refrain at major urban trauma centers that caseloads increase in the heat of the summer. Several previous studies supported this assertion, finding trauma admissions and crime to correlate positively with temperature. We examined links between weather and violence in Baltimore, MD, through trauma presentation to Johns Hopkins Hospital and crime reports filed with the Baltimore Police Department. Crime data were obtained from the Baltimore City Police Department from January 1, 2008 to March 31, 2013. Trauma data were obtained from a prospectively collected registry of all trauma patients presenting to Johns Hopkins Hospital from January 1, 2007 to March 31, 2013. Weather data were obtained from the National Climatic Data Center. Correlation coefficients were calculated and negative binomial regression was used to elucidate the independent associations of weather and temporal variables with the trauma and crime data. When adjusting for temporal and meteorological factors, maximum daily temperature was positively associated with total trauma, intentional injury, and gunshot wounds presenting to Johns Hopkins Hospital along with total crime, violent crime, and homicides in Baltimore City. Associations of average wind speed, daily precipitation, and daily snowfall with trauma and crime were far weaker and, when significant, nearly universally negative. Maximum daily temperature is the most important weather factor associated with violence and trauma in our study period and location. Our findings suggest potential implications for hospital staffing to be explored in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Moderating Effects of Weather-Related Factors on a Physical Activity Intervention.

    PubMed

    Welch, Whitney A; Spring, Bonnie; Phillips, Siobhan M; Siddique, Juned

    2018-05-01

    The purpose of this study is to identify whether weather-related factors moderate the effect of a physical activity (PA) intervention. Participants (N=204, 77% female, mean age 33 [SD=11] years, mean BMI 28.2 [SD=7.1]) from the Make Better Choices 1 trial, enrolled April 2005 to April 2008, were randomized to one of two treatment conditions: (1) increase moderate to vigorous physical activity (MVPA) treatment group, or (2) decrease sedentary behavior control group. Participants wore an accelerometer for 5 weeks: a 2-week baseline assessment followed by a 3-week intervention. Accelerometer data were used to estimate minutes/day of MVPA. Average daily temperature, day length, and precipitation were obtained from the National Climatic Data Center and combined with the accelerometer data. Linear mixed effects models were used to determine whether these weather-related factors moderated the effect of the intervention on MVPA. Separate models were fit for season, daily average temperature, and day length. There was a significant moderating effect of season on MVPA such that the PA intervention, as compared with control, increased MVPA 10.4 minutes more in the summer than in the winter (95% CI=1.1, 19.6, p=0.029). There was a significant moderating effect of daily temperature such that every 10°F increase in temperature was associated with an additional 1.5 minutes/day increase in the difference in MVPA increase between the two intervention conditions (95% CI=0.1, 2.9, p=0.015). There was a significant moderating effect of day length such that every additional hour of daylight was associated with a 2.23-minute increase in the PA intervention's impact on increasing MVPA (95% CI=0.8, 3.7, p=0.002). Day length and temperature had a significant moderating effect on change in MVPA during a PA intervention such that the intervention was less effective on colder days and on shorter days, independently. These results suggest that strategies to overcome environmental barriers should be considered when designing PA interventions for adults. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  13. Variation of the shower lateral spread with air temperature at the ground

    NASA Astrophysics Data System (ADS)

    Wilczyńska, B.; Engel, R.; Homola, P.; Keilhauer, B.; Klages, H.; Pękala, J.; Wilczyński, H.

    The vertical profile of air density at a given site varies considerably with time. Well understood seasonal differences are present, but sizeable effects on shorter time scales, like day to night or day to day variations, are also observed. In consequence, the Moliere radius changes, influencing the lateral distribution of particles in the air showers and therefore may influence the shower detection in surface detector arrays. In air shower reconstruction, usually seasonal average profiles of the atmosphere are used, because local daily measurements of the profile are rarely available. Therefore, the daily fluctuations of the atmosphere are not accounted for. This simplification increases the inaccuracies of shower reconstruction. We show that a universal correlation exists between the ground temperature and the shape of the atmospheric profile, up to altitudes of several kilometers, hence providing a method to reduce inaccuracies in shower reconstruction due to weather variation.

  14. Skin temperature, thermal comfort, sweating, clothing and activity of men sledging in Antarctica

    PubMed Central

    Budd, G. M.

    1966-01-01

    1. Three men were studied while dog-sledging 320 km in 12 days in Antarctica. Conventional Antarctic clothing (`sweaters and windproofs') was worn. Four hundred observations were made of medial thigh skin temperature, thermal comfort, sweating, clothing, activity and environmental conditions. 2. Work occupied an average of 11·0 hr/day and sleep 7·5 hr. Estimated daily energy expenditure averaged 5100 kcal (range 2740-6660 kcal). 3. Skin temperature fell on exposure to cold despite the clothing worn, but was not changed by the level of activity. Sweating, and thermal comfort, were directly related to both skin temperature and activity. 4. Inside the tent, the modal value of skin temperature was 33° C (range 27-36° C) and the men were comfortable in 94% of observations. 5. During the 9·2 hr/day spent outdoors the modal value of skin temperature was 27° C (range 18-33° C) and the men felt too cold (but did not shiver) in 11% (range 7-20%) of observations, suggesting that cold stress was not negligible. However, they also felt too hot in 20% of observations and were sweating in 23%. PMID:5914254

  15. Daily variations in weather and the relationship with physical activity and sedentary time in European 10- to 12-year-olds: The ENERGY-Project.

    PubMed

    Yildirim, Mine; Schoeni, Anna; Singh, Amika S; Altenburg, Teatske M; Brug, Johannes; De Bourdeaudhuij, Ilse; Kovacs, Eva; Bringolf-Isler, Bettina; Manios, Yannis; Chinapaw M, J M

    2014-02-01

    The aim of the study was to examine the association of daily variations in rainfall and temperature with sedentary time (ST) and physical activity (PA) in European children. Children were included from 5 countries (Belgium, Greece, Hungary, the Netherlands, Switzerland) as part of the ENERGY-project. We used cross-sectional data from 722 children aged 10-12 years (47% boys). ST and PA were measured by accelerometers for 6 consecutive days, including weekend days. Weather data were collected from online national weather reports. Multilevel regression models were used for data analyses. Maximum temperature was positively associated with light PA (β = 3.1 min/day; 95% CI = 2.4-3.8), moderate-to-vigorous PA (β = 0.6 min/day; 95% CI = 0.4-0.8), and average PA [β = 4.1 counts per minute (cpm); 95% CI = 1.6-6.5, quadratic relationship]. Rainfall was inversely and quadratically associated with light PA (β = -1.3 min/day; 95% CI = -1.9 to -0.6), moderate-to-vigorous PA (β = -0.6 min/day; 95% CI = -0.8 to -0.3), and average PA (β = -1.6 cpm; 95% CI = -2.2 to -0.9). Maximum temperature was not significantly associated with ST (β = -0.2 min/day; 95% CI = -1.0 to 0.6), while rainfall was positively associated with ST (β = 0.9 min/day; 95% CI = 0.6-1.3). The current study shows that temperature and rainfall are significantly associated with PA and ST in 10- to 12-year-old European children.

  16. Winter Season Mortality: Will Climate Warming Bring Benefits?

    PubMed

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  17. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  18. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum daily average in late December 2012, reaching a minimum in mid July 2013 on P1 (10.9 °C, -37.9 °C, ± 11.1) and P2 (6.9 °C, -37.1 °C, ± 10.2). The active layer thickness reaches a maximum of 48.4 cm at P1 on January 17th 2013 and 47.8 cm at P2 on January 7th 2012. No ID were recorded for the studied period, one TD was recorded at 5 cm on P2, 143 FTD were recorded at 5 cm, 81 at 10 cm and 46 days at 30 cm on P1, on P2 118 FTD were recorded at 5 cm, 80 at 10 cm and 42 days at 30 cm. The majority of the days were classified as FD for both sites; 585 at 5 cm, 647 at 10 cm and 684 days at 30 cm on P1, on P2 611 FD were recorded at 5 cm, 650 at 10 cm and 688 days at 30 cm. Only 17 FTD were recorded for the air temperature and 713 FD. Over the 728 days of the studied period the sum of all positive daily average temperatures was 166.3 TDD at 5 cm and 23.8 TDD at 10 cm on P1, 45.0 TDD at 5 cm and 5.2 TDD at 10 cm on P2. No positive daily average was recorded at 30 cm for both sites. The sum of all negative daily average temperatures was -13504.5 FDD at 5 cm, -13389.9 FDD at 10 cm and -13381.0 FDD at 30 cm on P1, -13508.0 FDD at 5 cm, -13486.6 FDD at 10 cm and -13398.9 FDD at 30 cm on P2. Only 0.28 TDD were summed for the air temperature and -14430.7 FDD. The soil thermal regime at the dry valley of Edson Hill, Ellsworth Mountains is characteristic of polar desert affected by Dry-frozen permafrost. Although air temperature does not reach high positive values, variations in soil temperature are more intense during the year, showing the soil's response to solar radiation.

  19. Impacts of peatland forestation on regional climate conditions in Finland

    NASA Astrophysics Data System (ADS)

    Gao, Yao; Markkanen, Tiina; Backman, Leif; Henttonen, Helena M.; Pietikäinen, Joni-Pekka; Laaksonen, Ari

    2014-05-01

    Climate response to anthropogenic land cover change happens more locally and occurs on a shorter time scale than the global warming due to increased GHGs. Over the second half of last Century, peatlands were vastly drained in Finland to stimulate forest growth for timber production. In this study, we investigate the biophysical effects of peatland forestation on near-surface climate conditions in Finland. For this, the regional climate model REMO, developed in Max Plank Institute (currently in Climate Service Center, Germany), provides an effective way. Two sets of 15-year climate simulations were done by REMO, using the historic (1920s; The 1st Finnish National Forest Inventory) and present-day (2000s; the 10th Finnish National Forest Inventory) land cover maps, respectively. The simulated surface air temperature and precipitation were then analyzed. In the most intensive peatland forestation area in Finland, the differences in monthly averaged daily mean surface air temperature show a warming effect around 0.2 to 0.3 K in February and March and reach to 0.5 K in April, whereas a slight cooling effect, less than 0.2 K, is found from May till October. Consequently, the selected snow clearance dates in model gridboxes over that area are advanced 0.5 to 4 days in the mean of 15 years. The monthly averaged precipitation only shows small differences, less than 10 mm/month, in a varied pattern in Finland from April to September. Furthermore, a more detailed analysis was conducted on the peatland forestation area with a 23% decrease in peatland and a 15% increase in forest types. 11 day running means of simulated temperature and energy balance terms, as well as snow depth were averaged over 15 years. Results show a positive feedback induced by peatland forestation between the surface air temperature and snow depth in snow melting period. This is because the warmer temperature caused by lower surface albedo due to more forest in snow cover period leads to a quicker and earlier snow melting. Meanwhile, surface albedo is reduced and consequently surface air temperature is increased. Additionally, the maximum difference from individual gridboxes in this area over 15 years of 11 day running means of daily mean surface air temperature reaches 2 K, which is four times as much as the maximum difference of 15-year regional average of that. This illustrates that the spring warming effect from peatland forestation in Finland is highly heterogeneous spatially and temporally.

  20. ARIMA representation for daily solar irradiance and surface air temperature time series

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  1. Troposphere-stratosphere (surface-55 km) monthly general circulation statistics for the Northern Hemisphere-four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Olson, J. G.; Gelman, M. E.

    1984-01-01

    This report presents four year averages of monthly mean Northern Hemisphere general circulation statistics for the period from 1 December 1978 through 30 November 1982. Computations start with daily maps of temperature for 18 pressure levels between 1000 and 0.4 mb that were supplied by NOAA/NMC. Geopotential height and geostrophic wind are constructed using the hydrostatic and geostrophic formulae. Fields presented in this report are zonally averaged temperature, mean zonal wind, and amplitude and phase of the planetary waves in geopotential height with zonal wavenumbers 1-3. The northward fluxes of heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large annual and interannual variations are found in each quantity especially in the stratosphere in accordance with the changes in the planetary wave activity. The results are shown both in graphic and tabular form.

  2. Selected meteorological data for an arid site near Beatty, Nye County, Nevada, calendar year 1989

    USGS Publications Warehouse

    Wood, J.L.; Andraski, Brian J.

    1992-01-01

    Selected meteorological data were collected at a study site adjacent to a low-level radioactive-waste burial facility near Beatty, Nevada, for calendar year 1989. Data were collected in support of ongoing studies to estimate the potential for downward movement of radionuclides into the unsaturated sediments beneath waste-burial trenches at the facility. The data include air temperature, relative humidity, vapor pressure, incident solar radiation, windspeed, wind direction, and precipitation. The data are summarized in tables and graphs.Instrumentation used at the site is discussed. The discussion includes the type, reported accuracy, and mounting height of each sensor.In 1989, the hourly averaged air temperature ranged from -14.5 degrees Celsius, in February, to 46.0 degrees Celsius, in July. Hourly averaged relative humidity ranged from less than 12 percent to over 80 percent. Hourly vapor pressures ranged from 0.06 to 1.71 kilopascals. Daily maximum incident solar radiation values ranged from 149 to 1,084 watts per square meter. Daily mean windspeed ranged from less than 1 to 8.6 meters per second. Monthly wind direction patterns are shown in a series of diagrams in which wind direction is summed over 10-degree arcs from hourly averaged data. Wind direction was primarily from the northwest in fall, winter, and spring and varied from southeast, southwest, or northwest during the summer. Total precipitation for 1989 was 14.0 millimeters, with almost 90 percent occurring from January through May.

  3. Gender, Emotion Work, and Relationship Quality: A Daily Diary Study

    PubMed Central

    Curran, Melissa A.; McDaniel, Brandon T.; Pollitt, Amanda M.; Totenhagen, Casey J.

    2015-01-01

    We use the gender relations perspective from feminist theorizing to investigate how gender and daily emotion work predict daily relationship quality in 74 couples (148 individuals in dating, cohabiting, or married relationships) primarily from the southwest U.S. Emotion work is characterized by activities that enhance others’ emotional well-being. We examined emotion work two ways: trait (individuals’ average levels) and state (individuals’ daily fluctuations). We examined actor and partner effects of emotion work and tested for gender differences. As outcome variables, we included six types of daily relationship quality: love, commitment, satisfaction, closeness, ambivalence, and conflict. This approach allowed us to predict three aspects of relationship quality: average levels, daily fluctuations, and volatility (overall daily variability across a week). Three patterns emerged. First, emotion work predicted relationship quality in this diverse set of couples. Second, gender differences were minimal for fixed effects: Trait and state emotion work predicted higher average scores on, and positive daily increases in, individuals’ own positive relationship quality and lower average ambivalence. Third, gender differences were more robust for volatility: For partner effects, having a partner who reported higher average emotion work predicted lower volatility in love, satisfaction, and closeness for women versus greater volatility in love and commitment for men. Neither gender nor emotion work predicted average levels, daily fluctuations, or volatility in conflict. We discuss implications and future directions pertaining to the unique role of gender in understanding the associations between daily emotion work and volatility in daily relationship quality for relational partners. PMID:26508808

  4. Gender, Emotion Work, and Relationship Quality: A Daily Diary Study.

    PubMed

    Curran, Melissa A; McDaniel, Brandon T; Pollitt, Amanda M; Totenhagen, Casey J

    2015-08-01

    We use the gender relations perspective from feminist theorizing to investigate how gender and daily emotion work predict daily relationship quality in 74 couples (148 individuals in dating, cohabiting, or married relationships) primarily from the southwest U.S. Emotion work is characterized by activities that enhance others' emotional well-being. We examined emotion work two ways: trait (individuals' average levels) and state (individuals' daily fluctuations). We examined actor and partner effects of emotion work and tested for gender differences. As outcome variables, we included six types of daily relationship quality: love, commitment, satisfaction, closeness, ambivalence, and conflict. This approach allowed us to predict three aspects of relationship quality: average levels, daily fluctuations, and volatility (overall daily variability across a week). Three patterns emerged. First, emotion work predicted relationship quality in this diverse set of couples. Second, gender differences were minimal for fixed effects: Trait and state emotion work predicted higher average scores on, and positive daily increases in, individuals' own positive relationship quality and lower average ambivalence. Third, gender differences were more robust for volatility: For partner effects, having a partner who reported higher average emotion work predicted lower volatility in love, satisfaction, and closeness for women versus greater volatility in love and commitment for men. Neither gender nor emotion work predicted average levels, daily fluctuations, or volatility in conflict. We discuss implications and future directions pertaining to the unique role of gender in understanding the associations between daily emotion work and volatility in daily relationship quality for relational partners.

  5. Heat waves according to warm spell duration index in Slovakia during 1901-2016

    NASA Astrophysics Data System (ADS)

    Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav

    2017-04-01

    A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.

  6. The validity of compliance monitors to assess wearing time of thoracic-lumbar-sacral orthoses in children with spinal cord injury.

    PubMed

    Hunter, Louis N; Sison-Williamson, Mitell; Mendoza, Melissa M; McDonald, Craig M; Molitor, Fred; Mulcahey, M J; Betz, Randal R; Vogel, Lawrence C; Bagley, Anita

    2008-06-15

    Prospective multicenter observation. To determine the validity of 3 commercially available at recording thoracic-lumbar-sacral orthosis (TLSO) wearing time of children with spinal cord injury (SCI) and to assess each monitor's function during daily activities. A major limitation to studies assessing the effectiveness of spinal prophylactic bracing is the patient's compliance with the prescribed wearing time. Although some studies have begun to use objective compliance monitors, there is little documentation of the validity of the monitors during activities of daily life and no comparisons of available monitors. Fifteen children with SCI who wore a TLSO for paralytic scoliosis were observed for 4 days during their rehabilitation stay. Three compliance monitors (2 temperature and 1 pressure sensitive) were mounted onto each TLSO. Time of brace wear from the monitors was compared with the wear time per day recorded in diaries. Observed versus monitored duration of brace wear found the HOBO (temperature sensitive) to be the most valid compliance monitor. The HOBO had the lowest average of difference and variance of difference scores. The correlation between the recorded daily entries and monitored brace wear time was also highest for the HOBO in analysis of dependent and independent scores. Bland-Altman plots showed that the pressure sensitive monitor underestimated wear time whereas the temperature monitors overestimated wear time. Compliance to prescribed wearing schedule has been a barrier to studying TLSO efficacy. All 3 monitors were found to measure TLSO compliance, but the 2 temperature monitors were more in agreement with the daily diaries. Based on its functional advantages compared with the HOBO, the StowAway TidbiT will be used to further investigate the long-term compliance of TLSO bracing in children with SCI.

  7. Investigation of Cyprus thermal tenancy using nine year MODIS LST data and Fourier analysis

    NASA Astrophysics Data System (ADS)

    Skarlatos, D.; Miliaresis, G.; Georgiou, A.

    2013-08-01

    Land Surface Temperature (LST) is an extremely important parameter that controls the exchange of long wave radiation between surface and atmosphere. It is a good indicator of the energy balance at the Earth's surface and it is one of the key parameters in the physics of land-surface processes on regional as well as global scale. This paper utilizes monthly night and day averaged LST MODIS imagery over Cyprus for a 9 year period. Fourier analysis and Least squares estimation fitting are implemented to analyze mean daily data over Cyprus in an attempt to investigate possible temperature tenancy over these years and possible differences among areas with different land cover and land use, such as Troodos Mountain and Nicosia, the main city in the center of the island. The analysis of data over a long time period, allows questions such as whether there is a tenancy to temperature increase, to be answered in a statistically better way, provided that `noise' is removed correctly. Dealing with a lot of data, always provides a more accurate estimation, but on the other hand, more noise in implemented on the data, especially when dealing with temperature which is subject to daily and annual cycles. A brief description over semi-automated data acquisition and standardization using object-oriented programming and GIS-based techniques, will be presented. The paper fully describes the time series analysis implemented, the Fourier method and how it was used to analyze and filter mean daily data with high frequency. Comparison of mean monthly daily LST against day and night LSTs is also performed over the 9 year period in order to investigate whether use of the extended data series provide significant advantage over short.

  8. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae).

    PubMed

    Rivas, Gustavo B S; de Souza, Nataly Araujo; Peixoto, Alexandre A; Bruno, Rafaela V

    2014-06-19

    Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as mating and host-seeking at appropriate times in different seasons. Our results depict previously unappreciated aspects of the L. longipalpis daily rhythms of activity that might have important epidemiological implications.

  9. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae)

    PubMed Central

    2014-01-01

    Background Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. Methods We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). Results L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Conclusions Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as mating and host-seeking at appropriate times in different seasons. Our results depict previously unappreciated aspects of the L. longipalpis daily rhythms of activity that might have important epidemiological implications. PMID:24947114

  10. Ozone and daily mortality rate in 21 cities of East Asia: how does season modify the association?

    PubMed

    Chen, Renjie; Cai, Jing; Meng, Xia; Kim, Ho; Honda, Yasushi; Guo, Yue Leon; Samoli, Evangelia; Yang, Xin; Kan, Haidong

    2014-10-01

    Previous studies in East Asia have revealed that the short-term associations between tropospheric ozone and daily mortality rate were strongest in winter, which is opposite to the findings in North America and Western Europe. Therefore, we investigated the season-varying association between ozone and daily mortality rate in 21 cities of East Asia from 1979 to 2010. Time-series Poisson regression models were used to analyze the association between ozone and daily nonaccidental mortality rate in each city, testing for different temperature lags. The best-fitting model was obtained after adjustment for temperature in the previous 2 weeks. Bayesian hierarchical models were applied to pool the city-specific estimates. An interquartile-range increase of the moving average concentrations of same-day and previous-day ozone was associated with an increase of 1.44% (95% posterior interval (PI): 1.08%, 1.80%) in daily total mortality rate after adjustment for temperature in the previous 2 weeks. The corresponding increases were 0.62% (95% PI: 0.08%, 1.16%) in winter, 1.46% (95% PI: 0.89%, 2.03%) in spring, 1.60% (95% PI: 1.03%, 2.17%) in summer, and 1.12% (95% PI: 0.73%, 1.51%) in fall. We found significant associations between short-term exposure to ozone and higher mortality rate in East Asia that varied considerably from season to season with a significant trough in winter. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  12. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  13. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Nearshore Satellite Data as Relative Indicators of Intertidal Organism Physiological Stress

    NASA Astrophysics Data System (ADS)

    Matzelle, A.; Helmuth, B.; Lakshmi, V.

    2011-12-01

    The physiological performance of intertidal and shallow subtidal invertebrates and algae is significantly affected by water temperature, and so the ability to measure and model onshore water temperatures is critical for ecological and biogeographic studies. Because of the localized influences of processes such as upwelling, mixing, and surface heating from solar radiation, nearshore water temperatures can differ from those measured directly offshore by buoys and satellites. It remains an open question what the magnitude of the differences in these temperatures are, and whether "large pixel" measurements can serve as an effective proxy for onshore processes, particularly when extrapolating from laboratory physiological studies to field conditions. We compared 9 years of nearshore (~10km) MODIS (Terra and Aqua overpasses) SST data against in situ measurements of water temperature conducted at two intertidal sites in central Oregon- Boiler Bay and Strawberry Hill. We collapsed data into increasingly longer temporal averages to address the correlation and absolute differences between onshore and nearshore temperatures over daily, weekly and monthly timescales. Results indicate that nearshore SST is a reasonable proxy for onshore water temperature, and that the strength of the correlation increases with decreasing temporal resolution. Correlations between differences in maxima are highest, followed by average and minima, and were lower at a site with regular upwelling. While average differences ranged from ~0.199-1.353°C, absolute differences across time scales were ~0.446-6.906°C, and were highest for cold temperatures. The results suggest that, at least at these two sites, SST can be used as a relative proxy for general trends only, especially over longer time scales.

  15. [Multi-temporal scale analysis of impacts of extreme high temperature on net carbon uptake in subtropical coniferous plantation.

    PubMed

    Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui

    2018-02-01

    Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.

  16. Recent increase in maximum temperature at the tropical treeline of North America

    NASA Astrophysics Data System (ADS)

    Biondi, F.

    2009-12-01

    There are only a handful of weather stations above 3000 m in the entire American Cordillera, from Alaska to Tierra del Fuego. I present a surface instrumental record of high elevation (treeline) ecoclimatic variables for the tropics of North America. Besides its high elevation (3760 m) and tropical (19.5°N) features, this site is also located in the North American Monsoon System, making the data relevant to a broad suite of environmental issues. Automated half-hour data collected on Nevado de Colima, Mexico, from 2001 to 2009 show an increase in maximum temperature during the dry winter season, while incoming solar radiation remained stationary. Since minimum temperature did not increase as much, the daily range of air temperature has expanded over time. At this elevation, with average daily barometric pressure of 655 ± 1.4 hPa, maximum temperatures reflect the annual and daily energy cycle because of the dominant role of ground heating caused by incoming shortwave radiation. In fact, spring is the warmest season in this area, as it is followed by pronounced cooling during the summer monsoon because of increased cloudiness. The observed warming is associated with reduced wind speed, especially around solar noon, and is therefore most likely driven by reduced atmospheric flow, suggesting that the energy and water balance of high elevation tropical ecosystems are changing in unexpected ways. Further measurements and regional modeling experiments are therefore needed, given the staggering consequences this could have for any resource managers and policy makers concerned with trans-boundary (Mexico-US) terrestrial, coastal, and oceanic issues.

  17. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  18. A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Yonghui; Lin, Hualiang; Lv, Xiaojuan; Xiao, Jianpeng; Zeng, Weilin; Gu, Yuzhou; Rutherford, Shannon; Tong, Shilu; Ma, Wenjun

    2015-03-01

    Although erythromelalgia (EM) has been documented in the literature for almost 150 years, it is still poorly understood. To overcome this limitation, we examined the spatial distribution of epidemic EM, and explored the association between temperature fluctuation and epidemic EM outbreaks in China. We searched all peer-reviewed literature on primary epidemic EM outbreaks in China. A two-stage model was used to characterize the relationship between temperature fluctuation and epidemic EM outbreaks. We observed that epidemic EM outbreaks were reported from 13 provinces during 1960-2014 and they mainly occurred between February and March in southern China. The majority of EM cases were middle school students, with a higher incidence rate in female and resident students. The major clinical characteristics of EM cases included burning, sharp, tingling and/or stinging pain in toes, soles and/or dorsum of feet, fever, erythema and swelling. A large ``V''-shaped fluctuation of daily average temperature (TM) observed during the epidemic EM outbreaks was significantly associated with the number of daily EM cases (β = 1.22, 95%CI: 0.66 ~ 1.79), which indicated that this ``V''-shaped fluctuation of TM probably triggered the epidemic EM outbreaks.

  19. Cold storage effects on egg hatch in laboratory-reared Culicoides variipennis sonorensis (Diptera: Ceratopogonidae).

    PubMed

    Hunt, G J; Tabachnick, W J

    1995-09-01

    The effects of cold storage (5 degrees C) on the hatching rates of laboratory-reared Culicoides variipennis sonorensis eggs were examined. Mortality increased with storage time. Average maximum embryo survivorship for 4 trials was 55.0 +/- 4.2 (+/- SEM) days. Alternating daily cycles of high and then low mean hatching rates occurred and possibly were due to location differences in temperature within the temperature-controlled rearing system. During cold storage at 5 degrees C, C. v. sonorensis eggs may be kept for ca. 28 days with an anticipated hatching rate of about 50%.

  20. Ongoing climatic extreme dynamics in Siberia

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Shulgina, T. M.; Okladnikov, I. G.; Titov, A. G.

    2013-12-01

    Ongoing global climate changes accompanied by the restructuring of global processes in the atmosphere and biosphere are strongly pronounced in the Northern Eurasia regions, especially in Siberia. Recent investigations indicate not only large changes in averaged climatic characteristics (Kabanov and Lykosov, 2006, IPCC, 2007; Groisman and Gutman, 2012), but more frequent occurrence and stronger impacts of climatic extremes are reported as well (Bulygina et al., 2007; IPCC, 2012: Climate Extremes, 2012; Oldenborh et al., 2013). This paper provides the results of daily temperature and precipitation extreme dynamics in Siberia for the last three decades (1979 - 2012). Their seasonal dynamics is assessed using 10th and 90th percentile-based threshold indices that characterize frequency, intensity and duration of climatic extremes. To obtain the geographical pattern of these variations with high spatial resolution, the sub-daily temperature data from ECMWF ERA-Interim reanalysis and daily precipitation amounts from APHRODITE JMA dataset were used. All extreme indices and linear trend coefficients have been calculated using web-GIS information-computational platform Climate (http://climate.scert.ru/) developed to support collaborative multidisciplinary investigations of regional climatic changes and their impacts (Gordov et al., 2012). Obtained results show that seasonal dynamics of daily temperature extremes is asymmetric for tails of cold and warm temperature extreme distributions. Namely, the intensity of warming during cold nights is higher than during warm nights, especially at high latitudes of Siberia. The similar dynamics is observed for cold and warm day-time temperatures. Slight summer cooling was observed in the central part of Siberia. It is associated with decrease in warm temperature extremes. In the southern Siberia in winter, we also observe some cooling mostly due to strengthening of the cold temperature extremes. Changes in daily precipitation extremes are spatially inhomogeneous. The largest increase in frequency and intensity of heavy precipitation is observed in the north of East Siberia. Negative trends related to precipitation amount decrease are found in the central West Siberia and in the south of East Siberia. The authors acknowledge partial financial support for this research from the Russian Foundation for Basic Research projects (11-05-01190 and 13-05-12034), SB RAS Integration project 131 and project VIII.80.2.1., the Ministry of Education and Science of the Russian Federation contract 8345 and grant of the President of Russian Federation (decree 181).

  1. Variability in daily, zonal mean lower-stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Drouilhet, S. James, Jr.

    1994-01-01

    Satellite data from the microwave sounding unit (MSU) channel 4, when carefully merged, provide daily zonal anomalies of lower-stratosphere temperature with a level of precision between 0.01 and 0.08 C per 2.5 deg latitude band. Global averages of these daily zonal anomalies reveal the prominent warming events due to volcanic aerosol in 1982 (El Chichon) and 1991 (Mt. Pinatubo), which are on the order of 1 C. The quasibiennial oscillation (QBO) may be extracted from these zonal data by applying a spatial filter between 15 deg N and 15 deg S latitude, which resembles the meridional curvature. Previously published relationships between the QBO and the north polar stratospheric temperatures during northern winter are examined but were not found to be reproduced in the MSU4 data. Sudden stratospheric warmings in the north polar region are represented in the MSU4 data for latitudes poleward of 70 deg N. In the Southern Hemisphere, there appears to be a moderate relationship between total ozone concentration and MSU4 temperatures, though it has been less apparent in 1991 and 1992. In terms of empirical modes of variability, the authors find a strong tendency in EOF 1 (39.2% of the variance) for anomalies in the Northern Hemisphere polar regions to be counterbalanced by anomalies equatorward of 40 deg N and 40 deg S latitudes. In addition, most of the modes revealed significant power in the 15-20 day period band.

  2. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    NASA Astrophysics Data System (ADS)

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  3. 26 CFR 1.142(a)(5)-1 - Exempt facility bonds: Sewage facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...; however, for property treating wastewater reasonably expected to have an average daily raw wasteload... the extent the treatment is for wastewater having an average daily raw wasteload concentration of BOD...—(i) Exception to BOD limit. A facility treating wastewater with an average daily raw wasteload...

  4. 26 CFR 1.142(a)(5)-1 - Exempt facility bonds: Sewage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; however, for property treating wastewater reasonably expected to have an average daily raw wasteload... the extent the treatment is for wastewater having an average daily raw wasteload concentration of BOD...—(i) Exception to BOD limit. A facility treating wastewater with an average daily raw wasteload...

  5. 26 CFR 1.142(a)(5)-1 - Exempt facility bonds: Sewage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; however, for property treating wastewater reasonably expected to have an average daily raw wasteload... the extent the treatment is for wastewater having an average daily raw wasteload concentration of BOD...—(i) Exception to BOD limit. A facility treating wastewater with an average daily raw wasteload...

  6. 26 CFR 1.142(a)(5)-1 - Exempt facility bonds: Sewage facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; however, for property treating wastewater reasonably expected to have an average daily raw wasteload... the extent the treatment is for wastewater having an average daily raw wasteload concentration of BOD...—(i) Exception to BOD limit. A facility treating wastewater with an average daily raw wasteload...

  7. 26 CFR 1.142(a)(5)-1 - Exempt facility bonds: Sewage facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; however, for property treating wastewater reasonably expected to have an average daily raw wasteload... the extent the treatment is for wastewater having an average daily raw wasteload concentration of BOD...—(i) Exception to BOD limit. A facility treating wastewater with an average daily raw wasteload...

  8. 40 CFR 439.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average limitation for BOD5 that is less than the equivalent of 45 mg/L. (1) The long-term average daily... subject to this subpart, calculation of the long-term average daily BOD5 load in the influent to the... this section is higher than a concentration value reflecting a reduction in the long-term average daily...

  9. 40 CFR 439.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average limitation for BOD5 that is less than the equivalent of 45 mg/L. (1) The long-term average daily... subject to this subpart, calculation of the long-term average daily BOD5 load in the influent to the... this section is higher than a concentration value reflecting a reduction in the long-term average daily...

  10. 40 CFR 439.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average limitation for BOD5 that is less than the equivalent of 45 mg/L. (1) The long-term average daily... subject to this subpart, calculation of the long-term average daily BOD5 load in the influent to the... this section is higher than a concentration value reflecting a reduction in the long-term average daily...

  11. Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, William P.

    1989-01-01

    Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum watermore » temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.« less

  12. The effect of flow data resolution on sediment yield estimation and channel design

    NASA Astrophysics Data System (ADS)

    Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.

    2016-07-01

    The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.

  13. Daily Fluctuation in Negative Affect for Family Caregivers of Individuals With Dementia

    PubMed Central

    Liu, Yin; Kim, Kyungmin; Almeida, David M.; Zarit, Steven H.

    2017-01-01

    Objective The study examined associations of intrinsic fluctuation in daily negative affect (i.e., depression and anger) with adult day service (ADS) use, daily experiences, and other caregiving characteristics. Methods This was an 8-day diary of 173 family caregivers of individuals with dementia. Multilevel models with common within-person variance were fit first to show average associations between daily stressors and mean level of daily affect. Then multilevel models with heterogeneous within-person variance were fit to test the hypotheses on associations between ADS use, daily experiences, and intrinsic fluctuation in daily affect. Results The study showed that, when the sum of ADS days was greater than average, there was a stabilizing effect of ADS use on caregivers’ within-person fluctuation in negative affect. Moreover, fewer daily stressors and greater-than-average daily care-related stressors, more positive events, not being a spouse, greater-than-average duration of caregiving, and less-than-average dependency of individuals with dementia on activities of daily living were associated with less fluctuation. Better sleep quality was associated with less intrinsic fluctuation in anger; and younger age and more years of education were associated with less intrinsic fluctuation in daily depression. Conclusions Because emotional stability has been argued as an aspect of emotional well-being in the general populations, intrinsic fluctuation of emotional experience was suggested as an outcome of evidence-based interventions for family caregivers. PMID:25365414

  14. Measurement-derived heat-budget approaches for simulating coastal wetland temperature with a hydrodynamic model

    USGS Publications Warehouse

    Swain, Eric; Decker, Jeremy

    2010-01-01

    Numerical modeling is needed to predict environmental temperatures, which affect a number of biota in southern Florida, U.S.A., such as the West Indian manatee (Trichechus manatus), which uses thermal basins for refuge from lethal winter cold fronts. To numerically simulate heat-transport through a dynamic coastal wetland region, an algorithm was developed for the FTLOADDS coupled hydrodynamic surface-water/ground-water model that uses formulations and coefficients suited to the coastal wetland thermal environment. In this study, two field sites provided atmospheric data to develop coefficients for the heat flux terms representing this particular study area. Several methods were examined to represent the heat-flux components used to compute temperature. A Dalton equation was compared with a Penman formulation for latent heat computations, producing similar daily-average temperatures. Simulation of heat-transport in the southern Everglades indicates that the model represents the daily fluctuation in coastal temperatures better than at inland locations; possibly due to the lack of information on the spatial variations in heat-transport parameters such as soil heat capacity and surface albedo. These simulation results indicate that the new formulation is suitable for defining the existing thermohydrologic system and evaluating the ecological effect of proposed restoration efforts in the southern Everglades of Florida.

  15. Short-term effects of floods on Japanese encephalitis in Nanchong, China, 2007-2012: A time-stratified case-crossover study.

    PubMed

    Zhang, Feifei; Liu, Zhidong; Zhang, Caixia; Jiang, Baofa

    2016-09-01

    This time-stratified case-crossover study aimed to quantify the impact of floods on daily Japanese encephalitis (JE) cases from 2007 to 2012 in Nanchong city of Sichuan Province, China. Using conditional logistic regression analysis, we calculated the odds ratios (ORs) and 95% confidence intervals (CIs) at different lagged days, adjusting for daily average temperature (AT) and daily average relative humidity (ARH). A total of 370 JE cases were notified during the study period, with the median patient age being 4.2years. The seasonal pattern of JE cases clustered in July and August during the study period. Floods were significantly associated with an increased number of JE cases from lag 23 to lag 24, with the strongest lag effect at lag 23 (OR=2.00, 95% CI: 1.14-3.52). Similarly, AT and ARH were positively associated with daily JE cases from lag 0 to lag 8 and from lag 0 to lag 9, respectively. Floods, with AT and ARH, can be used to forecast JE outbreaks in the study area. Based on the results of this study, recommendations include undertaking control measures before the number of cases increases, especially for regions with similar geographic, climatic, and socio-economic conditions as those in the study area. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Use of Regional Climate Model Output for Hydrologic Simulations

    NASA Astrophysics Data System (ADS)

    Hay, L. E.; Clark, M. P.; Wilby, R. L.; Gutowski, W. J.; Leavesley, G. H.; Pan, Z.; Arritt, R. W.; Takle, E. S.

    2001-12-01

    Daily precipitation and maximum and minimum temperature time series from a Regional Climate Model (RegCM2) were used as input to a distributed hydrologic model for a rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado; East Fork of the Carson River near Gardnerville, Nevada; and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily data sets of precipitation and maximum and minimum temperature were developed from measured data. These datasets included precipitation and temperature data for all stations that are located within the area of the RegCM2 model output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and station data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and station-based simulations of runoff show little skill on a daily basis (Nash-Sutcliffe (NS) values ranging from 0.05-0.37 for RegCM2 and -0.08-0.65 for station). When the precipitation and temperature biases are corrected in the RegCM2 output and station data sets (Bias-RegCM2 and Bias-station, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins. In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from -0.08 to 0.72). These results indicate that the resolution of the RegCM2 output is appropriate for basin-scale modeling, but RegCM2 model output does not contain the day-to-day variability needed for basin-scale modeling in rainfall-dominated basins. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.

  17. Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage.

    PubMed

    Linke, Bernd; Rodríguez-Abalde, Ángela; Jost, Carsten; Krieg, Andreas

    2015-02-01

    This study investigated the potential of producing biogas on demand from maize silage using a novel two-phase continuously fed leach bed reactor (LBR) which is connected to an anaerobic filter (AF). Six different feeding patterns, each for 1week, were studied at a weekly average of a volatile solids (VS) loading rate of 4.5 g L(-1) d(-1) and a temperature of 38°C. Methane production from the LBR and AF responded directly proportional to the VS load from the different daily feeding and resulted in an increase up to 50-60% per day, compared to constant feeding each day. The feeding patterns had no impact on VS methane yield which corresponded on average to 330 L kg(-1). In spite of some daily shock loadings, carried out during the different feeding patterns study, the reactor performance was not affected. A robust and reliable biogas production from stalky biomass was demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Caution! All data are not created equal: The hazards of using National Weather Service data for calculating accumulated degree days.

    PubMed

    Dabbs, Gretchen R

    2010-10-10

    An increasing number of anthropological decomposition studies are utilizing accumulated degree days (ADD) to quantify and estimate the post-mortem interval (PMI) at given decompositional stages, or the number of ADD required for certain events, such as tooth exfoliation, to occur. This study addresses the utility of retroactively applying temperature data from the closest National Weather Service (NWS) station to these calculations as prescribed in the past. Hourly temperature readings were collected for 154 days at a research site in Farmington, AR between June 30 and December 25, 2008. These were converted to average daily temperatures by calculating the mean of the 24 hourly values, following the NWS reporting procedure. These data were compared to comparable data from the Owl Creek and Drake Field NWS stations, the two closest to the research site, located 5.7 and 9.9km away, respectively. Paired samples t-tests between the research site and each of the NWS stations show significant differences between the average daily temperature data collected at the research station, and both Owl Creek (2.0°C, p<0.001) and Drake Field (0.6°C, p<0.001). When applied to a simulated recovery effort, the further NWS station also proved to represent the better model for the recovery site. Using a published equation for estimating post-mortem interval using ADD and total body decomposition scores (Megyesi et al., 2005 [1]), the Drake Field data produced estimates of PMI more closely mirroring those of the research site than did Owl Creek. This demonstrates that instead of automatically choosing the nearest NWS station, care must be taken when choosing an NWS station for retroactively gathering temperature data for application of PMI estimation techniques using accumulated degree days to ensure the station adequately reflects temperature conditions at the recovery site. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.

  20. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  1. The impact of environmental factors on marine turtle stranding rates

    PubMed Central

    Flint, Mark; Limpus, Colin J.; Mills, Paul C.

    2017-01-01

    Globally, tropical and subtropical regions have experienced an increased frequency and intensity in extreme weather events, ranging from severe drought to protracted rain depressions and cyclones, these coincided with an increased number of marine turtles subsequently reported stranded. This study investigated the relationship between environmental variables and marine turtle stranding. The environmental variables examined in this study, in descending order of importance, were freshwater discharge, monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall for the latitudinal hotspots (-27°, -25°, -23°, -19°) along the Queensland coast as well as for major embayments within these blocks. This study found that marine turtle strandings can be linked to these environmental variables at different lag times (3–12 months), and that cumulative (months added together for maximum lag) and non-cumulative (single month only) effects cause different responses. Different latitudes also showed different responses of marine turtle strandings, both in response direction and timing.Cumulative effects of freshwater discharge in all latitudes resulted in increased strandings 10–12 months later. For latitudes -27°, -25° and -23° non-cumulative effects for discharge resulted in increased strandings 7–12 months later. Latitude -19° had different results for the non-cumulative bay with strandings reported earlier (3–6 months). Monthly mean maximum and minimum air temperatures, monthly average daily diurnal air temperature difference and rainfall had varying results for each examined latitude. This study will allow first responders and resource managers to be better equipped to deal with increased marine turtle stranding rates following extreme weather events. PMID:28771635

  2. Climatic factors affecting quantity and quality grade of in vivo derived embryos of cattle.

    PubMed

    Chinchilla-Vargas, Josué; Jahnke, Marianna M; Dohlman, Tyler M; Rothschild, Max F; Gunn, Patrick J

    2018-05-01

    The present study investigated the effects of climatic variables on the quality grade and quantity of in vivo derived cattle embryos in the Midwestern United States. Climatic information included greatest and least daily temperature, average daily wind speed and average temperature-humidity index for each of the 765 records. The response variables included the number of ovarian structures, viable embryos, quality grade 1 embryos, quality grade 2 embryos, quality grade 3 embryos, freezable embryos (sum of quality grade 1 and quality grade 2 embryos), transferable embryos (sum of quality grade 1-3 embryos), degenerate embryos and unfertilized ova. Measures for variables among the breeds of donors and sires grouped by geographical origin were compared. A negative effect of greater temperatures during the early embryonic development stage tended (P < 0.10) to be associated with a decrease in the quality of embryos recovered. Interestingly, the greater the Temperature-Humidity Index (THI) during the early ovarian antral follicular development stage 40-45 days prior to ovulation was associated with a tendency for greater numbers of total number of freezable and transferable embryos recovered per uterine flushing (P < 0.10). Increased wind speed at the early antral follicular phase 40-45 days prior to ovulation was associated with an increase in the percentage of quality grade 1 embryos recovered (P < 0.05). Wind speed during the estrous synchronization period was also associated with a lesser number of embryos recovered (P < 0.05). This retrospective study confirms that climatic variables have significant effects on the in vivo production of cattle embryos and that wind speed should be considered in future analyses of factors affecting embryo quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Stream-temperature characteristics in Georgia

    USGS Publications Warehouse

    Dyar, T.R.; Alhadeff, S. Jack

    1997-01-01

    Stream-temperature measurements for 198 periodic and 22 daily record stations were analyzed using a harmonic curve-fitting procedure. Statistics of data from 78 selected stations were used to compute a statewide stream-temperature harmonic equation, derived using latitude, drainage area, and altitude for natural streams having drainage areas greater than about 40 square miles. Based on the 1955-84 reference period, the equation may be used to compute long-term natural harmonic stream-temperature coefficients to within an on average of about 0.4? C. Basin-by-basin summaries of observed long-term stream-temperature characteristics are included for selected stations and river reaches, particularly along Georgia's mainstem streams. Changes in the stream- temperature regimen caused by the effects of development, principally impoundments and thermal power plants, are shown by comparing harmonic curves and coefficients from the estimated natural values to the observed modified-condition values.

  4. The Impacts of Rising Temperatures on Aircraft Takeoff Performance

    NASA Technical Reports Server (NTRS)

    Coffel, Ethan; Thompson, Terence R.; Horton, Radley M.

    2017-01-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10 - 30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high temperatures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  5. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  6. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  7. Temperatures in Excess of Critical Thresholds Threaten Nestling Growth and Survival in A Rapidly-Warming Arid Savanna: A Study of Common Fiscals

    PubMed Central

    Cunningham, Susan J.; Martin, Rowan O.; Hojem, Carryn L.

    2013-01-01

    Frequency, duration, and intensity of hot-weather events are all predicted to increase with climate warming. Despite this, mechanisms by which temperature increases affect individual fitness and drive population-level changes are poorly understood. We investigated the link between daily maximum air temperature (tmax) and breeding success of Kalahari common fiscals (Lanius collaris) in terms of the daily effect on nestling body-mass gain, and the cumulative effect on size and age of fledglings. High tmax reduced mass gain of younger, but not older nestlings and average nestling-period tmax did not affect fledgling size. Instead, the frequency with which tmax exceeded critical thresholds (tcrits) significantly reduced fledging body mass (tcrit = 33°C) and tarsus length (tcrit = 37°C), as well as delaying fledging (tcrit = 35°C). Nest failure risk was 4.2% per day therefore delays reduced fledging probability. Smaller size at fledging often correlates with reduced lifetime fitness and might also underlie documented adult body-size reductions in desert birds in relation to climate warming. Temperature thresholds above which organisms incur fitness costs are probably common, as physiological responses to temperature are non-linear. Understanding the shape of the relationship between temperature and fitness has implications for our ability to predict species’ responses to climate change. PMID:24040296

  8. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  9. Estimating evaporative vapor generation from automobiles based on parking activities.

    PubMed

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S

    2015-07-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade-Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5-8% less than calculation without considering parking activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 40 CFR Table 2 to Subpart Mmmmm of... - Operating Limits for New or Reconstructed Flame Lamination Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scrubber, maintain the daily average pressure drop across the venturi within the operating range value... . . . You must . . . 1. Scrubber a. Maintain the daily average scrubber inlet liquid flow rate above the minimum value established during the performance test. b. Maintain the daily average scrubber effluent pH...

  11. 40 CFR Table 2 to Subpart Mmmmm of... - Operating Limits for New or Reconstructed Flame Lamination Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... . . . You must . . . 1. Scrubber a. Maintain the daily average scrubber inlet liquid flow rate above the minimum value established during the performance test. b. Maintain the daily average scrubber effluent pH... scrubber, maintain the daily average pressure drop across the venturi within the operating range value...

  12. Rapid Recent Warming of Coral Reefs in the Florida Keys.

    PubMed

    Manzello, Derek P

    2015-11-16

    Coral reef decline in the Florida Keys has been well-publicized, controversial, and polarizing owing to debate over the causative agent being climate change versus overfishing. The recurrence of mass bleaching in 2014, the sixth event since 1987, prompted a reanalysis of temperature data. The summer and winter of 2014 were the warmest on record. The oldest known in-situ temperature record of any coral reef is from Hens and Chickens Reef (H&C) in the Florida Keys, which showed significant warming from 1975-2014. The average number of days ≥31.5 and 32(o)C per year increased 2670% and 2560%, respectively, from the mid-1990 s to present relative to the previous 20 years. In every year after 1992 and 1994, maximum daily average temperatures exceeded 30.5 and 31°C, respectively. From 1975-1994, temperatures were <31 °C in 61% of years, and in 44% of the years prior to 1992 temperatures were <30.5 °C. The measured rate of warming predicts the start of annual bleaching between 2020 and 2034, sooner than expected from climate models and satellite-based sea temperatures. These data show that thermal stress is increasing and occurring on a near-annual basis on Florida Keys reefs due to ocean warming from climate change.

  13. Indigenous Construction Materials for Theater Facilities

    DTIC Science & Technology

    2013-09-01

    pebbles removed. Mortars are used to accommodate ir - regularities in size, shape, and surface of blocks, and it keeps all gaps be- tween CEBs closed to...distance in southeast Ethiopia. • Dryer and hotter than other sites in the country, with an average daily temperature exceeding 28 °C, but...purportedly available at http://www.goss-online.org, but the link was not functional as of 8 July 2013. A web search has returned some evidence that

  14. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    PubMed

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  15. Climatological observations in the Philip Smith Mountains of the North Slope, Alaska: Climatology report series No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, J.J.; Foster, D.

    1986-10-01

    Climatological data from an automatic weather station (Aanderaa) located at the Alyeska Pipeline Service Company Material Site 117 (MS-117) are presented in this report. Data are listed for hourly averages daily. The data report covers the period 1 August 1985 to 31 May 1986. Observations in this report include wind speed and direction, temperature and barometric pressure. Descriptions of the instrumentation and estimates of reliability are included in the test. Various analyses of the data are presented in the appendices. A summary of the wind and temperature regime is presented through displays of cumulative frequencies of hourly temperatures and windmore » speeds for the 12-month period, June 1985 to May 1986.« less

  16. Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems

    PubMed Central

    Zhang, Kai; Rood, Richard B.; Michailidis, George; Oswald, Evan M.; Schwartz, Joel D.; Zanobetti, Antonella; Ebi, Kristie L.; O’Neill, Marie S.

    2012-01-01

    Heat waves have been linked to excess mortality and morbidity, and are projected to increase in frequency and intensity with a warming climate. This study compares exposure metrics to trigger heat wave and health warning systems (HHWS), and introduces a novel multi-level hybrid clustering method to identify potential dangerously hot days. Two-level and three-level hybrid clustering analysis as well as common indices used to trigger HHWS, including spatial synoptic classification (SSC); and 90th, 95th, and 99th percentiles of minimum and relative minimum temperature (using a 10 day reference period), were calculated using a summertime weather dataset in Detroit from 1976 to 2006. The days classified as ‘hot’ with hybrid clustering analysis, SSC, minimum and relative minimum temperature methods differed by method type. SSC tended to include the days with, on average, 2.6 °C lower daily minimum temperature and 5.3 °C lower dew point than days identified by other methods. These metrics were evaluated by comparing their performance in predicting excess daily mortality. The 99th percentile of minimum temperature was generally the most predictive, followed by the three-level hybrid clustering method, the 95th percentile of minimum temperature, SSC and others. Our proposed clustering framework has more flexibility and requires less substantial meteorological prior information than the synoptic classification methods. Comparison of these metrics in predicting excess daily mortality suggests that metrics thought to better characterize physiological heat stress by considering several weather conditions simultaneously may not be the same metrics that are better at predicting heat-related mortality, which has significant implications in HHWSs. PMID:22673187

  17. A new daily observational record from Grytviken, South Georgia: exploring 20th century extremes in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Thomas, Z.; Turney, C. S.; Allan, R.; Colwell, S.; Kelly, G.; Lister, D.; Jones, P. D.; Beswick, M.; Alexander, L. V.; Lippmann, T.; Herold, N.; Jones, R. T.

    2017-12-01

    Although recent work has highlighted a host of significant late 20th century environmental changes across the mid to high latitudes of the Southern Hemisphere, the sparse nature of observational records limits our ability to place these changes in the context of long-term (multi-decadal and centennial) variability. As a result, investigating the impact of anthropogenic forcing on climate modes of variability and ecosystems is particularly challenging. Sub-Antarctic islands are particularly important in this regard, straddling major ocean and atmospheric boundaries and offering the potential to develop highly resolved records of change. In 1905, a whaling and meteorological station was established at Grytviken on Sub-Antarctic South Georgia in the South Atlantic (54°S) providing near-continuous observations through to present day. Although South Georgia lies in a strategic location for understanding Southern Ocean atmosphere-ocean dynamics, only a monthly resolved dataset has until now been available. Here we report a near continuous daily observational record from Grytviken for temperature and precipitation, which we compare to different datasets (including Twentieth Century Reanalysis; 20CR version 2c). A warming trend over the 20th century is observed in mean daily temperature at Grytviken with an average rate of temperature rise of 0.14°C per decade over the period 1907-2016 (p<0.0001). We find a significant trend towards increasingly warmer daytime extremes commencing from the mid-20th century accompanied by warmer night-time temperatures. Analysis of these data, and reanalysis products, suggest a realignment of synoptic conditions across the mid to high-latitudes, with a link between increasing temperature trends and atmospheric circulation dominated by stronger westerly airflow, resulting in significant foehn-related warming.

  18. Effects of Environmental Temperature and Dietary Fat Content on The Performance and Heat Production and Substrate Oxidation in Growing Pigs.

    PubMed

    Han, Rui; Jiang, Hailong; Che, Dongsheng; Bao, Nan; Xiang, Dong; Liu, Feifei; Yang, Huaming; Ban, Zhibin; Qin, Guixin

    2017-01-01

    This study aimed to evaluate the effect of temperature and dietary fat level on growth performance, heat production, nutrient oxidation and nitrogen balance in growing pigs. Thirty-two pigs (Duroc × Landrace × Large White) with initial weight of 25±1.91 kg were assigned to treatments in 2×4 factorial design. All pigs were fed with two isoenergetic and isoproteic diets of different fat levels (low fat level: 3.68% fat of dry matter (DM) and high fat level: 8.39% fat of DM) under four environmental temperatures (23, 18, 13 and 8 ºC). Heat production (HP) and nutrient oxidation were calculated from gas exchange via measurement with respiration chambers. The results showed that there was no interaction effect on growth performance by the temperature and dietary fat level. The average daily feed intake (ADFI) was lower (P < 0.001), the average daily gain (ADG) was higher (P < 0.001) and feed utilization was more efficient at 23 ºC than 13 and 8 ºC (P < 0.001). Dietary fat had no effect on growth performance and feed utilization at the four different temperatures. A significant interaction (P < 0.001) between temperature and dietary fat level on oxidation of carbohydrate (OXCHO) and fat (OXF) was observed. HP, OXF and OXCHO were significantly increased (P < 0.001) as environment temperatures decreased. Increasing dietary fat generated an increase in the OXF and decrease in the OXCHO (P < 0.001). No significant difference was observed in protein oxidation (OXP) of two factors. The intakes of nitrogen, nitrogen excretion in feces (FN) and urine (UN) by the pigs kept in 8 ºC environment were highest. Nitrogen digestibility decreased as environmental temperature decreased, with the most efficient gains obtained at 23 ºC. However, nitrogen retention was not influenced by environmental temperature. Dietary fat level did not affect nitrogen balance. No significant interaction between temperature and dietary fat level was observed for nitrogen balance. These results indicated that the rate of growth and nutrition utilization in pigs fed ad libitum are influenced by the environmental temperatures in which they are maintained, and the oxidation of nutrition utilization of the pig to different environmental temperatures is altered by the dietary fat supplementation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions.

    PubMed

    Farhat, S C L; Paulo, R L P; Shimoda, T M; Conceição, G M S; Lin, C A; Braga, A L F; Warth, M P N; Saldiva, P H N

    2005-02-01

    In order to assess the effect of air pollution on pediatric respiratory morbidity, we carried out a time series study using daily levels of PM10, SO2, NO2, ozone, and CO and daily numbers of pediatric respiratory emergency room visits and hospital admissions at the Children's Institute of the University of Sao Paulo Medical School, from August 1996 to August 1997. In this period there were 43,635 hospital emergency room visits, 4534 of which were due to lower respiratory tract disease. The total number of hospital admissions was 6785, 1021 of which were due to lower respiratory tract infectious and/or obstructive diseases. The three health end-points under investigation were the daily number of emergency room visits due to lower respiratory tract diseases, hospital admissions due to pneumonia, and hospital admissions due to asthma or bronchiolitis. Generalized additive Poisson regression models were fitted, controlling for smooth functions of time, temperature and humidity, and an indicator of weekdays. NO2 was positively associated with all outcomes. Interquartile range increases (65.04 microg/m3) in NO2 moving averages were associated with an 18.4% increase (95% confidence interval, 95% CI = 12.5-24.3) in emergency room visits due to lower respiratory tract diseases (4-day moving average), a 17.6% increase (95% CI = 3.3-32.7) in hospital admissions due to pneumonia or bronchopneumonia (3-day moving average), and a 31.4% increase (95% CI = 7.2-55.7) in hospital admissions due to asthma or bronchiolitis (2-day moving average). The study showed that air pollution considerably affects children's respiratory morbidity, deserving attention from the health authorities.

  20. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw process... concentration value reflecting a reduction in the long-term average daily COD load in the raw (untreated...

  1. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw process... concentration value reflecting a reduction in the long-term average daily COD load in the raw (untreated...

  2. Potential climate change impacts on a tropical estuary: Hilo Bay, Hawaii

    NASA Astrophysics Data System (ADS)

    Adolf, J.; LaPinta, J.; Marusek, J.; Pascoe, K.; Pugh, A.

    2016-02-01

    Hilo Bay is a tropical estuarine ecosystem on the northeast (windward) coast of Hawai`i Island that is potentially vulnerable to climate change effects mediated through elevated water temperatures and/or changing rainfall patterns that impact river and groundwater fluxes. Here, we document trends in water temperature, river flow and phytoplankton dynamics in Hilo Bay. Hilo Bay is fed by two major rivers, Wailuku and Honoli`i, both of which have shown long term declines in output over their 85 and 38 year monitoring periods (USGS), respectively. Time series of groundwater inputs to Hilo Bay do not exist, but the average estimated rate rivals that of average river inputs. Daily average Hilo Bay water temperatures have increased at a rate of 0.35 degrees C per year (p < 0.001) since measurement by the Hilo Bay water quality buoy began in 2010, with the warmest temperatures on record recorded Sept 2015. Salinity did not show a trend over this same time period. Phytoplankton showed a pronounced seasonal cycle in Hilo Bay with a long term average of 3.7 mg m-3 and dominance by diatoms that exploit the co-availability of silica and nitrate in this environment. On shorter time scales of days to < 1 week, flood events dramatically reduce Hilo Bay salinity, temperature and phytoplankton biomass. Coincidental atmospheric warming, SST warming in the adjacent North Pacific ocean, and declining river flows will likely work together to result in elevated SST in Hilo Bay if observed trends continue. The El Nino event that started this year is expected to exacerbate this warming through reduce river flow and warmer regional SST.

  3. Association between outdoor ozone and compensated acute respiratory diseases among workers in Quebec (Canada).

    PubMed

    Adam-Poupart, Ariane; Labrèche, France; Busque, Marc-Antoine; Brand, Allan; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Smargiassi, Audrey

    2015-01-01

    Respiratory effects of ozone in the workplace have not been extensively studied. Our aim was to explore the relationship between daily average ozone levels and compensated acute respiratory problems among workers in Quebec between 2003 and 2010 using a time-stratified case-crossover design. Health data came from the Workers' Compensation Board. Daily concentrations of ozone were estimated using a spatiotemporal model. Conditional logistic regressions, with and without adjustment for temperature, were used to estimate odds ratios (ORs, per 1 ppb increase of ozone), and lag effects were assessed. Relationships with respiratory compensations in all industrial sectors were essentially null. Positive non-statistically significant associations were observed for outdoor sectors, and decreased after controlling for temperature (ORs of 0.98; 1.01 and 1.05 at Lags 0, 1 and 2 respectively). Considering the predicted increase of air pollutant concentrations in the context of climate change, closer investigation should be carried out on outdoor workers.

  4. Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016

    NASA Astrophysics Data System (ADS)

    Rodrigo, F. S.

    2018-02-01

    In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.

  5. Site Monitoring at the U.C. Observatory of Santa Martina

    NASA Astrophysics Data System (ADS)

    Gatica, C.; Vanzi, L.; Toledo, I.; Lombardi, G.

    2011-11-01

    This work presents an astroclimatologic analysis of the UC Santa Martina Observatory site. This site is located near Santiago at latitude 33.3°S, longitude 70.5°W and an altitude of 1492 meters above sea level. The analysis was performed using data of temperature, pressure, humidity, and wind collected with a Davis Net Vantage Pro 2 meteo station in a period from December 2007 to January 2011. We estimated average values for the parameters monitored on different time scales and examined daily as well as seasonal variations. We also estimated the downtime due to clouds average with an 37.23% of nights in 2010, humidity, wind over the period examined. The average relative humidity is 49%, wind is predominantly (24% of time) from southsouthwest with an average speed of 0.6 m/s. Finally, we describe Seeing measurements obtained with a DIMM monitor recently installed in the site.

  6. Global atmospheric circulation statistics: Four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.

    1987-01-01

    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.

  7. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence

    NASA Astrophysics Data System (ADS)

    Yu, Weiwei; Mengersen, Kerrie; Wang, Xiaoyu; Ye, Xiaofang; Guo, Yuming; Pan, Xiaochuan; Tong, Shilu

    2012-07-01

    The impact of climate change on the health of vulnerable groups such as the elderly has been of increasing concern. However, to date there has been no meta-analysis of current literature relating to the effects of temperature fluctuations upon mortality amongst the elderly. We synthesised risk estimates of the overall impact of daily mean temperature on elderly mortality across different continents. A comprehensive literature search was conducted using MEDLINE and PubMed to identify papers published up to December 2010. Selection criteria including suitable temperature indicators, endpoints, study-designs and identification of threshold were used. A two-stage Bayesian hierarchical model was performed to summarise the percent increase in mortality with a 1°C temperature increase (or decrease) with 95% confidence intervals in hot (or cold) days, with lagged effects also measured. Fifteen studies met the eligibility criteria and almost 13 million elderly deaths were included in this meta-analysis. In total, there was a 2-5% increase for a 1°C increment during hot temperature intervals, and a 1-2 % increase in all-cause mortality for a 1°C decrease during cold temperature intervals. Lags of up to 9 days in exposure to cold temperature intervals were substantially associated with all-cause mortality, but no substantial lagged effects were observed for hot intervals. Thus, both hot and cold temperatures substantially increased mortality among the elderly, but the magnitude of heat-related effects seemed to be larger than that of cold effects within a global context.

  8. Analysis of heat wave occurrences in the Carpathian basin using regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Bartha, E. B.; Pongracz, R.; Bartholy, J.

    2012-04-01

    Human health is very likely affected by regional consequences of global warming. One of the most severe impacts is probably associated to temperature-related climatological extremes, such as heat waves. In the coming decades hot conditions in most regions of the world are very likely to occur more frequently and more intensely than in the recent decades. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to warming climatic conditions including heat waves. In 2004, a Heat Health Watch Warning System was developed in Hungary on the basis of a retrospective analysis of mortality and meteorological data to anticipate heat waves that may result in a large excess of mortality. In the frame of this recently introduced Health Watch System, three levels of heat wave warning are applied. They are associated to the daily mean temperature values, and defined as follows: - Warning level 1 (advisory for internal use) is issued when the daily mean temperature exceeds 25 °C. - Warning level 2 (heat wave watch) is issued when the daily mean temperature for at least 3 consecutive days exceeds 25 °C. - Warning level 3 (heat wave alert) is issued when the daily mean temperature for at least 3 consecutive days exceeds 27 °C. In the present study, frequency of the above climatic conditions are analyzed using regional climate model (RCM) experiments are analyzed for the recent past and the coming decades (1961-2100) for the Carpathian basin. At the Dept. of Meteorology, Eotvos Lorand University two different RCMs have been adapted: RegCM (with 10 km horizontal resolution, originally developed by Giorgi et al., currently, available from the International Centre for Theoretical Physics, ICTP) and PRECIS (with 25 km horizontal resolution, developed at the UK Met Office, Hadley Centre). Their initial and lateral boundary conditions have been provided by global climate models ECHAM and HadCM3, respectively. For both RCMs A1B emission scenario was used. The climatic conditions of 1961-1990 (as a reference), and 2021-2050, 2071-2100 future periods are evaluated using bias corrected daily mean temperature outputs of both RegCM and PRECIS. Based on the results the following main conclusions can be drawn: (i) Heat waves are very likely to occur more frequently in the 21st century than in the reference period, 1961-1990. (ii) By the end of the 21st century heat warning level 3 is projected to occur with similar frequency as the heat warning level 1 in the reference period. (iii) By the end of the 21st century the average first occurrence of the heat warning days is simulated to shift earlier, and the average last occurrence later, than in the reference period - thus the length of the heat wave season is projected to become remarkably larger. (iv) For each time slices (both reference and future periods), PRECIS simulations suggest a more often occurrence of heat warning cases in the Carpathian basin than the RegCM experiments.

  9. Can air temperatures be used to project influences of climate change on stream temperatures?

    NASA Astrophysics Data System (ADS)

    Arismendi, I.; Safeeq, M.; Dunham, J.; Johnson, S. L.

    2013-12-01

    The lack of available in situ stream temperature records at broad spatiotemporal scales have been recognized as a major limiting factor in the understanding of thermal behavior of stream and river systems. This has motivated the promotion of a wide variety of models that use surrogates for stream temperatures including a regression approach that uses air temperature as the predictor variable. We investigate the long-term performance of widely used linear and non-linear regression models between air and stream temperatures to project the latter in future climate scenarios. Specifically, we examine the temporal variability of the parameters that define each of these models in long-term stream and air temperature datasets representing relatively natural and highly human-influenced streams. We selected 25 sites with long-term records that monitored year-round daily measurements of stream temperature (daily mean) in the western United States (California, Oregon, Idaho, Washington, and Alaska). Surface air temperature data from each site was not available. Therefore, we calculated daily mean surface air temperature for each site in contiguous US from a 1/16-degree resolution gridded surface temperature data. Our findings highlight several limitations that are endemic to linear or nonlinear regressions that have been applied in many recent attempts to project future stream temperatures based on air temperature. Our results also show that applications over longer time periods, as well as extrapolation of model predictions to project future stream temperatures are unlikely to be reliable. Although we did not analyze a broad range of stream types at a continental or global extent, our analysis of stream temperatures within the set of streams considered herein was more than sufficient to illustrate a number of specific limitations associated with statistical projections of stream temperature based on air temperature. Radar plots of Nash-Sutcliffe efficiency (NSE) values for the two correlation models in regulated (n=14; lower panel) and unregulated (n=11; upper panel) streams. Solid lines represent average × SD of the NSE estimated for different time periods every 5-year. Dotted line at each plot indicates a NSE = 0.7. Symbols outside of the dotted line at each plot represent a satisfactory level of accuracy of the model

  10. Daily variations in the thermoregulatory behaviors of naked neck broilers in an equatorial semi-arid environment.

    PubMed

    de Queiroz, João Paulo Araújo Fernandes; de Souza, João Batista Freire; de Lima, Hiagos Felipe Ferreira; de Oliveira Costa, Monik Kelly; de Macedo Costa, Leonardo Lelis; de Arruda, Alex Martins Varela

    2014-08-01

    The aim of this study was to evaluate the daily variations in the thermoregulatory behavior of 4- to 6-week-old naked neck broilers (Label Rouge) in an equatorial semi-arid environment. A total of 220 birds were monitored for 5 days starting at 0600 hours and ending at 1800 hours. The period of observation was divided into classes of hours (C H). The observed behaviors were as follows: feed and water intake, wing-spreading, sitting or lying, and beak-opening. A total of 14,300 behavioral data values were registered. In C H 2 (0900 hours to 1100 hours) and 3 (1200 hours to 1500 hours), the greatest average body surface temperature was recorded (34.67 ± 0.25 °C and 35.12 ± 0.22 °C, respectively). The C H had an effect on the exhibition of all behaviors with the exception of the water intake behavior. Feed intake was more frequent in C H 1 (0600 hours to 0800 hours) and 4 (1600 hours to 1800 hours). In C H 2 and 3, the highest frequency of sitting or lying behavior was observed. Beak-opening and wing-spreading behaviors occurred more frequently in C H 3 where the body surface temperature (35.12 ± 0.22 °C), radiant heat load (519.38 ± 2.22 W m(-2)), and enthalpy (82.74 ± 0.36 kJ kg(-1) of dry air) reached maximum recorded averages. Thus, it can be concluded that naked neck broilers adjust their behavior in response to daily variations in the thermal environment. Wing-spreading and beak-opening behaviors are important adaptive responses to the thermal challenges posed by the equatorial semi-arid environment.

  11. 40 CFR 439.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limitation for BOD5 that is less than the equivalent of 45 mg/L. (1) The long-term average daily BOD5 load of... to this subpart, calculation of the long-term average daily BOD5 load in the influent to the... this section is higher than a concentration value reflecting a reduction in the long-term average daily...

  12. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  13. 40 CFR 439.22 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limitation for BOD5 that is less than the equivalent of 45 mg/L. (1) The long-term average daily BOD5 load of... to this subpart, calculation of the long-term average daily BOD5 load in the influent to the... this section is higher than a concentration value reflecting a reduction in the long-term average daily...

  14. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  15. 40 CFR 439.52 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., kg) per day, must reflect not less than 74 percent reduction in the long-term average daily COD load... long-term average daily BOD5 or COD mass loading of the raw process wastewater (i.e., the base number..., calculation of the long-term average daily BOD5 or COD load in the influent to the wastewater treatment system...

  16. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than 90 percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw..., calculation of the long-term average daily BOD5 load in the influent to the wastewater treatment system must...

  17. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 90 percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw..., calculation of the long-term average daily BOD5 load in the influent to the wastewater treatment system must...

  18. 40 CFR 439.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... than 90 percent reduction in the long-term average daily BOD5 load of the raw (untreated) process wastewater, multiplied by a variability factor of 3.0. (1) The long-term average daily BOD5 load of the raw..., calculation of the long-term average daily BOD5 load in the influent to the wastewater treatment system must...

  19. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part I: humidity

    NASA Astrophysics Data System (ADS)

    Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.

    2017-07-01

    This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.

  20. Next Generation Hydrogen Station Composite Data Products: All Stations |

    Science.gov Websites

    /11/17 Fuel Temperature at Receptacle 30 s After Start of Fill CDP INFR 77, 10/11/17 Cost Compressor Operation Cost CDP INFR 39, 10/11/17 Station Cost by Daily Capacity CDP INFR 40, 10/11/17 Average Station Cost by Category CDP INFR 41, 10/11/17 Station Cost CDP INFR 42, 10/11/17 Station Cost by Type CDP INFR

  1. Using Satellite-Based Spatiotemporal Resolved Air Temperature Exposure to Study the Association between Ambient Air Temperature and Birth Outcomes in Massachusetts

    PubMed Central

    Melly, Steven J.; Coull, Brent A.; Nordio, Francesco; Schwartz, Joel D.

    2015-01-01

    Background Studies looking at air temperature (Ta) and birth outcomes are rare. Objectives We investigated the association between birth outcomes and daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled addresses. Methods We evaluated birth outcomes and average daily Ta during various prenatal exposure periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We used linear and logistic mixed models and accelerated failure time models to estimate associations between Ta and the following outcomes among live births > 22 weeks: term birth weight (≥ 37 weeks), low birth weight (LBW; < 2,500 g at term), gestational age, and preterm delivery (PT; < 37 weeks). Models were adjusted for individual-level socioeconomic status, traffic density, particulate matter ≤ 2.5 μm (PM2.5), random intercept for census tract, and mother’s health. Results Predicted Ta during multiple time windows before birth was negatively associated with birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 95% CI: 0.96, 1.13). Conclusions Ta during pregnancy was associated with lower birth weight and shorter gestational age in our study population. Citation Kloog I, Melly SJ, Coull BA, Nordio F, Schwartz JD. 2015. Using satellite-based spatiotemporal resolved air temperature exposure to study the association between ambient air temperature and birth outcomes in Massachusetts. Environ Health Perspect 123:1053–1058; http://dx.doi.org/10.1289/ehp.1308075 PMID:25850104

  2. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process.

    PubMed

    Blessing, William; Ootsuka, Youichirou

    2016-01-01

    Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1-2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1-2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity.

  3. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process

    PubMed Central

    Blessing, William; Ootsuka, Youichirou

    2016-01-01

    ABSTRACT Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1–2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1–2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity. PMID:28349079

  4. Differences between true mean temperatures and means calculated with four different approaches: a case study from three Croatian stations

    NASA Astrophysics Data System (ADS)

    Bonacci, Ognjen; Željković, Ivana

    2018-01-01

    Different countries use varied methods for daily mean temperature calculation. None of them assesses precisely the true daily mean temperature, which is defined as the integral of continuous temperature measurements in a day. Of special scientific as well as practical importance is to find out how temperatures calculated by different methods and approaches deviate from the true daily mean temperature. Five mean daily temperatures were calculated (T0, T1, T2, T3, T4) using five different equations. The mean of 24-h temperature observations during the calendar day is accepted to represent the true, daily mean T0. The differences Δ i between T0 and four other mean daily temperatures T1, T2, T3, and T4 were calculated and analysed. In the paper, analyses were done with hourly data measured in a period from 1 January 1999 to 31 December 2014 (149,016 h, 192 months and 16 years) at three Croatian meteorological stations. The stations are situated in distinct climatological areas: Zagreb Grič in a mild climate, Zavižan in the cold mountain region and Dubrovnik in the hot Mediterranean. Influence of fog on the temperature is analysed. Special attention is given to analyses of extreme (maximum and minimum) daily differences occurred at three analysed stations. Selection of the fixed local hours, which is in use for calculation of mean daily temperature, plays a crucial role in diminishing of bias from the true daily temperature.

  5. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China.

    PubMed

    Luo, Dongliang; Jin, Huijun; Wu, Qingbai; Bense, Victor F; He, Ruixia; Ma, Qiang; Gao, Shuhui; Jin, Xiaoying; Lü, Lanzhi

    2018-03-15

    Ecology, hydrology, and natural resources in the source areas of the Yangtze and Yellow rivers (SAYYR) are closely linked to interactions between climate and permafrost. However, a comprehensive study of the interactions is currently hampered by sparsely- and unevenly-distributed monitoring sites and limited field investigations. In this study, the thermal regime of warm-dry permafrost in the SAYYR was systematically analyzed based on extensive data collected during 2010-2016 of air temperature (T a ), ground surface temperature (GST) and ground temperature across a range of areas with contrasting land-surface characteristics. Mean annual T a (MAAT) and mean annual GST (MAGST) were regionally averaged at -3.19±0.71°C and -0.40±1.26°C. There is a close relationship between GST and T a (R 2 =0.8477) as obtained by a linear regression analysis with all available daily averages. The mean annual temperature at the bottom of the active layer (T TOP ) was regionally averaged at -0.72±1.01°C and mostly in the range of -1.0°C and 0°C except at Chalaping (~-2.0°C). Surface offset (MAGST-MAAT) was regionally averaged at 2.54±0.71°C. Thermal offset (T TOP -MAGST) was regionally averaged at -0.17±0.84°C, which was generally within -0.5°C and 0.5°C. Relatively consistent thermal conductivity between the thawed and frozen states of the soils may be responsible for the small thermal offset. Active layer thickness was generally smaller at Chalaping than that on other parts of the QTP, presumably due to smaller climatic continentality index and the thermal dampening of surface temperature variability under the presence of dense vegetation and thick peaty substrates. We conclude that the accurate mapping of permafrost on the rugged elevational QTP could be potentially obtained by correlating the parameters of GST, thermal offset, and temperature gradient in the shallow permafrost. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  7. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    NASA Astrophysics Data System (ADS)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  8. Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature

    PubMed Central

    Zhou, Chunlüe; Wang, Kaicun

    2016-01-01

    Existing studies of the recent warming hiatus over land are primarily based on the average of daily minimum and maximum temperatures (T2). This study compared regional warming rates of mean temperature based on T2 and T24 calculated from hourly observations available from 1998 to 2013. Both T2 and T24 show that the warming hiatus over land is apparent in the mid-latitudes of North America and Eurasia, especially in cold seasons, which is closely associated with the negative North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) and cold air propagation by the Arctic-original northerly wind anomaly into mid-latitudes. However, the warming rates of T2 and T24 are significantly different at regional and seasonal scales because T2 only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. The trend has a standard deviation of 0.43 °C/decade for T2 and 0.41 °C/decade for T24, and 0.38 °C/decade for their trend difference in 5° × 5° grids. The use of T2 amplifies the regional contrasts of the warming rate, i.e., the trend underestimation in the US and overestimation at high latitudes by T2. PMID:27531421

  9. Correlation between the season, temperature and atmospheric pressure with incidence and pathogenesis of acute appendicitis.

    PubMed

    Karanikolić, Aleksandar; Karanikolić, Vesna; Djordjević, Lidija; Pešić, Ivan

    2016-01-01

    There is very little literature data on the correlation between the seasons, temperature and atmospheric pressure, and pathogenesis of acute appendicitis (AA). The aim of this research is to investigate the association between the seasons, changes in atmospheric temperature and pressure, and patients’ age and severity of the clinical form of AA in the city of Niš This study included 395 patients diagnosed with AA, who, during the two-year period, from July 1st 2011 to June 30th 2013, were hospitalized and operated on at the Department of General Surgery, Clinical Center in Niš, Serbia. The increased average daily values of barometric pressure by 1 millibar on the day when the event took place was associated (p < 0.05) with the decrease of total risk of the occurrence of appendicitis by 2.2% (0.2–4.1%). In all observed patients, each increase of the mean daily temperature by 1°C three days before the event took place (Lag 3) was associated (p < 0.05) with the increase of total risk of the occurrence of appendicitis by 1.3% (0.1–2.5%). According to the results of this research, we can conclude that patients’ sex, age and severity of the clinical form of AA are not in connection with the seasons, while there are certain connections between appendicitis occurrence and atmospheric temperature and pressure.

  10. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Puc, Małgorzata

    2012-03-01

    Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.

  11. Fluctuation Dynamics of Exchange Rates on Indian Financial Market

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Barat, P.

    Here we investigate the scaling behavior and the complexity of the average daily exchange rate returns of the Indian Rupee against four foreign currencies namely US Dollar, Euro, Great Britain Pound and Japanese Yen. Our analysis revealed that the average daily exchange rate return of the Indian Rupee against the US Dollar exhibits a persistent scaling behavior and follow Levy stable distribution. On the contrary the average daily exchange rate returns of the other three foreign currencies show randomness and follow Gaussian distribution. Moreover, it is seen that the complexity of the average daily exchange rate return of the Indian Rupee against US Dollar is less than the other three exchange rate returns.

  12. The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Galán, C.; García-Mozo, H.; Cariñanos, P.; Alcázar, P.; Domínguez-Vilches, E.

    Temperature is one of the main factors affecting the flowering of Mediterranean trees. In the case of Olea europaea L., a low-temperature period prior to bud development is essential to interrupt dormancy. After that, and once a base temperature is reached, the plant accumulates heat until flowering starts. Different methods of obtaining the best-forecast model for the onset date of the O. europaea pollen season, using temperature as the predictive parameter, are proposed in this paper. An 18-year pollen and climatic data series (1982-1999) from Cordoba (Spain) was used to perform the study. First a multiple-regression analysis using 15-day average temperatures from the period prior to flowering time was tested. Second, three heat-summation methods were used, determining the the quantities heat units (HU): accumulated daily mean temperature after deducting a threshold, growing degree-days (GDD): proposed by Snyder [J Agric Meteorol 35:353-358 (1985)] as a measure of physiological time, and accumulated maximum temperature. In the first two, the optimum base temperature selected for heat accumulation was 12.5°C. The multiple-regression equation for 1999 gives a 7-day delay from the observed date. The most accurate results were obtained with the GDD method, with a difference of only 4.7 days between predicted and observed dates. The average heat accumulation expressed as GDD was 209.9°C days. The HU method also gives good results, with no significant statistical differences between predictions and observations.

  13. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    NASA Astrophysics Data System (ADS)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  14. Modern fertility awareness methods: Wrist wearables capture the changes of temperature associated with the menstrual cycle.

    PubMed

    Shilaih, Mohaned; Goodale, Brianna M; Falco, Lisa; Kübler, Florian; De Clerck, Valerie; Leeners, Brigitte

    2017-11-24

    Core and peripheral body temperatures are affected by changes in reproductive hormones during the menstrual cycle. Women worldwide use the basal body temperature (BBT) method to aid and prevent conception. However, prior research suggests taking one's daily temperature can prove inconvenient and subject to environmental factors. We investigate whether a more automatic, non-invasive temperature measurement system can detect changes in temperature across the menstrual cycle. We examined how wrist-skin temperature (WST), measured with wearable sensors, correlates with urinary tests of ovulation and may serve as a new method of fertility tracking. One hundred and thirty-six eumenorrheic, non-pregnant women participated in an observational study. Participants wore WST biosensors during sleep and reported their daily activities. An at-home luteinizing hormone test was used to confirm ovulation. WST was recorded across 437 cycles (mean cycles/participant=3.21, S.D.=2.25). We tested the relationship between the fertile window and WST temperature shifts, using the BBT three-over-six rule. A sustained three-day temperature shift was observed in 357/437 cycles (82%), with the lowest cycle temperature occurring in the fertile window 41% of the time. Most temporal shifts (307/357, 86%) occurred on ovulation day or later. The average early-luteal phase temperature was 0.33°C higher than in the fertile window. Menstrual cycle changes in WST were impervious to lifestyle factors, like having sex, alcohol or eating prior to bed, that, in prior work, have been shown to obfuscate BBT readings. Although currently costlier than BBT, this study suggests that WST could be a promising, convenient parameter for future multi-parameter fertility-awareness methods. ©2017 The Author(s).

  15. Fatigue Moderates the Relationship Between Perceived Stress and Suicidal Ideation: Evidence From Two High-Resolution Studies.

    PubMed

    Kleiman, Evan M; Turner, Brianna J; Chapman, Alexander L; Nock, Matthew K

    2018-01-01

    Theoretical models of self-harm suggest that high perceived stress and high fatigue (which might affect the ability to cope with stress) may interact to predict the short-term occurrence of suicidal ideation and nonsuicidal self-injury (NSSI). We tested 3 approaches to examining this interaction, each of which provided a different understanding of the specific nature of these associations: comparing each individual's daily stress/fatigue to the entire sample's overall average (i.e., grand-mean centering), comparing each individual's daily perceived stress/fatigue to his or her overall average (i.e., group- or participant-mean centering), and comparing each individual's average perceived stress/fatigue to the sample's overall average (i.e., centering participant means on overall grand mean). In 2 studies, adolescents (n = 30; 574 daily reports, M age = 17.3 years, range = 12-19; 87.6% female) and young adults (n = 60; 698 daily reports; M age = 23.25 years, range = 18-35; 85% female) completed daily measures of perceived stress, fatigue, suicidal ideation, and NSSI. In both samples, the interaction between high daily perceived stress and high daily fatigue predicted greater odds of daily suicidal ideation (but not NSSI). Only the model comparing each individual's daily stress/fatigue to the entire sample's overall average was consistently significant across the two studies. Participants were most likely to experience suicidal ideation on days when both perceived stress and fatigue were elevated relative to the average level experienced across people and time points. Studies should build upon these findings with more in-depth examination of the temporal nature of stability and change in these factors as they relate to sustained suicidal ideation.

  16. The effects of stress, anxiety, and outdoor temperature on the frequency and severity of Raynaud's attacks: the Raynaud's Treatment Study.

    PubMed

    Brown, K M; Middaugh, S J; Haythornthwaite, J A; Bielory, L

    2001-04-01

    It was expected that stress and anxiety would be related to Raynaud's phenomenon (RP) attack characteristics when mild outdoor temperatures produced partial or no digital vasoconstriction. Hypotheses were that in warmer temperature categories, compared to those below 40 degrees F, higher stress or anxiety would be associated with more frequent, severe, and painful attacks. The Raynaud's Treatment Study recruited 313 participants with primary RP. Outcomes were attack rate, severity, and pain. Predictors were average daily outdoor temperature, stress, anxiety, age, gender, and a stress-by-temperature or an anxiety-by-temperature interaction. Outcomes were tested separately in multiple linear regression models. Stress and anxiety were tested in separate models. Stress was not a significant predictor of RP attack characteristics. Higher anxiety was related to more frequent attacks above 60 degrees F. It was also related to greater attack severity at all temperatures, and to greater pain above 60 degrees F and between 40 degrees and 49.9 degrees F.

  17. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.

  18. Climate trends of the North American prairie pothole region 1906-2000

    USGS Publications Warehouse

    Millett, B.; Johnson, W.C.; Guntenspergen, G.

    2009-01-01

    The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1°C in the north to nearly 10°C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0°C, while maximum daily temperatures cooled by 0.15°C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand.

  19. a Weather Monitoring System for Application to Apple and Corn Production

    NASA Astrophysics Data System (ADS)

    Stirm, Walter Leroy

    Many crop management decisions are based on weather -crop development relationships. Daily weather data is currently used in most crop development research and applied models. Present weather and computer technology now makes possible monitoring of crop development on a realtime basis. This research tests a method of computing crop sensitive temperatures for corn and apple using standard hourly meteorological data. The method also makes use of detailed plant physiological stage measurements to determine timing of vital cultural operations tied to the observed weather conditions. The sensitive temperature method incorporates very short term weather variability accounting for changes in the cloud cover, radiation rates, evaporative cooling and other factors involved in the plant's energy balance. The relationship of plant and weather measurements are also used to determine corn emergence, corn grain drydown rate and fruit harvest duration. The monitoring system also incorporates a crop growth unit forecast technique employing short and medium range temperature forecasts of the National Weather Service. The projections of growth units are made for five and ten days into the future. Predicted growth unit accumulations are compared to historical growth unit accumulations to determine the forecast stage. The sensitive temperature crop monitoring system removes some of the error involved in evaluation of growth units by average daily temperature. Carry over maximum and minimums, extended duration of warm or cool periods within the day and disruption of diurnal temperature curve by passage of fronts are eliminated.

  20. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing

    PubMed Central

    Wright, Caradee Y.; Street, Renée A.; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N.; Mathee, Angela

    2017-01-01

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2–4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed ‘realfeel’ temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of ‘stuffiness’ and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat–health impact warning categories of ‘caution’ and ‘extreme caution’. PMID:28067816

  1. Indoor Temperatures in Patient Waiting Rooms in Eight Rural Primary Health Care Centers in Northern South Africa and the Related Potential Risks to Human Health and Wellbeing.

    PubMed

    Wright, Caradee Y; Street, Renée A; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N; Mathee, Angela

    2017-01-06

    Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2-4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed 'realfeel' temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of 'stuffiness' and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat-health impact warning categories of 'caution' and 'extreme caution'.

  2. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.more » (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)« less

  3. Simulating spatial and temporal variation of corn canopy temperature during an irrigation cycle

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Federer, C. A.

    1983-01-01

    The canopy air temperature difference (delta T) which provides an index for scheduling irrigation was examined. The Monteith transpiration equation was combined with both uptake from a single layered root zone and change in internal storage of the plant and the continuity equation for water flux in the soil plant atmosphere system was solved. The model indicates that both daily total transpiration and soil induced depression of plant water potential may be inferred from mid-day delta T. It is suggested that for the soil plant weather data used in the simulation, either a mid day spatial variability of about 0.8K in canopy temperatures or a field averaged delta T of 2 to 4K may be a suitable criterion for irrigation scheduling.

  4. Sixty-One Martian Days of Weather Monitoring

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Canadian Meteorological Station on NASA's Phoenix Mars Lander tracked some changes in daily weather patterns over the first 61 Martian days of the mission (May 26 to July 22, 2008), a period covering late spring to early summer on northern Mars.

    This summary weather report notes that daily temperature ranges have changed only about 4 Celsius degrees (7 Fahrenheit degrees) since the start of the mission. The average daily high has been minus 30 degrees C (minus 22 degrees F), and the average daily low has been minus 79 degrees C (minus 110 degrees F).

    The mission has been accumulating enough wind data to recognize daily patterns, such as a change in direction between day and night, and to begin analyzing whether the patterns are driven by local factors or larger-scale movement of the atmosphere.

    The air pressure has steadily decreased. Scientists attribute this to a phenomenon on Mars that is not shared by Earth. The south polar cap of carbon dioxide ice grows during the southern winter on Mars, pulling enough carbon dioxide out of the thin atmosphere to cause a seasonal decrease in the amount of atmosphere Mars has. Most of the Martian atmosphere is carbon dioxide. This measurable dip in atmospheric pressure, even near the opposite pole, is a sign of large amounts of carbon dioxide being pulled out of the atmosphere as carbon-dioxide ice accumulates at the south pole.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. A senstitivity study of the ground hydrologic model using data generated by an atmospheric general circulation model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sun, S. F.

    1985-01-01

    The Ground Hydrologic Model (GHM) developed for use in an atmospheric general circulation model (GCM) has been refined. A series of sensitivity studies of the new version of the GHM were conducted for the purpose of understanding the role played by various physical parameters in the GHM. The following refinements have been made: (1) the GHM is coupled directly with the planetary boundary layer (PBL); (2) a bulk vegetation layer is added with a more realistic large-scale parameterization; and (3) the infiltration rate is modified. This version GHM has been tested using input data derived from a GCM simulation run for eight North America regions for 45 days. The results are compared with those of the resident GHM in the GCM. The daily average of grid surface temperatures from both models agree reasonably well in phase and magnitude. However, large difference exists in one or two regions on some days. The daily average evapotranspiration is in general 10 to 30% less than the corresponding value given by the resident GHM.

  6. Summary of Meteorological Observations, Surface (SMOS) Beaufort, South Carolina.

    DTIC Science & Technology

    1984-08-01

    WATHER N 0? 33 SOO -___ 22$ 75 2ses _1590 NNE 303 *.q lt 17.6 9.9 *7.3 3.1 NE 5*P J.__ 1.? 13.8 $.4 39.7 1 3.9 ENE 1*$ ..s _____7_ 129S S9 55.4 25.0... WATHER SERVC[ OETACHMENT DAILY AVERAGE/EXTREME TEMPERATURES ASHEVILLE. N’ORTH CAROLINA AIP ft 1A o £VrIB*OI ~ mAWSMO £WiIlS O.I OA9 ’C 0 066 0*__ _ 0

  7. Asthma and climatic conditions: experience from Bermuda, an isolated island community.

    PubMed Central

    Carey, M J; Cordon, I

    1986-01-01

    A retrospective study of patients attending the emergency department with acute asthma was performed in Bermuda. Climatic data (barometric pressure, rainfall, humidity, and wind strength and direction) were obtained and compared with frequency of exacerbations of asthma. Three factors--namely, relative humidity, average daily temperature, and northeasterly winds--were found to be related to worsening asthma. Owing to Bermuda's lack of pollution and aeroallergens it was thought that these weather parameters had a direct effect on the asthmatic population. PMID:3094682

  8. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  9. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter

    USGS Publications Warehouse

    von Fischer, J.C.; Tieszen, L.L.; Schimel, D.S.

    2008-01-01

    We analyzed the ??13 C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root ??13 C increased about 1??? between the A and B horizon, suggesting that C 4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  10. Advancing breeding phenology does not affect incubation schedules in chestnut-crowned babblers: Opposing effects of temperature and wind.

    PubMed

    Capp, Elliot; Liebl, Andrea L; Cones, Alexandra G; Russell, Andrew F

    2018-01-01

    Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler ( Pomatostomus ruficeps ), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.

  11. Statistical models of temperature in the Sacramento-San Joaquin delta under climate-change scenarios and ecological implications

    USGS Publications Warehouse

    Wagner, R.W.; Stacey, M.; Brown, L.R.; Dettinger, M.

    2011-01-01

    Changes in water temperatures caused by climate change in California's Sacramento-San Joaquin Delta will affect the ecosystem through physiological rates of fishes and invertebrates. This study presents statistical models that can be used to forecast water temperature within the Delta as a response to atmospheric conditions. The daily average model performed well (R2 values greater than 0.93 during verification periods) for all stations within the Delta and San Francisco Bay provided there was at least 1 year of calibration data. To provide long-term projections of Delta water temperature, we forced the model with downscaled data from climate scenarios. Based on these projections, the ecological implications for the delta smelt, a key species, were assessed based on temperature thresholds. The model forecasts increases in the number of days above temperatures causing high mortality (especially along the Sacramento River) and a shift in thermal conditions for spawning to earlier in the year. ?? 2011 The Author(s).

  12. A global low order spectral model designed for climate sensitivity studies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.; Stevens, D. E.

    1984-01-01

    A two level, global, spectral model using pressure as a vertical coordinate is developed. The system of equations describing the model is nonlinear and quasi-geostrophic. A moisture budget is calculated in the lower layer only with moist convective adjustment between the two layers. The mechanical forcing of topography is introduced as a lower boundary vertical velocity. Solar forcing is specified assuming a daily mean zenith angle. On land and sea ice surfaces a steady state thermal energy equation is solved to calculate the surface temperature. Over the oceans the sea surface temperatures are prescribed from the climatological average of January. The model is integrated to simulate the January climate.

  13. Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection.

    PubMed

    Pigeon, Karine E; Cardinal, Etienne; Stenhouse, Gordon B; Côté, Steeve D

    2016-08-01

    To fulfill their needs, animals are constantly making trade-offs among limiting factors. Although there is growing evidence about the impact of ambient temperature on habitat selection in mammals, the role of environmental conditions and thermoregulation on apex predators is poorly understood. Our objective was to investigate the influence of ambient temperature on habitat selection patterns of grizzly bears in the managed landscape of Alberta, Canada. Grizzly bear habitat selection followed a daily and seasonal pattern that was influenced by ambient temperature, with adult males showing stronger responses than females to warm temperatures. Cutblocks aged 0-20 years provided an abundance of forage but were on average 6 °C warmer than mature conifer stands and 21- to 40-year-old cutblocks. When ambient temperatures increased, the relative change (odds ratio) in the probability of selection for 0- to 20-year-old cutblocks decreased during the hottest part of the day and increased during cooler periods, especially for males. Concurrently, the probability of selection for 21- to 40-year-old cutblocks increased on warmer days. Following plant phenology, the odds of selecting 0- to 20-year-old cutblocks also increased from early to late summer while the odds of selecting 21- to 40-year-old cutblocks decreased. Our results demonstrate that ambient temperatures, and therefore thermal requirements, play a significant role in habitat selection patterns and behaviour of grizzly bears. In a changing climate, large mammals may increasingly need to adjust spatial and temporal selection patterns in response to thermal constraints.

  14. Relationship of sediment discharge to streamflow

    USGS Publications Warehouse

    Colby, B.R.

    1956-01-01

    The relationship between rate of sediment discharge and rate of water discharge at a cross section of a stream is frequently expressed by an average curve. This curve is the sediment rating curve. It has been widely used in the computation of average sediment discharge from water discharge for periods when sediment samples were not collected. This report discusses primarily the applications of sediment rating curves for periods during which at least occasional sediment samples were collected. Because sediment rating curves are of many kinds, the selection of the correct kind for each use is important. Each curve should be carefully prepared. In particular, the correct dependent variable must be used or the slope of the sediment rating curve may be incorrect for computing sediment discharges. Sediment rating curves and their applications were studied for the following gaging stations: 1. Niobrara River near Cody, Nebr. 2. Colorado River near Grand Canyon, Ariz. 3. Rio Grande at San Martial, N. Mex. 4. Rio Puerto near Bernardo, N. Mex. 5. White River near Kadoka, S. Dak. 6. Sandusky River near Fremont, Ohio Except for the Sandusky River and the Rio Puerco, which transport mostly fine sediment, one instantaneous sediment rating curve was prepared for the discharge of suspended sands, at each station, and another for the discharge of sediment finer than 0.082 millimeter. Each curve was studied separately, and by trial-end-error multiple correlation some of the factors that cause scatter from the sediment rating curves were determined. Average velocity at the cross section, Water temperature, and erratic fluctuations in concentration seemed to be the three major factors that caused departures from the sediment rating curves for suspended sands. The concentration of suspended sands varied with about the 2.8 power of the mean velocity for the four sediment, rating curves for suspended sands. The effect of water temperature was not so consistent as that of velocity and theoretically should vary considerably with differences in the size composition of the suspended sands. Scatter from the sediment rating curves for sediments finer than 0.082 millimeter seemed to be caused by changes in supply of these sediments. Some of the scatter could be explained by seasonal variations, by a pattern of change in concentration of fine sediment following a rise, or by source of the runoff as indicated by the measured relative flows of certain tributaries. Daily or instantaneous sediment rating curves adjusted for factors that account for some of the scatter from an average curve often can be used to compute approximate daily, monthly, and annual sediment discharges. Accuracy of the computed sediment discharges should be better than average for streams that transport mostly sands rather than fine sediments and for some ephemeral or intermittent streams, such as Rio Puerco, in semiarid regions. Accuracy of computed sediment discharges can be much improved for many streams by shifting the sediment rating curve on the basis of 2 or 4 measurements of sediment discharge per month. Of 26 annual sediment discharges that were computed by shifting sediment rating curves to either 2 or 4 measured sediment discharges per month, 18 were within I0 percent of the annual-sediment discharges that were computed on the basis of a daily sampling program. Monthly and daily sediment discharges computed from daily or instantaneous sediment rating curves, either shifted or unshifted, were less accurate than similarly computed annual sediment discharges. Even so, the difference in cost between occasional sediment samples and daily samples is so great that the added accuracy from daily sampling may not Justify the added cost. Monthly and annual sediment-rating curves can be applied simply, with adjustments if required, to compute monthly and annual sediment discharges with reasonably good accuracy for gaging stations like the Rio Puerco near Bernardo,

  15. Extremes of heat, drought and precipitation depress reproductive performance in shortgrass prairie passerines

    USGS Publications Warehouse

    Conrey, Reesa Y.; Skagen, Susan K.; Yackel, Amy; Panjabi, Arvind O.

    2016-01-01

    Climate change elevates conservation concerns worldwide because it is likely to exacerbate many identified threats to animal populations. In recent decades, grassland birds have declined faster than other North American bird species, a loss thought to be due to habitat loss and fragmentation and changing agricultural practices. Climate change poses additional threats of unknown magnitude to these already declining populations. We examined how seasonal and daily weather conditions over 10 years influenced nest survival of five species of insectivorous passerines native to the shortgrass prairie and evaluate our findings relative to future climate predictions for this region. Daily nest survival (n = 870) was best predicted by a combination of daily and seasonal weather variables, age of nest, time in season and bird habitat guild. Within a season, survival rates were lower on very hot days (temperatures ≥ 35 °C), on dry days (with a lag of 1 day) and on stormy days (especially for those species nesting in shorter vegetation). Across years, survival rates were also lower during warmer and drier breeding seasons. Clutch sizes were larger when early spring temperatures were cool and the week prior to egg-laying was wetter and warming. Climate change is likely to exacerbate grassland bird population declines because projected climate conditions include rising temperatures, more prolonged drought and more intense storms as the hydrological cycle is altered. Under varying realistic scenarios, nest success estimates were halved compared to their current average value when models both increased the temperature (3 °C) and decreased precipitation (two additional dry days during a nesting period), thus underscoring a sense of urgency in identifying and addressing the current causes of range-wide declines.

  16. A zero-power warming chamber for investigating plant responses to rising temperature

    DOE PAGES

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; ...

    2017-09-19

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less

  17. A zero-power warming chamber for investigating plant responses to rising temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. But, current passive warming approaches are only able to elevate the mean daily air temperature by ~1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ~2–3more » °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. Our approach is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.« less

  18. A zero-power warming chamber for investigating plant responses to rising temperature

    NASA Astrophysics Data System (ADS)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  19. Computer assisted screening, correction, and analysis of historical weather measurements

    NASA Astrophysics Data System (ADS)

    Burnette, Dorian J.; Stahle, David W.

    2013-04-01

    A computer program, Historical Observation Tools (HOB Tools), has been developed to facilitate many of the calculations used by historical climatologists to develop instrumental and documentary temperature and precipitation datasets and makes them readily accessible to other researchers. The primitive methodology used by the early weather observers makes the application of standard techniques difficult. HOB Tools provides a step-by-step framework to visually and statistically assess, adjust, and reconstruct historical temperature and precipitation datasets. These routines include the ability to check for undocumented discontinuities, adjust temperature data for poor thermometer exposures and diurnal averaging, and assess and adjust daily precipitation data for undercount. This paper provides an overview of the Visual Basic.NET program and a demonstration of how it can assist in the development of extended temperature and precipitation datasets using modern and early instrumental measurements from the United States.

  20. The characteristics on spatiotemporal variations of summer heatwaves in China

    NASA Astrophysics Data System (ADS)

    Qixiang, C.; Wang, L.; Wu, S., II; Li, Y.

    2016-12-01

    Summer heatwaves in China have impacts on forestry, agriculture resource, infrastructure, and heat -related illness and mortality. Based on daily air temperature and relative humidity from the Chinese Meteorological Data Sharing Service System, the spatial distribution and trends of the intensity, duration, and frequency of heatwaves in China during 1960-2015 were analyzed. Considering climatic variability, we defined a heatwave as a spell of consecutive days with maximum temperatures exceeding the relative threshold (temperature percentile) .We also consider a indices combined hot days and tropical nights (CHT), and the humidity-corrected apparent temperature (AT) to analyze the health impacts of hot days in summer. This study shows that while the average frequency and duration of heatwaves has an increasing trend since 1990s, the North China Plain has a decreasing trend. This study also shows that the largest CHT values occur in southeast China, and the largest AT values occur in South China.

  1. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data.

    PubMed

    Loicq, Pierre; Moatar, Florentina; Jullian, Yann; Dugdale, Stephen J; Hannah, David M

    2018-05-15

    Modelling river temperature at the catchment scale is needed to understand how aquatic communities may adapt to current and projected climate change. In small and medium rivers, riparian vegetation can greatly reduce maximum water temperature by providing shade. It is thus important that river temperature models are able to correctly characterise the impact of this riparian shading. In this study, we describe the use of a spatially-explicit method using LiDAR-derived data for computing the riparian shading on direct and diffuse solar radiation. The resulting data are used in the T-NET one-dimensional stream temperature model to simulate water temperature from August 2007 to July 2014 for 270km of the Loir River, an indirect tributary of the Loire River (France). Validation is achieved with 4 temperature monitoring stations spread along the Loir River. The vegetation characterised with the LiDAR approach provides a cooling effect on maximum daily temperature (T max ) ranging from 3.0°C (upstream) to 1.3°C (downstream) in late August 2009. Compared to two other riparian shading routines that are less computationally-intensive, the use of our LiDAR-based methodology improves the bias of T max simulated by the T-NET model by 0.62°C on average between April and September. However, difference between the shading routines reaches up to 2°C (monthly average) at the upstream-most station. Standard deviation of errors on T max is not improved. Computing the impact of riparian vegetation at the hourly timescale using reach-averaged parameters provides results close to the LiDAR-based approach, as long as it is supplied with accurate vegetation cover data. Improving the quality of riparian vegetation data should therefore be a priority to increase the accuracy of stream temperature modelling at the regional scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2014-12-01

    We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 - 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 - 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least for elevations >3100 m. Interestingly, the dominant effect of warmer temperatures on snowmelt was a reduction in daily melt rates. The drier year was most sensitive to temperature changes with a greater decrease in the number of days with high melt rates. The results offer insight into the sensitivity of snowmelt processes to warmer temperatures in the Sierra Nevada.

  3. Thermal IR satellite data application for earthquake research in Pakistan

    NASA Astrophysics Data System (ADS)

    Barkat, Adnan; Ali, Aamir; Rehman, Khaista; Awais, Muhammad; Riaz, Muhammad Shahid; Iqbal, Talat

    2018-05-01

    The scientific progress in space research indicates earthquake-related processes of surface temperature growth, gas/aerosol exhalation and electromagnetic disturbances in the ionosphere prior to seismic activity. Among them surface temperature growth calculated using the satellite thermal infrared images carries valuable earthquake precursory information for near/distant earthquakes. Previous studies have concluded that such information can appear few days before the occurrence of an earthquake. The objective of this study is to use MODIS thermal imagery data for precursory analysis of Kashmir (Oct 8, 2005; Mw 7.6; 26 km), Ziarat (Oct 28, 2008; Mw 6.4; 13 km) and Dalbandin (Jan 18, 2011; Mw 7.2; 69 km) earthquakes. Our results suggest that there exists an evident correlation of Land Surface Temperature (thermal; LST) anomalies with seismic activity. In particular, a rise of 3-10 °C in LST is observed 6, 4 and 14 days prior to Kashmir, Ziarat and Dalbandin earthquakes. In order to further elaborate our findings, we have presented a comparative and percentile analysis of daily and five years averaged LST for a selected time window with respect to the month of earthquake occurrence. Our comparative analyses of daily and five years averaged LST show a significant change of 6.5-7.9 °C for Kashmir, 8.0-8.1 °C for Ziarat and 2.7-5.4 °C for Dalbandin earthquakes. This significant change has high percentile values for the selected events i.e. 70-100% for Kashmir, 87-100% for Ziarat and 84-100% for Dalbandin earthquakes. We expect that such consistent results may help in devising an optimal earthquake forecasting strategy and to mitigate the effect of associated seismic hazards.

  4. High Ambient Temperatures and Risk of Motor Vehicle Crashes in Catalonia, Spain (2000–2011): A Time-Series Analysis

    PubMed Central

    Escalera-Antezana, Juan Pablo; Dadvand, Payam; Llatje, Òscar; Barrera-Gómez, Jose; Cunillera, Jordi; Medina-Ramón, Mercedes; Pérez, Katherine

    2015-01-01

    Background Experimental studies have shown a decrease in driving performance at high temperatures. The epidemiological evidence for the relationship between heat and motor vehicle crashes is not consistent. Objectives We estimated the impact of high ambient temperatures on the daily number of motor vehicle crashes and, in particular, on crashes involving driver performance factors (namely distractions, driver error, fatigue, or sleepiness). Methods We performed a time-series analysis linking daily counts of motor vehicle crashes and daily temperature or occurrence of heat waves while controlling for temporal trends. All motor vehicle crashes with victims that occurred during the warm period of the years 2000–2011 in Catalonia (Spain) were included. Temperature data were obtained from 66 weather stations covering the region. Poisson regression models adjusted for precipitation, day of the week, month, year, and holiday periods were fitted to quantify the associations. Results The study included 118,489 motor vehicle crashes (an average of 64.1 per day). The estimated risk of crashes significantly increased by 2.9% [95% confidence interval (CI): 0.7%, 5.1%] during heat wave days, and this association was stronger (7.7%, 95% CI: 1.2%, 14.6%) when restricted to crashes with driver performance–associated factors. The estimated risk of crashes with driver performance factors significantly increased by 1.1% (95% CI: 0.1%, 2.1%) for each 1°C increase in maximum temperature. Conclusions Motor vehicle crashes involving driver performance–associated factors were increased in association with heat waves and increasing temperature. These findings are relevant for designing preventive plans in a context of global warming. Citation Basagaña X, Escalera-Antezana JP, Dadvand P, Llatje Ò, Barrera-Gómez J, Cunillera J, Medina-Ramón M, Pérez K. 2015. High ambient temperatures and risk of motor vehicle crashes in Catalonia, Spain (2000–2011): a time-series analysis. Environ Health Perspect 123:1309–1316; http://dx.doi.org/10.1289/ehp.1409223 PMID:26046727

  5. Reanalysis Data Evaluation to Study Temperature Extremes in Siberia

    NASA Astrophysics Data System (ADS)

    Shulgina, T. M.; Gordov, E. P.

    2014-12-01

    Ongoing global climate changes are strongly pronounced in Siberia by significant warming in the 2nd half of 20th century and recent extreme events such as 2010 heat wave and 2013 flood in Russia's Far East. To improve our understanding of observed climate extremes and to provide to regional decision makers the reliable scientifically based information with high special and temporal resolution on climate state, we need to operate with accurate meteorological data in our study. However, from available 231 stations across Siberia only 130 of them present the homogeneous daily temperature time series. Sparse, station network, especially in high latitudes, force us to use simulated reanalysis data. However those might differ from observations. To obtain reliable information on temperature extreme "hot spots" in Siberia we have compared daily temperatures form ERA-40, ERA Interim, JRA-25, JRA-55, NCEP/DOE, MERRA Reanalysis, HadEX2 and GHCNDEX gridded datasets with observations from RIHMI-WDC/CDIAC dataset for overlap period 1981-2000. Data agreement was estimated at station coordinates to which reanalysis data were interpolated using modified Shepard method. Comparison of averaged over 20 year annual mean temperatures shows general agreement for Siberia excepting Baikal region, where reanalyses significantly underestimate observed temperature behavior. The annual temperatures closest to observed one were obtained from ERA-40 and ERA Interim. Furthermore, t-test results show homogeneity of these datasets, which allows one to combine them for long term time series analysis. In particular, we compared the combined data with observations for percentile-based extreme indices. In Western Siberia reanalysis and gridded data accurately reproduce observed daily max/min temperatures. For East Siberia, Lake Baikal area, ERA Interim data slightly underestimates TN90p and TX90p values. Results obtained allows regional decision-makers to get required high spatial resolution (0,25°×0,25°) climatic information products from the combined ERA data. The authors acknowledge partial financial support for this research from the RFBR (13-05-12034, 14-05-00502), SB RAS Integration projects (131, VIII.80.2.1.) and grant of the President of RF (№ 181).

  6. Average ovarian hormone levels, rather than daily values and their fluctuations, are related to facial preferences among women.

    PubMed

    Marcinkowska, Urszula M; Kaminski, Gwenael; Little, Anthony C; Jasienska, Grazyna

    2018-05-24

    Hormones are of crucial importance for human behavior. Cyclical changes of ovarian hormones throughout women's menstrual cycle are suggested to underlie fluctuation in masculinity preference for both faces and bodies. In this study we tested this hypothesis based on daily measurements of estradiol and progesterone throughout menstrual cycle, and multiple measurements of women's preference towards masculinity of faces and bodies of men. We expected that due to a large variation among daily hormonal levels we would not observe a direct effect of daily hormone levels, but rather that average levels of ovarian hormones throughout the cycle (a reliable marker of a probability of conception) would better predict women's preferences. We found a negative relationship between average progesterone levels and facial masculinity preference, but only among women who were in long-term relationships. There was no relationship between facial masculinity preference and either of the estradiol or progesterone daily levels. Similarly, only average levels of hormones were significantly related to facial symmetry preference. For women who were in relationships estradiol was positively related to symmetry preference, while for single women this relationship was opposite. For body masculinity preference there were no significant relationships with neither averaged nor daily hormonal levels. Taken together, our results further suggest that overall cycle levels of ovarian hormones (averaged for a cycle) are better predictors of facial masculinity and symmetry preference than daily levels assessed during preferences' tests. Importantly, including information about relationship status in the investigations of hormonal bases of preferences is crucial. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Influence of ambient fungal spores on emergency visits for asthma to a regional children's hospital.

    PubMed

    Dales, R E; Cakmak, S; Burnett, R T; Judek, S; Coates, F; Brook, J R

    2000-12-01

    The impact of ambient aeroallergens on morbidity from childhood asthma is largely unknown. To address this issue, we studied the association between daily emergency department visits for asthma to a children's hospital, and daily concentrations of both pollen grains and fungal spores during a 5-yr period between 1993 and 1997. Air pollution and meteorological data accounted for in the analyses included ozone, nitrogen dioxide, sulfur dioxide, sulfates, temperature, barometric pressure, and relative humidity. The daily number of asthma visits ranged from 0 to 36 per day with an average of 7.5. Fungal spores, but not pollen grains, were associated with visits (p < 0.05). The percentage increase associated with each group, independent of the others, was 1.9% (SE 0.9) for deuteromycetes, 4.1% (1.6) for basidiomycetes, 2.8% (1.0) for ascomycetes, and 8.8% for these spores combined. In summary, fungal spores account for a significant proportion of the asthma exacerbations in children that prompt an emergency department visit.

  8. Organization of vertical shear of wind and daily variability of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Goswami, P.

    2016-10-01

    Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.

  9. Scaling analysis on Indian foreign exchange market

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Barat, P.

    2006-05-01

    In this paper, we investigate the scaling behavior of the average daily exchange rate returns of the Indian Rupee against four foreign currencies: namely, US Dollar, Euro, Great Britain Pound and Japanese Yen. The average daily exchange rate return of the Indian Rupee against US Dollar is found to exhibit a persistent scaling behavior and follow Levy stable distribution. On the contrary, the average daily exchange rate returns of the other three foreign currencies do not show persistency or antipersistency and follow Gaussian distribution.

  10. Gastric evacuation rate, index of fullness, and daily ration of Lake Michigan slimy sculpin (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii)

    USGS Publications Warehouse

    Mychek-Londer, Justin G.; Bunnell, David B.

    2013-01-01

    Accurate estimates of fish consumption are required to understand trophic interactions and facilitate ecosystem-based fishery management. Despite their importance within the food-web, no method currently exists to estimate daily consumption for Great Lakes slimy (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii). We conducted experiments to estimate gastric evacuation (GEVAC) and collected field data from Lake Michigan to estimate index of fullness [(g prey/g fish weight)100%) to determine daily ration for water temperatures ranging 2–5 °C, coinciding with the winter and early spring season. Exponential GEVAC rates equaled 0.0115/h for slimy sculpin and 0.0147/h for deepwater sculpin, and did not vary between 2.7 °C and 5.1 °C for either species or between prey types (Mysis relicta and fish eggs) for slimy sculpin. Index of fullness varied with fish size, and averaged 1.93% and 1.85% for slimy and deepwater sculpins, respectively. Maximum index of fullness was generally higher (except for the smallest sizes) for both species in 2009–2010 than in 1976 despite reductions in a primary prey, Diporeia spp. Predictive daily ration equations were derived as a function of fish dry weight. Estimates of daily consumption ranged from 0.2 to 0.8% of their body weight, which was within the low range of estimates from other species at comparably low water temperatures. These results provide a tool to estimate the consumptive demand of sculpins which will improve our understanding of benthic offshore food webs and aid in management and restoration of these native species in the Great Lakes.

  11. EMISSION OF OZONE IN THE VALE DO PARAÍBA REGION, IN SOUTHEASTERN BRAZIL, FOR THE YEAR 2007

    NASA Astrophysics Data System (ADS)

    Dos Santos Zepka, A.; Sales, A. B.; Alvalá, P. C.

    2009-12-01

    The city of São José dos Campos (São Paulo, Brazil) in recent years has shown strong growth and current increase in industrial economy, leading to a sharp urban development and consequent problems of air pollution. The ozone is a major greenhouse gas, present in the troposphere by photochemical reactions in natural emissions of anthropogenic and biogenic hydrocarbons such as volatile organic compounds and nitrogen oxides, which can come from lightning and soil. Due to the fact that this gas is considered the main pollutant responsible for poor air quality, the objective of this study was to characterize the behavior of the emission of ozone in the Vale do Paraíba region, in Southeastern Brazil, in association with meteorological parameters. Researches in this area are essential, because of the need for better knowledge on air quality at regional and global. The motivation for this study was based on the fact that the ozone near the surface can be considered a gas harmful to human and animal health, crops and forests as well of urban areas in general, besides being used as a major indicators of air quality by agencies of monitoring environment, such as the IPCC (Intergovernmental Panel on Climate Change), for example. This study is an initial analysis that will lead to a better understanding of chemical and physical processes that occur in the atmosphere of the city and region. Ozone and meteorological data were obtained from two locations in the city, known as INPE (23°12,04'S; 45°51,06'W) and UNIVAP (23°12,05'S; 45°57,02'W) during the year 2007. The ozone data were obtained every 15 minutes and converted in hourly and daily averages. In addition, were collected the maximum and minimum measure daily. The ozone showed similar behavior to temperature and irradiance for the period studied. In spring and summer there was an increase of ozone mixing ratio, which was produced photochemically during the increase of solar irradiance. Moreover, the periods of autumn and winter, which irradiance in São José dos Campos city is lower due to the combination between the inclination of the Earth rotation axis with the local latitude, presented a reduction in the gas mixture ratio. The daily average curves of the ozone and irradiance shown that there is a difference of approximately two hours between them. This behavior suggests that this is the time required for happen the photochemical reactions involving the production of ozone. The maximum values of ozone were observed at around 15 pm (local time), when occurred the maximum daytime temperature, increasing the production of gas compared to consumption reactions. In spring and summer (stations of higher temperatures), the daily average curve was proportional between ozone and temperature. The same relationship has not been observed in autumn and winter, because in such seasons the concentrations of ozone began to increase after the increase in temperature. Contrary to what was observed in UNIVAP, in the INPE, there were measures of the lower concentration of ozone, suggesting that perhaps this low concentration is not due the transport of ozone pollution for the region, but by the low intensity of the wind and also by higher humidity, which favors the consumption of ozone at site.

  12. Effect of Personal Exposure to PM2.5 on Respiratory Health in a Mexican Panel of Patients with COPD

    PubMed Central

    Cortez-Lugo, Marlene; Ramírez-Aguilar, Matiana; Sansores-Martínez, Raúl; Pérez-Padilla, Rogelio; Ramírez-Venegas, Alejandra; Barraza-Villarreal, Albino

    2015-01-01

    Background: Air pollution is a problem, especially in developing countries. We examined the association between personal exposure to particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) on respiratory health in a group of adults with chronic obstructive pulmonary disease (COPD). Methods: All participants resided in Mexico City and during follow-up, personal exposure to PM2.5, respiratory symptoms, medications, and daily activity were registered daily. Peak expiratory flow (PEF) was measured twice daily, from February through December, 2000, in 29 adults with moderate, severe, and very severe COPD. PEF changes were estimated for each 10 µg/m3 increment of PM2.5, adjustment for severity of COPD, minimum temperature, and day of the sampling. Results: For a 10-µg/m3 increase in the daily average of a two-day personal exposure to PM2.5, there was a significant 33% increase in cough (95% CI, range, 5‒69%), and 23% in phlegm (95% CI, range, 2‒54%), a reduction of the PEF average in the morning of −1.4 L/min. (95% CI , range, −2.8 to −0.04), and at night of −3.0 L/min (95% CI, range, −5.7 to −0.3), respectively. Conclusions: Exposure to PM2.5 was associated with reductions in PEF and increased respiratory symptoms in adults with COPD. The PEF reduction was observed both at morning and at night. PMID:26343703

  13. Effects of rearing conditions on reproduction of Spathius agrili (Hymenoptera: Braconidae), a parasitoid of the emerald ash borer (Coleoptera: Buprestidae).

    PubMed

    Gould, Juli R; Ayer, Tracy; Fraser, Ivich

    2011-04-01

    Spathius agrili Yang (Hymenoptera: Braconidae) can be successfully reared on emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), larvae feeding in chambers drilled in small ash twigs that are wrapped with floral tape. Females maintained in groups with males for one week can receive enough sperm for production of female progeny throughout their lives. Volatiles released by emerald ash borer adults feeding on ash foliage increased parasitoid fecundity over ash foliage alone or no stimulus. The temperature at which the parasitoids were reared ranged from 20 to 25 degrees C in a daily cycle; however, raising the daily maximum temperature to 28 degrees C did not affect parasitoid longevity or fecundity. Adult females lived between 12 and 127 d, with an average of 60.8 +/- 4.5 d. Males lived slightly longer, with an average of 66 +/- 4.5 d. The first clutch of eggs was laid when the female was between 2 and 42 d old, with the average preoviposition period lasting 11.4 +/- 1.4 or 19.5 +/- 2.0 d in 2007 and 2009 trials, respectively. A higher proportion of the emerald ash borer larvae were feeding and thus attractive to parasitoids in the 2009 trial, and female S. agrili laid an average of 9.5 +/- 1.0 clutches containing 5.4 +/- 0.2 eggs, for an average of 51.2 eggs per female. Approximately three quarters of the progeny were female. The number of eggs per clutch was significantly greater when deposited on larger emerald ash borer larvae, further highlighting the need for quality larvae in rearing. Chilling S. agrili pupae at 10 degrees C to stockpile them for summer release was not successful; chilling resulted in lower survival and lower fecundity of emerging progeny. Female S. agrili proved capable of attacking emerald ash borer larvae through even the thickest bark of an ash tree that was 30-cm diameter at breast height. Even emerald ash borer larvae that were creating overwintering chambers in the outer sapwood of the tree were successfully attacked, suggesting that S. agrili could be reared on field collected logs infested with emerald ash borer.

  14. Effects of high summer temperatures on mortality in 50 Spanish cities.

    PubMed

    Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio; Diaz, Julio

    2014-06-09

    Periods of high temperature have been widely found to be associated with excess mortality but with variable relationships in different cities. How these specifics depend on climatic and other characteristics of cities is not well understood. We assess summer temperature-mortality relationships using data from 50 provincial capitals in Spain, during the period 1990-2004. Poisson time series regression analyses were applied to daily temperature and mortality data, adjusting for potential confounding seasonal factors. Associations of heat with mortality were summarised for each city as the risk increments at the 99th compared to the 90th percentiles of the whole-year temperature distributions, as predicted from spline curves. Risk increments averaged 14.6% between both centiles, or 3.3% per 1 Celsius degree. Although risk increments varied substantially between cities, the range of temperature from the 90th to 99th centile was the only characteristic independently significantly associated with them. The heat increment did not depend on other city climatic, socio-demographic and geographic determinants. Cities in Spain are partially adapted to high mean summer temperatures but not to high variation in summer temperatures.

  15. Increase in nitrate uptake by soybean plants during interruption of the dark period with low intensity light

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Vessey, J. K.; Henry, L. T.

    1991-01-01

    Diurnal patterns of net NO3- uptake by nonnodulated soybean [Glycine max (L.) Merr. cv. Ransom] plants growing in flowing hydroponic culture at 26 and 16 degrees C root temperatures were measured at hourly intervals during alternate days of a 12-day growth period. Ion chromatography was used to determine removal of NO3- from the culture solution. Day and night periods of 9 and 15 h were used during growth. The night period included two 6-h dark periods and an intervening 3-h period of night interruption by incandescent lamps to effect a long-day photoperiod and repress floral initiation. At both root temperatures, the average specific rates of NO3- uptake were twice as great during the night interruption period as during the day period; they were greater during the day period than during the dark periods; and they were greater during the dark period immediately following the day period than during the later dark period that followed the night interruption. While these average patterns were repetitious among days, measured rates of uptake varied hourly and included intervals of net efflux scattered through the day period and more frequently through the 2 dark periods. Root temperature did not affect the average daily specific rates of uptake or the qualitative relationships among day, dark and night interruption periods of the diurnal cycle.

  16. An annual quasidifference approach to water price elasticity

    NASA Astrophysics Data System (ADS)

    Bell, David R.; Griffin, Ronald C.

    2008-08-01

    The preferred price specification for retail water demand estimation has not been fully settled by prior literature. Empirical consistency of price indices is necessary to enable testing of competing specifications. Available methods of unbiasing the price index are summarized here. Using original rate information from several hundred Texas utilities, new indices of marginal and average price change are constructed. Marginal water price change is shown to explain consumption variation better than average water price change, based on standard information criteria. Annual change in quantity consumed per month is estimated with differences in climate variables and the new quasidifference marginal price index. As expected, the annual price elasticity of demand is found to vary with daily high and low temperatures and the frequency of precipitation.

  17. Changing stream temperatures in a changing world: evaluating spatio-temporal patterns and trends across the eastern US

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Archfield, S. A.

    2016-12-01

    Stream temperatures drive biogeochemical processes and influence ecosystem health and extent, with patterns of stream temperature arising from complex interactions between climate, land cover, and in-stream diversions and dams. While each of these individual drivers may have well-understood implications for changing stream temperatures, considering the concomitant impacts of these drivers along the stream network is much more difficult. This is true especially for the eastern United States, where downstream temperature integrates many different upstream impacts. To begin to decipher the influence of these different drivers on changing stream temperatures and how these impacts may manifest through time, we examined trends for 66 sites with continuous stream temperature measurements across the eastern United States. Stream temperature records were summarized as daily mean, maximum, and mimimum values, and sites consisting of 15 or more years of data were selected for analysis. While annual stream temperatures at 53 locations were warming, a few sites on larger rivers (n = 13) have been cooling. To explore the timing of these changes as well as their implications for aquatic species, we calculated trends for seasonal extremes (average of the five warmest and coolest daily stream temperatures) during spring, summer, and fall. Interestingly, while some streams displayed strong warming trends in peak summer temperatures (n = 43), many streams also displayed cooling trends (n = 23). We also found that peak stream temperatures were warming faster in fall than in summer for many locations (n = 36). Results of this analysis show that warming (and cooling) happens at different times in different places, as a function of climate and anthropogenic impacts. Finally, we explore potential drivers of these different patterns, to determine the relative impacts of climate, land cover, and in-stream water diversions on stream temperature change. Given that the number of regulated stream miles is only increasing, improving our understanding of linkages between landscape drivers and stream temperature variation may have important outcomes for river management in a changing world.

  18. Variations in Daily Sleep Quality and Type 1 Diabetes Management in Late Adolescents

    PubMed Central

    Queen, Tara L.; Butner, Jonathan; Wiebe, Deborah; Berg, Cynthia A.

    2016-01-01

    Objective To determine how between- and within-person variability in perceived sleep quality were associated with adolescent diabetes management. Methods A total of 236 older adolescents with type 1 diabetes reported daily for 2 weeks on sleep quality, self-regulatory failures, frequency of blood glucose (BG) checks, and BG values. Average, inconsistent, and daily deviations in sleep quality were examined. Results Hierarchical linear models indicated that poorer average and worse daily perceived sleep quality (compared with one’s average) was each associated with more self-regulatory failures. Sleep quality was not associated with frequency of BG checking. Poorer average sleep quality was related to greater risk of high BG. Furthermore, inconsistent and daily deviations in sleep quality interacted to predict higher BG, with more consistent sleepers benefitting more from a night of high-quality sleep. Conclusions Good, consistent sleep quality during late adolescence may benefit diabetes management by reducing self-regulatory failures and risk of high BG. PMID:26994852

  19. Ambient Air Pollution, Meteorological Factors and Outpatient Visits for Eczema in Shanghai, China: A Time-Series Analysis.

    PubMed

    Li, Qiao; Yang, Yingying; Chen, Renjie; Kan, Haidong; Song, Weimin; Tan, Jianguo; Xu, Feng; Xu, Jinhua

    2016-11-08

    Environmental irritants are important risk factors for skin diseases, but little is known about the influence of environmental factors on eczema incidence. In this time-series study, our objective was to examine the associations of environmental factors with outpatient visits for eczema. Daily outpatient visits between 2007 and 2011 (1826 days) were collected from Huashan Hospital in Shanghai, China. We used an overdispersed generalized additive model to investigate the short-term association between environmental factors and outpatient visits for eczema. Daily outpatient visits for eczema were significantly associated with air pollution and meteorological factors. For example, a 10 μg/m³ increase of 7-day (lag 06) average concentrations of PM 10 (particulate matter no greater than 10 microns), SO₂, NO₂ was associated with 0.81% (95% confidence intervals (CI) 0.39%, 1.22%), 2.22% (95% CI: 1.27%, 3.16%) and 2.31% (95% CI: 1.17%, 3.45%) increase in outpatient visits for eczema, respectively. A 10 °C elevation of temperature on lag 0 day were associated with 8.44% (95% CI: 4.66%, 12.22%) increase in eczema visits, whereas 10 unit decrease of 7-day average relative humidity were associated with 10.86% (95% CI: 8.83%, 12.89%) increase in eczema visits. This study provided clear evidence of ambient air pollution, high temperature and low relative humidity on increasing the incidence of eczema in Shanghai, China.

  20. Meteorological influence on predicting surface SO2 concentration from satellite remote sensing in Shanghai, China.

    PubMed

    Xue, Dan; Yin, Jingyuan

    2014-05-01

    In this study, we explored the potential applications of the Ozone Monitoring Instrument (OMI) satellite sensor in air pollution research. The OMI planetary boundary layer sulfur dioxide (SO2_PBL) column density and daily average surface SO2 concentration of Shanghai from 2004 to 2012 were analyzed. After several consecutive years of increase, the surface SO2 concentration finally declined in 2007. It was higher in winter than in other seasons. The coefficient between daily average surface SO2 concentration and SO2_PBL was only 0.316. But SO2_PBL was found to be a highly significant predictor of the surface SO2 concentration using the simple regression model. Five meteorological factors were considered in this study, among them, temperature, dew point, relative humidity, and wind speed were negatively correlated with surface SO2 concentration, while pressure was positively correlated. Furthermore, it was found that dew point was a more effective predictor than temperature. When these meteorological factors were used in multiple regression, the determination coefficient reached 0.379. The relationship of the surface SO2 concentration and meteorological factors was seasonally dependent. In summer and autumn, the regression model performed better than in spring and winter. The surface SO2 concentration predicting method proposed in this study can be easily adapted for other regions, especially most useful for those having no operational air pollution forecasting services or having sparse ground monitoring networks.

  1. Soil Respiration in Tibetan Alpine Grasslands: Belowground Biomass and Soil Moisture, but Not Soil Temperature, Best Explain the Large-Scale Patterns

    PubMed Central

    Geng, Yan; Wang, Yonghui; Yang, Kuo; Wang, Shaopeng; Zeng, Hui; Baumann, Frank; Kuehn, Peter; Scholten, Thomas; He, Jin-Sheng

    2012-01-01

    The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale. PMID:22509373

  2. Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA

    PubMed Central

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco

    2015-01-01

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time. PMID:25658313

  3. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeCain, Daniel; Smith, David; Morgan, Jack

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  4. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE PAGES

    LeCain, Daniel; Smith, David; Morgan, Jack; ...

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  5. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles

    NASA Astrophysics Data System (ADS)

    Nicholson, David P.; Wilson, Samuel T.; Doney, Scott C.; Karl, David M.

    2015-05-01

    Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg-1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m-3 d-1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m-2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.

  6. Air pollution and emergency room visits for asthma in Santa Clara County, California.

    PubMed Central

    Lipsett, M; Hurley, S; Ostro, B

    1997-01-01

    During the winters of 1986-1987 through 1991-1992, rainfall throughout much of Northern California was subnormal, resulting in intermittent accumulation of air pollution, much of which was attributable to residential wood combustion (RWC). This investigation examined whether there was a relationship between ambient air pollution in Santa Clara County, California and emergency room visits for asthma during the winters of 1988-1989 through 1991-1992. Emergency room (ER) records from three acute-care hospitals were abstracted to compile daily visits for asthma and a control diagnosis (gastroenteritis) for 3-month periods during each winter. Air monitoring data included daily coefficient of haze (COH) and every-other-day particulate matter with aerodynamic diameter equal to or less than 10 microns (PM10, 24-hr average), as well as hourly nitrogen dioxide and ozone concentrations. Daily COH measurements were used to predict values for missing days of PM10 to develop a complete PM10 time series. Daily data were also obtained for temperature, precipitation, and relative humidity. In time-series analyses using Poisson regression, consistent relationships were found between ER visits for asthma and PM10. Same-day nitrogen dioxide concentrations were also associated with asthma ER visits, while ozone was not. Because there was a significant interaction between PM10 and minimum temperature in this data set, estimates of relative risks (RRs) for PM10-associated asthma ER visits were temperature-dependent. A 60 micrograms/m3 change in PM10 (2-day lag) corresponded to RRs of 1.43 (95% CI = 1.18-1.69) at 20 degrees F, representing the low end of the temperature distribution, 1.27 (95% CI = 1.13-1.42) at 30 degrees F, and 1.11 (95% CI = 1.03-1.19) at 41 degrees F, the mean of the observed minimum temperature. ER visits for gastroenteritis were not significantly associated with any pollutant variable. Several sensitivity analyses, including the use of robust regressions and of nonparametric methods for fitting time trends and temperature effects in the data, supported these findings. These results demonstrate an association between ambient wintertime PM10 and exacerbations of asthma in an area where one of the principal sources of PM10 is RWC. Images Figure 1. PMID:9105797

  7. Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. III. Acute and chronic effects of CAPs on heart rate, heart-rate fluctuation, and body temperature.

    PubMed

    Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi

    2005-04-01

    Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.

  8. Short-term climatic fluctuations forced by thermal anomalies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.

    1982-01-01

    A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.

  9. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.

    PubMed

    Mousel, M R; Stroup, W W; Nielsen, M K

    2001-04-01

    Daily locomotor activity, core body temperature, and their circadian rhythms were measured in lines of mice selected for high (MH) or low (ML) heat loss and unselected controls (MC). Lines were created by selecting for 16 generations in each of three replicates. Collection of locomotor activity and core temperature data spanned Generations 20 and 21 for a total of 352 mice. Physical activity and core body temperature data were accumulated using implanted transmitters and continuous automated collection. Measurement for each animal was for 3 d. Activity was recorded for each half hour and then averaged for the day; temperature was averaged daily; circadian rhythm was expressed in 12-h (light vs dark) or 6-h periods as well as by fitting cyclic models. Activity means were transformed to log base 2 to lessen heterogeneity of variance within lines. Heat loss for a 15-h period beginning at 1630 and feed intake for 7 d were measured on 74 additional mice in order to estimate the relationship between locomotor activity and heat loss or feed intake. Selection lines were different (P < 0.01) for both locomotor activity and core body temperature. Differences were due to selection (MH-ML, P < 0.01), and there was no evidence of asymmetry of response (P > 0.38). Retransformed from log base 2 to the scale of measurement, mean activity counts were 308, 210, and 150 for MH, MC, and ML, respectively. Mean core temperatures were 37.2, 36.9, and 36.7 degrees C for MH, MC, and ML (P < 0.01), respectively. Females had greater physical activity (P < 0.01) and body temperature (P < 0.01) than males. There was no evidence of a sex x selection criterion interaction for either activity or temperature (P > 0.20). Overall phenotypic correlation between body temperature and log base 2 activity was 0.43 (P < 0.01). Periods during the day were different for both 12- and 6-h analyses (P < 0.01), but there were no period x selection criterion interactions (P > 0.1) for physical activity or body temperature. More sensitive cyclic models revealed significant (P < 0.01) 24-, 12-, 8-, and 6-h cycles that differed (P < 0.01) among lines. Estimated differences between MH and ML mice in feed intake and heat loss due to locomotor activity were 36 and 11.5%, respectively. Variation in activity thus contributed to variation in feed intake.

  10. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012

    PubMed Central

    Chen, Tianqi; Sarnat, Stefanie E.; Grundstein, Andrew J.; Winquist, Andrea

    2017-01-01

    Background: Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves’ impact on population morbidity, such as emergency department (ED) visits. Objectives: We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993–2012. Methods: Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of ≥2 consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945–2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Results: Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03–1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02–1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00–1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Conclusions: Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44 PMID:28599264

  11. Time-series Analysis of Heat Waves and Emergency Department Visits in Atlanta, 1993 to 2012.

    PubMed

    Chen, Tianqi; Sarnat, Stefanie E; Grundstein, Andrew J; Winquist, Andrea; Chang, Howard H

    2017-05-31

    Heat waves are extreme weather events that have been associated with adverse health outcomes. However, there is limited knowledge of heat waves' impact on population morbidity, such as emergency department (ED) visits. We investigated associations between heat waves and ED visits for 17 outcomes in Atlanta over a 20-year period, 1993-2012. Associations were estimated using Poisson log-linear models controlling for continuous air temperature, dew-point temperature, day of week, holidays, and time trends. We defined heat waves as periods of consecutive days with temperatures beyond the 98th percentile of the temperature distribution over the period from 1945-2012. We considered six heat wave definitions using maximum, minimum, and average air temperatures and apparent temperatures. Associations by heat wave characteristics were examined. Among all outcome-heat wave combinations, associations were strongest between ED visits for acute renal failure and heat waves defined by maximum apparent temperature at lag 0 [relative risk (RR) = 1.15; 95% confidence interval (CI): 1.03-1.29], ED visits for ischemic stroke and heat waves defined by minimum temperature at lag 0 (RR = 1.09; 95% CI: 1.02-1.17), and ED visits for intestinal infection and heat waves defined by average temperature at lag 1 (RR = 1.10; 95% CI: 1.00-1.21). ED visits for all internal causes were associated with heat waves defined by maximum temperature at lag 1 (RR = 1.02; 95% CI: 1.00, 1.04). Heat waves can confer additional risks of ED visits beyond those of daily air temperature, even in a region with high air-conditioning prevalence. https://doi.org/10.1289/EHP44.

  12. Long-term projections and acclimatization scenarios of temperature-related mortality in Europe.

    PubMed

    Ballester, Joan; Robine, Jean-Marie; Herrmann, François Richard; Rodó, Xavier

    2011-06-21

    The steady increase in greenhouse gas concentrations is inducing a detectable rise in global temperatures. The sensitivity of human societies to warming temperatures is, however, a transcendental question not comprehensively addressed to date. Here we show the link between temperature, humidity and daily numbers of deaths in nearly 200 European regions, which are subsequently used to infer transient projections of mortality under state-of-the-art high-resolution greenhouse gas scenario simulations. Our analyses point to a change in the seasonality of mortality, with maximum monthly incidence progressively shifting from winter to summer. The results also show that the rise in heat-related mortality will start to completely compensate the reduction of deaths from cold during the second half of the century, amounting to an average drop in human lifespan of up 3-4 months in 2070-2100. Nevertheless, projections suggest that human lifespan might indeed increase if a substantial degree of adaptation to warm temperatures takes place.

  13. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    NASA Astrophysics Data System (ADS)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  14. Temporal variation of mass-wasting activity in Mount St. Helens crater, Washington, U. S. A. indicated by seismic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, H.H.

    1991-11-01

    In the crater of Mount St. Helens, formed during the eruption of 18 May 1980, thousands of rockfalls may occur in a single day, and some rock and dirty-snow avalanches have traveled more than 1 km from their source. Because most seismic activity in the crater is produced by mass wasting, the former can be used to monitor the latter. The number and amplitude of seismic events per unit time provide a generalized measure of mass-wasting activity. In this study 1-min averages of seismic amplitudes were used as an index of rockfall activity during summer and early fall. Plots ofmore » this index show the diurnal cycle of rockfall activity and establish that the peak in activity occurs in mid to late afternoon. A correlation coefficient of 0.61 was found between daily maximum temperature and average seismic amplitude, although this value increases to 0.72 if a composite temperature variable that includes the maximum temperature of 1 to 3 preceding days as well as the present day is used. Correlation with precipitation is much weaker.« less

  15. Evaluation of statistically downscaled GCM output as input for hydrological and stream temperature simulation in the Apalachicola–Chattahoochee–Flint River Basin (1961–99)

    USGS Publications Warehouse

    Hay, Lauren E.; LaFontaine, Jacob H.; Markstrom, Steven

    2014-01-01

    The accuracy of statistically downscaled general circulation model (GCM) simulations of daily surface climate for historical conditions (1961–99) and the implications when they are used to drive hydrologic and stream temperature models were assessed for the Apalachicola–Chattahoochee–Flint River basin (ACFB). The ACFB is a 50 000 km2 basin located in the southeastern United States. Three GCMs were statistically downscaled, using an asynchronous regional regression model (ARRM), to ⅛° grids of daily precipitation and minimum and maximum air temperature. These ARRM-based climate datasets were used as input to the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, physical-process watershed model used to simulate and evaluate the effects of various combinations of climate and land use on watershed response. The ACFB was divided into 258 hydrologic response units (HRUs) in which the components of flow (groundwater, subsurface, and surface) are computed in response to climate, land surface, and subsurface characteristics of the basin. Daily simulations of flow components from PRMS were used with the climate to simulate in-stream water temperatures using the Stream Network Temperature (SNTemp) model, a mechanistic, one-dimensional heat transport model for branched stream networks.The climate, hydrology, and stream temperature for historical conditions were evaluated by comparing model outputs produced from historical climate forcings developed from gridded station data (GSD) versus those produced from the three statistically downscaled GCMs using the ARRM methodology. The PRMS and SNTemp models were forced with the GSD and the outputs produced were treated as “truth.” This allowed for a spatial comparison by HRU of the GSD-based output with ARRM-based output. Distributional similarities between GSD- and ARRM-based model outputs were compared using the two-sample Kolmogorov–Smirnov (KS) test in combination with descriptive metrics such as the mean and variance and an evaluation of rare and sustained events. In general, precipitation and streamflow quantities were negatively biased in the downscaled GCM outputs, and results indicate that the downscaled GCM simulations consistently underestimate the largest precipitation events relative to the GSD. The KS test results indicate that ARRM-based air temperatures are similar to GSD at the daily time step for the majority of the ACFB, with perhaps subweekly averaging for stream temperature. Depending on GCM and spatial location, ARRM-based precipitation and streamflow requires averaging of up to 30 days to become similar to the GSD-based output.Evaluation of the model skill for historical conditions suggests some guidelines for use of future projections; while it seems correct to place greater confidence in evaluation metrics which perform well historically, this does not necessarily mean those metrics will accurately reflect model outputs for future climatic conditions. Results from this study indicate no “best” overall model, but the breadth of analysis can be used to give the product users an indication of the applicability of the results to address their particular problem. Since results for historical conditions indicate that model outputs can have significant biases associated with them, the range in future projections examined in terms of change relative to historical conditions for each individual GCM may be more appropriate.

  16. Impact of air pollution and temperature on adverse birth outcomes: Madrid, 2001-2009.

    PubMed

    Arroyo, Virginia; Díaz, Julio; Carmona, Rocío; Ortiz, Cristina; Linares, Cristina

    2016-11-01

    Low birth weight (<2500 g) (LBW), premature birth (<37 weeks of gestation) (PB), and late foetal death (<24 h of life) (LFD) are causes of perinatal morbi-mortality, with short- and long-term social and economic health impacts. This study sought to identify gestational windows of susceptibility during pregnancy and to analyse and quantify the impact of different air pollutants, noise and temperature on the adverse birth outcomes. Time-series study to assess the impact of mean daily PM 2.5 , NO 2 and O 3 (μg/m 3 ), mean daily diurnal (Leqd) and nocturnal (Leqn) noise levels (dB(A)), maximum and minimum daily temperatures (°C) on the number of births with LBW, PB or LFD in Madrid across the period 2001-2009. We controlled for linear trend, seasonality and autoregression. Poisson regression models were fitted for quantification of the results. The final models were expressed as relative risk (RR) and population attributable risk (PAR). Leqd was observed to have the following impacts in LBW: at onset of gestation, in the second trimester and in the week of birth itself. NO 2 had an impact in the second trimester. In the case of PB, the following: Leqd in the second trimester, Leqn in the week before birth and PM 2.5 in the second trimester. In the case of LFD, impacts were observed for both PM 2.5 in the third trimester, and minimum temperature. O 3 proved significant in the first trimester for LBW and PB, and in the second trimester for LFD. Pollutants concentrations, noise and temperature influenced the weekly average of new-borns with LBW, PB and LFD in Madrid. Special note should be taken of the effect of diurnal noise on LBW across the entire pregnancy. The exposure of pregnant population to the environmental factors analysed should therefore be controlled with a view to reducing perinatal morbi-mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Meteorology and the physical activity of the elderly: the Nakanojo Study

    NASA Astrophysics Data System (ADS)

    Togo, Fumiharu; Watanabe, Eiji; Park, Hyuntae; Shephard, Roy J.; Aoyagi, Yukitoshi

    2005-11-01

    Seasonal changes in ambient temperature and day length are thought to modify habitual physical activity. However, relationships between such environmental factors and the daily physical activity of older populations remain unclear. The present study thus examined associations between meteorological variables and the number of steps taken per day by elderly Japanese. Continuous pedometer counts over a 450-day period were collected from 41 healthy subjects (age 71±4 years), none of whom engaged in any specific occupational activity or exercise programs. An electronic physical activity monitor was attached to a belt worn on the left side of the body throughout the day. Daily values for mean ambient temperature, duration of bright sunshine, mean wind speed, mean relative humidity, and precipitation were obtained from local meteorological stations. The day length was calculated from times of sunrise and sunset. Based on the entire group of 41 subjects (ensemble average), a subject’s step count per day decreased exponentially with increasing precipitation (r2=0.19, P<0.05). On days when precipitation was <1 mm, the step count increased with the mean ambient temperature over the range of 2 to 17°C, but decreased over the range 17 29°C. The daily step count also tended to increase with day length, but the regression coefficient of determination attributable to step count and mean ambient temperature (r2=0.32, P<0.05) exceeded that linking the step count and day length (r2=0.13, P<0.05). The influence of other meteorological factors was small (r2≤0.03) and of little practical significance. On days when precipitation is <1 mm, physical activity is associated more strongly with ambient temperature than with day length, duration of bright sunshine, wind speed, or relative humidity. Our findings have practical implications for health promotion efforts designed to increase the physical activity of elderly people consistently in the face of seasonal variations in environmental conditions.

  18. Development of a large-sample catchment-scale hydro-meteorological, land cover and physical dataset for Chile

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, C. D.; Mendoza, P. A.; Zambrano-Bigiarini, M.; Galleguillos, M. H.; Boisier, J. P.; Lara, A.; Cortés, G.; Garreaud, R.; McPhee, J. P.; Addor, N.; Puelma, C.

    2017-12-01

    We provide the first catchment-based hydrometeorological, vegetation and physical data set over 531 catchments in Chile (17.8 S - 55.0 S). We compiled publicly available streamflow records at daily time steps for the period 1980-2015, and generated basin-averaged time series of the following hydrometeorological variables: 1) daily precipitation coming from three different gridded sources (re-analysis and satellite-based); 2) daily maximum and minimum temperature; 3) 8-days potential evapotranspiration (PET) based on MODIS imagery and daily PET based on Hargreaves formula; and 4) daily snow water equivalent. Additionally, catchments are characterized by their main physical (area, mean elevation, mean slope) and land cover characteristics. We synthetized these datasets with several indices characterizing the spatial distribution of climatic, hydrological, topographic and vegetation attributes. The new catchment-based dataset is unprecedented in the region and provides information that can be used in a myriad of applications, including catchment classification and regionalization studies, impacts of different land cover types on catchment response, characterization of drought history and projections, climate change impacts on hydrological processes, etc. Derived practical applications include water management and allocation strategies, decision making and adaptation planning to climate change. This data set will be publicly available and we encourage the community to use it.

  19. A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations

    NASA Astrophysics Data System (ADS)

    Kyselý, Jan; Plavcová, Eva

    2010-12-01

    The study compares daily maximum (Tmax) and minimum (Tmin) temperatures in two data sets interpolated from irregularly spaced meteorological stations to a regular grid: the European gridded data set (E-OBS), produced from a relatively sparse network of stations available in the European Climate Assessment and Dataset (ECA&D) project, and a data set gridded onto the same grid from a high-density network of stations in the Czech Republic (GriSt). We show that large differences exist between the two gridded data sets, particularly for Tmin. The errors tend to be larger in tails of the distributions. In winter, temperatures below the 10% quantile of Tmin, which is still far from the very tail of the distribution, are too warm by almost 2°C in E-OBS on average. A large bias is found also for the diurnal temperature range. Comparison with simple average series from stations in two regions reveals that differences between GriSt and the station averages are minor relative to differences between E-OBS and either of the two data sets. The large deviations between the two gridded data sets affect conclusions concerning validation of temperature characteristics in regional climate model (RCM) simulations. The bias of the E-OBS data set and limitations with respect to its applicability for evaluating RCMs stem primarily from (1) insufficient density of information from station observations used for the interpolation, including the fact that the stations available may not be representative for a wider area, and (2) inconsistency between the radii of the areal average values in high-resolution RCMs and E-OBS. Further increases in the amount and quality of station data available within ECA&D and used in the E-OBS data set are essentially needed for more reliable validation of climate models against recent climate on a continental scale.

  20. Experimental evaluation of thermal and energy performance of temperate green roofs: a case study in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, T.; Institute of Hydrology; Water Resources

    2011-12-01

    An experimental evaluation of thermal and energy performance of temperate green roofs was carried out by thermal and meteorological observation and energy budget modeling using a setup of green roof in Beijing urban area. From both the yearly and daily temperature trends, the green roof could effectively damp down the undulation of roof surface temperature comparing with the conventional one. As an insulating screen, the green roof abated the amplitude of temperature by 9.0 in winter and 9.1 °C in summer, respectively. Under different cloud conditions, the green roof in summer time resulted in decreases in sensible heat and heat flux by 125.3W m-2 and 32.0 W m-2, respectively, on daily average comparing with the conventional one. Based on the energy budget analyses, under an assumptive scenario of 50% roof-greening in Beijing, a total of 34.1 PJ of sensible heat and 8.7 PJ of heat flux would be decreased for a summer period of 90 days. This study demonstrated that green roof, serving as an insulating screen to building top in comparison with the conventional roof, proved thermal improving effect in building scale and high energy saving potential for urban development.

  1. Identify the dominant variables to predict stream water temperature

    NASA Astrophysics Data System (ADS)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  2. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    PubMed

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of clothing weight on body weight.

    PubMed

    Whigham, L D; Schoeller, D A; Johnson, L K; Atkinson, R L

    2013-01-01

    In clinical settings, it is common to measure weight of clothed patients and estimate a correction for the weight of clothing, but we can find no papers in the medical literature regarding the variability in clothing weight of adults with weather, season and gender. Fifty adults (35 women) were weighed four times during a 12-month period with and without clothing. Clothing weights were determined and regressed against minimum, maximum and average daily outdoor temperature. The average clothing weight (±s.d.) throughout the year was significantly greater in men than in women (1.2±0.3 vs 0.8±0.3 kg, P<0.0001). The average within-person minimum and the average within-person maximum clothing weights across the year were 0.9±0.2 and 1.5±0.4 kg for men, and 0.5±0.2 and 1.1±0.4 kg for women, respectively. The within-person s.d. in clothing weight was 0.3 kg for both men and women. Over the 55 °C range in the lowest to the highest outdoor temperatures, the regressions predicted a maximal change in clothing weight of only 0.4 kg in women and 0.6 kg in men. The clothing weight of men is significantly greater than that of women, but there is little variability throughout the year. Therefore, a clothing adjustment of approximately 0.8 kg for women and 1.2 kg for men is appropriate regardless of outdoor temperature.

  4. Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy?

    PubMed

    Hetem, Robyn Sheila; Strauss, Willem Maartin; Fick, Linda Gayle; Maloney, Shane Kevin; Meyer, Leith Carl Rodney; Shobrak, Mohammed; Fuller, Andrea; Mitchell, Duncan

    2010-10-01

    Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy.

  5. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities.

    PubMed

    Chen, Renjie; Yin, Peng; Meng, Xia; Liu, Cong; Wang, Lijun; Xu, Xiaohui; Ross, Jennifer A; Tse, Lap A; Zhao, Zhuohui; Kan, Haidong; Zhou, Maigeng

    2017-07-01

    Evidence concerning the acute health effects of air pollution caused by fine particulate matter (PM 2.5 ) in developing countries is quite limited. To evaluate short-term associations between PM 2.5 and daily cause-specific mortality in China. A nationwide time-series analysis was performed in 272 representative Chinese cities from 2013 to 2015. Two-stage Bayesian hierarchical models were applied to estimate regional- and national-average associations between PM 2.5 concentrations and daily cause-specific mortality. City-specific effects of PM 2.5 were estimated using the overdispersed generalized additive models after adjusting for time trends, day of the week, and weather conditions. Exposure-response relationship curves and potential effect modifiers were also evaluated. The average of annual mean PM 2.5 concentration in each city was 56 μg/m 3 (minimum, 18 μg/m 3 ; maximum, 127 μg/m 3 ). Each 10-μg/m 3 increase in 2-day moving average of PM 2.5 concentrations was significantly associated with increments in mortality of 0.22% from total nonaccidental causes, 0.27% from cardiovascular diseases, 0.39% from hypertension, 0.30% from coronary heart diseases, 0.23% from stroke, 0.29% from respiratory diseases, and 0.38% from chronic obstructive pulmonary disease. There was a leveling off in the exposure-response curves at high concentrations in most, but not all, regions. The associations were stronger in cities with lower PM 2.5 levels or higher temperatures, and in subpopulations with elder age or less education. This nationwide investigation provided robust evidence of the associations between short-term exposure to PM 2.5 and increased mortality from various cardiopulmonary diseases in China. The magnitude of associations was lower than those reported in Europe and North America.

  6. Estimation of average daily traffic on local roads in Kentucky.

    DOT National Transportation Integrated Search

    2016-07-01

    Kentucky Transportation Cabinet (KYTC) officials use annual average daily traffic (AADT) to estimate intersection : performance across the state maintained highway system. KYTC currently collects AADTs for state maintained : roads but frequently lack...

  7. Determinants of bovine thermal response to heat and solar radiation exposures in a field environment

    NASA Astrophysics Data System (ADS)

    Scharf, Brad; Leonard, Michael J.; Weaber, Robert L.; Mader, Terry L.; Hahn, G. Leroy; Spiers, Donald E.

    2011-07-01

    Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental ( Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature ( T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature ( T a), and black globe temperatures ( T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core ( R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.

  8. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007.

    PubMed

    Vutcovici, Maria; Goldberg, Mark S; Valois, Marie-France

    2014-07-01

    The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.

  9. Tympanic temperature in confined beef cattle exposed to excessive heat load

    NASA Astrophysics Data System (ADS)

    Mader, T. L.; Gaughan, J. B.; Johnson, L. J.; Hahn, G. L.

    2010-11-01

    Angus crossbred yearling steers ( n = 168) were used to evaluate effects on performance and tympanic temperature (TT) of feeding additional potassium and sodium to steers exposed to excessive heat load (maximum daily ambient temperature exceeded 32°C for three consecutive days) during seasonal summer conditions. Steers were assigned one of four treatments: (1) control; (2) potassium supplemented (diet containing 2.10% KHCO3); (3) sodium supplemented (diet containing 1.10% NaCl); or (4) potassium and sodium supplemented (diet containing 2.10% KHCO3 and 1.10% NaCl). Overall, additional KHCO3 at the 2% level or NaCl at the 1% level did not improve performance or heat stress tolerance with these diet formulations. However, the addition of KHCO3 did enhance water intake. Independent of treatment effects, TT of cattle displaying high, moderate, or low levels of stress suggest that cattle that do not adequately cool down at night are prone to achieving greater body temperatures during a subsequent hot day. Cattle that are prone to get hot but can cool at night can keep average tympanic temperatures at or near those of cattle that tend to consistently maintain lower peak and mean body temperatures. In addition, during cooler and moderately hot periods, cattle change TT in a stair-step or incremental pattern, while under hot conditions, average TT of group-fed cattle moves in conjunction with ambient conditions, indicating that thermoregulatory mechanisms are at or near maximum physiological capacity.

  10. Daily rhythmicity of body temperature in the dog.

    PubMed

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  11. Polar microwave brightness temperatures from Nimbus-7 SMMR: Time series of daily and monthly maps from 1978 to 1987

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zwally, H. Jay

    1989-01-01

    A time series of daily brightness temperature gridded maps (October 25, 1978 through August 15, 1987) were generated from all ten channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer orbital data. This unique data set can be utilized in a wide range of applications including heat flux, ocean circulation, ice edge productivity, and climate studies. Two sets of data in polar stereographic format are created for the Arctic region: one with a grid size of about 30 km on a 293 by 293 array similar to that previously utilized for the Nimbus-5 Electrically Scanning Microwave Radiometer, while the other has a grid size of about 25 km on a 448 by 304 array identical to what is now being used for the DMSP Scanning Multichannel Microwave Imager. Data generated for the Antaractic region are mapped using the 293 by 293 grid only. The general technique for mapping, and a quality assessment of the data set are presented. Monthly and yearly averages are also generated from the daily data and sample geophysical ice images and products derived from the data are given. Contour plots of monthly ice concentrations derived from the data for October 1978 through August 1987 are presented to demonstrate spatial and temporal detail which this data set can offer, and to show potential research applications.

  12. Modeling Streamflow and Water Temperature in the North Santiam and Santiam Rivers, Oregon, 2001-02

    USGS Publications Warehouse

    Sullivan, Annett B.; Roundsk, Stewart A.

    2004-01-01

    To support the development of a total maximum daily load (TMDL) for water temperature in the Willamette Basin, the laterally averaged, two-dimensional model CE-QUAL-W2 was used to construct a water temperature and streamflow model of the Santiam and North Santiam Rivers. The rivers were simulated from downstream of Detroit and Big Cliff dams to the confluence with the Willamette River. Inputs to the model included bathymetric data, flow and temperature from dam releases, tributary flow and temperature, and meteorologic data. The model was calibrated for the period July 1 through November 21, 2001, and confirmed with data from April 1 through October 31, 2002. Flow calibration made use of data from two streamflow gages and travel-time and river-width data. Temperature calibration used data from 16 temperature monitoring locations in 2001 and 5 locations in 2002. A sensitivity analysis was completed by independently varying input parameters, including point-source flow, air temperature, flow and water temperature from dam releases, and riparian shading. Scenario analyses considered hypothetical river conditions without anthropogenic heat inputs, with restored riparian vegetation, with minimum streamflow from the dams, and with a more-natural seasonal water temperature regime from dam releases.

  13. Evaluation of the Impact of Ambient Temperatures on Occupational Injuries in Spain.

    PubMed

    Martínez-Solanas, Èrica; López-Ruiz, María; Wellenius, Gregory A; Gasparrini, Antonio; Sunyer, Jordi; Benavides, Fernando G; Basagaña, Xavier

    2018-06-01

    Extreme cold and heat have been linked to an increased risk of occupational injuries. However, the evidence is still limited to a small number of studies of people with relatively few injuries and with a limited geographic extent, and the corresponding economic effect has not been studied in detail. We assessed the relationship between ambient temperatures and occupational injuries in Spain along with its economic effect. The daily number of occupational injuries that caused at least one day of leave and the daily maximum temperature were obtained for each Spanish province for the years 1994-2013. We estimated temperature-injuries associations with distributed lag nonlinear models, and then pooled the results using a multivariate meta-regression model. We calculated the number of injuries attributable to cold and heat, the corresponding workdays lost, and the resulting economic effect. The study included 15,992,310 occupational injuries. Overall, 2.72% [95% confidence interval (CI): 2.44-2.97] of all occupational injuries were attributed to nonoptimal ambient temperatures, with moderate heat accounting for the highest fraction. This finding corresponds to an estimated 0.67 million (95% CI: 0.60-0.73) person-days of work lost every year in Spain due to temperature, or an annual average of 42 d per 1,000 workers. The estimated annual economic burden is €370 million, or 0.03% of Spain's GDP (€2,015). Our findings suggest that extreme ambient temperatures increased the risk of occupational injuries, with substantial estimated health and economic costs. These results call for public health interventions to protect workers in the context of climate change. https://doi.org/10.1289/EHP2590.

  14. A Statistical Model-Based Decision Support System for Managing Summer Stream Temperatures with Quantified Confidence Analysis

    NASA Astrophysics Data System (ADS)

    Neumann, D. W.; Zagona, E. A.; Rajagopalan, B.

    2005-12-01

    Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western U.S. river basins because they impact threatened fish species' habitat. Releases from storage reservoirs and river diversions are typically driven by human demands such as irrigation, municipal and industrial uses and hydropower production. Historically, fish needs have not been formally incorporated in the operating procedures, which do not supply adequate flows for fish in the warmest, driest periods. One way to address this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. A statistical model-predictive technique for efficient and effective use of a limited supply of fish water has been developed and incorporated in a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS is a rule-based system that uses the empirical, statistical predictive model to predict maximum daily stream temperatures based on flows that meet the non-fish operating criteria, and to compute reservoir releases of allocated fish water when predicted temperatures exceed fish habitat temperature targets with a user specified confidence of the temperature predictions. The empirical model is developed using a step-wise linear regression procedure to select significant predictors, and includes the computation of a prediction confidence interval to quantify the uncertainty of the prediction. The DSS also includes a strategy for managing a limited amount of water throughout the season based on degree-days in which temperatures are allowed to exceed the preferred targets for a limited number of days that can be tolerated by the fish. The DSS is demonstrated by an example application to the Truckee River near Reno, Nevada using historical flows from 1988 through 1994. In this case, the statistical model predicts maximum daily Truckee River stream temperatures in June, July, and August using predicted maximum daily air temperature and modeled average daily flow. The empirical relationship was created using a step-wise linear regression selection process using 1993 and 1994 data. The adjusted R2 value for this relationship is 0.91. The model is validated using historic data and demonstrated in a predictive mode with a prediction confidence interval to quantify the uncertainty. Results indicate that the DSS could substantially reduce the number of target temperature violations, i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat. The results show that large volumes of water are necessary to meet a temperature target with a high degree of certainty and violations may still occur if all of the stored water is depleted. A lower degree of certainty requires less water but there is a higher probability that the temperature targets will be exceeded. Addition of the rules that consider degree-days resulted in a reduction of the number of temperature violations without increasing the amount of water used. This work is described in detail in publications referenced in the URL below.

  15. Estimating Evapotranspiration Of Orange Orchards Using Surface Renewal And Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Consoli, S.; Russo, A.; Snyder, R.

    2006-08-01

    Surface renewal (SR) analysis was utilized to calculate sensible heat flux density from high frequency temperature measurements above orange orchard canopies during 2005 in eastern Sicily (Italy). The H values were employed to estimate latent heat flux density (LE) using measured net radiation (Rn) and soil heat flux density (G) in the energy balance (EB) equation. Crop coefficients were determined by calculating the ratio Kc=ETa/ETo, with reference ETo derived from the daily Penman-Monteith equation. The estimated daily Kc values showed an average of about 0.75 for canopy covers having about 70% ground shading and 80% of PAR light interception. Remote sensing estimates of Kc and ET fluxes were compared with those measured by SR-EB. IKONOS satellite estimates of Kc and NDVI were linearly correlated for the orchard stands.

  16. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  17. 40 CFR Table 2 to Subpart Uuu of... - Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... daily average liquid-to-gas ratio above the limit established in the performance test. 4. Option 3: Ni.... Electrostatic precipitator Maintain the daily average Ni operating value no higher than the limit established...; maintain the monthly rolling average of the equilibrium catalyst Ni concentration no higher than the limit...

  18. Geographical variation in camper expenditures

    Treesearch

    Wilbur F. LaPage; Edward G. Fisher

    1971-01-01

    Daily expenditures by families camping in New Hampshire State parks in 1967 averaged $11.81. Considerable variation was found between the northern, central, and southern regions of the State in both the average amount of money spent and the way in which the money was spent. Daily expenditures in the north were higher, but average visit lengths were shorter, resulting...

  19. Climate change: challenges and opportunities for global health.

    PubMed

    Patz, Jonathan A; Frumkin, Howard; Holloway, Tracey; Vimont, Daniel J; Haines, Andrew

    2014-10-15

    Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be associated with reductions in fossil fuel combustion. For example, greenhouse gas emission policies may yield net economic benefit, with health benefits from air quality improvements potentially offsetting the cost of US and international carbon policies. Evidence over the past 20 years indicates that climate change can be associated with adverse health outcomes. Health care professionals have an important role in understanding and communicating the related potential health concerns and the cobenefits from policies to reduce greenhouse gas emissions.

  20. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA great plains: Part II. Temporal trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Detection of long-term changes in climate variables over large spatial scales is a very important prerequisite to the development of effective mitigation and adaptation measures for the future potential climate change and for developing strategies for future hydrologic balance analyses under changing climate. Moreover, there is a need for effective approaches of providing information about these changes to decision makers, water managers and stakeholders to aid in efficient implementation of the developed strategies. This study involves computation, mapping and analyses of long-term (1968-2013) county-specific trends in annual, growing-season (1st May-30th September) and monthly air temperatures [(maximum (Tmax), minimum (Tmin) and average (Tavg)], daily temperature range (DTR), precipitation, grass reference evapotranspiration (ETo) and aridity index (AI) over the USA Great Plains region using datasets from over 800 weather station sites. Positive trends in annual Tavg, Tmax and Tmin, DTR, precipitation, ETo and AI were observed in 71%, 89%, 85%, 31%, 61%, 38% and 66% of the counties in the region, respectively, whereas these proportions were 48%, 89%, 62%, 20%, 57%, 28%, and 63%, respectively, for the growing-season averages of the same variables. On a regional average basis, the positive trends in growing-season Tavg, Tmax and Tmin, DTR, precipitation, ETo and AI were 0.18 °C decade-1, 0.19 °C decade-1, 0.17 °C decade-1, 0.09 °C decade-1, 1.12 mm yr-1, 0.4 mm yr-1 and 0.02 decade-1, respectively, and the negative trends were 0.21 °C decade-1, 0.06 °C decade-1, 0.09 °C decade-1, 0.22 °C decade-1, 1.16 mm yr-1, 0.76 mm yr-1 and 0.02 decade-1, respectively. The temporal trends were highly variable in space and were appropriately represented using monthly, annual and growing-season maps developed using Geographic Information System (GIS) techniques. The long-term and spatial and temporal information and data for a large region provided in this study can be used to analyze county-level trends in important climatic/hydrologic variables in context of climate change, water resources, agricultural and natural resources response to climate change.

  1. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p < 0.01) between air temperature, PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET/UTCI exceedances over specific thresholds depending on the distribution reveal that, very hot conditions are risk factors for the daily mortality.

  2. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America

    NASA Astrophysics Data System (ADS)

    Skansi, María de los Milagros; Brunet, Manola; Sigró, Javier; Aguilar, Enric; Arevalo Groening, Juan Andrés; Bentancur, Oscar J.; Castellón Geier, Yaruska Rosa; Correa Amaya, Ruth Leonor; Jácome, Homero; Malheiros Ramos, Andrea; Oria Rojas, Clara; Pasten, Alejandro Max; Sallons Mitro, Sukarni; Villaroel Jiménez, Claudia; Martínez, Rodney; Alexander, Lisa V.; Jones, P. D.

    2013-01-01

    Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA. Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures. Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41 mm/decade) and Amazonia (16.09 mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA.

  3. Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem II thermostability.

    PubMed

    Snider, John L; Oosterhuis, Derrick M; Collins, Guy D; Pilon, Cristiane; Fitzsimons, Toby R

    2013-03-15

    Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Use of regional climate model output for hydrologic simulations

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S.

    2002-01-01

    Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango. Colorado; east fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily datasets of precipitation and maximum and minimum temperature were developed from measured data for each basin. These datasets included precipitation and temperature data for all stations (hereafter, All-Sta) located within the area of the RegCM2 output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and All-Sta data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and All-Sta-based simulations of runoff show little skill on a daily basis [Nash-Sutcliffe (NS) values range from 0.05 to 0.37 for RegCM2 and -0.08 to 0.65 for All-Sta]. When the precipitation and temperature biases are corrected in the RegCM2 output and All-Sta data (Bias-RegCM2 and Bias-All, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins (NS values range from 0.41 to 0.66 for RegCM2 and 0.60 to 0.76 for All-Sta). In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from - 0.08 to 0.72). These results indicate that measured data at the coarse resolution of the RegCM2 output can be made appropriate for basin-scale modeling through bias correction (essentially a magnitude correction). However, RegCM2 output, even when bias corrected, does not contain the day-to-day variability present in the All-Sta dataset that is necessary for basin-scale modeling. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.

  5. Body temperature null distributions in reptiles with nonzero heat capacity: seasonal thermoregulation in the American alligator (Alligator mississippiensis).

    PubMed

    Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L

    2003-01-01

    Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally changing environmental conditions.

  6. Estimation of annual average daily traffic for off-system roads in Florida

    DOT National Transportation Integrated Search

    1999-07-28

    Estimation of Annual Average Daily Traffic (AADT) is extremely important in traffic planning and operations for the state departments of transportation (DOTs), because AADT provides information for the planning of new road construction, determination...

  7. Quantitative Research on the Relationship between Yield of Winter Wheat and Agroclimatological Resources—the Case Study from Yanzhou District, Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui

    2018-01-01

    Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural production management in this area.

  8. Short-term impacts of floods on enteric infectious disease in Qingdao, China, 2005-2011.

    PubMed

    Zhang, F; Liu, Z; Gao, L; Zhang, C; Jiang, B

    2016-11-01

    The current study aimed to examine the relationship between floods and the three enteric infectious diseases, namely bacillary dysentery (BD), hand-foot-mouth disease (HFMD) and other infectious diarrhoea (OID) in Qingdao, China. Relative risks (RRs) and 95% confidence intervals (CIs) of floods on BD, HFMD and OID were calculated using a quasi-Poisson generalized linear model, adjusting for daily average temperature, daily average relative humidity, and seasonal and long-term temporal trends. Two separate models within two different periods were designed. Model 1 for the summer period showed that floods were positively associated with BD for 4- to 12-day lags, with the greatest effects for 7-day (RR 1·41, 95% CI 1·22-1·62) and 11-day (RR 1·42, 95% CI 1·22-1·64) lags. Similar findings were found in model 2 for the whole study period for 5- to 12-day lags. However, HFMD and OID were not significantly associated with floods in both models. Results from this study will provide insight into the health risks associated with floods and may help inform public health precautionary measures for such disasters.

  9. The impact of ambient particle pollution during extreme-temperature days in Guangzhou City, China.

    PubMed

    Li, Guoxing; Jiang, Lai; Zhang, Yajuan; Cai, Yue; Pan, Xiaochuan; Zhou, Maigeng

    2014-11-01

    The aim of this study is to explore whether the effect of PM10 (particulate matter with an aerodynamic diameter of <10 µm) on daily mortality was modified by extreme temperatures in Guangzhou from 2005 to 2009. The present study used time-series analysis to explore the modification effects of temperature on the association between PM10 and the cause-specific mortalities for cardiovascular, respiratory, cardiopulmonary, and nonaccidental mortality. The interactions between PM10 and temperature were statistically significant on respiratory mortality. The effect estimates per 10-µg/m(3) increase in PM10 concentrations at the moving average of lags of 0 and 1 day on high-temperature days were 2.34% (95% confidence interval = 0.55, 4.16) for nonaccidental, 1.35% (-1.69, 4.48) for cardiovascular, 6.09% (2.42, 9.89) for respiratory, and 3.36% (0.92, 5.86) for cardiopulmonary mortalities. The results suggest that it is important to control and reduce the emission of air particles in Guangzhou, particularly on extreme-high-temperature days. © 2014 APJPH.

  10. 76 FR 79579 - Approval and Promulgation of Implementation Plans and Designation of Areas for Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... posting of the availability of the submittal on EPA's Adequacy Web site (at http://www.epa.gov/otaq... average annual fourth-highest daily maximum 8-hour average ozone concentration), if it had a 1-hour design... ozone standard is attained when the three-year average of the annual fourth-highest daily maximum 8-hour...

  11. GIS Tools to Estimate Average Annual Daily Traffic

    DOT National Transportation Integrated Search

    2012-06-01

    This project presents five tools that were created for a geographical information system to estimate Annual Average Daily : Traffic using linear regression. Three of the tools can be used to prepare spatial data for linear regression. One tool can be...

  12. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite

    NASA Technical Reports Server (NTRS)

    Klimovitskui, V. Ia; Alpatov, A. M.; Salzman, F. M.; Fuller, C. A.; Moore-Ede, M. S.

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  13. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708.

    PubMed

    Mejia-Torres, M C; Sáenz, A

    2013-05-01

    The entomopathogenic nematode Heterorhabditis sp. SL0708 (Rhabditida: Heterorhabditidae) isolated from soil in Alcalá, Valle del Cauca (Colombia) was characterised ecologically using Galleria mellonella larvae (L) (Pyralidae: Galleriinae) as hosts. The effect of temperature on the viability, infectivity and reproduction, and of moisture on infectivity and storage in liquid were evaluated in infective juveniles (IJs). Significant differences were found in the viability, infectivity and reproduction of the IJs at different temperatures. No nematodes were recovered at 5 °C and 10 °C, and at 35 °C no infectivity was observed. Average daily nematode recovery was best at 25 °C, and survival of the IJs was low in substrates presenting 13% moisture. The optimal storage temperature for Heterorhabditis sp. SL0708 was between 20 °C and 30 °C, keeping its infectivity for up to 8 weeks.

  14. [Circadian rhythms and temperature homeostasis in monkeys during a flight on the Kosmos 1514 biosatellite].

    PubMed

    Klimovitskuĭ, V Ia; Alpatov, A M; Salzman, F M; Fuller, C A; Moore-Ede, M S

    1987-01-01

    In the course of a 5-day space flight of two rhesus-monkeys the following parameters were recorded at an interval of 16 min: core body temperature (Tc), skin temperature (Ts), and motor activity (MA). The telemetric Tc sensor was implanted subcutaneously in the right axilla, Ts thermistor was attached to the right ankle, and the MA piezotape was fixed to the inner side of the vest. Circadian rhythms of Tc varied with a period of 24 hours in one monkey and 25 hours in the other. The daily Tc decreased on the average by 0.5 degrees C, Ts fell immediately after launch and remained close to the lower limit throughout the flight. The Ts amplitude decreased 5-fold. Phases of the circadian rhythms of Ts changed and circadian rhythms of MA remained unchanged and equal to 24 hours.

  15. An evaluation of the impact of flooring types on exposures to fine and coarse particles within the residential micro-environment using CONTAM.

    PubMed

    Bramwell, Lisa; Qian, Jing; Howard-Reed, Cynthia; Mondal, Sumona; Ferro, Andrea R

    2016-01-01

    Typical resuspension activities within the home, such as walking, have been estimated to contribute up to 25% of personal exposures to PM10. Chamber studies have shown that for moderate walking intensities, flooring type can impact the rate at which particles are re-entrained into the air. For this study, the impact of residential flooring type on incremental average daily (24 h) time-averaged exposure was investigated. Distributions of incremental time-averaged daily exposures to fine and coarse PM while walking within the residential micro-environment were predicted using CONTAM, the multizone airflow and contaminant transport program of the National Institute of Standards and Technology. Knowledge of when and where a person was walking was determined by randomly selecting 490 daily diaries from the EPA's consolidated human activity database (CHAD). On the basis of the results of this study, residential flooring type can significantly impact incremental time-averaged daily exposures to coarse and fine particles (α=0.05, P<0.05, N=490, Kruskal-Wallis test) with high-density cut pile carpeting resulting in the highest exposures. From this study, resuspension from walking within the residential micro-environment contributed 6-72% of time-averaged daily exposures to PM10.

  16. nocte Is Required for Integrating Light and Temperature Inputs in Circadian Clock Neurons of Drosophila.

    PubMed

    Chen, Chenghao; Xu, Min; Anantaprakorn, Yuto; Rosing, Mechthild; Stanewsky, Ralf

    2018-05-21

    Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte 1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte 1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.

    PubMed

    Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R

    2017-07-15

    Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.

  18. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  19. Daily Steps in Midlife and Older Adults: Relationship with Demographic, Self-Rated Health, and Self-Reported Physical Activity

    ERIC Educational Resources Information Center

    Payn, Tamara; Pfeiffer, Karin A.; Hutto, Brent; Vena, John E.; LaMonte, Michael J.; Blair, Steven N.; Hooker, Steven P.

    2008-01-01

    The relationship between average daily step counts and age, body mass index (BMI), self-reported physical activity (PA) level, and perceived health was determined in 85 middle-aged and older adults who wore a pedometer for 7 consecutive days. Average daily steps were significantly (p less than 0.05) correlated with BMI (r = -0.26), age (r = -0.44)…

  20. 75 FR 43069 - Approval of One-Year Extension for Attaining the 1997 8-Hour Ozone Standard in the Baltimore...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... standard (NAAQS). This extension is based in part on air quality data for the 4th highest daily 8-hour... attainment date if: (a) For the first one-year extension, the area's 4th highest daily 8-hour average in the... 4th highest daily 8-hour value, averaged over both the original attainment year and the first...

  1. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    NASA Astrophysics Data System (ADS)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  2. Climate extremes in urban area and their impact on human health: the summer heat waves

    NASA Astrophysics Data System (ADS)

    Baldi, Marina

    2014-05-01

    In the period 1951-2012 the average global land and ocean temperature has increased by approximately 0.72°C [0.49-0.89] when described by a linear trend, and is projected to rapidly increase. Each of the past three decades has been warmer than all the previous decades, with the decade of the 2000's as the warmest, and, since 1880, nine of the ten warmest years are in the 21st century, the only exception being 1998, which was warmed by the strongest El Niño event of the past century. In parallel an increase in the frequency and intensity of extremely hot days is detected with differences at different scales, which represent an health risk specially in largely populated areas as documented for several regions in the world including the Euro-Mediterranean region. If it is still under discussion if heat wave episodes are a direct result of the warming of the lower troposphere, or if, more likely, they are a regional climate event, however heat episodes have been studied in order to define their correlation with large scale atmospheric patterns and with changes in the regional circulation. Whatever the causes and the spatio-temporal extension of the episodes, epidemiological studies show that these conditions pose increasing health risks inducing heat-related diseases including hyperthermia and heat stress, cardiovascular and respiratory illnesses in susceptible individuals with a significant increase in morbidity and mortality especially in densely populated urban areas. In several Mediterranean cities peaks of mortality associated with extremely high temperature (with simultaneous high humidity levels) have been documented showing that, in some cases, a large increase in daily mortality has been reached compared to the average for the period. The number of fatalities during the summer 2003 heat wave in Europe was estimated to largely exceed the average value of some between 22000 and 50000 cases. In the same summer it was also unusually hot across much of Asia, and Shanghai, which is particularly prone to heat waves, recorded the hottest summer in over 50 years. During the event, the maximum number of daily deaths was 317, 42% above the non-heat day average, even though an heat warning system in operation. In this study results from the analysis of heat waves events in Italian cities is presented. Indices representative of extremely hot conditions have been taken into account and results of the analysis of indices such as the number of summer days (SU), number of tropical nights (TR), maxima and minima of daily maximum and minimum temperatures (TXx, TXn, TNx, TNn, respectively), exceedances over fixed thresholds is presented. Results show a clear increase in the past decades of the numbers of days affected by heat events. Some considerations are also presented about the impact on human health of the longest events occurred in the Country.

  3. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at least partially explained by assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a promising resource for regional modeling studies where realistic accounting of historic variation is required.

  4. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  5. Association of drinking-water source and use characteristics with urinary antimony concentrations.

    PubMed

    Makris, Konstantinos C; Andra, Syam S; Herrick, Lisa; Christophi, Costas A; Snyder, Shane A; Hauser, Russ

    2013-03-01

    Environmental factors, such as storage time, frequency of bottle reuse and temperature, have been shown to facilitate antimony (Sb) leaching from water- and food-packaging materials. The globally escalating consumption of water packaged in Sb-containing bottles, such as that of polyethylene terephthalate (PET), could increase human daily Sb doses. This study set out to investigate the relationship between drinking-water source, use characteristics, and urinary Sb concentrations (U-Sb) accompanied with survey responses of a healthy (n=35) Cypriot participant pool. One spot urine sample was collected during administration of questionnaire, while a second spot urine sample was collected from the same individual about 7 days later. Urinary and water Sb concentrations were measured with an inductively coupled plasma mass spectrometer. Survey responses showed that bottled water summed over various volumes and plastic types, such as polycarbonate and PET contributed to an average 61% of daily water consumption. Water sources such as tap, mobile stations (explained in a following section), and well water contributed to 24%, 14%, and 2% of an individual's daily water consumption pattern, respectively. Average daily potable water use of both bottled and tap water by individuals consisted of 65% drinking-water, while the remaining 35% was water used for preparing cold and hot beverages, such as, tea, coffee, and juices. A significant (P=0.02) association between per capita water consumption from PET bottles and urinary creatinine-unadjusted concentrations was observed, but this relationship did not remain after inclusion of covariates in a multivariate regression model. In the creatinine-adjusted regression model, only gender (female) was a significant (P<0.01) predictor of U-Sb, after adjusting for several covariates. It is proposed that consumption data collection on various water uses and sources among individuals could perhaps decrease the uncertainty associated with derivations of acceptable daily Sb intakes.

  6. Forecasting daily attendances at an emergency department to aid resource planning

    PubMed Central

    Sun, Yan; Heng, Bee Hoon; Seow, Yian Tay; Seow, Eillyne

    2009-01-01

    Background Accurate forecasting of emergency department (ED) attendances can be a valuable tool for micro and macro level planning. Methods Data for analysis was the counts of daily patient attendances at the ED of an acute care regional general hospital from July 2005 to Mar 2008. Patients were stratified into three acuity categories; i.e. P1, P2 and P3, with P1 being the most acute and P3 being the least acute. The autoregressive integrated moving average (ARIMA) method was separately applied to each of the three acuity categories and total patient attendances. Independent variables included in the model were public holiday (yes or no), ambient air quality measured by pollution standard index (PSI), daily ambient average temperature and daily relative humidity. The seasonal components of weekly and yearly periodicities in the time series of daily attendances were also studied. Univariate analysis by t-tests and multivariate time series analysis were carried out in SPSS version 15. Results By time series analyses, P1 attendances did not show any weekly or yearly periodicity and was only predicted by ambient air quality of PSI > 50. P2 and total attendances showed weekly periodicities, and were also significantly predicted by public holiday. P3 attendances were significantly correlated with day of the week, month of the year, public holiday, and ambient air quality of PSI > 50. After applying the developed models to validate the forecast, the MAPE of prediction by the models were 16.8%, 6.7%, 8.6% and 4.8% for P1, P2, P3 and total attendances, respectively. The models were able to account for most of the significant autocorrelations present in the data. Conclusion Time series analysis has been shown to provide a useful, readily available tool for predicting emergency department workload that can be used to plan staff roster and resource planning. PMID:19178716

  7. Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA.

    PubMed

    Heidari, Leila; Winquist, Andrea; Klein, Mitchel; O'Lenick, Cassandra; Grundstein, Andrew; Ebelt Sarnat, Stefanie

    2016-10-02

    Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI) may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED) visits were collected in Atlanta, Georgia, USA during 1993-2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index) modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels) was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research.

  8. Susceptibility to Heat-Related Fluid and Electrolyte Imbalance Emergency Department Visits in Atlanta, Georgia, USA

    PubMed Central

    Heidari, Leila; Winquist, Andrea; Klein, Mitchel; O’Lenick, Cassandra; Grundstein, Andrew; Ebelt Sarnat, Stefanie

    2016-01-01

    Identification of populations susceptible to heat effects is critical for targeted prevention and more accurate risk assessment. Fluid and electrolyte imbalance (FEI) may provide an objective indicator of heat morbidity. Data on daily ambient temperature and FEI emergency department (ED) visits were collected in Atlanta, Georgia, USA during 1993–2012. Associations of warm-season same-day temperatures and FEI ED visits were estimated using Poisson generalized linear models. Analyses explored associations between FEI ED visits and various temperature metrics (maximum, minimum, average, and diurnal change in ambient temperature, apparent temperature, and heat index) modeled using linear, quadratic, and cubic terms to allow for non-linear associations. Effect modification by potential determinants of heat susceptibility (sex; race; comorbid congestive heart failure, kidney disease, and diabetes; and neighborhood poverty and education levels) was assessed via stratification. Higher warm-season ambient temperature was significantly associated with FEI ED visits, regardless of temperature metric used. Stratified analyses suggested heat-related risks for all populations, but particularly for males. This work highlights the utility of FEI as an indicator of heat morbidity, the health threat posed by warm-season temperatures, and the importance of considering susceptible populations in heat-health research. PMID:27706089

  9. Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees.

    PubMed

    Erda, F G; Bloemen, J; Steppe, K

    2014-01-01

    In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2 *]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T(stem)), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T(stem) and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T(stem) to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 ± 0.01% under-estimation and 3.97 ± 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more substantial for other tree species, particularly if pH(x) is in the more sensitive range (pH(x) > 6.5). © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States.

    PubMed

    Portmann, Robert W; Solomon, Susan; Hegerl, Gabriele C

    2009-05-05

    Changes in climate during the 20th century differ from region to region across the United States. We provide strong evidence that spatial variations in US temperature trends are linked to the hydrologic cycle, and we also present unique information on the seasonal and latitudinal structure of the linkage. We show that there is a statistically significant inverse relationship between trends in daily temperature and average daily precipitation across regions. This linkage is most pronounced in the southern United States (30-40 degrees N) during the May-June time period and, to a lesser extent, in the northern United States (40-50 degrees N) during the July-August time period. It is strongest in trends in maximum temperatures (T(max)) and 90th percentile exceedance trends (90PET), and less pronounced in the T(max) 10PET and the corresponding T(min) statistics, and it is robust to changes in analysis period. Although previous studies suggest that areas of increased precipitation may have reduced trends in temperature compared with drier regions, a change in sign from positive to negative trends suggests some additional cause. We show that trends in precipitation may account for some, but not likely all, of the cause point to evidence that shows that dynamical patterns (El Niño/Southern Oscillation, North Atlantic Oscillation, etc.) cannot account for the observed effects during May-June. We speculate that changing aerosols, perhaps related to vegetation changes, and increased strength of the aerosol direct and indirect effect may play a role in the observed linkages between these indices of temperature change and the hydrologic cycle.

  11. Effect of seasonal changes in use patterns and cold inlet water temperature on water-heating loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrams, D.W.; Shedd, A.C.

    This paper presents long-term test data obtained in 20 commercial buildings and 16 residential sites. The information illustrates the effects of variations in hot water load determinants and the effect on energy use. It also is useful as a supplement to the load profiles presented in the ASHRAE Handbooks and other design references. The commercial facilities include supermarkets, fast-food restaurants, full-service restaurants, commercial kitchens, a motel, a nursing home, a hospital, a bakery, and laundry facilities. The residential sites ere selected to provide test sites with higher-than-average hot water use. They include 13 single-family detached residences, one 14-unit apartment building,more » and two apartment laundries. Test data are available at measurement intervals of 1 minute for the residential sites and 15 minutes for the commercial sites. Summary data in tabular and graphical form are presented for average daily volumetric hot water use and cold inlet water temperature. Measured cold inlet water temperature and volumetric hot water use figures are compared to values typically used for design and analysis. Conclusions are offered regarding the effect of cold water inlet temperature and variations in hot water use on water-heating load and energy use. Recommendations for the use of the information presented in water-heating system design, performance optimization, and performance analysis conclude the paper.« less

  12. A study of the surface energy balance on slopes in a tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.

    1990-01-01

    Four slopes (north, south, east, and west) were selected on the Konza Prairie Research Natural Area to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the sloped throughout the 1988 growing season. Net radiation was the highest on the south-facing slope and lowest on the north-facing slope, and the difference was more than 150 W/sq m (20 to 30 percent) at solar noon. For daily averages, the difference was 25 W/sq m (15 percent) early in the season and increased to 60 W/sq m (30 to 50 percent) in September. The east-facing and west-facing slopes had the same daily average net radiation, but the time of day when maximum net radiation occurred was one hour earlier for the east-facing slope and one hour later for the west-facing slope relative to solar noon. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux (h) was consistently lower on the north-facing slope compared with other slopes. Typical difference in the values of H between the north-facing and the south-facing slopes was 15 to 30 W/sq m. The south-facing slope had the greatest day to day fluctuation in latent heat flux as a result of interaction of net radiation, soil moisture, and green leaf area. The north-facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.

  13. A predictive model for spotted wilt epidemics in peanut based on local weather conditions and the tomato spotted wilt virus risk index.

    PubMed

    Olatinwo, R O; Paz, J O; Brown, S L; Kemerait, R C; Culbreath, A K; Beasley, J P; Hoogenboom, G

    2008-10-01

    Tomato spotted wilt virus (TSWV), a member of the genus Tospovirus (family Bunyaviridae), is an important plant virus that causes severe damage to peanut (Arachis hypogaea) in the southeastern United States. Disease severity has been extremely variable in individual fields in Georgia, due to several factors including variability in weather patterns. A TSWV risk index has been developed by the University of Georgia to aid peanut growers with the assessment and avoidance of high risk situations. This study was conducted to examine the relationship between weather parameters and spotted wilt severity in peanut, and to develop a predictive model that integrates localized weather information into the risk index. On-farm survey data collected during 1999, 2002, 2004, and 2005 growing seasons, and derived weather variables during the same years were analyzed using nonlinear and multiple regression analyses. Meteorological data were obtained from the Georgia Automated Environmental Monitoring Network. The best model explained 61% of the variation in spotted wilt severity (square root transformed) as a function of the interactions between the TSWV risk index, the average daily temperature in April (TavA), the average daily minimum temperature between March and April (TminMA), the accumulated rainfall in March (RainfallM), the accumulated rainfall in April (RainfallA), the number of rain days in April (RainDayA), evapotranspiration in April (EVTA), and the number of days from 1 January to the planting date (JulianDay). Integrating this weather-based model with the TSWV risk index may help peanut growers more effectively manage tomato spotted wilt disease.

  14. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States.

    PubMed

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H

    2017-02-21

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment ]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.

  15. Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data.

    PubMed

    Liu, Tao; Zeng, Weilin; Lin, Hualiang; Rutherford, Shannon; Xiao, Jianpeng; Li, Xing; Li, Zhihao; Qian, Zhengmin; Feng, Baixiang; Ma, Wenjun

    2016-08-26

    Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of -0.07%, -0.17%, 0.40% and 0.27% in spring, summer, autumn and winter, respectively. For the northern communities, the excess risks (ERs) were 0.74%, 1.21%, 0.52% and -0.65% in the spring, summer, autumn and winter seasons, respectively. City-specific ozone-related mortality effects were positively related with latitude, but negatively related with seasonal average temperature in the spring, summer and autumn seasons. However, a reverse relationship was found in the winter. We concluded that there were different seasonal patterns of ozone effects on mortality between southern and northern US communities. Latitude and seasonal average temperature were identified as modifiers of the ambient ozone-related mortality risks.

  16. Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data

    PubMed Central

    Liu, Tao; Zeng, Weilin; Lin, Hualiang; Rutherford, Shannon; Xiao, Jianpeng; Li, Xing; Li, Zhihao; Qian, Zhengmin; Feng, Baixiang; Ma, Wenjun

    2016-01-01

    Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of −0.07%, −0.17%, 0.40% and 0.27% in spring, summer, autumn and winter, respectively. For the northern communities, the excess risks (ERs) were 0.74%, 1.21%, 0.52% and −0.65% in the spring, summer, autumn and winter seasons, respectively. City-specific ozone-related mortality effects were positively related with latitude, but negatively related with seasonal average temperature in the spring, summer and autumn seasons. However, a reverse relationship was found in the winter. We concluded that there were different seasonal patterns of ozone effects on mortality between southern and northern US communities. Latitude and seasonal average temperature were identified as modifiers of the ambient ozone-related mortality risks. PMID:27571094

  17. [Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades].

    PubMed

    Hou, Wen-jia; Geng, Ting; Chen, Qun; Chen, Chang-qing

    2015-01-01

    By using rice growth period, yield and climate observation data during the recent two decades, the impact of climate warming on rice in Northeast China was investigated by mathematical statistics methods. The results indicated that in the three provinces of Northeast China, the average, maximum and minimum temperatures in rice growing season were on the. rise, and the rainfall presented a downward trend during 1989-2009. Compared to 1990s, the rice whole growth periods of Heilongjiang, Jilin and Liaoning provinces in 2000s were prolonged 14 d, 4.5 d and 5.1 d, respectively. The increase of temperature in May, June and September could extend the rice growth period, while that in July would shorten the growth duration. The rice growth duration of registered varieties and experiment sites had a similar increasing trend in Northeast China except for the Heilongjiang Province, and the extension of registered varieties growth period was the main factor causing the prolonged growth period of rice at experiment sites. The change in daily average, minimum and maximum temperatures all could affect the rice yield in Northeast China. The increasing temperature significantly increased the rice yield in Heilongjiang Province, especially in the west region of Sanjiang Plain. Except for the south of Liaoning Province, rice yields in other regions of Northeast China were promoted by increasing temperature. Proper measures for breeding, cultivation and farming, could be adopted to fully improve the adaptation of rice to climate warming in Northeast China.

  18. The exceptional recent warming signal in a long-term central-German observation site

    NASA Astrophysics Data System (ADS)

    Hoy, Andreas; Schönwiese, Christian-Dietrich

    2017-04-01

    The long-term temperature measurements of Frankfurt/Main represent a scientifically highly valuable source for investigating climatic changes in central Germany and beyond. Annual data are available since 1758 and daily observations since 1870. The 258 year long annual time series is homogenised and recalculated to the airport location outside of Frankfurt/Main city. In a first step, impacts of site changes and urbanisation effects are discussed comparing the five different inner-city monitoring points and the airport location after WWII. We show that site changes affect both extreme and average temperatures, and that they may be considerable even for small relocations. Urbanisation effects are visible all year long and stronger for minimum than maximum temperatures. Annual temperature observations show slightly decreasing temperatures until the 1840s. This development is then replaced by an increasing trend overlain by decadal-scale and yearly fluctuations. Nevertheless, until the 1980s shifting 30-year-means only fluctuate between 8.54 °C in 1829-1858 and 9.58 °C in 1948-1977. However, recent years more than doubled the 1 K spread between the coldest and warmest period, with an average of 10.82 °C in 1986-2015. In addition, this 30-year period was warmer than any single year before 1990. Record-cold calendar days almost disappeared since 1988, while record-warm calendar days appeared about three times more often than statistically expectable. Strong warming was observed year-round, only September and October showed more moderate trends.

  19. Asylum applications respond to temperature fluctuations.

    PubMed

    Missirian, Anouch; Schlenker, Wolfram

    2017-12-22

    International negotiations on climate change, along with recent upsurges in migration across the Mediterranean Sea, have highlighted the need to better understand the possible effects of climate change on human migration-in particular, across national borders. Here we examine how, in the recent past (2000-2014), weather variations in 103 source countries translated into asylum applications to the European Union, which averaged 351,000 per year in our sample. We find that temperatures that deviated from the moderate optimum (~20°C) increased asylum applications in a nonlinear fashion, which implies an accelerated increase under continued future warming. Holding everything else constant, asylum applications by the end of the century are predicted to increase, on average, by 28% (98,000 additional asylum applications per year) under representative concentration pathway (RCP) scenario 4.5 and by 188% (660,000 additional applications per year) under RCP 8.5 for the 21 climate models in the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP). Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns.

    PubMed

    Van Houtan, Kyle S; Halley, John M; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr(-1) (range 0.01-0.09°C yr(-1)); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

Top