Disaggregating from daily to sub-daily rainfall under a future climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J.; Mehrotra, R.; Sharma, A.
2012-04-01
We describe an algorithm for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous fine-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of atmospheric predictors representative of the future climate. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric profile more reflective of expected future conditions. When looking at the scaling from daily to sub-daily rainfall over the historical record, it was found that the relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically showing more intense rain falling over shorter periods compared with cooler seasons and stations. Importantly, by regressing against atmospheric covariates such as temperature this effect was almost entirely eliminated, providing a basis for suggesting the approach may be valid when extrapolating sub-daily sequences to a future climate. The method of fragments algorithm was then applied to nine stations around Australia, and showed that when holding the total daily rainfall constant, the maximum intensity of a short duration (6 minute) rainfall increased by between 4.1% and 13.4% per degree change in temperature for the maximum six minute burst, between 3.1% and 6.8% for the maximum one hour burst, and between 1.5% and 3.5% for the fraction of the day with no rainfall. This highlights that a large proportion of the change to the distribution of precipitation in the future is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin
NASA Astrophysics Data System (ADS)
Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio
2003-07-01
This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.
Simulation of precipitation by weather pattern and frontal analysis
NASA Astrophysics Data System (ADS)
Wilby, Robert
1995-12-01
Daily rainfall from two sites in central and southern England was stratified according to the presence or absence of weather fronts and then cross-tabulated with the prevailing Lamb Weather Type (LWT). A semi-Markov chain model was developed for simulating daily sequences of LWTs from matrices of transition probabilities between weather types for the British Isles 1970-1990. Daily and annual rainfall distributions were then simulated from the prevailing LWTs using historic conditional probabilities for precipitation occurrence and frontal frequencies. When compared with a conventional rainfall generator the frontal model produced improved estimates of the overall size distribution of daily rainfall amounts and in particular the incidence of low-frequency high-magnitude totals. Further research is required to establish the contribution of individual frontal sub-classes to daily rainfall totals and of long-term fluctuations in frontal frequencies to conditional probabilities.
Changes to Sub-daily Rainfall Patterns in a Future Climate
NASA Astrophysics Data System (ADS)
Westra, S.; Evans, J. P.; Mehrotra, R.; Sharma, A.
2012-12-01
An algorithm is developed for disaggregating daily rainfall into sub-daily rainfall 'fragments' (continuous high temporal-resolution rainfall sequences whose total depth sums to the daily rainfall amount) under a future, warmer climate. The basis of the algorithm is to re-sample sub-daily fragments from the historical record conditional on the total daily rainfall amount and a range of temperature-based atmospheric predictors. The logic is that as the atmosphere warms, future rainfall patterns will be more reflective of historical rainfall patterns which occurred on warmer days at the same location, or at locations which have an atmospheric temperature profile more representative of expected future atmospheric conditions. It was found that the daily to sub-daily scaling relationship varied significantly by season and by location, with rainfall patterns on warmer seasons or at warmer locations typically exhibiting higher rainfall intensity occurring over shorter periods within a day, compared with cooler seasons and locations. Importantly, by regressing against temperature-based atmospheric covariates, this effect was substantially reduced, suggesting that the approach also may be valid when extrapolating to a future climate. An adjusted method of fragments algorithm was then applied to nine stations around Australia, with the results showing that when holding total daily rainfall constant, the maximum intensity of short duration rainfall increased by a median of about 5% per degree for the maximum 6 minute burst, and 3.5% for the maximum one hour burst, whereas the fraction of the day with no rainfall increased by a median of 1.5%. This highlights that a large proportion of the change to the distribution of rainfall is likely to occur at sub-daily timescales, with significant implications for many hydrological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chao ..; Singh, Vijay P.; Mishra, Ashok K.
2013-02-06
This paper presents an improved brivariate mixed distribution, which is capable of modeling the dependence of daily rainfall from two distinct sources (e.g., rainfall from two stations, two consecutive days, or two instruments such as satellite and rain gauge). The distribution couples an existing framework for building a bivariate mixed distribution, the theory of copulae and a hybrid marginal distribution. Contributions of the improved distribution are twofold. One is the appropriate selection of the bivariate dependence structure from a wider admissible choice (10 candidate copula families). The other is the introduction of a marginal distribution capable of better representing lowmore » to moderate values as well as extremes of daily rainfall. Among several applications of the improved distribution, particularly presented here is its utility for single-site daily rainfall simulation. Rather than simulating rainfall occurrences and amounts separately, the developed generator unifies the two processes by generalizing daily rainfall as a Markov process with autocorrelation described by the improved bivariate mixed distribution. The generator is first tested on a sample station in Texas. Results reveal that the simulated and observed sequences are in good agreement with respect to essential characteristics. Then, extensive simulation experiments are carried out to compare the developed generator with three other alternative models: the conventional two-state Markov chain generator, the transition probability matrix model and the semi-parametric Markov chain model with kernel density estimation for rainfall amounts. Analyses establish that overall the developed generator is capable of reproducing characteristics of historical extreme rainfall events and is apt at extrapolating rare values beyond the upper range of available observed data. Moreover, it automatically captures the persistence of rainfall amounts on consecutive wet days in a relatively natural and easy way. Another interesting observation is that the recognized ‘overdispersion’ problem in daily rainfall simulation ascribes more to the loss of rainfall extremes than the under-representation of first-order persistence. The developed generator appears to be a sound option for daily rainfall simulation, especially in particular hydrologic planning situations when rare rainfall events are of great importance.« less
Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model
NASA Astrophysics Data System (ADS)
Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir
2017-10-01
In this study, the performance of the Generalized LInear Modelling of daily CLImate sequence (GLIMCLIM) statistical downscaling model was assessed to simulate extreme rainfall indices and annual maximum daily rainfall (AMDR) when downscaled daily rainfall from National Centers for Environmental Prediction (NCEP) reanalysis and Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCM) (four GCMs and two scenarios) output datasets and then their changes were estimated for the future period 2041-2060. The model was able to reproduce the monthly variations in the extreme rainfall indices reasonably well when forced by the NCEP reanalysis datasets. Frequency Adapted Quantile Mapping (FAQM) was used to remove bias in the simulated daily rainfall when forced by CMIP5 GCMs, which reduced the discrepancy between observed and simulated extreme rainfall indices. Although the observed AMDR were within the 2.5th and 97.5th percentiles of the simulated AMDR, the model consistently under-predicted the inter-annual variability of AMDR. A non-stationary model was developed using the generalized linear model for local, shape and scale to estimate the AMDR with an annual exceedance probability of 0.01. The study shows that in general, AMDR is likely to decrease in the future. The Onkaparinga catchment will also experience drier conditions due to an increase in consecutive dry days coinciding with decreases in heavy (>long term 90th percentile) rainfall days, empirical 90th quantile of rainfall and maximum 5-day consecutive total rainfall for the future period (2041-2060) compared to the base period (1961-2000).
Why continuous simulation? The role of antecedent moisture in design flood estimation
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Westra, S.; Sharma, A.
2012-06-01
Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.
NASA Astrophysics Data System (ADS)
Singh, Ankita; Ghosh, Kripan; Mohanty, U. C.
2018-03-01
The sub-seasonal variation of Indian summer monsoon rainfall highly impacts Kharif crop production in comparison with seasonal total rainfall. The rainfall frequency and intensity corresponding to various rainfall events are found to be highly related to crop production and therefore, the predictability of such events are considered to be diagnosed. Daily rainfall predictions are made available by one of the coupled dynamical model National Centers for Environmental Prediction Climate Forecast System (NCEPCFS). A large error in the simulation of daily rainfall sequence influences to take up a bias correction and for that reason, two approaches are used. The bias-corrected GCM is able to capture the inter-annual variability in rainfall events. Maximum prediction skill of frequency of less rainfall (LR) event is observed during the month of September and a similar result is also noticed for moderate rainfall event with maximum skill over the central parts of the country. On the other hand, the impact of rainfall weekly rainfall intensity is evaluated against the Kharif rice production. It is found that weekly rainfall intensity during July is having a significant impact on Kharif rice production, but the corresponding skill was found very low in GCM. The GCM are able to simulate the less and moderate rainfall frequency with significant skill.
Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts
NASA Astrophysics Data System (ADS)
Dhekale, B. S.; Nageswararao, M. M.; Nair, Archana; Mohanty, U. C.; Swain, D. K.; Singh, K. K.; Arunbabu, T.
2017-08-01
The Extended Range Forecasts System (ERFS) has been generating monthly and seasonal forecasts on real-time basis throughout the year over India since 2009. India is one of the major rice producer and consumer in South Asia; more than 50% of the Indian population depends on rice as staple food. Rice is mainly grown in kharif season, which contributed 84% of the total annual rice production of the country. Rice cultivation in India is rainfed, which depends largely on rains, so reliability of the rainfall forecast plays a crucial role for planning the kharif rice crop. In the present study, an attempt has been made to test the reliability of seasonal and sub-seasonal ERFS summer monsoon rainfall forecasts for kharif rice yield predictions at Kharagpur, West Bengal by using CERES-Rice (DSSATv4.5) model. These ERFS forecasts are produced as monthly and seasonal mean values and are converted into daily sequences with stochastic weather generators for use with crop growth models. The daily sequences are generated from ERFS seasonal (June-September) and sub-seasonal (July-September, August-September, and September) summer monsoon (June to September) rainfall forecasts which are considered as input in CERES-rice crop simulation model for the crop yield prediction for hindcast (1985-2008) and real-time mode (2009-2015). The yield simulated using India Meteorological Department (IMD) observed daily rainfall data is considered as baseline yield for evaluating the performance of predicted yields using the ERFS forecasts. The findings revealed that the stochastic disaggregation can be used to disaggregate the monthly/seasonal ERFS forecasts into daily sequences. The year to year variability in rice yield at Kharagpur is efficiently predicted by using the ERFS forecast products in hindcast as well as real time, and significant enhancement in the prediction skill is noticed with advancement in the season due to incorporation of observed weather data which reduces uncertainty of yield prediction. The findings also recommend that the normal and above normal yields are predicted well in advance using the ERFS forecasts. The outcomes of this study are useful to farmers for taking appropriate decisions well in advance for climate risk management in rice production during different stages of the crop growing season at Kharagpur.
Scaling Linguistic Characterization of Precipitation Variability
NASA Astrophysics Data System (ADS)
Primo, C.; Gutierrez, J. M.
2003-04-01
Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns. We illustrate the high climatological discrimination power of the linguistic parameters in the Iberian peninsula, when compared with other standard techniques (such as seasonal mean accumulated precipitation). As an example, standard and linguistic parameters are used as inputs for a clustering regionalization method, comparing the resulting clusters.
Organization of vertical shear of wind and daily variability of monsoon rainfall
NASA Astrophysics Data System (ADS)
Gouda, K. C.; Goswami, P.
2016-10-01
Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.
Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)
2002-01-01
A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.
A coupled synoptic-hydrological model for climate change impact assessment
NASA Astrophysics Data System (ADS)
Wilby, Robert; Greenfield, Brian; Glenny, Cathy
1994-01-01
A coupled atmospheric-hydrological model is presented. Sequences of daily rainfall occurrence for the 20 year period 1971-1990 at sites in the British Isles are related to the Lamb's Weather Types (LWT) by using conditional probabilities. Time series of circulation patterns and hence rainfall were then generated using a Markov representation of matrices of transition probabilities between weather types. The resultant precipitation data were used as input to a semidistributed catchment model to simulate daily flows. The combined model successfully reproduced aspects of the daily weather, precipitation and flow regimes. A range of synoptic scenarios were further investigated with particular reference to low flows in the River Coln, UK. The modelling approach represents a means of translating general circulation model (GCM) climate change predictions at the macro-scale into hydrological concerns at the catchment scale.
Combining Radar and Daily Precipitation Data to Estimate Meaningful Sub-daily Precipitation Extremes
NASA Astrophysics Data System (ADS)
Pegram, G. G. S.; Bardossy, A.
2016-12-01
Short duration extreme rainfalls are important for design. The purpose of this presentation is not to improve the day by day estimation of precipitation, but to obtain reasonable statistics for the subdaily extremes at gauge locations. We are interested specifically in daily and sub-daily extreme values of precipitation at gauge locations. We do not employ the common procedure of using time series of control station to determine the missing data values in a target. We are interested in individual rare events, not sequences. The idea is to use radar to disaggregate daily totals to sub-daily amounts. In South Arica, an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. Using this valuable set of data, we are only interested in rare extremes, therefore small to medium values of rainfall depth were neglected, leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprised about 50% of each annual rainfall total. The method presented here uses radar for disaggregating daily gauge totals in subdaily intervals down to 15 minutes in order to extract the maxima of sub-hourly through to daily rainfall at each of 37 selected radar pixels [1 km square in plan] which contained one of the 45 pluviometers not masked out by the radar foot-print. The pluviometer data were aggregated to daily totals, to act as if they were daily read gauges; their only other task was to help in the cross-validation exercise. The extrema were obtained as quantiles by ordering the 12 daily maxima of each interval per year. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the gauge and radar extremes, by matching their ranks, which we found to be stable and meaningful in cross-validation tests. We provide and compare a range of different methodologies to enable reasonable estimation of subdaily extremes using radar and daily precipitation observations.
Nandargi, S.; Mulye, S. S.
2012-01-01
There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI) and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better. PMID:22654646
A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley
2016-04-01
An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between observed and simulated streamflows as a result of more realistic sub-daily meteorological forcing.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
NASA Astrophysics Data System (ADS)
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-05-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets.
Models for estimating daily rainfall erosivity in China
NASA Astrophysics Data System (ADS)
Xie, Yun; Yin, Shui-qing; Liu, Bao-yuan; Nearing, Mark A.; Zhao, Ying
2016-04-01
The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha-1 h-1 y-1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.-Apr.) and warm season (May-Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash-Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash-Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.
A comparison of methods to estimate future sub-daily design rainfall
NASA Astrophysics Data System (ADS)
Li, J.; Johnson, F.; Evans, J.; Sharma, A.
2017-12-01
Warmer temperatures are expected to increase extreme short-duration rainfall due to the increased moisture-holding capacity of the atmosphere. While attention has been paid to the impacts of climate change on future design rainfalls at daily or longer time scales, the potential changes in short duration design rainfalls have been often overlooked due to the limited availability of sub-daily projections and observations. This study uses a high-resolution regional climate model (RCM) to predict the changes in sub-daily design rainfalls for the Greater Sydney region in Australia. Sixteen methods for predicting changes to sub-daily future extremes are assessed based on different options for bias correction, disaggregation and frequency analysis. A Monte Carlo cross-validation procedure is employed to evaluate the skill of each method in estimating the design rainfall for the current climate. It is found that bias correction significantly improves the accuracy of the design rainfall estimated for the current climate. For 1 h events, bias correcting the hourly annual maximum rainfall simulated by the RCM produces design rainfall closest to observations, whereas for multi-hour events, disaggregating the daily rainfall total is recommended. This suggests that the RCM fails to simulate the observed multi-duration rainfall persistence, which is a common issue for most climate models. Despite the significant differences in the estimated design rainfalls between different methods, all methods lead to an increase in design rainfalls across the majority of the study region.
Characterization and disaggregation of daily rainfall in the Upper Blue Nile Basin in Ethiopia
NASA Astrophysics Data System (ADS)
Engida, Agizew N.; Esteves, Michel
2011-03-01
SummaryIn Ethiopia, available rainfall records are mainly limited to daily time steps. Though rainfall data at shorter time steps are important for various purposes like modeling of erosion processes and flood hydrographs, they are hardly available in Ethiopia. The objectives of this study were (i) to study the temporal characteristics of daily rains at two stations in the region of the Upper Blue Nile Basin (UBNB) and (ii) to calibrate and evaluate a daily rainfall disaggregation model. The analysis was based on rainfall data of Bahir Dar and Gonder Meteorological Stations. The disaggregation model used was the Modified Bartlett-Lewis Rectangular Pulse Model (MBLRPM). The mean daily rainfall intensity varied from about 4 mm in the dry season to 17 mm in the wet season with corresponding variation in raindays of 0.4-26 days. The observed maximum daily rainfall varied from 13 mm in the dry month to 200 mm in the wet month. The average wet/dry spell length varied from 1/21 days in the dry season to 6/1 days in the rainy season. Most of the rainfall occurs in the afternoon and evening periods of the day. Daily rainfall disaggregation using the MBLRPM alone resulted in poor match between the disaggregated and observed hourly rainfalls. Stochastic redistribution of the outputs of the model using Beta probability distribution function improved the agreement between observed and calculated hourly rain intensities. In areas where convective rainfall is dominant, the outputs of MBLRPM should be redistributed using relevant probability distributions to simulate the diurnal rainfall pattern.
A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa
Maidment, Ross I.; Grimes, David; Black, Emily; Tarnavsky, Elena; Young, Matthew; Greatrex, Helen; Allan, Richard P.; Stein, Thorwald; Nkonde, Edson; Senkunda, Samuel; Alcántara, Edgar Misael Uribe
2017-01-01
Rainfall information is essential for many applications in developing countries, and yet, continually updated information at fine temporal and spatial scales is lacking. In Africa, rainfall monitoring is particularly important given the close relationship between climate and livelihoods. To address this information gap, this paper describes two versions (v2.0 and v3.0) of the TAMSAT daily rainfall dataset based on high-resolution thermal-infrared observations, available from 1983 to the present. The datasets are based on the disaggregation of 10-day (v2.0) and 5-day (v3.0) total TAMSAT rainfall estimates to a daily time-step using daily cold cloud duration. This approach provides temporally consistent historic and near-real time daily rainfall information for all of Africa. The estimates have been evaluated using ground-based observations from five countries with contrasting rainfall climates (Mozambique, Niger, Nigeria, Uganda, and Zambia) and compared to other satellite-based rainfall estimates. The results indicate that both versions of the TAMSAT daily estimates reliably detects rainy days, but have less skill in capturing rainfall amount—results that are comparable to the other datasets. PMID:28534868
NASA Astrophysics Data System (ADS)
Bigg, E. K.; Soubeyrand, S.; Morris, C. E.
2015-03-01
Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would automatically have reduced the influences on rainfall of those whose concentrations were related to previous rain, thereby leading to inhibition of feedback. The analytical methods described here provide means to map and delimit regions where rainfall feedback mediated by microorganisms is suspected to occur or has occurred historically, thereby providing rational means to establish experimental set-ups for verification.
NASA Astrophysics Data System (ADS)
Singh, A.; Mohanty, U. C.; Ghosh, K.
2015-12-01
Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative to gather information for weather within climate but variability is very low in comparison to observation. On the other hand, the spatial resolution of GCM predicted rainfall is not found at the observed station/grid point. To tackle the problem, initially a statistical downscaling over 19 station of Odisha state is undertaken using the atmospheric parameters predicted by a GCM (NCEP-CFSv2). For the purpose, an extended domain is taken for analyzing the significant zone for the atmospheric parameters like zonal wind at 850hPa, Sea Surface Temperature (SST), geopotential height. A statistical model using the pattern projection method is further developed based on empirical orthogonal function. The downscaled rainfall is found better in association with station observation in comparison to raw GCM prediction in view of deterministic and probabilistic skill measure. Further, the sub-seasonal and seasonal forecast from the GCMs can be used at different time steps for risk management. Therefore, downscaled seasonal/monthly rainfall is further converted to sub-seasonal/daily time scale using a non-homogeneous markov model. The simulated weather sequences are further compared with the observed sequence in view of categorical rainfall events. The outcomes suggest that the rainfall amount are overestimated for excess rainfall and henceforth larger excess rainfall events can be realized. The skill for prediction of rainfall events corresponding to lower thresholds is found higher. A detail discussion regarding skill of spatial downscale rainfall at observed stations and its further representation of sub-seasonal characteristics (spells, less rainfall, heavy rainfall, and moderate rainfall events) of rainfall for disaggregated outputs will be presented.
Sensitivity of Rainfall Extremes Under Warming Climate in Urban India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2017-12-01
Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.
NASA Astrophysics Data System (ADS)
Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.
2017-12-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model
NASA Astrophysics Data System (ADS)
Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.
2017-12-01
Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)
Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria
NASA Astrophysics Data System (ADS)
Fuwape, I. A.; Ogunjo, S. T.; Oluyamo, S. S.; Rabiu, A. B.
2017-10-01
Daily rainfall and temperature data from 47 locations across Nigeria for the 36-year period 1979-2014 were treated to time series analysis technique to investigate some nonlinear trends in rainfall and temperature data. Some quantifiers such as Lyapunov exponents, correlation dimension, and entropy were obtained for the various locations. Positive Lyapunov exponents were obtained for the time series of mean daily rainfall for all locations in the southern part of Nigeria while negative Lyapunov exponents were obtained for all locations in the Northern part of Nigeria. The mean daily temperature had positive Lyapunov exponent values (0.35-1.6) for all the locations. Attempts were made in reconstructing the phase space of time series of rainfall and temperature.
Global intensification in observed short-duration rainfall extremes
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.
2017-12-01
Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.
NASA Astrophysics Data System (ADS)
Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van
2018-01-01
Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.
Validation of satellite-based rainfall in Kalahari
NASA Astrophysics Data System (ADS)
Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter
2018-06-01
Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.
NASA Astrophysics Data System (ADS)
Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.
2017-08-01
A high-resolution gridded daily precipitation data set was combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds which lead to landsliding in Switzerland. We colocated triggering rainfall to landslides, developed distributions of triggering and nontriggering rainfall event properties, and determined rainfall thresholds and intensity-duration ID curves and validated their performance. The best predictive performance was obtained by the intensity-duration ID threshold curve, followed by peak daily intensity Imax and mean event intensity Imean. Event duration by itself had very low predictive power. A single country-wide threshold of Imax = 28 mm/d was extended into space by regionalization based on surface erodibility and local climate (mean daily precipitation). It was found that wetter local climate and lower erodibility led to significantly higher rainfall thresholds required to trigger landslides. However, we showed that the improvement in model performance due to regionalization was marginal and much lower than what can be achieved by having a high-quality landslide database. Reference cases in which the landslide locations and timing were randomized and the landslide sample size was reduced showed the sensitivity of the Imax rainfall threshold model. Jack-knife and cross-validation experiments demonstrated that the model was robust. The results reported here highlight the potential of using rainfall ID threshold curves and rainfall threshold values for predicting the occurrence of landslides on a country or regional scale with possible applications in landslide warning systems, even with daily data.
The collaborative historical African rainfall model: description and evaluation
Funk, Christopher C.; Michaelsen, Joel C.; Verdin, James P.; Artan, Guleid A.; Husak, Gregory; Senay, Gabriel B.; Gadain, Hussein; Magadazire, Tamuka
2003-01-01
In Africa the variability of rainfall in space and time is high, and the general availability of historical gauge data is low. This makes many food security and hydrologic preparedness activities difficult. In order to help overcome this limitation, we have created the Collaborative Historical African Rainfall Model (CHARM). CHARM combines three sources of information: climatologically aided interpolated (CAI) rainfall grids (monthly/0.5° ), National Centers for Environmental Prediction reanalysis precipitation fields (daily/1.875° ) and orographic enhancement estimates (daily/0.1° ). The first set of weights scales the daily reanalysis precipitation fields to match the gridded CAI monthly rainfall time series. This produces data with a daily/0.5° resolution. A diagnostic model of orographic precipitation, VDELB—based on the dot-product of the surface wind V and terrain gradient (DEL) and atmospheric buoyancy B—is then used to estimate the precipitation enhancement produced by complex terrain. Although the data are produced on 0.1° grids to facilitate integration with satellite-based rainfall estimates, the ‘true’ resolution of the data will be less than this value, and varies with station density, topography, and precipitation dynamics. The CHARM is best suited, therefore, to applications that integrate rainfall or rainfall-driven model results over large regions. The CHARM time series is compared with three independent datasets: dekadal satellite-based rainfall estimates across the continent, dekadal interpolated gauge data in Mali, and daily interpolated gauge data in western Kenya. These comparisons suggest reasonable accuracies (standard errors of about half a standard deviation) when data are aggregated to regional scales, even at daily time steps. Thus constrained, numerical weather prediction precipitation fields do a reasonable job of representing large-scale diurnal variations.
NASA Astrophysics Data System (ADS)
Lucero, Omar A.; Rozas, Daniel
Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.
Occurrence analysis of daily rainfalls through non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2011-06-01
A stochastic model based on a non-homogeneous Poisson process, characterised by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. The data modelling has been performed with a partition of observed daily rainfall data into a calibration period for parameter estimation and a validation period for checking on occurrence process changes. The model has been applied to a set of rain gauges located in different geographical areas of Southern Italy. The results show a good fit for time-varying intensity of rainfall occurrence process by 2-harmonic Fourier law and no statistically significant evidence of changes in the validation period for different threshold values.
Background & Aims: Projections based on climate models suggest that the frequency of extreme rainfall events will continue to rise over the next several decades. We aim to investigate the temporal relationship between daily variability of rainfall and acute gastrointestinal illne...
Power-law scaling in daily rainfall patterns and consequences in urban stream discharges
NASA Astrophysics Data System (ADS)
Park, Jeryang; Krueger, Elisabeth H.; Kim, Dongkyun; Rao, Suresh C.
2016-04-01
Poissonian rainfall has been frequently used for modelling stream discharge in a catchment at the daily scale. Generally, it is assumed that the daily rainfall depth is described by memoryless exponential distribution which is transformed to stream discharge, resulting in an analytical pdf for discharge [Gamma distribution]. While it is true that catchment hydrological filtering processes (censored by constant rate ET losses, and first-order recession) increases "memory", reflected in 1/f noise in discharge time series. Here, we show that for urban watersheds in South Korea: (1) the observation of daily rainfall depths follow power-law pdfs, and spectral slopes range between 0.2 ~ 0.4; and (2) the stream discharge pdfs have power-law tails. These observation results suggest that multiple hydro-climatic factors (e.g., non-stationarity of rainfall patterns) and hydrologic filtering (increasing impervious area; more complex urban drainage networks) influence the catchment hydrologic responses. We test the role of such factors using a parsimonious model, using different types of daily rainfall patterns (e.g., power-law distributed rainfall depth with Poisson distribution in its frequency) and urban settings to reproduce patterns similar to those observed in empirical records. Our results indicate that fractality in temporally up-scaled rainfall, and the consequences of large extreme events are preserved as high discharge events in urbanizing catchments. Implications of these results to modeling urban hydrologic responses and impacts on receiving waters are discussed.
Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis
NASA Astrophysics Data System (ADS)
Unnikrishnan, Poornima; Jothiprakash, V.
2018-06-01
Effective modelling and prediction of smaller time step rainfall is reported to be very difficult owing to its highly erratic nature. Accurate forecast of daily rainfall for longer duration (multi time step) may be exceptionally helpful in the efficient planning and management of water resources systems. Identification of inherent patterns in a rainfall time series is also important for an effective water resources planning and management system. In the present study, Singular Spectrum Analysis (SSA) is utilized to forecast the daily rainfall time series pertaining to Koyna watershed in Maharashtra, India, for 365 days after extracting various components of the rainfall time series such as trend, periodic component, noise and cyclic component. In order to forecast the time series for longer time step (365 days-one window length), the signal and noise components of the time series are forecasted separately and then added together. The results of the study show that the method of SSA could extract the various components of the time series effectively and could also forecast the daily rainfall time series for longer duration such as one year in a single run with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Grimes, David
2010-05-01
Rainfall monitoring over Africa is crucial for a variety of humanitarian and agricultural purposes, and satellites have been used for some time to provide real-time rainfall estimates over the region. Several recent applications of satellite rainfall estimates, such as flash-flood warning systems and crop-yield models, require accurate rainfall totals at daily timescales or below. Multi-spectral Meteosat Second Generation (MSG) data provide information on cloud properties such as optical depth and cloud particle size and phase. These parameters are all relevant to the probability of rainfall occurring from a cloud and the likely intensity of that rainfall, so the use of MSG data should lead to improved satellite rainfall estimates. An artificial neural network (ANN) using multi-spectral inputs from MSG has been trained to provide daily rainfall estimates over Ethiopia, using daily rain-gauge data for calibration. Although ANN methods have previously been applied to the problem of producing rainfall estimates from multi-spectral satellite data, in general precipitation radar data have been used for calibration. The advantage of using rain-gauge data is that gauges are far more widespread over Africa than radar networks, so this method can be easily transferred and if necessary re-calibrated in different climatological regions of the continent. The ANN estimates have been validated against independent Ethiopian gauge data at a variety of time and space scales. The ANN shows an improvement in accuracy at daily timescale when compared to rainfall estimates from the TAMSAT algorithm, which uses only single channel MSG data.
Occurrence analysis of daily rainfalls by using non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2009-09-01
In recent years several temporally homogeneous stochastic models have been applied to describe the rainfall process. In particular stochastic analysis of daily rainfall time series may contribute to explain the statistic features of the temporal variability related to the phenomenon. Due to the evident periodicity of the physical process, these models have to be used only to short temporal intervals in which occurrences and intensities of rainfalls can be considered reliably homogeneous. To this aim, occurrences of daily rainfalls can be considered as a stationary stochastic process in monthly periods. In this context point process models are widely used for at-site analysis of daily rainfall occurrence; they are continuous time series models, and are able to explain intermittent feature of rainfalls and simulate interstorm periods. With a different approach, periodic features of daily rainfalls can be interpreted by using a temporally non-homogeneous stochastic model characterized by parameters expressed as continuous functions in the time. In this case, great attention has to be paid to the parsimony of the models, as regards the number of parameters and the bias introduced into the generation of synthetic series, and to the influence of threshold values in extracting peak storm database from recorded daily rainfall heights. In this work, a stochastic model based on a non-homogeneous Poisson process, characterized by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. In particular, variation of rainfall occurrence intensity ? (t) is modelled by using Fourier series analysis, in which the non-homogeneous process is transformed into a homogeneous and unit one through a proper transformation of time domain, and the choice of the minimum number of harmonics is evaluated applying available statistical tests. The procedure is applied to a dataset of rain gauges located in different geographical zones of Mediterranean area. Time series have been selected on the basis of the availability of at least 50 years in the time period 1921-1985, chosen as calibration period, and of all the years of observation in the subsequent validation period 1986-2005, whose daily rainfall occurrence process variability is under hypothesis. Firstly, for each time series and for each fixed threshold value, parameters estimation of the non-homogeneous Poisson model is carried out, referred to calibration period. As second step, in order to test the hypothesis that daily rainfall occurrence process preserves the same behaviour in more recent time periods, the intensity distribution evaluated for calibration period is also adopted for the validation period. Starting from this and using a Monte Carlo approach, 1000 synthetic generations of daily rainfall occurrences, of length equal to validation period, have been carried out, and for each simulation sample ?(t) has been evaluated. This procedure is adopted because of the complexity of determining analytical statistical confidence limits referred to the sample intensity ?(t). Finally, sample intensity, theoretical function of the calibration period and 95% statistical band, evaluated by Monte Carlo approach, are matching, together with considering, for each threshold value, the mean square error (MSE) between the theoretical ?(t) and the sample one of recorded data, and his correspondent 95% one tail statistical band, estimated from the MSE values between the sample ?(t) of each synthetic series and the theoretical one. The results obtained may be very useful in the context of the identification and calibration of stochastic rainfall models based on historical precipitation data. Further applications of the non-homogeneous Poisson model will concern the joint analyses of the storm occurrence process with the rainfall height marks, interpreted by using a temporally homogeneous model in proper sub-year intervals.
NASA Astrophysics Data System (ADS)
Kaitna, R.; Braun, M.
2016-12-01
Steep mountain channels episodically can experience very different geomorphic processes, ranging from flash floods, intensive bedload transport, debris floods, and debris flows. Rainfall-related trigger conditions and geomorphic disposition for each of these processes to occur, as well as conditions leading to one process and not to the other, are not well understood. In this contribution, we analyze triggering rainfalls for all documented events in the Eastern (Austrian) Alps on a daily and sub-daily basis. The analysis with daily rainfall data covers more than 6640 events between 1901 and 2014 and the analysis based on sub-daily (10 min interval) rainfall data includes around 950 events between 1992 and 2014. Of the four investigated event types, we find that debris flows are typically associated with the least cumulative rainfall, while intensive bedload transport as well as torrential floods occur when there is a substantial amount of cumulative rainfall. Debris floods are occurring on average with cumulative rainfall in a range between the aforementioned processes. Comparison of historical data shows, that about 90% of events are triggered with a combination of extreme rainfall and temperature. Bayesian analysis reveals that a high degree of geomorphic events is associated with very short rainfall durations that cannot be resolved with daily rainfall data. A comparison of both datasets shows that subdaily data gives more accurate results. Additionally, we find a high degree of regional differences, e.g. between regions north and south of the Alpine chain or high or low Alpine regions. There is indication that especially debris flows need less total rainfall amount when occurring in regions with a high relief energy than in less steep environments. The limitation of our analysis is mainly due to the distance between the locations of event triggering and rainfall measurement and the definition of rainfall events for the Bayesian analysis. In a next step, we will connect our results with the analyses of the hydrological as well as geomorphological disposition in selected study regions and with projections of changing climate conditions.
Trends in autumn rain of West China from 1961 to 2014
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wang, Zunya; Zhou, Botao; Li, Yonghua; Tang, Hongyu; Xiang, Bo
2018-02-01
Autumn rain of West China is a typical climate phenomenon, which is characterized by continuous rainy days and large rainfall amounts and exerts profound impacts on the economic society. Based on daily precipitation data from 524 observation stations for the period of 1961-2014, this article comprehensively examined secular changes in autumn rain of West China, including its amount, frequency, intensity, and associated extremes. The results generally show a significant reduction of rainfall amount and rainy days and a significant enhancement of mean rainfall intensity for the average of West China during autumn (September-October) since 1961. Meanwhile, decreasing trends are consistently observed in the maximum daily rainfall, the longest consecutive rainy days, the greatest consecutive rainfall amount, and the frequencies of the extreme daily rainfall, consecutive rainfall, and consecutive rainfall process. Further analysis indicates that the decreases of autumn rainfall and related extremes in West China are associated with the decreases in both water vapor content and atmospheric unstable stratification during the past decades. On the regional scale, some differences exist in the changes of autumn rainfall between the eastern and western parts of West China. Besides, it is found that the autumn rainy season tends to start later and terminate earlier particularly in eastern West China.
Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.
Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J
2017-02-01
Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high-resolution climate models and improved understanding of the drivers of extreme rainfall.
Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK
Lewis, Elizabeth; Chan, Steven C.; Fowler, Hayley J.
2016-01-01
ABSTRACT Sub‐daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non‐operation of gauges. Given the prospect of an intensification of short‐duration rainfall in a warming climate, the identification of such errors is essential if sub‐daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near‐complete hourly records for 1992–2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n‐largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north–south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub‐daily rainfall, with convection dominating during summer. The resulting quality‐controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality‐control procedures for sub‐daily data, the validation of the new generation of very high‐resolution climate models and improved understanding of the drivers of extreme rainfall. PMID:28239235
NASA Astrophysics Data System (ADS)
Sehad, Mounir; Lazri, Mourad; Ameur, Soltane
2017-03-01
In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe; Bonaccorso, Brunella; Gueli, Roberto; Basile, Giuseppe
2017-09-01
The main focus of the paper is to present a flood and landslide early warning system, named HEWS (Hydrohazards Early Warning System), specifically developed for the Civil Protection Department of Sicily, based on the combined use of rainfall thresholds, soil moisture modelling and quantitative precipitation forecast (QPF). The warning system is referred to 9 different Alert Zones
in which Sicily has been divided into and based on a threshold system of three different increasing critical levels: ordinary, moderate and high. In this system, for early flood warning, a Soil Moisture Accounting (SMA) model provides daily soil moisture conditions, which allow to select a specific set of three rainfall thresholds, one for each critical level considered, to be used for issue the alert bulletin. Wetness indexes, representative of the soil moisture conditions of a catchment, are calculated using a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method, and on the unit hydrograph approach, that require daily observed and/or predicted rainfall, and temperature data as input. For the calibration of this model daily continuous time series of rainfall, streamflow and air temperature data are used. An event based lumped rainfall-runoff model has been, instead, used for the derivation of the rainfall thresholds for each catchment in Sicily characterised by an area larger than 50 km2. In particular, a Kinematic Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall was developed for this purpose. For rainfall-induced shallow landslide warning, empirical rainfall thresholds provided by Gariano et al. (2015) have been included in the system. They were derived on an empirical basis starting from a catalogue of 265 shallow landslides in Sicily in the period 2002-2012. Finally, Delft-FEWS operational forecasting platform has been applied to link input data, SMA model and rainfall threshold models to produce warning on a daily basis for the entire region.
NASA Astrophysics Data System (ADS)
Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson
2018-05-01
Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.
Descriptive Statistics and Cluster Analysis for Extreme Rainfall in Java Island
NASA Astrophysics Data System (ADS)
E Komalasari, K.; Pawitan, H.; Faqih, A.
2017-03-01
This study aims to describe regional pattern of extreme rainfall based on maximum daily rainfall for period 1983 to 2012 in Java Island. Descriptive statistics analysis was performed to obtain centralization, variation and distribution of maximum precipitation data. Mean and median are utilized to measure central tendency data while Inter Quartile Range (IQR) and standard deviation are utilized to measure variation of data. In addition, skewness and kurtosis used to obtain shape the distribution of rainfall data. Cluster analysis using squared euclidean distance and ward method is applied to perform regional grouping. Result of this study show that mean (average) of maximum daily rainfall in Java Region during period 1983-2012 is around 80-181mm with median between 75-160mm and standard deviation between 17 to 82. Cluster analysis produces four clusters and show that western area of Java tent to have a higher annual maxima of daily rainfall than northern area, and have more variety of annual maximum value.
Yoo, Chulsang; Lee, Jinwook; Ro, Yonghun
2016-01-01
This paper evaluates the effect of climate change on daily rainfall, especially on the mean number of wet days and the mean rainfall intensity. Assuming that the mechanism of daily rainfall occurrences follows the first-order Markov chain model, the possible changes in the transition probabilities are estimated by considering the climate change scenarios. Also, the change of the stationary probabilities of wet and dry day occurrences and finally the change in the number of wet days are derived for the comparison of current (1x CO 2) and 2x CO 2conditions. As a result of this study, the increase or decreasemore » in the mean number of wet days was found to be not enough to explain all of the change in monthly rainfall amounts, so rainfall intensity should also be modified. The application to the Seoul weather station in Korea shows that about 30% of the total change in monthly rainfall amount can be explained by the change in the number of wet days and the remaining 70% by the change in the rainfall intensity. That is, as an effect of climate change, the increase in the rainfall intensity could be more significant than the increase in the wet days and, thus, the risk of flood will be much highly increased.« less
Natural variability of the Keetch-Byram Drought Index in the Hawaiian Islands
Klaus Dolling; Pao-Shin Chu; Francis Fujioka
2009-01-01
The Hawaiian Islands experience damaging wildfires on a yearly basis. Soil moisture or lack thereof influences the amount and flammability of vegetation. Incorporating daily maximum temperatures and daily rainfall amounts, the KeetchâByram Drought Index (KBDI) estimates the amount of soil moisture by tracking daily maximum temperatures and rainfall. A previous study...
Rainfall intensification in tropical semi-arid regions: the Sahelian case
NASA Astrophysics Data System (ADS)
Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sane, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diopkane, M.
2018-06-01
An anticipated consequence of ongoing global warming is the intensification of the rainfall regimes meaning longer dry spells and heavier precipitation when it rains, with potentially high hydrological and socio-economic impacts. The semi-arid regions of the intertropical band, such as the Sahel, are facing particularly serious challenges in this respect since their population is strongly vulnerable to extreme climatic events. Detecting long term trends in the Sahelian rainfall regime is thus of great societal importance, while being scientifically challenging because datasets allowing for such detection studies are rare in this region. This study addresses this challenge by making use of a large set of daily rain gauge data covering the Sahel (defined in this study as extending from 20°W–10°E and from 11°N–18°N) since 1950, combined with an unparalleled 5 minute rainfall observations available since 1990 over the AMMA-CATCH Niger observatory. The analysis of the daily data leads to the assertion that a hydro-climatic intensification is actually taking place in the Sahel, with an increasing mean intensity of rainy days associated with a higher frequency of heavy rainfall. This leads in turn to highlight that the return to wetter annual rainfall conditions since the beginning of the 2000s—succeeding the 1970–2000 drought—is by no mean a recovery towards the much smoother regime that prevailed during the 1950s and 1960s. It also provides a vision of the contrasts existing between the West Sahel and the East Sahel, the East Sahel experiencing a stronger increase of extreme rainfall. This regional vision is complemented by a local study at sub-daily timescales carried out thanks to the 5 minute rainfall series of the AMMA-CATCH Niger observatory (12000 km2). The increasing intensity of extreme rainfall is also visible at sub-daily timescales, the annual maximum intensities have increased at an average rate of 2%–6% per decade since 1990 for timescales ranging from 5 min to 1 hour. Both visions—regional/long term/daily on the one hand, and local/27/years/sub-daily, on the other—converge to the conclusion that, rather than a rainfall recovery, the Sahel is experiencing a new era of climate extremes that roughly started at the beginning of this century.
De Paola, Francesco; Giugni, Maurizio; Topa, Maria Elena; Bucchignani, Edoardo
2014-01-01
Changes in the hydrologic cycle due to increase in greenhouse gases cause variations in intensity, duration, and frequency of precipitation events. Quantifying the potential effects of climate change and adapting to them is one way to reduce urban vulnerability. Since rainfall characteristics are often used to design water structures, reviewing and updating rainfall characteristics (i.e., Intensity-Duration-Frequency (IDF) curves) for future climate scenarios is necessary (Reg Environ Change 13(1 Supplement):25-33, 2013). The present study regards the evaluation of the IDF curves for three case studies: Addis Ababa (Ethiopia), Dar Es Salaam (Tanzania) and Douala (Cameroon). Starting from daily rainfall observed data, to define the IDF curves and the extreme values in a smaller time window (10', 30', 1 h, 3 h, 6 h, 12 h), disaggregation techniques of the collected data have been used, in order to generate a synthetic sequence of rainfall, with statistical properties similar to the recorded data. Then, the rainfall pattern of the three test cities was analyzed and IDF curves were evaluated. In order to estimate the contingent influence of climate change on the IDF curves, the described procedure was applied to the climate (rainfall) simulations over the time period 2010-2050, provided by CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici). The evaluation of the IDF curves allowed to frame the rainfall evolution of the three case studies, considering initially only historical data, then taking into account the climate projections, in order to verify the changes in rainfall patterns. The same set of data and projections was also used for evaluating the Probable Maximum Precipitation (PMP).
Investigation of summer monsoon rainfall variability in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Mian Sabir; Lee, Seungho
2016-08-01
This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.
Drayna, Patrick; McLellan, Sandra L.; Simpson, Pippa; Li, Shun-Hwa; Gorelick, Marc H.
2010-01-01
Background Microbial water contamination after periods of heavy rainfall is well described, but its link to acute gastrointestinal illness (AGI) in children is not well known. Objectives We hypothesize an association between rainfall and pediatric emergency department (ED) visits for AGI that may represent an unrecognized, endemic burden of pediatric disease in a major U.S. metropolitan area served by municipal drinking water systems. Methods We conducted a retrospective time series analysis of visits to the Children’s Hospital of Wisconsin ED in Wauwatosa, Wisconsin. Daily visit totals of discharge International Classification of Diseases, 9th Revision codes of gastroenteritis or diarrhea were collected along with daily rainfall totals during the study period from 2002 to 2007. We used an autoregressive moving average model, adjusting for confounding variables such as sewage release events and season, to look for an association between daily visits and rainfall after a lag of 1–7 days. Results A total of 17,357 AGI visits were identified (mean daily total, 7.9; range, 0–56). Any rainfall 4 days prior was significantly associated with an 11% increase in AGI visits. Expected seasonal effects were also seen, with increased AGI visits in winter months. Conclusions We observed a significant association between rainfall and pediatric ED visits for AGI, suggesting a waterborne component of disease transmission in this population. The observed increase in ED visits for AGI occurred in the absence of any disease outbreaks reported to public health officials in our region, suggesting that rainfall-associated illness may be underestimated. Further study is warranted to better address this association. PMID:20515725
A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events
NASA Astrophysics Data System (ADS)
Zorzetto, E.; Marani, M.
2017-12-01
The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.
NASA Astrophysics Data System (ADS)
Wen-feng, Tang; You-biao, Hu
2018-05-01
This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.
Quasi-continuous stochastic simulation framework for flood modelling
NASA Astrophysics Data System (ADS)
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
NASA Astrophysics Data System (ADS)
Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed
2017-04-01
One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.
Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps
NASA Astrophysics Data System (ADS)
Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter
2017-04-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.
NASA Astrophysics Data System (ADS)
Pan, Huali; Hu, Mingjian; Ou, Guoqiang
2017-04-01
According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few risk for the debris flow when the daily rainfall was between 50.0-100.0mm, once the soil was saturated or nearly saturated because of the continuous antecedent precipitation, debris flow disaster would occur even the daily rainfall was only 50.0mm. In addition, it was prone to trigger debris flow disaster when the daily heavy rainfall was more than 100.0mm or the torrential rainfall in 3 days was between 250.0 -300.0mm.
Development of Sub-Daily Intensity Duration Frequency (IDF) Curves for Major Urban Areas in India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2014-12-01
Extreme precipitation events disrupt urban transportation and cause enormous damage to infrastructure. Urban areas are fast responding catchments due to significant impervious surface. Stormwater designs based on daily rainfall data provide inadequate information. We, therefore, develop intensity-duration-frequency curves using sub-daily (1 hour to 12 hour) rainfall data for 57 major urban areas in India. While rain gage stations data from urban areas are most suitable, but stations are unevenly distributed and their data have gaps and inconsistencies. Therefore, we used hourly rainfall data from the Modern Era Retrospective-analysis for Research and Applications (MERRA), which provides a long term data (1979 onwards). Since reanalysis products have uncertainty associated with them we need to enhance their accuracy before their application. We compared daily rain gage station data obtained from Global Surface Summary of Day Data (GSOD) available for 65 stations for the period of 2000-2010 with gridded daily rainfall data provided by Indian Meteorological Department (IMD). 3-hourly data from NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) were aggregated to daily for comparison with GSOD station data . TMPA is found to be best correlated with GSOD data. We used TMPA data to correct MERRA's hourly precipitation, which were applied to develop IDF curves. We compared results with IDF curves from empirical methods and found substantial disparities in the existing stormwater designs in India.
NASA Astrophysics Data System (ADS)
Papadimitriou, Constantinos; Donner, Reik V.; Stolbova, Veronika; Balasis, Georgios; Kurths, Jürgen
2015-04-01
Indian Summer monsoon is one of the most anticipated and important weather events with vast environmental, economical and social effects. Predictability of the Indian Summer Monsoon strength is crucial question for life and prosperity of the Indian population. In this study, we are attempting to uncover the relationship between the spatial complexity of Indian Summer Monsoon rainfall patterns, and the monsoon strength, in an effort to qualitatively determine how spatial organization of the rainfall patterns differs between strong and weak instances of the Indian Summer Monsoon. Here, we use observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). In order to capture different aspects of the system's dynamics, first, we convert rainfall time series to binary symbolic sequences, exploring various thresholding criteria. Second, we apply the Shannon entropy formulation (in a block-entropy sense) using different measures of normalization of the resulting entropy values. Finally, we examine the effect of various large-scale climate modes such as El-Niño-Southern Oscillation, North Atlantic Oscillation, and Indian Ocean Dipole, on the emerging complexity patterns, and discuss the possibility for the utilization of such pattern maps in the forecasting of the spatial variability and strength of the Indian Summer Monsoon.
NASA Astrophysics Data System (ADS)
Kossieris, Panagiotis; Makropoulos, Christos; Onof, Christian; Koutsoyiannis, Demetris
2018-01-01
Many hydrological applications, such as flood studies, require the use of long rainfall data at fine time scales varying from daily down to 1 min time step. However, in the real world there is limited availability of data at sub-hourly scales. To cope with this issue, stochastic disaggregation techniques are typically employed to produce possible, statistically consistent, rainfall events that aggregate up to the field data collected at coarser scales. A methodology for the stochastic disaggregation of rainfall at fine time scales was recently introduced, combining the Bartlett-Lewis process to generate rainfall events along with adjusting procedures to modify the lower-level variables (i.e., hourly) so as to be consistent with the higher-level one (i.e., daily). In the present paper, we extend the aforementioned scheme, initially designed and tested for the disaggregation of daily rainfall into hourly depths, for any sub-hourly time scale. In addition, we take advantage of the recent developments in Poisson-cluster processes incorporating in the methodology a Bartlett-Lewis model variant that introduces dependence between cell intensity and duration in order to capture the variability of rainfall at sub-hourly time scales. The disaggregation scheme is implemented in an R package, named HyetosMinute, to support disaggregation from daily down to 1-min time scale. The applicability of the methodology was assessed on a 5-min rainfall records collected in Bochum, Germany, comparing the performance of the above mentioned model variant against the original Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the disaggregation process reproduces adequately the most important statistical characteristics of rainfall at wide range of time scales, while the introduction of the model with dependent intensity-duration results in a better performance in terms of skewness, rainfall extremes and dry proportions.
The Angola Low: relationship with southern African rainfall and ENSO
NASA Astrophysics Data System (ADS)
Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien; Berthou, Ségolène; Pergaud, Julien
2018-05-01
The main states of the Angola Low (AL) are identified using clustering analysis applied to daily anomalous patterns of 700-hPa wind vorticity over Angola and adjacent countries from November to March for the 1980/81-2014/15 period. At the daily timescale, we examine the extent to which the main states of the AL modulate daily rainfall over southern Africa. At the interannual timescale, we assess both the relationship between the occurrence of these AL states and El Niño southern oscillation (ENSO) and the role of the AL in explaining ENSO's failure in driving southern African rainfall at times. Three reanalyses are considered to account for uncertainties induced by the scarcity of data available for assimilation over southern Africa. Three preferential states of the Angola Low are identified: AL state close to its seasonal climatology with slight zonal displacements, anomalously weak AL state and anomalously strong AL state with meridional displacements. These different states all significantly modulate daily southern African rainfall. Near-climatological AL state promotes wet rainfall anomalies over eastern subtropical southern Africa and dry rainfall anomalies over its western part. A slight westward shift in the near-climatological position of the AL leads to reversed zonal gradient in rainfall. The remaining regimes significantly modulate the meridional gradient in southern African rainfall. Anomalously weak and anomalously northward AL states promote wet rainfall anomalies over tropical southern Africa and dry rainfall anomalies over subtropical southern Africa. The reverse prevails for anomalously southward AL. At the interannual timescale, ENSO significantly modulates the seasonal occurrence of most AL states in the three reanalyses. Anomalously weak and southward AL states are more strongly correlated with regional rainfall than ENSO in all reanalyses, suggesting that accounting for AL variability may improve seasonal forecasts. Case study analysis of the major 1982/83 and 1997/98 El Niño events suggests that the weak rainfall anomalies and strong seasonal AL in 1997/98 may result from counteracting effects between ENSO and Indian Ocean coupled modes of variability.
NASA Astrophysics Data System (ADS)
Liguori, Sara; O'Loughlin, Fiachra; Souvignet, Maxime; Coxon, Gemma; Freer, Jim; Woods, Ross
2014-05-01
This research presents a newly developed observed sub-daily gridded precipitation product for England and Wales. Importantly our analysis specifically allows a quantification of rainfall errors from grid to the catchment scale, useful for hydrological model simulation and the evaluation of prediction uncertainties. Our methodology involves the disaggregation of the current one kilometre daily gridded precipitation records available for the United Kingdom[1]. The hourly product is created using information from: 1) 2000 tipping-bucket rain gauges; and 2) the United Kingdom Met-Office weather radar network. These two independent datasets provide rainfall estimates at temporal resolutions much smaller than the current daily gridded rainfall product; thus allowing the disaggregation of the daily rainfall records to an hourly timestep. Our analysis is conducted for the period 2004 to 2008, limited by the current availability of the datasets. We analyse the uncertainty components affecting the accuracy of this product. Specifically we explore how these uncertainties vary spatially, temporally and with climatic regimes. Preliminary results indicate scope for improvement of hydrological model performance by the utilisation of this new hourly gridded rainfall product. Such product will improve our ability to diagnose and identify structural errors in hydrological modelling by including the quantification of input errors. References [1] Keller V, Young AR, Morris D, Davies H (2006) Continuous Estimation of River Flows. Technical Report: Estimation of Precipitation Inputs. in Agency E (ed.). Environmental Agency.
NASA Astrophysics Data System (ADS)
Leonarduzzi, E.; Molnar, P.; McArdell, B. W.
2017-12-01
In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, almost 600 M USD) as reported in Hilker et al. (2009) for the period 1972-2007. A high-resolution gridded daily precipitation dataset is combined with a landslide inventory containing over 2000 events in the period 1972-2012 to analyze rainfall thresholds that lead to landsliding in Switzerland. First triggering rainfall and landslides are co-located obtaining the distributions of triggering and non-triggering rainfall event properties at the scale of the precipitation data (2*2 km2) and considering 1 day as the interarrival time to separate events. Then rainfall thresholds are obtained by maximizing true positives (accurate predictions) while minimizing false negatives (false alarms), using the True Skill Statistic. The best predictive performance is obtained by the intensity-duration ID threshold curve, followed by peak daily intensity (Imax) and mean event intensity (Imean). Event duration by itself has very low predictive power. In addition to country-wide thresholds, local ones are also defined by regionalization based on surface erodibility and local long-term climate (mean daily precipitation). Different Imax thresholds are determined for each of the regions separately. It is found that wetter local climate and lower erodibility lead to significantly higher rainfall thresholds required to trigger landslides. However, the improvement in model performance due to regionalization is marginal and much lower than what can be achieved by having a high quality landslide database. In order to validate the performance of the Imax rainfall threshold model, reference cases will be presented in which the landslide locations and timing are randomized and the landslide sample size is reduced. Jack-knife and cross-validation experiments demonstrate that the model is robust. The results highlight the potential of using rainfall I-D threshold curves and Imax threshold values for predicting the occurrence of landslides on a country or regional scale even with daily precipitation data, with possible applications in landslide warning systems.
NASA Astrophysics Data System (ADS)
Fragoso, M.; Trigo, R. M.; Lopes, S.; Lopes, A.; Magro, C.
2010-09-01
On February 20, 2010, the Madeira island (Portugal) was hit by torrential rains that triggered catastrophic flash floods, accounting for 43 deaths and 8 missing people. The regional authorities estimated that the total losses exceeded 1 billion of euros resulting from the destructive damages, which were very harmful in Funchal, the capital of the region, where 22 persons died. This paper aims to analyse and discuss two main issues related with the exceptionality of this event. The first part deals with the atmospheric context associated with the rainfall episode, which occurred embedded in a very rainy winter season on this subtropical Atlantic region. Large scale atmospheric controls will be analysed, taking into consideration the low phase conditions of the North Atlantic Oscillation (NAO) that remained overwhelmingly negative between late November 2009 and early April 2010. The role of positive sea surface temperatures anomalies in the subtropical Atlantic region during the prevous weeks will be also investigated. Furthermore, the discussion will be focused on the meteorological precursors of the 20 February rainstorm, using synoptic weather charts and sub-daily reanalysis data and analysing appropriate variables, such as, SLP, geopotential height, instability indices, precipitable water, and others atmospheric parameters. The second section of this work is devoted to the evaluation of the exceptionality of the rainfall records related with this event. In Funchal (Observatory station), the precipitation amount registered during February 2010 was 458 mm, exceeding by seven times (!) the average monthly precipitation, constituting the new absolute record, since 1865, when this meteorological station began its activity. The daily rainfall on 20 February in the same location was 132 mm, which is the highest daily amount since 1920. Return periods of this daily amount will be estimated for the two stations with the longest period available of daily precipitation, Funchal Observatory and mountain peek Areeiro. Daily, sub-daily, hourly and sub-hourly rainfall data will be also analysed using the available information from the modern automated raingauge network of the island. Among the several notable rainfall amounts, it should be highlighted the daily amounts between 300 and 350 mm reached in different locations on the southern flanks of the mountains above the 500 m height and six hours rainfall exceeding 200 mm at the upper parts of the slopes in the Funchal area.
Effects of episodic rainfall on a subterranean estuary
NASA Astrophysics Data System (ADS)
Yu, Xiayang; Xin, Pei; Lu, Chunhui; Robinson, Clare; Li, Ling; Barry, D. A.
2017-07-01
Numerical simulations were conducted to examine the effect of episodic rainfall on nearshore groundwater dynamics in a tidally influenced unconfined coastal aquifer, with a focus on both long-term (yearly) and short-term (daily) behavior of submarine groundwater discharge (SGD) and seawater intrusion (SWI). The results showed nonlinear interactions among the processes driven by rainfall, tides, and density gradients. Rainfall-induced infiltration increased the yearly averaged fresh groundwater discharge to the ocean but reduced the extents of the saltwater wedge and upper saline plume as well as the total rate of seawater circulation through both zones. Overall, the net effect of the interactions led to an increase of the SGD. The nearshore groundwater responded to individual rainfall events in a delayed and cumulative fashion, as evident in the variations of daily averaged SGD and salt stored in the saltwater wedge (quantifying the extent of SWI). A generalized linear model (GLM) along with a Gamma distribution function was developed to describe the delayed and prolonged effect of rainfall events on short-term groundwater behavior. This model validated with results of daily averaged SGD and SWI from the simulations of groundwater and solute transport using independent rainfall data sets, performed well in predicting the behavior of the nearshore groundwater system under the combined influence of episodic rainfall, tides, and density gradients. The findings and developed GLM form a basis for evaluating and predicting SGD, SWI, and associated mass fluxes from unconfined coastal aquifers under natural conditions, including episodic rainfall.
Cascade rainfall disaggregation application in U.S. Central Plains
USDA-ARS?s Scientific Manuscript database
Hourly rainfall are increasingly used in complex, process-based simulations of the environment. Long records of daily rainfall are common, but long continuous records of hourly rainfall are rare and must be developed. A Multiplicative Random Cascade (MRC) model is proposed to disaggregate observed d...
Hydrologic data from urban watersheds in the Tampa Bay area, Florida
Lopez, Miguel A.; Michaelis, D.M.
1979-01-01
Hydrologic data are being collected in 10 urbanized watersheds located in the Tampa Bay area, Florida. The gaged watersheds have impervious areas that range from 19 percent for a residential watershed in north Tampa to nearly 100 percent for a downtown Tampa watershed. Land-use types, including roads, residential, commercial, industrial, institutional, recreational , and open space, have been determined for each watershed. Rainfall and storm runoff data collected since 1971 for one site and since 1975 for six other sites through September 1976, have been processed. These data are recorded at 5-minute intervals and are stored in the U. S. Geological Survey WATSTORE unit values file. Daily rainfall at 12 sites and daily pan evaporation at one site have been stored in the WATSTORE daily values file. Chemical and biological analyses of storm runoff for six sites, base flow for seven sites, and analyses of bottom material for seven sites are also stored in the WATSTORE water-quality files. Rainfall and storm runoff for selected storms, daily rainfall, and daily pan-evaporation data are summarized in this report. Water-quality analyses of all water-quality samples also are listed. (Woodard-USGS).
NASA Astrophysics Data System (ADS)
Rochyani, Neny
2017-11-01
Acid mine drainage is a major problem for the mining environment. The main factor that formed acid mine drainage is the volume of rainfall. Therefore, it is important to know clearly the main climate pattern of rainfall and season on the management of acid mine drainage. This study focuses on the effects of rainfall on acid mine water management. Based on daily rainfall data, monthly and seasonal patterns by using Gumbel approach is known the amount of rainfall that occurred in East Pit 3 West Banko area. The data also obtained the highest maximum daily rainfall on 165 mm/day and the lowest at 76.4 mm/day, where it is known that the rainfall conditions during the period 2007 - 2016 is from November to April so the use of lime is also slightly, While the low rainfall is from May to October and the use of lime will be more and more. Based on calculation of lime requirement for each return period, it can be seen the total of lime and financial requirement for treatment of each return period.
The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz
2015-07-01
This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.
An assessment of temporal effect on extreme rainfall estimates
NASA Astrophysics Data System (ADS)
Das, Samiran; Zhu, Dehua; Chi-Han, Cheng
2018-06-01
This study assesses the temporal behaviour in terms of inter-decadal variability of extreme daily rainfall of stated return period relevant for hydrologic risk analysis using a novel regional parametric approach. The assessment is carried out based on annual maximum daily rainfall series of 180 meteorological stations of Yangtze River Basin over a 50-year period (1961-2010). The outcomes of the analysis reveal that while there were effects present indicating higher quantile values when estimated from data of the 1990s, it is found not to be noteworthy to exclude the data of any decade from the extreme rainfall estimation process for hydrologic risk analysis.
National Centers for Environmental Prediction
: Monsoon progress image (Link) IITM : 2017 Monsoon (Link) SW Monsoon, 2016 IMD : Daily rainfall report (30th September, 2016) (Link) IMD : End of season Monsoon Report (2016) (Link) SW Monsoon, 2015 IMD : Daily rainfall report (30th September, 2015) (Link) IMD : End of season Monsoon Report (2015) (Link
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
NASA Astrophysics Data System (ADS)
Mascaro, Giuseppe
2018-04-01
This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.
NASA Astrophysics Data System (ADS)
Sooraj, K. P.; Terray, Pascal; Xavier, Prince
2016-06-01
Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.
Kaufmann, Vander; Pinheiro, Adilson; Castro, Nilza Maria dos Reis
2014-05-01
Intense rainfall adversely affects agricultural areas, causing transport of pollutants. Physically-based hydrological models to simulate flows of water and chemical substances can be used to help decision-makers adopt measures which reduce such problems. The purpose of this paper is to evaluate the performance of SWAP and ANIMO models for simulating transport of water, nitrate and phosphorus nutrients, during intense rainfall events generated by a simulator, and during natural rainfall, on a volumetric drainage lysimeter. The models were calibrated and verified using daily time series and simulated rainfall measured at 10-minute intervals. For daily time-intervals, the Nash-Sutcliffe coefficient was 0.865 for the calibration period and 0.805 for verification. Under simulated rainfall, these coefficients were greater than 0.56. The pattern of both nitrate and phosphate concentrations in daily drainage flow under simulated rainfall was acceptably reproduced by the ANIMO model. In the simulated rainfall, loads of nitrate transported in surface runoff varied between 0.08 and 8.46 kg ha(-1), and in drainage form the lysimeter, between 2.44 and 112.57 kg ha(-1). In the case of phosphate, the loads transported in surface runoff varied between 0.002 and 0.504 kg ha(-1), and in drainage, between 0.005 and 1.107 kg ha(-1). The use of the two models SWAP and ANIMO shows the magnitudes of nitrogen and phosphorus fluxes transported by natural and simulated intense rainfall in an agricultural area with different soil management procedures, as required by decision makers. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation and intercomparison of GPM-IMERG and TRMM 3B42 daily precipitation products over Greece
NASA Astrophysics Data System (ADS)
Kazamias, A. P.; Sapountzis, M.; Lagouvardos, K.
2017-09-01
Accurate precipitation data at high temporal and spatial resolutions are needed for numerous applications in hydrology, water resources management and flood risk management. Satellite-based precipitation estimations/products offer a potential alternative source of rainfall data for regions with sparse rain gauge network. The recently launched Global Precipitation Measurement (GPM) mission is the successor of Tropical Rainfall Measuring Mission (TRMM) providing global precipitation estimates at spatial resolution of 0.1 degree x 0.1 degree and half-hourly temporal resolution. This study aims at evaluating the accuracy of the Integrated Multi-satellite Retrievals for GPM (IMERG) near-real-time daily product (GPM-3IMERGDL) against rain gauge observations from a network of stations distributed across Greece for the year 2016. Moreover, the GPM-IMERG product is also compared with its predecessor, the Version-7 near-real-time (3B42RT) daily product of TRMM Multisatellite Precipitation Analysis (TMPA). Several statistical metrics are used to quantitatively evaluate the performance of the satellite-based precipitation estimates against rain gauge observations. In addition, categorical statistical indices are used to assess rain detection capabilities of the two satellite products. The GPM-IMERG daily product shows reasonable agreement (CC=0.60) against rain gauge observations, with the exception of coastal areas in which low correlations are achieved. The GPM-IMERG daily precipitation product tends to overestimate rainfall, especially in complex terrain areas with high annual precipitation. In particular, rainfall estimates in western Greece have a strong positive bias. On the other hand, the TRMM 3B42 product shows low correlation (CC=0.45) against rain gauge observations and slightly underestimates rainfall. This study is a first attempt to evaluate and compare the newly introduced GPM-IMERG and the TRMM 3B42 rainfall products at daily timescale over Greece.
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino
2015-04-01
To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.
Changing character of rainfall in eastern China, 1951-2007.
Day, Jesse A; Fung, Inez; Liu, Weihan
2018-02-27
The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call "frontal rain events." In spring and early summer (known as "Meiyu Season"), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951-2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the "South Flood-North Drought" pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994-2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
Characteristics of extreme rainfall events in northwestern Peru during the 1982-1983 El Nino period
NASA Technical Reports Server (NTRS)
Goldberg, R. A.; Tisnado, G. M.; Scofield, R. A.
1987-01-01
Histograms and contour maps describing the daily rainfall characteristics of a northwestern Peru area most severely affected by the 1982-1983 El Nino event were prepared from daily rainfall data obtained from 66 stations in this area during the El Nino event, and during the same 8-month intervals for the two years preceding and following the event. These data were analyzed, in conjunction with the anlysis of visible and IR satellite images, for cloud characteristics and structure. The results present a comparison of the rainfall characteristics as a function of elevation, geographic location, and the time of year for the El Nino and non-El Nino periods.
Rainfall in and near Lake County, Illinois, December 1989-September 1993
Duncker, James J.; Vail, Tracy J.; Robinson, Steven M.
1994-01-01
Rainfall quantity data for 23 rainfall-gaging stations located in and near Lake County, Ill., are presented. The rainfall data were collected from December 1989 through September 1993 as part of an on-going rainfall-runoff investigation. Station descriptions identify the location of and equipment installed at each rainfall-gaging station. Total daily rainfall is tabulated for each rainfall-gaging station for each water year. Periods of missing record and snow-affected precipitation totals are identified. The data are presented graphically using annual hyetographs and mass plots.
NASA Astrophysics Data System (ADS)
Kandel, D. D.; Western, A. W.; Grayson, R. B.
2004-12-01
Mismatches in scale between the fundamental processes, the model and supporting data are a major limitation in hydrologic modelling. Surface runoff generation via infiltration excess and the process of soil erosion are fundamentally short time-scale phenomena and their average behaviour is mostly determined by the short time-scale peak intensities of rainfall. Ideally, these processes should be simulated using time-steps of the order of minutes to appropriately resolve the effect of rainfall intensity variations. However, sub-daily data support is often inadequate and the processes are usually simulated by calibrating daily (or even coarser) time-step models. Generally process descriptions are not modified but rather effective parameter values are used to account for the effect of temporal lumping, assuming that the effect of the scale mismatch can be counterbalanced by tuning the parameter values at the model time-step of interest. Often this results in parameter values that are difficult to interpret physically. A similar approach is often taken spatially. This is problematic as these processes generally operate or interact non-linearly. This indicates a need for better techniques to simulate sub-daily processes using daily time-step models while still using widely available daily information. A new method applicable to many rainfall-runoff-erosion models is presented. The method is based on temporal scaling using statistical distributions of rainfall intensity to represent sub-daily intensity variations in a daily time-step model. This allows the effect of short time-scale nonlinear processes to be captured while modelling at a daily time-step, which is often attractive due to the wide availability of daily forcing data. The approach relies on characterising the rainfall intensity variation within a day using a cumulative distribution function (cdf). This cdf is then modified by various linear and nonlinear processes typically represented in hydrological and erosion models. The statistical description of sub-daily variability is thus propagated through the model, allowing the effects of variability to be captured in the simulations. This results in cdfs of various fluxes, the integration of which over a day gives respective daily totals. Using 42-plot-years of surface runoff and soil erosion data from field studies in different environments from Australia and Nepal, simulation results from this cdf approach are compared with the sub-hourly (2-minute for Nepal and 6-minute for Australia) and daily models having similar process descriptions. Significant improvements in the simulation of surface runoff and erosion are achieved, compared with a daily model that uses average daily rainfall intensities. The cdf model compares well with a sub-hourly time-step model. This suggests that the approach captures the important effects of sub-daily variability while utilizing commonly available daily information. It is also found that the model parameters are more robustly defined using the cdf approach compared with the effective values obtained at the daily scale. This suggests that the cdf approach may offer improved model transferability spatially (to other areas) and temporally (to other periods).
Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past
NASA Astrophysics Data System (ADS)
Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.
2016-12-01
The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.
Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature
NASA Astrophysics Data System (ADS)
Hassan, Zulkarnain; Shamsudin, Supiah; Harun, Sobri
2014-04-01
Climate change is believed to have significant impacts on the water basin and region, such as in a runoff and hydrological system. However, impact studies on the water basin and region are difficult, since general circulation models (GCMs), which are widely used to simulate future climate scenarios, do not provide reliable hours of daily series rainfall and temperature for hydrological modeling. There is a technique named as "downscaling techniques", which can derive reliable hour of daily series rainfall and temperature due to climate scenarios from the GCMs output. In this study, statistical downscaling models are used to generate the possible future values of local meteorological variables such as rainfall and temperature in the selected stations in Peninsular of Malaysia. The models are: (1) statistical downscaling model (SDSM) that utilized the regression models and stochastic weather generators and (2) Long Ashton research station weather generator (LARS-WG) that only utilized the stochastic weather generators. The LARS-WG and SDSM models obviously are feasible methods to be used as tools in quantifying effects of climate change condition in a local scale. SDSM yields a better performance compared to LARS-WG, except SDSM is slightly underestimated for the wet and dry spell lengths. Although both models do not provide identical results, the time series generated by both methods indicate a general increasing trend in the mean daily temperature values. Meanwhile, the trend of the daily rainfall is not similar to each other, with SDSM giving a relatively higher change of annual rainfall compared to LARS-WG.
NASA Astrophysics Data System (ADS)
Ngo-Thanh, Huong; Ngo-Duc, Thanh; Nguyen-Hong, Hanh; Baker, Peter; Phan-Van, Tan
2018-05-01
The daily rainfall data at 13 stations over the Central Highlands (CH) Vietnam were collected for the period 1981-2014. Two different sets of criteria using daily observed rainfall and 850 hPa daily reanalysis wind data were applied to determine the onset (retreat) dates of the summer rainy season (RS) and summer monsoon (SM) season, respectively. Over the study period, the mean RS and SM onset dates were April 20 and May 13 with standard deviations of 17.4 and 17.8 days, respectively. The mean RS and SM retreat dates were November 1 and September 30 with standard deviations of 17.9 and 10.2 days, respectively . The year-to-year variations of the onset dates and the rainfall amount within the RS and SM season were closely linked with the preceding winter and spring sea surface temperature in the central-eastern and western Pacific. It was also found that the onset dates were significantly correlated with the RS and SM rainfall amount.
How would peak rainfall intensity affect runoff predictions using conceptual water balance models?
NASA Astrophysics Data System (ADS)
Yu, B.
2015-06-01
Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud) in the French Alps (area = 1.478 km2) (1966-2006). Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd) were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash-Sutcliffe coefficient of efficiency (NSE) varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10-20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.
Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem
NASA Astrophysics Data System (ADS)
Tennant, Warren J.; Hewitson, Bruce C.
2002-07-01
Daily station rainfall data in South Africa from 1936 to 1999 are combined into homogeneous rainfall regions using Ward's clustering method. Various rainfall characteristics are calculated for the summer season, defined as December to February. These include seasonal rainfall total, region-average number of station rain days exceeding 1 and 20 mm, region-average of periods between rain days at stations >1 and >20 mm, region-average of wet spell length (sequential days of station rainfall >1 and >20 mm), correlation of daily station rainfall within a region and correlation of seasonal station rainfall anomalies within a region.Rank-ordered rainfall characteristic data generally form an s-shaped curve, and significance testing of discontinuities in these curves suggests that normal rainfall conditions in South Africa consist of a combined middle three quintiles separated from the outer quintiles, rather than the traditional middle tercile.The relationships between the various rainfall characteristics show that seasons with a high total rainfall generally have a higher number of heavy rain days (>20 mm) and not necessarily an increase in light rain days. The length of the period between rain days has a low correlation to season totals, demonstrating that seasons with a high total rainfall may still contain prolonged dry periods. These additional rainfall characteristics are important to end-users, and the analysis undertaken here offers a valuable starting point for seeking physical relationships between rainfall characteristics and the general circulation. Preliminary studies show that the vertical mean wind is related to rainfall characteristics in South Africa. Given that general circulation models capture this part of the circulation adequately, seasonal forecasts of rainfall characteristics become plausible.
Changing character of rainfall in eastern China, 1951–2007
NASA Astrophysics Data System (ADS)
Day, Jesse A.; Fung, Inez; Liu, Weihan
2018-03-01
The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2015-12-01
Runoff generated during heavy rainfall imposes quick, but often intense, changes in the flow of streams, which increase the chance of flash floods in the vicinity of the streams. Understanding the temporal response of streams to heavy rainfall requires a hydrological model that considers meteorological, hydrological, and geological components of the streams and their watersheds. SWAT is a physically-based, semi-distributed model that is capable of simulating water flow within watersheds with both long-term, i.e. annually and monthly, and short-term (daily and sub-daily) time scales. However, the capability of SWAT in sub-daily water flow modeling within large watersheds has not been studied much, compare to long-term and daily time scales. In this study we are investigating the water flow in a large, semi-arid watershed, Nueces River Basin (NRB) with the drainage area of 16950 mi2 located in South Texas, with daily and sub-daily time scales. The objectives of this study are: (1) simulating the response of streams to heavy, and often quick, rainfall, (2) evaluating SWAT performance in sub-daily modeling of water flow within a large watershed, and (3) examining means for model performance improvement during model calibration and verification based on results of sensitivity and uncertainty analysis. The results of this study can provide important information for water resources planning during flood seasons.
TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization
NASA Astrophysics Data System (ADS)
Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.
2015-06-01
The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.
Identification of anomalous motion of thunderstorms using daily rainfall fields
NASA Astrophysics Data System (ADS)
del Moral, Anna; Llasat, Maria Carmen; Rigo, Tomeu
2016-04-01
Adverse weather phenomena in Catalonia (NE of the Iberian Peninsula) is commonly associated to heavy rains, large hail, strong winds, and/or tornados, all of them caused by thunderstorms. In most of the cases with adverse weather, thunderstorms vary sharply their trajectories in a concrete moment, changing completely the motion directions that have previously followed. Furthermore, it is possible that a breaking into several cells may be produced, or, in the opposite, it can be observed a joining of different thunderstorms into a bigger system. In order to identify the main features of the developing process of thunderstorms and the anomalous motions that these may follow in some cases, this contribution presents a classification of the events using daily rainfall fields, with the purpose of distinguishing quickly anomalous motion of thunderstorms. The methodology implemented allows classifying the daily rainfall fields in three categories by applying some thresholds related with the daily precipitation accumulated values and their extension: days with "no rain", days with "potentially convective" rain and days with "non-potentially convective" rain. Finally, for those "potentially convective" daily rainfall charts, it also allows a geometrical identification and classification of all the convective structures into "ellipse" and "non-ellipse", obtaining then the structures with "normal" or "anomalous" motion pattern, respectively. The work is focused on the period 2008-2015, and presents some characteristics of the rainfall behaviour in terms of the seasonal distribution of convective rainfall or the geographic variability. It shows that convective structures are mainly found during late spring and summer, even though they can be recorded in any time of the year. Consequently, the maximum number of convective structures with anomalous motion is recorded between July and November. Furthermore, the contribution shows the role of the orography of Catalonia in the development of convective structures. This work has been developed in the framework of the Spanish project HOPE.
NASA Astrophysics Data System (ADS)
Gibergans-Báguena, J.; Llasat, M. C.
2007-12-01
The objective of this paper is to present the improvement of quantitative forecasting of daily rainfall in Catalonia (NE Spain) from an analogues technique, taking into account synoptic and local data. This method is based on an analogues sorting technique: meteorological situations similar to the current one, in terms of 700 and 1000 hPa geopotential fields at 00 UTC, complemented with the inclusion of some thermodynamic parameters extracted from an historical data file. Thermodynamic analysis acts as a highly discriminating feature for situations in which the synoptic situation fails to explain either atmospheric phenomena or rainfall distribution. This is the case in heavy rainfall situations, where the existence of instability and high water vapor content is essential. With the objective of including these vertical thermodynamic features, information provided by the Palma de Mallorca radiosounding (Spain) has been used. Previously, a selection of the most discriminating thermodynamic parameters for the daily rainfall was made, and then the analogues technique applied to them. Finally, three analog forecasting methods were applied for the quantitative daily rainfall forecasting in Catalonia. The first one is based on analogies from geopotential fields to synoptic scale; the second one is exclusively based on the search of similarity from local thermodynamic information and the third method combines the other two methods. The results show that this last method provides a substantial improvement of quantitative rainfall estimation.
Regional frequency analysis of observed sub-daily rainfall maxima over eastern China
NASA Astrophysics Data System (ADS)
Sun, Hemin; Wang, Guojie; Li, Xiucang; Chen, Jing; Su, Buda; Jiang, Tong
2017-02-01
Based on hourly rainfall observational data from 442 stations during 1960-2014, a regional frequency analysis of the annual maxima (AM) sub-daily rainfall series (1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast (NE1, NE2), Central (C), Central North (CN1, CN2), Central East (CE1, CE2, CE3), Southeast (SE1, SE2, SE3, SE4), and Southwest (SW). The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80-270 mm (1-h to 24-h rainfall) and 108-390 mm (1-h to 24-h rainfall) for 20- and 100 yr, respectively. Minimum return levels were in the CN1 and NE1 regions, with values of 37-104 mm and 53-140 mm for 20 and 100 yr, respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1-24-h rainfall varied from -3-4 mm to -23-11 mm (-10%-10%) for 20-yr events, reaching -6-26 mm (-10%-30%) and -10-133 mm (-10%-90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.
Evaluation of different rainfall products over India for the summer monsoon
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mitra, Ashis; Turner, Andrew; Collins, Mathew; AchutoRao, Krishna
2015-04-01
Summer rainfall over India forms an integral part of the Asian monsoon, which plays a key role in the global water cycle and climate system through coupled atmospheric and oceanic processes. Accurate prediction of Indian summer monsoon rainfall and its variability at various spatiotemporal scales are crucial for agriculture, water resources and hydroelectric-power sectors. Reliable rainfall observations are very important for verification of numerical model outputs and model development. However, high spatiotemporal variability of rainfall makes it difficult to measure adequately with ground-based instruments over a large region of various surface types from deserts to oceans. A number of multi-satellite rainfall products are available to users at different spatial and temporal scales. Each rainfall product has some advantages as well as limitations, hence it is essential to find a suitable region-specific data set among these rainfall products for a particular user application, such as water resources, agricultural modelling etc. In this study, we examine seasonal-mean and daily rainfall datasets for monsoon model validation. First, six multi-satellite and gauge-only rainfall products were evaluated over India at seasonal scale for 27 (JJAS 1979-2005) summer monsoon seasons against gridded 0.5-degree IMD gauge-based rainfall. Various skill metrics are computed to assess the potential of these data sets in representation of large-scale monsoon rainfall at all-India and sub-regional scales. Among the gauge-only data sets, APHRODITE and GPCC appear to outperform the others whereas GPCP is better than CMAP in the merged multi-satellite category. However, there are significant differences among these data sets indicating uncertainty in the observed rainfall over this region, with important implications for the evaluation of model simulations. At the daily scale, TRMM TMPA-3B42 is one of the best available products and is widely used for various hydro-meteorological applications. The existing version 6 (V6) products of TRMM underwent major changes and version 7 (V7) products were released in late 2012, and we compare these to the IMD daily gridded data over the 1998-2010 period. We show a clear improvement in V7 over V6 in the South Asian monsoon region using various skill metrics. Over typical monsoon rainfall zones, biases are improved by 5-10% in V7 over higher-rainfall regions. These results will help users to select appropriate rainfall product for their application. With the recent launch of the GPM Core Observatory, the release of a more advanced high-resolution multi-satellite rainfall product is expected soon.
Ingole, Vijendra; Juvekar, Sanjay; Muralidharan, Veena; Sambhudas, Somnath; Rocklöv, Joacim
2012-01-01
Background Research in mainly developed countries has shown that some changes in weather are associated with increased mortality. However, due to the lack of accessible data, few studies have examined such effects of weather on mortality, particularly in rural regions in developing countries. Objective In this study, we aimed to investigate the relationship between temperature and rainfall with daily mortality in rural India. Design Daily mortality data were obtained from the Health and Demographic Surveillance System (HDSS) in Vadu, India. Daily mean temperature and rainfall data were obtained from a regional meteorological center, India Meteorological Department (IMD), Pune. A Poisson regression model was established over the study period (January 2003–May 2010) to assess the short-term relationship between weather variables and total mortality, adjusting for time trends and stratifying by both age and sex. Result Mortality was found to be significantly associated with daily ambient temperatures and rainfall, after controlling for seasonality and long-term time trends. Children aged 5 years or below appear particularly susceptible to the effects of warm and cold temperatures and heavy rainfall. The population aged 20–59 years appeared to face increased mortality on hot days. Most age groups were found to have increased mortality rates 7–13 days after rainfall events. This association was particularly evident in women. Conclusion We found the level of mortality in Vadu HDSS in rural India to be highly affected by both high and low temperatures and rainfall events, with time lags of up to 2 weeks. These results suggest that weather-related mortality may be a public health problem in rural India today. Furthermore, as changes in local climate occur, adaptation measures should be considered to mitigate the potentially negative impacts on public health in these rural communities. PMID:23195513
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Spatial variability of mountain stream dynamics along the Ethiopian Rift Valley escarpment
NASA Astrophysics Data System (ADS)
Asfaha, Tesfaalem-Ghebreyohannes; Frankl, Amaury; Zenebe, Amanuel; Haile, Mitiku; Nyssen, Jan
2014-05-01
Changes in hydrogeomorphic characteristics of mountain streams are generally deemed to be controlled mainly by land use/cover changes and rainfall variability. This study investigates the spatial variability of peak discharge in relation to land cover, rainfall and topographic variables in eleven catchments of the Ethiopian Rift Valley escarpment (average slope gradient = 48% (± 13%). Rapid deforestation of the escarpment in the second half of the 20th century resulted in the occurrence of strong flash floods, transporting large amounts of discharge and sediment to the lower graben bottom. Due to integrated reforestation interventions as of the 1980s, many of these catchments do show improvement in vegetation cover at various degrees. Daily rainfall was measured using seven non-recording rain gauges, while peak stage discharges were measured after floods using crest stage gauges installed at eleven stream reaches. Peak discharges were calculated using the Manning's equation. Daily area-weighted rainfall was computed for each catchment using the Thiessen Polygon method. To estimate the vegetation cover of each catchment, the Normalized Difference Vegetation Index was calculated from Landsat TM imagery (mean = 0.14 ± 0.05). In the rainy season of 2012, there was a positive correlation between daily rainfall and peak discharge in each of the monitored catchments. In a multiple linear regression analysis (R² = 0.83; P<0.01), average daily peak discharge in all rivers was positively related with rainfall depth and catchment size and negatively with vegetation cover (as represented by average NDVI values). Average slope gradient of the catchments and Gravelius's compactness index did not show a statistically significant relation with peak discharge. This study shows that though the average vegetation cover of the catchments is still relatively low, differences in vegetation cover, together with rainfall variability plays a determining role in the amount of peak discharges in flashy mountain streams.
Farmer, William H.; Knight, Rodney R.; Eash, David A.; Kasey J. Hutchinson,; Linhart, S. Mike; Christiansen, Daniel E.; Archfield, Stacey A.; Over, Thomas M.; Kiang, Julie E.
2015-08-24
Daily records of streamflow are essential to understanding hydrologic systems and managing the interactions between human and natural systems. Many watersheds and locations lack streamgages to provide accurate and reliable records of daily streamflow. In such ungaged watersheds, statistical tools and rainfall-runoff models are used to estimate daily streamflow. Previous work compared 19 different techniques for predicting daily streamflow records in the southeastern United States. Here, five of the better-performing methods are compared in a different hydroclimatic region of the United States, in Iowa. The methods fall into three classes: (1) drainage-area ratio methods, (2) nonlinear spatial interpolations using flow duration curves, and (3) mechanistic rainfall-runoff models. The first two classes are each applied with nearest-neighbor and map-correlated index streamgages. Using a threefold validation and robust rank-based evaluation, the methods are assessed for overall goodness of fit of the hydrograph of daily streamflow, the ability to reproduce a daily, no-fail storage-yield curve, and the ability to reproduce key streamflow statistics. As in the Southeast study, a nonlinear spatial interpolation of daily streamflow using flow duration curves is found to be a method with the best predictive accuracy. Comparisons with previous work in Iowa show that the accuracy of mechanistic models with at-site calibration is substantially degraded in the ungaged framework.
Landslides in West Coast Metropolitan Areas: The Role of Extreme Weather Events
NASA Technical Reports Server (NTRS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia B.
2016-01-01
Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the occurrence and intensity of atmospheric rivers, in their duration and clustering, and in the occurrence of short-duration (sub-daily) extreme rainfall as well. Major regional landslide events, in which multiple occurrences are recorded in the catalog for the same day, are too rare to allow a statistical characterization of their triggering events, but a case study analysis indicates that a variety of synoptic-scale events can be involved, including not only atmospheric rivers but also broader cold- and warm-front precipitation. That a news-based catalog of landslides is accurate enough to allow the identification of different landslide/ rainfall relationships in the major urban areas along the US West Coast suggests that this technology can potentially be used for other English-language cities and could become an even more powerful tool if expanded to other languages and non-traditional news sources, such as social media.
Identification of anomalous motion of thunderstorms using daily rainfall fields
NASA Astrophysics Data System (ADS)
Moral, Anna del; Llasat, María del Carmen; Rigo, Tomeu
2017-03-01
Most of the adverse weather phenomena in Catalonia (northeast Iberian Peninsula) are caused by convective events, which can produce heavy rains, large hailstones, strong winds, lightning and/or tornadoes. These thunderstorms usually have marked paths. However, their trajectories can vary sharply at any given time, completely changing direction from the path they have previously followed. Furthermore, some thunderstorms split or merge with each other, creating new formations with different behaviour. In order to identify the potentially anomalous movements that some thunderstorms make, this paper presents a two-step methodology using a database with 8 years of daily rainfall fields data for the Catalonia region (2008-2015). First, it classifies daily rainfall fields between days with "no rain", "non-potentially convective rain" and "potentially convective rain", based on daily accumulated precipitation and extension thresholds. Second, it categorises convective structures within rainfall fields and briefly identifies their main features, distinguishing whether there were any anomalous thunderstorm movements in each case. This methodology has been applied to the 2008-2015 period, and the main climatic features of convective and non-convective days were obtained. The methodology can be exported to other regions that do not have the necessary radar-based algorithms to detect convective cells, but where there is a good rain gauge network in place.
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-04-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS-CN is a simple and valuable approach to estimate the total stream-flow volume generated by a storm rainfall, but it was developed to be used with daily rainfall data. To overcome this drawback, we propose to include the Green-Ampt (GA) infiltration model into a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt), aiming to distribute in time the information provided by the SCS-CN method so as to provide estimation of sub-daily incremental rainfall excess. For a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model. The proposed procedure was evaluated by analyzing 100 rainfall-runoff events observed in four small catchments of varying size. CN4GA appears an encouraging tool for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, a better agreement with observed hydrographs than that of the classic SCS-CN method.
Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa
NASA Astrophysics Data System (ADS)
Williams, C. J. R.; Kniveton, D. R.; Layberry, R.
2010-01-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.
NASA Astrophysics Data System (ADS)
Brett, M.; Mattey, D.; Stephens, M.
2015-12-01
Oxygen isotopes in speleothem provide opportunities to construct precisely dated records of palaeoclimate variability, underpinned by an understanding of both the regional climate and local controls on isotopes in rainfall and groundwater. For tropical islands, a potential means to reconstruct past rainfall variability is to exploit the generally high correlation between rainfall amount and δ18O: the 'amount effect'. The GNIP program provides δ18O data at monthly resolution for several tropical Pacific islands but there are few data for precipitation isotopes at daily resolution, for investigating the amount effect over different timescales in a tropical maritime setting. Timescales are important since meteoric water feeding a speleothem has undergone storage and mixing in the aquifer system and understanding how the isotope amount effect is preserved in aquifer recharge has fundamental implications on the interpretation of speleothem δ18O in terms of palaeo-precipitation. The islands of Fiji host speleothem caves. Seasonal precipitation is related to the movement of the South Pacific Convergence Zone, and interannual variations in rainfall are coupled to ENSO behaviour. Individual rainfall events are stratiform or convective, with proximal moisture sources. We have daily resolution isotope data for rainfall collected at the University of the South Pacific in Suva, covering every rain event in 2012 and 2013. δ18O varies between -18‰ and +3‰ with the annual weighted averages at -7.6‰ and -6.8‰ respectively, while total recorded rainfall amount is similar in both years. We shall present analysis of our data compared with GNIP, meteorological data and back trajectory analyses to demonstrate the nature of the relationship between rainfall amount and isotopic signatures over this short timescale. Comparison with GNIP data for 2012-13 will shed light on the origin of the amount effect at monthly and seasonal timescales in convective, maritime, tropical climates.
NASA Astrophysics Data System (ADS)
Alahmadi, F.; Rahman, N. A.; Abdulrazzak, M.
2014-09-01
Rainfall frequency analysis is an essential tool for the design of water related infrastructure. It can be used to predict future flood magnitudes for a given magnitude and frequency of extreme rainfall events. This study analyses the application of rainfall partial duration series (PDS) in the vast growing urban Madinah city located in the western part of Saudi Arabia. Different statistical distributions were applied (i.e. Normal, Log Normal, Extreme Value type I, Generalized Extreme Value, Pearson Type III, Log Pearson Type III) and their distribution parameters were estimated using L-moments methods. Also, different selection criteria models are applied, e.g. Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC) and Anderson-Darling Criterion (ADC). The analysis indicated the advantage of Generalized Extreme Value as the best fit statistical distribution for Madinah partial duration daily rainfall series. The outcome of such an evaluation can contribute toward better design criteria for flood management, especially flood protection measures.
A space-time multifractal analysis on radar rainfall sequences from central Poland
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Deidda, Roberto
2014-05-01
Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal analysis is carried out assuming Taylor's hypothesis to hold and the advection velocity needed to rescale the time dimension is assumed to be equal about 16 km/h. This assumption is verified by the analysis of autocorrelation functions along the x and y directions of "rainfall cubes" and along the time axis rescaled with assumed advection velocity. In general for analyzed rainfall sequences scaling is observed for spatial scales ranging from 4 to 256 km and for timescales from 15 min to 16 hours. However in most cases scaling break is identified for spatial scales between 4 and 8, corresponding to spatial dimensions of 16 km to 32 km. It is assumed that the scaling break occurrence at these particular scales in central Poland conditions could be at least partly explained by the rainfall mesoscale gap (on the edge of meso-gamma, storm-scale and meso-beta scale).
NASA Astrophysics Data System (ADS)
Pai, D. S.; Sridhar, Latha; Badwaik, M. R.; Rajeevan, M.
2015-08-01
In this study, analysis of the long term climatology, variability and trends in the daily rainfall events of ≥5 mm [or daily rainfall (DR) events] during the southwest monsoon season (June-September) over four regions of India; south central India (SCI), north central India (NCI), northeast India (NEI) and west coast (WC) have been presented. For this purpose, a new high spatial resolution (0.25° × 0.25°) daily gridded rainfall data set covering 110 years (1901-2010) over the Indian main land has been used. The association of monsoon low pressure systems (LPSs) with the DR events of various intensities has also been examined. Major portion of the rainfall over these regions during the season was received in the form of medium rainfall (≥5-100 mm) or moderate rainfall (MR) events. The mean seasonal cycle of the daily frequency of heavy rainfall (HR) (≥100-150 mm) or HR events and very heavy rainfall (VHR) (≥150 mm) or VHR events over each of the four regions showed peak at different parts of the season. The peak in the mean daily HR and VHR events occurred during middle of July to middle of August over SCI, during late part of June to early part of July over NCI, during middle of June to early July over NEI, and during late June to middle July over WC. Significant long term trends in the frequency and intensity of the DR events were observed in all the four geographical regions. Whereas the intensity of the DR events over all the four regions showed significant positive trends during the second half and the total period, the signs and magnitude of the long term trends in the frequency of the various categories of DR events during the total period and its two halves differed from the region to the region. The trend analysis revealed increased disaster potential for instant flooding over SCI and NCI during the recent years due to significant increasing trends in the frequency (areal coverage) and intensity of the HR and VHR events during the recent half of the data period. However, there is increased disaster potential over NEI and WC due to the increasing trends in the intensity of the rainfall events. There is strong association between the LPS days and the DR events in both the spatial and temporal scales. In all the four regions, the contributions to the total MR events by the LPS days were nearly equal. On the other hand, there was relatively large regional difference in the number of combined HR and VHR events associated with LPS days particularly that associated with monsoon depression (LPS stronger than monsoon depression) days. The possible reasons for the same have also been discussed. The increasing trend in the monsoon low (low pressure) days post 1970s is the primary reason for the observed significant increasing trends in the HR and VHR events over SCI and NCI and decreasing trend in HR events over NEI during the recent half (1956-2010). This is in spite of the decreasing trend in the MD days.
Multi-year encoding of daily rainfall and streamflow via the fractal-multifractal method
NASA Astrophysics Data System (ADS)
Puente, C. E.; Maskey, M.; Sivakumar, B.
2017-12-01
A deterministic geometric approach, the fractal-multifractal (FM) method, which has been proven to be faithful in encoding daily geophysical sets over a year, is used to describe records over multiple years at a time. Looking for FM parameter trends over longer periods, the present study shows FM descriptions of daily rainfall and streamflow gathered over five consecutive years optimizing deviations on accumulated sets. The results for 100 and 60 sets of five years for rainfall streamflow, respectively, near Sacramento, California illustrate that: (a) encoding of both types of data sets may be accomplished with relatively small errors; and (b) predicting the geometry of both variables appears to be possible, even five years ahead, training neural networks on the respective FM parameters. It is emphasized that the FM approach not only captures the accumulated sets over successive pentades but also preserves other statistical attributes including the overall "texture" of the records.
USDA-ARS?s Scientific Manuscript database
Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain g...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.
Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
Halder, Subhadeep; Saha, Subodh K.; Dirmeyer, Paul A.; ...
2016-05-10
Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
NASA Astrophysics Data System (ADS)
Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.
2009-09-01
Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).
NASA Astrophysics Data System (ADS)
Quinn, Niall; Freer, Jim; Coxon, Gemma; O'Loughlin, Fiachra; Woods, Ross; Liguori, Sara
2015-04-01
In Great Britain and many other regions of the world, flooding resulting from short duration, high intensity rainfall events can lead to significant economic losses and fatalities. At present, such extreme events are often poorly evaluated using hydrological models due, in part, to their rarity and relatively short duration and a lack of appropriate data. Such storm characteristics are not well represented by daily rainfall records currently available using volumetric gauges and/or derived gridded products. This research aims to address this important data gap by developing a sub-daily gridded precipitation product for Great Britain. Our focus is to better understand these storm events and some of the challenges and uncertainties in quantifying such data across catchment scales. Our goal is to both improve such rainfall characterisation and derive an input to drive hydrological model simulations. Our methodology involves the collation, error checking, and spatial interpolation of approximately 2000 rain gauges located across Great Britain, provided by the Scottish Environment Protection Agency (SEPA) and the Environment Agency (EA). Error checking was conducted over the entirety of the TBR data available, utilising a two stage approach. First, rain gauge data at each site were examined independently, with data exceeding reasonable thresholds marked as suspect. Second, potentially erroneous data were marked using a neighbourhood analysis approach whereby measurements at a given gauge were deemed suspect if they did not fall within defined bounds of measurements at neighbouring gauges. A total of eight error checks were conducted. To provide the user with the greatest flexibility possible, the error markers associated with each check have been recorded at every site. This approach aims to enable the user to choose which checks they deem most suitable for a particular application. The quality assured TBR dataset was then spatially interpolated to produce a national scale gridded rainfall product. Finally, radar rainfall data provided by the UK Met Office was assimilated, where available, to provide an optimal hourly estimate of rainfall, given the error variance associated with both datasets. This research introduces a sub-daily rainfall product that will be of particular value to hydrological modellers requiring rainfall inputs at higher temporal resolutions than those currently available nationally. Further research will aim to quantify the uncertainties in the rainfall product in order to improve our ability to diagnose and identify structural errors in hydrological modelling of extreme events. Here we present our initial findings.
Historical simulations and climate change projections over India by NCAR CCSM4: CMIP5 vs. NEX-GDDP
NASA Astrophysics Data System (ADS)
Sahany, Sandeep; Mishra, Saroj Kanta; Salunke, Popat
2018-03-01
A new bias-corrected statistically downscaled product, namely, the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), has recently been developed by NASA to help the scientific community in climate change impact studies at local to regional scale. In this work, the product is validated over India and its added value as compared to its CMIP5 counterpart for the NCAR CCSM4 model is analyzed, followed by climate change projections under the RCP8.5 global warming scenario using the two datasets for the variables daily maximum 2-m air temperature (Tmax), daily minimum 2-m air temperature (Tmin), and rainfall. It is found that, overall, the CCSM4-NEX-GDDP significantly reduces many of the biases in CCSM4-CMIP5 for the historical simulations; however, some biases such as the significant overestimation in the frequency of occurrence in the lower tail of the Tmax and Tmin still remain. In regard to rainfall, an important value addition in CCSM4-NEX-GDDP is the alleviation of the significant underestimation of rainfall extremes found in CCSM4-CMIP5. The projected Tmax from CCSM4-NEX-GDDP are in general higher than that projected by CCSM4-CMIP5, suggesting that the risks of heat waves and very hot days could be higher than that projected by the latter. CCSM4-NEX-GDDP projects the frequency of occurrence of the upper extreme values of historical Tmax to increase by a factor of 100 towards the end of century (as opposed to a factor of 10 increase projected by CCSM4-CMIP5). In regard to rainfall, both CCSM4-CMIP5 and CCSM4-NEX-GDDP project an increase in annual rainfall over India under the RCP8.5 global warming scenario progressively from the near term through the far term. However, CCSM4-NEX-GDDP consistently projects a higher magnitude of increase and over a larger area as compared to that projected by CCSM4-CMIP5. Projected daily rainfall distributions from CCSM4-CMIP5 and CCSM4-NEX-GDDP suggest the occurrence of events that have no historical precedents. Worth noting is that the extreme daily rainfall values projected by CCSM4-NEX-GDDP are two to three times larger than that projected by CCSM4-CMIP5.
NASA Astrophysics Data System (ADS)
Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.
2017-02-01
In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.
NASA Astrophysics Data System (ADS)
Mishra, Anoop; Rafiq, Mohammd
2017-12-01
This is the first attempt to merge highly accurate precipitation estimates from Global Precipitation Measurement (GPM) with gap free satellite observations from Meteosat to develop a regional rainfall monitoring algorithm to estimate heavy rainfall over India and nearby oceanic regions. Rainfall signature is derived from Meteosat observations and is co-located against rainfall from GPM to establish a relationship between rainfall and signature for various rainy seasons. This relationship can be used to monitor rainfall over India and nearby oceanic regions. Performance of this technique was tested by applying it to monitor heavy precipitation over India. It is reported that our algorithm is able to detect heavy rainfall. It is also reported that present algorithm overestimates rainfall areal spread as compared to rain gauge based rainfall product. This deficiency may arise from various factors including uncertainty caused by use of different sensors from different platforms (difference in viewing geometry from MFG and GPM), poor relationship between warm rain (light rain) and IR brightness temperature, and weak characterization of orographic rain from IR signature. We validated hourly rainfall estimated from the present approach with independent observations from GPM. We also validated daily rainfall from this approach with rain gauge based product from India Meteorological Department (IMD). Present technique shows a Correlation Coefficient (CC) of 0.76, a bias of -2.72 mm, a Root Mean Square Error (RMSE) of 10.82 mm, Probability of Detection (POD) of 0.74, False Alarm Ratio (FAR) of 0.34 and a Skill score of 0.36 with daily rainfall from rain gauge based product of IMD at 0.25° resolution. However, FAR reduces to 0.24 for heavy rainfall events. Validation results with rain gauge observations reveal that present technique outperforms available satellite based rainfall estimates for monitoring heavy rainfall over Indian region.
NASA Astrophysics Data System (ADS)
So, Byung-Jin; Kim, Jin-Young; Kwon, Hyun-Han; Lima, Carlos H. R.
2017-10-01
A conditional copula function based downscaling model in a fully Bayesian framework is developed in this study to evaluate future changes in intensity-duration frequency (IDF) curves in South Korea. The model incorporates a quantile mapping approach for bias correction while integrated Bayesian inference allows accounting for parameter uncertainties. The proposed approach is used to temporally downscale expected changes in daily rainfall, inferred from multiple CORDEX-RCMs based on Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios, into sub-daily temporal scales. Among the CORDEX-RCMs, a noticeable increase in rainfall intensity is observed in the HadGem3-RA (9%), RegCM (28%), and SNU_WRF (13%) on average, whereas no noticeable changes are observed in the GRIMs (-2%) for the period 2020-2050. More specifically, a 5-30% increase in rainfall intensity is expected in all of the CORDEX-RCMs for 50-year return values under the RCP 8.5 scenario. Uncertainty in simulated rainfall intensity gradually decreases toward the longer durations, which is largely associated with the enhanced strength of the relationship with the 24-h annual maximum rainfalls (AMRs). A primary advantage of the proposed model is that projected changes in future rainfall intensities are well preserved.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred
2014-05-01
High-resolution gridded daily datasets are essential for natural resource management and the analysis of climate changes and their effects. This study aimed to create gridded datasets of daily precipitation and daily minimum and maximum temperature, for the future (2020-2050). The horizontal resolution of the developed datasets is 1 x 1 km2, covering the area under control of the Republic of Cyprus (5.760 km2). The study is divided into two parts. The first consists of the evaluation of the performance of different interpolation techniques for daily rainfall and temperature data (1980-2010) for the creation of the gridded datasets. Rainfall data recorded at 145 stations and temperature data from 34 stations were used. For precipitation, inverse distance weighting (IDW) performs best for local events, while a combination of step-wise geographically weighted regression and IDW proves to be the best method for large scale events. For minimum and maximum temperature, a combination of step-wise linear multiple regression and thin plate splines is recognized as the best method. Six Regional Climate Models (RCMs) for the A1B SRES emission scenario from the EU ENSEMBLE project database were selected as sources for future climate projections. The RCMs were evaluated for their capacity to simulate Cyprus climatology for the period 1980-2010. Data for the period 2020-2050 from the three best performing RCMs were downscaled, using the change factors approach, at the location of observational stations. Daily time series were created with a stochastic rainfall and temperature generator. The RainSim V3 software (Burton et al., 2008) was used to generate spatial-temporal coherent rainfall fields. The temperature generator was developed in R and modeled temperature as a weakly stationary process with the daily mean and standard deviation conditioned on the wet and dry state of the day (Richardson, 1981). Finally gridded datasets depicting projected future climate conditions were created with the identified best interpolation methods. The difference between the input and simulated mean daily rainfall, averaged over all the stations, was 0.03 mm (2.2%), while the error related to the number of dry days was 2 (0.6%). For mean daily minimum temperature the error was 0.005 ºC (0.04%), while for maximum temperature it was 0.01 ºC (0.04%). Overall, the weather generators were found to be reliable instruments for the downscaling of precipitation and temperature. The resulting datasets indicate a decrease of the mean annual rainfall over the study area between 5 and 70 mm (1-15%) for 2020-2050, relative to 1980-2010. Average annual minimum and maximum temperature over the Republic of Cyprus are projected to increase between 1.2 and 1.5 ºC. The dataset is currently used to compute agricultural production and water use indicators, as part of the AGWATER project (AEIFORIA/GEORGO/0311(BIE)/06), co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation. Burton, A., Kilsby, C.G., Fowler, H.J., Cowpertwait, P.S.P., and O'Connell, P.E.: RainSim: A spatial-temporal stochastic rainfall modelling system. Environ. Model. Software 23, 1356-1369, 2008 Richardson, C.W.: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 17, 182-190, 1981.
Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin
NASA Astrophysics Data System (ADS)
Kumar, Brijesh; Patra, Kanhu Charan; Lakshmi, Venkat
2016-07-01
Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June-September or JJAS) from 2005-2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall. The detection of precipitation amount is strongly dependent on the topography. In the plains areas, TRMM product is capable of capturing high-intensity rain events but in the hilly regions, it underestimates the amount of high-intensity rain events. On the other hand, CMORPH entirely fails to capture the high-intensity rain events but does well with low-intensity rain events in both hilly regions as well as the plain region. The continuous variable verification method shows better agreement of TRMM rainfall products with rain gauge data. TRMM fares better in the prediction of probability of occurrence of high-intensity rainfall events, but it underestimates intensity at high altitudes. This implies that TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography.
Effect of monthly areal rainfall uncertainty on streamflow simulation
NASA Astrophysics Data System (ADS)
Ndiritu, J. G.; Mkhize, N.
2017-08-01
Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic monthly rainfalls were 86 and 90% of the mean naturalised streamflow. In calibration, 33% of the naturalised flow located within the streamflow ranges with historic rainfall simulations and using stochastic rainfalls increased this to 66%. In validation the respective percentages of naturalised flows located within the simulated streamflow ranges were 32 and 72% respectively. The analysis reveals that monthly areal rainfall uncertainty is significant and incorporating it into streamflow simulation would add validity to the results.
NASA Astrophysics Data System (ADS)
Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.
2018-03-01
Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.
NASA Astrophysics Data System (ADS)
Mandal, S.; Choudhury, B. U.
2015-07-01
Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.
Rainfall extremes from TRMM data and the Metastatistical Extreme Value Distribution
NASA Astrophysics Data System (ADS)
Zorzetto, Enrico; Marani, Marco
2017-04-01
A reliable quantification of the probability of weather extremes occurrence is essential for designing resilient water infrastructures and hazard mitigation measures. However, it is increasingly clear that the presence of inter-annual climatic fluctuations determines a substantial long-term variability in the frequency of occurrence of extreme events. This circumstance questions the foundation of the traditional extreme value theory, hinged on stationary Poisson processes or on asymptotic assumptions to derive the Generalized Extreme Value (GEV) distribution. We illustrate here, with application to daily rainfall, a new approach to extreme value analysis, the Metastatistical Extreme Value Distribution (MEVD). The MEVD relaxes the above assumptions and is based on the whole distribution of daily rainfall events, thus allowing optimal use of all available observations. Using a global dataset of rain gauge observations, we show that the MEVD significantly outperforms the Generalized Extreme Value distribution, particularly for long average recurrence intervals and when small samples are available. The latter property suggests MEVD to be particularly suited for applications to satellite rainfall estimates, which only cover two decades, thus making extreme value estimation extremely challenging. Here we apply MEVD to the TRMM TMPA 3B42 product, an 18-year dataset of remotely-sensed daily rainfall providing a quasi-global coverage. Our analyses yield a global scale mapping of daily rainfall extremes and of their distributional tail properties, bridging the existing large gaps in ground-based networks. Finally, we illustrate how our global-scale analysis can provide insight into how properties of local rainfall regimes affect tail estimation uncertainty when using the GEV or MEVD approach. We find a dependence of the estimation uncertainty, for both the GEV- and MEV-based approaches, on the average annual number and on the inter-annual variability of rainy days. In particular, estimation uncertainty decreases 1) as the mean annual number of wet days increases, and 2) as the variability in the number of rainy days, expressed by its coefficient of variation, decreases. We tentatively explain this behavior in terms of the assumptions underlying the two approaches.
NASA Technical Reports Server (NTRS)
Iguchi, Takamichi; Tao, Wei-Kuo; Wu, Di; Peters-Lidard, Christa; Santanello, Joseph A.; Kemp, Eric; Tian, Yudong; Case, Jonathan; Wang, Weile; Ferraro, Robert;
2017-01-01
This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June-August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.
Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.
Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F
2017-10-15
According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017 Elsevier B.V. All rights reserved.
Rainfall is a risk factor for sporadic cases of Legionella pneumophila pneumonia.
Garcia-Vidal, Carolina; Labori, Maria; Viasus, Diego; Simonetti, Antonella; Garcia-Somoza, Dolors; Dorca, Jordi; Gudiol, Francesc; Carratalà, Jordi
2013-01-01
It is not known whether rainfall increases the risk of sporadic cases of Legionella pneumonia. We sought to test this hypothesis in a prospective observational cohort study of non-immunosuppressed adults hospitalized for community-acquired pneumonia (1995-2011). Cases with Legionella pneumonia were compared with those with non-Legionella pneumonia. Using daily rainfall data obtained from the regional meteorological service we examined patterns of rainfall over the days prior to admission in each study group. Of 4168 patients, 231 (5.5%) had Legionella pneumonia. The diagnosis was based on one or more of the following: sputum (41 cases), antigenuria (206) and serology (98). Daily rainfall average was 0.556 liters/m(2) in the Legionella pneumonia group vs. 0.328 liters/m(2) for non-Legionella pneumonia cases (p = 0.04). A ROC curve was plotted to compare the incidence of Legionella pneumonia and the weighted median rainfall. The cut-off point was 0.42 (AUC 0.54). Patients who were admitted to hospital with a prior weighted median rainfall higher than 0.42 were more likely to have Legionella pneumonia (OR 1.35; 95% CI 1.02-1.78; p = .03). Spearman Rho correlations revealed a relationship between Legionella pneumonia and rainfall average during each two-week reporting period (0.14; p = 0.003). No relationship was found between rainfall average and non-Legionella pneumonia cases (-0.06; p = 0.24). As a conclusion, rainfall is a significant risk factor for sporadic Legionella pneumonia. Physicians should carefully consider Legionella pneumonia when selecting diagnostic tests and antimicrobial therapy for patients presenting with CAP after periods of rainfall.
NASA Astrophysics Data System (ADS)
Tanguy, M.; Prudhomme, C.; Harrigan, S.; Smith, K. A.; Parry, S.
2017-12-01
Forecasting hydrological extremes is challenging, especially at lead times over 1 month for catchments with limited hydrological memory and variable climates. One simple way to derive monthly or seasonal hydrological forecasts is to use historical climate data to drive hydrological models using the Ensemble Streamflow Prediction (ESP) method. This gives a range of possible future streamflow given known initial hydrologic conditions alone. The degree of skill of ESP depends highly on the forecast initialisation month and catchment type. Using dynamic rainfall forecasts as driving data instead of historical data could potentially improve streamflow predictions. A lot of effort is being invested within the meteorological community to improve these forecasts. However, while recent progress shows promise (e.g. NAO in winter), the skill of these forecasts at monthly to seasonal timescales is generally still limited, and the extent to which they might lead to improved hydrological forecasts is an area of active research. Additionally, these meteorological forecasts are currently being produced at 1 month or seasonal time-steps in the UK, whereas hydrological models require forcings at daily or sub-daily time-steps. Keeping in mind these limitations of available rainfall forecasts, the objectives of this study are to find out (i) how accurate monthly dynamical rainfall forecasts need to be to outperform ESP, and (ii) how the method used to disaggregate monthly rainfall forecasts into daily rainfall time series affects results. For the first objective, synthetic rainfall time series were created by increasingly degrading observed data (proxy for a `perfect forecast') from 0 % to +/-50 % error. For the second objective, three different methods were used to disaggregate monthly rainfall data into daily time series. These were used to force a simple lumped hydrological model (GR4J) to generate streamflow predictions at a one-month lead time for over 300 catchments representative of the range of UK's hydro-climatic conditions. These forecasts were then benchmarked against the traditional ESP method. It is hoped that the results of this work will help the meteorological community to identify where to focus their efforts in order to increase the usefulness of their forecasts within hydrological forecasting systems.
NASA Astrophysics Data System (ADS)
Gyasi-Agyei, Yeboah
2018-01-01
This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.
Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.
Kuhn, Nikolaus J; Baumhauer, Roland; Schütt, Brigitta
2011-02-01
The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by hydrologists and climatologists involved in developing water management tools for the Gallocanta Basin in particular, but also other areas with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal patterns of surface-climate interaction in a watershed to assess the impact of climate change on its hydrology. Climatologists, on the other hand, have to develop climate models which provide the appropriate output data, such as reliable information on rainfall characteristics relevant for environmental management. Copyright © 2009. Published by Elsevier Ltd.
Regional rainfall thresholds for landslide occurrence using a centenary database
NASA Astrophysics Data System (ADS)
Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Quaresma, Ivânia
2017-04-01
Rainfall is one of the most important triggering factors for landslides occurrence worldwide. The relation between rainfall and landslide occurrence is complex and some approaches have been focus on the rainfall thresholds identification, i.e., rainfall critical values that when exceeded can initiate landslide activity. In line with these approaches, this work proposes and validates rainfall thresholds for the Lisbon region (Portugal), using a centenary landslide database associated with a centenary daily rainfall database. The main objectives of the work are the following: i) to compute antecedent rainfall thresholds using linear and potential regression; ii) to define lower limit and upper limit rainfall thresholds; iii) to estimate the probability of critical rainfall conditions associated with landslide events; and iv) to assess the thresholds performance using receiver operating characteristic (ROC) metrics. In this study we consider the DISASTER database, which lists landslides that caused fatalities, injuries, missing people, evacuated and homeless people occurred in Portugal from 1865 to 2010. The DISASTER database was carried out exploring several Portuguese daily and weekly newspapers. Using the same newspaper sources, the DISASTER database was recently updated to include also the landslides that did not caused any human damage, which were also considered for this study. The daily rainfall data were collected at the Lisboa-Geofísico meteorological station. This station was selected considering the quality and completeness of the rainfall data, with records that started in 1864. The methodology adopted included the computation, for each landslide event, of the cumulative antecedent rainfall for different durations (1 to 90 consecutive days). In a second step, for each combination of rainfall quantity-duration, the return period was estimated using the Gumbel probability distribution. The pair (quantity-duration) with the highest return period was considered as the critical rainfall combination responsible for triggering the landslide event. Only events whose critical rainfall combinations have a return period above 3 years were included. This criterion reduces the likelihood of been included events whose triggering factor was other than rainfall. The rainfall quantity-duration threshold for the Lisbon region was firstly defined using the linear and potential regression. Considering that this threshold allow the existence of false negatives (i.e. events below the threshold) it was also identified the lower limit and upper limit rainfall thresholds. These limits were defined empirically by establishing the quantity-durations combinations bellow which no landslides were recorded (lower limit) and the quantity-durations combinations above which only landslides were recorded without any false positive occurrence (upper limit). The zone between the lower limit and upper limit rainfall thresholds was analysed using a probabilistic approach, defining the uncertainties of each rainfall critical conditions in the triggering of landslides. Finally, the performances of the thresholds obtained in this study were assessed using ROC metrics. This work was supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [grant number PTDC/ATPGEO/1660/2014] funded by the Portuguese Foundation for Science and Technology (FCT), Portugal. Sérgio Cruz Oliveira is a post-doc fellow of the FCT [grant number SFRH/BPD/85827/2012].
Caster, Joshua J.; Sankey, Joel B.
2016-04-11
In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.
NASA Astrophysics Data System (ADS)
Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka
2016-04-01
Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our hierarchical MC model with the semi-parametric model in preserving rainfall variability in daily, monthly, and multi-year scales. To calibrate the parameters of both models and assess their ability to preserve observed statistics, we have used ground based data from 15 raingauge stations around Australia, which consist a wide range of climate zones including coastal, monsoonal, and arid climate characteristics. In preliminary results, both models show comparative performances in preserving the multi-year variability of rainfall depth and occurrence. However, the semi-parametric model shows a tendency of overestimating the mean rainfall depth, while our model shows a tendency of overestimating the number of wet days. We will discuss further the relative merits of the both models for hydrology simulation in the presentation.
Regionalized rainfall-runoff model to estimate low flow indices
NASA Astrophysics Data System (ADS)
Garcia, Florine; Folton, Nathalie; Oudin, Ludovic
2016-04-01
Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.
NASA Astrophysics Data System (ADS)
Costa, Veber; Fernandes, Wilson
2017-11-01
Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods, including exceptionally large non-systematic events, were reasonably estimated with the proposed approach. In addition, by accounting for uncertainties in each modeling step, one is able to obtain a better understanding of the influential factors in large flood formation dynamics.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
Impact of rainfall pattern on interrill erosion process
USDA-ARS?s Scientific Manuscript database
The impact of rainfall pattern on the interrill erosion process is not fully understood despite its importance. Systematic rainfall simulation experiments involving different rain intensities, stages, intensity sequences, and surface cover conditions were conducted to investigate the impacts of rain...
NASA Astrophysics Data System (ADS)
Huang, Ling; Luo, Yali; Zhang, Da-Lin
2018-04-01
A spectral analysis of daily rainfall data has been performed to investigate extreme rainfall events in south China during the presummer rainy seasons between 1998 and 2015 (excluding 1999, 2006, 2011, and 2014). The results reveal a dominant frequency mode at the synoptic scale with pronounced positive rainfall anomalies. By analyzing the synoptic-scale bandpass-filtered anomalous circulations, 24 extreme rainfall episodes (defined as those with a daily rainfall amount in the top 5%) are categorized into "cyclone" (15) and "trough" (8) types, with the remaining events as an "anticyclone" type, according to the primary anomalous weather system contributing to each extreme rainfall episode. The 15 cyclone-type episodes are further separated into (11) lower- and (4) upper-tropospheric migratory anomalies. An analysis of their anomalous fields shows that both types could be traced back to the generation of cyclonic anomalies downstream of the Tibetan Plateau, except for two episodes of lower-tropospheric migratory anomalies originating over the South China Sea. However, a lower-tropospheric cyclonic anomaly appears during all phases in the former type, but only in the wettest phase in the latter type, with its peak disturbance occurring immediately beneath an upper-level warm anomaly. The production of extreme rainfall in the trough-type episodes is closely related to a deep trough anomaly extending from an intense cyclonic anomaly over north China, which in turn could be traced back to a midlatitude Rossby wave train passing by the Tibetan Plateau. The results have important implications for understanding the origin, structure, and evolution of synoptic disturbances associated with the presummer extreme rainfall in south China.
NASA Astrophysics Data System (ADS)
Rauniyar, S. P.; Protat, A.; Kanamori, H.
2017-05-01
This study investigates the regional and seasonal rainfall rate retrieval uncertainties within nine state-of-the-art satellite-based rainfall products over the Maritime Continent (MC) region. The results show consistently larger differences in mean daily rainfall among products over land, especially over mountains and along coasts, compared to over ocean, by about 20% for low to medium rain rates and 5% for heavy rain rates. However, rainfall differences among the products do not exhibit any seasonal dependency over both surface types (land and ocean) of the MC region. The differences between products largely depends on the rain rate itself, with a factor 2 difference for light rain and 30% for intermediate and high rain rates over ocean. The rain-rate products dominated by microwave measurements showed less spread among themselves over ocean compared to the products dominated by infrared measurements. Conversely, over land, the rain gauge-adjusted post-real-time products dominated by microwave measurements produced the largest spreads, due to the usage of different gauge analyses for the bias corrections. Intercomparisons of rainfall characteristics of these products revealed large discrepancies in detecting the frequency and intensity of rainfall. These satellite products are finally evaluated at subdaily, daily, monthly, intraseasonal, and seasonal temporal scales against high-quality gridded rainfall observations in the Sarawak (Malaysia) region for the 4 year period 2000-2003. No single satellite-based rainfall product clearly outperforms the other products at all temporal scales. General guidelines are provided for selecting a product that could be best suited for a particular application and/or temporal resolution.
Alonso-Carné, J; García-Martín, A; Estrada-Peña, A
2015-01-01
Ticks are sensitive to changes in relative humidity and saturation deficit at the microclimate scale. Trends and changes in rainfall are commonly used as descriptors of field observations of tick populations, to capture the climate niche of ticks or to predict the climate suitability for ticks under future climate scenarios. We evaluated daily and monthly relationships between rainfall, relative humidity and saturation deficit over different ecosystems in Europe using daily climate values from 177 stations over a period of 10 years. We demonstrate that rainfall is poorly correlated with both relative humidity and saturation deficit in any of the ecological domains studied. We conclude that the amount of rainfall recorded in 1 day does not correlate with the values of humidity or saturation deficit recorded 24 h later: rainfall is not an adequate surrogate for evaluating the physiological processes of ticks at regional scales. We compared the Normalized Difference Vegetation Index (NDVI), a descriptor of photosynthetic activity, at a spatial resolution of 0.05°, with monthly averages of relative humidity and saturation deficit and also determined a lack of significant correlation. With the limitations of spatial scale and habitat coverage of this study, we suggest that the rainfall or NDVI cannot replace relative humidity or saturation deficit as descriptors of tick processes.
Spatio-temporal trends of rainfall across Indian river basins
NASA Astrophysics Data System (ADS)
Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana
2018-04-01
Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.
Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability
NASA Astrophysics Data System (ADS)
Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.
2016-12-01
Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.
NASA Astrophysics Data System (ADS)
Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven
2015-04-01
Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.
NASA Astrophysics Data System (ADS)
Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel
2015-04-01
Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum rainfall intensities under a warming climate.
Rainfall as a trigger for stratification and winter phytoplankton growth in temperate shelf seas
NASA Astrophysics Data System (ADS)
Jardine, Jenny; Palmer, Matthew; Mahaffey, Claire; Holt, Jason; Mellor, Adam; Wakelin, Sarah
2017-04-01
We present new data from ocean gliders to investigate physical controls on stratification and phytoplankton dynamics, collected in the Celtic Sea between November 2014 and August 2015 as part of the UK Shelf Sea Biogeochemistry programme. This presentation focuses on the winter period (Jan-March) when the diurnal heating cycle results in regular but weak near surface stratification followed by night-time convection. Despite low light conditions, this daily cycle often promotes a daytime increase in observed chlorophyll fluorescence, indicative of phytoplankton growth. This daily cycle is occasionally interrupted when buoyancy inputs are sufficient to outcompete night-time convection and result in short-term periods of sustained winter stratification, typically lasting 2-3 days. Sustained stratification often coincides with periods of heavy rainfall, suggesting freshwater input from precipitation may play a role on these events by producing a subtle yet significant freshening of the surface layer of the order of 0.005 PSU. Comparing rainfall estimates with observed salinity changes confirms rainfall to often be the initiator of these winter stratification periods. As winter winds subside and solar heating increases towards spring, the water column becomes more susceptible to periods of halo-stratification, such that heavy rainfall during the winter-spring transition is likely to promote sustained stratification. The timing and extent of a heavy rainfall event in March 2015 does suggest it may be the critical trigger for shelf-wide stratification that eventually instigates the spring bloom. We propose that the timing of these downpours relative to the daily heating cycle can be a triggering mechanism for both short term and seasonal stratification in shelf seas, and so play a critical role in winter and early spring phytoplankton growth and the shelf sea carbon cycle. We further test the importance of this process using historical data, and results from the NEMO-AMM7 model to test how rainfall events have affected previous winter and spring conditions.
NASA Astrophysics Data System (ADS)
Bárdossy, András; Pegram, Geoffrey
2017-01-01
The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this paper we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the paper is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to unsampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the subdaily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. Additionally a statistical procedure not based on a matching day by day correction is tested. In this last procedure as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving a small number of L days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these L day maxima is first iterpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest L radar based days. Of course, the timings of radar and gauge maxima can be different, so the method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. This valuable set of data was obtained from each of 37 selected radar pixels [1 km square in plan] which contained a pluviometer not masked out by the radar foot-print. The pluviometer data were also aggregated to daily totals, for the same purpose. The extremes obtained using disaggregation methods were compared to the observed extremes in a cross validation procedure. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the point extremes, which we found to be stable.
NASA Astrophysics Data System (ADS)
Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.
2018-01-01
The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.
Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...
2016-02-01
This study evaluates several important statistics of daily rainfall based on frequency and amount distributions as simulated by a global climate model whose precipitation does not depend on convective parameterization—Super-Parameterized Community Atmosphere Model (SPCAM). Three superparameterized and conventional versions of CAM, coupled within the Community Earth System Model (CESM1 and CCSM4), are compared against two modern rainfall products (GPCP 1DD and TRMM 3B42) to discriminate robust effects of superparameterization that emerge across multiple versions. The geographic pattern of annual-mean rainfall is mostly insensitive to superparameterization, with only slight improvements in the double-ITCZ bias. However, unfolding intensity distributions reveal several improvementsmore » in the character of rainfall simulated by SPCAM. The rainfall rate that delivers the most accumulated rain (i.e., amount mode) is systematically too weak in all versions of CAM relative to TRMM 3B42 and does not improve with horizontal resolution. It is improved by superparameterization though, with higher modes in regions of tropical wave, Madden-Julian Oscillation, and monsoon activity. Superparameterization produces better representations of extreme rates compared to TRMM 3B42, without sensitivity to horizontal resolution seen in CAM. SPCAM produces more dry days over land and fewer over the ocean. Updates to CAM’s low cloud parameterizations have narrowed the frequency peak of light rain, converging toward SPCAM. Poleward of 50°, where more rainfall is produced by resolved-scale processes in CAM, few differences discriminate the rainfall properties of the two models. Lastly, these results are discussed in light of their implication for future rainfall changes in response to climate forcing.« less
Analysis of rainfall distribution in Kelantan river basin, Malaysia
NASA Astrophysics Data System (ADS)
Che Ros, Faizah; Tosaka, Hiroyuki
2018-03-01
Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.
Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity
NASA Astrophysics Data System (ADS)
Narulita, Ida; Ningrum, Widya
2018-02-01
Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.
Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L
2016-08-05
Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.
Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia
NASA Astrophysics Data System (ADS)
Rahmawati, Novi; Lubczynski, Maciek W.
2017-11-01
Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.
Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing
NASA Astrophysics Data System (ADS)
Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian
2015-04-01
The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The applicability of this new interpolation procedure will be shown for around 250 hourly rainfall gauges in the German federal state of Baden-Württemberg. The performance of the random mixing technique within the interpolation is compared to applicable kriging methods. Additionally, the interpolation of kernel smoothed distribution functions is compared with the interpolation of fitted parametric distributions.
Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.
Mishra, Anoop Kumar
2013-12-01
Rainfall is an extremely variable parameter in both space and time. Rain gauge density is very crucial in order to quantify the rainfall amount over a region. The level of rainfall accuracy is highly dependent on density and distribution of rain gauge stations over a region. Indian Space Research Organisation (ISRO) have installed a number of Automatic Weather Station (AWS) rain gauges over Indian region to study rainfall. In this paper, the effect of rain gauge density over daily accumulated rainfall is analyzed using ISRO AWS gauge observations. A region of 50 km × 50 km box over southern part of Indian region (Bangalore) with good density of rain gauges is identified for this purpose. Rain gauge numbers are varied from 1-8 in 50 km box to study the variation in the daily accumulated rainfall. Rainfall rates from the neighbouring stations are also compared in this study. Change in the rainfall as a function of gauge spacing is studied. Use of gauge calibrated satellite observations to fill the gauge station value is also studied. It is found that correlation coefficients (CC) decrease from 82% to 21% as gauge spacing increases from 5 km to 40 km while root mean square error (RMSE) increases from 8.29 mm to 51.27 mm with increase in gauge spacing from 5 km to 40 km. Considering 8 rain gauges as a standard representative of rainfall over the region, absolute error increases from 15% to 64% as gauge numbers are decreased from 7 to 1. Small errors are reported while considering 4 to 7 rain gauges to represent 50 km area. However, reduction to 3 or less rain gauges resulted in significant error. It is also observed that use of gauge calibrated satellite observations significantly improved the rainfall estimation over the region with very few rain gauge observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Linda M.; Omitaomu, Olufemi A.; Parish, Esther S.
2016-09-01
Modeled daily precipitation values are used to determine changes in percentile rainfall event depths, for planning and mitigation of stormwater runoff, over past (1980-2005) and future (2025-2050) periods for Knoxville, Tennessee and the surrounding area.
Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment
NASA Astrophysics Data System (ADS)
Kothari, Mahesh; Gharde, K. D.
2015-07-01
The streamflow prediction is an essentially important aspect of any watershed modelling. The black box models (soft computing techniques) have proven to be an efficient alternative to physical (traditional) methods for simulating streamflow and sediment yield of the catchments. The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years (1992-2011) rainfall and other hydrological data were considered, of which 13 years (1992-2004) was for training and rest 7 years (2005-2011) for validation of the models. The mode performance was evaluated by R, RMSE, EV, CE, and MAD statistical parameters. It was found that, ANN model performance improved with increasing input vectors. The results with fuzzy logic models predict the streamflow with single input as rainfall better in comparison to multiple input vectors. While comparing both ANN and FL algorithms for prediction of streamflow, ANN model performance is quite superior.
Rainfall statistics changes in Sicily
NASA Astrophysics Data System (ADS)
Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.
2013-07-01
Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann-Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall duration. Conversely, precipitation events of long durations have exhibited a decreased trend. Increase in short-duration precipitation has been observed especially in stations located along the coastline; however, no clear and well-defined spatial pattern has been outlined by the results. Outcomes of analysis for daily rainfall properties have showed that heavy-torrential precipitation events tend to be more frequent at regional scale, while light rainfall events exhibited a negative trend at some sites. Values of total annual precipitation events confirmed a significant negative trend, mainly due to the reduction during the winter season.
Parameter Estimation for a Model of Space-Time Rainfall
NASA Astrophysics Data System (ADS)
Smith, James A.; Karr, Alan F.
1985-08-01
In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.
Computation of rainfall erosivity from daily precipitation amounts.
Beguería, Santiago; Serrano-Notivoli, Roberto; Tomas-Burguera, Miquel
2018-10-01
Rainfall erosivity is an important parameter in many erosion models, and the EI30 defined by the Universal Soil Loss Equation is one of the best known erosivity indices. One issue with this and other erosivity indices is that they require continuous breakpoint, or high frequency time interval, precipitation data. These data are rare, in comparison to more common medium-frequency data, such as daily precipitation data commonly recorded by many national and regional weather services. Devising methods for computing estimates of rainfall erosivity from daily precipitation data that are comparable to those obtained by using high-frequency data is, therefore, highly desired. Here we present a method for producing such estimates, based on optimal regression tools such as the Gamma Generalised Linear Model and universal kriging. Unlike other methods, this approach produces unbiased and very close to observed EI30, especially when these are aggregated at the annual level. We illustrate the method with a case study comprising more than 1500 high-frequency precipitation records across Spain. Although the original records have a short span (the mean length is around 10 years), computation of spatially-distributed upscaling parameters offers the possibility to compute high-resolution climatologies of the EI30 index based on currently available, long-span, daily precipitation databases. Copyright © 2018 Elsevier B.V. All rights reserved.
A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe
2015-04-01
Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.
NASA Astrophysics Data System (ADS)
Pegram, Geoff; Bardossy, Andras; Sinclair, Scott
2017-04-01
The use of radar measurements for the space time estimation of precipitation has for many decades been a central topic in hydro-meteorology. In this presentation we are interested specifically in daily and sub-daily extreme values of precipitation at gauged or ungauged locations which are important for design. The purpose of the presentation is to develop a methodology to combine daily precipitation observations and radar measurements to estimate sub-daily extremes at point locations. Radar data corrected using precipitation-reflectivity relationships lead to biased estimations of extremes. Different possibilities of correcting systematic errors using the daily observations are investigated. Observed gauged daily amounts are interpolated to un-sampled points and subsequently disaggregated using the sub-daily values obtained by the radar. Different corrections based on the spatial variability and the sub-daily entropy of scaled rainfall distributions are used to provide unbiased corrections of short duration extremes. In addition, a statistical procedure not based on a matching day by day correction is tested. In this last procedure, as we are only interested in rare extremes, low to medium values of rainfall depth were neglected leaving 12 days of ranked daily maxima in each set per year, whose sum typically comprises about 50% of each annual rainfall total. The sum of these 12 day maxima is first interpolated using a Kriging procedure. Subsequently this sum is disaggregated to daily values using a nearest neighbour procedure. The daily sums are then disaggregated by using the relative values of the biggest 12 radar based days in each year. Of course, the timings of radar and gauge maxima can be different, so the new method presented here uses radar for disaggregating daily gauge totals down to 15 min intervals in order to extract the maxima of sub-hourly through to daily rainfall. The methodologies were tested in South Africa, where an S-band radar operated relatively continuously at Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense [10 km spacing] set of 45 pluviometers recording in the same 6-year period. This valuable set of data was obtained from each of 37 selected radar pixels [1 km square in plan] which contained a pluviometer, not masked out by the radar foot-print. The pluviometer data were also aggregated to daily totals, for the same purpose. The extremes obtained using disaggregation methods were compared to the observed extremes in a cross validation procedure. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the point extremes, which we found to be stable. Published as: Bárdossy, A., and G. G. S. Pegram (2017) Journal of Hydrology, Volume 544, pp 397-406
Djennad, Abdelmajid; Lo Iacono, Giovanni; Sarran, Christophe; Fleming, Lora E; Kessel, Anthony; Haines, Andy; Nichols, Gordon L
2018-04-27
To understand the impact of weather on infectious diseases, information on weather parameters at patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known. Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the laboratory where the patient's specimen was tested. The paired values of daily rainfall and temperature for the laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed for agreement using linear regression. We also assessed potential dependency of the findings on the relative geographic distance between the patient's residence and the laboratory. There was significant and strong agreement between the daily values of rainfall and temperature at diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with some rare situations where the distance between the patient residence and the laboratory was larger than 500 km. These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the distributions of discrepancies (estimated separately for minimum and maximum temperature and rainfall), based on the cases where the distance between the patient residence and the laboratory was within 20 km, still exhibited tails somewhat longer than the corresponding exponential fits suggesting modest small scale variations in temperature and rainfall. The findings confirm that, for the purposes of studying the relationships between meteorological variables and infectious diseases using data based on laboratory postcodes, the weather results are sufficiently similar to justify the use of laboratory postcode as a surrogate for domestic postcode. Exclusion of the small percentage of cases where there is a large distance between the residence and the laboratory could increase the precision of estimates, but there are generally strong associations between daily weather parameters at residence and laboratory.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia
NASA Astrophysics Data System (ADS)
Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi
2015-12-01
The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.
Changes in the Behavior of Heavy Rainfall in the Southern Brazil
NASA Astrophysics Data System (ADS)
Basso, Raviel; Allasia, Daniel; Tassi, Rutineia
2017-04-01
Heavy rainfalls are associated with several economic and environmental damages mainly in urbanized areas. Their analisys depends on the availability of a dense rainfall station's network that is absent or inaccessible in Brazil, especially for sub-daily information. This study compares the Intensity-Duration-Frequency (IDF) data presented by Pfafstetter (1957) and later reanalyzed by Torrico (1974), against the most recent IDF information in Southern Brazil (comprising the States of Rio Grande do Sul, Santa Catarina and Paraná). This IDFs's collection was obtained from many sources ranging from national and local symposia, municipalities publications manuals to books, resulting in a database of more than a hundred of IDFs equations. The rainfall heights with several durations (1h, 4h, 12h, and 24h) obtained from older (until 1955's) and newer (after 1970's) IDFs were interpolated by ordinary kriging using GIS tools. The interpolated rainfall from these different periods was compared side-by-side allowing the determination of the percentual change between them. With the exception of Florianópolis region (NE of the Santa Catarina State), the newer IDFs showed higher precipitations than observed in pre-1955's data. This indicates an increase of heavy rainfall in practically the whole area, with some exceptions in the South and Northern coastal regions, in agreement with some climate change forecast models. It was also observed a more pronounced increase of sub-daily rainfall. For example, in some places, the newer data show that almost 70% of the amount of 24 hours rainfall occurs in just one hour of rainfall, against less than 40% observed in the data from the first half of the 20th century. This result alerts not only for the necessity of storwater drainage design's review but, especially, for the establishment of standardized heavy rainfall information procedures taking into account the observed time series trend.
Adequacy of satellite derived rainfall data for stream flow modeling
Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.
2007-01-01
Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.
Assessing Australian Rainfall Projections in Two Model Resolutions
NASA Astrophysics Data System (ADS)
Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.
2016-02-01
Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.
A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young
2016-09-01
The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
Synoptic environment associated with heavy rainfall events on the coastland of Northeast Brazil
NASA Astrophysics Data System (ADS)
Oliveira, P. T.; Lima, K. C.; Silva, C. M. Santos e.
2013-07-01
Northeast Brazil (NEB) has an extensive coastal area, often hit by natural disasters that bring many social and economic losses. The objective of this work was to study the synoptic environment associated with a heavy rainfall event (HRE) on the coastland of NEB. We used daily rainfall data for coastal area of NEB between the states of Rio Grande do Norte and Bahia, divided into two subregions: north and south coastland. This data was obtained from the hydrometeorological network managed by the Agência Nacional de Águas and the daily data reanalysis from the ERAInterim. For the selection of HRE the technique of quantiles was used, thus defined HRE where at least one rain gauge recorded rainfall above 95th percentile. The interannual distribution of events showed occurrence maximum in La Niña years and minimal in El Niño years. The results suggest that the HRE were formed mainly due to the action of upper-level cyclonic vortex, in hight levels, and due to the action to South Atlantic convergence zone, in low levels.
Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment
NASA Technical Reports Server (NTRS)
Sikdar, D. M.
1984-01-01
The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.
NASA Astrophysics Data System (ADS)
Li, Qiong; Geng, Fangzhi
2018-03-01
Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.
Characterizing land surface phenology and responses to rainfall in the Sahara desert
NASA Astrophysics Data System (ADS)
Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.
2016-08-01
Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.
NASA Astrophysics Data System (ADS)
da Silva, Fabricio Polifke; Rotunno Filho, Otto Corrêa; Sampaio, Rafael João; Dragaud, Ian Cunha D'amato Viana; de Araújo, Afonso Augusto Magalhães; Justi da Silva, Maria Gertrudes Alvarez; Pires, Gisele Dornelles
2017-12-01
Local prediction of thunderstorms is one of the most challenging tasks in weather forecasting due to their high spatiotemporal variability. An improved understanding of such meteorological phenomena, therefore, requires high-frequency measurements along the vertical profile of the atmosphere of interest. In this context, the evaluation of thermodynamic and dynamic parameters obtained from radiosondes to identify atmospheric conditions favorable to thunderstorm and heavy-rainfall development emerges as a valuable tool for investigations of thunderstorms. In this context, four radiosondes were launched to collect a data set for the area of interest at the sub-daily scale (12 UTC, 16 UTC, 18 UTC, and 00 UTC). The collection period encompassed two dates—November 29 and December 12, 2016—chosen specifically due to the existence of heavy-rainfall warnings in the forecast for the Metropolitan Area of Rio de Janeiro, Brazil ("MARJ") for those days. However, heavy rainfall was registered only for December 12 and not for November 29 (which led us to explore this contrast with the announced rainfall forecasts). Sub-daily radiosonde data showed a clear decrease in atmospheric instability in the early afternoon on November 29. On the other hand, an opposite scenario occurred on December 12, which saw an expressive increase in thermodynamic instability during the day. The meteorological modeling approach used also revealed that the vertical coupling of low-level moisture flux convergence centers and upper-level mass flux divergence centers worked as a dynamic trigger for the thunderstorm and heavy-rainfall developments that took place on December 12, 2016.
NASA Astrophysics Data System (ADS)
B., Serena; Lee | Gavin, F.; Birch | Charles, J.; Lemckert
2011-05-01
Runoff from the urban environment is a major contributor of non-point source contamination for many estuaries, yet the ultimate fate of this stormwater within the estuary is frequently unknown in detail. The relationship between catchment rainfall and estuarine response within the Sydney Estuary (Australia) was investigated in the present study. A verified hydrodynamic model (Environmental Fluid Dynamics Computer Code) was utilised in concert with measured salinity data and rainfall measurements to determine the relationship between rainfall and discharge to the estuary, with particular attention being paid to a significant high-precipitation event. A simplified rational method for calculating runoff based upon daily rainfall, subcatchment area and runoff coefficients was found to replicate discharge into the estuary associated with the monitored event. Determining fresh-water supply based upon estuary conditions is a novel technique which may assist those researching systems where field-measured runoff data are not available and where minor field-measured information on catchment characteristics are obtainable. The study concluded that since the monitored fresh-water plume broke down within the estuary, contaminants associated with stormwater runoff due to high-precipitation events (daily rainfall > 50 mm) were retained within the system for a longer period than was previously recognised.
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
Trends of rainfall regime in Peninsular Malaysia during northeast and southwest monsoons
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The trends of rainfall regime in Peninsular Malaysia is mainly affected by the seasonal monsoon. The aim of this study is to investigate the impact of northeast and southwest monsoons on the monthly rainfall patterns over Badenoch Estate, Kedah. In addition, the synoptic maps of wind vector also being developed to identify the wind pattern over Peninsular Malaysia from 2007 – 2016. On the other hand, the archived daily rainfall data is acquired from Malaysian Meteorological Department. The temporal and trends of the monthly and annual rainfall over the study area have been analysed from 2007 to 2016. Overall, the average annual precipitation over the study area from 2007 to 2016 recorded by rain gauge is 2562.35 mm per year.
Short Term Rain Prediction For Sustainability of Tanks in the Tropic Influenced by Shadow Rains
NASA Astrophysics Data System (ADS)
Suresh, S.
2007-07-01
Rainfall and flow prediction, adapting the Venkataraman single time series approach and Wiener multiple time series approach were conducted for Aralikottai tank system, and Kothamangalam tank system, Tamilnadu, India. The results indicated that the raw prediction of daily values is closer to actual values than trend identified predictions. The sister seasonal time series were more amenable for prediction than whole parent time series. Venkataraman single time approach was more suited for rainfall prediction. Wiener approach proved better for daily prediction of flow based on rainfall. The major conclusion is that the sister seasonal time series of rain and flow have their own identities even though they form part of the whole parent time series. Further studies with other tropical small watersheds are necessary to establish this unique characteristic of independent but not exclusive behavior of seasonal stationary stochastic processes as compared to parent non stationary stochastic processes.
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
NASA Astrophysics Data System (ADS)
Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.
2018-04-01
The capacity to forecast climate and land-use driven changes to runoff, soil erosion and sediment transport in the tropics is hindered by a lack of long-term data sets and model study systems. To address these issues we utilized three watersheds characterized by similar shape, geology, soils, vegetation cover, and land use arranged across a 900 mm gradient in mean annual rainfall (MAR). Using this space-for-time design, we quantified suspended sediment (SS) and particulate organic carbon (POC) export over 18 months to examine how large-scale climate trends (MAR) affect sediment supply and delivery patterns (hysteresis) in tropical watersheds. Average daily SS yield ranged from 0.128 to 0.618 t km- 2 while average daily POC ranged from 0.002 to 0.018 t km- 2. For the largest storm events, we found that sediment delivery exhibited similar clockwise hysteresis patterns among the watersheds, with no significant differences in the similarity function between watershed pairs, indicating that: (1) in-stream and near-stream sediment sources drive sediment flux; and (2) the shape and timing of hysteresis is not affected by MAR. With declining MAR, the ratio of runoff to baseflow and inter-storm length between pulse events both increased. Despite increases in daily rainfall and the number of days with large rainfall events increasing with MAR, there was a decline in daily SS yield possibly due to the exhaustion of sediment supply by frequent runoff events in high MAR watersheds. By contrast, mean daily POC yield increased with increasing MAR, possibly as a result of increased soil organic matter decomposition, greater biomass, or increased carbon availability in higher MAR watersheds. We compared results to modeled values using the Load Estimator (LOADEST) FORTRAN model, confirming the negative relationship between MAR and sediment yield. However, because of its dependency on mean daily flow, LOADEST tended to under predict sediment yield, a result of its poor ability to capture the high variability in tropical streamflow. Taken together, results indicate that declines in MAR can have contrasting effects on hydrological processes in tropical watersheds, with consequences for instream ecology, downstream water users, and nearshore habitat.
Hydrologic system state at debris flow initiation in the Pitztal catchment, Austria
NASA Astrophysics Data System (ADS)
Mostbauer, Karin; Hrachowitz, Markus; Prenner, David; Kaitna, Roland
2017-04-01
Debris flows represent a severe hazard in mountain regions. Though significant effort has been made to forecast such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. To improve our knowledge on the connection between debris flow initiation and the hydrologic system, this study applies a semi-distributed conceptual rainfall-runoff model, linking different system state variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the Pitztal watershed, western Austria. The hydrologic modelling was performed on a daily basis between 1953 and 2012. High-intensity rainfall could be identified as the dominant trigger (31 out of 43 debris flows), while triggering exclusively by low-intensity, long-lasting rainfall was only observed in one single case. The remaining events were related to snowmelt; whether all of these events where triggered by rain-on-snow, or whether some of these events were actually triggered by snowmelt only, remains unclear since the occurrence of un- resp. underrecorded rainfall was detected frequently. The usage of a conceptual hydrological model for investigating debris flow initiation constitutes a novel approach in debris flow research and was assessed as very valuable. For future studies, it is recommended to evaluate also sub-daily information. As antecedent snowmelt was found to be much more important to debris flow initiation than antecedent rainfall, it might prove beneficial to include snowmelt in the commonly used rainfall intensity-duration thresholds.
NASA Astrophysics Data System (ADS)
Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.
2014-12-01
MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.
USDA-ARS?s Scientific Manuscript database
Predicting impacts of the magnitude and seasonal timing of rainfall pulses in water-limited grassland ecosystems concerns ecologists, climate scientists, hydrologists, and a variety of stakeholders. This report describes a simple, effective procedure to emulate the seasonal response of grassland bio...
Robust increase in extreme summer rainfall intensity during the past four decades observed in China
NASA Astrophysics Data System (ADS)
Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun
2016-12-01
Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
NASA Astrophysics Data System (ADS)
O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.
2018-01-01
Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).
A global dataset of sub-daily rainfall indices
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Blenkinsop, S.; Guerreiro, S.; Li, X.; Barbero, R.; Chan, S.; Lenderink, G.; Westra, S.
2017-12-01
It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. A new global sub-daily precipitation dataset has been constructed (data collection is ongoing). Metadata for each station has been calculated, detailing record lengths, missing data, station locations. A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community.
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
Extreme rainfall-induced landslide changes based on landslide susceptibility in China, 1998-2015
NASA Astrophysics Data System (ADS)
Li, Weiyue; Liu, Chun; Hong, Yang
2017-04-01
Nowadays, landslide has been one of the most frequent and seriously widespread natural hazards all over the world. Rainfall, especially heavy rainfall is a trigger to cause the landslide occurrence, by increasing soil pore water pressures. In China, rainfall-induced landslides have risen up over to 90% of the total number. Rainfall events sometimes generate a trend of extremelization named rainfall extremes that induce the slope failure suddenly and severely. This study shows a method to simulate the rainfall-induced landslide spatio-temporal distribution on the basis of the landslide susceptibility index. First, the study on landslide susceptibility in China is introduced. We set the values of the index to the range between 0 and 1. Second, we collected TRMM 3B42 precipitation products spanning the years 1998-2015 and extracted the daily rainfall events greater than 50mm/day as extreme rainfall. Most of the rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate extreme rainfall-induced landslide distribution and illustrate the changes in 17 years. This study shows a useful tool to be part of rainfall-induced landslide simulation methodology for landslide early warning.
NASA Astrophysics Data System (ADS)
Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz
2018-02-01
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.
Some Precipitation Studies over Andhra Pradesh and the Bay of Bengal using TRMM and SSMI data
NASA Astrophysics Data System (ADS)
Rao, S. Ramalingeswara; Krishna, K. Muni; Kumar, Bhanu
2007-07-01
One of the most difficult issues in modeling the global atmosphere and climate by General Circulation Models is the simulation and initialization of precipitation processes and at the same time rainfall is most important meteorological parameter that effects India's economy. An attempt is made in the present study to evaluate diurnal variation of rain rates over the Bay of Bengal (BoB) for the months June through December during 1999-2002. TMI rainfall product of Wentz and Spencer and SSMI data sets were used in this study. Mean hourly rain rates were calculated over the BoB (10°-15° N and 85°-95°E) and discussed; this study highlights that maximum rain rates are observed in the afternoons during summer monsoon seasons. Secondly mean monthly annual cycle of rainfall is prepared using 3B42RT merged rain product and compared with mean monthly India Meteorological Department (IMD) data for the study period over Andhra Pradesh (A.P). Time series of daily variations of 3B42RT precipitation and observed real time rainfall data over A.P. for the study period is validated and the relationship between them is statistically significant at 1% level. Similarly mean monthly data prepared from the daily analysis and compared with the IMD mean monthly rainfall maps. The comparison suggests that even with only available real time data from 3B42RT and rain gauge, it is possible to construct usable large-scale rainfall maps on regular latitude-longitude grids. This analysis, which uses a high resolution and more local rain gauge data, is able to produce realistic details of Indian summer monsoon rainfall over the study period.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Bourassa, M. A.; Ali, M. M.
2017-12-01
This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.
NASA Astrophysics Data System (ADS)
Schilirò, L.; Esposito, C.; Scarascia Mugnozza, G.
2015-09-01
Rainfall-induced shallow landslides are a widespread phenomenon that frequently causes substantial damage to property, as well as numerous casualties. In recent~years a wide range of physically based models have been developed to analyze the triggering process of these events. Specifically, in this paper we propose an approach for the evaluation of different shallow landslide-triggering scenarios by means of the TRIGRS (transient rainfall infiltration and grid-based slope stability) numerical model. For the validation of the model, a back analysis of the landslide event that occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on 1 October 2009 was performed, by using different methods and techniques for the definition of the input parameters. After evaluating the reliability of the model through comparison with the 2009 landslide inventory, different triggering scenarios were defined using rainfall values derived from the rainfall probability curves, reconstructed on the basis of daily and hourly historical rainfall data. The results emphasize how these phenomena are likely to occur in the area, given that even short-duration (1-3 h) rainfall events with a relatively low return period (e.g., 10-20~years) can trigger numerous slope failures. Furthermore, for the same rainfall amount, the daily simulations underestimate the instability conditions. The high susceptibility of this area to shallow landslides is testified by the high number of landslide/flood events that have occurred in the past and are summarized in this paper by means of archival research. Considering the main features of the proposed approach, the authors suggest that this methodology could be applied to different areas, even for the development of landslide early warning systems.
NASA Astrophysics Data System (ADS)
Gao, Qingjiu; Sun, Yuting; You, Qinglong
2016-12-01
The meridional location change of Meiyu rain belt and its relationship with the rainfall intensity and circulation background changes for the period 1958-2009 are examined using daily rainfall datasets from 756 stations in China, the 6-h ERA-Interim reanalyses, CRU monthly temperature and daily outgoing long-wave radiation (OLR) data from the US National Oceanic and Atmospheric Administration (NOAA). The results indicate that the Meiyu rain belt experienced a northward shift in the late 1990s in response to global warming. Moreover, the intensity of interannual and day-to-day variability of rainfall within Meiyu period has been increasing in the warming climate. The amplification of the variability within Meiyu period over the northern Yangtze-Huai River Valley (YHRV) is much larger than that of the southern YHRV. The large difference in the trends of variance within the Meiyu period between these two regions induces a spatial varying for different rainfall categories in terms of intensity. More significant positive trends in heavy and extreme heavy rainfall occur over northern YHRV compared with southern YHRV, which is a crucial indicator of changes in the rain band, despite the observation of an increase in heavy and very heavy rain events and a decrease in weak events throughout the entire YHRV. A composite of the atmospheric circulation indicates that intense northward horizontal transport and the convergence of water vapor fluxes are the immediate causes of the rain band shift. Besides, through forcing a northward extended convection over the tropics, the Pacific-Japan (P-J) pattern induces a northward expansion of western Pacific Subtropical High, leading to intensified convergence and enhanced rainfall over Northern YHRV.
NASA Astrophysics Data System (ADS)
Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan
2015-04-01
The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, P<0.01) in all the catchments. The average specific peak discharge was negatively related to percentage of forest and grass cover (R² = 0.64, P<0.01), time of concentration (R² = 0.31, P<0.01), drainage texture (R² = 0.42, P<0.01), and catchment perimeter (R² = 0.36, P<0.01). The specific peak discharge was positively correlated with average slope gradient of the catchments (R² = 0.34, P<0.01) and with an index representing the spatial distribution of forest and grass cover (R² = 0.43, P<0.01). A stepwise multiple regression analyses showed that 84% (P<0.01) of the variability of the runoff response in the catchments can be predicted by the percentage of forest and grass cover and the relief ratio of the catchments. All in all, this study demonstrates that the magnitude of flash floods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).
NASA Astrophysics Data System (ADS)
Fouchier, Catherine; Maire, Alexis; Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2016-04-01
The starting point of our study was the availability of maps of rainfall quantiles available for the entire French mainland territory at the spatial resolution of 1 km². These maps display the rainfall amounts estimated for different rainfall durations (from 15 minutes to 72 hours) and different return periods (from 2 years up to 1 000 years). They are provided by a regionalized stochastic hourly point rainfall generator, the SHYREG method which was previously developed by Irstea (Arnaud et al., 2007; Cantet and Arnaud, 2014). Being calibrated independently on numerous raingauges data (with an average density across the country of 1 raingauge per 200 km²), this method suffers from a limitation common to point-process rainfall generators: it can only reproduce point rainfall patterns and has no capacity to generate rainfall fields. It can't hence provide areal rainfall quantiles, the estimation of the latter being however needed for the construction of design rainfall or for the diagnostic of observed events. One means of bridging this gap between our local rainfall quantiles and areal rainfall quantiles is given by the concept of probabilistic areal reduction factors of rainfall (ARF) as defined by Omolayo (1993). This concept enables to estimate areal rainfall of a particular frequency within a certain amount of time from point rainfalls of the same frequency and duration. Assessing such ARF for the whole French territory is of particular interest since it should allow us to compute areal rainfall quantiles, and eventually watershed rainfall quantiles, by using the already available grids of statistical point rainfall of the SHYREG method. Our purpose was then to assess these ARF thanks to long time-series of spatial rainfall data. We have used two sets of rainfall fields: i) hourly rainfall fields from a 10-year reference database of Quantitative Precipitation Estimation (QPE) over France (Tabary et al., 2012), ii) daily rainfall fields resulting from a 53-year high-resolution atmospheric reanalysis over France with the SAFRAN-gauge-based analysis system (Vidal et al., 2010). We have then built samples of maximal rainfalls for each cell location (the "point" rainfalls) and for different areas centered on each cell location (the areal rainfalls) of these gridded data. To compute rainfall quantiles, we have fitted a Gumbel law, with the L-moment method, on each of these samples. Our daily and hourly ARF have then shown four main trends: i) a sensitivity to the return period, with ARF values decreasing when the return period increases; ii) a sensitivity to the rainfall duration, with ARF values decreasing when the rainfall duration decreases; iii) a sensitivity to the season, with ARF values smaller for the summer period than for the winter period; iv) a sensitivity to the geographical location, with low ARF values in the French Mediterranean area and ARF values close to 1 for the climatic zones of Northern and Western France (oceanic to semi-continental climate). The results of this data-intensive study led for the first time on the whole French territory are in agreement with studies led abroad (e.g. Allen and DeGaetano 2005, Overeem et al. 2010) and confirm and widen the results of previous studies that were carried out in France on smaller areas and with fewer rainfall durations (e.g. Ramos et al., 2006, Neppel et al., 2003). References Allen R. J. and DeGaetano A. T. (2005). Areal reduction factors for two eastern United States regions with high rain-gauge density. Journal of Hydrologic Engineering 10(4): 327-335. Arnaud P., Fine J.-A. and Lavabre J. (2007). An hourly rainfall generation model applicable to all types of climate. Atmospheric Research 85(2): 230-242. Cantet, P. and Arnaud, P. (2014). Extreme rainfall analysis by a stochastic model: impact of the copula choice on the sub-daily rainfall generation, Stochastic Environmental Research and Risk Assessment, Springer Berlin Heidelberg, 28(6), 1479-1492. Neppel L., Bouvier C. and Lavabre J. (2003). Areal reduction factor probabilities for rainfall in Languedoc Roussillon. IAHS-AISH Publication (278): 276-283. Omolayo, A. S. (1993). On the transposition of areal reduction factors for rainfall frequency estimation. Journal of Hydrology 145 (1-2): 191-205. Overeem A., Buishand T. A., Holleman I. and Uijlenhoet R. (2010). Extreme value modeling of areal rainfall from weather radar. Water Resources Research 46(9): 10 p. Ramos M.-H., Leblois E., Creutin J.-D. (2006). From point to areal rainfall: Linking the different approaches for the frequency characterisation of rainfalls in urban areas. Water Science and Technology. 54(6-7): 33-40. Tabary P., Dupuy P., L'Henaff G., Gueguen C., Moulin L., Laurantin O., Merlier C., Soubeyroux J. M. (2012). A 10-year (1997-2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results. IAHS-AISH Publication (351) : 255-260. Vidal J.-P., Martin E., Franchistéguy L., Baillon M. and Soubeyroux J.-M. (2010). A 50-year high-resolution atmospheric reanalysis over France with the Safran system. International Journal of Climatology 30(11): 1627-1644.
Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin
Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.
2008-01-01
In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph
2017-04-01
Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30
Characteristics of Heavy Summer Rainfall in Southwestern Taiwan in Relation to Orographic Effects
NASA Technical Reports Server (NTRS)
Chen, Ching-Sen; Chen, Wan-Chin; Tao, Wei-Kuo
2004-01-01
On the windward side of southwestern Taiwan, about a quarter to a half of all rainfall during mid-July through August from 1994 to 2000 came from convective systems embedded in the southwesterly monsoon flow. k this study, the causes of two heavy rainfall events (daily rainfall exceeding 100 mm day over at least three rainfall stations) observed over the slopes and/or lowlands of southwestern Taiwan were examined. Data from European Center for Medium-Range Weather Forecasts /Tropical Ocean- Global Atmosphere (EC/TOGA) analyses, the rainfall stations of the Automatic Rainfall and Meteorological Telemetry System (ARMTS) and the conventional surface stations over Taiwan, and the simulation results from a regional-scale numerical model were used to accomplish the objectives. In one event (393 mm day on 9 August 1999), heavy rainfall was observed over the windward slopes of southern Taiwan in a potentially unstable environment with very humid air around 850 hPa. The extreme accumulation was simulated and attributed to orographic lifting effects. No preexisting convection drifted in from the Taiwan Strait into western Taiwan.
NASA Astrophysics Data System (ADS)
Remaitre, Alexandre; Wallner, Stefan; Promper, Catrin; Glade, Thomas; Malet, Jean-Philippe
2013-04-01
Rainfall is worldwide a recognized trigger of landslides. Numerous studies were conducted in order to define the relationships between the precipitations and the triggering or the reactivation of landslides. Hydrological triggering of landslides can be divided in three general types: (1) development of local perched water tables in the subsoil leading to shallow slope instabilities and possible gravitational flows, (2) long-lasting rise in permanent water tables leading to more deep-seated slope instabilities, and (3) intense runoff causing channel-bed erosion and debris flows. Types (1) and (3) are usually observed during high rainfall intensities (hourly and daily rainfall) associated to heavy storms; type (2) is usually observed through increasing water content in the subsoil due to antecedent rainfalls (weekly or monthly rainfall) and/or massive snowmelt. Many investigations have been carried out to determine the amount of precipitation needed to trigger slopes failures. For rainfall-induced landslides a threshold may be define the rainfall, soil moisture or hydrological conditions that, when reached or exceeded, are likely to trigger landslides. Usually rainfall thresholds can be defined on physical process-based or conceptual models or empirical, historical and statistical bases. Nevertheless, both the large variety of landslides and to the extreme variety of climatic conditions leading to the triggering or the reactivation of a landslide lead to a regional definition of relationships between landslide occurrence and associated climatic conditions. The purpose of this case study is to analyze the relationships between the triggering of three types of landslides, debris flows, shallow landslides and deep-seated mudslides, and different patterns of rainfall in two study sites with different physiographic and climatic characteristics: the Barcelonnette basin in the South French Alps and the Waidhofen an der Ybbs area in Lower Austria. For this purpose, we exploit for the two test sites a landslide catalogue and rainfall data series to define a typology of rainfall induced-landslides for the relevant landslide types. Results from an analysis of the rainfall conditions associated to these events at different time scale (yearly, monthly, daily and hourly) show a clear distinction between these landslides. Slow-moving landslides are often associated to persistent rainstorms with low intensities during long periods causing the saturation of the soils while fast-moving landslides are usually triggered by short rainfall events with high intensities that occur in summer.
Statistical Analysis of 30 Years Rainfall Data: A Case Study
NASA Astrophysics Data System (ADS)
Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.
2017-07-01
Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.
Regional rainfall thresholds for landslide occurrence using a centenary database
NASA Astrophysics Data System (ADS)
Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia
2018-04-01
This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.
Cross-timescale Interference and Rainfall Extreme Events in South Eastern South America
NASA Astrophysics Data System (ADS)
Munoz, Angel G.
The physical mechanisms and predictability associated with extreme daily rainfall in South East South America (SESA) are investigated for the December-February season. Through a k-mean analysis, a robust set of daily circulation regimes is identified and then it is used to link the frequency of rainfall extreme events with large-scale potential predictors at subseasonal-to-seasonal scales. This basic set of daily circulation regimes is related to the continental and oceanic phases of the South Atlantic Convergence Zone (SACZ) and wave train patterns superimposed on the Southern Hemisphere Polar Jet. Some of these recurrent synoptic circulation types are conducive to extreme rainfall events in the region through synoptic control of different meso-scale physical features and, at the same time, are influenced by climate phenomena that could be used as sources of potential predictability. Extremely high rainfall (as measured by the 95th- and 99th-percentiles) is preferentially associated with two of these weather types, which are characterized by moisture advection intrusions from lower latitudes and the Pacific; another three weather types, characterized by above-normal moisture advection toward lower latitudes or the Andes, are preferentially associated with dry days (days with no rain). The analysis permits the identification of several subseasonal-to-seasonal scale potential predictors that modulate the occurrence of circulation regimes conducive to extreme rainfall events in SESA. It is conjectured that a cross-timescale interference between the different climate drivers improves the predictive skill of extreme precipitation in the region. The potential and real predictive skill of the frequency of extreme rainfall is then evaluated, finding evidence indicating that mechanisms of climate variability at one timescale contribute to the predictability at another scale, i.e., taking into account the interference of different potential sources of predictability at different timescales increases the predictive skill. This fact is in agreement with the Cross-timescale Interference Conjecture proposed in the first part of the thesis. At seasonal scale, a combination of those weather types tends to outperform all the other potential predictors explored, i.e., sea surface temperature patterns, phases of the Madden-Julian Oscillation, and combinations of both. Spatially averaged Kendall’s τ improvements of 43% for the potential predictability and 23% for realtime predictions are attained with respect to standard models considering sea-surface temperature fields alone. A new subseasonal-to-seasonal predictive methodology for extreme rainfall events is proposed, based on probability forecasts of seasonal sequences of these weather types. The cross-validated realtime skill of the new probabilistic approach, as measured by the Hit Score and the Heidke Skill Score, is on the order of twice that associated with climatological values. The approach is designed to offer useful subseasonal-to-seasonal climate information to decision-makers interested not only in how many extreme events will happen in the season, but also in how, when and where those events will probably occur. In order to gain further understanding about how the cross-timescale interference occurs, an externally-forced Lorenz model is used to explore the impact of different kind of forcings, at inter-annual and decadal scales, in the establishment of constructive interactions associated with the simulated “extreme events”. Using a wavelet analysis, it is shown that this simple model is capable of reproducing the same kind of cross-timescale structures observed in the wavelet power spectrum of the Nino3.4 index only when it is externally forced by both inter-annual and decadal signals: the annual cycle and a decadal forcing associated with the natural solar variability. The nature of this interaction is non-linear, and it impacts both mean and extreme values in the time series. No predictive power was found when using metrics like standard deviation and auto-correlation. Nonetheless, it was proposed that an early warning signal for occurrence of extreme rainfall in SESA may be possible via a continuous monitoring of relative phases between the cross-timescale leading components.
Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.
Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min
2016-07-01
River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.
Gaussian process models for reference ET estimation from alternative meteorological data sources
USDA-ARS?s Scientific Manuscript database
Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid regions where crop water demand exceeds rainfall. Daily grass or alfalfa reference ET values and crop coefficients are widely used to estimate crop water demand. ...
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.
Tornevi, Andreas; Bergstedt, Olof; Forsberg, Bertil
2014-01-01
Background The river Göta Älv is a source of freshwater for 0.7 million swedes. The river is subject to contamination from sewer systems discharge and runoff from agricultural lands. Climate models projects an increase in precipitation and heavy rainfall in this region. This study aimed to determine how daily rainfall causes variation in indicators of pathogen loads, to increase knowledge of variations in river water quality and discuss implications for risk management. Methods Data covering 7 years of daily monitoring of river water turbidity and concentrations of E. coli, Clostridium and coliforms were obtained, and their short-term variations in relation with precipitation were analyzed with time series regression and non-linear distributed lag models. We studied how precipitation effects varied with season and compared different weather stations for predictive ability. Results Generally, the lowest raw water quality occurs 2 days after rainfall, with poor raw water quality continuing for several more days. A rainfall event of >15 mm/24-h (local 95 percentile) was associated with a three-fold higher concentration of E. coli and 30% higher turbidity levels (lag 2). Rainfall was associated with exponential increases in concentrations of indicator bacteria while the effect on turbidity attenuated with very heavy rainfall. Clear associations were also observed between consecutive days of wet weather and decreased water quality. The precipitation effect on increased levels of indicator bacteria was significant in all seasons. Conclusions Rainfall elevates microbial risks year-round in this river and freshwater source and acts as the main driver of varying water quality. Heavy rainfall appears to be a better predictor of fecal pollution than water turbidity. An increase of wet weather and extreme events with climate change will lower river water quality even more, indicating greater challenges for drinking water producers, and suggesting better control of sources of pollution. PMID:24874010
SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture
NASA Astrophysics Data System (ADS)
Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang
2018-02-01
Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value < 10.34 mm over 5 days) and bias (median value < -14.44 %) during the evaluation period. The validation has been carried out at original resolution (0.25°) over Europe, Australia and five other areas worldwide to test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.
Synthetic rainfall vibrations evoke toad emergence.
Márquez, Rafael; Beltrán, Juan F; Llusia, Diego; Penna, Mario; Narins, Peter M
2016-12-19
Toads occupy underground refugia during periods of daily or seasonal inactivity, emerging only during rainfall [1]. We test the hypothesis that rainfall-induced vibrations in soil are the cues that trigger the emergence of toads from underground. Using playback experiments in the absence of natural rainfall in native habitats, we observed that two Iberian toad species (Pelobates cultripes and Bufo calamita) emerged significantly earlier than controls when exposed to low-frequency soil vibrations that closely mimic those of rainfall. Our results suggest that detection of abiotic seismic events are biologically relevant and widespread in arid-zone anurans. These findings provide insights into the evolutionary role played by the two low-frequency-tuned inner-ear organs in anuran amphibians - the amphibian papilla and sacculus, both detectors of weak environmental vibrational cues. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petroselli, A.; Grimaldi, S.; Romano, N.
2012-12-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model widely used to estimate losses and direct runoff from a given rainfall event, but its use is not appropriate at sub-daily time resolution. To overcome this drawback, a mixed procedure, referred to as CN4GA (Curve Number for Green-Ampt), was recently developed including the Green-Ampt (GA) infiltration model and aiming to distribute in time the information provided by the SCS-CN method. The main concept of the proposed mixed procedure is to use the initial abstraction and the total volume given by the SCS-CN to calibrate the Green-Ampt soil hydraulic conductivity parameter. The procedure is here applied on a real case study and a sensitivity analysis concerning the remaining parameters is presented; results show that CN4GA approach is an ideal candidate for the rainfall excess analysis at sub-daily time resolution, in particular for ungauged basin lacking of discharge observations.
Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall.
Dave, Prashant; Bhushan, Mani; Venkataraman, Chandra
2017-12-11
Aerosol abundance over South Asia during the summer monsoon season, includes dust and sea-salt, as well as, anthropogenic pollution particles. Using observations during 2000-2009, here we uncover repeated short-term rainfall suppression caused by coincident aerosols, acting through atmospheric stabilization, reduction in convection and increased moisture divergence, leading to the aggravation of monsoon break conditions. In high aerosol-low rainfall regions extending across India, both in deficient and normal monsoon years, enhancements in aerosols levels, estimated as aerosol optical depth and absorbing aerosol index, acted to suppress daily rainfall anomaly, several times in a season, with lags of a few days. A higher frequency of prolonged rainfall breaks, longer than seven days, occurred in these regions. Previous studies point to monsoon rainfall weakening linked to an asymmetric inter-hemispheric energy balance change attributed to aerosols, and short-term rainfall enhancement from radiative effects of aerosols. In contrast, this study uncovers intraseasonal short-term rainfall suppression, from coincident aerosol forcing over the monsoon region, leading to aggravation of monsoon break spells. Prolonged and intense breaks in the monsoon in India are associated with rainfall deficits, which have been linked to reduced food grain production in the latter half of the twentieth century.
NASA Astrophysics Data System (ADS)
Tolika, Konstantia; Maheras, Panagiotis; Anagnostopoulou, Christina
2018-05-01
The highest rainfall totals (912.2 mm) and the largest number of raindays (133 days), since 1958, were recorded in Thessaloniki during the year of 2014. Extreme precipitation heights were also observed on a seasonal, monthly and daily basis. The examined year presented the highest daily rainfall intensity, the maximum daily precipitation and the largest number of heavy precipitation days (greater than 10 mm), and it also exceeded the previous amounts of precipitation of very wet (95th percentile) and extremely wet (99th percentile) days. According to the automatic circulation type classification scheme that was used, it was found that during this exceptionally wet year, the frequency of occurrence of cyclonic types at the near surface geopotential level increases, while the same types decreased at a higher atmospheric level (500 hPa). The prevailing type was type C which is located at the centre of the study area (Greece), but several other cyclonic types changed during this year not only their frequency but also their percentage of rainfall as well as their daily precipitation intensity. It should be highlighted that these findings differentiated on the seasonal-scale analysis. Moreover, out of the three teleconnection patterns that were examined (Scandinavian Pattern, Eastern Mediterranean Teleconnection Pattern and North Sea-Caspian Pattern), the Scandinavian one (SCAND) was detected during the most of the months of 2014 meaning that it was highly associated with intense precipitation over Greece.
NASA Astrophysics Data System (ADS)
Sheffer, N. A.; Dafny, E.; Gvirtzman, H.; Frumkin, A.; Navon, S.; Morin, E.
2008-05-01
The western part of the Israeli Mountain Aquifer (WMA) supplies 360-400 MCM/y of fresh water to the Israeli water budget, which is approximately 20% of the total consumption. The annually recharge to the WMA is considered to be 25-35% of annual rainfall. The high variability in recharge to the WMA is due to spatial and temporal differences in the rain contributing to the aquifer. Different winters producing the same amount of rain may contribute differently to the aquifer due to the locations of the storms, intensity, duration, dry spells between successive rain events, etc. Moreover, besides the climatic-meteorological factors, the recharge is dependent also on geographical factors, such as lithology, pedology, land-use, slope gradient, slope direction etc. The need for a robust reliable Hydrometeorological Daily basis REcharge Assessment Model (Hydrometeorological DREAM) brought us to develop a model with a relatively high spatial and temporal resolution. The concept is based on a relatively simple water budget that states that rainfall over land is added to the soil, and removed later on by means of evapotranspiration, recharge and runoff. The method in use to date at the Hydrological Service for estimating recharge to the WMA is based on an annual regression curve that can be implemented only after the total annual rainfall is known. The DREAM is a near real time estimator of recharge to the WMA using daily rainfall and pan evaporation data. Comparison of the DREAM results with the annual regression curve show a high agreement on an annual basis. The improvements introduced by the DREAM are: 1) Near real time daily values of infiltration, as opposed to calculated annual values established after the rain season is over. 2) High spatial resolution. The DREAM produces daily recharge values in more than 3000 mesh points throughout the 2200 km2 of recharge area. By linking the DREAM output as input to a hydrogeological model (such as FEFLOW, MODFLOW etc.) a completion of the water cycle can by achieved.
Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
NASA Astrophysics Data System (ADS)
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
NASA Astrophysics Data System (ADS)
Waylen, Peter R.; Harrison, Michael
2005-10-01
The occurrence of tropical cyclones in the Caribbean and North Atlantic basins has been previously noted to have a significant effect both upon individual hydro-climatological events as well as on the quantity of annual precipitation experienced along the Pacific flank of Central America. A methodology for examining the so-called indirect effects of tropical cyclones (i.e. those effects resulting from a tropical cyclone at a considerable distance from the area of interest) on a daily rainfall record is established, which uses a variant of contingency table analysis. The method is tested using a single station on the Pacific slope of Costa Rica. Employing daily precipitation records from Liberia, north-western Costa Rica (1964-1995), and historic storm tracks of tropical cyclones in the North Atlantic, it is determined that precipitation falling in coincidence with the passage of tropical depressions, tropical storms, and hurricanes accounts for approximately 15% of average annual precipitation. The greatest effects are associated with storms passing within 1300 km of the precipitation station, and are most apparent in the increased frequency of daily rainfall totals in the range of 40-60 mm, rather than in the largest daily totals. The complexity and nonstationarity of factors affecting precipitation in this region are reflected in the decline in the number of tropical cyclones and their significance to annual precipitation totals after 1980, simultaneous to an increase in annual precipitation totals. The methodology employed in this study is shown to be a useful tool in illuminating the indirect effects of tropical cyclones in the region, with the potential for application in other areas.
Green roofs'retention performances in different climates
NASA Astrophysics Data System (ADS)
Viola, Francesco; Hellies, Matteo; Deidda, Roberto
2017-04-01
The ongoing process of global urbanization contributes to increasing stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be an innovative stormwater management tool to partially restore natural state, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends mainly on both soil properties and climate. The evaluation of the retained water is not trivial since it depends on the stochastic soil moisture dynamics. The aim of this work is to explore performances of green roofs, in terms of water retention, as a function of their depth considering different climate regimes. The role of climate in driving water retention has been mainly represented by rainfall and potential evapotranspiration dynamics, which are simulated by a simple conceptual weather generator at daily time scale. The model is able to describe seasonal (in-phase and counter-phase) and stationary behaviors of climatic forcings. Model parameters have been estimated on more than 20,000 historical time series retrieved worldwide. Exemplifying cases are discussed for five different climate scenarios, changing the amplitude and/or the phase of daily mean rainfall and evapotranspiration forcings. The first scenario represents stationary climates, in two other cases the daily mean rainfall or the potential evapotranspiration evolve sinusoidally. In the latter two cases, we simulated the in-phase or in counter-phase conditions. Stochastic forcings have been then used as an input to a simple conceptual hydrological model which simulate soil moisture dynamics, evapotranspiration fluxes, runoff and leakage from soil pack at daily time scale. For several combinations of annual rainfall and potential evapotranspiration, the analysis allowed assessing green roofs' retaining capabilities, at annual time scale. Provided abacus allows a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas, i.e. less input to sewer systems.
NASA Astrophysics Data System (ADS)
Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.
2014-09-01
Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.
NASA Astrophysics Data System (ADS)
Garcia Galiano, S. G.; Giraldo Osorio, J. D.; Nguyen, P.; Hsu, K. L.; Braithwaite, D.; Olmos, P.; Sorooshian, S.
2015-12-01
Studying Spain's long-term variability and changing trends in rainfall, due to its unique position in the Mediterranean basin (i.e., the latitudinal gradient from North to South and its orographic variation), can provide a valuable insight into how hydroclimatology of the region has changed. A recently released high resolution satellite-based global daily precipitation climate dataset PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Climate Data Record), provided the opportunity to conduct such study. It covers the period 01/01/1983 - to date, at 0.25° resolution. In areas without a dense network of rain-gauges, the PERSIANN-CDR dataset could be useful for identifying the reliability of regional climate models (RCMs), in order to build robust RCMs ensemble for reducing the uncertainties in the climate and hydrological projections. However, before using this data set for RCM evaluation, an assessment of performance of PERSIANN-CDR dataset against in-situ observations is necessary. The high-resolution gridded daily rain-gauge dataset, named Spain02, was employed in this study. The variable Dry Spell Lengths (DSL) considering 1 mm and 10 mm as thresholds of daily rainfall, and the time period 1988-2007 was defined for the study. A procedure for improving the consistency and homogeneity between the two datasets was applied. The assessment is based on distributional similarity and the well-known statistical tests (Smirnov-Kolmogorov of two samples and Chi-Square) are used as fitting criteria. The results demonstrate good fit of PERSIANN-CDR over whole Spain, for threshold 10 mm/day. However, for threshold 1 mm/day PERSIANN-CDR compares well with Spain02 dataset for areas with high values of rainfall (North of Spain); while in semiarid areas (South East of Spain) there is strong overestimation of short DSLs. Overall, PERSIANN-CDR demonstrate its robustness in the simulation of DSLs for the highest thresholds.
Complex behaviour and predictability of the European dry spell regimes
NASA Astrophysics Data System (ADS)
Lana, X.; Martínez, M. D.; Serra, C.; Burgueño, A.
2010-09-01
The complex spatial and temporal characteristics of European dry spell lengths, DSL, (sequences of consecutive days with rainfall amount below a certain threshold) and their randomness and predictive instability are analysed from daily pluviometric series recorded at 267 rain gauges along the second half of the 20th century. DSL are obtained by considering four thresholds, R0, of 0.1, 1.0, 5.0 and 10.0 mm/day. A proper quantification of the complexity, randomness and predictive instability of the different DSL regimes in Europe is achieved on the basis of fractal analyses and dynamic system theory, including the reconstruction theorem. First, the concept of lacunarity is applied to the series of daily rainfall, and the lacunarity curves are well fitted to Cantor and random Cantor sets. Second, the rescaled analysis reveals that randomness, persistence and anti-persistence are present on the European DSL series. Third, the complexity of the physical process governing the DSL series is quantified by the minimum number of nonlinear equations determined by the correlation dimension. And fourth, the loss of memory of the physical process, which is one of the reasons for the complex predictability, is characterized by the values of the Kolmogorov entropy, and the predictive instability is directly associated with positive Lyapunov exponents. In this way, new bases for a better prediction of DSLs in Europe, sometimes leading to drought episodes, are established. Concretely, three predictive strategies are proposed in Sect. 5. It is worth mentioning that the spatial distribution of all fractal parameters does not solely depend on latitude and longitude but also reflects the effects of orography, continental climate or vicinity to the Atlantic and Arctic Oceans and Mediterranean Sea.
SDCLIREF - A sub-daily gridded reference dataset
NASA Astrophysics Data System (ADS)
Wood, Raul R.; Willkofer, Florian; Schmid, Franz-Josef; Trentini, Fabian; Komischke, Holger; Ludwig, Ralf
2017-04-01
Climate change is expected to impact the intensity and frequency of hydrometeorological extreme events. In order to adequately capture and analyze extreme rainfall events, in particular when assessing flood and flash flood situations, data is required at high spatial and sub-daily resolution which is often not available in sufficient density and over extended time periods. The ClimEx project (Climate Change and Hydrological Extreme Events) addresses the alteration of hydrological extreme events under climate change conditions. In order to differentiate between a clear climate change signal and the limits of natural variability, unique Single-Model Regional Climate Model Ensembles (CRCM5 driven by CanESM2, RCP8.5) were created for a European and North-American domain, each comprising 50 members of 150 years (1951-2100). In combination with the CORDEX-Database, this newly created ClimEx-Ensemble is a one-of-a-kind model dataset to analyze changes of sub-daily extreme events. For the purpose of bias-correcting the regional climate model ensembles as well as for the baseline calibration and validation of hydrological catchment models, a new sub-daily (3h) high-resolution (500m) gridded reference dataset (SDCLIREF) was created for a domain covering the Upper Danube and Main watersheds ( 100.000km2). As the sub-daily observations lack a continuous time series for the reference period 1980-2010, the need for a suitable method to bridge the gap of the discontinuous time series arouse. The Method of Fragments (Sharma and Srikanthan (2006); Westra et al. (2012)) was applied to transform daily observations to sub-daily rainfall events to extend the time series and densify the station network. Prior to applying the Method of Fragments and creating the gridded dataset using rigorous interpolation routines, data collection of observations, operated by several institutions in three countries (Germany, Austria, Switzerland), and the subsequent quality control of the observations was carried out. Among others, the quality control checked for steps, extensive dry seasons, temporal consistency and maximum hourly values. The resulting SDCLIREF dataset provides a robust precipitation reference for hydrometeorological applications in unprecedented high spatio-temporal resolution. References: Sharma, A.; Srikanthan, S. (2006): Continuous Rainfall Simulation: A Nonparametric Alternative. In: 30th Hydrology and Water Resources Symposium 4-7 December 2006, Launceston, Tasmania. Westra, S.; Mehrotra, R.; Sharma, A.; Srikanthan, R. (2012): Continuous rainfall simulation. 1. A regionalized subdaily disaggregation approach. In: Water Resour. Res. 48 (1). DOI: 10.1029/2011WR010489.
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier
2018-02-01
As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.
Rain Check Application: Mobile tool to monitor rainfall in remote parts of Haiti
NASA Astrophysics Data System (ADS)
Huang, X.; Baird, J.; Chiu, M. T.; Morelli, R.; de Lanerolle, T. R.; Gourley, J. R.
2011-12-01
Rainfall observations performed uniformly and continuously over a period of time are valuable inputs in developing climate models and predicting events such as floods and droughts. Rain-Check is a mobile application developed in Google App Inventor Platform, for android based smart phones, to allow field researchers to monitor various rain gauges distributed though out remote regions of Haiti and send daily readings via SMS messages for further analysis and long term trending. Rainfall rate and quantity interact with many other factors to influence erosion, vegetative cover, groundwater recharge, stream water chemistry and runoff into streams impacting agriculture and livestock. Rainfall observation from various sites is especially significant in Haiti with over 80% of the country is mountainous terrain. Data sets from global models and limited number of ground stations do not capture the fine-scale rainfall patterns necessary to describe local climate. Placement and reading of rain gauges are critical to accurate measurement of rainfall.
Atlas of interoccurrence intervals for selected thresholds of daily precipitation in Texas
Asquith, William H.; Roussel, Meghan C.
2003-01-01
A Poisson process model is used to define the distribution of interoccurrence intervals of daily precipitation in Texas. A precipitation interoccurrence interval is the time period between two successive rainfall events. Rainfall events are defined as daily precipitation equaling or exceeding a specified depth threshold. Ten precipitation thresholds are considered: 0.05, 0.10, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0 inches. Site-specific mean interoccurrence interval and ancillary statistics are presented for each threshold and for each of 1,306 National Weather Service daily precipitation gages. Maps depicting the spatial variation across Texas of the mean interoccurrence interval for each threshold are presented. The percent change from the statewide standard deviation of the interoccurrence intervals to the root-mean-square error ranges from a magnitude minimum of (negative) -24 to a magnitude maximum of -60 percent for the 0.05- and 2.0-inch thresholds, respectively. Because of the substantial negative percent change, the maps are considered more reliable estimators of the mean interoccurrence interval for most locations in Texas than the statewide mean values.
Monthly monsoon rainfall forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Ganti, Ravikumar
2014-10-01
Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.
Monsoon Rainfall and Landslides in Nepal
NASA Astrophysics Data System (ADS)
Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.
2009-12-01
A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of antecedent rainfall in triggering landslides. It is noticed that a moderate correlation exists between the antecedent rainfalls of 3 to 10 days and the daily rainfall at failure in the Nepal Himalaya. The rainfall thresholds are utilized to develop early warning systems. Taking reference of the intensity-duration threshold and normalized rainfall intensity threshold, two proto-type models of early warning systems (RIEWS and N-RIEWS) are proposed. Early warning models show less time for evacuation in the case of short duration and high intensity rainfall, whereas for long duration rainfall, warning time is enough and when warning information disseminate to the people, people will aware to possible landslide risk. In the meantime, they will be mentally ready to tackle with possible disaster of coming hours or days and will avoid the consequences. On the basis of coarse hydro-meteorological data of developing country like Nepal, this simple and rather easy model of early warning will certainly help to reduce fatalities from landslides.
Coherent variability between seasonal temperatures and rainfalls in the Iberian Peninsula, 1951-2016
NASA Astrophysics Data System (ADS)
Rodrigo, F. S.
2018-02-01
In this work trends of seasonal mean of daily minimum (TN), maximum (TX), mean (TM) temperatures, daily range of temperature (DTR), and total seasonal rainfall (R) in 35 Iberian stations since mid-twentieth century are studied. The interest is focused on the relationships between temperature variables and rainfall, taking into account the correlation coefficients between R and the temperature variables. The negative link between rainfall and temperatures is detected in the four seasons of the year, except in western stations in winter for TN and TM, and in autumn for TN (for this variable a certain annual cycle is detected, with predominance of positive correlation in winter, negative in spring and summer, and the autumn as transition season). The role of cloud cover is confirmed in those stations with total cloud cover data. Using an average peninsular series, the relationship between nighttime temperature and rainfall related to long wave radiation is confirmed for the four seasons of the year, although in spring and summer has minor importance than in the cold half year. The relationships between R, TN, and TX are in general terms stable after a moving correlation analysis, although the negative correlation between TX and R seems be weakened in spring and autumn and reinforced in summer. The role of convective precipitation in autumn is discussed. The analysis of combined extreme indices in four representative stations shows an increase of warm and dry days, and a decrease of cold and wet days.
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358
Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang
2014-01-01
Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.
Rainfall Patterns Analysis over Ampangan Muda, Kedah from 2007 - 2016
NASA Astrophysics Data System (ADS)
Chooi Tan, Kok
2018-04-01
The scientific knowledge about climate change and climate variability over Malaysia pertaining to the extreme water-related disaster such as drought and flood. A deficit or increment in precipitation occurred over the past century becomes a useful tool to understand the climate change in Malaysia. The purpose of this work is to examine the rainfall patterns over Ampangan Muda, Kedah. Daily rainfall data is acquired from Malaysian Meteorological Department to analyse the temporal and trends of the monthly and annual rainfall over the study area from 2007 to 2016. The obtained results show that the temporal and patterns of the rainfall over Ampangan Muda, Kedah is largely affected by the regional phenomena such as monsoon, El Niño Southern Oscillation (ENSO), and the Madden-Julian Oscillation. In addition, backward trajectories analysis is also used to identify the patterns for long-range of synoptic circulation over the region.
Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility
NASA Astrophysics Data System (ADS)
Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila
2018-02-01
The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.
NASA Astrophysics Data System (ADS)
Ongoma, Victor; Chen, Haishan; Omony, George William
2018-01-01
This study investigates the variability of extreme rainfall events over East Africa (EA), using indices from the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis was based on observed daily rainfall from 23 weather stations, with length varying within 1961 and 2010. The indices considered are: wet days ( R ≥1 mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity index (SDII), heavy precipitation days ( R ≥ 10 mm), very heavy precipitation days ( R ≥ 20 mm), and severe precipitation ( R ≥ 50 mm). The non-parametric Mann-Kendall statistical analysis was carried out to identify trends in the data. Temporal precipitation distribution was different from station to station. Almost all indices considered are decreasing with time. The analysis shows that the PRCPTOT, very heavy precipitation, and severe precipitation are generally declining insignificantly at 5 % significant level. The PRCPTOT is evidently decreasing over Arid and Semi-Arid Land (ASAL) as compared to other parts of EA. The number of days that recorded heavy rainfall is generally decreasing but starts to rise in the last decade although the changes are insignificant. Both PRCPTOT and heavy precipitation show a recovery in trend starting in the 1990s. The SDII shows a reduction in most areas, especially the in ASAL. The changes give a possible indication of the ongoing climate variability and change which modify the rainfall regime of EA. The results form a basis for further research, utilizing longer datasets over the entire region to reduce the generalizations made herein. Continuous monitoring of extreme events in EA is critical, given that rainfall is projected to increase in the twenty-first century.
A fully probabilistic approach to extreme rainfall modeling
NASA Astrophysics Data System (ADS)
Coles, Stuart; Pericchi, Luis Raúl; Sisson, Scott
2003-03-01
It is an embarrassingly frequent experience that statistical practice fails to foresee historical disasters. It is all too easy to blame global trends or some sort of external intervention, but in this article we argue that statistical methods that do not take comprehensive account of the uncertainties involved in both model and predictions, are bound to produce an over-optimistic appraisal of future extremes that is often contradicted by observed hydrological events. Based on the annual and daily rainfall data on the central coast of Venezuela, different modeling strategies and inference approaches show that the 1999 rainfall which caused the worst environmentally related tragedy in Venezuelan history was extreme, but not implausible given the historical evidence. We follow in turn a classical likelihood and Bayesian approach, arguing that the latter is the most natural approach for taking into account all uncertainties. In each case we emphasize the importance of making inference on predicted levels of the process rather than model parameters. Our most detailed model comprises of seasons with unknown starting points and durations for the extremes of daily rainfall whose behavior is described using a standard threshold model. Based on a Bayesian analysis of this model, so that both prediction uncertainty and process heterogeneity are properly modeled, we find that the 1999 event has a sizeable probability which implies that such an occurrence within a reasonably short time horizon could have been anticipated. Finally, since accumulation of extreme rainfall over several days is an additional difficulty—and indeed, the catastrophe of 1999 was exaggerated by heavy rainfall on successive days—we examine the effect of timescale on our broad conclusions, finding results to be broadly similar across different choices.
Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan
NASA Astrophysics Data System (ADS)
Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen
2017-10-01
Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.
NASA Astrophysics Data System (ADS)
Jiang, Xianling; Ren, Fumin; Li, Yunjie; Qiu, Wenyu; Ma, Zhuguo; Cai, Qinbo
2018-05-01
The characteristics of tropical cyclone (TC) extreme rainfall events over Hainan Island from 1969 to 2014 are analyzed from the viewpoint of the TC maximum daily rainfall (TMDR) using daily station precipitation data from the Meteorological Information Center of the China Meteorological Administration, TC best-track data from the Shanghai Typhoon Institute, and NCEP/NCAR reanalysis data. The frequencies of the TMDR reaching 50, 100 and 250 mm show a decreasing trend [-0.7 (10 yr)-1], a weak decreasing trend [-0.2 (10 yr)-1] and a weak increasing trend [0.1 (10 yr)-1], respectively. For seasonal variations, the TMDR of all intensity grades mainly occurs from July to October, with the frequencies of TMDR - 50 mm and - 100 mm peaking in September and the frequency of TMDR - 250 mm [TC extreme rainstorm (TCER) events] peaking in August and September. The western region (Changjiang) of the Island is always the rainfall center, independent of the intensity or frequencies of different intensity grades. The causes of TCERs are also explored and the results show that topography plays a key role in the characteristics of the rainfall events. TCERs are easily induced on the windward slopes of Wuzhi Mountain, with the coordination of TC tracks and TC wind structure. A slower speed of movement, a stronger TC intensity and a farther westward track are all conducive to extreme rainfall events. A weaker northwestern Pacific subtropical high is likely to make the 500-hPa steering flow weaker and results in slower TC movement, whereas a stronger South China Sea summer monsoon can carry a higher moisture flux. These two environmental factors are both favorable for TCERs.
NASA Astrophysics Data System (ADS)
Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.
2018-02-01
Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.
NASA Technical Reports Server (NTRS)
Ricko, Martina; Adler, Robert F.; Huffman, George J.
2016-01-01
Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.
NASA Astrophysics Data System (ADS)
Amorese, D.; Grasso, J.-R.; Garambois, S.; Font, M.
2018-05-01
The rank-sum multiple change-point method is a robust statistical procedure designed to search for the optimal number and the location of change points in an arbitrary continue or discrete sequence of values. As such, this procedure can be used to analyse time-series data. Twelve years of robust data sets for the Séchilienne (French Alps) rockslide show a continuous increase in average displacement rate from 50 to 280 mm per month, in the 2004-2014 period, followed by a strong decrease back to 50 mm per month in the 2014-2015 period. When possible kinematic phases are tentatively suggested in previous studies, its solely rely on the basis of empirical threshold values. In this paper, we analyse how the use of a statistical algorithm for change-point detection helps to better understand time phases in landslide kinematics. First, we test the efficiency of the statistical algorithm on geophysical benchmark data, these data sets (stream flows and Northern Hemisphere temperatures) being already analysed by independent statistical tools. Second, we apply the method to 12-yr daily time-series of the Séchilienne landslide, for rainfall and displacement data, from 2003 December to 2015 December, in order to quantitatively extract changes in landslide kinematics. We find two strong significant discontinuities in the weekly cumulated rainfall values: an average rainfall rate increase is resolved in 2012 April and a decrease in 2014 August. Four robust changes are highlighted in the displacement time-series (2008 May, 2009 November-December-2010 January, 2012 September and 2014 March), the 2010 one being preceded by a significant but weak rainfall rate increase (in 2009 November). Accordingly, we are able to quantitatively define five kinematic stages for the Séchilienne rock avalanche during this period. The synchronization between the rainfall and displacement rate, only resolved at the end of 2009 and beginning of 2010, corresponds to a remarkable change (fourfold increase in mean displacement rate) in the landslide kinematic. This suggests that an increase of the rainfall is able to drive an increase of the landslide displacement rate, but that most of the kinematics of the landslide is not directly attributable to rainfall amount. The detailed exploration of the characteristics of the five kinematic stages suggests that the weekly averaged displacement rates are more tied to the frequency or rainy days than to the rainfall rate values. These results suggest the pattern of Séchilienne rock avalanche is consistent with the previous findings that landslide kinematics is dependent upon not only rainfall but also soil moisture conditions (as known as being more strongly related to precipitation frequency than to precipitation amount). Finally, our analysis of the displacement rate time-series pinpoints a susceptibility change of slope response to rainfall, as being slower before the end of 2009 than after, respectively. The kinematic history as depicted by statistical tools opens new routes to understand the apparent complexity of Séchilienne landslide kinematic.
NASA Astrophysics Data System (ADS)
Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung
2018-04-01
This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further exacerbate the precipitation extremes, whereas those in the Baiu region lead to weaker changes of these extremes.
Analysis of extreme rainfall events using attributes control charts in temporal rainfall processes
NASA Astrophysics Data System (ADS)
Villeta, María; Valencia, Jose Luis; Saá-Requejo, Antonio; María Tarquis, Ana
2015-04-01
The impacts of most intense rainfall events on agriculture and insurance industry can be very severe. This research focuses in the analysis of extreme rainfall events throughout the use of attributes control charts, which constitutes a usual tool in Statistical Process Control (SPC) but unusual in climate studios. Here, series of daily precipitations for the years 1931-2009 within a Spanish region are analyzed, based on a new type of attributes control chart that takes into account the autocorrelation between the extreme rainfall events. The aim is to conclude if there exist or not evidence of a change in the extreme rainfall model of the considered series. After adjusting seasonally the precipitation series and considering the data of the first 30 years, a frequency-based criterion allowed fixing specification limits in order to discriminate between extreme observed rainfall days and normal observed rainfall days. The autocorrelation amongst maximum precipitation is taken into account by a New Binomial Markov Extended Process obtained for each rainfall series. These modelling of the extreme rainfall processes provide a way to generate the attributes control charts for the annual fraction of rainfall extreme days. The extreme rainfall processes along the rest of the years under study can then be monitored by such attributes control charts. The results of the application of this methodology show evidence of change in the model of extreme rainfall events in some of the analyzed precipitation series. This suggests that the attributes control charts proposed for the analysis of the most intense precipitation events will be of practical interest to agriculture and insurance sectors in next future.
NASA Astrophysics Data System (ADS)
Bhardwaj, Alok; Ziegler, Alan D.; Wasson, Robert J.; Chow, Winston; Sharma, Mukat L.
2017-04-01
Extreme monsoon rainfall is the primary reason of floods and other secondary hazards such as landslides in the Indian Himalaya. Understanding the phenomena of extreme monsoon rainfall is therefore required to study the natural hazards. In this work, we study the characteristics of extreme monsoon rainfall including its intensity and frequency in the Garhwal Himalaya in India, with a focus on the Mandakini River Catchment, the site of devastating flood and multiple large landslides in 2013. We have used two long term rainfall gridded data sets: the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) product with daily rainfall data from 1951-2007 and the India Meteorological Department (IMD) product with daily rainfall data from 1901 to 2013. Two methods of Mann Kendall and Sen Slope estimator are used to identify the statistical significance and magnitude of trends in intensity and frequency of extreme monsoon rainfall respectively, at a significance level of 0.05. The autocorrelation in the time series of extreme monsoon rainfall is identified and reduced using the methods of: pre-whitening, trend-free pre-whitening, variance correction, and block bootstrap. We define extreme monsoon rainfall threshold as the 99th percentile of time series of rainfall values and any rainfall depth greater than 99th percentile is considered as extreme in nature. With the IMD data set, significant increasing trend in intensity and frequency of extreme rainfall with slope magnitude of 0.55 and 0.02 respectively was obtained in the north of the Mandakini Catchment as identified by all four methods. Significant increasing trend in intensity with a slope magnitude of 0.3 is found in the middle of the catchment as identified by all methods except block bootstrap. In the south of the catchment, significant increasing trend in intensity with a slope magnitude of 0.86 for pre-whitening method and 0.28 for trend-free pre-whitening and variance correction methods was obtained. Further, increasing trend in frequency with a slope magnitude of 0.01 was identified by three methods except block bootstrap in the south of the catchment. With the APHRODITE data set, we obtained significant increasing trend in intensity with a slope magnitude of 1.27 at the middle of the catchment as identified by all four methods. Collectively, both the datasets show signals of increasing intensity, and IMD shows results for increasing frequency in the Mandakini Catchment. The increasing occurrence of extreme events, as identified here, is becoming more disastrous because of rising human population and infrastructure in the Mandakini Catchment. For example, the 2013 flood due to extreme rainfall was catastrophic in terms of loss of human and animal lives and destruction of the local economy. We believe our results will help understand more about extreme rainfall events in the Mandakini Catchment and in the Indian Himalaya.
NASA Astrophysics Data System (ADS)
Braga, Ana Cláudia F. Medeiros; Silva, Richarde Marques da; Santos, Celso Augusto Guimarães; Galvão, Carlos de Oliveira; Nobre, Paulo
2013-08-01
The coastal zone of northeastern Brazil is characterized by intense human activities and by large settlements and also experiences high soil losses that can contribute to environmental damage. Therefore, it is necessary to build an integrated modeling-forecasting system for rainfall-runoff erosion that assesses plans for water availability and sediment yield that can be conceived and implemented. In this work, we present an evaluation of an integrated modeling system for a basin located in this region with a relatively low predictability of seasonal rainfall and a small area (600 km2). The National Center for Environmental Predictions - NCEP’s Regional Spectral Model (RSM) nested within the Center for Weather Forecasting and Climate Studies - CPTEC’s Atmospheric General Circulation Model (AGCM) were investigated in this study, and both are addressed in the simulation work. The rainfall analysis shows that: (1) the dynamic downscaling carried out by the regional RSM model approximates the frequency distribution of the daily observed data set although errors were detected in the magnitude and timing (anticipation of peaks, for example) at the daily scale, (2) an unbiased precipitation forecast seemed to be essential for use of the results in hydrological models, and (3) the information directly extracted from the global model may also be useful. The simulated runoff and reservoir-stored volumes are strongly linked to rainfall, and their estimation accuracy was significantly improved at the monthly scale, thus rendering the results useful for management purposes. The runoff-erosion forecasting displayed a large sediment yield that was consistent with the predicted rainfall.
Contributing factors to vehicle to vehicle crash frequency and severity under rainfall.
Jung, Soyoung; Jang, Kitae; Yoon, Yoonjin; Kang, Sanghyeok
2014-09-01
This study combined vehicle to vehicle crash frequency and severity estimations to examine factor impacts on Wisconsin highway safety in rainy weather. Because of data deficiency, the real-time water film depth, the car-following distance, and the vertical curve grade were estimated with available data sources and a GIS analysis to capture rainy weather conditions at the crash location and time. Using a negative binomial regression for crash frequency estimation, the average annual daily traffic per lane, the interaction between the posted speed limit change and the existence of an off-ramp, and the interaction between the travel lane number change and the pavement surface material change were found to increase the likelihood of vehicle to vehicle crashes under rainfall. However, more average daily rainfall per month and a wider left shoulder were identified as factors that decrease the likelihood of vehicle to vehicle crashes. In the crash severity estimation using the multinomial logit model that outperformed the ordered logit model, the travel lane number, the interaction between the travel lane number and the slow grade, the deep water film, and the rear-end collision type were more likely to increase the likelihood of injury crashes under rainfall compared with crashes involving only property damage. As an exploratory data analysis, this study provides insight into potential strategies for rainy weather highway safety improvement, specifically, the following weather-sensitive strategies: road design and ITS implementation for drivers' safety awareness under rainfall. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oo, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Jürgen
2016-04-01
The research level products of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG "Final" run datasets) were compared with rainfall measurements from the WegenerNet high density network as part of ground validation (GV) projects of GPM missions. The WegenerNet network comprises 151 ground level weather stations in an area of 15 km × 20 km in south-eastern Austria (Feldbach region, ˜46.93° N, ˜15.90° E) designed to serve as a long-term monitoring and validation facility for weather and climate research and applications. While the IMERG provides rainfall estimations every half hour at 0.1° resolution, the WegenerNet network measures rainfall every 5 minutes at around 2 km2 resolution and produces 200 m × 200 m gridded datasets. The study was conducted on the domain of the WegenerNet network; eight IMERG grids are overlapped with the network, two of which are entirely covered by the WegenerNet (40 and 39 stations in each grid). We investigated data from April to September of the years 2014 to 2015; the date of first two years after the launch of the GPM Core Observatory. Since the network has a flexibility to work with various spatial and temporal scales, the comparison could be conducted on average-points to pixel basis at both sub-daily and daily timescales. This presentation will summarize the first results of the comparison and future plans to explore the characteristics of errors in the IMERG datasets.
Trend analysis for daily rainfall series of Barcelona
NASA Astrophysics Data System (ADS)
Ortego, M. I.; Gibergans-Báguena, J.; Tolosana-Delgado, R.; Egozcue, J. J.; Llasat, M. C.
2009-09-01
Frequency analysis of hydrological series is a key point to acquire an in-depth understanding of the behaviour of hydrologic events. The occurrence of extreme hydrologic events in an area may imply great social and economical impacts. A good understanding of hazardous events improves the planning of human activities. A useful model for hazard assessment of extreme hydrologic events in an area is the point-over-threshold (POT) model. Time-occurrence of events is assumed to be Poisson distributed, and the magnitude X of each event is modeled as an arbitrary random variable, whose excesses over the threshold x0, Y = X - x0, given X > x0, have a Generalized Pareto Distribution (GPD), ( ? )- 1? FY (y|β,?) = 1 - 1+ βy , 0 ? y < ysup , where ysup = +? if ? 0, and ysup = -β? ? if ? < 0. The limiting distribution for ? = 0 is an exponential one. Independence between this magnitude and occurrence in time is assumed, as well as independence from event to event. In order to take account for uncertainty of the estimation of the GPD parameters, a Bayesian approach is chosen. This approach allows to include necessary conditions on the parameters of the distribution for our particular phenomena, as well as propagate adequately the uncertainty of estimations to the hazard parameters, such as return periods. A common concern is to know whether magnitudes of hazardous events have changed in the last decades. Long data series are very appreciated in order to properly study these issues. The series of daily rainfall in Barcelona (1854-2006) has been selected. This is one of the longer european daily rainfall series available. Daily rainfall is better described using a relative scale and therefore it is suitably treated in a log-scale. Accordingly, log-precipitation is identified with X. Excesses over a threshold are modeled by a GPD with a limited maximum value. An additional assumption is that the distribution of the excesses Y has limited upper tail and, therefore, ? < 0, ysup = -β?. Such a long data series provides valuable information about the phenomena on hand, and therefore a very first step is to have a look to its reliability. The first part of the work focuses on the possible existence of abrupt changes in the parameters of the GPD. These abrupt changes may be due to changes in the location of the observatories and/or technological advances introduced in the measuring instruments. The second part of the work examines the possible existence of trends. The parameters of the model are considered as a function of time. A new parameterisation of the GPD distribution is suggested, in order to parsimoniously deal with this climate variation, ? = ln(-? ?;β) and ? = ln(-? ? β) The classical scale and shape parameters of the GPD (β,?) are reformulated as a location parameter ? "linked to the upper limit of the distribution", and a shape parameter ?. In this reparameterisation, the parsimonious choice is to consider shape as a linear function of time, ?(t) = ?0 + t? while keeping location fixed, ?(t) = ?0. Then, the climate change is assessed by checking the hypothesis ? 0. Results show no significant abrupt changes in excesses distribution of the Barcelona daily rainfall series but suggest a significant change for the parameters, and therefore the existence of a trend in daily rainfall for this period.
Quantification of agricultural drought occurrence as an estimate for insurance programs
NASA Astrophysics Data System (ADS)
Bannayan, M.; Hoogenboom, G.
2015-11-01
Temporal irregularities of rainfall and drought have major impacts on rainfed cropping systems. The main goal of this study was to develop an approach for realizing drought occurrence based on local winter wheat yield loss and rainfall. The domain study included 11 counties in the state of Washington that actively grow rainfed winter wheat and an uncertainty rainfall evaluation model using daily rainfall values from 1985 to 2007. An application was developed that calculates a rainfall index for insurance that was then used to determine the drought intensity for each study year and for each study site. Evaluation of the drought intensity showed that both the 1999-2000 and 2000-2001 growing seasons were stressful years for most of the study locations, while the 2005-2006 and the 2006-2007 growing seasons experienced the lowest drought intensity for all locations. Our results are consistent with local extension reports of drought occurrences. Quantification of drought intensity based on this application could provide a convenient index for insurance companies for determining the effect of rainfall and drought on crop yield loss under the varying weather conditions of semi-arid regions.
Effects of rainfall and surface flow on chemical diffusion from soil to runoff water
USDA-ARS?s Scientific Manuscript database
Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...
NASA Astrophysics Data System (ADS)
Juliana, Imroatul C.; Kusuma, M. Syahril Badri; Cahyono, M.; Martokusumo, Widjaja; Kuntoro, Arno Adi
2017-11-01
One of the attempts to tackle the problem in water resources is to exploit the potential of rainwater volume with rainwater harvesting (RWH) system. A number of rainfall data required for analyzing the RWH system performance. In contrast, the availability of rainfall data is occasionally difficult to obtain. The main objective of this study is to investigate the effect of difference rainfall data duration and time period to assess the RWH system performance. An analysis was conducted on the rainfall data based on rainfall data duration and time period. The analysis was performed considering 15, 5, 3, 2 years, average year, wet year, and dry year for Palembang city in South Sumatera. The RWH system performance is calculated based on the concept of yield before spillage algorithm. A number of scenarios were conducted by varying the tank capacity, roof area, and the rainwater demand. It was observed that the use of data with a smaller duration provides a significant difference, especially for high rainwater demand. In addition, the use of daily rainfall data would describe th e behavior of the system more thoroughly. As for time step, the use of monthly rainfall data is only sufficient for low rainwater demand and bigger tank capacity.
NASA Astrophysics Data System (ADS)
Kenabatho, P. K.; Parida, B. P.; Moalafhi, D. B.
2017-08-01
In semi-arid catchments, hydrological modeling, water resources planning and management are hampered by insufficient spatial rainfall data which is usually derived from limited rain gauge networks. Satellite products are potential candidates to augment the limited spatial rainfall data in these areas. In this paper, the utility of the Tropical Rainfall Measuring Mission (TRMM) product (3B42 v7) is evaluated using data from the Notwane catchment in Botswana. In addition, rainfall simulations obtained from a multi-site stochastic rainfall model based on the generalised linear models (GLMs) were used as additional spatial rainfall estimates. These rainfall products were compared to the observed rainfall data obtained from six (6) rainfall stations available in the catchment for the period 1998-2012. The results show that in general the two approaches produce reasonable spatial rainfall estimates. However, the TRMM products provided better spatial rainfall estimates compared to the GLM rainfall outputs on an average, as more than 90% of the monthly rainfall variations were explained by the TRMM compared to 80% from the GLMs. However, there is still uncertainty associated mainly with limited rainfall stations, and the inability of the two products to capture unusually high rainfall values in the data sets. Despite this observation, rainfall indices computed to further assess the daily rainfall products (i.e. rainfall occurrence and amounts, length of dry spells) were adequately represented by the TRMM data compared to the GLMs. Performance from the GLMs is expected to improve with addition of further rainfall predictors. A combination of these rainfall products allows for reasonable spatial rainfall estimates and temporal (short term future) rainfall simulations from the TRMM and GLMs, respectively. The results have significant implications on water resources planning and management in the catchment which has, for the past three years, been experiencing prolonged droughts as shown by the drying of Gaborone dam (currently at a record low of 1.6% full), which is the main source of water supply to the city of Gaborone and neighbouring townships in Botswana.
T. P. Burt; C. Ford Miniat; S. H. Laseter; W. T. Swank
2017-01-01
A pattern of increasing frequency and intensity of heavy rainfall over land has been documented for several temperate regions and is associated with climate change. This study examines the changing patterns of daily precipitation at the Coweeta Hydrologic Laboratory, North Carolina, USA, since 1937 for four rain gauges across a range of elevations. We analyse...
Markov modulated Poisson process models incorporating covariates for rainfall intensity.
Thayakaran, R; Ramesh, N I
2013-01-01
Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2017-12-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2018-01-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.
NASA Astrophysics Data System (ADS)
White, C. J.; Franks, S. W.; McEvoy, D.
2015-06-01
Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.
Relation Between the Rainfall and Soil Moisture During Different Phases of Indian Monsoon
NASA Astrophysics Data System (ADS)
Varikoden, Hamza; Revadekar, J. V.
2018-03-01
Soil moisture is a key parameter in the prediction of southwest monsoon rainfall, hydrological modelling, and many other environmental studies. The studies on relationship between the soil moisture and rainfall in the Indian subcontinent are very limited; hence, the present study focuses the association between rainfall and soil moisture during different monsoon seasons. The soil moisture data used for this study are the ESA (European Space Agency) merged product derived from four passive and two active microwave sensors spanning over the period 1979-2013. The rainfall data used are India Meteorological Department gridded daily data. Both of these data sets are having a spatial resolution of 0.25° latitude-longitude grid. The study revealed that the soil moisture is higher during the southwest monsoon period similar to rainfall and during the pre-monsoon period, the soil moisture is lower. The annual cycle of both the soil moisture and rainfall has the similitude of monomodal variation with a peak during the month of August. The interannual variability of soil moisture and rainfall shows that they are linearly related with each other, even though they are not matched exactly for individual years. The study of extremes also exhibits the surplus amount of soil moisture during wet monsoon years and also the regions of surplus soil moisture are well coherent with the areas of high rainfall.
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin; Jemain, Abdul Aziz; Hamdan, Muhammad Fauzee; Wan Zin, Wan Zawiah
2011-12-01
SummaryNormally, rainfall data is collected on a daily, monthly or annual basis in the form of discrete observations. The aim of this study is to convert these rainfall values into a smooth curve or function which could be used to represent the continuous rainfall process at each region via a technique known as functional data analysis. Since rainfall data shows a periodic pattern in each region, the Fourier basis is introduced to capture these variations. Eleven basis functions with five harmonics are used to describe the unimodal rainfall pattern for stations in the East while five basis functions which represent two harmonics are needed to describe the rainfall pattern in the West. Based on the fitted smooth curve, the wet and dry periods as well as the maximum and minimum rainfall values could be determined. Different rainfall patterns are observed among the studied regions based on the smooth curve. Using the functional analysis of variance, the test results indicated that there exist significant differences in the functional means between each region. The largest differences in the functional means are found between the East and Northwest regions and these differences may probably be due to the effect of topography and, geographical location and are mostly influenced by the monsoons. Therefore, the same inputs or approaches might not be useful in modeling the hydrological process for different regions.
Is there a stratospheric pacemaker controlling the daily cycle of tropical rainfall?
NASA Astrophysics Data System (ADS)
Sakazaki, T.; Hamilton, K.; Zhang, C.; Wang, Y.
2017-02-01
Rainfall in the tropics exhibits a large, 12 h Sun-synchronous variation with coherent phase around the globe. A long-standing, but unproved, hypothesis for this phenomenon is excitation by the prominent 12 h atmospheric tide, which itself is significantly forced remotely by solar heating of the stratospheric ozone layer. We investigated the relative roles of large-scale tidal forcing and more local effects in accounting for the 12 h variation of tropical rainfall. A model of the atmosphere run with the diurnal cycle of solar heating artificially suppressed below the stratosphere still simulated a strong coherent 12 h rainfall variation ( 50% of control run), demonstrating that stratospherically forced atmospheric tide propagates downward to the troposphere and contributes to the organization of large-scale convection. The results have implications for theories of excitation of tropical atmospheric waves by moist convection, for the evaluation of climate models, and for explaining the recently discovered lunar tidal rainfall cycle.
Formation of the southern Bay of Bengal cold pool
NASA Astrophysics Data System (ADS)
Das, Umasankar; Vinayachandran, P. N.; Behara, Ambica
2016-09-01
A pool of relatively cooler water, called here as the southern Bay of Bengal cold pool, exists around Sri Lanka and southern tip of India during the summer monsoon. This cold pool is enveloped by the larger Indian Ocean warm pool and is believed to affect the intraseasonal variations of summer monsoon rainfall. In this study, we have investigated the mechanisms responsible for the formation of the cold pool using a combination of both satellite data sets and a general circulation model of the Indian Ocean. Sea surface temperature (SST) within the cold pool, after the steady increase during the February-April period, decreases first during a pre-monsoon spell in April and then with the monsoon onset during May. The onset cooling is stronger (~1.8°C) than the pre-monsoon cooling (~0.8°C) and culminates in the formation of the cold pool. Analysis of the model temperature equation shows that SST decrease during both events is primarily due to a decrease in incoming solar radiation and an increase in latent heat loss. These changes in the net heat flux are brought about by the arrival of cloud bands above the cold pool during both periods. During the pre-monsoon period, a cloud band originates in the western equatorial Indian Ocean and subsequently arrives above the cold pool. Similarly, during the monsoon onset, a band of clouds originating in the eastern equatorial Indian Ocean comes over the cold pool region. A lead-lag correlation calculation between daily SST and rainfall anomalies suggest that cooling in SST occurs in response to rainfall events with a lag of 5 days. These sequence of events occur every year with certain amount of interannual variability.
NASA Astrophysics Data System (ADS)
Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.
2014-12-01
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.
WPC Excessive Rainfall Forecasts
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
Landslide triggering thresholds for Switzerland based on a new gridded precipitation dataset
NASA Astrophysics Data System (ADS)
Leonarduzzi, Elena; Molnar, Peter; McArdell, Brian W.
2017-04-01
In Switzerland floods are responsible for most of the damage caused by rainfall-triggered natural hazards (89%), followed by landslides (6%, ca. 520 M Euros) as reported in Hilker et al. (2009) for the period 1972-2007. The prediction of landslide occurrence is particularly challenging because of their wide distribution in space and the complex interdependence of predisposing and triggering factors. The overall goal of our research is to develop an Early Warning System for landsliding in Switzerland based on hydrological modelling and rainfall forecasts. In order to achieve this, we first analyzed rainfall triggering thresholds for landslides from a new gridded daily precipitation dataset (RhiresD, MeteoSwiss) for Switzerland combined with landslide events recorded in the Swiss Damage Database (Hilker et al.,2009). The high-resolution gridded precipitation dataset allows us to collocate rainfall and landslides accurately in space, which is an advantage over many previous studies. Each of the 2272 landslides in the database in the period 1972-2012 was assigned to the corresponding 2x2 km precipitation cell. For each of these cells, precipitation events were defined as series of consecutive rainy days and the following event parameters were computed: duration (day), maximum and mean daily intensity (mm/day), total rainfall depth (mm) and maximum daily intensity divided by Mean Daily Precipitation (MDP). The events were classified as triggering or non-triggering depending on whether a landslide was recorded in the cell during the event. This classification of observations was compared to predictions based on a threshold for each of the parameters. The predictive power of each parameter and the best threshold value were quantified by ROC analysis and statistics such as AUC and the True Skill Statistic (TSS). Event parameters based on rainfall intensity were found to have similarly high predictive power (TSS=0.54-0.59, AUC=0.85-0.86), while rainfall duration had a significantly lower predictive power (TSS=0.24 and AUC=0.65). Slightly better performances were obtained when considering a typical power law intensity-duration curve as threshold (TSS=0.6). The analysis was repeated for sub-regions of the country based on erosivity and climate, using MDP and erodibility (Kuehni and Pfiffner, 2001), or a combination thereof, in the classification. When defining regional maximum intensity thresholds, the performances were further improved in all cases: for erodibility (TSS +1.3%), for MDP (TSS +3%), and for a combination of the two (TSS +5.1%). The regional maximum daily intensity thresholds varied greatly among classes, with differences of up to 43 mm/day, and they increased with decreasing erodibility and increasing MDP. This result was confirmed by considering the conditional probability of a landslide, which showed that for a given rainfall intensity the probability of a landslide in a region with wetter climate (higher MDP) is lower than that in a drier climate (lower MDP). This suggests the existence of a landscape balance between climate, erosion and soil formation. In order to demonstrate the quality and robustness of the results, we also show reference cases obtained by randomization of landslides in space and time, and resampling the data to equal sample size between triggering and non-triggering events (prevalence). Hilker, N., Badoux, A., & Hegg, C. (2009). The swiss flood and landslide damage database 1972-2007. Natural Hazards and Earth System Science, 9(3), 913-925. https://doi.org/10.1002/asl.183 Kühni, A., & Pfiffner, O. A. (2001). The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM. Geomorphology, 41(4), 285-307. https://doi.org/10.1016/S0169-555X(01)00060-5
Characteristics of Landslide Size Distribution in Response to Different Rainfall Scenarios
NASA Astrophysics Data System (ADS)
Wu, Y.; Lan, H.; Li, L.
2017-12-01
There have long been controversies on the characteristics of landslide size distribution in response to different rainfall scenarios. For inspecting the characteristics, we have collected a large amount of data, including shallow landslide inventory with landslide areas and landslide occurrence times recorded, and a longtime daily rainfall series fully covering all the landslide occurrences. Three indexes were adopted to quantitatively describe the characteristics of landslide-related rainfall events, which are rainfall duration, rainfall intensity, and the number of rainy days. The first index, rainfall duration, is derived from the exceptional character of a landslide-related rainfall event, which can be explained in terms of the recurrence interval or return period, according to the extreme value theory. The second index, rainfall intensity, is the average rainfall in this duration. The third index is the number of rainy days in this duration. These three indexes were normalized using the standard score method to ensure that they are in the same order of magnitude. Based on these three indexes, landslide-related rainfall events were categorized by a k-means method into four scenarios: moderate rainfall, storm, long-duration rainfall, and long-duration intermittent rainfall. Then, landslides were in turn categorized into four groups according to the scenarios of rainfall events related to them. Inverse-gamma distribution was applied to characterize the area distributions of the four different landslide groups. A tail index and a rollover of the landslide size distribution can be obtained according to the parameters of the distribution. Characteristics of landslide size distribution show that the rollovers of the size distributions of landslides related to storm and long-duration rainfall are larger than those of landslides in the other two groups. It may indicate that the location of rollover may shift right with the increase of rainfall intensity and the extension of rainfall duration. In addition, higher rainfall intensities are prone to trigger larger rainfall-induced landslides since the tail index of landslide area distribution are smaller for higher rainfall intensities, which indicate higher probabilities of large landslides.
NASA Astrophysics Data System (ADS)
Lashkari, A.; Salehnia, N.; Asadi, S.; Paymard, P.; Zare, H.; Bannayan, M.
2018-05-01
The accuracy of daily output of satellite and reanalysis data is quite crucial for crop yield prediction. This study has evaluated the performance of APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation), PERSIANN (Rainfall Estimation from Remotely Sensed Information using Artificial Neural Networks), TRMM (Tropical Rainfall Measuring Mission), and AgMERRA (The Modern-Era Retrospective Analysis for Research and Applications) precipitation products to apply as input data for CSM-CERES-Wheat crop growth simulation model to predict rainfed wheat yield. Daily precipitation output from various sources for 7 years (2000-2007) was obtained and compared with corresponding ground-observed precipitation data for 16 ground stations across the northeast of Iran. Comparisons of ground-observed daily precipitation with corresponding data recorded by different sources of datasets showed a root mean square error (RMSE) of less than 3.5 for all data. AgMERRA and APHRODITE showed the highest correlation (0.68 and 0.87) and index of agreement (d) values (0.79 and 0.89) with ground-observed data. When daily precipitation data were aggregated over periods of 10 days, the RMSE values, r, and d values increased (30, 0.8, and 0.7) for AgMERRA, APHRODITE, PERSIANN, and TRMM precipitation data sources. The simulations of rainfed wheat leaf area index (LAI) and dry matter using various precipitation data, coupled with solar radiation and temperature data from observed ones, illustrated typical LAI and dry matter shape across all stations. The average values of LAImax were 0.78, 0.77, 0.74, 0.70, and 0.69 using PERSIANN, AgMERRA, ground-observed precipitation data, APHRODITE, and TRMM. Rainfed wheat grain yield simulated by using AgMERRA and APHRODITE daily precipitation data was highly correlated (r 2 ≥ 70) with those simulated using observed precipitation data. Therefore, gridded data have high potential to be used to supply lack of data and gaps in ground-observed precipitation data.
Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira
NASA Astrophysics Data System (ADS)
Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís
2017-04-01
Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.
Vegetation response to rainfall seasonality and interannual variability in tropical dry forests
NASA Astrophysics Data System (ADS)
Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.
2015-12-01
We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.
Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall
NASA Astrophysics Data System (ADS)
Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James
2010-05-01
The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.
Constraining continuous rainfall simulations for derived design flood estimation
NASA Astrophysics Data System (ADS)
Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.
2016-11-01
Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.
Hydrologic data for Soldier Creek Basin, Kansas
Carswell, William J.
1978-01-01
Selected hydrologic data collected in the Soldier Creek basin in Kansas are available on magnetic tape in card-image format. Data on the tape include water discharge in fifteen-minute and daily time intervals; rainfall in fifteen-minute and daily time intervals; concentrations and particle sizes of suspended sediment; particle sizes of bed material; ground-water levels; and chemical quality of water in concentrations of selected constituents.
WPC Excessive Rainfall and Winter Weather Forecasts
Summaries Heat Index Tropical Products Daily Weather Map GIS Products Current Watches/ Warnings Satellite and Radar Imagery GOES-East Satellite GOES-West Satellite National Radar Product Archive WPC
Instability and its relation to precipitation over the Eastern Iberian Peninsula
NASA Astrophysics Data System (ADS)
Iturrioz, I.; Hernández, E.; Ribera, P.; Queralt, S.
2007-04-01
Synoptic situations producing rainfall at four rawinsonde observatories at eastern Spain are classified as stratiform or convective depending on dynamic and thermodynamic instability indices. Two daily radiosonde and daily-accumulated precipitation data from four observatories in Eastern Spain are used: Madrid-Barajas (MB), Murcia (MU), Palma de Mallorca (PA) and Zaragoza (ZA). We calculated two thermodynamic instability indices from radiosonde data: CAPE and LI. Likewise, from ERA40 reanalysis data we have calculated the Q vector divergence over the Iberian Peninsula and Balearic Islands, as a parameter describing dynamical instability. Synoptic situations producing rainfall were classified as convective or stratiform, satisfying a criterion based on the values of dynamic and thermodynamic indices at each observatory. It is observed that the number of days with stratiform precipitation related to the total number of precipitation days follows a consistent annual pattern.
Assessment of satellite-based precipitation estimates over Paraguay
NASA Astrophysics Data System (ADS)
Oreggioni Weiberlen, Fiorella; Báez Benítez, Julián
2018-04-01
Satellite-based precipitation estimates represent a potential alternative source of input data in a plethora of meteorological and hydrological applications, especially in regions characterized by a low density of rain gauge stations. Paraguay provides a good example of a case where the use of satellite-based precipitation could be advantageous. This study aims to evaluate the version 7 of the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA V7; 3B42 V7) and the version 1.0 of the purely satellite-based product of the Climate Prediction Center Morphing Technique (CMORPH RAW) through their comparison with daily in situ precipitation measurements from 1998 to 2012 over Paraguay. The statistical assessment is conducted with several commonly used indexes. Specifically, to evaluate the accuracy of daily precipitation amounts, mean error (ME), root mean square error (RMSE), BIAS, and coefficient of determination (R 2) are used, and to analyze the capability to correctly detect different precipitation intensities, false alarm ratio (FAR), frequency bias index (FBI), and probability of detection (POD) are applied to various rainfall rates (0, 0.1, 0.5, 1, 2, 5, 10, 20, 40, 60, and 80 mm/day). Results indicate that TMPA V7 has a better performance than CMORPH RAW over Paraguay. TMPA V7 has higher accuracy in the estimation of daily rainfall volumes and greater precision in the detection of wet days (> 0 mm/day). However, both satellite products show a lower ability to appropriately detect high intensity precipitation events.
Predicting Coastal Flood Severity using Random Forest Algorithm
NASA Astrophysics Data System (ADS)
Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.
2017-12-01
Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.
NASA Astrophysics Data System (ADS)
Sahlu, Dejene; Moges, Semu; Anagnostou, Emmanouil; Nikolopoulos, Efthymios; Hailu, Dereje; Mei, Yiwen
2017-04-01
Water resources assessment, planning and management in Africa is often constrained by the lack of reliable spatio-temporal rainfall data. Satellite products are steadily growing and offering useful alternative datasets of rainfall globally. The aim of this paper is to examine the error characteristics of the main available global satellite precipitation products with the view of improving the reliability of wet season (June to September) and small rainy season rainfall datasets over the Upper Blue Nile Basin. The study utilized six satellite derived precipitation datasets at 0.25-deg spatial grid size and daily temporal resolution:1) the near real-time (3B42_RT) and gauge adjusted (3B42_V7) products of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), 2) gauge adjusted and unadjusted Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products and 3) the gauge adjusted and un-adjusted product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center Morphing technique (CMORPH) over the period of 2000 to 2013.The error analysis utilized statistical techniques using bias ratio (Bias), correlation coefficient (CC) and root-mean-square-error (RMSE). Mean relative error (MRE), CC and RMSE metrics are further examined for six categories of 10th, 25th, 50th, 75th, 90thand 95th percentile rainfall thresholds. The skill of the satellite estimates is evaluated using categorical error metrics of missed rainfall volume fraction (MRV), falsely detected rainfall volume fraction (FRV), probability of detection (POD) and False Alarm Ratio (FAR). Results showed that six satellite based rainfall products underestimated wet season (June to September) gauge precipitation, with the exception of non-adjusted PERSIANN that overestimated the initial part of the rainy season (March to May). During the wet season, adjusted CMORPH has relatively better bias ratio (89 %) followed by 3B42_V7 (88%), adjusted-PERSIANN (81%), and non-adjusted products have relatively lower bias ratio. The results from CC statistic range from 0.34 to 0.43 for the wet season with adjusted products having slightly higher values. The initial rainy season has relatively higher CC than the wet season. Results from the categorical error metrics showed that CMORPH products have higher POD (91%), which are better in avoiding detecting false rainfall events in the wet season. For the initial rainy season PERSIANN (<50%), TMPA and CMORPH products are nearly equivalent (63-67%). On the other hand, FAR is below 0.1% for all products while in the wet season is higher (10-25%). In terms of rainfall volume of missed and false detected rainfall, CMORPH exhibited lower MRV ( 4.5%) than the TMPA and PERSIANN products (11-19%.) in the wet season. MRV for the initial rainy season was 20% for TMPA and CMORPH products and above 30% for PERSIANN products. All products are nearly equivalent in the wet season in terms of FRV (< 0.2%). The magnitude of MRE increases with gauge rainfall threshold categories with 3B42-V7 and adjusted CMORPH having lower magnitude, showing that underestimation of rainfall increases with increasing rainfall magnitude. CC also decreases with gauge rainfall threshold categories with CMORPH products having slightly higher values. Overall, all satellite products underestimated (overestimated) lower (higher) quantiles quantiles. We have observed that among the six satellite rainfall products the adjusted CMORPH has relatively better potential to improve wet season rainfall estimate and 3B42-V7 that initial rainy season in the Upper Blue Nile Basin.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
NASA Astrophysics Data System (ADS)
Taibi, S.; Meddi, M.; Mahé, G.; Assani, A.
2017-01-01
This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1-5, 5-10, 10-20, 20-50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10-20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.
NASA Astrophysics Data System (ADS)
Dhakal, A. S.; Adera, S.; Niswonger, R. G.; Gardner, M.
2016-12-01
The ability of the Precipitation-Runoff Modeling System (PRMS) to predict peak intensity, peak timing, base flow, and volume of streamflow was examined in Arroyo Hondo (180 km2) and Upper Alameda Creek (85 km2), two sub-watersheds of the Alameda Creek watershed in Northern California. Rainfall-runoff volume ratios vary widely, and can exceed 0.85 during mid-winter flashy rainstorm events. Due to dry antecedent soil moisture conditions, the first storms of the hydrologic year often produce smaller rainfall-runoff volume ratios. Runoff response in this watershed is highly hysteretic; large precipitation events are required to generate runoff following a 4-week period without precipitation. After about 150 mm of cumulative rainfall, streamflow responds quickly to subsequent storms, with variations depending on rainstorm intensity. Inputs to PRMS included precipitation, temperature, topography, vegetation, soils, and land cover data. The data was prepared for input into PRMS using a suite of data processing Python scripts written by the Desert Research Institute and U.S. Geological Survey. PRMS was calibrated by comparing simulated streamflow to measured streamflow at a daily time step during the period 1995 - 2014. The PRMS model is being used to better understand the different patterns of streamflow observed in the Alameda Creek watershed. Although Arroyo Hondo receives more rainfall than Upper Alameda Creek, it is not clear whether the differences in streamflow patterns are a result of differences in rainfall or other variables, such as geology, slope and aspect. We investigate the ability of PRMS to simulate daily streamflow in the two sub-watersheds for a variety of antecedent soil moisture conditions and rainfall intensities. After successful simulation of watershed runoff processes, the model will be expanded using GSFLOW to simulate integrated surface water and groundwater to support water resources planning and management in the Alameda Creek watershed.
NASA Astrophysics Data System (ADS)
Vogt, N. D.; Fernandes, K.; Pinedo-Vasquez, M.; Brondizio, E. S.; Almeida, O.; Rivero, S.; Rabelo, F. R.; Dou, Y.; Deadman, P.
2014-12-01
In this paper we investigate inter-seasonal and annual co-variations of rainfall and flood levels with Caboclo production portfolios, and proportions of it they sell and consume, in the Amazon Estuary from August 2012 to August 2014. Caboclos of the estuary maintain a diverse and flexible land-use portfolio, with a shift in dominant use from agriculture to agroforestry and forestry since WWII (Vogt et al., 2014). The current landscape is configured for acai, shrimp and fish production. In the last decade the frequency of wet seasons with anomalous flood levels and duration has increased primarily from changes in rainfall and discharge from upstream basins. Local rainfall, though with less influence on extreme estuarine flood levels, is reported to be more sporadic and intense in wet season and variable in both wet and dry seasons, for yet unknown reasons. The current production portfolio and its flexibility are felt to build resilience to these increases in hydro-climatic variability and extreme events. What is less understood, for time and costliness of daily measures at household levels, is how variations in flood and rainfall levels affect shifts in the current production portfolio of estuarine Caboclos, and the proportions of it they sell and consume. This is needed to identify what local hydro-climatic thresholds are extreme for current livelihoods, that is, that most adversely affect food security and income levels. It is also needed identify the large-scale forcings driving those extreme conditions to build forecasts for when they will occur. Here we present results of production, rainfall and flood data collected daily in households from both the North and South Channel of the Amazon estuary over last two years to identify how they co-vary, and robustness of current production portfolio under different hydro-climatic conditions.
Satellite-based high-resolution mapping of rainfall over southern Africa
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Drönner, Johannes; Nauss, Thomas
2017-06-01
A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results towards improved spatio-temporal estimates of rainfall over southern Africa.
Rainfall disaggregation for urban hydrology: Effects of spatial consistence
NASA Astrophysics Data System (ADS)
Müller, Hannes; Haberlandt, Uwe
2015-04-01
For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.
NASA Astrophysics Data System (ADS)
Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.
2015-12-01
The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.
NASA Astrophysics Data System (ADS)
Lebel, T.; Janicot, S.; Redelsperger, J. L.; Parker, D. J.; Thorncroft, C. D.
2014-12-01
The AMMA international project aims at improving our knowledge and understanding of the West African monsoon and its variability with an emphasis on daily-to-interannual timescales. AMMA is motivated by an interest in fundamental scientific issues and by the societal need for improved prediction of the WAM and its impacts on water resources, health and food security for West African nations. The West African monsoon (WAM) has a distinctive annual cycle in rainfall that remains a challenge to understand and predict. The location of peak rainfall, which resides in the Northern Hemisphere throughout the year, moves from the ocean to the land in boreal spring. Around the end of June there is a rapid shift in the location of peak rainfall between the coast and around 10°N where it remains until about the end of August. In September the peak rainfall returns equatorward at a relatively steady pace and is located over the ocean again by November. The fact that the peak rainfall migrates irregularly compared to the peak solar heating is due to the interactions that occur between the land, the atmosphere and the ocean. To gain a better understanding of this complex climate system, a large international research programme was launched in 2002, the biggest of its kind into environment and climate ever attempted in Africa. AMMA has involved a comprehensive field experiment bringing together ocean, land and atmospheric measurements, on timescales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. This presentation will focus on the description of the field programme and its accomplishments, and address some key questions that have been recently identified to form the core of AMMA-Phase 2.
Comparative analysis of rainfall and landslide damage for landslide susceptibility zonation
NASA Astrophysics Data System (ADS)
Petrucci, O.; Pasqua, A. A.
2009-04-01
In the present work we applied a methodology tested in previous works to a regional sector of Calabria (Southern Italy), aiming to obtain a zonation of this area according to the susceptibility to develop landslides, as inferred from the combined analysis of past landslide events and cumulate rainfall which triggered them. The complete series of both historical landslides and daily rainfall have been organised in two databases. For each landslide event, damage, mainly defined in relation to the reimbursement requests sent to the Department of Public Works, has been quantified using a procedure based on a Local Damage Index. Rainfall has been described by the Maximum Return Period of cumulative rainfall recorded during the landslide events. Damage index and population density, presumed to represent the location of vulnerable elements, have been referred to Thiessen polygons associated to rain gauges working at the time of the event. The procedure allowed us to carry out a classification of the polygons composing the study area according to their susceptibility to damage during DHEs. In high susceptibility polygons, severe damage occurs during rainfall characterised by low return periods; in medium susceptibility polygons, maximum return period rainfall and induced damage show equal levels of exceptionality; in low susceptibility polygons, high return period rainfall induces a low level of damage. The results can prove useful in establishing civil defence plans, emergency management, and prioritizing hazard mitigation measures.
NASA Astrophysics Data System (ADS)
Prakoso, W. G.; Murtilaksono, K.; Tarigan, S. D.; Purwanto, Y. J.
2018-05-01
An approach on flow duration and flood design estimation on the ungauged catchment with no rainfall and discharge data availability was been being develop with hydrological modelling including rainfall run off model implemented with watershed characteristic dataset. Near real time Rainfall data from multi satellite platform e.g. TRMM can be utilized for regionalization approach on the ungauged catchment. Watershed hydrologically similarity analysis were conducted including all of the major watershed in Borneo which was predicted to be similar with the Nanga Raun Watershed. It was found that a satisfactory hydrological model calibration could be achieved using catchment weighted time series of TRMM daily rainfall data, performed on nearby catchment deemed to be sufficiently similar to Nanga Raun catchment in hydrological terms. Based on this calibration, rainfall runoff parameters were then transferred to a model. Relatively reliable flow duration curve and extreme discharge value estimation were produced with reasonable several limitation. Further approach may be performed in order to deal with the primary limitations inherent in the hydrological and statistical analysis, especially to give prolongation to the availability of the rainfall and climate data with some novel approach like downscaling of global climate model.
Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates
NASA Astrophysics Data System (ADS)
Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.
2017-12-01
Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.
Spatial dependence of extreme rainfall
NASA Astrophysics Data System (ADS)
Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri
2017-05-01
This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.
BOREAS HYD-9 Hourly and Daily Rainfall Maps for the Southern Study Area
NASA Technical Reports Server (NTRS)
Eley, F. Joe; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Krauss, Terry S.; Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-9 team collected data on precipitation and streamflow over portions of the Northern Study Area (NSA) and Southern Study Area (SSA). This data set contains Cartesian maps of rain accumulation for one-hour and daily periods during the summer of 1994 over the SSA only (not the full view of the radar). A parallel set of one-hour maps for the whole radar view has been prepared and is available upon request from the HYD-09 personnel. An incidental benefit of the areal selection was the elimination of some of the less accurate data, because for various reasons the radar rain estimates degrade considerably outside a range of about 100 km. The data are available in tabular ASCII files. The HYD-09 hourly and daily radar rainfall maps for the SSA are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
Global warming induced hybrid rainy seasons in the Sahel
NASA Astrophysics Data System (ADS)
Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald
2016-10-01
The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.
Impacts of rainfall spatial variability on hydrogeological response
NASA Astrophysics Data System (ADS)
Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.
2015-02-01
There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.
NASA Astrophysics Data System (ADS)
Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried
2017-04-01
WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.
Estimating solar radiation for plant simulation models
NASA Technical Reports Server (NTRS)
Hodges, T.; French, V.; Leduc, S.
1985-01-01
Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.
Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin; ...
2017-01-10
On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. PMID:26372356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin
On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less
Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel
NASA Astrophysics Data System (ADS)
Zhang, Wenmin; Brandt, Martin; Tong, Xiaoye; Tian, Qingjiu; Fensholt, Rasmus
2018-01-01
Climate change in drylands has caused alterations in the seasonal distribution of rainfall including increased heavy-rainfall events, longer dry spells, and a shifted timing of the wet season. Yet the aboveground net primary productivity (ANPP) in drylands is usually explained by annual-rainfall sums, disregarding the influence of the seasonal distribution of rainfall. This study tested the importance of rainfall metrics in the wet season (onset and cessation of the wet season, number of rainy days, rainfall intensity, number of consecutive dry days, and heavy-rainfall events) for growing season ANPP. We focused on the Sahel and northern Sudanian region (100-800 mm yr-1) and applied daily satellite-based rainfall estimates (CHIRPS v2.0) and growing-season-integrated normalized difference vegetation index (NDVI; MODIS) as a proxy for ANPP over the study period: 2001-2015. Growing season ANPP in the arid zone (100-300 mm yr-1) was found to be rather insensitive to variations in the seasonal-rainfall metrics, whereas vegetation in the semi-arid zone (300-700 mm yr-1) was significantly impacted by most metrics, especially by the number of rainy days and timing (onset and cessation) of the wet season. We analysed critical breakpoints for all metrics to test if vegetation response to changes in a given rainfall metric surpasses a threshold beyond which vegetation functioning is significantly altered. It was shown that growing season ANPP was particularly negatively impacted after > 14 consecutive dry days and that a rainfall intensity of ˜ 13 mm day-1 was detected for optimum growing season ANPP. We conclude that the number of rainy days and the timing of the wet season are seasonal-rainfall metrics that are decisive for favourable vegetation growth in the semi-arid Sahel and need to be considered when modelling primary productivity from rainfall in the drylands of the Sahel and elsewhere.
NASA Astrophysics Data System (ADS)
Saez de Cámara, E.; Gangoiti, G.; Alonso, L.; Iza, J.
2012-04-01
A trend analysis of intensity and frequency of daily precipitation over Northern Iberia (NIB), with a primary focus on extreme events, is presented. It is based on 14 NOAA-NCDC daily records covering the last 35 years (1973-2007) plus two centenarian databases sited in eastern NIB: San Sebastián (1929-2007) (daily resolution) and Bilbao (1857-2007) (monthly resolution). It is the first time that this interfacial region between the Atlantic and the Mediterranean has been studied with such a density of monitoring stations. Spatial and temporal characteristics and changes in rainfall's distribution have been analyzed using the suite of indices developed and recommended by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). They include annual and seasonal accumulated precipitation, number of dry and rainy days, and mean precipitation per rainy day, among others. The observed trends have been tested for statistical significance using the Mann-Kendall's non-parametric test. Additionally, links between the North Atlantic Oscillation (NAO) and the precipitation in the aforementioned region have been explored. The analysis shows a significant tendency towards less intensive rainy days for the whole region together with a decreasing trend in the number of wet days for the Central NIB. The consequence is a decline of total rainfall, statistically significant in Central and Eastern NIB. The evolution to drier conditions may be seen in both annual and seasonal indices. Conversely, strong regional differences have been found in the response to the NAO signal: whereas the rainfall decrease in the Western NIB might be associated to the dominance of a positive mode of the NAO during the last decades, the lack of correlation between the NAO signal and the observed precipitation in the stations with significant decreases rises an important argument against a direct association. Using the global gridded 6-hourly NCEP-DOE Reanalysis 2 data (1979-2010) we have found that each one of the conventional NAO positive and negative modes include a variety of circulation patterns, which are critical in the precipitation distribution within the Atlantic-Mediterranean interfacial area: the mountain range distribution inside the regional margins of the Mediterranean Sea influences the main moisture pathways triggering or inhibiting precipitation in different ways, depending on differences among the circulation patterns associated to a similar NAO positive or negative signal. This results in no correlation between the NAO signal and the rainfall anomalies within the mountain ranges and their associated rain shade regions surrounding the Mediterranean Basin. These findings stress the need of caution when using rainfall anomalies in the region as a proxy for NAO or vice-versa: maps will be shown with the influence of the NAO signal in the precipitation anomalies inside the continental area of Europe, including the whole Mediterranean.
Dynamic Rainfall Patterns and the Simulation of Changing Scenarios: A behavioral watershed response
NASA Astrophysics Data System (ADS)
Chu, M.; Guzman, J.; Steiner, J. L.; Hou, C.; Moriasi, D.
2015-12-01
Rainfall is one of the fundamental drivers that control hydrologic responses including runoff production and transport phenomena that consequently drive changes in aquatic ecosystems. Quantifying the hydrologic responses to changing scenarios (e.g., climate, land use, and management) using environmental models requires a realistic representation of probable rainfall in its most sensible spatio-temporal dimensions matching that of the phenomenon under investigation. Downscaling projected rainfall from global circulation models (GCMs) is the most common practice in deriving rainfall datasets to be used as main inputs to hydrologic models which in turn are used to assess the impacts of climate changes on ecosystems. Downscaling assumes that local climate is a combination of large-scale climatic/atmospheric conditions and local conditions. However, the representation of the latter is generally beyond the capacity of current GCMs. The main objective of this study was to develop and implement a synthetic rainfall generator to downscale expected rainfall trends to 1 x 1 km rainfall daily patterns that mimic the dynamic propagation of probability distribution functions (pdf) derived from historic rainfall data (rain-gauge or radar estimated). Future projections were determined based on actual and expected changes in the pdf and stochastic processes to account for variability. Watershed responses in terms of streamflow and nutrients loads were evaluated using synthetically generated rainfall patterns and actual data. The framework developed in this study will allow practitioners to generate rainfall datasets that mimic the temporal and spatial patterns exclusive to their study area under full disclosure of the uncertainties involved. This is expected to provide significantly more accurate environmental models than is currently available and would provide practitioners with ways to evaluate the spectrum of systemic responses to changing scenarios.
NASA Astrophysics Data System (ADS)
Luitel, B. N.; Villarini, G.; Vecchi, G. A.
2014-12-01
When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.
TRMM Applications for Rainfall-Induced Landslide Early Warning
NASA Astrophysics Data System (ADS)
Dok, A.; Fukuoka, H.; Hong, Y.
2012-04-01
Early warning system (EWS) is the most effective method in saving lives and reducing property damages resulted from the catastrophic landslides if properly implemented in populated areas of landslide-prone nations. For predicting the occurrence of landslides, it requires examination of empirical relationship between rainfall characteristics and past landslide occurrence. In developed countries like Japan and the US, precipitation is monitored by rain radars and ground-based rain gauge matrix. However, in developing regions like Southeast Asian countries, very limited number of rain gauges is available, and there is no implemented methodology for issuing effective warming of landslides yet. Correspondingly, satellite precipitation monitoring could be therefore a possible and promising solution for launching landslide quasi-real-time early warning system in those countries. It is due to the fact that TMPA (TRMM Multi-satellite Precipitation Analysis) can provides a globally calibration-based sequential scheme for combining precipitation estimates from multiple satellites, and gauge analyses where feasible, at fine scales (3-hourly with 0.25°x0.25° spatial resolution). It is available both after and in quasi-real time, calibrated by TRMM Combined Instrument and TRMM Microwave Imager precipitation product. However, validation of ground based rain gauge and TRMM satellite data in the vulnerable regions is still not yet operative. Snake-line/Critical-line and Soil Water Index (SWI) are used for issuing warning of landslide occurrence in Japan; whereas, Caine criterion is preferable in Europe and western nations. Herewith, it presents rainfall behavior which took place in Beichuan city (located on the 2008 Chinese Wenchuan earthquake fault), Hofu and Shobara cities in Japan where localized heavy rainfall attacked in 2009 and 2010, respectively, from TRMM 3B42RT correlated with ground based rain gauge data. The 1-day rainfall intensity and 15-day cumulative rainfall (snake line) were independently plotted to investigate the impact of short-term rainfall intensity and accumulated effective rainfall volume respectively for obtaining some probabilistic threshold. Japanese SWI was also tested to distribute threshold regarding to highly nonlinear rainfall patterns in predicting the landslide occurrence through the plot of total water of 3 serial tank models and daily precipitation. As a result, the snake line plots using TMPA work well for landslide warning in the selected cities; while SWI plots shows unusual peak value on the day of the debris flow occurrence. Graph of daily precipitation vs SWI implies possible zone of critical line, and second peak appearance 1 day before, indicating possibility of early warning.
Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration
Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy
2017-01-01
Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated†to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.
A new index quantifying the precipitation extremes
NASA Astrophysics Data System (ADS)
Busuioc, Aristita; Baciu, Madalina; Stoica, Cerasela
2015-04-01
Events of extreme precipitation have a great impact on society. They are associated with flooding, erosion and landslides.Various indices have been proposed to quantify these extreme events and they are mainly related to daily precipitation amount, which are usually available for long periods in many places over the world. The climate signal related to changes in the characteristics of precipitation extremes is different over various regions and it is dependent on the season and the index used to quantify the precipitation extremes. The climate model simulations and empirical evidence suggest that warmer climates, due to increased water vapour, lead to more intense precipitation events, even when the total annual precipitation is slightly reduced. It was suggested that there is a shift in the nature of precipitation events towards more intense and less frequent rains and increases in heavy rains are expected to occur in most places, even when the mean precipitation is not increasing. This conclusion was also proved for the Romanian territory in a recent study, showing a significant increasing trend of the rain shower frequency in the warm season over the entire country, despite no significant changes in the seasonal amount and the daily extremes. The shower events counted in that paper refer to all convective rains, including torrential ones giving high rainfall amount in very short time. The problem is to find an appropriate index to quantify such events in terms of their highest intensity in order to extract the maximum climate signal. In the present paper, a new index is proposed to quantify the maximum precipitation intensity in an extreme precipitation event, which could be directly related to the torrential rain intensity. This index is tested at nine Romanian stations (representing various physical-geographical conditions) and it is based on the continuous rainfall records derived from the graphical registrations (pluviograms) available at National Meteorological Administration in Romania. These types of records contain the rainfall intensity (mm/minute) over various intervals for which it remains constant. The maximum intensity for each continuous rain over the May-August interval has been calculated for each year. The corresponding time series over the 1951-2008 period have been analysed in terms of their long term trends and shifts in the mean; the results have been compared to those resulted from other rainfall indices based on daily and hourly data, computed over the same interval such as: total rainfall amount, maximum daily amount, contribution of total hourly amounts exceeding 10mm/day, contribution of daily amounts exceeding the 90th percentile, the 90th, 99th and 99.9th percentiles of 1-hour data . The results show that the proposed index exhibit a coherent and stronger climate signal (significant increase) for all analysed stations compared to the other indices associated to precipitation extremes, which show either no significant change or weaker signal. This finding shows that the proposed index is most appropriate to quantify the climate change signal of the precipitation extremes. We consider that this index is more naturally connected to the maximum intensity of a real rainfall event. The results presented is this study were funded by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) through the research project CLIMHYDEX, "Changes in climate extremes and associated impact in hydrological events in Romania", code PNII-ID-2011-2-0073 (http://climhydex.meteoromania.ro)
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Pashiardis, Stelios; Lange, Manfred A.
2014-01-01
High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.
Climatological determinants of woody cover in Africa.
Good, Stephen P; Caylor, Kelly K
2011-03-22
Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.
Soil erosion under multiple time-varying rainfall events
NASA Astrophysics Data System (ADS)
Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.
2010-05-01
Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.
NASA Astrophysics Data System (ADS)
Peres, David J.; Cancelliere, Antonino; Greco, Roberto; Bogaard, Thom A.
2018-03-01
Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide-triggering thresholds. In this paper, we perform a quantitative analysis of the impacts of uncertain knowledge of landslide initiation instants on the assessment of rainfall intensity-duration landslide early warning thresholds. The analysis is based on a synthetic database of rainfall and landslide information, generated by coupling a stochastic rainfall generator and a physically based hydrological and slope stability model, and is therefore error-free in terms of knowledge of triggering instants. This dataset is then perturbed according to hypothetical reporting scenarios
that allow simulation of possible errors in landslide-triggering instants as retrieved from historical archives. The impact of these errors is analysed jointly using different criteria to single out rainfall events from a continuous series and two typical temporal aggregations of rainfall (hourly and daily). The analysis shows that the impacts of the above uncertainty sources can be significant, especially when errors exceed 1 day or the actual instants follow the erroneous ones. Errors generally lead to underestimated thresholds, i.e. lower than those that would be obtained from an error-free dataset. Potentially, the amount of the underestimation can be enough to induce an excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of triggering rainfall limits the possibility to set up links between thresholds and physio-geographical factors.
Schools of the Pacific rainfall climate experiment
NASA Technical Reports Server (NTRS)
Postawko, S. E.; Morrissey, M. L.; Taylor, G. J.; Mouginis-Mark, P.
1993-01-01
The SPaRCE program is a cooperative rainfall climate field project involving high school and college level students and teachers from various Pacific island and atoll nations. The goals of the SPaRCE program are: (1) to foster interest and increase understanding among Pacific-area students and teachers of climate and climate change; (2) to educate the students and teachers as to the importance of rainfall in the Pacific area to climate studies; (3) to provide the students and teachers an opportunity of making a major contribution to the global climate research effort by collecting and analyzing Pacific rainfall data; and (4) to incorporate collected rainfall observations into a comprehensive Pacific daily rainfall data base to be used for climate research purposes. Schools participating in SPaRCE have received standard raingauges with which to measure rainfall at their sites. Students learned to site and use their raingauges by viewing a video produced at the University of Oklahoma. Four more videos will be produced which will include information on Earth's atmosphere, global climate and climate change, regional climate and implications of climate change, and how to analyze and use the rainfall data they are collecting. The videos are accompanied by workbooks which summarize the main points of each video, and contain concrete learning activities to help the student better understand climate and climate change. Following each video, interactive sessions are held with the students using the PEACESAT (Pan-Pacific Education And Communication Experiments by Satellite) satellite radio communication system.
Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
Three-dimensional circulation structures leading to heavy summer rainfall over central North China
NASA Astrophysics Data System (ADS)
Sun, Wei; Yu, Rucong; Li, Jian; Yuan, Weihua
2016-04-01
Using daily and hourly rain gauge records and Japanese 25 year reanalysis data over 30 years, this work reveals two major circulation structures leading to heavy summer rainfall events in central North China (CNC), and further analyzes the effects of the circulations on these rainfall events. One circulation structure has an extensive upper tropospheric warm anomaly (UTWA) covering North China (NC). By strengthening the upper anticyclonic anomaly and lower southerly flows around NC, the UTWA plays a positive role in forming upper level divergence and lower level moisture convergence. As a result, the warm anomalous circulation has a solid relationship with large-scale, long-duration rainfall events with a diurnal peak around midnight to early morning. The other circulation structure has an upper tropospheric cold anomaly (UTCA) located in the upper stream of NC. Contributed to by the UTCA, a cold trough appears in the upper stream of NC and an unstable configuration with upper (lower) cold (warm) anomalies forms around CNC. Consequently, CNC is covered by strong instability and high convective energy, and the cold anomalous circulation is closely connected with local, short-duration rainfall events concentrated from late afternoon to early nighttime. The close connections between circulation structures and typical rainfall events are confirmed by two independent converse analysis processes: from circulations to rainfall characteristics, and from typical rainfall events to circulations. The results presented in this work indicate that the upper tropospheric temperature has significant influences on heavy rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
Multisite rainfall downscaling and disaggregation in a tropical urban area
NASA Astrophysics Data System (ADS)
Lu, Y.; Qin, X. S.
2014-02-01
A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.
NASA Astrophysics Data System (ADS)
Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.
2018-03-01
In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.
NASA Astrophysics Data System (ADS)
Watson, Andrew; Miller, Jodie; Fleischer, Melanie; de Clercq, Willem
2018-03-01
Wetlands are conservation priorities worldwide, due to their high biodiversity and productivity, but are under threat from agricultural and climate change stresses. To improve the water management practices and resource allocation in these complex systems, a modelling approach has been developed to estimate potential recharge for data poor catchments using rainfall data and basic assumptions regarding soil and aquifer properties. The Verlorenvlei estuarine lake (RAMSAR #525) on the west coast of South Africa is a data poor catchment where rainfall records have been supplemented with farmer's rainfall records. The catchment has multiple competing users. To determine the ecological reserve for the wetlands, the spatial and temporal distribution of recharge had to be well constrained using the J2000 rainfall/runoff model. The majority of rainfall occurs in the mountains (±650 mm/yr) and considerably less in the valley (±280 mm/yr). Percolation was modelled as ∼3.6% of rainfall in the driest parts of the catchment, ∼10% of rainfall in the moderately wet parts of the catchment and ∼8.4% but up to 28.9% of rainfall in the wettest parts of the catchment. The model results are representative of rainfall and water level measurements in the catchment, and compare well with water table fluctuation technique, although estimates are dissimilar to previous estimates within the catchment. This is most likely due to the daily timestep nature of the model, in comparison to other yearly average methods. These results go some way in understanding the fact that although most semi-arid catchments have very low yearly recharge estimates, they are still capable of sustaining high biodiversity levels. This demonstrates the importance of incorporating shorter term recharge event modeling for improving recharge estimates.
A Prototype Visualization of Real-time River Drainage Network Response to Rainfall
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2011-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.
A Web-based Data Intensive Visualization of Real-time River Drainage Network Response to Rainfall
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS streams rainfall data from NEXRAD radar, and provides three interfaces including animation for rainfall intensity, daily rainfall totals and rainfall accumulations for past 14 days for Iowa. A real-time interactive visualization interface is developed using past rainfall intensity data. The interface creates community-based rainfall products on-demand using watershed boundaries of each community as a mask. Each individual rainfall pixel is tracked in the interface along the drainage network, and the ones drains to same pixel location are accumulated. The interface loads recent rainfall data in five minute intervals that are combined with current values. Latest web technologies are utilized for the development of the interface including HTML 5 Canvas, and JavaScript. The performance of the interface is optimized to run smoothly on modern web browsers. The interface controls allow users to change internal parameters of the system, and operation conditions of the animation. The interface will help communities understand the effects of rainfall on water transport in stream and river networks and make better-informed decisions regarding the threat of floods. This presentation provides an overview of a unique visualization interface and discusses future plans for real-time dynamic presentations of streamflow forecasting.
Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall
NASA Astrophysics Data System (ADS)
Bosma, C.; Wright, D.; Nguyen, P.
2017-12-01
While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.
Technical note: Space-time analysis of rainfall extremes in Italy: clues from a reconciled dataset
NASA Astrophysics Data System (ADS)
Libertino, Andrea; Ganora, Daniele; Claps, Pierluigi
2018-05-01
Like other Mediterranean areas, Italy is prone to the development of events with significant rainfall intensity, lasting for several hours. The main triggering mechanisms of these events are quite well known, but the aim of developing rainstorm hazard maps compatible with their actual probability of occurrence is still far from being reached. A systematic frequency analysis of these occasional highly intense events would require a complete countrywide dataset of sub-daily rainfall records, but this kind of information was still lacking for the Italian territory. In this work several sources of data are gathered, for assembling the first comprehensive and updated dataset of extreme rainfall of short duration in Italy. The resulting dataset, referred to as the Italian Rainfall Extreme Dataset (I-RED), includes the annual maximum rainfalls recorded in 1 to 24 consecutive hours from more than 4500 stations across the country, spanning the period between 1916 and 2014. A detailed description of the spatial and temporal coverage of the I-RED is presented, together with an exploratory statistical analysis aimed at providing preliminary information on the climatology of extreme rainfall at the national scale. Due to some legal restrictions, the database can be provided only under certain conditions. Taking into account the potentialities emerging from the analysis, a description of the ongoing and planned future work activities on the database is provided.
Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps
NASA Astrophysics Data System (ADS)
Bel, Coraline; Liébault, Frédéric; Navratil, Oldrich; Eckert, Nicolas; Bellot, Hervé; Fontaine, Firmin; Laigle, Dominique
2017-08-01
This paper investigates the occurrence of debris flow due to rainfall forcing in the Réal Torrent, a very active debris flow-prone catchment in the Southern French Prealps. The study is supported by a 4-year record of flow responses and rainfall events, from three high-frequency monitoring stations equipped with geophones, flow stage sensors, digital cameras, and rain gauges measuring rainfall at 5-min intervals. The classic method of rainfall intensity-duration (ID) threshold was used, and a specific emphasis was placed on the objective identification of rainfall events, as well as on the discrimination of flow responses observed above the ID threshold. The results show that parameters used to identify rainfall events significantly affect the ID threshold and are likely to explain part of the threshold variability reported in the literature. This is especially the case regarding the minimum duration of rain interruption (MDRI) between two distinct rainfall events. In the Réal Torrent, a 3-h MDRI appears to be representative of the local rainfall regime. A systematic increase in the ID threshold with drainage area was also observed from the comparison of the three stations, as well as from the compilation of data from experimental debris-flow catchments. A logistic regression used to separate flow responses above the ID threshold, revealed that the best predictors are the 5-min maximum rainfall intensity, the 48-h antecedent rainfall, the rainfall amount and the number of days elapsed since the end of winter (used as a proxy of sediment supply). This emphasizes the critical role played by short intense rainfall sequences that are only detectable using high time-resolution rainfall records. It also highlights the significant influence of antecedent conditions and the seasonal fluctuations of sediment supply.
Empirical solution of Green-Ampt equation using soil conservation service - curve number values
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-09-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular widely used rainfall-runoff model for quantifying the total stream-flow volume generated by storm rainfall, but its application is not appropriate for sub-daily resolutions. In order to overcome this drawback, the Green-Ampt (GA) infiltration equation is considered and an empirical solution is proposed and evaluated. The procedure, named CN4GA (Curve Number for Green-Ampt), aims to calibrate the Green-Ampt model parameters distributing in time the global information provided by the SCS-CN method. The proposed procedure is evaluated by analysing observed rainfall-runoff events; results show that CN4GA seems to provide better agreement with the observed hydrographs respect to the classic SCS-CN method.
Use of Regional Climate Model Output for Hydrologic Simulations
NASA Astrophysics Data System (ADS)
Hay, L. E.; Clark, M. P.; Wilby, R. L.; Gutowski, W. J.; Leavesley, G. H.; Pan, Z.; Arritt, R. W.; Takle, E. S.
2001-12-01
Daily precipitation and maximum and minimum temperature time series from a Regional Climate Model (RegCM2) were used as input to a distributed hydrologic model for a rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado; East Fork of the Carson River near Gardnerville, Nevada; and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily data sets of precipitation and maximum and minimum temperature were developed from measured data. These datasets included precipitation and temperature data for all stations that are located within the area of the RegCM2 model output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and station data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and station-based simulations of runoff show little skill on a daily basis (Nash-Sutcliffe (NS) values ranging from 0.05-0.37 for RegCM2 and -0.08-0.65 for station). When the precipitation and temperature biases are corrected in the RegCM2 output and station data sets (Bias-RegCM2 and Bias-station, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins. In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from -0.08 to 0.72). These results indicate that the resolution of the RegCM2 output is appropriate for basin-scale modeling, but RegCM2 model output does not contain the day-to-day variability needed for basin-scale modeling in rainfall-dominated basins. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.
NASA Astrophysics Data System (ADS)
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.
The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.
Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun
2016-08-01
Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. Copyright © 2016 Elsevier Ltd. All rights reserved.
More frequent intense and long-lived storms dominate the springtime trend in central US rainfall
Feng, Zhe; Leung, L. Ruby; Hagos, Samson; Houze, Robert A.; Burleyson, Casey D.; Balaguru, Karthik
2016-01-01
The changes in extreme rainfall associated with a warming climate have drawn significant attention in recent years. Mounting evidence shows that sub-daily convective rainfall extremes are increasing faster than the rate of change in the atmospheric precipitable water capacity with a warming climate. However, the response of extreme precipitation depends on the type of storm supported by the meteorological environment. Here using long-term satellite, surface radar and rain-gauge network data and atmospheric reanalyses, we show that the observed increases in springtime total and extreme rainfall in the central United States are dominated by mesoscale convective systems (MCSs), the largest type of convective storm, with increased frequency and intensity of long-lasting MCSs. A strengthening of the southerly low-level jet and its associated moisture transport in the Central/Northern Great Plains, in the overall climatology and particularly on days with long-lasting MCSs, accounts for the changes in the precipitation produced by these storms. PMID:27834368
Hydrological impacts of climate change on the Tejo and Guadiana Rivers
NASA Astrophysics Data System (ADS)
Kilsby, C. G.; Tellier, S. S.; Fowler, H. J.; Howels, T. R.
2007-05-01
A distributed daily rainfall runoff model is applied to the Tejo and Guadiana river basins in Spain and Portugal to simulate the effects of climate change on runoff production, river flows and water resource availability with results aggregated to the monthly level. The model is calibrated, validated and then used for a series of climate change impact assessments for the period 2070 2100. Future scenarios are derived from the HadRM3H regional climate model (RCM) using two techniques: firstly a bias-corrected RCM output, with monthly mean correction factors calculated from observed rainfall records; and, secondly, a circulation-pattern-based stochastic rainfall model. Major reductions in rainfall and streamflow are projected throughout the year; these results differ from those for previous studies where winter increases are projected. Despite uncertainties in the representation of heavily managed river systems, the projected impacts are serious and pose major threats to the maintenance of bipartite water treaties between Spain and Portugal and the supply of water to urban and rural regions of Portugal.
More frequent intense and long-lived storms dominate the springtime trend in central US rainfall
Feng, Zhe; Leung, L. Ruby; Hagos, Samson M.; ...
2016-11-11
Here, the changes in extreme rainfall associated with a warming climate have drawn significant attention in recent years. Mounting evidence shows that sub-daily convective rainfall extremes are increasing faster than the rate of change in the atmospheric precipitable water capacity with a warming climate. However, the response of extreme precipitation depends on the type of storm supported by the meteorological environment. Here using long-term satellite, surface radar and rain-gauge network data and atmospheric reanalyses, we show that the observed increases in springtime total and extreme rainfall in 36 the central U.S. are dominated by mesoscale convective systems (MCSs), the largestmore » type of convective storm, with increased frequency and intensity of long-lasting MCSs. A strengthening of the southerly low-level jet and its associated moisture transport in the Central/Northern Great Plains, in the overall climatology and particularly on days with long-lasting MCSs, accounts for the changes in the precipitation produced by these storms.« less
More frequent intense and long-lived storms dominate the springtime trend in central US rainfall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhe; Leung, L. Ruby; Hagos, Samson M.
Here, the changes in extreme rainfall associated with a warming climate have drawn significant attention in recent years. Mounting evidence shows that sub-daily convective rainfall extremes are increasing faster than the rate of change in the atmospheric precipitable water capacity with a warming climate. However, the response of extreme precipitation depends on the type of storm supported by the meteorological environment. Here using long-term satellite, surface radar and rain-gauge network data and atmospheric reanalyses, we show that the observed increases in springtime total and extreme rainfall in 36 the central U.S. are dominated by mesoscale convective systems (MCSs), the largestmore » type of convective storm, with increased frequency and intensity of long-lasting MCSs. A strengthening of the southerly low-level jet and its associated moisture transport in the Central/Northern Great Plains, in the overall climatology and particularly on days with long-lasting MCSs, accounts for the changes in the precipitation produced by these storms.« less
NASA Astrophysics Data System (ADS)
Nanko, K.; Levia, D. F., Jr.; Iida, S.; SUN, X.; Shinohara, Y.; Sakai, N.
2017-12-01
Scientists have been interested in throughfall drop size and its distribution because of its importance to soil erosion and the forest water balance. An indoor experiment was employed to deepen our understanding of throughfall drop generation processes to promote better management of forested ecosystems. The indoor experiment provides a unique opportunity to examine an array of constant rainfall intensities that are ideal conditions to pick up the effect of changing intensities and not found in the fields. Throughfall drop generation was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), and Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions in the large-scale rainfall simulator in the National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan) at varying rainfall intensities ranging from15 to 100 mm h-1. Drop size distributions of the applied rainfall and throughfall were measured simultaneously by 20 laser disdrometers. Utilizing the drop size dataset, throughfall was separated into three components: free throughfall, canopy drip, and splash throughfall. The temporal sequencing of the throughfall components were analyzed on a 1-min interval during each experimental run. The throughfall component percentage and drop size of canopy drip differed among tree species and rainfall intensities and by elapsed time from the beginning of the rainfall event. Preliminary analysis revealed that the time differences to produce branch drip as compared to leaf (or needle) drip was partly due to differential canopy wet-up processes and the disappearance of branch drips due to canopy saturation, leading to dissimilar throughfall drop size distributions beneath the various tree species examined. This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant No.: S16088) and JSPS KAKENHI (Grant No.: JP15H05626).
A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process
NASA Astrophysics Data System (ADS)
Nourani, Vahid; Komasi, Mehdi
2013-05-01
This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.
Climate change and land use drivers of fecal bacteria in tropical Hawaiian rivers
Ayron M. Strauch; Richard A. Mackenzie; Gregory L. Bruland; Ralph Tingley; Christian P. Giardina
2014-01-01
Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500â4500 mm) of mean annual rainfall...
A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis
NASA Astrophysics Data System (ADS)
Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann
2017-04-01
The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for the entire study area.
A downscaling method for the assessment of local climate change
NASA Astrophysics Data System (ADS)
Bruno, E.; Portoghese, I.; Vurro, M.
2009-04-01
The use of complimentary models is necessary to study the impact of climate change scenarios on the hydrological response at different space-time scales. However, the structure of GCMs is such that their space resolution (hundreds of kilometres) is too coarse and not adequate to describe the variability of extreme events at basin scale (Burlando and Rosso, 2002). To bridge the space-time gap between the climate scenarios and the usual scale of the inputs for hydrological prediction models is a fundamental requisite for the evaluation of climate change impacts on water resources. Since models operate a simplification of a complex reality, their results cannot be expected to fit with climate observations. Identifying local climate scenarios for impact analysis implies the definition of more detailed local scenario by downscaling GCMs or RCMs results. Among the output correction methods we consider the statistical approach by Déqué (2007) reported as a ‘Variable correction method' in which the correction of model outputs is obtained by a function build with the observation dataset and operating a quantile-quantile transformation (Q-Q transform). However, in the case of daily precipitation fields the Q-Q transform is not able to correct the temporal property of the model output concerning the dry-wet lacunarity process. An alternative correction method is proposed based on a stochastic description of the arrival-duration-intensity processes in coherence with the Poissonian Rectangular Pulse scheme (PRP) (Eagleson, 1972). In this proposed approach, the Q-Q transform is applied to the PRP variables derived from the daily rainfall datasets. Consequently the corrected PRP parameters are used for the synthetic generation of statistically homogeneous rainfall time series that mimic the persistency of daily observations for the reference period. Then the PRP parameters are forced through the GCM scenarios to generate local scale rainfall records for the 21st century. The statistical parameters characterizing daily storm occurrence, storm intensity and duration needed to apply the PRP scheme are considered among STARDEX collection of extreme indices.
Yildirim, Mine; Schoeni, Anna; Singh, Amika S; Altenburg, Teatske M; Brug, Johannes; De Bourdeaudhuij, Ilse; Kovacs, Eva; Bringolf-Isler, Bettina; Manios, Yannis; Chinapaw M, J M
2014-02-01
The aim of the study was to examine the association of daily variations in rainfall and temperature with sedentary time (ST) and physical activity (PA) in European children. Children were included from 5 countries (Belgium, Greece, Hungary, the Netherlands, Switzerland) as part of the ENERGY-project. We used cross-sectional data from 722 children aged 10-12 years (47% boys). ST and PA were measured by accelerometers for 6 consecutive days, including weekend days. Weather data were collected from online national weather reports. Multilevel regression models were used for data analyses. Maximum temperature was positively associated with light PA (β = 3.1 min/day; 95% CI = 2.4-3.8), moderate-to-vigorous PA (β = 0.6 min/day; 95% CI = 0.4-0.8), and average PA [β = 4.1 counts per minute (cpm); 95% CI = 1.6-6.5, quadratic relationship]. Rainfall was inversely and quadratically associated with light PA (β = -1.3 min/day; 95% CI = -1.9 to -0.6), moderate-to-vigorous PA (β = -0.6 min/day; 95% CI = -0.8 to -0.3), and average PA (β = -1.6 cpm; 95% CI = -2.2 to -0.9). Maximum temperature was not significantly associated with ST (β = -0.2 min/day; 95% CI = -1.0 to 0.6), while rainfall was positively associated with ST (β = 0.9 min/day; 95% CI = 0.6-1.3). The current study shows that temperature and rainfall are significantly associated with PA and ST in 10- to 12-year-old European children.
Otani, Yosuke; Hongo, Shun; Honda, Takeaki; Okamura, Hiroki; Higo, Yuma
2018-01-01
Animals are subject to various scales of temporal environmental fluctuations, among which daily and seasonal variations are two of the most widespread and significant ones. Many biotic and abiotic factors change temporally, and climatic factors are particularly important because they directly affect the cost of thermoregulation. The purpose of the present study was to determine the activity patterns of wild Japanese macaques (Macaca fuscata) with a special emphasis on the effect of thermal conditions. We set 30 camera traps in the coniferous forest of Yakushima and monitored them for a total of 8658 camera-days between July 2014 and July 2015. Over the one-year period, temperature had a positive effect, and rainfall had a negative effect on the activity of macaques during the day. Capture rate was significantly higher during the time period of one hour after sunrise and during midday. During winter days, macaques concentrated their activity around noon, and activity shifted from the morning toward the afternoon. This could be interpreted as macaques shifting their activity to warmer time periods within a single day. Japanese macaques decreased their activity during the time before sunrise in seasons with lower temperatures. It was beneficial for macaques to be less active during cooler time periods in a cold season. Even small amounts of rainfall negatively affected the activity of Japanese macaques, with capture rates decreasing significantly even when rainfall was only 0.5–1 mm/min. In conclusion, thermal conditions significantly affected the activity of wild Japanese macaques at various time scales. PMID:29293657
Olatinwo, R O; Paz, J O; Brown, S L; Kemerait, R C; Culbreath, A K; Beasley, J P; Hoogenboom, G
2008-10-01
Tomato spotted wilt virus (TSWV), a member of the genus Tospovirus (family Bunyaviridae), is an important plant virus that causes severe damage to peanut (Arachis hypogaea) in the southeastern United States. Disease severity has been extremely variable in individual fields in Georgia, due to several factors including variability in weather patterns. A TSWV risk index has been developed by the University of Georgia to aid peanut growers with the assessment and avoidance of high risk situations. This study was conducted to examine the relationship between weather parameters and spotted wilt severity in peanut, and to develop a predictive model that integrates localized weather information into the risk index. On-farm survey data collected during 1999, 2002, 2004, and 2005 growing seasons, and derived weather variables during the same years were analyzed using nonlinear and multiple regression analyses. Meteorological data were obtained from the Georgia Automated Environmental Monitoring Network. The best model explained 61% of the variation in spotted wilt severity (square root transformed) as a function of the interactions between the TSWV risk index, the average daily temperature in April (TavA), the average daily minimum temperature between March and April (TminMA), the accumulated rainfall in March (RainfallM), the accumulated rainfall in April (RainfallA), the number of rain days in April (RainDayA), evapotranspiration in April (EVTA), and the number of days from 1 January to the planting date (JulianDay). Integrating this weather-based model with the TSWV risk index may help peanut growers more effectively manage tomato spotted wilt disease.
NASA Astrophysics Data System (ADS)
Nerantzaki, Sofia; Papalexiou, Simon Michael
2017-04-01
Identifying precisely the distribution tail of a geophysical variable is tough, or, even impossible. First, the tail is the part of the distribution for which we have the less empirical information available; second, a universally accepted definition of tail does not and cannot exist; and third, a tail may change over time due to long-term changes. Unfortunately, the tail is the most important part of the distribution as it dictates the estimates of exceedance probabilities or return periods. Fortunately, based on their tail behavior, probability distributions can be generally categorized into two major families, i.e., sub-exponentials (heavy-tailed) and hyper-exponentials (light-tailed). This study aims to update the Mean Excess Function (MEF), providing a useful tool in order to asses which type of tail better describes empirical data. The MEF is based on the mean value of a variable over a threshold and results in a zero slope regression line when applied for the Exponential distribution. Here, we construct slope confidence intervals for the Exponential distribution as functions of sample size. The validation of the method using Monte Carlo techniques on four theoretical distributions covering major tail cases (Pareto type II, Log-normal, Weibull and Gamma) revealed that it performs well especially for large samples. Finally, the method is used to investigate the behavior of daily rainfall extremes; thousands of rainfall records were examined, from all over the world and with sample size over 100 years, revealing that heavy-tailed distributions can describe more accurately rainfall extremes.
NASA Astrophysics Data System (ADS)
Mercogliano, P.; Rianna, G.
2017-12-01
Eminent works highlighted how available observations display ongoing increases in extreme rainfall events while climate models assess them for future. Although the constraints in rainfall networks observations and uncertainties in climate modelling currently affect in significant way investigations, the huge impacts potentially induced by climate changes (CC) suggest adopting effective adaptation measures in order to take proper precautions. In this regard, design storms are used by engineers to size hydraulic infrastructures potentially affected by direct (e.g. pluvial/urban flooding) and indirect (e.g. river flooding) effects of extreme rainfall events. Usually they are expressed as IDF curves, mathematical relationships between rainfall Intensity, Duration, and the return period (frequency, F). They are estimated interpreting through Extreme Theories Statistical Theories (ETST) past rainfall records under the assumption of steady conditions resulting then unsuitable under climate change. In this work, a methodology to estimate future variations in IDF curves is presented and carried out for the city of Naples (Southern Italy). In this regard, the Equidistance Quantile Matching Approach proposed by Sivrastav et al. (2014) is adopted. According it, daily-subdaily maximum precipitation observations [a] and the analogous daily data provided by climate projections on current [b] and future time spans [c] are interpreted in IDF terms through Generalized Extreme Value (GEV) approach. After, quantile based mapping approach is used to establish a statistical relationship between cumulative distribution functions resulting by GEV of [a] and [b] (spatial downscaling) and [b] and [c] functions (temporal downscaling). Coupling so-obtained relations permits generating IDF curves under CC assumption. To account for uncertainties in future projections, all climate simulations available for the area in Euro-Cordex multimodel ensemble at 0.11° (about 12 km) are considered under three different concentration scenarios (RCP2.6, RCP4.5 and RCP8.5). The results appear largely influenced by models, RCPs and time horizon of interest; nevertheless, clear indications of increases are detectable although with different magnitude on the different precipitation durations.
NASA Astrophysics Data System (ADS)
Petrucci, Olga; Pasqua, Aurora Angela; Polemio, Maurizio
2013-04-01
The present work is based on the use of a wide historical database concerning floods and landslides which occurred in Calabria, a region of southern Italy, since the seventeenth century, and including more than 11,000 records. This database has been built by collecting data coming from different information sources as newspapers, archives of regional and national agencies, scientific and technical reports, on-site surveys reports and information collected by interviewing both people involved and local administrators. This database has been continuously updated by both the results of local historical research and data coming from the daily survey of regional newspapers. Similarly, a wide archive of rainfall data for the same period and the same region has been implemented. In this work, basing on the abovementioned archives, a comparative analysis of floods that occurred in a regional sector over a long period and the climatic data characterizing the same period has been carried out, focusing on the climate trend and aiming to investigate the potential effect of climate variation on the damaging floods trend. The aim was to assess whether the frequency of floods is changing and, if so, whether these changes can be related to either rainfall and/or anthropogenic modifications. In order to assess anthropogenic modifications, the evolution of urbanized sectors of the study area in the last centuries has been reenacted by mean of comparisons, in GIS environment, of historical maps of different epochs. The annual variability of rainfall was discussed using an annual index. Short duration-high intensity rainfalls were characterized considering time series of annual maxima of 1, 3, 6, 12, and 24 hours and daily rainfall. The analysis indicates that, despite a rainfall trend favorable towards a reduction in flood occurrence, floods damage has not decreased. This seems to be mainly the effect of mismanagement of land use modifications. Moreover, the long historical series analyzed allowed us to individuate both the most frequently damaged elements and the frequently damaged geographical sectors of the study area, even with a further in depth on the cases involving people in urbanized sectors.
Regionalizing nonparametric models of precipitation amounts on different temporal scales
NASA Astrophysics Data System (ADS)
Mosthaf, Tobias; Bárdossy, András
2017-05-01
Parametric distribution functions are commonly used to model precipitation amounts corresponding to different durations. The precipitation amounts themselves are crucial for stochastic rainfall generators and weather generators. Nonparametric kernel density estimates (KDEs) offer a more flexible way to model precipitation amounts. As already stated in their name, these models do not exhibit parameters that can be easily regionalized to run rainfall generators at ungauged locations as well as at gauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate it for different temporal resolutions ranging from hourly to monthly. During the evaluation, the nonparametric methods are compared to commonly used parametric models like the two-parameter gamma and the mixed-exponential distribution. As water volume is considered to be an essential parameter for applications like flood modeling, a Lorenz-curve-based criterion is also introduced. To add value to the estimation of data at sub-daily resolutions, we incorporated the plentiful daily measurements in the interpolation scheme, and this idea was evaluated. The study region is the federal state of Baden-Württemberg in the southwest of Germany with more than 500 rain gauges. The validation results show that the newly proposed nonparametric interpolation scheme provides reasonable results and that the incorporation of daily values in the regionalization of sub-daily models is very beneficial.
NASA Astrophysics Data System (ADS)
Jothiprakash, V.; Magar, R. B.
2012-07-01
SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.
NASA Astrophysics Data System (ADS)
Soti, V.; Puech, C.; Lo Seen, D.; Bertran, A.; Vignolles, C.; Mondet, B.; Dessay, N.; Tran, A.
2010-08-01
In the Ferlo Region in Senegal, livestock depend on temporary ponds for water but are exposed to the Rift Valley Fever (RVF), a disease transmitted to herds by mosquitoes which develop in these ponds. Mosquito abundance is related to the emptying and filling phases of the ponds, and in order to study the epidemiology of RVF, pond modelling is required. In the context of a data scarce region, a simple hydrologic model which makes use of remote sensing data was developed to simulate pond water dynamics from daily rainfall. Two sets of ponds were considered: those located in the main stream of the Ferlo Valley whose hydrological dynamics are essentially due to runoff, and the ponds located outside, which are smaller and whose filling mechanisms are mainly due to direct rainfall. Separate calibrations and validations were made for each set of ponds. Calibration was performed from daily field data (rainfall, water level) collected during the 2001 and 2002 rainy seasons and from three different sources of remote sensing data: 1) very high spatial resolution optical satellite images to access pond location and surface area at given dates, 2) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) data to estimate pond catchment area and 3) Tropical Rainfall Measuring Mission (TRMM) data for rainfall estimates. The model was applied to all ponds of the study area, the results were validated and a sensitivity analysis was performed. Water height simulations using gauge rainfall as input were compared to water level measurements from four ponds and Nash coefficients >0.7 were obtained. Comparison with simulations using TRMM rainfall data gave mixed results, with poor water height simulations for the year 2001 and good estimations for the year 2002. A pond map derived from a Quickbird satellite image was used to assess model accuracy for simulating pond water areas for all the ponds of the study area. The validation showed that modelled water areas were mostly underestimated but significantly correlated, particularly for the larger ponds. The results of the sensitivity analysis showed that parameters relative to pond shape and catchment area estimation have less effects on model simulation than parameters relative to soil properties (rainfall threshold causing runoff in dry soils and the coefficient expressing soil moisture decrease with time) or the water loss coefficient. Overall, our results demonstrate the possibility of using a simple hydrologic model with remote sensing data to track pond water heights and water areas in a homogeneous arid area.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
What rainfall events trigger landslides on the West Coast US?
NASA Astrophysics Data System (ADS)
Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia
2016-04-01
A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.
Return period curves for extreme 5-min rainfall amounts at the Barcelona urban network
NASA Astrophysics Data System (ADS)
Lana, X.; Casas-Castillo, M. C.; Serra, C.; Rodríguez-Solà, R.; Redaño, A.; Burgueño, A.; Martínez, M. D.
2018-03-01
Heavy rainfall episodes are relatively common in the conurbation of Barcelona and neighbouring cities (NE Spain), usually due to storms generated by convective phenomena in summer and eastern and south-eastern advections in autumn. Prevention of local flood episodes and right design of urban drainage have to take into account the rainfall intensity spread instead of a simple evaluation of daily rainfall amounts. The database comes from 5-min rain amounts recorded by tipping buckets in the Barcelona urban network along the years 1994-2009. From these data, extreme 5-min rain amounts are selected applying the peaks-over-threshold method for thresholds derived from both 95% percentile and the mean excess plot. The return period curves are derived from their statistical distribution for every gauge, describing with detail expected extreme 5-min rain amounts across the urban network. These curves are compared with those derived from annual extreme time series. In this way, areas in Barcelona submitted to different levels of flood risk from the point of view of rainfall intensity are detected. Additionally, global time trends on extreme 5-min rain amounts are quantified for the whole network and found as not statistically significant.
Searching regional rainfall homogeneity using atmospheric fields
NASA Astrophysics Data System (ADS)
Gabriele, Salvatore; Chiaravalloti, Francesco
2013-03-01
The correct identification of homogeneous areas in regional rainfall frequency analysis is fundamental to ensure the best selection of the probability distribution and the regional model which produce low bias and low root mean square error of quantiles estimation. In an attempt at rainfall spatial homogeneity, the paper explores a new approach that is based on meteo-climatic information. The results are verified ex-post using standard homogeneity tests applied to the annual maximum daily rainfall series. The first step of the proposed procedure selects two different types of homogeneous large regions: convective macro-regions, which contain high values of the Convective Available Potential Energy index, normally associated with convective rainfall events, and stratiform macro-regions, which are characterized by low values of the Q vector Divergence index, associated with dynamic instability and stratiform precipitation. These macro-regions are identified using Hot Spot Analysis to emphasize clusters of extreme values of the indexes. In the second step, inside each identified macro-region, homogeneous sub-regions are found using kriging interpolation on the mean direction of the Vertically Integrated Moisture Flux. To check the proposed procedure, two detailed examples of homogeneous sub-regions are examined.
Spatial and temporal estimation of runoff in a semi-arid microwatershed of Southern India.
Rejani, R; Rao, K V; Osman, M; Chary, G R; Pushpanjali; Reddy, K Sammi; Rao, Ch Srinivasa
2015-08-01
In a semi-arid microwatershed of Warangal district in Southern India, daily runoff was estimated spatially using Soil Conservation Service (SCS)-curve number (CN) method coupled with GIS. The groundwater status in this region is over-exploited, and precise estimation of runoff is very essential to plan interventions for this ungauged microwatershed. Rainfall is the most important factor governing runoff, and 75.8% of the daily rainfall and 92.1% of the rainy days which occurred were below 25 mm/day. The declines in rainfall and rainy days observed in recent years were 9.8 and 8.4%, respectively. The surface runoff estimated from crop land for a period of 57 years varied from 0 to 365 mm with a mean annual runoff of 103.7 mm or 14.1% of the mean annual rainfall. The mean annual runoff showed a significant reduction from 108.7 to 82.9 mm in recent years. The decadal variation of annual runoff from crop land over the years varied from 49.2 to 89.0% which showed the caution needed while planning watershed management works in this microwatershed. Among the four land use land cover conditions prevailing in the area, the higher runoff (20% of the mean annual rainfall) was observed from current fallow in clayey soil and lower runoff of 8.7% from crop land in loamy soil due to the increased canopy coverage. The drought years which occurred during recent years (1991-2007) in crop land have increased by 3.5%, normal years have increased by 15.6%, and the above normal years have decreased by 19.1%. This methodology can be adopted for estimating the runoff potential from similar ungauged watersheds with deficient data. It is concluded that in order to ensure long-term and sustainable groundwater utilization in the region, proper estimation of runoff and implementation of suitable water harvesting measures are the need of the hour.
NASA Astrophysics Data System (ADS)
Paquet, E.
2015-12-01
The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.
Climate change effects on landslides in southern B.C.
NASA Astrophysics Data System (ADS)
Jakob, M.
2009-04-01
Two mechanisms that contribute to the temporal occurrence of landslides in coastal British Columbia are ante¬cedent rainfall and short-term intense rainfall. These two quantities can be extracted from the precipitation regimes simulated by climate models. This makes such models an attractive tool for use in the investigation of the effect of global warming on landslide fre¬quencies. In order to provide some measure of the reliability of models used to address the landslide question, the present-day simulation of the antecedent precipitation and short- term rainfall using the daily data from the Canadian Centre for Climate Modelling and Analysis model (CGCM) is compared to observations along the south coast of British Colum¬bia. This evaluation showed that the model was reasonably successful in simulating sta¬tistics of the antecedent rainfall but was less successful in simulating the short-term rainfall. The monthly mean precipitation data from an ensemble of 19 of the world's global climate models were available to study potential changes in landslide frequencies with global warming. Most of the models were used to produce simulations with three scenar¬ios with different levels of prescribed greenhouse gas concentrations during the twenty-first century. The changes in the antecedent precipitation were computed from the resulting monthly and seasonal means. In order to deal with models' suspected difficulties in sim¬ulating the short-term precipitation and lack of daily data, a statistical procedure was used to relate the short-term precipitation to the monthly means. The qualitative model results agree reasonably well, and when averaged over all models and the three scenarios, the change in the antecedent precipitation is predicted to be about 10% and the change in the short-term precipitation about 6%. Because the antecedent precipitation and the short-term precipitation contribute to the occurrence of landslides, the results of this study support the prediction of increased landslide frequency along the British Columbia south coast during the twenty-first century.
NASA Astrophysics Data System (ADS)
Flynn, Michael S.; Griffiths, John F.
1980-12-01
An analysis of the possible differences among various rainfall parameters during drought and nondrought periods was undertaken for 12 Texas stations. The division of monthly rainfall amounts into quintiles served as the rainfall classification. Rainfall amounts, number of rains and rainfall intensities were calculated for each quintile for four thresholds of rainfall 0.0254, 0.2540, 0.5080 and 1.2700 cm. The thresholds were applied on a daily and hourly basis. At low rainfall thresholds in nearly every case, numbers of rains in very dry periods proved to be <100% of normal.The possible differences in persistence of rainfall during Very Dry and Very Wet periods were examined by calculating runs of rains of 0.0254 cm or more per hour. Medians of runs of rain hours in Very Dry periods were found to be less than those in Very Wet periods except at Corpus Christi in April and at Waco in February. Probabilities that a run of rain hours would extend to a given length were determined. During Very Dry periods a probability >0.5 that a rain will extend into a second hour during a month of key importance to agriculture (June, July and August) occurs only at Amarillo, Lovelady, Port Arthur and Waco. The probability that a rain will extend into a third hour is never above 0.5 during the key months in Very Dry periods for any of the stations studied.The implications of these findings are discussed in relation to feasibility of cloud seeding and to irrigation management during severe drought.
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou
2018-02-01
The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.
Global canopy interception from satellite observations
USDA-ARS?s Scientific Manuscript database
A new methodology for retrieving rainfall interception rates from multi satellite observations is presented. The approach makes use of the daily productof the Global Precipitation Climatology Project (GPCP) as driving data and applies Gash’s analytical model to derive interception rates at global sc...
Use of hydrologic landscape classification to diagnose streamflow predictability in Oregon
We implement a spatially lumped rainfall-runoff model to predict daily streamflow at 88 catchments within Oregon, USA and analyze its performance within the context of Oregon Hydrologic Landscapes (OHL) classification. OHL classification is used to characterize the physio-climat...
NASA Astrophysics Data System (ADS)
Kumar, Amit; Asthana, AKL; Priyanka, Rao Singh; Jayangondaperumal, R.; Gupta, Anil K.; Bhakuni, SS
2017-05-01
In the Indian Himalayan region (IHR), landslide-driven hazards have intensified over the past several decades primarily caused by the occurrence of heavy and extreme rainfall. However, little attention has been given to determining the cause of events triggered during pre- and post-Indian Summer Monsoon (ISM) seasons. In the present research, detailed geological, meteorological, and remote sensing investigations have been carried out on an extreme rainfall landslide event that occurred in Sadal village, Udhampur district, Jammu and Kashmir Himalaya, during September 2014. Toward the receding phase of the ISM (i.e., in the month of September 2014), an unusual rainfall event of 488.2 mm rainfall in 24 h took place in Jammu and Kashmir Himalaya in contrast to the normal rainfall occurrence. Geological investigations suggest that a planar weakness in the affected region is caused by bedding planes that consist of an alternate sequence of hard, compact sandstone and weak claystone. During this extreme rainfall event, the Sadal village was completely buried under the rock slides, as failure occurred along the planar weakness that dips toward the valley slope. Rainfall data analysis from the Tropical Rainfall Measuring Mission (TRMM) for the preceding years homogeneous time series (July-September) indicates that the years 2005, 2009, 2011, 2012, and 2014 (i.e., closely spaced and clustering heavy rainfall events) received heavy rainfalls during the withdrawal of the ISM; whereas the heaviest rainfall was received in the years 2003 and 2013 at the onset of the ISM in the study region. This suggests that no characteristic cyclicity exists for extreme rainfall events. However, we observe that either toward the onset of the ISM or its retreat, the extreme rainfall facilitates landslides, rockfall, and slope failures in northwestern Himalaya. The spatiotemporal distribution of landslides caused by extreme rainfall events suggests its confinement toward the windward side of the Himalayan front.
Exploring the new long-term (150 years) precipitation dataset in Azores archipelago
NASA Astrophysics Data System (ADS)
Hernández, Armand; Trigo, Ricardo M.; Kutiel, Haim; Valente, Maria A.; Sigró, Javier
2015-04-01
Within the scope of the two major international projects of long-term reanalysis for the 20th century coordinated by NOAA (Compo et al. 2011) and ECMWF (Hersbach et al. 2013) the IDL Institute from the University of Lisbon has digitized a large number of long-term stations records from Portugal and former Portuguese Colonies (Stickler et al. 2014). Recently we have finished the digitization of all precipitation values from Ponta Delgada (capital of the Azores archipelago) obtaining an uninterrupted precipitation monthly time series since 1864 and additionally an almost complete corresponding daily precipitation series, with the exception of some years (1864/1872; 1878/1879; 1888/1905; 1931; 1936 and 1938) for which only monthly values are available. Here, we present an annually, seasonally and daily resolution study of the rainfall regime in Ponta Delgada for the last 150 years and the North Atlantic Oscillation (NAO) influence over this precipitation regime. The distribution of precipitation presents an evident seasonal pattern, with a strong difference between the 'rainy season' (November/March) and the 'dry season' (June/August) with very little rainfall. April/May and September/October correspond to the transitional seasons. The mean annual rainfall in Ponta Delgada is approximately 910 mm and is accumulated (on average) in about 120 rainy days. The precipitation regime in Azores archipelago reveals large inter-annual and intra-annual variability and both have increased considerably in the last decades. The entire studied period (1865-2012) shows an increase in the rainfall conditions between a drier earlier period (1865-1938) and a wetter recent period (1939-2012). At daily resolution, we have used an approach based on different characteristics of rain spells (consecutive days with rainfall accumulation) that has been proved to be satisfactory for the analysis of the different parameters related to the rainfall regime (Kutiel and Trigo, 2014). This approach shows that the increase in precipitation is mainly due to more intense events which are reflected by higher rain spell yields (amount of precipitation) and rain spell intensity (amount of precipitation by day) values in the last decades. On the other hand, despite the fact that one of the most widely used NAO definitions includes sea level pressure from the Ponta Delgada station, its long-term impact on the Azores archipelago climate is not well established yet. Here, we assessed the NAO influence over the precipitation regime according to Spearman's rank correlation coefficients. Results show that the inter-annual variability of precipitation is largely modulated by the NAO mode. Correlation values of r=-0.90, r=-0.79 and r=-0.63 were obtained for years with positive (>1) or negative (
NASA Astrophysics Data System (ADS)
Nguyen, P.; Sorooshian, S.; Hsu, K. L.; Gao, X.; AghaKouchak, A.; Braithwaite, D.; Thorstensen, A. R.; Ashouri, H.; Tran, H.; Huynh, P.; Palacios, T.
2016-12-01
Center for Hydrometeorology and Remote Sensing (CHRS), University of California, Irvine has recently developed the CHRS RainSphere (hosted at http://rainsphere.eng.uci.edu) for scientific studies and applications using the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIANN-CDR, Ashouri et al. 2015). PERSIANN-CDR is a long-term (33+ years) high-resolution (daily, 0.25 degree) global satellite precipitation dataset which is useful for climatological studies and water resources applications. CHRS RainSphere has functionalities allowing users to visualize and query spatiotemporal statistics of global daily satellite precipitation for the past three decades. With a couple of mouse-clicks, users can easily obtain a report of time series, spatial plots, and basic trend analysis of rainfall for various spatial domains of interest such as location, watershed, basin, political division and country for yearly, monthly, monthly by year or daily. Mann-Kendall test is implemented on CHRS RainSphere for statistically investigating whether there is a significant increasing/decreasing rainfall trend at a location or over a specific spatial domain. CHRS RainSphere has a range of capabilities and should appeal to a broad spectrum of users including climate scientists, water resources managers and planners, and engineers. CHRS RainSphere can also be a useful educational tool for the general public to investigate climate change and variability. The video tutorial on CHRS RainSphere is available at https://www.youtube.com/watch?v=eI2-f88iGlY&feature=youtu.be. A demonstration of CHRS RainSphere will be included in the presentation.
NASA Astrophysics Data System (ADS)
Tourre, Y. M.; Vignolles, C.; Lacaux, J.-P.; Bigeard, G.; Ndione, J.-A.; Lafaye, M.
2009-09-01
This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since "Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.
Validation Of TRMM For Hazard Assessment In The Remote Context Of Tropical Africa
NASA Astrophysics Data System (ADS)
Monsieurs, E.; Kirschbaum, D.; Tan, J.; Jacobs, L.; Kervyn, M.; Demoulin, A.; Dewitte, O.
2017-12-01
Accurate rainfall data is fundamental for understanding and mitigating the disastrous effects of many rainfall-triggered hazards, especially when one considers the challenges arising from climate change and rainfall variability. In tropical Africa in particular, the sparse operational rainfall gauging network hampers the ability to understand these hazards. Satellite rainfall estimates (SRE) can therefore be of great value. Yet, rigorous validation is required to identify the uncertainties when using SRE for hazard applications. We evaluated the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Research Derived Daily Product from 1998 to 2017, at 0.25° x 0.25° spatial and 24 h temporal resolution. The validation was done over the western branch of the East African Rift, with the perspective of regional landslide hazard assessment in mind. Even though we collected an unprecedented dataset of 47 gauges with a minimum temporal resolution of 24 h, the sparse and heterogeneous temporal coverage in a region with high rainfall variability poses challenges for validation. In addition, the discrepancy between local-scale gauge data and spatially averaged ( 775 km²) TMPA data in the context of local convective storms and orographic rainfall is a crucial source of uncertainty. We adopted a flexible framework for SRE validation that fosters explorative research in a remote context. Results show that TMPA performs reasonably well during the rainy seasons for rainfall intensities <20 mm/day. TMPA systematically underestimates rainfall, but most problematic is the decreasing probability of detection of high intensity rainfalls. We suggest that landslide hazard might be efficiently assessed if we take account of the systematic biases in TMPA data and determine rainfall thresholds modulated by controls on, and uncertainties of, TMPA revealed in this study. Moreover, it is found relevant in mapping regional-scale rainfall-triggered hazards that are in any case poorly covered by the sparse available gauges. We anticipate validation of TMPA's successor (Integrated Multi-satellitE Retrievals for Global Precipitation Measurement; 10 km × 10 km, half-hourly) using the proposed framework, as soon as this product will be available in early 2018 for the 1998-present period.
Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region
NASA Astrophysics Data System (ADS)
Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg
2015-04-01
Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.
NASA Astrophysics Data System (ADS)
Basnayake, S. B.; Jayasinghe, S.; Apirumanekul, C.; Pudashine, J.; Anderson, E.; Cutter, P. G.; Ganz, D.; Towashiraporn, P.
2016-12-01
During 1995-2015, about 47% of all weather related disasters affected 2.3 billion people, and the majority (95%) of them were from Asia. About 89% of the deaths due to storms were reported in lower and middle income courtiers even though they only experienced about 26% of all storms. In most of the developing countries, decision making processes are hampered by sparse hydro-meteorological observation networks. Thus, the virtual rain and stream gauge information service is designed and developed by SERVIR-Mekong of Asian Disaster Preparedness Center (ADPC) to support effective decision making in Cambodia, Lao PDR, Myanmar, Thailand and Vietnam. The information service contains four remotely sensed data streams with regional and country specific sub setting features for easy access in limited internet bandwidths conditions. It provides rainfall data from near real time GPM IMERG (6 hours latency) with 30 minutes and 0.1X0.1 degree resolutions; TRMM daily data of 0.25X0.25 degree resolution from 1998; and CHIRPS daily data of 0.05X0.05 degree resolution since 1981 with the latency of one month. Satellite altimetry-based Jason 2 Interim Geophysical Data Record virtual stream gauge data (water body height) is provided with 12 days latency for 15 identified locations in 5 countries since 2008. To regionalize and further promote uptake of these data, TRMM monthly data has been bias corrected for Myanmar as a pilot study with spatially interpolated 18-year average (1998-2015) observed monthly rainfall data using Standard Deviation (SD) Ratio method. The results encourage to use SD ratio method for monthly bias corrections. Gamma distribution method will be tested for correcting biases of daily rainfall data with the notion that it has some limitations of capturing extreme rainfalls. The virtual rain and stream gauge information service is publically accessible through a web-based user interface hosted at SERVIR-Mekong of ADPC. Usage of the information service by partner agencies is ensured through co-development and capacity building programs. This service helps lower Mekong countries and their relevant organizations effectively use of remotely sensed data for day-to-day operations, contingency and development planning.
NASA Astrophysics Data System (ADS)
Deidda, Roberto; Mamalakis, Antonis; Langousis, Andreas
2015-04-01
One of the most crucial issues in statistical hydrology is the estimation of extreme rainfall from data. To that extent, based on asymptotic arguments from Extreme Excess (EE) theory, several studies have focused on developing new, or improving existing methods to fit a Generalized Pareto Distribution (GPD) model to rainfall excesses above a properly selected threshold u. The latter is generally determined using various approaches that can be grouped into three basic classes: a) non-parametric methods that locate the changing point between extreme and non-extreme regions of the data, b) graphical methods where one studies the dependence of the GPD parameters (or related metrics) to the threshold level u, and c) Goodness of Fit (GoF) metrics that, for a certain level of significance, locate the lowest threshold u that a GPD model is applicable. In this work, we review representative methods for GPD threshold detection, discuss fundamental differences in their theoretical bases, and apply them to daily rainfall records from the NOAA-NCDC open-access database (http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). We find that non-parametric methods that locate the changing point between extreme and non-extreme regions of the data are generally not reliable, while graphical methods and GoF metrics that rely on limiting arguments for the upper distribution tail lead to unrealistically high thresholds u. The latter is expected, since one checks the validity of the limiting arguments rather than the applicability of a GPD distribution model. Better performance is demonstrated by graphical methods and GoF metrics that rely on GPD properties. Finally, we discuss the effects of data quantization (common in hydrologic applications) on the estimated thresholds. Acknowledgments: The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.
NASA Astrophysics Data System (ADS)
Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin
2017-08-01
The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.
Biscayne aquifer, southeast Florida
Klein, Howard; Hull, John E.
1978-01-01
Peak daily pumpage from the highly permeable, unconfined Biscayne aquifer for public water-supply systems in southeast Florida in 1975 was about 500 million gallons. Another 165 million gallons was withdrawn daily for irrigation. Recharge to the aquifer is primarily by local rainfall. Discharge is by evapotranspiration, canal drainage, coastal seepage, and pumping. Pollutants can enter the aquifer by direct infiltration from land surface or controlled canals, septic-tank and other drainfields, drainage wells, and solid-waste dumps. Most of the pollutants are concentrated in the upper 20 to 30 feet of the aquifer; public supply wells generally range in depth from about 75 to 150 feet. Dilution, dispersion, and adsorption tend to reduce the concentrations. Seasonal heavy rainfall and canal discharge accelerate ground-water circulation, thereby tending to dilute and flush upper zones of the aquifer. The ultimate fate of pollutants in the aquifer is the ocean, although some may be adsorbed by the aquifer materials en route to the ocean, and some are diverted to pumping wells. (Woodard-USGS)
Jung, Yeoun Joong; Park, Young Cheol; Lee, Ka Jeong; Kim, Min Seon; Go, Kyeong Ri; Park, Sang Gi; Kwon, Soon Jae; Yang, Ji Hye; Mok, Jong Soo
2017-02-15
We aimed to compare the spatial and seasonal distributions of fecal coliforms (FCs) and other physiochemical factors in the drainage basin of the Jaranman-Saryangdo area. Among the pollution sources, the mean daily loads and half-circle radii of FCs were the highest in June. However, the pollutants did not reach the boundary line of the designated area due to an existing buffer zone. The value of the FC geometric mean at station 1 was highest in August during periods of heavy rainfall; however, this value was lower than the regulation limit. The highest daily loads of chemical oxygen demand (COD) and chlorophyll-a (Chl-a) in seawater were in the surface layer in August; however, dissolved oxygen (DO) in the bottom water layer was at its lowest in August. This study demonstrated that season and rainfall have significant effects on the FC, COD, DO, and Chl-a concentrations in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.
New NOAA-15 Advanced Microwave Sounding Unit (AMSU) Datasets for Stratospheric Research
NASA Technical Reports Server (NTRS)
Spencer, Roy W.; Braswell, William D.
1999-01-01
The NOAA-15 spacecraft launched in May 1998 carried the first Advanced Microwave Sounding Unit (AMSU). The AMSU has eleven oxygen absorption channels with weighting functions peaking from near the surface to 2 mb. Twice-daily, limb-corrected I degree gridded datasets of layer temperatures have been constructed since the AMSU went operational in early August 1998. Examples of AMSU imagery will be shown, as will preliminary analyses of daily fluctuations in tropical stratospheric temperatures and their relationship to daily variations in tropical-average rainfall measured by the Special Sensor Microwave Imager (SSM/I). The AMSU datasets are now available for other researchers to utilize.
[Soil infiltration capacity under different vegetations in southern Ningxia Loess hilly region].
Yang, Yong-Hui; Zhao, Shi-Wei; Lei, Ting-Wu; Liu, Han
2008-05-01
A new apparatus for measuring the run off-on-out under simulated rainfall conditions was used to study the soil infiltration capacity under different rainfall intensities and vegetations in loess hilly region of southern Ningxia, with the relationships between soil water-stable aggregate content and soil stable infiltration rate under different vegetations analyzed. The results showed that the regression equations between rainfall duration and soil infiltration rate under different vegetations all followed y = a + be(-cx), with R2 ranged from 0.9678 to 0.9969. With the increase of rainfall intensity, the soil stable infiltration rate on slope cropland decreased, while that on Medicago lupulina land, natural grassland, and Caragana korshinskii land increased. Under the rainfall intensity of 20 mm h(-1), the rainfall infiltration translation rate (RITR) was decreased in the order of M. lupulina land > slope cropland > natural grassland > C. korshinskii land; while under the rainfall intensity of 40 mm h(-1) and 56 mm h(-1), the RITR was in the sequence of M. lupulina land > natural grassland > slope cropland > C. korshinskii land, and decreased with increasing rainfall intensity. After the reversion of cropland to grassland and forest land, and with the increase of re-vegetation, the amount of >0.25 mm soil aggregates increased, and soil infiltration capacity improved. The revegetation in study area effectively improved soil structure and soil infiltration capacity, and enhanced the utilization potential of rainfall on slope.
Patterns and perceptions of climate change in a biodiversity conservation hotspot.
Hartter, Joel; Stampone, Mary D; Ryan, Sadie J; Kirner, Karen; Chapman, Colin A; Goldman, Abraham
2012-01-01
Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management.
Patterns and Perceptions of Climate Change in a Biodiversity Conservation Hotspot
Hartter, Joel; Stampone, Mary D.; Ryan, Sadie J.; Kirner, Karen; Chapman, Colin A.; Goldman, Abraham
2012-01-01
Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management. PMID:22384244
Modeling landslide recurrence in Seattle, Washington, USA
Salciarini, Diana; Godt, Jonathan W.; Savage, William Z.; Baum, Rex L.; Conversini, Pietro
2008-01-01
To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.
NASA Astrophysics Data System (ADS)
Martinotti, Maria Elena; Pisano, Luca; Marchesini, Ivan; Rossi, Mauro; Peruccacci, Silvia; Brunetti, Maria Teresa; Melillo, Massimo; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Trabace, Maria; Parise, Mario; Guzzetti, Fausto
2017-03-01
In karst environments, heavy rainfall is known to cause multiple geohydrological hazards, including inundations, flash floods, landslides and sinkholes. We studied a period of intense rainfall from 1 to 6 September 2014 in the Gargano Promontory, a karst area in Puglia, southern Italy. In the period, a sequence of torrential rainfall events caused severe damage and claimed two fatalities. The amount and accuracy of the geographical and temporal information varied for the different hazards. The temporal information was most accurate for the inundation caused by a major river, less accurate for flash floods caused by minor torrents and even less accurate for landslides. For sinkholes, only generic information on the period of occurrence of the failures was available. Our analysis revealed that in the promontory, rainfall-driven hazards occurred in response to extreme meteorological conditions and that the karst landscape responded to the torrential rainfall with a threshold behaviour. We exploited the rainfall and the landslide information to design the new ensemble-non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the possible occurrence of rainfall-induced landslides and of related geohydrological hazards. The ensemble of the metrics produced by the E-NEP algorithm provided better diagnostics than the single metrics often used for landslide forecasting, including rainfall duration, cumulated rainfall and rainfall intensity. We expect that the E-NEP algorithm will be useful for landslide early warning in karst areas and in other similar environments. We acknowledge that further tests are needed to evaluate the algorithm in different meteorological, geological and physiographical settings.
NASA Technical Reports Server (NTRS)
Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.
1984-01-01
The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.
Volta, Chiara; Ho, David T; Friederich, Gernot; Engel, Victor C; Bhat, Mahadev
2018-09-01
High-resolution time series measurements of temperature, salinity, pH and pCO 2 were made during the period October 2014-September 2015 at the midpoint of Shark River, a 15km tidal river that originates in the freshwater Everglades of south Florida (USA) and discharges into the Gulf of Mexico. Dissolved inorganic carbon dynamics in this system vary over time, and during this study could be classified into three distinct regimes corresponding to October 2014-February 2015 (a wet to dry season transition period), March-May 2015 (dry period) and July-September 2015 (wet period). Average net longitudinal dissolved inorganic carbon (DIC) fluxes and air-water CO 2 fluxes from the Shark River estuary were determined for the three periods. Net DIC fluxes to the coast were estimated to vary between 23.2 and 25.4×10 5 mold -1 with an average daily DIC flux of 24.3×10 5 mold -1 during the year of study. CO 2 emissions ranged between 5.5 and 7.8×10 5 mold -1 with an average daily value of 6.4×10 5 mold -1 during the year. The differences in estuarine carbon fluxes during the study period are attributed to differences in the relative importance of hydro-climatological drivers. Results suggest that, during months characterized by reduced rainfall, carbon fluxes are affected by water management via control structures in the upstream Everglades marshes. During months with high rainfall, when culverts are closed and rainfall events are more frequent, carbon fluxes depend more on other forcings, such as rainfall and groundwater discharge. Copyright © 2018 Elsevier B.V. All rights reserved.
Rainfall erosivity factor estimation in Republic of Moldova
NASA Astrophysics Data System (ADS)
Castraveš, Tudor; Kuhn, Nikolaus
2017-04-01
Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
NASA Astrophysics Data System (ADS)
Prasetyo, Yudo; Nabilah, Farras
2017-12-01
Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.
Nonstationarity of daily rainfall annual maxima in Puglia (Southern Italy)
NASA Astrophysics Data System (ADS)
Totaro, Vincenzo; Gioia, Andrea; Iacobellis, Vito
2017-04-01
Extreme flood events occurring in the last decades, due to climatic conditions in rapid evolution and/or changes in land cover, has lead the scientific community to develop and improve probabilistic techniques in order to take into account these effects, as also requested by the EU Floods Directive 2007/60. In the recent literature are becoming more popular studies that investigate the nonstationarity of the variables usually treated in hydrology through the analysis of their trend behavior. In this context it is also useful to assess the impact that the climate and /or land cover modifications have on the performances of the probabilistic stationary models used to predict hydrological variables such as rainfall and flood peaks. Among several proposed approaches, we use the redefined concept of return period and risk by considering the variability over time of the position parameter of the GEV distribution, with the subsequent discussion about the implications of analytical and technical characters. The analysis was carried out on the time series of annual maximum of daily precipitation available for a broad number of rainfall gauged stations in Puglia (Southern Italy). The investigation, conducted at the regional scale, leads to the identification of areas with different significativity of the statistical tests usually performed in order to assess nonstationarity. The evaluated change of return period leads to considerations useful to redesign methods for regional analysis of flood frequency.
Changes in daily and monthly rainfall in the Middle Yellow River, China
NASA Astrophysics Data System (ADS)
He, Yi; Tian, Peng; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Wang, Fei; Li, Pengfei
2017-07-01
Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958-2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends ( P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2015-04-01
Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.
A Point Rainfall Generator With Internal Storm Structure
NASA Astrophysics Data System (ADS)
Marien, J. L.; Vandewiele, G. L.
1986-04-01
A point rainfall generator is a probabilistic model for the time series of rainfall as observed in one geographical point. The main purpose of such a model is to generate long synthetic sequences of rainfall for simulation studies. The present generator is a continuous time model based on 13.5 years of 10-min point rainfalls observed in Belgium and digitized with a resolution of 0.1 mm. The present generator attempts to model all features of the rainfall time series which are important for flood studies as accurately as possible. The original aspects of the model are on the one hand the way in which storms are defined and on the other hand the theoretical model for the internal storm characteristics. The storm definition has the advantage that the important characteristics of successive storms are fully independent and very precisely modelled, even on time bases as small as 10 min. The model of the internal storm characteristics has a strong theoretical structure. This fact justifies better the extrapolation of this model to severe storms for which the data are very sparse. This can be important when using the model to simulate severe flood events.
NASA Astrophysics Data System (ADS)
Contractor, S.; Donat, M.; Alexander, L. V.
2017-12-01
Reliable observations of precipitation are necessary to determine past changes in precipitation and validate models, allowing for reliable future projections. Existing gauge based gridded datasets of daily precipitation and satellite based observations contain artefacts and have a short length of record, making them unsuitable to analyse precipitation extremes. The largest limiting factor for the gauge based datasets is a dense and reliable station network. Currently, there are two major data archives of global in situ daily rainfall data, first is Global Historical Station Network (GHCN-Daily) hosted by National Oceanic and Atmospheric Administration (NOAA) and the other by Global Precipitation Climatology Centre (GPCC) part of the Deutsche Wetterdienst (DWD). We combine the two data archives and use automated quality control techniques to create a reliable long term network of raw station data, which we then interpolate using block kriging to create a global gridded dataset of daily precipitation going back to 1950. We compare our interpolated dataset with existing global gridded data of daily precipitation: NOAA Climate Prediction Centre (CPC) Global V1.0 and GPCC Full Data Daily Version 1.0, as well as various regional datasets. We find that our raw station density is much higher than other datasets. To avoid artefacts due to station network variability, we provide multiple versions of our dataset based on various completeness criteria, as well as provide the standard deviation, kriging error and number of stations for each grid cell and timestep to encourage responsible use of our dataset. Despite our efforts to increase the raw data density, the in situ station network remains sparse in India after the 1960s and in Africa throughout the timespan of the dataset. Our dataset would allow for more reliable global analyses of rainfall including its extremes and pave the way for better global precipitation observations with lower and more transparent uncertainties.
NASA Astrophysics Data System (ADS)
Kurtulus, Bedri; Razack, Moumtaz
2010-02-01
SummaryThis paper compares two methods for modeling karst aquifers, which are heterogeneous, highly non-linear, and hierarchical systems. There is a clear need to model these systems given the crucial role they play in water supply in many countries. In recent years, the main components of soft computing (fuzzy logic (FL), and Artificial Neural Networks, (ANNs)) have come to prevail in the modeling of complex non-linear systems in different scientific and technologic disciplines. In this study, Artificial Neural Networks and Adaptive Neuro-Fuzzy Interface System (ANFIS) methods were used for the prediction of daily discharge of karstic aquifers and their capability was compared. The approach was applied to 7 years of daily data of La Rochefoucauld karst system in south-western France. In order to predict the karst daily discharges, single-input (rainfall, piezometric level) vs. multiple-input (rainfall and piezometric level) series were used. In addition to these inputs, all models used measured or simulated discharges from the previous days with a specified delay. The models were designed in a Matlab™ environment. An automatic procedure was used to select the best calibrated models. Daily discharge predictions were then performed using the calibrated models. Comparing predicted and observed hydrographs indicates that both models (ANN and ANFIS) provide close predictions of the karst daily discharges. The summary statistics of both series (observed and predicted daily discharges) are comparable. The performance of both models is improved when the number of inputs is increased from one to two. The root mean square error between the observed and predicted series reaches a minimum for two-input models. However, the ANFIS model demonstrates a better performance than the ANN model to predict peak flow. The ANFIS approach demonstrates a better generalization capability and slightly higher performance than the ANN, especially for peak discharges.
Multi-proxy monitoring approaches at Kangaroo Island, South Australia
NASA Astrophysics Data System (ADS)
Dixon, Bronwyn; Drysdale, Russell; Tyler, Jonathan; Goodwin, Ian
2017-04-01
Interpretations of geochemical signals preserved in young speleothems are greatly enhanced by comprehensive cave-site monitoring. In the light of this, a cave monitoring project is being conducted concurrently with the development of a new palaeoclimate record from Kelly Hill Cave (Kangaroo Island, South Australia). The site is strategically located because it is situated between longer-lived monitoring sites in southeastern and southwestern Australia, as well as being climatically 'upstream' from major population and agricultural centres. This study aims to understand possible controls on speleothem δ18O in Kelly Hill Cave through i. identification of local and regional δ18O drivers in precipitation; and ii. preservation and modification of climatic signals within the epikarst as indicated by dripwater δ18O. These aims are achieved through analysis of a five-year daily rainfall (amount and δ18O) dataset in conjunction with in-cave drip monitoring. Drivers of precipitation δ18O were identified through linear regression between δ18O values and local meteorological variables, air-parcel back trajectories, and synoptic-typing. Synoptically driven moisture sources were identified through the use of NCEP/NCAR climate reanalysis sea-level pressure, precipitable moisture, and outgoing longwave radiation data in order to trace moisture sources and travel mechanisms from surrounding ocean basins. Local controls on δ18O at Kelly Hill Cave are consistent with published interpretations of southern Australia sites, with oxygen isotopes primarily controlled by rainfall amount on both daily and monthly time scales. Back-trajectory analysis also supports previous observations that the Southern Ocean is the major source for moisture-bearing cold-front systems. However, synoptic typing of daily rainfall δ18O and amount extremes reveals a previously unreported tropical connection and moisture source. This tropical connection appears to be strongest in summer and autumn, but exists throughout the year. This indicates that a wider range of precipitation data sources can be combined to present a more comprehensive understanding of moisture dynamics and interaction of synoptic conditions to drive rainfall geochemistry. Within the cave environment at Kelly Hill Cave there is high spatial variability in drip characteristics, both in terms of drip frequency and drip water δ18O. Ongoing analyses are aimed at determining if monthly and/or seasonal rainfall δ18O drivers are also reflected in dripwater values. Overall, Kangaroo Island presents a new location to investigate the interplay between tropical and temperate influences in southern Australia, as well as a location for east - west comparisons between monitoring sites across southern Australia.
Impact of Climatic Variability on Hydropower Reservoirs in the Paraiba Basin, Southeast of Brazil
NASA Astrophysics Data System (ADS)
Barros, A.; simoes, s
2002-05-01
During 2000/2001, a severe drought greatly reduced the volume of water available to Brazilian hydropower plants and lead to a national water rationing plan. To undestand the potential for climatic change in hydrological regimes and its impact on hydropower we chose the Paraiba Basin located in Southeast Brazil. Three important regional multi-purpose reservoirs are operating in this basin. Moreover, the Paraiba River is of great economic and environmental importance and also constitutes a major corridor connecting the two cities of Sao Paulo and Rio de Janeiro. We analyzed monthly and daily records for rainfall, streamflow and temperature using regression and variance analysis. Rainfall records do not show any significant trend since the 1930s/1940s. By contrast, analysis of seasonal patterns show that in the last twenty years rainfall has increased during autumn and winter (dry season) and decreased during spring and summer (rainy season). Comparison between rainfall and streaflow, from small catchment without man-made influences, shows a more pronounced deficit in streamflow when compared with rainfall. The shifts in seasonal rainfall could indicate a tendency towards a more uniform rainfall pattern and could serve to reduce the streamflow. However, the largest upward trends in temperature were found in the driest months (JJA). The increase in rainfall would not be sufficient to overcome increased of evaporation expect to the same period. Instead, such increase in evaporation could create an over more pronounced streamflow deficit. Climatic variability could be reducing water availability in these reservoirs especially in the driest months. To reduce the uncertainties in hydrological predictions, planners need to incorporate climatic variability, at the catchment scale, in order to accomodate the new conditions resulting from these changes.
NASA Astrophysics Data System (ADS)
Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.
2017-04-01
Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.
Exploration of Extended-Area Treatment Effects in FACE-2 Using Satellite Imagery.
NASA Astrophysics Data System (ADS)
Meití, José G.; Woodley, William L.; Flueck, John A.
1984-01-01
The second phase of the Florida Area Cumulus Experiment (FACE-2) has been completed and an exploratory analysis has been conducted to investigate the possibility that cloud seeding may have affected the rainfall outside the intended target. Rainfall was estimated over a 3.5×105 km2 area centered on the target using geosynchronous, infrared satellite imagery and the Griffith-Woodley rain estimation technique. This technique was derived in South Florida by calibrating infrared images using raingage and radar observations to produce an empirical, diagnostic (a posteriori), satellite rain estimation technique. The satellite rain estimates for the extended area were adjusted based on comparisons of raingage and satellite rainfall estimates for the entire FACE target (1.3×104 km2). All daily rainfall estimates were composited in two ways: 1) in the original coordinate system and 2) in a relative coordinate system that rotates the research area as a function of wind direction. After compositing, seeding effects were sought as a function of space and time.The results show more rainfall (in the mean) on seed than no seed days both in and downwind of the target but lesser rainfall upwind. All differences (averaging 20% downwind and 10% upwind) are confined in space to within 200 km of the center of the FACE target and in time to the 8 h period after initial treatment. In addition, the positive correlation between untreated upwind rainfall and target rainfall is degraded on seed days, suggesting possible intermittent negative effects of seeding upwind. Although the development of these differences in space and time suggests that seeding may have been partially responsible for their generation, the results do not have strong inferential (P-value) support.
NASA Astrophysics Data System (ADS)
Kavka, Petr; Strouhal, Ludek; Weyskrabova, Lenka; Müller, Miloslav; Kozant, Petr
2017-04-01
The short-term rainfall temporal distribution is known to have a significant effect on the small watersheds' hydrological response. In Czech Republic there are limited publicly available data on rainfall patterns of short-term precipitation. On one side there are catalogues of very short-term synthetic rainfalls used in urban drainage planning and on the other side hourly distribution of daily totals of rainfalls with long return period for larger catchments analyses. This contribution introduces the preliminary outcomes of a running three years' project, which should bridge this gap and provide such data and methodology to the community of scientists, state administration as well as design planners. Six generalized 6-hours hyetographs with 1 minute resolution were derived from 10 years of radar and gauging stations data. These hyetographs are accompanied with information concerning the region of occurrence as well as their frequency related to the rainfall amount. In the next step these hyetographs are used in a complex sensitivity analysis focused on a rainfall-runoff response of small watersheds. This analysis takes into account the uncertainty related to type of the hydrological model, watershed characteristics and main model routines parameterization. Five models with different methods and structure are considered and each model is applied on 5 characteristic watersheds selected from a classification of 7700 small Czech watersheds. For each combination of model and watershed 30, rainfall scenarios were simulated and other scenarios will be used to address the parameters uncertainty. In the last step the variability of outputs will be assessed in the context of economic impacts on design of landscape water structures or mitigation measures. The research is supported by the grant QJ1520265 of the Czech Ministry of Agriculture, rainfall data were provided by the Czech Hydrometeorological Institute.
NASA Astrophysics Data System (ADS)
Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc
2017-04-01
We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.
A physically based analytical model of flood frequency curves
NASA Astrophysics Data System (ADS)
Basso, S.; Schirmer, M.; Botter, G.
2016-09-01
Predicting magnitude and frequency of floods is a key issue in hydrology, with implications in many fields ranging from river science and geomorphology to the insurance industry. In this paper, a novel physically based approach is proposed to estimate the recurrence intervals of seasonal flow maxima. The method links the extremal distribution of streamflows to the stochastic dynamics of daily discharge, providing an analytical expression of the seasonal flood frequency curve. The parameters involved in the formulation embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is linked to the antecedent wetness condition in the watershed, needs to be calibrated on the observed maxima. The performance of the method is discussed through a set of applications in four rivers featuring heterogeneous daily flow regimes. The model provides reliable estimates of seasonal maximum flows in different climatic settings and is able to capture diverse shapes of flood frequency curves emerging in erratic and persistent flow regimes. The proposed method exploits experimental information on the full range of discharges experienced by rivers. As a consequence, model performances do not deteriorate when the magnitude of events with return times longer than the available sample size is estimated. The approach provides a framework for the prediction of floods based on short data series of rainfall and daily streamflows that may be especially valuable in data scarce regions of the world.
Logit-normal mixed model for Indian Monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Dietz, L. R.; Chatterjee, S.
2014-03-01
Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.
NASA Astrophysics Data System (ADS)
Na, Liu; Youjie, Jin; Jiaqi, Dai
2018-03-01
The variation trend of temperature and precipitation during flood season in the middle and lower reaches of the Yangtze River basin in recent 50 years and change characteristics of rainfall in five typical flood prone cities are analysed. Aiming at waterlogging problems in the urban agglomeration of middle and lower reaches of the Yangtze River, the comprehensive prevention and control suggestions are put forward. The results showed that: the temperature trend in the basin decreased and then increased, and the precipitation showed a downward-rising-downward trend, no mutation occurred; The incidence of heavy rainfall events in the five typical cities with daily rainfall more than 50mm showed an upward trend, and increased significantly after 2002. The intensity of precipitation increased gradually. Climate change makes urban agglomeration waterlogging disasters become increasingly prominent in the middle and lower reaches of the Yangtze River.
Assessment of catchments' flooding potential: a physically-based analytical tool
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Schirmer, M.
2016-12-01
The assessment of the flooding potential of river catchments is critical in many research and applied fields, ranging from river science and geomorphology to urban planning and the insurance industry. Predicting magnitude and frequency of floods is key to prevent and mitigate the negative effects of high flows, and has therefore long been the focus of hydrologic research. Here, the recurrence intervals of seasonal flow maxima are estimated through a novel physically-based analytic approach, which links the extremal distribution of streamflows to the stochastic dynamics of daily discharge. An analytical expression of the seasonal flood-frequency curve is provided, whose parameters embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which expresses catchment saturation prior to rainfall events, needs to be calibrated on the observed maxima. The method has been tested in a set of catchments featuring heterogeneous daily flow regimes. The model is able to reproduce characteristic shapes of flood-frequency curves emerging in erratic and persistent flow regimes and provides good estimates of seasonal flow maxima in different climatic regions. Performances are steady when the magnitude of events with return times longer than the available sample size is estimated. This makes the approach especially valuable for regions affected by data scarcity.
Variability of Extreme Precipitation Events in Tijuana, Mexico During ENSO Years
NASA Astrophysics Data System (ADS)
Cavazos, T.; Rivas, D.
2007-05-01
We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-ENSO years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous warm California Current off Baja California, low-level moisture advection from the subtropical warm sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.
Assessment of an ensemble seasonal streamflow forecasting system for Australia
NASA Astrophysics Data System (ADS)
Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin
2017-11-01
Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios
(FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.
NASA Astrophysics Data System (ADS)
Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino
2017-03-01
Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.
Climate Change Impact on Variability of Rainfall Intensity in Upper Blue Nile Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Worku, L. Y.
2015-12-01
Extreme rainfall events are major problems in Ethiopia with the resulting floods that usually could cause significant damage to agriculture, ecology, infrastructure, disruption to human activities, loss of property, loss of lives and disease outbreak. The aim of this study was to explore the likely changes of precipitation extreme changes due to future climate change. The study specifically focuses to understand the future climate change impact on variability of rainfall intensity-duration-frequency in Upper Blue Nile basin. Precipitations data from two Global Climate Models (GCMs) have been used in the study are HadCM3 and CGCM3. Rainfall frequency analysis was carried out to estimate quantile with different return periods. Probability Weighted Method (PWM) selected estimation of parameter distribution and L-Moment Ratio Diagrams (LMRDs) used to find the best parent distribution for each station. Therefore, parent distributions for derived from frequency analysis are Generalized Logistic (GLOG), Generalized Extreme Value (GEV), and Gamma & Pearson III (P3) parent distribution. After analyzing estimated quantile simple disaggregation model was applied in order to find sub daily rainfall data. Finally the disaggregated rainfall is fitted to find IDF curve and the result shows in most parts of the basin rainfall intensity expected to increase in the future. As a result of the two GCM outputs, the study indicates there will be likely increase of precipitation extremes over the Blue Nile basin due to the changing climate. This study should be interpreted with caution as the GCM model outputs in this part of the world have huge uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Liwei; Qian, Yun; Zhou, Tianjun
2014-10-01
In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less
NASA Astrophysics Data System (ADS)
Harding, Keith J.; Snyder, Peter K.; Liess, Stefan
2013-11-01
supporting exceptionally productive agricultural lands, the Central U.S. is susceptible to severe droughts and floods. Such precipitation extremes are expected to worsen with climate change. However, future projections are highly uncertain as global climate models (GCMs) generally fail to resolve precipitation extremes. In this study, we assess how well models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate summer means, variability, extremes, and the diurnal cycle of Central U.S. summer rainfall. Output from a subset of historical CMIP5 simulations are used to drive the Weather Research and Forecasting model to determine whether dynamical downscaling improves the representation of Central U.S. rainfall. We investigate which boundary conditions influence dynamically downscaled precipitation estimates and identify GCMs that can reasonably simulate precipitation when downscaled. The CMIP5 models simulate the seasonal mean and variability of summer rainfall reasonably well but fail to resolve extremes, the diurnal cycle, and the dynamic forcing of precipitation. Downscaling to 30 km improves these characteristics of precipitation, with the greatest improvement in the representation of extremes. Additionally, sizeable diurnal cycle improvements occur with higher (10 km) resolution and convective parameterization disabled, as the daily rainfall peak shifts 4 h closer to observations than 30 km resolution simulations. This lends greater confidence that the mechanisms responsible for producing rainfall are better simulated. Because dynamical downscaling can more accurately simulate these aspects of Central U.S. summer rainfall, policymakers can have added confidence in dynamically downscaled rainfall projections, allowing for more targeted adaptation and mitigation.
Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences
NASA Astrophysics Data System (ADS)
Mailhot, A.; Talbot, G.; Lavallée, B.
2015-04-01
Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.
Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables
Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.
2003-01-01
Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593
Trends in rainfall and temperature extremes in Morocco
NASA Astrophysics Data System (ADS)
Khomsi, K.; Mahe, G.; Tramblay, Y.; Sinan, M.; Snoussi, M.
2015-02-01
In Morocco, socioeconomic fields are vulnerable to weather extreme events. This work aims to analyze the frequency and the trends of temperature and rainfall extreme events in two contrasted Moroccan regions (the Tensift in the semi-arid South, and the Bouregreg in the sub-humid North), during the second half of the 20th century. This study considers long time series of daily extreme temperatures and rainfall, recorded in the stations of Marrakech and Safi for the Tensift region, and Kasba-Tadla and Rabat-Sale for the Bouregreg region, data from four other stations (Tanger, Fes, Agadir and Ouarzazate) from outside the regions were added. Extremes are defined by using as thresholds the 1st, 5th, 90th, 95th, and 99th percentiles. Results show upward trends in maximum and minimum temperatures of both regions and no generalized trends in rainfall amounts. Changes in cold events are larger than those for warm events, and the number of very cold events decrease significantly in the whole studied area. The southern region is the most affected with the changes of the temperature regime. Most of the trends found in rainfall heavy events are positive with weak magnitudes even though no statistically significant generalized trends could be identified during both seasons.
Rainfall frequency analysis for ungauged sites using satellite precipitation products
NASA Astrophysics Data System (ADS)
Gado, Tamer A.; Hsu, Kuolin; Sorooshian, Soroosh
2017-11-01
The occurrence of extreme rainfall events and their impacts on hydrologic systems and society are critical considerations in the design and management of a large number of water resources projects. As precipitation records are often limited or unavailable at many sites, it is essential to develop better methods for regional estimation of extreme rainfall at these partially-gauged or ungauged sites. In this study, an innovative method for regional rainfall frequency analysis for ungauged sites is presented. The new method (hereafter, this is called the RRFA-S) is based on corrected annual maximum series obtained from a satellite precipitation product (e.g., PERSIANN-CDR). The probability matching method (PMM) is used here for bias correction to match the CDF of satellite-based precipitation data with the gauged data. The RRFA-S method was assessed through a comparative study with the traditional index flood method using the available annual maximum series of daily rainfall in two different regions in USA (11 sites in Colorado and 18 sites in California). The leave-one-out cross-validation technique was used to represent the ungauged site condition. Results of this numerical application have found that the quantile estimates obtained from the new approach are more accurate and more robust than those given by the traditional index flood method.
Duffaut Espinosa, L A; Posadas, A N; Carbajal, M; Quiroz, R
2017-01-01
In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study.
Posadas, A. N.; Carbajal, M.; Quiroz, R.
2017-01-01
In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study. PMID:28125607
NASA Astrophysics Data System (ADS)
Post, David
2010-05-01
In a water-scarce country such as Australia, detailed, accurate and reliable assessments of current and future water availability are essential in order to adequately manage the limited water resource. This presentation describes a recently completed study which provided an assessment of current water availability in Tasmania, Australia, and also determined how this water availability would be impacted by climate change and proposed catchment development by the year 2030. The Tasmania Sustainable Yields Project (http://www.csiro.au/partnerships/TasSY.html) assessed current water availability through the application of rainfall-runoff models, river models, and recharge and groundwater models. These were calibrated to streamflow records and parameterised using estimates of current groundwater and surface water extractions and use. Having derived a credible estimate of current water availability, the impacts of future climate change on water availability were determined through deriving changes in rainfall and potential evapotranspiration from 15 IPCC AR4 global climate models. These changes in rainfall were then dynamically downscaled using the CSIRO-CCAM model over the relatively small study area (50,000 square km). A future climate sequence was derived by modifying the historical 84-year climate sequence based on these changes in rainfall and potential evapotranspiration. This future climate sequence was then run through the rainfall-runoff, river, recharge and groundwater models to give an estimate of water availability under future climate. To estimate the impacts of future catchment development on water availability, the models were modified and re-run to reflect projected increases in development. Specifically, outputs from the rainfall-runoff and recharge models were reduced over areas of projected future plantation forestry. Conversely, groundwater recharge was increased over areas of new irrigated agriculture and new extractions of water for irrigation were implemented in the groundwater and river models. Results indicate that historical average water availability across the project area was 21,815 GL/year. Of this, 636 GL/year of surface water and 38 GL/year of groundwater are currently extracted for use. By 2030, rainfall is projected to decrease by an average of 3% over the project area. This decrease in rainfall and concurrent increase in potential evapotranspiration leads to a decrease in water availability of 5% by 2030. As a result of lower streamflows, under current cease-to-take rules, currently licensed extractions are projected to decrease by 3% (19 GL/year). This however is offset by an additional 120 GL/year of extractions for proposed new irrigated agriculture. These new extractions, along with the increase in commercial forest plantations lead to a reduction in total surface water of 1% in addition to the 5% reduction due to climate change. Results from this study are being used by the Tasmanian and Australian governments to guide the development of a sustainable irrigated agriculture industry in Tasmania. In part, this is necessary to offset the loss of irrigated agriculture from the southern Murray-Darling Basin where climate change induced reductions in rainfall are projected to be far worse.
NASA Astrophysics Data System (ADS)
Hadiwijaya, B.; Nadeau, D.; Pépin, S.
2017-12-01
Forest evapotranspiration is the sum of transpiration, evaporation from intercepted rainfall by the canopy and soil evaporation, each component being governed by distinct time scales and mechanisms. Therefore, to develop a simple, yet realistic, model to estimate evapotranspiration over forested areas, field measurements must capture the full chronological sequence of events taking place following rainfall. This becomes a challenge in the case of young sparse forest stands due to large diversity in canopy covers and leaf area indices, which leads to strong spatial variation in intercepted rainfall by the canopy. Unfortunately, very few studies have focused on transition between the dry and wet canopy conditions. The objectives of this study are to investigate each element of rain interception and intercepted water loss, to characterize water loss partitioning processes based on precipitation rate, elapsed time and time-sequence events. To do this, we conducted a summer field campaign at Forêt Montmorency (47°N, 71°W), in southern Québec, Canada, started from early May until late October. The site is characterized by a humid continental climate, with a mean annual precipitation of 1500 mm. The site is located at the boreal forest region, in the balsam for-white birch ecosystem, whose growing season typically extends from May until October. Six measurement plots were established around two micrometeorological towers located in juvenile and sapling forest stands. Five sap flow probes to measure transpiration and a set of rainfall interception instruments (measuring throughfall, free throughfall and stemflow separately) have been deployed on each plot. Initial results presented will include the estimated evapotranspiration rate and soil evaporation measured using eddy covariance method, transpiration rate and high resolution analysis of rainfall interception.
USDA-ARS?s Scientific Manuscript database
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in w...
Deveautour, Coline; Donn, Suzanne; Power, Sally A; Bennett, Alison E; Powell, Jeff R
2018-04-01
Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterized arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem. © 2018 John Wiley & Sons Ltd.
Rainfall continuous time stochastic simulation for a wet climate in the Cantabric Coast
NASA Astrophysics Data System (ADS)
Rebole, Juan P.; Lopez, Jose J.; Garcia-Guzman, Adela
2010-05-01
Rain is the result of a series of complex atmospheric processes which are influenced by numerous factors. This complexity makes its simulation practically unfeasible from a physical basis, advising the use of stochastic diagrams. These diagrams, which are based on observed characteristics (Todorovic and Woolhiser, 1975), allow the introduction of renewal alternating processes, that account for the occurrence of rainfall at different time lapses (Markov chains are a particular case, where lapses can be described by exponential distributions). Thus, a sequential rainfall process can be defined as a temporal series in which rainfall events (periods in which rainfall is recorded) alternate with non rain events (periods in which no rainfall is recorded). The variables of a temporal rain sequence have been characterized (duration of the rainfall event, duration of the non rainfall event, average intensity of the rain in the rain event, and a temporal distribution of the amount of rain in the rain event) in a wet climate such as that of the coastal area of Guipúzcoa. The study has been performed from two series recorded at the meteorological stations of Igueldo-San Sebastián and Fuenterrabia / Airport (data every ten minutes and for its hourly aggregation). As a result of this work, the variables satisfactorily fitted the following distribution functions: the duration of the rain event to a exponential function; the duration of the dry event to a truncated exponential mixed distribution; the average intensity to a Weibull distribution; and the distribution of the rain fallen to the Beta distribution. The characterization was made for an hourly aggregation of the recorded interval of ten minutes. The parameters of the fitting functions were better obtained by means of the maximum likelihood method than the moment method. The parameters obtained from the characterization were used to develop a stochastic rainfall process simulation model by means of a three states Markov chain (Hutchinson, 1990), performed in an hourly basis by García-Guzmán (1993) and Castro et al. (1997, 2005 ). Simulation process results were valid in the hourly case for all the four described variables, with a slightly better response in Fuenterrabia than in Igueldo. In summary, all the variables were better simulated in Fuenterrabia than in Igueldo. Fuenterrabia data series is shorter and with longer sequences without missing data, compared to Igueldo. The latter shows higher number of missing data events, whereas its mean duration is longer in Fuenterrabia.
Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li
2018-07-01
Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Abrahart, R. J.; Beriro, D. J.
2012-04-01
The information content in a rainfall-runoff record is sufficient to support models of only very limited complexity (Jakeman and Hornberger, 1993). This begs the question of what limits should observed data place on the allowable complexity of rainfall-runoff models? Eureqa1 (Schmidt and Lipson, 2009) - pronounced "eureka" - is a software tool for finding equations and detecting mathematical relationships in a dataset. The challenge, for both software and modeller, is to identify, by means of symbolic regression, the simplest mathematical formulas which describe the underlying mechanisms that produced the data. It actually delivers, however, a series of preferred modelling solutions comprising one champion for each specific level of complexity i.e. related to solution enlargement involving the progressive incorporation of additional permitted factors (internal operators/ external drivers). The potential benefit of increased complexity can as a result be assessed in a rational manner. Eureqa is free to download and use; and, in the current study, has been employed to construct a set of rainfall-runoff transfer function models for the Annapolis River at Wilmot, in north-western Nova Scotia, Canada. The climatic conditions in this catchment present an interesting set of modelling challenges; daily variations and seasonal changes in temperature, snowfall and retention result in great difficulty for runoff prediction by means of a data-driven approach. Data from 10 years of daily observations are used in the present study (01/01/2000-31/12/2009): comprising [i] discharge, [ii] total rainfall (excluding snowfall), [iii] total snowfall, [iv] thickness of snow cover, and [v] maximum and [vi] minimum temperature. Precipitation occurs throughout the whole year being slightly lower during summer. Snowfall is common from November until April and rare hurricane weather may occur in autumn. The average maximum temperature is below 0 0C in January and February, but significant variation may result, producing milder weather and snowmelt throughout the winter. The average minimum temperature is below 0 0C during half of the year, such that freezing and melting occur frequently. The principal rainfall-runoff drivers are found to be lagged discharge and lagged precipitation, as expected. The complexity-accuracy trade-off, is nevertheless found to exhibit threshold behaviour, in which snow cover is eventually included at higher levels of complexity to account for multifaceted cold season processes.
NASA Astrophysics Data System (ADS)
Hong, Y.; Adler, R.; Huffman, G.
2007-12-01
Many governmental emergency management agencies or non-governmental organizations need real-time information on emerging disasters for preparedness and response. However, progress in warnings for hydrologic disasters has been constrained by the difficulty of measuring spatiotemporal variability of rainfall fluxes continuously over space and time, due largely to insufficient ground monitoring networks, long delay in data transmission and absence of data sharing protocols among many geopolitically trans-boundary basins. In addition, in-situ gauging stations are often washed away by the very floods they are designed to monitor, making reconstruction of gauges a common post-flood activity around the world. In reality, remote sensing precipitation estimates may be the only source of rainfall information available over much of the globe, particularly for vulnerable countries in the tropics where abundant extreme rain storms and severe flooding events repeat every year. Building on progress in remote sensing technology, researchers have improved the accuracy, coverage, and resolution of rainfall estimates by combining imagery from infrared, passive microwave, and weather radar sensors. Today, remote sensing imagery acquired and processed in real time can provide near-real-time rainfall fluxes at relatively fine spatiotemporal scales (kilometers to tens of kilometers and 30-minute to 3-hour). These new suites of rainfall products have the potential to support daily decision-making in analysis of hydrologic hazards. This talk will address several key issues, including remote sensing rainfall retrieval and data assimilation, for hydrologists to develop alternative satellite-based flood warning systems that may supplement in-situ infrastructure when conventional data sources are denied due to natural or administrative causes. This talk will also assess a module-structure global flood prediction system that has been running at real-time by integrating remote sensing forcing data with simplified hydrological models, in an effort to offer a practical solution to the challenge of building cost-effective flood warning systems for the data-spares regions of the world. The real-time outlook of hazardous floods will quickly disseminate through an open-access web-interface to many agencies and organizations for their daily decision-making, with the potential to save human life and reduce economic impacts. The interactive Web interface will also show close-up maps of the disaster risks overlaid on population or integrated with the Google-Earth visualization tool.
Regionalization of monthly rainfall erosivity patternsin Switzerland
NASA Astrophysics Data System (ADS)
Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin
2016-10-01
One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.
Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine
2015-04-01
Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brocca, Luca; Pellarin, Thierry; Crow, Wade T.; Ciabatta, Luca; Massari, Christian; Ryu, Dongryeol; Su, Chun-Hsu; Rüdiger, Christoph; Kerr, Yann
2016-10-01
Remote sensing of soil moisture has reached a level of maturity and accuracy for which the retrieved products can be used to improve hydrological and meteorological applications. In this study, the soil moisture product from the Soil Moisture and Ocean Salinity (SMOS) satellite is used for improving satellite rainfall estimates obtained from the Tropical Rainfall Measuring Mission multisatellite precipitation analysis product (TMPA) using three different "bottom up" techniques: SM2RAIN, Soil Moisture Analysis Rainfall Tool, and Antecedent Precipitation Index Modification. The implementation of these techniques aims at improving the well-known "top down" rainfall estimate derived from TMPA products (version 7) available in near real time. Ground observations provided by the Australian Water Availability Project are considered as a separate validation data set. The three algorithms are calibrated against the gauge-corrected TMPA reanalysis product, 3B42, and used for adjusting the TMPA real-time product, 3B42RT, using SMOS soil moisture data. The study area covers the entire Australian continent, and the analysis period ranges from January 2010 to November 2013. Results show that all the SMOS-based rainfall products improve the performance of 3B42RT, even at daily time scale (differently from previous investigations). The major improvements are obtained in terms of estimation of accumulated rainfall with a reduction of the root-mean-square error of more than 25%. Also, in terms of temporal dynamic (correlation) and rainfall detection (categorical scores) the SMOS-based products provide slightly better results with respect to 3B42RT, even though the relative performance between the methods is not always the same. The strengths and weaknesses of each algorithm and the spatial variability of their performances are identified in order to indicate the ways forward for this promising research activity. Results show that the integration of bottom up and top down approaches has the potential to improve the quality of near-real-time rainfall estimates from remote sensing in the near future.
Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa
NASA Astrophysics Data System (ADS)
Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.
2017-12-01
Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product (TAMSAT3) and the earlier version(TAMSAT2), which has shown that the latest version is a substantial improvement over the previous one, particularly with regards to the bias statistics.
Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia
NASA Astrophysics Data System (ADS)
Villafuerte, Marcelino, II; Matsumoto, Jun
2014-05-01
Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region. Acknowledgment: This study is supported by the Tokyo Metropolitan Government through its AHRF program.
NASA Astrophysics Data System (ADS)
Chen, Yu-Wen; Wang, Yetmen; Chang, Liang-Cheng
2017-04-01
Groundwater resources play a vital role on regional supply. To avoid irreversible environmental impact such as land subsidence, the characteristic identification of groundwater system is crucial before sustainable management of groundwater resource. This study proposes a signal process approach to identify the character of groundwater systems based on long-time hydrologic observations include groundwater level and rainfall. The study process contains two steps. First, a linear signal model (LSM) is constructed and calibrated to simulate the variation of underground hydrology based on the time series of groundwater levels and rainfall. The mass balance equation of the proposed LSM contains three major terms contain net rate of horizontal exchange, rate of rainfall recharge and rate of pumpage and four parameters are required to calibrate. Because reliable records of pumpage is rare, the time-variant groundwater amplitudes of daily frequency (P ) calculated by STFT are assumed as linear indicators of puamage instead of pumpage records. Time series obtained from 39 observation wells and 50 rainfall stations in and around the study area, Pintung Plain, are paired for model construction. Second, the well-calibrated parameters of the linear signal model can be used to interpret the characteristic of groundwater system. For example, the rainfall recharge coefficient (γ) means the transform ratio between rainfall intention and groundwater level raise. The area around the observation well with higher γ means that the saturated zone here is easily affected by rainfall events and the material of unsaturated zone might be gravel or coarse sand with high infiltration ratio. Considering the spatial distribution of γ, the values of γ decrease from the upstream to the downstream of major rivers and also are correlated to the spatial distribution of grain size of surface soil. Via the time-series of groundwater levels and rainfall, the well-calibrated parameters of LSM have ability to identify the characteristic of aquifer.
Guay, Joel R.
2002-01-01
To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated mean annual streamflow for the State Street gaging station at the outlet of the study basin and the simulated mean annual basin infiltration (combined infiltration from all the channels and land surfaces) were 8,720 and 41,600 acre-feet, respectively, for water years 1950-98. Simulated annual streamflow at the State Street gaging station ranged from 16.8 acre-feet in water year 1961 to 70,400 acre-feet in water year 1993, and simulated basin infiltration ranged from 2,770 acre-feet in water year 1961 to 149,000 acre-feet in water year 1983.The effects of increased urbanization on the hydrology of the study basin were evaluated by increasing the size of the effective impervious and non-effective impervious urban areas simulated in the calibrated rainfall-runoff model by 50 and 100 percent, respectively. The rainfall-runoff model simulated a long-term time series of monthly flows in and out of the channels and land surfaces using daily rainfall and potential evaporation data for water years 1950?98. Increasing the effective impervious and non-effective impervious urban areas by 100 percent resulted in a 5-percent increase in simulated mean annual streamflow at the State Street gaging station, and a 2.2-percent increase in simulated basin infiltration. Results of a frequency analysis of the simulated annual streamflow at the State Street gaging station showed that when effective impervious and non-effective impervious areas were increased 100 percent, simulated annual streamflow increased about 100 percent for low-flow conditions and was unchanged for high-flow conditions. The simulated increase in streamflow at the State Street gaging station potentially could infiltrate along the stream channel further downstream, outside of the model area.
Seasonal forecasts in the Sahel region: the use of rainfall-based predictive variables
NASA Astrophysics Data System (ADS)
Lodoun, Tiganadaba; Sanon, Moussa; Giannini, Alessandra; Traoré, Pierre Sibiry; Somé, Léopold; Rasolodimby, Jeanne Millogo
2014-08-01
In the Sahel region, seasonal predictions are crucial to alleviate the impacts of climate variability on populations' livelihoods. Agricultural planning (e.g., decisions about sowing date, fertilizer application date, and choice of crop or cultivar) is based on empirical predictive indices whose accuracy to date has not been scientifically proven. This paper attempts to statistically test whether the pattern of rainfall distribution over the May-July period contributes to predicting the real onset date and the nature (wet or dry) of the rainy season, as farmers believe. To that end, we considered historical records of daily rainfall from 51 stations spanning the period 1920-2008 and the different agro-climatic zones in Burkina Faso. We performed (1) principal component analysis to identify climatic zones, based on the patterns of intra-seasonal rainfall, (2) and linear discriminant analysis to find the best rainfall-based variables to distinguish between real and false onset dates of the rainy season, and between wet and dry seasons in each climatic zone. A total of nine climatic zones were identified in each of which, based on rainfall records from May to July, we derived linear discriminant functions to correctly predict the nature of a potential onset date of the rainy season (real or false) and that of the rainy season (dry or wet) in at least three cases out of five. These functions should contribute to alleviating the negative impacts of climate variability in the different climatic zones of Burkina Faso.
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
Slattery, Richard N.; Furlow, Allen L.; Ockerman, Darwin J.
2006-01-01
The U.S. Geological Survey collected rainfall, streamflow, evapotranspiration, and rainfall and stormflow water-quality data from seven sites in two adjacent watersheds in the Honey Creek State Natural Area, Comal County, Texas, during August 2001–September 2003, in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service, and the San Antonio Water System. Data collected during this period represent baseline hydrologic and water-quality conditions before proposed removal of ashe juniper (Juniperus ashei) from one of the two watersheds. Juniper removal is intended as a best-management practice to increase water quantity (aquifer recharge and streamflow) and to protect water quality. Continuous (5-minute interval) rainfall data are collected at four sites; continuous (5-minute interval) streamflow data are collected at three sites. Fifteen-minute averages of meteorological and solar-energy-related data recorded at two sites are used to compute moving 30-minute evapotranspiration values on the basis of the energy-balance Bowen ratio method. Periodic rainfall water-quality data are collected at one site and stormflow water-quality data at three sites. Daily rainfall, streamflow, and evapotranspiration totals are presented in tables; detailed data are listed in an appendix. Results of analyses of the periodic rainfall and stormflow water-quality samples collected during runoff events are summarized in the appendix; not all data types were collected at all sites nor were all data types collected during the entire 26-month period.
Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren
2013-01-01
The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.
Modelling Inland Flood Events for Hazard Maps in Taiwan
NASA Astrophysics Data System (ADS)
Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.
2015-12-01
Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.
Comparison of Conceptual and Neural Network Rainfall-Runoff Models
NASA Astrophysics Data System (ADS)
Vidyarthi, V. K.; Jain, A.
2014-12-01
Rainfall-runoff (RR) model is a key component of any water resource application. There are two types of techniques usually employed for RR modeling: physics based and data-driven techniques. Although the physics based models have been used for operational purposes for a very long time, they provide only reasonable accuracy in modeling and forecasting. On the other hand, the Artificial Neural Networks (ANNs) have been reported to provide superior modeling performance; however, they have not been acceptable by practitioners, decision makers and water resources engineers as operational tools. The ANNs one of the data driven techniques, became popular for efficient modeling of the complex natural systems in the last couple of decades. In this paper, the comparative results for conceptual and ANN models in RR modeling are presented. The conceptual models were developed by the use of rainfall-runoff library (RRL) and genetic algorithm (GA) was used for calibration of these models. Feed-forward neural network model structure trained by Levenberg-Marquardt (LM) training algorithm has been adopted here to develop all the ANN models. The daily rainfall, runoff and various climatic data derived from Bird creek basin, Oklahoma, USA were employed to develop all the models included here. Daily potential evapotranspiration (PET), which was used in conceptual model development, was calculated by the use of Penman equation. The input variables were selected on the basis of correlation analysis. The performance evaluation statistics such as average absolute relative error (AARE), Pearson's correlation coefficient (R) and threshold statistics (TS) were used for assessing the performance of all the models developed here. The results obtained in this study show that the ANN models outperform the conventional conceptual models due to their ability to learn the non-linearity and complexity inherent in data of rainfall-runoff process in a more efficient manner. There is a strong need to carry out such studies to prove the superiority of ANN models over conventional methods in an attempt to make them acceptable by water resources community responsible for the operation of water resources systems.
USDA-ARS?s Scientific Manuscript database
Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...
Observed formation of easterly waves over northeast Africa
NASA Astrophysics Data System (ADS)
Jury, Mark R.
2018-06-01
This study explores the thermodynamic and kinematic features of easterly waves over northeast Africa in July-September season 2005-2015. A daily African easterly wave (AEW) index is formulated from transient satellite rainfall and reanalysis vorticity, and the ten most intense cases are studied by composite analysis. Surface moisture is advected from central Africa towards the Red Sea during AEW formation. The anomalous 600 hPa wind circulation is comprized of a cyclonic-south anticyclonic-north rotor pair and accentuated easterly jet along 17N. Composite convection is initiated over Ethiopia and subsequently intensifies following interaction with a zonal circulation located downstream. Composite AEW temperature anomalies reveal a cool lower-warm upper layer heating profile. 2-8 day variance of satellite OLR reaches a maximum over the southern Arabian Peninsula, suggesting an upstream role for surface heating and the Somali Jet. The large scale environment is analyzed by regression of the AEW index onto daily fields of rainfall, surface air pressure and temperature in July-September season ( N = 1004). The rainfall regression reflects a westward propagating AEW wave-train of higher values on 13N and lower values on 7N with a longitude spacing of 25°. The air pressure and temperature regression features a N-S dipole indicating an anomalous northward ITCZ. A low pressure signal west of the Maritime Continent coupled with a warm zone across the South Indian Ocean coincides with AEW formation over the eastern Sahel.
NASA Astrophysics Data System (ADS)
dos Santos, A. F.; Freitas, S. R.; de Mattos, J. G. Z.; de Campos Velho, H. F.; Gan, M. A.; da Luz, E. F. P.; Grell, G. A.
2013-09-01
In this paper we consider an optimization problem applying the metaheuristic Firefly algorithm (FY) to weight an ensemble of rainfall forecasts from daily precipitation simulations with the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) over South America during January 2006. The method is addressed as a parameter estimation problem to weight the ensemble of precipitation forecasts carried out using different options of the convective parameterization scheme. Ensemble simulations were performed using different choices of closures, representing different formulations of dynamic control (the modulation of convection by the environment) in a deep convection scheme. The optimization problem is solved as an inverse problem of parameter estimation. The application and validation of the methodology is carried out using daily precipitation fields, defined over South America and obtained by merging remote sensing estimations with rain gauge observations. The quadratic difference between the model and observed data was used as the objective function to determine the best combination of the ensemble members to reproduce the observations. To reduce the model rainfall biases, the set of weights determined by the algorithm is used to weight members of an ensemble of model simulations in order to compute a new precipitation field that represents the observed precipitation as closely as possible. The validation of the methodology is carried out using classical statistical scores. The algorithm has produced the best combination of the weights, resulting in a new precipitation field closest to the observations.
NASA Astrophysics Data System (ADS)
Donker, N. H. W.
2001-01-01
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.
Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.
2018-04-01
The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.
The impact of summer rainfall on the temperature gradient along the United States-Mexico border
NASA Technical Reports Server (NTRS)
Balling, Robert C., Jr.
1989-01-01
The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.
Petrie, Matthew D; Peters, Debra P C; Yao, Jin; Blair, John M; Burruss, Nathan D; Collins, Scott L; Derner, Justin D; Gherardi, Laureano A; Hendrickson, John R; Sala, Osvaldo E; Starks, Patrick J; Steiner, Jean L
2018-05-01
There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT-ANPP relationships in above- and below-average PPT years to those that occurred during sequences of multiple above- and below-average years. We found differences in PPT-ANPP relationships in above- and below-average years compared to long-term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current- and prior-year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior-year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current-year PPT declined. Although the mechanisms by which a directional change in the frequency of above- and below-average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above- vs. below-average years, and illustrate the utility of long-term data to examine these patterns. © 2018 John Wiley & Sons Ltd.
Statistical Method for Identification of Potential Groundwater Recharge Zone
NASA Astrophysics Data System (ADS)
Banerjee, Pallavi; Singh, V. S.
2010-05-01
The effective development of groundwater resource is essential for a country like India. Artificial recharge is the planned, human activity of augmenting the amount of groundwater available through works designed to increase the natural replenishment or percolation of surface waters into the groundwater aquifers, resulting in a corresponding increase in the amount of groundwater available for abstraction. India receives good amount of average annual rainfall about 114 cm but most of it's part waste through runoff. The imbalance between rainfall and recharge has caused serious shortage of water for drinking, agriculture and industrial purposes. The over exploitation of groundwater due to increasing population is an additional cause of water crisis that resulting in reduction in per capita availability of water in the country. Thus the planning for effective development of groundwater is essential through artificial recharge. Objective of the paper is to identification of artificial recharge zones by arresting runoff through suitable sites to restore groundwater conditions using statistical technique. The water table variation follows a pattern similar to rainfall variation with time delay. The rainfall and its relationship with recharge is a very important process in a shallow aquifer system. Understanding of this process is of critical importance to management of groundwater resource in any terrain. Groundwater system in a top weathered regolith in a balastic terrain forms shallow aquifer is often classified into shallow water table category. In the present study an effort has been made to understand the suitable recharge zone with relation to rainfall and water level by using statistical analysis. Daily time series data of rainfall and borehole water level data are cross correlated to investigate variations in groundwater level response time during the months of monsoon. This measurement facilitate to demarcate favorable areas for Artificial Recharge. KEYWORDS: Water level; Rainfall; Recharge; Statistical analysis; Cross correlation.
Spatial and temporal variation of rainfall trends of Sri Lanka
NASA Astrophysics Data System (ADS)
Wickramagamage, P.
2016-08-01
This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.
The association of weather and mortality in Bangladesh from 1983–2009
Alam, Nurul; Begum, Dilruba; Streatfield, Peter Kim
2012-01-01
Introduction The association of weather and mortality have not been widely studied in subtropical monsoon regions, particularly in Bangladesh. This study aims to assess the association of weather and mortality (measured with temperature and rainfall), adjusting for time trend and seasonal patterns in Abhoynagar, Bangladesh. Material and methods A sample vital registration system (SVRS) was set up in 1982 to facilitate operational research in family planning and maternal and child health. SVRS provided data on death counts and population from 1983–2009. The Bangladesh Meteorological Department provided data on daily temperature and rainfall for the same period. Time series Poisson regression with cubic spline functions was used, allowing for over-dispersion, including lagged weather parameters, and adjusting for time trends and seasonal patterns. Analysis was carried out using R statistical software. Results Both weekly mean temperature and rainfall showed strong seasonal patterns. After adjusting for seasonal pattern and time trend, weekly mean temperatures (lag 0) below the 25th percentile and between the 25th and 75th percentiles were associated with increased mortality risk, particularly in females and adults aged 20–59 years by 2.3–2.4% for every 1°C decrease. Temperature above the 75th percentile did not increase the risk. Every 1 mm increase in rainfall up to 14 mm of weekly average rainfall over lag 0–4 weeks was associated with decreased mortality risks. Rainfall above 14 mm was associated with increased mortality risk. Conclusion The relationships between temperature, rainfall and mortality reveal the importance of understanding the current factors contributing to adaptation and acclimatization, and how these can be enhanced to reduce negative impacts from weather. PMID:23195512
Contribution of tropical cyclones to global rainfall
NASA Astrophysics Data System (ADS)
Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James
2016-04-01
Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar patterns using the POT approach to identify extremes. The fractional contributions decrease as we move inland from the coast. Moreover, the relationship between TC-induced extreme rainfall and the El Niño-Southern Oscillation is also examined using logistic and Poisson regression. Results indicate that TC-induced extreme rainfall tends to occur more frequently in Australia and along the U.S. East Coast during La Niña, and along eastern Asia and northwestern Pacific islands during El Niño.
A comparative modeling analysis of multiscale temporal variability of rainfall in Australia
NASA Astrophysics Data System (ADS)
Samuel, Jos M.; Sivapalan, Murugesu
2008-07-01
The effects of long-term natural climate variability and human-induced climate change on rainfall variability have become the focus of much concern and recent research efforts. In this paper, we present the results of a comparative analysis of observed multiscale temporal variability of rainfall in the Perth, Newcastle, and Darwin regions of Australia. This empirical and stochastic modeling analysis explores multiscale rainfall variability, i.e., ranging from short to long term, including within-storm patterns, and intra-annual, interannual, and interdecadal variabilities, using data taken from each of these regions. The analyses investigated how storm durations, interstorm periods, and average storm rainfall intensities differ for different climate states and demonstrated significant differences in this regard between the three selected regions. In Perth, the average storm intensity is stronger during La Niña years than during El Niño years, whereas in Newcastle and Darwin storm duration is longer during La Niña years. Increase of either storm duration or average storm intensity is the cause of higher average annual rainfall during La Niña years as compared to El Niño years. On the other hand, within-storm variability does not differ significantly between different ENSO states in all three locations. In the case of long-term rainfall variability, the statistical analyses indicated that in Newcastle the long-term rainfall pattern reflects the variability of the Interdecadal Pacific Oscillation (IPO) index, whereas in Perth and Darwin the long-term variability exhibits a step change in average annual rainfall (up in Darwin and down in Perth) which occurred around 1970. The step changes in Perth and Darwin and the switch in IPO states in Newcastle manifested differently in the three study regions in terms of changes in the annual number of rainy days or the average daily rainfall intensity or both. On the basis of these empirical data analyses, a stochastic rainfall time series model was developed that incorporates the entire range of multiscale variabilities observed in each region, including within-storm, intra-annual, interannual, and interdecadal variability. Such ability to characterize, model, and synthetically generate realistic time series of rainfall intensities is essential for addressing many hydrological problems, including estimation of flood and drought frequencies, pesticide risk assessment, and landslide frequencies.
NASA Astrophysics Data System (ADS)
Kumar, Dheeraj; Gautam, Amar Kant; Palmate, Santosh S.; Pandey, Ashish; Suryavanshi, Shakti; Rathore, Neha; Sharma, Nayan
2017-08-01
To support the GPM mission which is homologous to its predecessor, the Tropical Rainfall Measuring Mission (TRMM), this study has been undertaken to evaluate the accuracy of Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TMPA) daily-accumulated precipitation products for 5 years (2008-2012) using the statistical methods and contingency table method. The analysis was performed on daily, monthly, seasonal and yearly basis. The TMPA precipitation estimates were also evaluated for each grid point i.e. 0.25° × 0.25° and for 18 rain gauge stations of the Betwa River basin, India. Results indicated that TMPA precipitation overestimates the daily and monthly precipitation in general, particularly for the middle sub-basin in the non-monsoon season. Furthermore, precision of TMPA precipitation estimates declines with the decrease of altitude at both grid and sub-basin scale. The study also revealed that TMPA precipitation estimates provide better accuracy in the upstream of the basin compared to downstream basin. Nevertheless, the detection capability of daily TMPA precipitation improves with increase in altitude for drizzle rain events. However, the detection capability decreases during non-monsoon and monsoon seasons when capturing moderate and heavy rain events, respectively. The veracity of TMPA precipitation estimates was improved during the rainy season than during the dry season at all scenarios investigated. The analyses suggest that there is a need for better precipitation estimation algorithm and extensive accuracy verification against terrestrial precipitation measurement to capture the different types of rain events more reliably over the sub-humid tropical regions of India.
NASA Astrophysics Data System (ADS)
Martinotti, Maria Elena; Pisano, Luca; Trabace, Maria; Marchesini, Ivan; Peruccacci, Silvia; Rossi, Mauro; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Parise, Mario; Brunetti, Maria Teresa
2015-04-01
In the first week of September 2014, the Gargano Promontory (Apulia, SE Italy) was hit by an extreme rainfall event that caused several landslides, floods and sinkholes. As a consequence of the floods, two people lost their lives and severe socio-economic damages were reported. The highest peaks of rainfall were recorded between September 3rd and 6th at the Cagnano Varano and San Marco in Lamis rain gauges with a maximum daily rainfall (over 230 mm) that is about 30% the mean annual rainfall. The Gargano Promontory is characterized by complex orographic conditions, with the highest elevation of about 1000 m a.s.l. The geological setting consists of different types of carbonate deposits affected by intensive development of karst processes. The morphological and climatic settings of the area, associated with frequent extreme rainfall events can cause various types of geohazards (e.g., landslides, floods, sinkholes). A further element enhancing the natural predisposition of the area to the occurrence of landslides, floods and sinkholes is an intense human activity, characterized by an inappropriate land use and management. In order to obtain consistent and reliable data on the effects produced by the storm, a systematic collection of information through field observations, a critical analysis of newspaper articles and web-news, and a co-operation with the Regional Civil Protection and local geologists started immediately after the event. The information collected has been organized in a database including the location, the occurrence time and the type of geohazard documented with photographs. The September 2014 extreme rainfall event in the Gargano Promontory was also analyzed to validate the forecasts issued by the Italian national early-warning system for rainfall-induced landslides (SANF), developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Italian national Department for Civil Protection (DPC). SANF compares rainfall measurements and forecasts with empirical rainfall thresholds for the prediction of landslide occurrence. SANF forecasts were compared to the documented landslides and discussed.
NASA Astrophysics Data System (ADS)
Nigussie, Tewodros Assefa; Altunkaynak, Abdusselam
2018-03-01
In this study, extreme rainfall indices of Olimpiyat Station were determined from reference period (1971-2000) and future period (2070-2099) daily rainfall data projected using the HadGEM2-ES and GFDL-ESM2M global circulation models (GCMs) and downscaled by the RegCM4.3.4 regional model under the Representative Concentration Pathway RCP4.5 and RCP8.5 scenarios. The Mann-Kendall (MK) trend statistics was used to detect trends in the indices of each group, and the nonparametric Wilcoxon signed ranks test was employed to identify the presence of differences among the values of the rainfall indices of the three groups. Moreover, the peaks-over-threshold (POT) method was used to undertake frequency analysis and estimate the maximum 24-h rainfall values of various return periods. The results of the M-K-based trend analyses showed that there are insignificant increasing trends in most of the extreme rainfall indices. However, based on the Wilcoxon signed ranks test, the values of the extreme rainfall indices determined for the future period, particularly under RCP8.5, were found to be significantly different from the corresponding values determined for the reference period. The maximum 24-h rainfall amounts of the 50-year return period of the future period under RCP4.5 of the HadGEM2-ES and GFDL-ESM2M GCMs were found to be larger (by 5.85%) than the corresponding value of the reference period by 5.85 and 21.43%, respectively. The results also showed that the maximum 24-h rainfall amount under RCP8.5 of both the HadGEM2-ES and GFDL-ESM2M GCMs was found to be greater (34.33 and 12.18%, respectively, for the 50-year return period) than the reference period values. This may increase the risk of flooding in Ayamama Watershed, and thus, studying the effects of the predicted amount of rainfall under the RCP8.5 scenario on the flooding risk of Ayamama Watershed and devising management strategies are recommended to enhance the design and implementation of adaptation measures.
Dry spell, onset and cessation of the wet season rainfall in the Upper Baro-Akobo Basin, Ethiopia
NASA Astrophysics Data System (ADS)
Kebede, Asfaw; Diekkrüger, Bernd; Edossa, Desalegn C.
2017-08-01
In this study, maximum dry spell length and number of dry spell periods of rainy seasons in the upper Baro-Akobo River basin which is a part of the Nile basin, Western Ethiopia, were investigated to analyse the drought trend. Daily rainfall records of the period 1972-2000 from eight rain gauge stations were used in the analysis, and Mann-Kendall test was used to test trends for significance. Furthermore, the beginning and end of the trend development in the dry spell were also tested using the sequential version of Mann-Kendall test. Results have shown that there is neither clear monotonic trend found in dry spell for the basin nor significant fluctuation in the onset, cession and duration of rainfall in the Baro-Akobo river basin. This sufficiently explains why rain-fed agriculture has suffered little in the western part of Ethiopia. The predictable nature of dry spell pattern may have allowed farmers to adjust to rainfall variability in the basin. Unlike many parts of Ethiopia, the Baro-Akobo basin climate variability is not a limiting factor for rain-fed agriculture productivity which may contribute significantly to national food security.
Multiple imputation of rainfall missing data in the Iberian Mediterranean context
NASA Astrophysics Data System (ADS)
Miró, Juan Javier; Caselles, Vicente; Estrela, María José
2017-11-01
Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.
Regional analysis of annual maximum rainfall using TL-moments method
NASA Astrophysics Data System (ADS)
Shabri, Ani Bin; Daud, Zalina Mohd; Ariff, Noratiqah Mohd
2011-06-01
Information related to distributions of rainfall amounts are of great importance for designs of water-related structures. One of the concerns of hydrologists and engineers is the probability distribution for modeling of regional data. In this study, a novel approach to regional frequency analysis using L-moments is revisited. Subsequently, an alternative regional frequency analysis using the TL-moments method is employed. The results from both methods were then compared. The analysis was based on daily annual maximum rainfall data from 40 stations in Selangor Malaysia. TL-moments for the generalized extreme value (GEV) and generalized logistic (GLO) distributions were derived and used to develop the regional frequency analysis procedure. TL-moment ratio diagram and Z-test were employed in determining the best-fit distribution. Comparison between the two approaches showed that the L-moments and TL-moments produced equivalent results. GLO and GEV distributions were identified as the most suitable distributions for representing the statistical properties of extreme rainfall in Selangor. Monte Carlo simulation was used for performance evaluation, and it showed that the method of TL-moments was more efficient for lower quantile estimation compared with the L-moments.
NASA Astrophysics Data System (ADS)
Walker, David; Forsythe, Nathan; Parkin, Geoff; Gowing, John
2016-07-01
This study shows how community-based hydrometeorological monitoring programmes can provide reliable high-quality measurements comparable to formal observations. Time series of daily rainfall, river stage and groundwater levels obtained by a local community in Dangila woreda, northwest Ethiopia, have passed accepted quality control standards and have been statistically validated against formal sources. In a region of low-density and declining formal hydrometeorological monitoring networks, a situation shared by much of the developing world, community-based monitoring can fill the observational void providing improved spatial and temporal characterisation of rainfall, river flow and groundwater levels. Such time series data are invaluable in water resource assessment and management, particularly where, as shown here, gridded rainfall datasets provide gross under or over estimations of rainfall and where groundwater level data are non-existent. Discussions with the local community during workshops held at the setup of the monitoring programme and since have demonstrated that the community have become engaged in the project and have benefited from a greater hydrological knowledge and sense of ownership of their resources. This increased understanding and empowerment is at the relevant scale required for effective community-based participatory management of shallow groundwater and river catchments.
Fewer rainy days and more extreme rainfall by the end of the century in Southern Africa
NASA Astrophysics Data System (ADS)
Pohl, Benjamin; Macron, Clémence; Monerie, Paul-Arthur
2017-04-01
Future changes in the structure of daily rainfall, especially the number of rainy days and the intensity of extreme events, are likely to induce major impacts on rain-fed agriculture in the tropics. In Africa this issue is of primary importance, but the agreement between climate models to simulate such descriptors of rainfall is generally poor. Here, we show that the climate models used for the fifth assessment report of IPCC simulate a marked decrease in the number of rainy days, together with a strong increase in the rainfall amounts during the 1% wettest days, by the end of the 21st century over Southern Africa. These combined changes lead to an apparent stability of seasonal totals, but are likely to alter the quality of the rainy season. These evolutions are due to the superposition of slowly-changing moisture fluxes, mainly supported by increased hygrometric capacity associated with global warming, and unchanged short-term atmospheric configurations in which extreme events are embedded. This could cause enhanced floods or droughts, stronger soil erosion and nutriment loss, questioning the sustainability of food security for the 300 million people currently living in Africa south of the Equator.
Decadal Variation of Precipitation in Saudi Arabia induced by Agricultural Irrigation
NASA Astrophysics Data System (ADS)
Lo, M. H.; Wey, H. W.; Wada, Y.; IM, E. S.; Chien, R. Y.; Wu, R. J.
2017-12-01
Decadal variation of wet-season precipitation has been found in the arid region of central Saudi Arabia. 1980s has been a rather wet decade compared with the decades before. Previous studies have mentioned that the irrigation moisture may contribute to the precipitation anomalies in Saudi Arabia. In the current study, we show from observational data that the contribution of the variation comes mostly from February to May. As the irrigation is a localized forcing, we therefore use the Weather Research and Forecasting (WRF) Model to simulate the response of the land-atmosphere interaction to the wet soil moisture resulted from additional irrigation moisture supply. Preliminary result shows in the irrigated simulation that precipitation in central Saudi Arabia is enhanced, indicating the possible link between irrigation expansion in the 1980s and the decadal precipitation variation over central Saudi Arabia. We propose it is the anomalous convergence induced by irrigation as well as additional moisture that contribute to the enhanced precipitation over heavily irrigation region in the central Saudi Arabian. In addition, analysis on the daily precipitation from the WRF outputs indicates that positive rainfall anomalies tend to happen when there is rainfall originally; that is, irrigation enhances rainfall but not creates rainfall.
NASA Astrophysics Data System (ADS)
Camera, Corrado; Bruggeman, Adriana; Zittis, Georgios; Hadjinicolaou, Panos
2017-04-01
Due to limited rainfall concentrated in the winter months and long dry summers, storage and management of water resources is of paramount importance in Cyprus. For water storage purposes, the Cyprus Water Development Department is responsible for the operation of 56 large dams total volume of 310 Mm3) and 51 smaller reservoirs (total volume of 17 Mm3) over the island. Climate change is also expected to heavily affect Cyprus water resources with a 1.5%-12% decrease in mean annual rainfall (Camera et al., 2016) projected for the period 2020-2050, relative to 1980-2010. This will make reliable seasonal water inflow forecasts even more important for water managers. The overall aim of this study is to set-up the widely used Weather Research and Forecasting (WRF) model with its hydrologic extension (WRF-hydro), for seasonal forecasts of water inflow in dams located in the Troodos Mountains of Cyprus. The specific objectives of this study are: i) the calibration and evaluation of WRF-Hydro for the simulation of stream flows, in the Troodos Mountains, for past rainfall seasons; ii) a sensitivity analysis of the model parameters; iii) a comparison of the application of the atmospheric-hydrologic modelling chain versus the use of climate observations as forcing. The hydrologic model is run in its off-line version with daily forcing over a 1-km grid, while the overland and channel routing is performed on a 100-m grid with a time-step of 6 seconds. Model outputs are exported on a daily base. First, WRF-Hydro is calibrated and validated over two 1-year periods (October-September), using a 1-km gridded observational precipitation dataset (Camera et al., 2014) as input. For the calibration and validation periods, years with annual rainfall close to the long-term average and with the presence of extreme rainfall and flow events were selected. A sensitivity analysis is performed, for the following parameters: partitioning of rainfall into runoff and infiltration (REFKDT), the partitioning of deep percolation between losses and baseflow contribution (LOSS_BASE), water retention depth (RETDEPRTFAC), overland roughness (OVROUGHRTFAC), and channel manning coefficients (MANN). The calibrated WRF-Hydro shows a good ability to reproduce annual total streamflow (-19% error) and total peak discharge volumes (+3% error), although very high values of MANN were used to match the timing of the peak and get positive values of Nash-Sutcliffe efficiency coefficient (0.13). The two most sensitive parameters for the modeled seasonal flow were REFKDT and LOSS_BASE. Simulations of the calibrated WRF-Hydro with WRF modelled atmospheric forcing showed high errors in comparison with those forced with observations, which can be corrected only by modifying the most sensitive parameters by at least one order of magnitude. This study has received funding from the EU H2020 BINGO Project (GA 641739). Camera C., Bruggeman A., Hadjinicolaou P., Pashiardis S., Lange M.A., 2016. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980-2010. J Geophys Res Atmos 119, 693-712, DOI:10.1002/2013JD020611 Camera C., Bruggeman A., Hadjinicolaou P., Michaelides S., Lange M.A., 2016. Evaluation of a spatial rainfall generator for generating high resolution precipitation projections over orographically complex terrain. Stoch Environ Res Risk Assess, DOI 10.1007/s00477-016-1239-1
Operation of a real-time warning system for debris flows in the San Francisco bay area, California
Wilson, Raymond C.; Mark, Robert K.; Barbato, Gary; ,
1993-01-01
The United States Geological Survey (USGS) and the National Weather Service (NWS) have developed an operational warning system for debris flows during severe rainstorms in the San Francisco Bay region. The NWS makes quantitative forecasts of precipitation from storm systems approaching the Bay area and coordinates a regional network of radio-telemetered rain gages. The USGS has formulated thresholds for the intensity and duration of rainfall required to initiate debris flows. The first successful public warnings were issued during a severe storm sequence in February 1986. Continued operation of the warning system since 1986 has provided valuable working experience in rainfall forecasting and monitoring, refined rainfall thresholds, and streamlined procedures for issuing public warnings. Advisory statements issued since 1986 are summarized.
NASA Technical Reports Server (NTRS)
Ippolito, L. J.; Kaul, R.
1981-01-01
Rainfall which is regarded as one of the more important observations for the measurements of this most variable parameter was made continuously, across large areas and over the sea. Ships could not provide the needed resolution nor could available radars provide the needed breadth of coverage. Microwave observations from the Nimbus-5 satellite offered some hope. Another possibility was suggested by the results of many comparisons between rainfall and the clouds seen in satellite pictures. Sequences of pictures from the first geostationary satellites were employed and a general correspondence between rain and the convective clouds visible in satellite pictures was found. It was demonstrated that the agreement was best for growing clouds. The development methods to infer GATE rainfall from geostationary satellite images are examined.
NASA Astrophysics Data System (ADS)
Fishman, R.
2013-12-01
Most studies of the impact of climate change on agriculture account for shifts in temperature and total seasonal (or monthly) precipitation. However, climate change is also projected to increase intra-seasonal precipitation variability in many parts of the world. To provide first estimates of the potential impact, I paired daily rainfall and rice yield data during the period 1970-2004, from across India, where about a fifth of the world's rice is produced, and yields have always been highly dependent on the erratic monsoon rainfall. Multivariate regression models revealed that the number of rainless days during the wet season has a statistically robust negative impact on rice yields that exceeds that of total seasonal rainfall. Moreover, a simulation of climate change impacts found that the negative impact of the projected increase in the number of rainless days will trump the positive impact of the projected increase in total precipitation, and reverse the net precipitation effect on rice production from positive (+3%) to negative (-10%). The results also indicate that higher irrigation coverage is correlated with reduced sensitivity to rainfall variability, suggesting the expansion of irrigation can effectively adapt agriculture to these climate change impacts. However, taking into account limitations on water resource availability in India, I calculate that under current irrigation practices, sustainable use of water can mitigate less than a tenth of the impact.
NASA Astrophysics Data System (ADS)
Prakash, Satya; Mahesh, C.; Gairola, Rakesh M.
2011-12-01
Large-scale precipitation estimation is very important for climate science because precipitation is a major component of the earth's water and energy cycles. In the present study, the GOES precipitation index technique has been applied to the Kalpana-1 satellite infrared (IR) images of every three-hourly, i.e., of 0000, 0300, 0600,…., 2100 hours UTC, for rainfall estimation as a preparatory to the INSAT-3D. After the temperatures of all the pixels in a grid are known, they are distributed to generate a three-hourly 24-class histogram of brightness temperatures of IR (10.5-12.5 μm) images for a 1.0° × 1.0° latitude/longitude box. The daily, monthly, and seasonal rainfall have been estimated using these three-hourly rain estimates for the entire south-west monsoon period of 2009 in the present study. To investigate the potential of these rainfall estimates, the validation of monthly and seasonal rainfall estimates has been carried out using the Global Precipitation Climatology Project and Global Precipitation Climatology Centre data. The validation results show that the present technique works very well for the large-scale precipitation estimation qualitatively as well as quantitatively. The results also suggest that the simple IR-based estimation technique can be used to estimate rainfall for tropical areas at a larger temporal scale for climatological applications.
Time-series analysis of weather and mortality patterns in Nairobi's informal settlements
Egondi, Thaddaeus; Kyobutungi, Catherine; Kovats, Sari; Muindi, Kanyiva; Ettarh, Remare; Rocklöv, Joacim
2012-01-01
Background Many studies have established a link between weather (primarily temperature) and daily mortality in developed countries. However, little is known about this relationship in urban populations in sub-Saharan Africa. Objectives The objective of this study was to describe the relationship between daily weather and mortality in Nairobi, Kenya, and to evaluate this relationship with regard to cause of death, age, and sex. Methods We utilized mortality data from the Nairobi Urban Health and Demographic Surveillance System and applied time-series models to study the relationship between daily weather and mortality for a population of approximately 60,000 during the period 2003–2008. We used a distributed lag approach to model the delayed effect of weather on mortality, stratified by cause of death, age, and sex. Results Increasing temperatures (above 75th percentile) were significantly associated with mortality in children and non-communicable disease (NCD) deaths. We found all-cause mortality of shorter lag of same day and previous day to increase by 3.0% for a 1 degree decrease from the 25th percentile of 18°C (not statistically significant). Mortality among people aged 50+ and children aged below 5 years appeared most susceptible to cold compared to other age groups. Rainfall, in the lag period of 0–29 days, increased all-cause mortality in general, but was found strongest related to mortality among females. Low temperatures were associated with deaths due to acute infections, whereas rainfall was associated with all-cause pneumonia and NCD deaths. Conclusions Increases in mortality were associated with both hot and cold weather as well as rainfall in Nairobi, but the relationship differed with regard to age, sex, and cause of death. Our findings indicate that weather-related mortality is a public health concern for the population in the informal settlements of Nairobi, Kenya, especially if current trends in climate change continue. PMID:23195509
Implications of a decrease in the precipitation area for the past and the future
NASA Astrophysics Data System (ADS)
Benestad, Rasmus E.
2018-04-01
The total area with 24 hrs precipitation has shrunk by 7% between 50°S–50°N over the period 1998–2016, according to the satellite-based Tropical Rain Measurement Mission data. A decrease in the daily precipitation area is an indication of profound changes in the hydrological cycle, where the global rate of precipitation is balanced by the global rate of evaporation. This decrease was accompanied by increases in total precipitation, evaporation, and wet-day mean precipitation. If these trends are real, then they suggest increased drought frequencies and more intense rainfall. Satellite records, however, may be inhomogeneous because they are synthesised from a number of individual missions with improved technology over time. A linear dependency was also found between the global mean temperature and the 50°S–50°N daily precipitation area with a slope value of ‑17 × 106 km 2/°C. This dependency was used with climate model simulations to make future projections which suggested a continued decrease that will strengthen in the future. The precipitation area evolves differently when the precipitation is accumulated over short and long time scales, however, and there has been a slight increase in the monthly precipitation area while the daily precipitation area decreased. An increase on monthly scale may indicate more pronounced variations in the rainfall patterns due to migrating rain-producing phenomena.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
NASA Astrophysics Data System (ADS)
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.
2016-12-01
One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.
NASA Astrophysics Data System (ADS)
Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung
2018-02-01
Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.
Extreme Rainfall Analysis using Bayesian Hierarchical Modeling in the Willamette River Basin, Oregon
NASA Astrophysics Data System (ADS)
Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.
2016-12-01
We present preliminary results of ongoing research directed at evaluating the worth of including various covariate data to support extreme rainfall analysis in the Willamette River basin using Bayesian hierarchical modeling (BHM). We also compare the BHM derived extreme rainfall estimates with their respective counterparts obtained from a traditional regional frequency analysis (RFA) using the same set of rain gage extreme rainfall data. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams in the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two-thirds of Oregon's population and 20 of the 25 most populous cities in the state. Extreme rainfall estimates are required to support risk-informed hydrologic analyses for these projects as part of the USACE Dam Safety Program. We analyze daily annual rainfall maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme rainfall by return level. Our intent is to profile for the USACE an alternate methodology to a RFA which was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. Unlike RFA, the advantage of a BHM-based analysis of hydrometeorological extremes is its ability to account for non-stationarity while providing robust estimates of uncertainty. BHM also allows for the inclusion of geographical and climatological factors which we show for the WRB influence regional rainfall extremes. Moreover, the Bayesian framework permits one to combine additional data types into the analysis; for example, information derived via elicitation and causal information expansion data, both being additional opportunities for future related research.
NASA Astrophysics Data System (ADS)
Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah
2014-11-01
A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.
NASA Astrophysics Data System (ADS)
van der Heijden, Sven; Callau Poduje, Ana; Müller, Hannes; Shehu, Bora; Haberlandt, Uwe; Lorenz, Manuel; Wagner, Sven; Kunstmann, Harald; Müller, Thomas; Mosthaf, Tobias; Bárdossy, András
2015-04-01
For the design and operation of urban drainage systems with numerical simulation models, long, continuous precipitation time series with high temporal resolution are necessary. Suitable observed time series are rare. As a result, intelligent design concepts often use uncertain or unsuitable precipitation data, which renders them uneconomic or unsustainable. An expedient alternative to observed data is the use of long, synthetic rainfall time series as input for the simulation models. Within the project SYNOPSE, several different methods to generate synthetic precipitation data for urban drainage modelling are advanced, tested, and compared. The presented study compares four different approaches of precipitation models regarding their ability to reproduce rainfall and runoff characteristics. These include one parametric stochastic model (alternating renewal approach), one non-parametric stochastic model (resampling approach), one downscaling approach from a regional climate model, and one disaggregation approach based on daily precipitation measurements. All four models produce long precipitation time series with a temporal resolution of five minutes. The synthetic time series are first compared to observed rainfall reference time series. Comparison criteria include event based statistics like mean dry spell and wet spell duration, wet spell amount and intensity, long term means of precipitation sum and number of events, and extreme value distributions for different durations. Then they are compared regarding simulated discharge characteristics using an urban hydrological model on a fictitious sewage network. First results show a principal suitability of all rainfall models but with different strengths and weaknesses regarding the different rainfall and runoff characteristics considered.
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
Some Advances in Downscaling Probabilistic Climate Forecasts for Agricultural Decision Support
NASA Astrophysics Data System (ADS)
Han, E.; Ines, A.
2015-12-01
Seasonal climate forecasts, commonly provided in tercile-probabilities format (below-, near- and above-normal), need to be translated into more meaningful information for decision support of practitioners in agriculture. In this paper, we will present two new novel approaches to temporally downscale probabilistic seasonal climate forecasts: one non-parametric and another parametric method. First, the non-parametric downscaling approach called FResampler1 uses the concept of 'conditional block sampling' of weather data to create daily weather realizations of a tercile-based seasonal climate forecasts. FResampler1 randomly draws time series of daily weather parameters (e.g., rainfall, maximum and minimum temperature and solar radiation) from historical records, for the season of interest from years that belong to a certain rainfall tercile category (e.g., being below-, near- and above-normal). In this way, FResampler1 preserves the covariance between rainfall and other weather parameters as if conditionally sampling maximum and minimum temperature and solar radiation if that day is wet or dry. The second approach called predictWTD is a parametric method based on a conditional stochastic weather generator. The tercile-based seasonal climate forecast is converted into a theoretical forecast cumulative probability curve. Then the deviates for each percentile is converted into rainfall amount or frequency or intensity to downscale the 'full' distribution of probabilistic seasonal climate forecasts. Those seasonal deviates are then disaggregated on a monthly basis and used to constrain the downscaling of forecast realizations at different percentile values of the theoretical forecast curve. As well as the theoretical basis of the approaches we will discuss sensitivity analysis (length of data and size of samples) of them. In addition their potential applications for managing climate-related risks in agriculture will be shown through a couple of case studies based on actual seasonal climate forecasts for: rice cropping in the Philippines and maize cropping in India and Kenya.
NASA Astrophysics Data System (ADS)
Fung, K. Y.; Tam, C. Y.; Wang, Z.
2017-12-01
It is well known that urban land use can significantly influence the local temperature, precipitation and meteorology through altering land-atmosphere exchange of momentum, moisture and heat in urban areas. In recent decades, there has been a substantial increase ( 5-10%) on the intensity of extreme rainfall over Southeast China; it is projected to increase further according to the latest IPCC reports. In this study, we assess how urbanization and global warming together might impact on heavy precipitation characteristics over the highly urbanized Pearl River Delta (PRD) megacity, located in southern China. This is done by dynamically downscaling GFDL-ESM2M simulations for the present and future (RCP8.5) climate scenarios, using the Weather Research and Forecasting (WRF) model coupled with a single-layer urban canopy model (UCM). Over the PRD area, the WRF model is integrated at a resolution of 2km x 2km. To focus on extreme events, episodes covering daily rainfall intensity above the 99th percentile in Southeast China in the GFDL-ESM2M daily precipitation datasets were first identified. These extreme episodes were then dynamically downscaled in two parallel experiments with the following model designs: one with anthropogenic heat flux (AH) = 0 Wm-2 and the other with peak AH = 300 Wm-2 in the AH diurnal cycle over the urban domain. Results show that, with AH in urban area, the urban 2m-temperature can rise by about 2oC. This in turn leads to an increase of the mean as well as the extreme rain rates by 10-15% in urban domain. The latter is comparable to the impact of global warming alone, according to downscaling experiments for the RCP8.5 scenario. Implications of our results on urban effects on extreme rainfall under a warming background climate will be discussed.
Fabian Nippgen; Brian L. McGlynn; Ryan E. Emanuel; James M. Vose
2016-01-01
The rainfall-runoff response of watersheds is affected by the legacy of past hydroclimatic conditions. We examined how variability in precipitation affected streamflow using 21 years of daily streamflow and precipitation data from five watersheds at the Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. The gauged watersheds contained both...
NASA Astrophysics Data System (ADS)
Katiraie-Boroujerdy, Pari-Sima; Akbari Asanjan, Ata; Hsu, Kuo-lin; Sorooshian, Soroosh
2017-09-01
In the first part of this paper, monthly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) and Tropical Rainfall Measuring Mission 3B42 algorithm Version 7 (TRMM-3B42V7) are evaluated over Iran using the Generalized Three-Cornered Hat (GTCH) method which is self-sufficient of reference data as input. Climate Data Unit (CRU) is added to the GTCH evaluations as an independent gauge-based dataset thus, the minimum requirement of three datasets for the model is satisfied. To ensure consistency of all datasets, the two satellite products were aggregated to 0.5° spatial resolution, which is the minimum resolution of CRU. The results show that the PERSIANN-CDR has higher Signal to Noise Ratio (SNR) than TRMM-3B42V7 for the monthly rainfall estimation, especially in the northern half of the country. All datasets showed low SNR in the mountainous area of southwestern Iran, as well as the arid parts in the southeast region of the country. Additionally, in order to evaluate the efficacy of PERSIANN-CDR and TRMM-3B42V7 in capturing extreme daily-precipitation amounts, an in-situ rain-gauge dataset collected by the Islamic Republic of the Iran Meteorological Organization (IRIMO) was employed. Given the sparsity of the rain gauges, only 0.25° pixels containing three or more gauges were used for this evaluation. There were 228 such pixels where daily and extreme rainfall from PERSIANN-CDR and TRMM-3B42V7 could be compared. However, TRMM-3B42V7 overestimates most of the intensity indices (correlation coefficients; R between 0.7648-0.8311, Root Mean Square Error; RMSE between 3.29mm/day-21.2mm/5day); PERSIANN-CDR underestimates these extremes (R between 0.6349-0.7791 and RMSE between 3.59mm/day-30.56mm/5day). Both satellite products show higher correlation coefficients and lower RMSEs for the annual mean of consecutive dry spells than wet spells. The results show that TRMM-3B42V7 can capture the annual mean of the absolute indices (the number of wet days in which daily precipitation > 10 mm, 20 mm) better than PERSIANN-CDR. The results of daily evaluations show that the similarity of Empirical Cumulative Density Function (ECDF) of satellite products and IRIMO gauges daily precipitation, as well as dry spells with different thresholds in some selected pixels (include at least five gauges), are significant. The results also indicate that ECDFs become more significant when threshold increases. In terms of regional analyses, the higher SNR of the products on monthly (based on the GTCH method) and daily evaluations (significant ECDFs) is mostly consistent.
Linking seasonal climate forecasts with crop models in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita
2015-04-01
Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision Support System for Agrotechnology Transfer (DSSAT).Version 4.5 [CD-ROM].University of Hawaii, Honolulu, Hawaii. Ritchie, J.T., Otter, S., 1985. Description and performanceof CERES-Wheat: a user-oriented wheat yield model. In: ARS Wheat Yield Project. ARS-38.Natl Tech Info Serv, Springfield, Missouri, pp. 159-175.
NASA Astrophysics Data System (ADS)
Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien
2017-04-01
The Angola Low has been suggested in many previous studies to be an important regional feature governing southern African rainfall variability during austral summer, which is, in particular, expressed through modulations of El Niño Southern Oscillation (ENSO) impacts on rainfall at the interannual timescale. Here, we analyse a variety of state-of-the-art reanalyses (NCEP2, ERA-Interim and MERRA2) and rainfall data (in situ rain-gauges and satellite-derived products) for: i) identifying the recurrent regimes of the Angola Low (position and intensity) at the daily timescale; ii) diagnosing how they modulate the spatio-temporal variability of austral summer rainfall; and iii) examining their relationships with synoptic convective regimes and ENSO, both at the interannual timescale. The recurrent regimes of the Angola Low are identified over the 1980-2015 period by applying a cluster analysis to daily 700-hPa wind vorticity anomalies over the Angola sector from November to March. The exact number and morphological properties of vorticity regimes vary significantly among the reanalyses, in particular when using the lowest spatial resolution reanalysis (i.e., NCEP2) that leads to detect less diversity, smoothest patterns and weakest intensity across the recurrent regimes. Despite such uncertainties, the regimes describing active Angola Low are quite robust among the reanalyses. Three preferential locations (locked over eastern Angola, shifted few degrees eastward or south-westward), which significantly impact on the rainfall spatial distribution over tropical and subtropical southern Africa, are identified. Independently from its location, Angola Low favours moisture advection from the southwest Indian Ocean and reduces moisture export towards the southeast Atlantic, hence contributing to increase moisture convergence over the subcontinent. Lead/lag correlations with synoptic convective regimes suggest that Angola Low may be a local precursor of tropical-temperate troughs, but this relationship is far from being systematic and quite sensitive to the reanalyses. Finally, the influence of ENSO on the seasonal occurrence of active Angola Low appears to be highly dependent on the choice of the reanalyses. For instance, active Angola Low tends to be independent from ENSO in NCEP2, while it is clearly driven by ENSO, through increasing occurrence during La Niña conditions, in ERA-Interim and MERRA2. Our results point thus toward strong uncertainties in state-of-the-art reanalyses for studying regional circulation features, and their connection with large-scale climate dynamics at the interannual timescale.
Design of Mariner 9 Science Sequences using Interactive Graphics Software
NASA Technical Reports Server (NTRS)
Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.
1973-01-01
This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.
NASA Astrophysics Data System (ADS)
Parolari, A.; Goulden, M.
2017-12-01
A major challenge to interpreting asymmetric changes in ecosystem productivity is the attribution of these changes to external climate forcing or to internal ecophysiological processes that respond to these drivers (e.g., photosynthesis response to drying soil). For example, positive asymmetry in productivity can result from either positive skewness in the distribution of annual rainfall amount or from negative curvature in the productivity response to annual rainfall. To analyze the relative influences of climate and ecosystem dynamics on both positive and negative asymmetry in multi-year ANPP experiments, we use a multi-scale coupled ecosystem water-carbon model to interpret field experimental results that span gradients of rainfall skewness and ANPP response curvature. The model integrates rainfall variability, soil moisture dynamics, and net carbon assimilation from the daily to inter-annual scales. From the underlying physical basis of the model, we compute the joint probability distribution of the minimum and maximum ANPP for an annual ANPP experiment of N years. The distribution is used to estimate the likelihood that either positive or negative asymmetry will be observed in an experiment, given the annual rainfall distribution and the ANPP response curve. We estimate the total asymmetry as the mode of this joint distribution and the relative contribution attributable to rainfall skewness as the mode for a linear ANPP response curve. Applied to data from several long-term ANPP experiments, we find that there is a wide range of observed ANPP asymmetry (positive and negative) and a spectrum of contributions from internal and external factors. We identify the soil water holding capacity relative to the mean rain event depth as a critical ecosystem characteristic that controls the non-linearity of the ANPP response and positive curvature at high rainfall. Further, the seasonal distribution of rainfall is shown to control the presence or absence of negative curvature at low rainfall. Therefore, a combination of rooting depth, soil texture, and climate seasonality contribute to ANPP response curvature and its contribution to overall observed asymmetry.
NASA Astrophysics Data System (ADS)
Kouadio, K.; Konare, A.; Bastin, S.; Ajayi, V. O.
2016-12-01
This research work focused on the thorny problem of the representation of rainfall over West Africa and particularly in the Gulf of Guinea and its surroundings by Regional Climate Models (RCMs). The sensitivities of Weather Research and Forecasting (WRF) Model are tested for changes in horizontal resolution (convective permitting versus parameterized) on the replication of West African Climate in year 2014 and also changes in microphysics (MP) and planetary boundary layer (PBL) schemes on June 2014. The sensitivity to horizontal resolution study show that both runs at 24km and 4km (explicit convection) resolution fairly replicate the general distribution of the rainfall over West African region. The analysis also reveals a good replication of the dynamical features of West African monsoon system including Tropical Easterly Jet (TEJ), African Easterly Jet (AEJ), monsoon flow and the West African Heat Low (WAHL). Some differences have been noticed between WRF and ERA-interim outputs irrespective to the spectral nudging used in the experiment which then suggest strong interactions between scales. The link between the seasonal displacement of the WAHL and the spatial distribution of the rainfall and the Sahelian onset is confirmed in this study. The results also show an improvement on the replication of rainfall with the very high resolution run observed at daily scale over the Sahel while a dry bias is observed in WRF simulations of the rainfall over Ivorian Coast and in the Gulf of Guinea. Generally, over the Guinean coast the high resolution run did not provide subsequent improvement on the replication of rainfall. The sensitivity of WRF to MP and PBL on rainfall replication study reveals that the most significant added value over the Guinean coast and surroundings area is provided by the configurations that used the PBL Asymmetric Convective Model V2 (ACM2) suggesting more influence of the PBL compared to MP. The change on microphysics and planetary boundary layer schemes in general, seems to have less effect on the explicit runs into the replication of the rainfall over the Gulf of Guinea and the surroundings seaboard.
NASA Astrophysics Data System (ADS)
Li, X.; Sang, Y. F.
2017-12-01
Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.
NASA Astrophysics Data System (ADS)
Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick
2017-04-01
Flooding is the most widely occurring natural disaster affecting thousands of lives and businesses worldwide each year, and the size and frequency of flood-events are predicted to increase with climate change. The main input-variable for models used in flood prediction is rainfall. Estimating the rainfall input is often based on a sparse network of raingauges, which may or may not be representative of the salient rainfall characteristics responsible for generating of storm-hydrographs. A method based on Reverse Hydrology (Kretzschmar et al 2014 Environ Modell Softw) has been developed and is being tested using the intensively-instrumented Brue catchment (Southwest England) to explore the spatiotemporal structure of the rainfall-field (using 23 rain gauges over the 135.2 km2 basin). We compare how well the rainfall measured at individual gauges, or averaged over the basin, represent the rainfall inferred from the streamflow signal. How important is it to get the detail of the spatiotemporal rainfall structure right? Rainfall is transformed by catchment processes as it moves to streams, so exact duplication of the structure may not be necessary. 'True' rainfall estimated using 23 gauges / 135.2 km2 is likely to be a good estimate of the overall-catchment-rainfall, however, the integration process 'smears' the rainfall patterns in time, i.e. reduces the number of and lengthens rain-events as they travel across the catchment. This may have little impact on the simulation of stream-hydrographs when events are extensive across the catchment (e.g., frontal rainfall events) but may be significant for high-intensity, localised convective events. The Reverse Hydrology approach uses the streamflow record to infer a rainfall sequence with a lower time-resolution than the original input time-series. The inferred rainfall series is, however, able simulate streamflow as well as the observed, high resolution rainfall (Kretzschmar et al 2015 Hydrol Res). Most gauged catchments in the UK of a similar size would only have data available for 1 to 3 raingauges. The high density of the Brue raingauge network allows a good estimate of the 'True' catchment rainfall to be made and compared with data from an individual raingauge as if that was the only data available. In addition the rainfall from each raingauge is compared with rainfall inferred from streamflow using data from the selected individual raingauge, and also inferred from the full catchment network. The stochastic structure of the rainfall from all of these datasets is compared using a combination of traditional statistical measures, i.e., the first 4 moments of rainfall totals and its residuals; plus the number, length and distribution of wet and dry periods; rainfall intensity characteristics; and their ability to generate the observed stream hydrograph. Reverse Hydrology, which utilises information present in both the input rainfall and the output hydrograph, has provided a method of investigating the quality of the information each gauge adds to the catchment-average (Kretzschmar et al 2016 Procedia Eng.). Further, it has been used to ascertain how important reproducing the detailed rainfall structure really is, when used for flow prediction.
The soiling of materials in the ambient atmosphere
NASA Astrophysics Data System (ADS)
Hamilton, R. S.; Mansfield, T. A.
Models describing the rate of soiling of exposed surfaces due to the deposition and accumulation of particulate matter from the atmosphere are reviewed. Samples of white painted wood were exposed for 110 days in the ambient atmosphere. Separate samples were sheltered and unsheltered from rainfall. Reflectance was measured daily. Results are compared with recently published studies in the U.S.A. (samples in the ambient atmosphere) and the U.K. (samples in a road tunnel). Experimental soiling rates were compared with predicted values. Existing models were satisfactory for predicting soiling in a tunnel but underestimated soiling in an ambient situation; a revised formulation is proposed for this situation. Rainfall generally produced a cleaning effect but redistribution of washed-off material could produce enhanced soiling.
Downscaling large-scale circulation to local winter climate using neural network techniques
NASA Astrophysics Data System (ADS)
Cavazos Perez, Maria Tereza
1998-12-01
The severe impacts of climate variability on society reveal the increasing need for improving regional-scale climate diagnosis. A new downscaling approach for climate diagnosis is developed here. It is based on neural network techniques that derive transfer functions from the large-scale atmospheric controls to the local winter climate in northeastern Mexico and southeastern Texas during the 1985-93 period. A first neural network (NN) model employs time-lagged component scores from a rotated principal component analysis of SLP, 500-hPa heights, and 1000-500 hPa thickness as predictors of daily precipitation. The model is able to reproduce the phase and, to some decree, the amplitude of large rainfall events, reflecting the influence of the large-scale circulation. Large errors are found over the Sierra Madre, over the Gulf of Mexico, and during El Nino events, suggesting an increase in the importance of meso-scale rainfall processes. However, errors are also due to the lack of randomization of the input data and the absence of local atmospheric predictors such as moisture. Thus, a second NN model uses time-lagged specific humidity at the Earth's surface and at the 700 hPa level, SLP tendency, and 700-500 hPa thickness as input to a self-organizing map (SOM) that pre-classifies the atmospheric fields into different patterns. The results from the SOM classification document that negative (positive) anomalies of winter precipitation over the region are associated with: (1) weaker (stronger) Aleutian low; (2) stronger (weaker) North Pacific high; (3) negative (positive) phase of the Pacific North American pattern; and (4) La Nina (El Nino) events. The SOM atmospheric patterns are then used as input to a feed-forward NN that captures over 60% of the daily rainfall variance and 94% of the daily minimum temperature variance over the region. This demonstrates the ability of artificial neural network models to simulate realistic relationships on daily time scales. The results of this research also reveal that the SOM pre-classification of days with similar atmospheric conditions succeeded in emphasizing the differences of the atmospheric variance conducive to extreme events. This resulted in a downscaling NN model that is highly sensitive to local-scale weather anomalies associated with El Nino and extreme cold events.
A Study on Regional Frequency Analysis using Artificial Neural Network - the Sumjin River Basin
NASA Astrophysics Data System (ADS)
Jeong, C.; Ahn, J.; Ahn, H.; Heo, J. H.
2017-12-01
Regional frequency analysis means to make up for shortcomings in the at-site frequency analysis which is about a lack of sample size through the regional concept. Regional rainfall quantile depends on the identification of hydrologically homogeneous regions, hence the regional classification based on hydrological homogeneous assumption is very important. For regional clustering about rainfall, multidimensional variables and factors related geographical features and meteorological figure are considered such as mean annual precipitation, number of days with precipitation in a year and average maximum daily precipitation in a month. Self-Organizing Feature Map method which is one of the artificial neural network algorithm in the unsupervised learning techniques solves N-dimensional and nonlinear problems and be shown results simply as a data visualization technique. In this study, for the Sumjin river basin in South Korea, cluster analysis was performed based on SOM method using high-dimensional geographical features and meteorological factor as input data. then, for the results, in order to evaluate the homogeneity of regions, the L-moment based discordancy and heterogeneity measures were used. Rainfall quantiles were estimated as the index flood method which is one of regional rainfall frequency analysis. Clustering analysis using SOM method and the consequential variation in rainfall quantile were analyzed. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.
NASA Astrophysics Data System (ADS)
Kumar, Brijesh; Lakshmi, Venkat
2018-03-01
The paper examines the quality of Tropical Rainfall Monitoring Mission (TRMM) 3B42 V7 precipitation product to simulate the streamflow using Soil Water Assessment Tool (SWAT) model for various rainfall intensities over the Himalayan region. The SWAT model has been set up for Gandak River Basin with 41 sub-basins and 420 HRUs. Five stream gauge locations are used to simulate the streamflow for a time span of 10 years (2000-2010). Daily streamflow for the simulation period is collected from Central Water Commission (CWC), India and Department of Hydrology and Meteorology (DHM), Nepal. The simulation results are found good in terms of Nash-Sutcliffe efficiency (NSE) {>}0.65, coefficient of determination (R2) {>}0.67 and Percentage Bias (PBIAS){<}15%, at each stream gauge sites. Thereafter, we have calculated the PBIAS and RMSE-observations standard deviation ratio (RSR) statistics between TRMM simulated and observed streamflow for various rainfall intensity classes, viz., light ({<}7.5 mm/d), moderate (7.5 to 35.4 mm/d), heavy (35.5 to 124.4 mm/d) and extremely heavy ({>}124.4 mm/d). The PBIAS and RSR show that TRMM simulated streamflow is suitable for moderate to heavy rainfall intensities. However, it does not perform well for light- and extremely-heavy rainfall intensities. The finding of the present work is useful for the problems related to water resources management, irrigation planning and hazard analysis over the Himalayan regions.
Korean national QPE technique development: Analysis of current QPE results and future plan
NASA Astrophysics Data System (ADS)
Cha, Joo Wan
2013-04-01
Korea Meteorological Administration(KMA) has developed a Real-time ADjusted Radar-AWS (Automatic Weather Station) Rainrate (RAD-RAR) system using eleven radars over the South Korea. The procedure of the RAD-RAR system in real time consists of four steps: 1) the quality control of volumetric reflectivity for each radar, 2) the computation of the every 10-min rain gauge rainfall within each radar, 3) the real time (10 min-updated) rainfall estimation by the Z-R relationship minimizing the difference between the 1.5-km constant altitude plan precipitation indicator and rain gauge rainfall based on Window Probability Matching Method(WPMM) and by the real-time bias correction of RAD-RAR conducted at every 10 minutes for each radar by making the bias, and 4) the composition of the 11-radar estimated rainfall data. In addition, a local gauge correction method applies for RAD-RAR system. Therefore, the correlation coefficient of R2 = 0.81 is obtained between the daily accumulated observed and RAD-RAR estimated rainfall in 2012. We like to develop a new QPE system using the multi-sensor(radar, rain gauge, numerical model output, and lightning) data for newly improving Korean national QPE system. We made the prototype QPE system in 2012 and improve the detail techniques now. In the future, the new high performance QPE system will include a dual polarization radar observation technique for providing more accurate and valuable national QPE data
NASA Astrophysics Data System (ADS)
Nóbrega, Cristina; Pereira, Fernando L.; Valente, Fernanda
2015-04-01
Water losses associated to the rainfall interception process by trees can be an important component of the local hydrologic balance and must be accounted for when implementing any sustainable water management programme. In many dry areas of the Mediterranean region where agro-forestry systems are common, those programmes are crucial to foster adequate water conservation measures. Recent studies have shown that the evaluation of interception loss in sparse forests or tree plantations should be made for individual trees, being the total value determined as the sum of the individual contributions. Following this approach, rainfall interception was measured and modelled over two years, in an isolated Olea europeaea L. tree, in a traditional low-density olive grove in Castelo Branco, central Portugal. Total interception loss over the experimental period was 243.5 mm, on a tree crown projected area basis, corresponding to 18.0% of gross rainfall (Pg). Modelling made for each rainfall event using the sparse version of the Gash model, slightly underestimated interception loss with a value of 240.5 mm, i.e., 17.8 % ofPg. Modelling quality, evaluated according to a number of criteria, was good, allowing the conclusion that the methodology used was adequate. Modelling was also made on a daily basis, i.e., assuming a single storm per rainday. In this case, interception loss was overestimated by 12%, mostly because 72% of all rainfall events lasted for more than a day.
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria.
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510
NASA Astrophysics Data System (ADS)
Dandridge, C.; Lakshmi, V.; Sutton, J. R. P.; Bolten, J. D.
2017-12-01
This study focuses on the lower region of the Mekong River Basin (MRB), an area including Burma, Cambodia, Vietnam, Laos, and Thailand. This region is home to expansive agriculture that relies heavily on annual precipitation over the basin for its prosperity. Annual precipitation amounts are regulated by the global monsoon system and therefore vary throughout the year. This research will lead to improved prediction of floods and management of floodwaters for the MRB. We compare different satellite estimates of precipitation to each other and to in-situ precipitation estimates for the Mekong River Basin. These comparisons will help us determine which satellite precipitation estimates are better at predicting precipitation in the MRB and will help further our understanding of watershed-modeling capabilities for the basin. In this study we use: 1) NOAA's PERSIANN daily 0.25° precipitation estimate Climate Data Record (CDR), 2) NASA's Tropical Rainfall Measuring Mission (TRMM) daily 0.25° estimate, and 3) NASA's Global Precipitation Measurement (GPM) daily 0.1 estimate and 4) 488 in-situ stations located in the lower MRB provide daily precipitation estimates. The PERSIANN CDR precipitation estimate was able to provide the longest data record because it is available from 1983 to present. The TRMM precipitation estimate is available from 2000 to present and the GPM precipitation estimates are available from 2015 to present. It is for this reason that we provide several comparisons between our precipitation estimates. Comparisons were done between each satellite product and the in-situ precipitation estimates based on geographical location and date using the entire available data record for each satellite product for daily, monthly, and yearly precipitation estimates. We found that monthly PERSIANN precipitation estimates were able to explain up to 90% of the variability in station precipitation depending on station location.
Thomas, C.L.
1994-01-01
The Navajo Nation Forestry Department established a growth of four species of native grasses and two species of native shrubs on formerly sagebrush- covered land about 6 miles north of Fort Defiance, Arizona. The native grasses and shrubs grew under conditions of natural precipitation and soil fertility. This provided alternate grazing areas for tribal livestock. Tribal livestock previously had been grazed on timber-producing land, killing seedlings planted for reforestation. Rainfall, evapotranspiration, total soil-water potential, and soil-water content at a sagebrush site and a site planted with grasses and shrubs north Fort Defiance, Arizona were monitored to document hydrologic conditions during the experiment. Daily rainfall during the April through November 1989- 91 data-collection period ranged from 0 to 1.21 inches (0 to 30.7 millimeters). Evapotranspiration during the data-collection period generally ranged from about 0.5 to 2 millimeters per day (0.02 to 0.08 inch per day), increasing to 2 to 5 millimeters per day (0.08 to 0.20 inch per day) after rainfall. The total soil-water content ranged from 5.7 to 65.9 percent. Soils were wetter during the April data-collection period than during the November data-collection periods.
Bougeard, M; Le Saux, J C; Jouan, M; Durand, G; Pommepuy, M
2010-01-01
The microbiological quality of waters in estuaries determines their acceptability for recreational uses. Microbiological contamination often results from urban wastewater discharges or non-point source pollution (manure spreading), and can cause bathing zones to be closed. European regulations (EC/7/2006) have proposed standards (500 E. coli/100 ml) for the acceptability areas for bathing. In this study, two models were associated to simulate contamination: SWAT on a catchment and MARS 2D in the downstream estuary. After river flow calibration and validation, two scenarios were simulated in SWAT, and E. coli fluxes obtained at the main outlet of the catchment were then introduced into MARS 2D to follow E. coli concentrations in the estuary. An annual evaluation of compliance to bathing area water quality standards was then calculated, linked with daily rainfall classes. Water quality in the estuary was below the standard on 13 days, including 5 days with rainfall superior to 10 mm, due to faecal contamination from soil leaching by rain, and 5 days with rainfall ranging from 0.1 to 5 mm/day, due to the high frequency of this level of rainfall. To conclude, this study allowed us to demonstrate the efficiency of models to gain a better understanding on water quality degradation factors.
A national-scale seasonal hydrological forecast system: development and evaluation over Britain
NASA Astrophysics Data System (ADS)
Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.
2017-09-01
Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts
) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.
NASA Astrophysics Data System (ADS)
Sreekala, P. P.; Rao, S. Vijaya Bhaskara; Rajeevan, K.; Arunachalam, M. S.
2018-02-01
The present study has examined the combined effect of MJO, ENSO and IOD on the intraseasonal and interannual variability of northeast monsoon rainfall over south peninsular India. The study has revealed that the intraseasonal variation of daily rainfall over south peninsular India during NEM season is associated with various phases of eastward propagating MJO life cycle. Positive rainfall anomaly over south peninsular India and surrounding Indian Ocean (IO) is observed during the strong MJO phases 2, 3 and 4; and negative rainfall anomaly during the strong MJO phases 5,6,7,8 and 1. Above normal (below normal) convection over south peninsular India and suppressed convection over east Indian and West Pacific Ocean, high pressure (low pressure) anomaly over West Pacific Ocean, Positive (negative) SST anomalies over equatorial East and Central Pacific Ocean and easterly wind anomaly (westerly anomaly) over equatorial Indian Ocean are the observed features during the first three MJO (5, 6, 7) phases and all these features are observed in the excess (drought) NEMR composite. This suggests that a similar mode of physical mechanism is responsible for the intraseasonal and interannual variability of northeast monsoon rainfall. The number of days during the first three phases (last four phases) of MJO, where the enhanced convection and positive rainfall anomaly is over Indian Ocean (East Indian ocean and West Pacific Ocean), is more (less) during El Nino and IOD years and less during La Nina and NIOD years and vice versa. The observed excess (deficit) rainfall anomaly over west IO and south peninsular India and deficit (excess) rainfall anomaly over east IO including Bay of Bengal and West Pacific Ocean suggest that the more (less) number of first three phases during El Nino and IOD (La Nina and Negative IOD) is due to the interaction between eastward moving MJO and strong easterlies over equatorial IO present during El Nino and IOD years. This interaction would inhibit the development of long duration MJO and would result in short duration high frequency MJO type which confined over Indian Ocean and south peninsular India and hence make all the El Nino and IOD years to be excess rainfall years for NEM season.
Hydrometeorological and statistical analyses of heavy rainfall in Midwestern USA
NASA Astrophysics Data System (ADS)
Thorndahl, S.; Smith, J. A.; Krajewski, W. F.
2012-04-01
During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which raise the question if it is possible to derive general characteristics of the space-time structures of these heavy storms. This is important in order to understand hydrometeorological features, e.g. how storms evolve and with what frequency we can expect extreme storms to occur. In the literature, most studies of extreme rainfall are based on point measurements (rain gauges). However, with high resolution and quality radar observation periods exceeding more than two decades, it is possible to do long-term spatio-temporal statistical analyses of extremes. This makes it possible to link return periods to distributed rainfall estimates and to study precipitation structures which cause floods. However, doing these statistical frequency analyses of rainfall based on radar observations introduces some different challenges, converting radar reflectivity observations to "true" rainfall, which are not problematic doing traditional analyses on rain gauge data. It is for example difficult to distinguish reflectivity from high intensity rain from reflectivity from other hydrometeors such as hail, especially using single polarization radars which are used in this study. Furthermore, reflectivity from bright band (melting layer) should be discarded and anomalous propagation should be corrected in order to produce valid statistics of extreme radar rainfall. Other challenges include combining observations from several radars to one mosaic, bias correction against rain gauges, range correction, ZR-relationships, etc. The present study analyzes radar rainfall observations from 1996 to 2011 based the American NEXRAD network of radars over an area covering parts of Iowa, Wisconsin, Illinois, and Lake Michigan. The radar observations are processed using Hydro-NEXRAD algorithms in order to produce rainfall estimates with a spatial resolution of 1 km and a temporal resolution of 15 min. The rainfall estimates are bias-corrected on a daily basis using a network of rain gauges. Besides a thorough evaluation of the different challenges in investigating heavy rain as described above the study includes suggestions for frequency analysis methods as well as studies of hydrometeorological features of single events.
Kooperman, Gabriel J.; Pritchard, Michael S.; Burt, Melissa A.; ...
2016-09-26
Changes in the character of rainfall are assessed using a holistic set of statistics based on rainfall frequency and amount distributions in climate change experiments with three conventional and superparameterized versions of the Community Atmosphere Model (CAM and SPCAM). Previous work has shown that high-order statistics of present-day rainfall intensity are significantly improved with superparameterization, especially in regions of tropical convection. Globally, the two modeling approaches project a similar future increase in mean rainfall, especially across the Inter-Tropical Convergence Zone (ITCZ) and at high latitudes, but over land, SPCAM predicts a smaller mean change than CAM. Changes in high-order statisticsmore » are similar at high latitudes in the two models but diverge at lower latitudes. In the tropics, SPCAM projects a large intensification of moderate and extreme rain rates in regions of organized convection associated with the Madden Julian Oscillation, ITCZ, monsoons, and tropical waves. In contrast, this signal is missing in all versions of CAM, which are found to be prone to predicting increases in the amount but not intensity of moderate rates. Predictions from SPCAM exhibit a scale-insensitive behavior with little dependence on horizontal resolution for extreme rates, while lower resolution (~2°) versions of CAM are not able to capture the response simulated with higher resolution (~1°). Furthermore, moderate rain rates analyzed by the “amount mode” and “amount median” are found to be especially telling as a diagnostic for evaluating climate model performance and tracing future changes in rainfall statistics to tropical wave modes in SPCAM.« less
Water isotope variability across single rainfall events in the tropical Pacific
NASA Astrophysics Data System (ADS)
Cobb, K. M.; Moerman, J. W.; Ellis, S. A.; Bennett, L.; Bosma, C.; Hitt, N. T.
2017-12-01
Water isotopologues provide a powerful diagnostic tool for probing the dynamical processes involved in the initiation and evolution of tropical convective events, yet water isotope observations rarely meet the temporal resolution required to resolve such processes. Here we present timeseries of rainfall oxygen and hydrogen isotopologues across over 30 individual convective events sampled at 1- to 5-minute intervals at both terrestrial (Gunung Mulu National Park, 4N, 115W) and maritime (Kiritimati Island, 2N, 157W) sites located in the equatorial Pacific. The sites are the loci of significant paleoclimate research that employ water isotopologues to reconstruct a variety of climatic parameters of interest over the last century, in the case of coral d18O, to hundreds of thousands of years before present, in the case of stalagmite d18O. As such, there is significant scientific value in refining our understanding of water isotope controls at these particular sites. Our results illustrate large, short-term excursions in water isotope values that far exceed the signals recovered in daily timeseries of rainfall isotopologues from the sites, illustrating the fundamental contribution of mesoscale processes in driving rainfall isotope variability. That said, the cross-event profiles exhibit a broad range of trajectories, even for events collected at the same time of day on adjoining days. Profiles collected at different phases of the 2015-2017 strong El Nino-Southern Oscillation cycle also exhibit appreciable variability. We compare our observations to hypothetical profiles from a 1-dimensional model of each rainfall event, as well as to output from 4-dimensional isotope-equipped, ocean-atmosphere coupled models of rainfall isotope variability in the tropical Pacific. We discuss the implications of our findings for the interpretation of water isotope-based reconstructions of hydroclimate in the tropics.
Lightning activity with rainfall during El Nino and La Nina events over India
NASA Astrophysics Data System (ADS)
Tinmaker, M. I. R.; Aslam, M. Y.; Ghude, Sachin D.; Chate, D. M.
2017-10-01
This paper appraises the association of lightning flash count (FC) with rainfall using the satellite-borne Lightning Imaging Sensor's (LIS) data along with gridded rainfall data (0.5o × 0.5o) for Indian summer monsoon seasons over 10 years (2001-2010). During strong El Nino years, 2002 and 2009, FCs were greater in magnitude by about 26.5 % and 37 %, than the long-term average, respectively, while during weak El Nino year (2004), it was more by 8 %. During the same years, the rainfall was deficient by about 10 % than the long-term average. Similarly, a rise in aerosol optical depth (AOD) over its average value (by about 15 % and 20 %) reduces the ratio of rainfall to FC (RLR) by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and for weak El Nino year (2004), a 6.5 % rise in AOD lowers the RLR by 20 %. Bowen ratio more by 11 % and 17 % of its average value reduces the RLR by 41 % and 44 % for strong El Nino years 2002 and 2009, respectively, and, also, Bowen ratio higher by 8 % for 2004 declines RLR by 20 %. On the other hand, Bowen ratio less by 9 % and 6 % raises the RLR by 19 % and 56 % for moderate La Nina year (2007) and strong La Nina year (2010), respectively. Results for the daily rainfall, AOD and Bowen ratio over Indian regions, are discussed for strong El Nino and La Nina years. Correlations of FC with AOD and Bowen ratio of 0.66 and 0.71, respectively, while, that of FC with ONI of 0.56 indicates numerous (fewer) break days during El Nino (La Nina) years.
Sieg, Annette E; Gambone, Megan M; Wallace, Bryan P; Clusella-Trullas, Susana; Spotila, James R; Avery, Harold W
2015-05-01
Desert resource environments (e.g. microclimates, food) are tied to limited, highly localized rainfall regimes which generate microgeographic variation in the life histories of inhabitants. Typically, enhanced growth rates, reproduction and survivorship are observed in response to increased resource availability in a variety of desert plants and short-lived animals. We examined the thermal ecology and reproduction of US federally threatened Mojave desert tortoises (Gopherus agassizii), long-lived and large-bodied ectotherms, at opposite ends of a 250-m elevation-related rainfall cline within Ivanpah Valley in the eastern Mojave Desert, California, USA. Biophysical operative environments in both the upper-elevation, "Cima," and the lower-elevation, "Pumphouse," plots corresponded with daily and seasonal patterns of incident solar radiation. Cima received 22% more rainfall and contained greater perennial vegetative cover, which conferred 5°C-cooler daytime shaded temperatures. In a monitored average rainfall year, Cima tortoises had longer potential activity periods by up to several hours and greater ephemeral forage. Enhanced resource availability in Cima was associated with larger-bodied females producing larger eggs, while still producing the same number of eggs as Pumphouse females. However, reproductive success was lower in Cima because 90% of eggs were depredated versus 11% in Pumphouse, indicating that predatory interactions produced counter-gradient variation in reproductive success across the rainfall cline. Land-use impacts on deserts (e.g. solar energy generation) are increasing rapidly, and conservation strategies designed to protect and recover threatened desert inhabitants, such as desert tortoises, should incorporate these strong ecosystem-level responses to regional resource variation in assessments of habitat for prospective development and mitigation efforts. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Projecting Changes in S. Florida Rainfall for the 21st century: Scenarios, Downscaling and Analysis
NASA Astrophysics Data System (ADS)
Cioffi, F.; Lall, U.; Monti, A.
2013-12-01
A Non-Homogeneous hidden Markov Models (NHMM) is developed using a 65-years record (1948-2012) of daily rainfall amount at nineteen stations in South Florida and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds on the specific latitude of 27N (ZW27N) from 10 to 1000 hPa. The NHMM fitted is then used for predicting future rainfall patterns under global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly includes a consideration of seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can also be modeled. The results of the simulations obtained by using the downscaling model NHMM, with predictors derived from the simulations of CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, seems to indicate that, as a consequence of increase of CO2 concentration and temperature, South Florida should be subjected to more frequent dry conditions for the most part of the year, due mainly to a reduction of number of wet days and, at the same time, the territory should be also affected by extreme rainfall events that are more intense than the present ones. What appears from results is an increases of rainfall variability. This scenario seems coherent with the trends of rainfall patterns observed in the XX century. An investigation on the causes of such hydrologic changes, and specifically on the role of North Atlantic Subtropical High is pursued.
Atmospheric circulation feedback on west Asian dust and Indian monsoon rainfall
NASA Astrophysics Data System (ADS)
Kaskaoutis, Dimitris; Houssos, Elias; Gautam, Ritesh; Singh, Ramesh; Rashki, Alireza; Dumka, Umesh
2016-04-01
Classification of the atmospheric circulation patterns associated with high aerosol loading events over the Ganges valley, via the synergy of Factor and Cluster analysis techniques, has indicated six different synoptic weather patterns, two of which mostly occur during late pre-monsoon and monsoon seasons (May to September). The current study focuses on examining these two specific clusters that are associated with different mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields that seem to affect the aerosol (mostly dust) emissions and precipitation distribution over the Indian sub-continent. Furthermore, the study reveals that enhanced aerosol presence over the Arabian Sea is positively associated with increased rainfall over the Indian landmass. The increased dust over the Arabian Sea and rainfall over India are associated with deepening of the northwestern Indian and Arabian lows that increase thermal convection and convergence of humid air masses into Indian landmass, resulting in larger monsoon precipitation. For this cluster, negative MSLP and Z700 anomalies are observed over the Arabian Peninsula that enhance the dust outflow from Arabia and, concurrently, the southwesterly air flow resulting in increase in monsoon precipitation over India. The daily precipitation over India is found to be positively correlated with the aerosol loading over the Arabian Sea for both weather clusters, thus verifying recent results from satellite observations and model simulations concerning the modulation of the Indian summer monsoon rainfall by the Arabian dust. The present work reveals that in addition to the radiative impacts of dust on modulating the monsoon rainfall, differing weather patterns favor changes in dust emissions, accumulation as well as rainfall distribution over south Asia.
New spatial and temporal indices of Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.
2018-02-01
The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.
Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Luu, L. N.; Vautard, R.; Yiou, P.
2017-12-01
The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.
NASA Astrophysics Data System (ADS)
Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.
2016-01-01
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.
Uncertainties of statistical downscaling from predictor selection: Equifinality and transferability
NASA Astrophysics Data System (ADS)
Fu, Guobin; Charles, Stephen P.; Chiew, Francis H. S.; Ekström, Marie; Potter, Nick J.
2018-05-01
The nonhomogeneous hidden Markov model (NHMM) statistical downscaling model, 38 catchments in southeast Australia and 19 general circulation models (GCMs) were used in this study to demonstrate statistical downscaling uncertainties caused by equifinality to and transferability. That is to say, there could be multiple sets of predictors that give similar daily rainfall simulation results for both calibration and validation periods, but project different amounts (or even directions of change) of rainfall changing in the future. Results indicated that two sets of predictors (Set 1 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and specific humidity at 700 hPa and Set 2 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and dewpoint temperature depression at 850 hPa) as inputs to the NHMM produced satisfactory results of seasonal rainfall in comparison with observations. For example, during the model calibration period, the relative errors across the 38 catchments ranged from 0.48 to 1.76% with a mean value of 1.09% for the predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for the predictor Set 2. However, the changes of future rainfall from NHMM projections based on 19 GCMs produced projections with a different sign for these two different sets of predictors: Set 1 predictors project an increase of future rainfall with magnitudes depending on future time periods and emission scenarios, but Set 2 predictors project a decline of future rainfall. Such divergent projections may present a significant challenge for applications of statistical downscaling as well as climate change impact studies, and could potentially imply caveats in many existing studies in the literature.
Future projection of design storms using a GCM-informed weather generator
NASA Astrophysics Data System (ADS)
KIm, T. W.; Wi, S.; Valdés-Pineda, R.; Valdés, J. B.
2017-12-01
The rainfall Intensity-Duration-Frequency (IDF) curves are one of the most common tools used to provide planners with a description of the frequency of extreme rainfall events of various intensities and durations. Therefore deriving appropriate IDF estimates is important to avoid malfunctions of water structures that cause huge damage. Evaluating IDF estimates in the context of climate change has become more important because projections from climate models suggest that the frequency of intense rainfall events will increase in the future due to the increase in greenhouse gas emissions. In this study, the Bartlett-Lewis (BL) stochastic rainfall model is employed to generate annual maximum series of various sub-daily durations for test basins of the Model Parameter Estimation Experiment (MOPEX) project, and to derive the IDF curves in the context of climate changes projected by the North American Regional Climate Change (NARCCAP) models. From our results, it has been found that the observed annual rainfall maximum series is reasonably represented by the synthetic annual maximum series generated by the BL model. The observed data is perturbed by change factors to incorporate the NARCCAP climate change scenarios into the IDF estimates. The future IDF curves show a significant difference from the historical IDF curves calculated for the period 1968-2000. Overall, the projected IDF curves show an increasing trend over time. The impacts of changes in extreme rainfall on the hydrologic response of the MOPEX basins are also explored. Acknowledgement: This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
On a Model of a Nonlinear Feedback System for River Flow Prediction
NASA Astrophysics Data System (ADS)
Ozaki, T.
1980-02-01
A nonlinear system with feedback is proposed as a dynamic model for the hydrological system, whose input is the rainfall and whose output is the discharge of river flow. Parameters and orders of the model are estimated using Akaike's information criterion. Its application to the prediction of daily discharges of Kanna River and Bird Creek is discussed.
USDA-ARS?s Scientific Manuscript database
Both measured data and GCM/RCM projections show an general increasing trend in extreme rainfall events as temperature rises in US. Proper simulation of extreme events is particularly important for assessing climate change impacts on soil erosion and hydrology. The objective of this paper is to fin...
Comparison of threshold hydrologic response across northern catchments
Genevieve Ali; Doerthe Tetzlaff; Jeffrey J. McDonnell; Chris Soulsby; Sean Carey; Hjalmar Laudon; Kevin McGuire; Jim Buttle; Jan Seibert; Jamie Shanley
2015-01-01
Nine mid-latitude to high-latitude headwater catchments â part of the Northern Watershed Ecosystem Response to Climate Change (North-Watch) programme â were used to analyze threshold response to rainfall and snowmelt-driven events and link the different responses to the catchment characteristics of the nine sites. The North-Watch data include daily time-series of...