Science.gov

Sample records for daily solar insolation

  1. Handbook of solar energy data for south-facing surfaces in the United States. Volume 2: Average hourly and total daily insolation data for 235 localities. Alaska - Montana

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1980-01-01

    Average hourly and daily total insolation estimates for 235 United States locations are presented. Values are presented for a selected number of array tilt angles on a monthly basis. All units are in kilowatt hours per square meter.

  2. Insolation data manual and direct normal solar radiation data manual

    SciTech Connect

    1990-07-01

    The Insolation Data Manual presents monthly averaged data which describes the availability of solar radiation at 248 National Weather Service (NWS) stations, principally in the United States. Monthly and annual average daily insolation and temperature values have been computed from a base of 24--25 years of data, generally from 1952--1975, and listed for each location. Insolation values represent monthly average daily totals of global radiation on a horizontal surface and are depicted using the three units of measurement: kJ/m{sup 2} per day, Btu/ft{sup 2} per day and langleys per day. Average daily maximum, minimum and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3 C (65 F). For each station, global {bar K}{sub T} (cloudiness index) values were calculated on a monthly and annual basis. Global {bar K}{sub T} is an index of cloudiness and indicates fractional transmittance of horizontal radiation, from the top of the atmosphere to the earth's surface. The second section of this volume presents long-term monthly and annual averages of direct normal solar radiation for 235 NWS stations, including a discussion of the basic derivation process. This effort is in response to a generally recognized need for reliable direct normal data and the recent availability of 23 years of hourly averages for 235 stations. The relative inaccessibility of these data on microfiche further justifies reproducing at least the long-term averages in a useful format. In addition to a definition of terms and an overview of the ADIPA model, a discussion of model validation results is presented.

  3. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    USGS Publications Warehouse

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  4. Predicting Daily Insolation with Hourly Cloud Height and Coverage.

    NASA Astrophysics Data System (ADS)

    Meyers, T. P.; Dale, R. F.

    1983-04-01

    Solar radiation information is used in crop growth, boundary layer, entomological and plant pathological models, and in determining the potential use of active and passive solar energy systems. Yet solar radiation is among the least measured meteorological variables.A semi-physical model based on standard meteorological data was developed to estimate solar radiation received at the earth's surface. The radiation model includes the effects of Rayleigh scattering, absorption by water vapor and permanent gases, and absorption and scattering by aerosols and clouds. Cloud attenuation is accounted for by assigning transmission coefficients based on cloud height and amount. The cloud transmission coefficients for various heights and coverages were derived empirically from hourly observations of solar radiation in conjunction with corresponding cloud observations at West Lafayette, Indiana. The model was tested with independent data from West Lafayette and Indianapolis, Madison, WI, Omaha, NE, Columbia, MO, Nashville, TN, Seattle, WA, Los Angeles, CA, Phoenix, AZ, Lake Charles, LA, Miami, FL, and Sterling, VA. For each of these locations a 16% random sample of days was drawn within each of the 12 months in a year for testing the model. Excellent agreement between predicted and observed radiation values was obtained for all stations tested. Mean absolute errors ranged from 1.05 to 1.80 MJ m2 day1 and root-mean-square errors ranged from 1.31 to 2.32 MJ m2 day1. The model's performance judged by relative error was found to be independent of season and cloud amount for all locations tested.

  5. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.

    2005-01-01

    Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other

  6. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    NASA Technical Reports Server (NTRS)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  7. Solar Insolation Driven Variations of Mercury's Lithospheric Strength

    NASA Astrophysics Data System (ADS)

    Williams, Jean-pierre; Ruiz, J.; Rosenburg, M. A.; Aharonson, O.; Phillips, R. J.

    2010-10-01

    Mercury's coupled 3:2 spin-orbit resonance in conjunction with its relatively high eccentricity of 0.2 results in a surface variation in annual average solar insolation and thus equatorial hot and cold regions. This results in an asymmetric temperature distribution in the lithosphere and a long wavelength lateral variation in lithosphere structure and strength that mirrors the insolation pattern. We employ a thermal evolution model for Mercury generating strength envelopes of the lithosphere to demonstrate and quantify the possible effects the insolation pattern has on Mercury's lithosphere. We find the heterogeneity in lithosphere strength is substantial, increases with time, and is accentuated by the differential timing of the mantle contribution to the lithosphere strength. For example, by the end of late heavy bombardment ( 4 Ga) we find a difference in brittle-ductile transition depth of 6 km between the hot and cold equatorial thermal poles and 24 km between the hot equatorial pole and the latitudes ±90°. We also find that a crust thicker than that of the Moon or Mars and dry rheologies for the crust and mantle are favorable when compared with estimates of brittle-ductile transition depths derived from lobate scarps. Regions of stronger and weaker compressive strength imply that the accommodation of radial contraction of Mercury as its interior cooled, manifest as lobate scarps, may not be isotropic, imparting a preferential orientation and distribution to the lobate scarps. Although many of the parameters of the model are poorly constrained for Mercury, the overall lithospheric heterogeneity remains regardless of the choice of parameters. The latitudinal surface temperature variation experienced by Mercury is not unlike that of the Earth's Moon presently and thus one should expect an analogous latitude dependence on lithospheric strength to have developed over time on the Moon as well. Funded by the NSF Astrophysics Research Grants program (AST-0709151).

  8. Camera-based forecasting of insolation for solar systems

    NASA Astrophysics Data System (ADS)

    Manger, Daniel; Pagel, Frank

    2015-02-01

    With the transition towards renewable energies, electricity suppliers are faced with huge challenges. Especially the increasing integration of solar power systems into the grid gets more and more complicated because of their dynamic feed-in capacity. To assist the stabilization of the grid, the feed-in capacity of a solar power system within the next hours, minutes and even seconds should be known in advance. In this work, we present a consumer camera-based system for forecasting the feed-in capacity of a solar system for a horizon of 10 seconds. A camera is targeted at the sky and clouds are segmented, detected and tracked. A quantitative prediction of the insolation is performed based on the tracked clouds. Image data as well as truth data for the feed-in capacity was synchronously collected at one Hz using a small solar panel, a resistor and a measuring device. Preliminary results demonstrate both the applicability and the limits of the proposed system.

  9. SOLINS- SOLAR INSOLATION MODEL FOR COMPUTING AVAILABLE SOLAR ENERGY TO A SURFACE OF ARBITRARY ORIENTATION

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1994-01-01

    This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day

  10. Effects of the Mount Pinatubo eruption on solar insolation: Four case studies

    SciTech Connect

    Rosenthal, A.L.; Robert, J.M.

    1993-05-01

    The Southwest Technology Development Institute staff analyzed solar insolation data from four sites recorded during the years 1990 through 1992. Analyses were performed to identify and quantify the effects on insolation caused by the eruption of Mount Pinatubo in the Philippines on June 15th and 16th, 1991. The four monitoring stations that supplied the raw data for this report were: The Southwest Region Experiment Station in Las Cruces, New Mexico; The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory in Golden, Colorado; The Solar Insolation Monitor Program station operated by the Pacific Gas and Electric Company in Carrisa Plains, California; and The Solar Insolation monitor station at Sandia National Laboratories in Albuquerque, New Mexico. Data from each of the sites were recorded by dedicated datalogging equipment. Every effort was made to prevent data acquisition system problems (e.g., drift of the datalogger clock) from influencing the accuracy of the results.

  11. Handbook of solar energy data for south-facing surfaces in the United States. Volume I. An insolation, array shadowing, and reflector augmentation model

    SciTech Connect

    Smith, J.H.

    1980-01-15

    This handbook provides estimates of average available solar insolation to fixed, flat-plate, south-facing collector surfaces at various array tilt angles at numerous sites in the US. This first volume contains average daily, total insolation estimates, by month, and annual totals for 235 locations. A model that estimates the direct, diffuse, and reflected components of total insolation on an hourly, daily, and monthly basis is presented. A shadow loss model and a reflector augmentation model providing estimates of the losses and gains associated with various fixed array geometries are also described. These models can be used with the insolation model provided or with other recorded data. A FORTRAN computer program with user's guide is presented. The program can be used to generate additional handbook values or to examine the effects of array shadowing and fixed reflector augmentation effects on a daily, monthly, or annual basis. Array shadowing depends on location, array size, array tilt, array separation, and time. The program can be used to examine trade-offs between array spacing and insolation losses due to shadowing. The reflector augmentation program can be used to examine trade-offs among array size and tilt, separation, and reflector tilt to determine the combination of design values that optimize the economic objectives or technical criteria of the system.

  12. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    NASA Astrophysics Data System (ADS)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  13. Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in solar radiation management

    NASA Astrophysics Data System (ADS)

    Modak, A.; Bala, G.

    2014-08-01

    Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

  14. Estimating Insolation Incident on Tilted Surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. E.; Toelle, R. G.

    1983-01-01

    ASHMET computer program estimates amount of solar insolation incident on surfaces of several types of solar collectors, including fixed-position flat-plate, monthly-tilt-adjusted flat-plat, beam-tracting, and fixed-azimuthtracker. Basic methodology employed in ASHMET is to use ASHRAE relationships to obtain clear-day total daily insolation incident on collector surface of representative day of each month of year. ASHMET is interactive program and prompts user for all required data.

  15. Managing a Solar Sensor Array Project: Analyzing Insolation & Motivation

    DTIC Science & Technology

    2011-01-01

    energy are being pursued and solar technology is no exception. Photovoltaic (PV) cells have increased their efficiency over the years, but little has...varied personalities that they will encounter during their career . They must be able to change as the situation and people necessitate (Fisher, 2010

  16. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  17. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  18. Study on a Bioethanol Solar Reforming System with the Solar Insolation Fluctuation in Consideration of Heat Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; El-Sayed, Abeer Galal

    A bioethanol reforming system (FBSR) with a sunlight heat source is developed as a potential fuel supply system for distributed fuel cells. The temperature distribution of a catalyst layer in the reactor is not stable under conditions of unstable solar radiation and unstable outside air temperature; therefore, it is thought that the inversion rate of a reforming reaction will decrease. In this paper, heat transmission analysis was used in the catalyst layer of the reforming component of an FBSR, and temperature distribution, inversion rate, and process gas composition were investigated. Based on the results, the relationship between weather conditions and a hydrogen-generating rate was determined. When solar insolation was unstable, it turned out that the efficiency of the reforming component is reduced. Fluctuations of the solar insolation over a short period of time affect the hydrogen generating rate of an FBSR. Moreover, the amount of hydrogen production of an FBSR was simulated using meteorological data from a day in March and a day in August in a cold region (Sapporo). The analysis showed that efficiency of the reforming component exceeded 40% for both of the days.

  19. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1979-01-01

    The performance and cost of the 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States were determined. The regional insolation data base is discussed. A range for the forecast cost of conventional electricity by region and nationally over the next several cades are presented.

  20. Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in SRM geoengineering methods

    NASA Astrophysics Data System (ADS)

    Modak, A.; Bala, G.

    2013-10-01

    Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations to understand the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which mitigates changes in global mean temperature, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution, highlighting the need for a careful evaluation of SRM proposals.

  1. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    NASA Technical Reports Server (NTRS)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.

    1980-01-01

    The performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States was studied. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs and energy costs. The regional variation in solar plant performance was assessed in relation to the expected rise in the future cost of residential and commercial electricity supplied by conventional utility power systems in the same regions. A discussion of the regional insolation data base is presented along with a description of the solar systems performance and costs. A range for the forecast cost of conventional electricity by region and nationally over the next several decades is given.

  2. Handbook of solar energy data for south-facing surfaces in the United States. Volume 1: An insolation, array shadowing, and reflector augmentation model

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1980-01-01

    A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.

  3. Relationship of Solar Energy Installation Permits to Renewable Portfolio Standards and Insolation

    NASA Astrophysics Data System (ADS)

    Butler, Kirt Gordon

    Legislated renewable portfolio standards (RPSs) may not be the key to ensure forecast energy demands are met. States without a legislated RPS and with efficient permitting procedures were found to have approved and issued 28.57% more permits on average than those with a legislated RPS. Assessment models to make informed decisions about the need and effect of legislated RPSs do not exist. Decision makers and policy creators need to use empirical data and a viable model to resolve the debate over a nationally legislated RPS. The purpose of this cross-sectional study was to determine if relationships between the independent variables of RPS and insolation levels and the dependent variable of the percentage of permits approved would prove to be a viable model. The research population was 68 cities in the United States, of which 55 were used in this study. The return on investment economic decision model provided the theoretical framework for this study and the model generated. The output of multiple regression analysis indicated a weak to medium positive relationship among the variables. None of these relationships were statistically significant at the 0.05 level. A model using site specific data might yield significant results and be useful for determining which solar energy projects to pursue and where to implement them without Federal or State mandated RPSs. A viable model would bring about efficiency gains in the permitting process and effectiveness gains in promoting installations of solar energy-based systems. Research leading to the development of a viable model would benefit society by encouraging the development of sustainable energy sources and helping to meet forecast energy demands.

  4. Synchronicity of Antarctic temperatures and local solar insolation on orbital timescales.

    PubMed

    Laepple, Thomas; Werner, Martin; Lohmann, Gerrit

    2011-03-03

    The Milankovitch theory states that global climate variability on orbital timescales from tens to hundreds of thousands of years is dominated by the summer insolation at high northern latitudes. The supporting evidence includes reconstructed air temperatures in Antarctica that are nearly in phase with boreal summer insolation and out of phase with local summer insolation. Antarctic climate is therefore thought to be driven by northern summer insolation. A clear mechanism that links the two hemispheres on orbital timescales is, however, missing. We propose that key Antarctic temperature records derived from ice cores are biased towards austral winter because of a seasonal cycle in snow accumulation. Using present-day estimates of this bias in the 'recorder' system, here we show that the local insolation can explain the orbital component of the temperature record without having to invoke a link to the Northern Hemisphere. Therefore, the Antarctic ice-core-derived temperature record, one of the best-dated records of the late Pleistocene temperature evolution, cannot be used to support or contradict the Milankovitch hypothesis that global climate changes are driven by Northern Hemisphere summer insolation variations.

  5. Introduction to meteorological measurements and data handling for solar energy applications. Task IV-Development of an insolation handbook and instrument package

    SciTech Connect

    1980-10-01

    Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one task was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.

  6. Single and Double ITCZ in Aqua-Planet Models with Globally Uniform Sea Surface Temperature and Solar Insolation: An Interpretation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  7. Site insolation and wind power characteristics: technical report western region (north section)

    SciTech Connect

    1980-08-01

    This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Western Region (North Section) of the US Historic data (SOLMET), at 21 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

  8. On optimizing solar collectors orientation under daily nonrandom cloudiness conditions

    SciTech Connect

    Segal, M.; Pielke, R.A.; Ookouchi, Y.

    1988-11-01

    Seasonal daily nonrandom cloudiness is typical in many geographical locations. Optimization of flat-plate solar collectors orientation in such situations requires azimuth and tilt modifications from those when daily cloudiness is random. The present study evaluates the significance of optimizing solar radiation gains, while considerating an illustrative case of nonrandom afternoon-morning cloudiness. Results suggest that for fixed flat-plate collectors the related gain in solar energy is practically insignificant. For nonfixed collectors the solar energy gains can be improved on a monthly basis by up to --6 percent.

  9. Daily total global solar radiation modeling from several meteorological data

    NASA Astrophysics Data System (ADS)

    Bilgili, Mehmet; Ozgoren, Muammer

    2011-05-01

    This paper investigates the modeling of the daily total global solar radiation in Adana city of Turkey using multi-linear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward artificial neural network (ANN) methods. Several daily meteorological data, i.e., measured sunshine duration, air temperature and wind speed and date of the year, i.e., monthly and daily, were used as independent variables to the MLR, MNLR and ANN models. In order to determine the relationship between the total global solar radiation and other meteorological data, and also to obtain the best independent variables, the MLR and MNLR analyses were performed with the "Stepwise" method in the Statistical Packages for the Social Sciences (SPSS) program. Thus, various models consisting of the combination of the independent variables were constructed and the best input structure was investigated. The performances of all models in the training and testing data sets were compared with the measured daily global solar radiation values. The obtained results indicated that the ANN method was better than the other methods in modeling daily total global solar radiation. For the ANN model, mean absolute error (MAE), mean absolute percentage error (MAPE), correlation coefficient ( R) and coefficient of determination ( R 2) for the training/testing data set were found to be 0.89/1.00 MJ/m2 day, 7.88/9.23%, 0.9824/0.9751, and 0.9651/0.9508, respectively.

  10. Solar daily variation at geomagnetic observatories in Pakistan

    NASA Astrophysics Data System (ADS)

    Rahim, Zain; Kumbher, Abdul Salam

    2016-03-01

    A study of solar daily variation is performed using the famous Chapman-Miller method for solar cycles 22 & 23 (1986-2007). The objective is to study the characteristics of Sq variation at Pakistani geomagnetic observatories using solar harmonics and a more traditional five quietest day's method. The data recorded at the Karachi geomagnetic observatory for SC 22 and 23 and data sets from other Pakistani geomagnetic observatories; Sonmiani, Quetta and Islamabad are analyzed for H, D and Z components of the geomagnetic field. Except for the D and Z components at Karachi and Sonmiani and H component at Islamabad, the two solar daily variations correlated well with each other. Also, the synthesized daily variation from the solar harmonics of H, D and Z components explained the equivalent Sq current system reasonably well for all seasons. For H component, the first solar harmonic (s1) obtained from spherical harmonic analysis of the data, appeared as the largest harmonic with no significant changes for the seasonal division of data. However, for D and Z components, amplitudes are comparable, but undergo distinct variations. s1 for H and D components increases with magnetic activity while for Z component it is the largest for the medium phase of magnetic activity. With the sunspot number division of data, the weighted mean of the Wolf ratio of all three components is in good agreement with the previous studies. The synthesized solar daily variation for D component, S(D), at Karachi, Sonmiani, Quetta and Islamabad did not show any signs of winter anomaly for the period studied. However, S(D) variation at Karachi during winter season showed morning minimum followed by a maximum at local noon and another minimum in the afternoon. We suggest this could be the effects of Equatorial Ionospheric Anomaly (EIA) observable at the Karachi observatory only during the winter season. Similarly, much disturbed in equinoctial and summer months, S(Z) illustrated an unwavering daily

  11. Retrieving daily global solar radiation from routine climate variables

    NASA Astrophysics Data System (ADS)

    Moradi, Isaac; Mueller, Richard; Perez, Richard

    2014-05-01

    Solar radiation is an important variable for studies related to solar energy applications, meteorology, climatology, hydrology, and agricultural meteorology. However, solar radiation is not routinely measured at meteorological stations; therefore, it is often required to estimate it using other techniques such as retrieving from satellite data or estimating using other geophysical variables. Over the years, many models have been developed to estimate solar radiation from other geophysical variables such as temperature, rainfall, and sunshine duration. The aim of this study was to evaluate six of these models using data measured at four independent worldwide networks. The dataset included 13 stations from Australia, 25 stations from Germany, 12 stations from Saudi Arabia, and 48 stations from the USA. The models require either sunshine duration hours (Ångstrom) or daily range of air temperature (Bristow and Campbell, Donatelli and Bellocchi, Donatelli and Campbell, Hargreaves, and Hargreaves and Samani) as input. According to the statistical parameters, Ångstrom and Bristow and Campbell indicated a better performance than the other models. The bias and root mean square error for the Ångstrom model were less than 0.25 MJ m2 day-1 and 2.25 MJ m2 day-1, respectively, and the correlation coefficient was always greater than 95 %. Statistical analysis using Student's t test indicated that the residuals for Ångstrom, Bristow and Campbell, Hargreaves, and Hargreaves and Samani are not statistically significant at the 5 % level. In other words, the estimated values by these models are statistically consistent with the measured data. Overall, given the simplicity and performance, the Ångstrom model is the best choice for estimating solar radiation when sunshine duration measurements are available; otherwise, Bristow and Campbell can be used to estimate solar radiation using daily range of air temperature.

  12. Development of vibrating insoles.

    PubMed

    Hijmans, Juha M; Geertzen, Jan H B; Schokker, Bart; Postema, Klaas

    2007-12-01

    The objective of this study was to describe the development of vibrating insoles. Insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy. This study describes the requirements for the tactors, (tactile actuators) insole material and noise generator. A search for the components of vibrating insoles providing mechanical noise to the plantar side of the feet was performed. The mechanical noise signal should be provided by tactors built in an insole or shoe and should obtain an input signal from a noise generator and an amplifier. Possible tactors are electromechanical tactors, a piezo actuator or the VBW32 skin transducer. The Minirator MR1 of NTI, a portable MP3 player or a custom-made noise generator can provide these tactors with input. The tactors can be built in foam, silicone or cork insoles. In conclusion, a C2 electromechanical tactor, a piezo actuator or the VBW32 skin transducer, activated by a custom-made noise generator, built in a cork insole covered with a leather layer seems the ideal solution.

  13. Investigation of simple daily solar radiation models suitable for use in the design of solar heating systems

    SciTech Connect

    Sillman, S.

    1980-08-01

    Solar heating system simulations typically require hourly weather data and the use of a main-line computer. A simpler alternative is to use daily steps with a model for daily solar collection. This report investigates the accuracy of sinusoidal radiation models for use in solar heating simulation. Accuracy of daily radiation models is assessed in two ways: by a theoretical comparison with hourly weather data, and by analysis of results of daily simulation. Results indicate that a daily radiation model can be designed with errors of less than 2%.

  14. Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change

    NASA Technical Reports Server (NTRS)

    Liu, H. S.

    1998-01-01

    This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.

  15. View-limiting shrouds for insolation radiometers

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Trentelman, G. F.

    1985-01-01

    Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined.

  16. New operating strategies for molten salt in line focusing solar fields - Daily drainage and solar receiver preheating

    NASA Astrophysics Data System (ADS)

    Eickhoff, Martin; Meyer-Grünefeldt, Mirko; Keller, Lothar

    2016-05-01

    Nowadays molten salt is efficiently used in point concentrating solar thermal power plants. Line focusing systems still have the disadvantage of elevated heat losses at night because of active freeze protection of the solar field piping system. In order to achieve an efficient operation of line focusing solar power plants using molten salt, a new plant design and a novel operating strategy is developed for Linear Fresnel- and Parabolic Trough power plants. Daily vespertine drainage of the solar field piping and daily matutinal refilling of the solar preheated absorber tubes eliminate the need of nocturnal heating of the solar field and reduce nocturnal heat losses to a minimum. The feasibility of this new operating strategy with all its sub-steps has been demonstrated experimentally.

  17. Plant operation report and daily operation summary. SSPS monthly data, March 1984. [Small Solar Power System

    SciTech Connect

    Not Available

    1984-01-01

    Operation and maintenance highlights and test and evaluation highlights are presented for the Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics: monthly operation summary for March 1984; CRS daily operation summary; and DCS daily operation summary.

  18. The reliance of insolation pattern on surface aspect

    NASA Astrophysics Data System (ADS)

    Saad, N. Md; Hamid, J. R. Abdul; Mohd Suldi, A.

    2014-02-01

    The Sun's radiated energy is an important source in realizing the green technology concept construction. When interacting with the atmosphere and objects on the Earth's surface incoming solar radiation (insolation) will create insolation patterns that are ambiguous and as a result need to be investigated further. This paper explores the insolation pattern and ambiguities against topographic surfaces in the context of direct, diffuse, and reflectance irradiance. The topography is modeled from LiDAR data as Digital Surface Model (DSM) and Digital Terrain Model (DTM). The generated DSM and DTM were converted to Triangular Irregular Network (TIN) format within the Arc GIS environment before the insolation pattern could be visualized. The slope and aspect of the topography has an impact on the insolation which is the emphasis of this paper. The main outcome from the study is the insolation map and plots of relationship between the insolation and surface aspect. The findings from this study should contribute to the sustainable practices of green building technology.

  19. Exponential approximation for daily average solar heating or photolysis. [of stratospheric ozone layer

    NASA Technical Reports Server (NTRS)

    Cogley, A. C.; Borucki, W. J.

    1976-01-01

    When incorporating formulations of instantaneous solar heating or photolytic rates as functions of altitude and sun angle into long range forecasting models, it may be desirable to replace the time integrals by daily average rates that are simple functions of latitude and season. This replacement is accomplished by approximating the integral over the solar day by a pure exponential. This gives a daily average rate as a multiplication factor times the instantaneous rate evaluated at an appropriate sun angle. The accuracy of the exponential approximation is investigated by a sample calculation using an instantaneous ozone heating formulation available in the literature.

  20. Insolation driven variations of Mercury's lithospheric strength

    NASA Astrophysics Data System (ADS)

    Williams, Jean-Pierre; Ruiz, Javier; Rosenburg, Margaret A.; Aharonson, Oded; Phillips, Roger J.

    2011-01-01

    Mercury's coupled 3:2 spin-orbit resonance in conjunction with its relatively high eccentricity of ˜0.2 and near-zero obliquity results in both a latitudinal and longitudinal variation in annual average solar insolation and thus equatorial hot and cold regions. This results in an asymmetric temperature distribution in the lithosphere and a long wavelength lateral variation in lithosphere structure and strength that mirrors the insolation pattern. We employ a thermal evolution model for Mercury generating strength envelopes of the lithosphere to demonstrate and quantify the possible effects the insolation pattern has on Mercury's lithosphere. We find the heterogeneity in lithosphere strength is substantial and increases with time. We also find that a crust thicker than that of the Moon or Mars and dry rheologies for the crust and mantle are favorable when compared with estimates of brittle-ductile transition depths derived from lobate scarps. Regions of stronger and weaker compressive strength imply that the accommodation of radial contraction of Mercury as its interior cooled, manifest as lobate scarps, may not be isotropic, imparting a preferential orientation and distribution to the lobate scarps.

  1. Pluto's Insolation History: Latitudinal Variations and Effects on Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2014-11-01

    Since previous insolation modeling in the early 1990’s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA’s New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto’s complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto’s insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. For any single rotation of Pluto there is a latitude that receives more insolation relative to the others. Often this is the sub-subsolar latitude but it can also be an arctic circle latitude when near-polar regions of Pluto experience the "midnight sun". We define the amount of that greatest insolation value over the course of one rotation as the "maximum diurnal insolation" (MDI). We find that MDI is driven to its highest values when Pluto’s obliquity creates a long arctic summer (or “midnight sun”) beginning just after perihelion. Pluto’s atmospheric pressure, as measured through stellar occultation observations during the past three decades, appears to correlate with Pluto's currently occurring midnight sun as quantified by the MDI parameter. If insolation (as parameterized by the MDI value) is the single dominant factor driving Pluto's atmospheric pressure, this “Midnight Sun Model” predicts that Pluto's maximum atmospheric pressure will be reached in 2017 followed by a steady decline. Pluto's maximum diurnal insolation value begins dropping after 2017 due to two factors: Pluto’s sub-solar point

  2. ASHMET: A computer code for estimating insolation incident on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. F.; Toelle, R. G.

    1980-01-01

    A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.

  3. Estimation of daily global solar irradiation under different sky conditions in central and southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Zand-Parsa, Shahrokh

    2017-02-01

    Daily global solar irradiation ( R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.

  4. Relationships between insolation and rattlesnake hibernacula

    USGS Publications Warehouse

    Hamilton, B.T.; Nowak, E.M.

    2009-01-01

    We examined the relationship between insolation, climate, and hibernacula of black-tailed (Crotalus molossus), Great Basin (Crotalus lutosus), and western diamondback (Crotalus atrox) rattlesnakes at 4 sites in Arizona, Nevada, and Utah, Hibernacula were located through a combination of visual searches and radio telemetry from 1995 to 2003. We used global information systems to calculate insolation and compared hibernaculum insolation values with random points representing available insolation of the surrounding habitat. Insolation reflects soil temperatures, and we predicted that hibernacula in cool climates, at high elevations, and at high latitudes would have higher insolation relative to their surroundings, while hibernacula in warmer climates would not differ from their surroundings in insolation. Coolest temperatures, highest elevations, and highest latitudes occurred on the C. lutosus and C. molossus sites, where hibernaculum insolation was higher than surrounding insolation. Temperatures were intermediate on the high-elevation C. atrox site, where hibernaculum insolation did not differ from random-point insolation, Temperatures were highest on the low-elevation C. atrox site, where hibernaculum insolation was unexpectedly lower than random-point insolation, Our observations suggest that rattlesnakes in cool climates utilize hibernacula with insolation values higher than those of their surroundings, Rattlesnakes in warm climates utilize hibernacula with insolation values lower than or similar to those of their surroundings.

  5. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  6. A temperature-based model for estimating monthly average daily global solar radiation in China.

    PubMed

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China.

  7. The effect of total solar eclipse on the daily activities of Nasalis larvatus (Wurmb.) in Mangrove Center, Kariangau, East Kalimantan

    NASA Astrophysics Data System (ADS)

    Sya Shanida, Sya; Hanik Lestari, Tiffany; Partasasmita, Ruhyat

    2016-11-01

    The total solar eclipse is an interesting phenomenon because the sun is covered by the moon. This phenomenon is like a night deception for animals, humans, and plants. One of the animals is Bekantan (Nasalis larvatus (Wurmb.)). Nasalis larvatus change its activity when this phenomenon occurs. The aims of the present study are (1) daily activity of Nasalis larvatus on total solar eclipse on March 9th, 2016 and (2) the effect of total solar eclipse on its activity in Mangrove Center, Kariangau, East Kalimantan. The adlibitum method was used in this study on Bekantan's adult female. The result shows that the total solar eclipse has considerable effect on the daily activity of Bekantan. During total solar eclipse, the activity of Bekantan significantly stopped. When the total solar eclipse finished, Bekantan started its daily activity, and it was indicated by feeding activity which was led by alfa-male.

  8. Coastal-inland solar radiation difference study. Final report

    SciTech Connect

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  9. Upper limit for fourth harmonic of cosmic ray solar daily variation: 1963-2015

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.; Fikani, M. M.

    2017-04-01

    In 1970s we analyzed the neutron monitor (NM) and muon telescope (MT) data from the global network for 1966-1970 to determine the amplitude and phase of the significant harmonics constituting the galactic cosmic ray (GCR) daily anisotropy in solar time. The median rigidity of response (Rm) of detectors to GCR spectrum covered a wide range (16-134 GV). The results were reported at the international cosmic ray conferences (ICRCs) held at Denver [1973], Munich [1975] and Paris [1981]. It was inferred that GCR solar daily anisotropy consists of only three harmonics, namely the diurnal (1 cpd, first harmonic), the semidiurnal (2 cpd, second harmonic) and the tridiurnal (3 cpd, third harmonic), with power spectral densities in the ratio 800:20:1 for the Deep River NM data (Rm = 16 GV) for 1962-1971. The fourth harmonic (4 cpd) was absent in these analyses. Since then the volume of data from the global network of NMs and MTs has increased significantly; particularly the multidirectional MT network, with larger Rm values. This motivates us to ascertain whether 4 cpd peak is absent in the cosmic ray solar daily variation data at the global sites, over a longer time period (1963-2015). Our informed conjecture is that 4 cpd peak is insignificant at 2σ-level of experimental error for a range of Rm values (11-60 GV). The discovery of a physically significant fourth harmonic would challenge the theorists to come up with a model for GCR transport in the heliosphere revealing hitherto unknown feature(s) of solar modulation.

  10. Gridded daily European solar cloud modification factors derived from ERA-40 information and pyranometer observations

    NASA Astrophysics Data System (ADS)

    Staiger, Henning; Kaurola, Jussi; de Backer, Hugo

    2010-11-01

    The long-term UV climatology and trend analysis in the COST-Action 726 requires daily solar cloud modification factors (SOL-CMFs) as input of algorithms, transforming them into UV-CMFs. A CMF is the ratio of all-sky to clear-sky downwelling irradiation. A complete spatial and temporal coverage is achieved by calculating daily SOL-CMFs on the 1° × 1° COST-726 grid (31°N to 80°N, 25°W to 35°E) using the ERA-40 shortwave net all-sky and clear-sky irradiation. Known deficiencies in ERA-40 SOL-CMFs (especially the bias due to clouds) are corrected using SOL-CMFs derived from pyranometer observations. These are determined based on measured daily sums of solar global irradiation from up to 152 European sites from several data sources. An analysis of clear-sky days during 1981-1993 and a comparison with results from high-quality data enabled the selection of appropriate sites in the Mediterranean and southeast Europe from data that has not been classified as that of the group of best quality. For these sites and the period 1964-1980, a homogenization is performed. A cross-validation of all daily SOL-CMFs from observations is performed prior to their gridding. Gridding uses ordinary Kriging. Bias-corrected ERA-40 and SOL-CMFs from observations are merged using a distance-dependent weight derived from overall structural analysis. The COST-726 database offers daily SOL-CMF fields of complete spatial coverage from 1958 to 2002. They are unbiased and of known quality. The aerosol direct radiative effect included in the SOL-CMFs from observations is retained and accounts for long-term aerosol trends in agreement with the trends of dimming and brightening.

  11. Spatial variations of temperature on a coastal site in Sweden as a response to insolation

    NASA Astrophysics Data System (ADS)

    Vercauteren, N.; Dahlberg, J.; Lam, N.; Destouni, G.; Hylander, K.

    2012-04-01

    Temperature and humidity are major factors controlling ecosystem development. In a context of changing climate, the spatial distribution of temperature is likely to be affected, and species distribution might be subsequently modified. In particular, topographic heterogeneity is affecting the micro-climate and thus regulates the expansion or restriction of species in a landscape. During a change of climate, certain species might become restricted to localized refugia, or on the contrary expand from old refugia when the overall landscape becomes favorable. In this research we are using GIS based model of incoming solar radiation and subsequently derived monthly averaged temperatures to increase the understanding of changes in local climate and how it affects species repartition. The model is based on topography and observed variations in atmospheric conditions and is accounting for site latitude, elevation, surface orientation, daily and seasonal shifts in sun angle and the effect of shadows from the surrounding topography. A 2500 km2 forested field site located on the western coast of Sweden, along the Baltic Sea, is investigated both in terms of temperature heterogeneity and plant communities. We derive 50 m resolution insolation maps and analyze the response of monthly temperature to insolation. Surface and near surface temperatures are measured by a dense network of temperature sensors during the spring and summer of 2011 and are used for comparison with the modeled temperature maps. We investigate the potential of this modeling approach to scale climate trend analysis down to local climate change in heterogeneous landscapes. We build on the methodology used by Huang et al. (2008) in a mountain ecosystem and develop it for use on a coastal site that is largely influence by the presence of the sea. The time lag that is appropriate between insolation and subsequent temperature response appears to be influenced by the presence of a large water body and follows an

  12. Spectral effects on direct-insolation absorptance of five collector coatings

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    Absorptances for direct insolation of black chrome, black nickel, copper oxide, and two black zinc conversion selective coatings were calculated for a number of typical solar spectrums. Measured spectral reflectances were used while the effects of atmospheric ozone density, turbidity, and air mass were incorporated in calculated direct solar spectrums. Absorptance variation for direct insolation was found to be of the order of 1 percent for a typical range of clear-sky atmospheric conditions.

  13. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  14. 21 CFR 880.6280 - Medical insole.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical...

  15. Daily Variation of UV-induced Erythema and the Action of Solar Filters.

    PubMed

    Flo, Ana; Calpena, Ana C; Díez-Noguera, Antoni; Del Pozo, Alfons; Cambras, Trinitat

    2017-03-01

    UV rays may cause several degrees of skin damage, which makes sunscreen research necessary. In addition, skin sensitivity shows daily variations, which can interfere in the detection of the efficacy of the filters. Here, we studied the UV-induced erythema in hairless rats at two times of the day (light and darkness) using a colorimeter method. The effect of an emulsion with solar filters with or without melatonin was also assayed. Results indicate that the value of a* (from CIELAB color space values L* a* b) was the most useful variable to evaluate the erythema. However, at the UV intensity used, erythema was only detected when irradiation was carried out during the activity phase of the animal, enabling the detection of the protective action of the sunscreen at this time. Thus, daily variations in skin sensitivity have been demonstrated and should be taken into account in dermatological research.

  16. Insolation patterns on eccentric exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2015-04-01

    Several studies have found that synchronously-rotating Earth-like planets in the habitable zones of M-dwarf stars should exhibit an "eyeball" climate pattern, with a pupil of open ocean facing the parent star, and ice everywhere else. Recent work on eccentric exoplanets by Wang et al. (Wang, Y., Tian, F., Hu, Y. [2014b] Astrophys. J. 791, L12) has extended this conclusion to the 2:1 spin-orbit resonance as well, where the planet rotates twice during one orbital period. However, Wang et al. also found that the 3:2 and 5:2 half-odd resonances produce a zonally-striped climate pattern with polar icecaps instead. Unfortunately, they used incorrect insolation functions for the 3:2 and 5:2 resonances whose long-term time averages are essentially independent of longitude. This paper presents the correct insolation patterns for eccentric exoplanets with negligible obliquities in the 0:1, 1:2, 1:1, 3:2, 2:1, 5:2, 3:1, 7:2, and 4:1 spin-orbit resonances. I confirm that the mean insolation is distributed in an eyeball pattern for integer resonances; but for half-odd resonances, the mean insolation takes a "double-eyeball" pattern, identical over the "eastern" and "western" hemispheres. Presuming that liquids, ices, clouds, albedo, and thermal emission are similarly distributed, this has significant implications for the observation and interpretation of potentially habitable exoplanets. Finally, whether a striped ball, eyeball, or double-eyeball pattern emerges, the possibility exists that long-term build-up of ice (or liquid) away from the hot spots may alter the planet's inertia tensor and quadrupole moments enough to re-orient the planet, ultimately changing the distribution of liquid and ice.

  17. Motel solar hot-water installation--Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Analysis of hardness of local water, average insolation for site, and daily hot water requirements insures suitability of solar-energy system design. Report describes two units which are designed to supply 81 percent of motel's annual hot water demand based on hypothetical 85 percent occupancy. Report includes drawings, operating and maintenance instructions, and test results for 1 day of operation.

  18. Multilayer ferroelectret-based energy harvesting insole

    NASA Astrophysics Data System (ADS)

    Luo, Z.; Zhu, D.; Beeby, S. P.

    2015-12-01

    This paper reports a flexible energy harvesting insole made of multilayer ferroelectrets, and demonstrates that this insole can power a wireless signal transmission. We have previously studied the energy harvesting characteristics of single and 10-layer ferroelectrets under compressive forces with quantified amplitudes and frequencies. In this work, we fabricate a flexible insole using multilayer ferroelectrets, and increase the number of layers from 10 up to 80, then use this insole to harvest energy from footsteps. We use this insole to power a commercial ZigBee wireless transmitter, and successfully demonstrate that an 8-bit data transmission can be solely powered by the energy harvested from this insole for every 3 to 4 footsteps. It confirms the anticipation from our previous work that the multilayer ferroelectrets are capable of powering the start-up and transmission of a low-power chipset, and shows a potential of using this energy harvesting insole in wearable applications.

  19. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint.

  20. A parameterized model for global insolation under partially cloudy skies

    NASA Technical Reports Server (NTRS)

    Choudhury, B.

    1982-01-01

    A simple and efficient parameterization of insolation under partially cloudy skies is discussed and compared with a set of exact radiative transfer results for clear skies, an empirical equation and observations. The parameterization is physically based and requires, as input variables, the ozone path length, precipitable water, Angstrom turbidity, surface air pressure and albedo, fractional cloud-cover and cloud thickness. Multiple reflection between the surface and the overlying atmosphere, and clouds are considered. The albedo of the earth-atmosphere system is also formulated and compared with a set of exact radiative transfer results. As compared to the exact radiative transfer results, the errors in the insolations are generally less than 1 percent, and in the albedo of the earth-atmosphere system less than 10 percent. The errors in the calculated insolations using climatological data are 2-3 percent when compared with many years averaged observations at Maudheim (Antarctica) and at Rockville (U.S.A.). A parametric equation for calculating directly the daily total insolation is also given.

  1. Insolation patterns on synchronous exoplanets with obliquity

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2009-11-01

    night disappear at β=90°. The insolation regime passes through several more transitions as β continues to increase toward 180°, but the surface distribution of insolation remains non-uniform in both latitude and longitude. Thus obliquity, like eccentricity, can protect certain areas of the planet from the worst extremes of temperature and solar radiation, and can improve the planet's habitability. These results also have implications for the direct detectability of extrasolar planets, and for the interpretation of their thermal emissions.

  2. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    SciTech Connect

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.; Noghrehabadi, A.R.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output. (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)

  3. Prediction of monthly mean daily global solar radiation using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Sivamadhavi, V.; Selvaraj, R. Samuel

    2012-12-01

    In this study, a multilayer feed forward (MLFF) neural network based on back propagation algorithm was developed, trained, and tested to predict monthly mean daily global radiation in Tamil Nadu, India. Various geographical, solar and meteorological parameters of three different locations with diverse climatic conditions were used as input parameters. Out of 565 available data, 530 were used for training and the rest were used for testing the artificial neural network (ANN). A 3-layer and a 4-layer MLFF networks were developed and the performance of the developed models was evaluated based on mean bias error, mean absolute percentage error, root mean squared error and Student's t-test. The 3-layer MLFF network developed in this study did not give uniform results for the three chosen locations. Hence, a 4-layer MLFF network was developed and the average value of the mean absolute percentage error was found to be 5.47%. Values of global radiation obtained using the model were in excellent agreement with measured values. Results of this study show that the designed ANN model can be used to estimate monthly mean daily global radiation of any place in Tamil Nadu where measured global radiation data are not available.

  4. Solar Insolation Recording System (SIRS) Reference Manual.

    DTIC Science & Technology

    1979-12-01

    signal from the pyranometor is amplified and converted into a pulse-rate output proportional to the input signal. This output pulse train is counted...clock. IX by 8 bit words of read/write memory (RAM), provision for up to 4K by A 9 (It t Ill 00~ ir t t �A t I Il" ),,I !"I t .11 A . c i .1l...selected memory locations and then enters the main loop. The main loop simply calls three subroutines, checks the position of the date/time switch

  5. Effects of insoles contact on static balance

    PubMed Central

    Shin, Ju Yong; Ryu, Young Uk; Yi, Chae Woo

    2016-01-01

    [Purpose] This study examined the effect of the degree of the contact area between the insoles and soles on static balance. [Subjects and Methods] Thirteen healthy male and female adults voluntarily participated. All of the subjects wore three different types of insoles (no orthotic insole, partial contact, full contact) in the present experiment. The subjects were instructed to place both feet parallel to each other and maintain static balance for 30 seconds. Center of pressure parameters (range, total distance, and mean velocity) were analyzed. [Results] The results show that the anteroposterior range and mediolateral (ML) total distance and velocity decreased when orthotic insoles with partial contact or full contact were used in comparison to when a flat insole (no orthotic insole) was used. Also, the ML range and total distance were lower with full contact than in the other two conditions. These results indicate that static balance improves as the degree of contact between the soles and insoles increases. [Conclusion] The results of this study suggests that using insoles with increased sole contact area would improve static balance ability. PMID:27190460

  6. Usability of NASA Satellite Imagery-Based Daily Solar Radiation for Crop Yield Simulation and Management Decisions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cassman, K. G.; Stackhouse, P. W.; Hoell, J. M.

    2007-12-01

    We tested the usability of NASA satellite imagery-based daily solar radiation for farm-specific crop yield simulation and management decisions using the Hybrid-Maize model (www.hybridmaize.unl.edu). Solar radiation is one of the key inputs for crop yield simulation. Farm-specific crop management decisions using simulation models require long-term (i.e., 20 years or longer) daily local weather data including solar radiation for assessing crop yield potential and its variation, optimizing crop planting date, and predicting crop yield in a real time mode. Weather stations that record daily solar radiation have sparse coverage and many of them have record shorter than 15 years. Based on satellite imagery and other remote sensed information, NASA has provided estimates of daily climatic data including solar radiation at a resolution of 1 degree grid over the earth surface from 1983 to 2005. NASA is currently continuing to update the database and has plans to provide near real-time data in the future. This database, which is free to the public at http://power.larc.nasa.gov, is a potential surrogate for ground- measured climatic data for farm-specific crop yield simulation and management decisions. In this report, we quantified (1) the similarities between NASA daily solar radiation and ground-measured data atr 20 US sites and four international sites, and (2) the accuracy and precision of simulated corn yield potential and its variability using NASA solar radiation coupled with other weather data from ground measurements. The 20 US sites are in the western Corn Belt, including Iowa, South Dakota, Nebraska, and Kansas. The four international sites are Los Banos in the Philippines, Beijing in China, Cali in Columbia, and Ibatan in Nigeria. Those sites were selected because of their high quality weather record and long duration (more than 20 years on average). We found that NASA solar radiation was highly significantly correlated (mean r2 =0.88**) with the ground

  7. Insolation and the Precession Index

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2000-01-01

    Simple nonlinear climate models yield a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin omega, where e is the Earth's orbital eccentricity and omega is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these periods. Two such models, a grey body and an energy balance climate model with an added quadratic term, produce e sin omega terms in temperature. These terms, which without feedback mechanisms achieve extreme values of about plus or minus 0.48 K for the grey body and plus or minus 0.64 K for the energy balance model, simultaneously cool one hemisphere while they warm the other. Moreover, they produce long-term cooling in the northern hemisphere when the Sun's perigee is near northern solstice and long-term warming in the northern hemisphere when the perigee is near southern solstice. Thus this seemingly paradoxical mechanism works against the standard model which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it may be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is close to the Earth during southern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.

  8. Forecasting of preprocessed daily solar radiation time series using neural networks

    SciTech Connect

    Paoli, Christophe; Muselli, Marc; Nivet, Marie-Laure; Voyant, Cyril

    2010-12-15

    In this paper, we present an application of Artificial Neural Networks (ANNs) in the renewable energy domain. We particularly look at the Multi-Layer Perceptron (MLP) network which has been the most used of ANNs architectures both in the renewable energy domain and in the time series forecasting. We have used a MLP and an ad hoc time series pre-processing to develop a methodology for the daily prediction of global solar radiation on a horizontal surface. First results are promising with nRMSE {proportional_to} 21% and RMSE {proportional_to} 3.59 MJ/m{sup 2}. The optimized MLP presents predictions similar to or even better than conventional and reference methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors. Moreover we found that the data pre-processing approach proposed can reduce significantly forecasting errors of about 6% compared to conventional prediction methods such as Markov chains or Bayesian inference. The simulator proposed has been obtained using 19 years of available data from the meteorological station of Ajaccio (Corsica Island, France, 41 55'N, 8 44'E, 4 m above mean sea level). The predicted whole methodology has been validated on a 1.175 kWc mono-Si PV power grid. Six prediction methods (ANN, clear sky model, combination..) allow to predict the best daily DC PV power production at horizon d + 1. The cumulated DC PV energy on a 6-months period shows a great agreement between simulated and measured data (R{sup 2} > 0.99 and nRMSE < 2%). (author)

  9. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at

  10. Determination of Martian Northern Polar Insolation Levels Using a Geodetic Elevation Model

    NASA Technical Reports Server (NTRS)

    Arrell, J. R.; Zuber, M. T.

    2000-01-01

    Solar insolation levels at the Martian polar caps bear significantly on the seasonal and climatic cycling of volatiles on that planet. In the northern hemisphere, the Martian surface slopes downhill from the equator to the pole such that the north polar cap is situated in a 5-km-deep hemispheric-scale depression. This large-scale topographic setting plays an important role in the insolation of the northern polar cap. Elevations measured by the Mars Orbiter Laser Altimeter (MOLA) provide comprehensive, high-accuracy topographical information required to precisely determine polar insolation. In this study, we employ a geodetic elevation model to quantify the north polar insolation and consider implications for seasonal and climatic changes. Additional information is contained in original extended abstract.

  11. Solar radiation at the Earth's surface: Its calculation and inference from satellite imagery

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1982-01-01

    Physical and empirical models for calculation of insolation on a horizontal surface are described. Calculation of the spectral components of insolation and the calculation of the integrated values using wavelength-averaged values, ignoring aerosol effects, are discussed. Empirical models for determining insolation from meteorological data under clear and cloudy skies are described. The influence of hourly and daily global solar radiation from GOES satellite images is illustrated. Data acquisition methods for the Great Plains experiment, the determination of cloud free brightness levels, and determination of cloud parameters and target brightness are considered. The use of two and seven satellite images per day resulted in insolation determinations having a standard error of less then 10% of the mean. Use of only one image per day resulted in a standard error of about 20% of the mean.

  12. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  13. Insolation on exoplanets with eccentricity and obliquity

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2013-09-01

    The pattern of insolation on an extrasolar planet has profound implications for its climate and habitability. A planet’s insolation regime depends on its orbital eccentricity, the obliquity of its spin axis, its rotation rate, and its longitude of vernal equinox. For example, although a planet receives the same time-averaged insolation at both poles, the peak insolation at its poles can differ by a factor up to 27, depending on its eccentricity and equinox. This is of particular interest for planets with polar icecaps (or lakes and seas), like Mercury, Earth, and Mars (or Titan). The nearly 600 exoplanets now with known eccentricities span a wide range of eccentricity from essentially zero up to near unity; but their obliquities are still unknown, and also may range widely. Including both non-zero eccentricity and obliquity together vastly broadens the variety of global insolation patterns on extrasolar planets. This applies especially to planets in synchronous rotation, or in other spin-orbit resonances (like Mercury), which can exhibit quite complicated and unusual insolation patterns. For example, regions of eternal daylight and endless night occur only on synchronous exoplanets, whose rotation periods equal their orbital periods; but the peak and time-averaged insolation can vary by factors of at least 32 and 88, respectively, over a planet with a rotation period of half its orbital period, an eccentricity of 0.20, and an obliquity of 60°. Patterns of both mean and peak insolation display various symmetries with respect to latitude and longitude on the planet’s surface. Most of these are relatively simple and easily understood; for example, a resonant planet whose orbital period is half of an odd multiple of its rotation period (as in Mercury’s 3/2 resonance) experiences identical insolation patterns at longitudes 180° apart. However, such half-odd resonances also exhibit a totally unexpected symmetry of the time-averaged insolation with respect to the

  14. Optimum orientation of tilting solar concentrator arrays

    NASA Astrophysics Data System (ADS)

    Harting, E.; Giutronich, J. E.

    1984-01-01

    This note shows that there is a considerable degree of freedom in selecting the orientation of a field of tilting solar concentrators, without changing the path of the sun across the concentrator acceptance angle, and hence without affecting performance. The orientation of a particular array may be chosen to more closely match the natural terrain, thus reducing site preparation costs. Further, a proper choice may improve overall performance in situations where the average daily insolation is asymmetrical about local noon.

  15. Clinical Cosmobiology - Sudden Cardiac Death and Daily / Monthly Geomagnetic, Cosmic Ray and Solar Activity - the Baku Study (2003-2005)

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Babayev, E. S.; Mustafa, F. R.; Abramson, E.; Israelevich, P.; Sulkes, J.

    2006-12-01

    Part of results of collaborative studies for revealing an influence of the periodical changes of solar, geomagnetic and cosmic ray activities on the sudden cardiac death (SCD) mortality is described in this paper. The data covering daily and monthly temporal distribution of SCD (788 patients in 36 months in 2003-2005), taken from all of emergency and first medical aid stations of grand Baku area, were analyzed and compared with certain cosmophysical parameters. It was obtained that SCD is higher on the highest and lowest daily levels of geomagnetic activity. Days with SCD are accompanied by higher cosmic ray (neutron) activity. The monthly number of SCD was inversely related to solar and geomagnetic activities while was positively linked with cosmic ray activity level. It was concluded that cosmic ray activity could be considered as one of regulating external/environmental factors in human homeostasis.

  16. Long-term variation in the ionosphere and lower thermosphere as seen in the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Hori, T.; Nose, M.; Otsuka, Y.

    2015-12-01

    In order to investigate characteristics of the long-term variation in the ionosphere and lower thermosphere, we analyzed the amplitude of geomagnetic solar quiet (Sq) field daily variation using 1-h geomagnetic field data obtained from 69 geomagnetic stations within the period of 1947-2013. In the present data analysis, we took advantage of the Inter-university Upper atmosphere Global Observation NETwork (IUGONET) products (metadata database and analysis software) for finding and handling the long-term observation data obtained at many observatories. The Sq amplitude observed at these geomagnetic stations showed a clear solar activity dependence and tended to be enhanced during each solar maximum phase. The Sq amplitude was the smallest around the minimum of solar cycle 23/24 in 2008-2009. This significant depression implies that the solar extreme ultraviolet (EUV) radiation responsible for ionization of the upper atmosphere decreased during this solar cycle minimum. In order to examine a global distribution of the long-term trend in the Sq amplitude, we derived the residual Sq amplitude from the deviation from the fitting curve between the solar F10.7 index and Sq amplitude. As a result, a majority of the trends in the residual Sq amplitude showed negative values over a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. Moreover, we estimate the neutral wind in the lower thermosphere from the Sq amplitude and height-integrated ionospheric conductivity in order to know the physical mechanism of the long-term trend in the residual Sq amplitude. As a result, the estimated thermospheric zonal and meridional winds showed a seasonal variation with a period of one year or less, but the solar activity dependence was unclear. This result suggests that the solar cycle dependence of the Sq amplitude may be mainly attributed to the variation of the ionospheric conductivity.

  17. Long-term variation in the upper atmosphere as seen in the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, Atsuki; Koyama, Yukinobu; Nose, Masahito; Hori, Tomoaki; Otsuka, Yuichi; Yatagai, Akiyo

    2014-12-01

    Characteristics of long-term variation in the amplitude of solar quiet (Sq) geomagnetic field daily variation have been investigated using 1-h geomagnetic field data obtained from 69 geomagnetic observation stations within the period of 1947 to 2013. The Sq amplitude observed at these geomagnetic stations showed a clear dependence on the 10- to 12-year solar activity cycle and tended to be enhanced during each solar maximum phase. The Sq amplitude was the smallest around the minimum of solar cycle 23/24 in 2008 to 2009. The relationship between the solar F10.7 index and Sq amplitude was approximately linear but about 53% of geomagnetic stations showed a weak nonlinear relation to the solar F10.7 index. In order to remove the effect of solar activity seen in the long-term variation of the Sq amplitude, we calculated a linear or second-order fitting curve between the solar F10.7 index and Sq amplitude during 1947 to 2013 and examined the residual Sq amplitude, which is defined as the deviation from the fitting curve. As a result, the majority of trends in the residual Sq amplitude that passed through a trend test showed negative values over a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. The relationship between the magnetic field intensity at 100-km altitude and residual Sq amplitude showed an anti-correlation for about 71% of the geomagnetic stations. Furthermore, the residual Sq amplitude at the equatorial station (Addis Ababa) was anti-correlated with the absolute value of the magnetic field inclination. This implies movement of the equatorial electrojet due to the secular variation of the ambient magnetic field.

  18. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China

    NASA Astrophysics Data System (ADS)

    Li, Mao-Fen; Fan, Li; Liu, Hong-Bin; Guo, Peng-Tao; Wu, Wei

    2013-01-01

    Estimation of daily global solar radiation (Rs) from routinely measured temperature data has been widely developed and used in many different areas of the world. However, many of them are site specific. It is assumed that a general model for estimating daily Rs using temperature variables and geographical parameters could be achieved within a climatic region. This paper made an attempt to develop a general model to estimate daily Rs using routinely measured temperature data (maximum (Tmax, °C) and minimum (Tmin, °C) temperatures) and site geographical parameters (latitude (La, °N), longitude (Ld, °E) and altitude (Alt, m)) for Guizhou and Sichuan basin of southwest China, which was classified into the hot summer and cold winter climate zone. Comparison analysis was carried out through statistics indicators such as root mean squared error of percentage (RMSE%), modeling efficiency (ME), coefficient of residual mass (CRM) and mean bias error (MBE). Site-dependent daily Rs estimating models were calibrated and validated using long-term observed weather data. A general formula was then obtained from site geographical parameters and the better fit site-dependent models with mean RMSE% of 38.68%, mean MBE of 0.381 MJ m-2 d-1, mean CRM of 0.04 and mean ME value of 0.713.

  19. RESEARCH PAPER: Forecast daily indices of solar activity, F10.7, using support vector regression method

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Liu, Dan-Dan; Wang, Jing-Song

    2009-06-01

    The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.

  20. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Goldenfeld, M.; Shimshoni, M.; Siegel, R.

    1993-03-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stormy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population.

  1. Estimation of daily global solar radiation as a function of routine meteorological data in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Meza, Francisco Javier; Yebra, María Lorenzo

    2016-08-01

    Solar radiation is the main responsible of many processes of the biophysical environment. Temperature changes, snow melt dynamics, carbon sequestration, evaporation from soils, plants, and open water bodies are explained by the amount of radiation received in a surface. Lack of direct observations and insufficient record length limit the ability to use global solar radiation information for resource use management and planning. Based on the general equation of Bristow and Campbell, we propose a modification that allows us to better represent atmospheric transmissivity as a function of routine meteorological variables and improve estimates of global solar radiation in Mediterranean and semi arid areas. The improved Bristow-Campbell model (IBC) is easy to use in any location where measurements of temperature, precipitation, and relative humidity are available, and present a simple solution that can be used as proxy for relative humidity in case that variable is not been measured.

  2. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment

    NASA Astrophysics Data System (ADS)

    Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel

    2017-03-01

    Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.

  3. Insolation-oriented model of photovoltaic module using Matlab/Simulink

    SciTech Connect

    Tsai, Huan-Liang

    2010-07-15

    This paper presents a novel model of photovoltaic (PV) module which is implemented and analyzed using Matlab/Simulink software package. Taking the effect of sunlight irradiance on the cell temperature, the proposed model takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. The cell temperature is then explicitly affected by the sunlight intensity. The output current and power characteristics are simulated and analyzed using the proposed PV model. The model verification has been confirmed through an experimental measurement. The impact of solar irradiation on cell temperature makes the output characteristic more practical. In addition, the insolation-oriented PV model enables the dynamics of PV power system to be analyzed and optimized more easily by applying the environmental parameters of ambient temperature and solar irradiance. (author)

  4. Earth Orbit v2.1: a 3-D visualization and analysis model of Earth's orbit, Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Kostadinov, T. S.; Gilb, R.

    2014-06-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism, causing, for example, the contemporary glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity, precession and obliquity. The interaction of the amplitudes, periods and phases of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing and duration of the seasons. This complexity makes Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, we present "Earth Orbit v2.1": an astronomically precise and accurate model that offers 3-D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcing. The model is developed in MATLAB® as a user-friendly graphical user interface. Users are presented with a choice between the Berger (1978a) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the Milankovitch parameters to be varied independently of each other, so that users can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. A 3-D orbital configuration plot, as well as various surface and line plots of insolation and insolation anomalies on various time and space scales are produced. Insolation computations use the model's own orbital geometry with no additional a priori input other than the Milankovitch parameter solutions. Insolation output and the underlying solar declination computation are successfully validated against the results of Laskar et al. (2004) and Meeus (1998), respectively. The model outputs some ancillary parameters as well, e.g., Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and several relevant paleoclimatological data sets can be produced. Both

  5. Surface meteorology and Solar Energy

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  6. Inverse insolation dependence of Venus' cloud-level convection

    NASA Astrophysics Data System (ADS)

    Imamura, Takeshi; Higuchi, Takehito; Maejima, Yasumitsu; Takagi, Masahiro; Sugimoto, Norihiko; Ikeda, Kohei; Ando, Hiroki

    2014-01-01

    It is generally accepted that convection in planetary atmospheres is enhanced in low latitudes and in the daytime where incoming solar radiation is intense. Here we demonstrate, using a local convection model, that this tendency is reversed for Venus' cloud-level convection, which is driven by heating of the cloud base by upwelling infrared radiation. The dense lower atmosphere of Venus serves as a heat reservoir, whose temperature is horizontally well homogenized by large-scale dynamics, and thus upwelling infrared flux heats the cloud base almost equally over the entire planet. Since solar radiation preferentially heats the upper part of the cloud and has a stabilizing influence on the atmosphere, convection is relatively suppressed in low latitudes and in the daytime. The inverse insolation dependence seen in the numerical model explains observations of the latitudinal dependence of the convective layer depth and the gravity wave activity. The mechanism suggested in this study should be taken into account in climate modeling of Venus and cloudy exoplanets. How the combination of the opposite effects of the infrared heating and the solar heating determines the global distribution of the convective activity is an issue of universal importance. A long-lifetime Venus balloon floating at cloud heights would be useful for understanding these dynamical processes and the associated material transport.

  7. Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations

    NASA Technical Reports Server (NTRS)

    Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.

    2013-01-01

    In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.

  8. Long-term variation in the upper atmosphere as seen in the amplitude of the geomagnetic solar quiet daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Hayashi, H.; Nose, M.; Hori, T.; Otsuka, Y.; Tsuda, T.

    2011-12-01

    It has been well-known that geomagnetic solar quiet (Sq) daily variation is produced by global ionospheric currents flowing in the E-region from middle latitudes to the magnetic equator. These currents are generated by a dynamo process via interaction between the neutral wind and ionospheric plasma in a region of the thermosphere and ionosphere. From the Ohm's equation, the ionospheric currents strongly depend on the ionospheric conductivity, polarization electric field and neutral wind. Then, to investigate the Sq amplitude is essential for understanding the long-term variations in the ionospheric conductivity and neutral wind of the thermosphere and ionosphere. Elias et al. [2010] found that the Sq amplitude tends to increase by 5.4-9.9 % in the middle latitudes from 1961 to 2001. They mentioned that the long-term variation of ionospheric conductivity associated with geomagnetic secular variation mainly determines the Sq trend, but that the rest component is ionospheric conductivity enhancement associated with cooling effects in the thermosphere due to increasing the greenhouse gases. In this talk, we clarify the characteristics of the long-term variation in the Sq amplitude using the long-term observation data of geomagnetic field and neutral wind. These observation data have been provided by the IUGONET (Inter-university Upper atmosphere Global Observation NETwork) project. In the present analysis, we used the F10.7 flux as an indicator of the variation in the solar irradiance in the EUV and UV range, geomagnetic field data with time resolution of 1 hour. The definition of the Sq amplitude is the difference of the H-component between the maximum and minimum per day when the Kp index is less than 4. As a result, the Sq amplitude at all the stations strongly depends on 11-year solar activity, and tends to enhance more during the high activities (19- and 22- solar cycles) than during the low activity (20-solar cycle). The Fourier spectra of the F10.7 flux and Sq

  9. Comment on "Strong signature of the active Sun in 100 years of terrestrial insolation data" by W. Weber.

    PubMed

    Feulner, Georg

    2011-11-04

    An analysis of ground-based observations of solar irradiance was recently published in this journal, reporting an apparent increase of solar irradiance on the ground of the order of 1% between solar minima and maxima [1]. Since the corresponding variations in total solar irradiance on top of the atmosphere are accurately determined from satellite observations to be of the order of 0.1% only [2], the one order of magnitude stronger effect in the terrestrial insolation data was interpreted as evidence for cosmic-ray induced aerosol formation in the atmosphere. In my opinion, however, this result does not reflect reality. Using the energy budget of Earth's surface, I show that changes of ground-based insolation with the solar cycle of the order of 1% between solar minima and maxima would result in large surface air temperature variations which are inconsistent with the instrumental record. It would appear that the strong variations of terrestrial irradiance found by [1] are due to the uncorrected effects of volcanic or local aerosols and seasonal variations. Taking these effects into account, I find a variation of terrestrial insolation with solar activity which is of the same order as the one measured from space, bringing the surface energy budget into agreement with the solar signal detected in temperature data.

  10. Determination of the Solar Energy Microclimate of the United States Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Vonderharr, T. H.; Ellis, J. S.

    1978-01-01

    The determination of total solar energy reaching the ground over the United States using measurements from meteorological satellites as the basic data set is examined. The methods of satellite data processing are described. Uncertainty analysis and comparison of results with well calibrated surface pyranometers are used to estimate the probable error in the satellite-based determination of ground insolation. It is 10 to 15 percent for daily information, and about 5 percent for monthly values. However, the natural space and time variability of insolation is much greater than the uncertainty in the method. The most important aspect of the satellite-based technique is the ability to determine the solar energy reaching the ground over small areas where no other measurements are available. Thus, it complements the widely spaced solar radiation measurement network of ground stations.

  11. Long-term variation in the upper atmosphere as seen in the geomagnetic solar quiet (Sq) daily variation

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Yatagai, A. I.; Nose, M.; Hori, T.; Otsuka, Y.

    2012-12-01

    It has been well-known that geomagnetic solar quiet (Sq) daily variation is produced by the global ionospheric currents flowing in the E-region, which are generated by dynamo process via interaction between the neutral wind and ionospheric plasma in a region of the lower thermosphere and ionosphere. Then, to investigate the Sq amplitude is essential for understanding the long-term variations in the ionospheric conductivity and neutral wind of the lower thermosphere and ionosphere. Recently, Elias et al. [2010] reported that the Sq amplitude tends to increase by 5.4-9.9 % in the middle latitudes in a period of 1961-2001. They mentioned that the long-term variation of ionospheric conductivity associated with geomagnetic secular variation mainly determines the Sq trend, but that the rest component is due to ionospheric conductivity enhancement associated with cooling effect in the thermosphere due to increasing greenhouse gas. In the present study, we clarify the characteristics of the long-term variation in the Sq amplitude using the long-term observation data of geomagnetic field and neutral wind. In the present analysis, we used the F10.7 solar flux as a good indicator of the variation in the solar irradiance in the EUV and UV range as well as geomagnetic field data with time resolution of 1 hour observed at 184 geomagnetic stations. The definition of the Sq amplitude is the difference of the H-component between the maximum and minimum every day when the Kp index is less than 4. As a result, the long-term variation in the Sq amplitude at all the geomagnetic stations shows a strong correlation with the solar F10.7 flux which depends on 11-year solar activity. The relationship between the Sq amplitude and F10.7 flux was not linear but nonlinear. This nonlinearity could be interpreted as the decrease of production rate of electrons and ions in the ionosphere for the strong EUV and UV fluxes as already reported by Balan et al. [1993]. In order to minimize the solar

  12. Evaluation of Overall Insolation Fluctuation Property Considering Insolation Fluctuation Independence among Various Points in Large Area

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Inoue, Takato; Suzuoki, Yasuo

    Power output fluctuation of photovoltaic power generation systems (PVSs) of high penetration may cause negative impact on the load frequency control (LFC) of existing electric power utility. For the cost-effective mitigation, the proper evaluation of power output fluctuation of PVSs dispersed in large-area is very important. Based on the independence in insolation fluctuation among various points, this paper discusses the practical usability of the standard deviation (STD) of total power output fluctuation of PVSs simply calculated as 1/√N value of STD at the representative point. The statistical evaluation using the insolation observed at 5 points within 25km × 25km reveals that STD with simplified calculation would be useful to evaluate STD of ensemble average of insolation on average for a certain period. Besides, the probability density of STD with simplified calculation is almost the same with that of STD of ensemble average for the period with large STD. As a result, the simplified calculation of STD would be useful for the stochastic evaluation of STD of ensemble average insolation among area at least 25km × 25km.

  13. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches

    NASA Astrophysics Data System (ADS)

    Sharifi, Sayed Saber; Rezaverdinejad, Vahid; Nourani, Vahid

    2016-11-01

    Although the sunshine-based models generally have a better performance than temperature-based models for estimating solar radiation, the limited availability of sunshine duration records makes the development of temperature-based methods inevitable. This paper presents a comparative study between Artificial Neural Networks (ANNs), Gene Expression Programming (GEP), Wavelet Regression (WR) and 5 selected temperature-based empirical models for estimating the daily global solar radiation. A new combination of inputs including four readily accessible parameters have been employed: daily mean clearness index (KT), temperature range (ΔT), theoretical sunshine duration (N) and extraterrestrial radiation (Ra). Ten statistical indicators in a form of GPI (Global Performance Indicator) is used to ascertain the suitability of the models. The performance of selected models across the range of solar radiation values, was depicted by the quantile-quantile (Q-Q) plots. Comparing these plots makes it evident that ANNs can cover a broader range of solar radiation values. The results shown indicate that the performance of ANN model was clearly superior to the other models. The findings also demonstrated that WR model performed well and presented high accuracy in estimations of daily global solar radiation.

  14. Effect of different insoles on postural balance: a systematic review.

    PubMed

    Christovão, Thaluanna Calil Lourenço; Neto, Hugo Pasini; Grecco, Luanda André Collange; Ferreira, Luiz Alfredo Braun; Franco de Moura, Renata Calhes; Eliege de Souza, Maria; Franco de Oliveira, Luis Vicente; Oliveira, Claudia Santos

    2013-10-01

    [Purpose] The aim of the present study was to perform a systematic review of the literature on the effect of different insoles on postural balance. [Subjects and Methods] A systematic review was conducted of four databases. The papers retrieved were evaluated based on the following inclusion criteria: 1) design: controlled clinical trial; 2) intervention: insole; 3) outcome: change in static postural balance; and 4) year of publication: 2005 to 2012. [Results] Twelve controlled trials were found comparing the effects of different insoles on postural balance. The papers had methodological quality scores of 3 or 4 on the PEDro scale. [Conclusion] Insoles have benefits that favor better postural balance and control.

  15. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    PubMed

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  16. Spatial and Temporal Variations of Solar Quiet Daily Sq Variation and Equatorial Electrojet Over Africa: Results From International Heliophysical Year

    NASA Astrophysics Data System (ADS)

    Rabiu, A.; Yumoto, K.; Bello, O.

    2010-12-01

    Space Environment Research Centre of Kyushu University, Japan, installed 13 units of Magnetic Data Acquisition Systems MAGDAS over Africa during the International Heliophysical Year IHY. Magnetic records from 10 stations along the African 96o Magnetic Meridian (Geographical 30o - 40o East) were examined for Solar quiet daily Sq variation in the three geomagnetic field components H, D and Z. Spatial variations of Sq in the geomagnetic components were examined. Signatures of equatorial electrojet and worldwide Sq were identified and studied in detail. H field experienced more variation within the equatorial electrojet zone. Diurnal and seasonal variations of the geomagnetic variations in the three components were discussed. Levels of inter-relationships between the Sq and its variability in the three components were statistically derived and interpreted in line with the mechanisms responsible for the variations of the geomagnetic field. Data from 2 magnetic observatories within equatorial electrojet EEJ strip and 2 stations outside the EEJ strip were employed to evaluate and study the signatures of the Equatorial electrojet over the African sector. The transient variations of the EEJ at two almost parallel axes using Lagos-Ilorin and Nairobi-Addis pairs were examined. The EEJ appear stronger in East than West Africa. The magnitudes and patterns of variation of EEJ strength along the two axes were examined for any simultaneity or otherwise of responses to ionospheric processes. The flow gradient of EEJ along the African sector was estimated and its diurnal variation studied.

  17. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    PubMed

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-07

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective.

  18. Clinical effects of lateral wedge arch support insoles in knee osteoarthritis

    PubMed Central

    Hsieh, Ru-Lan; Lee, Wen-Chung

    2016-01-01

    Abstract We compared the short-term efficacy of rigid versus soft lateral wedge arch support (LWAS) insoles for patients with knee osteoarthritis (OA), as assessed using the International Classification of Functioning, Disability and Health (ICF) system, through a prospective, double-blind, randomized controlled trial. Participants who fulfilled the combined radiographic and clinical criteria for knee OA, as defined by the American College of Rheumatology, were randomly prescribed 1 pair of rigid or soft LWAS insoles. Body functions and structures were evaluated according to Kellgren–Lawrence scores, the Foot Posture Index, Hospital Anxiety and Depression Scale scores, the pain–pressure threshold, postural stability, dynamic balance, and fall risk; activities and participation were assessed according to 10-m fast speed walking, stair climbing and chair rising times, and Chronic Pain Grade questionnaire responses; and knee OA-related health status was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS). Hospital Anxiety and Depression Scale scores, the pain–pressure threshold, physical activity, balance, Chronic Pain Grade questionnaire responses, and the KOOS were recorded before treatment and at 1-, 2-, and 3-month follow-ups. We enrolled 90 participants, 70 women and 20 men, with mean ages of 60.6 ± 10.8 and 63.1 ± 10.8 years in the rigid and soft LWAS insole groups, respectively. Repeated-measures analysis of covariance revealed significant time × group effect improvements in pain (P = 0.008 for the KOOS), stair ascent time (P = 0.003), daily living function (P = 0.003 for the KOOS), sports and recreation function (P = 0.012 for the KOOS), and quality of life (P = 0.021 for the KOOS) in the soft LWAS insole group. Patients with knee OA who used soft LWAS insoles for a short term showed more significant improvement than did those who used rigid LWAS insoles in pain, physical activity, daily living function, sports and

  19. Solar radiation on Mars: Update 1991

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  20. Orographic cloud over the eastern slopes of Mauna Loa volcano, Hawaii, related to insolation and wind

    SciTech Connect

    Garrett, A.J.

    1980-07-01

    During the period 1 to 11 June 1978, solar radiation and other meteorological data were gathered at eight stations arranged in a nearly linear transection extending from the coast at Hilo, Hawaii to Mauna Loa Observatory, 60 km inland and 3400 m higher. Solar radiation distributions followed climatological rainfall patterns; the driest areas were sunniest. At the wettest sites, underneath the orographic cloud, measured global solar radiation was only 50% of clear-sky potential, and the diffuse component probably accounted for more than 50% of the global radiation. The orographic cloud developed during the day in upslope winds, and sharply reduced afternoon solar radiation at all sites. Total cloudiness, and hence insolation, varied greatly from day to day due to the passage of trade wind cloud masses and jet stream cirrus.

  1. A probabilistic model of insolation for the Mojave desert-area

    NASA Technical Reports Server (NTRS)

    Hester, O. V.; Reid, M. S.

    1978-01-01

    A preliminary solar model has been developed for the area around the JPL's Goldstone Space Communications Complex. The model has the capability of producing any or all of the following outputs: (1) a clear sky theoretical amount of radiation, (2) solar radiation for clear sky, cloudy sky or partially clear sky depending on certain probabilistic parameters, and (3) an array of average solar energy reception rates (solar intensities) in kW/sq m for a specified length of time. This model is based on the ASHRAE clear day model, which is modulated by the effects of clouds. The distribution of clouds for any given time is determined by the combination of statistical procedures, measured insolation values over a six-months period, and a data bank of 19 years of cloud cover information.

  2. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Korinek, Ginger C.; Byappanahalli, Muruleedhara N.

    2004-01-01

    Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coliinactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coliconcentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.

  3. A Shoe Insole Delivering Subsensory Vibratory Noise Improves Balance and Gait in Healthy Elderly People

    PubMed Central

    Lipsitz, Lewis; Lough, Matthew; Niemi, James; Travison, Thomas; Howlett, Harold; Manor, Brad

    2014-01-01

    Objective The objective of this study was to test whether subsensory vibratory noise applied to the sole of the foot using a novel piezo-electric vibratory insole, can significantly improve sensation, enhance balance, and reduce gait variability in elderly people. We also aimed to determine the optimal level of vibratory noise, and whether the therapeutic effect would endure and the user’s sensory threshold would remain constant during the course of a day. Design A randomized single-blind crossover study of three subsensory noise stimulation levels on 3 separate days. Setting Balance and gait laboratory Participants 12 healthy community-dwelling elderly volunteers aged 65 – 90 years who could feel the maximum insole vibration. Intervention A urethane foam insole with the piezo-electric actuators delivering subsensory vibratory noise stimulation to the soles of the feet. Main Outcome Measures Balance, gait, and timed up-and-go tests. Results The vibratory insoles significantly improved performance on the timed up-and-go test, reduced the area of postural sway, and reduced the temporal variability of walking at both 70% and 85% of the sensory threshold and throughout the course of a day. Vibratory sensation thresholds remained relatively stable within and across study days. Conclusions This study provides proof of concept that the application of the principle of stochastic resonance to the foot sole sensory system using a new low voltage piezoelectric technology can improve measures of balance and gait that are associated with falls. Effective vibratory noise amplitudes range from 70% to 85% of the sensory thresholds and can be set once daily. PMID:25450133

  4. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities

    NASA Astrophysics Data System (ADS)

    Brines, M.; Dall'Osto, M.; Beddows, D. C. S.; Harrison, R. M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G. P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.

    2015-05-01

    Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long-term data sets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-means clustering analysis, we categorized the collected aerosol size distributions into three main categories: "Traffic" (prevailing 44-63% of the time), "Nucleation" (14-19%) and "Background pollution and Specific cases" (7-22%). Measurements from Rome (Italy) and Los Angeles (USA) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles' burst lasted 1-4 h, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. Nucleation events lasting for 2 h or more occurred on 55% of the days, this extending to > 4 h in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In

  5. Dynamic model of heat and mass transfer in rectangular adsorber of a solar adsorption machine

    NASA Astrophysics Data System (ADS)

    Chekirou, W.; Boukheit, N.; Karaali, A.

    2016-10-01

    This paper presents the study of a rectangular adsorber of solar adsorption cooling machine. The modeling and the analysis of the adsorber are the key point of such studies; because of the complex coupled heat and mass transfer phenomena that occur during the working cycle. The adsorber is heated by solar energy and contains a porous medium constituted of activated carbon AC-35 reacting by adsorption with methanol. To study the solar collector type effect on system's performances, the used model takes into account the variation of ambient temperature and solar intensity along a simulated day, corresponding to a total daily insolation of 26.12 MJ/m2 with ambient temperature average of 27.7 °C, which is useful to know the daily thermal behavior of the rectangular adsorber.

  6. Solar absorption cooling plant in Seville

    SciTech Connect

    Bermejo, Pablo; Pino, Francisco Javier; Rosa, Felipe

    2010-08-15

    A solar/gas cooling plant at the Engineering School of Seville (Spain) was tested during the period 2008-2009. The system is composed of a double-effect LiBr + water absorption chiller of 174 kW nominal cooling capacity, powered by: (1) a pressurized hot water flow delivered by mean of a 352 m{sup 2} solar field of a linear concentrating Fresnel collector and (2) a direct-fired natural gas burner. The objective of the project is to indentify design improvements for future plants and to serve as a guideline. We focused our attention on the solar collector size and dirtiness, climatology, piping heat losses, operation control and coupling between solar collector and chiller. The daily average Fresnel collector efficiency was 0.35 with a maximum of 0.4. The absorption chiller operated with a daily average coefficient of performance of 1.1-1.25, where the solar energy represented the 75% of generator's total heat input, and the solar cooling ratio (quotient between useful cooling and insolation incident on the solar field) was 0.44. (author)

  7. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners.

    PubMed

    Goga, Haruhisa

    2012-09-01

    It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.

  8. Effect of Optimal Daily Fertigation on Migration of Water and Salt in Soil, Root Growth and Fruit Yield of Cucumber (Cucumis sativus L.) in Solar-Greenhouse

    PubMed Central

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (P<0.05) increased the partial factor productivity of applied nitrogen by 88% and 209% in the early-spring and autumn-winter seasons, respectively, when compared to conventional interval fertigation. Although soils under the treatments optimal interval fertigation and optimal daily fertigation received the same amount of fertilizers, the treatment optimal daily fertigation maintained the relatively stable water, electrical conductivity and mineral nitrogen levels in surface soils, promoted fine root (<1.5 mm diameter) growth of cucumber, and eventually increased cucumber economic yield by 6.2% and 8.3% and partial factor productivity of applied nitrogen by 55% and 75% in the early-spring and autumn-winter seasons, respectively, when compared to the treatment optimal interval fertigation. These results suggested that optimal daily fertigation is a beneficial practice for improving crop yield and

  9. Effect of optimal daily fertigation on migration of water and salt in soil, root growth and fruit yield of cucumber (Cucumis sativus L.) in solar-greenhouse.

    PubMed

    Liang, Xinshu; Gao, Yinan; Zhang, Xiaoying; Tian, Yongqiang; Zhang, Zhenxian; Gao, Lihong

    2014-01-01

    Inappropriate and excessive irrigation and fertilization have led to the predominant decline of crop yields, and water and fertilizer use efficiency in intensive vegetable production systems in China. For many vegetables, fertigation can be applied daily according to the actual water and nutrient requirement of crops. A greenhouse study was therefore conducted to investigate the effect of daily fertigation on migration of water and salt in soil, and root growth and fruit yield of cucumber. The treatments included conventional interval fertigation, optimal interval fertigation and optimal daily fertigation. Generally, although soil under the treatment optimal interval fertigation received much lower fertilizers than soil under conventional interval fertigation, the treatment optimal interval fertigation did not statistically decrease the economic yield and fruit nutrition quality of cucumber when compare to conventional interval fertigation. In addition, the treatment optimal interval fertigation effectively avoided inorganic nitrogen accumulation in soil and significantly (P<0.05) increased the partial factor productivity of applied nitrogen by 88% and 209% in the early-spring and autumn-winter seasons, respectively, when compared to conventional interval fertigation. Although soils under the treatments optimal interval fertigation and optimal daily fertigation received the same amount of fertilizers, the treatment optimal daily fertigation maintained the relatively stable water, electrical conductivity and mineral nitrogen levels in surface soils, promoted fine root (<1.5 mm diameter) growth of cucumber, and eventually increased cucumber economic yield by 6.2% and 8.3% and partial factor productivity of applied nitrogen by 55% and 75% in the early-spring and autumn-winter seasons, respectively, when compared to the treatment optimal interval fertigation. These results suggested that optimal daily fertigation is a beneficial practice for improving crop yield and

  10. Insolation Weathering: An Instrumentation and Field Based Study (Invited)

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Warren, K.; Swami, S.; Folz-Donahue, K.; Evans, S.; Cavendar, J.; Smith, I.; Layzell, A.

    2010-12-01

    Processes of mechanical weathering related to diurnal insolation are largely unexplored. Recent studies (McFadden et al., 2005, Eppes et al., 2010) demonstrated that rocks in a range of environments exhibit preferentially orientated (~N-S) cracks that are hypothesized to form as rocks are heated and cooled during the sun’s daily transit across the sky. In this study, we attempt to better understand the association between rock fracture and directional insolation. In Charlotte, NC we instrumented a ~30 cm diameter granite boulder sitting in full sun exposure with 8 thermocouples, 8 strain rosettes, 6 acoustic emission sensors and a moisture sensor, in order to spatially and temporally correlate rock cracking with rock surface conditions. Temperature and strain are recorded every minute along with a suite of meteorological data, and acoustic emissions are continuously monitored. As part of an NSF REU, in the Providence Mountains of the Mojave Desert of Southern California, we examined every crack greater than 2 cm in length on 1027 desert pavement rocks of varying types and on surfaces of varying age (~1 ka to ~150 ka) in order to examine crack characteristics as a function of rock shape, rock type and rock exposure age. Analysis of preliminary instrumentation data indicates that rock cracking as monitored by AE devices occurs in discrete intervals of events that initially appear to be related to rapid changes in temperature and/or temperature gradients on the rock surface. Using 3-D location software, we are also able to locate the foci of events within the rock to a reasonable degree of certainty. Our data will allow us to begin to quantify the stress and temperature conditions under which cracking occurs. Preliminary analysis of our field data indicates that cracks exhibit preferred strike orientations (~NE) and dip directions (~ESE). These data support the idea that cracking occurs in association with the extreme temperature gradients that arise as rocks are

  11. A Wireless Flexible Sensorized Insole for Gait Analysis

    PubMed Central

    Crea, Simona; Donati, Marco; De Rossi, Stefano Marco Maria; Oddo, Calogero Maria; Vitiello, Nicola

    2014-01-01

    This paper introduces the design and development of a novel pressure-sensitive foot insole for real-time monitoring of plantar pressure distribution during walking. The device consists of a flexible insole with 64 pressure-sensitive elements and an integrated electronic board for high-frequency data acquisition, pre-filtering, and wireless transmission to a remote data computing/storing unit. The pressure-sensitive technology is based on an optoelectronic technology developed at Scuola Superiore Sant'Anna. The insole is a low-cost and low-power battery-powered device. The design and development of the device is presented along with its experimental characterization and validation with healthy subjects performing a task of walking at different speeds, and benchmarked against an instrumented force platform. PMID:24412902

  12. In shoe pressure measurements during different motor tasks while wearing safety shoes: The effect of custom made insoles vs. prefabricated and off-the-shelf.

    PubMed

    Caravaggi, Paolo; Giangrande, Alessia; Lullini, Giada; Padula, Giuseppe; Berti, Lisa; Leardini, Alberto

    2016-10-01

    Health and safety regulations in many countries require workers at risk to wear safety shoes in a factory environment. These shoes are often heavy, rigid, and uncomfortable. Wearing safety shoes daily leads to foot problems, discomfort and fatigue, resulting also in the loss of numerous working days. Currently, knowledge of the biomechanical effects of insoles in safety shoes, during working activities, is very limited. Seventeen workers from a metalworking factory were selected and clinically examined for any foot conditions. Workers feet were 3D scanned, with regards to their plantar view, and the images used to design 34 custom-insoles, based on foot and safety shoe models. Three insoles were blind-tested by each worker: custom (CUS); prefabricated with the safety-shoe (PSS), and off-the-shelf (OTS). Foot-to-insole pressure distribution was measured in seven motor tasks replicating typical working activities: single and double-leg standing; weight lifting; stair ascending and descending; normal and fast walking. Wearing CUS within safety shoes resulted in a greater uniform pressure distribution across plantar regions for most of the working activities. Peak pressure at the forefoot during normal walking was the lowest in the custom insole (CUS 275.9±55.3kPa; OTS 332.7±75.5kPa; PSS 304.5±54.2kPa). Normal and fast walking were found to be the most demanding activities in terms of peak pressure. Wearing safety shoes results in high pedobarographic parameters in several foot regions. The use of custom insoles designed on the foot morphology helps decrease peak pressure and pressure-time integral compared to prefabricated featureless insoles.

  13. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  14. Solar drying in the Caribbean

    SciTech Connect

    Headley, O. )

    1992-03-01

    The United Nations Food and Agricultural Organisation (FAO) has estimated that a quarter of crops are lost through inadequate handling after harvesting. The use of solar dryers can reduce these losses and improve the quality of food. Oliver Headley of the University of the West Indies overviews a range of dryers developed in the Caribbean region. Solar dryers have been used in various parts of the Caribbean for the past eighteen years. The main types are: closed cycle dryers with separate flat plate collector; open cycle dryers with roof vanes against direct sunlight; open cycle dryers with rockbed heat storage units; open cycle dryers with chimneys for air circulation; wire basket dryers with flow through ventilation; barn roof collectors feeding packed bed dryers. During the dry season (January to April), mean daily insolation in a typical Caribbean island is about 25 MJ/m{sup 2}. With such an abundant resource, solar crop drying emerged as a preferred method for the preservation of perishable commodities. In territories without fossil fuel reserves solar energy is an obvious alternative since it does not involve expenditure of scarce foreign exchange. Research and development work in solar crop drying was conducted both at experimental sites in the University and in rural districts throughout the region. Several types of dryer were designed and tested.

  15. A Self-Powered Insole for Human Motion Recognition

    PubMed Central

    Han, Yingzhou; Cao, Yalu; Zhao, Jingjing; Yin, Yajiang; Ye, Liangchen; Wang, Xiaofeng; You, Zheng

    2016-01-01

    Biomechanical energy harvesting is a feasible solution for powering wearable sensors by directly driving electronics or acting as wearable self-powered sensors. A wearable insole that not only can harvest energy from foot pressure during walking but also can serve as a self-powered human motion recognition sensor is reported. The insole is designed as a sandwich structure consisting of two wavy silica gel film separated by a flexible piezoelectric foil stave, which has higher performance compared with conventional piezoelectric harvesters with cantilever structure. The energy harvesting insole is capable of driving some common electronics by scavenging energy from human walking. Moreover, it can be used to recognize human motion as the waveforms it generates change when people are in different locomotion modes. It is demonstrated that different types of human motion such as walking and running are clearly classified by the insole without any external power source. This work not only expands the applications of piezoelectric energy harvesters for wearable power supplies and self-powered sensors, but also provides possible approaches for wearable self-powered human motion monitoring that is of great importance in many fields such as rehabilitation and sports science. PMID:27649188

  16. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  17. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell

    PubMed Central

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-01-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution. PMID:25736488

  18. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell

    NASA Astrophysics Data System (ADS)

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-03-01

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution.

  19. Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell.

    PubMed

    Hori, Masako; Sano, Yuji; Ishida, Akizumi; Takahata, Naoto; Shirai, Kotaro; Watanabe, Tsuyoshi

    2015-03-04

    Insolation is an important component of meteorological data because solar energy is the primary and direct driver of weather and climate. Previous analyses of cultivated giant clam shells revealed diurnal variation in the Sr/Ca ratio, which might reflect the influence of the daily light cycle. We applied proxy method to sample from prehistoric era, a fossil giant clam shell collected at Ishigaki Island in southern Japan. The specimen was alive during the middle Holocene and thus exposed to the warmest climate after the last glacial period. This bivalve species is known to form a growth line each day, as confirmed by the analysis of the Sr enrichment bands using EPMA and facilitated age-model. We analyzed the Sr/Ca, Mg/Ca and Ba/Ca ratios along the growth axis, measuring a 2-μm spot size at 2-μm interval using NanoSIMS. The Sr/Ca ratios in the winter layers are characterized by a striking diurnal cycle consisting of narrow growth lines with high Sr/Ca ratios and broad growth bands with low Sr/Ca ratios. These variations, which are consistent with those of the cultivated clam shell, indicate the potential for the reconstruction of the variation in solar insolation during the middle Holocene at a multi-hourly resolution.

  20. Thermochromic gels for control of insolation

    SciTech Connect

    Beck, A.; Hoffmann, T.; Koerner, W.; Fricke, J. )

    1993-05-01

    Thermochromic gels consist of a mixture of water, gelling agent, and a polyether reaction compound. They show a drastic increase of scattering when a characteristic switching temperature is surpassed. The hemispherical transmission consequently decreases from about 90 to 50% for a 1-mm-thick layer sandwiched between two glass panes. The increase in scattering is caused by a dramatic increase in number density and particle size of created scattering centers. The latter consists of agglomerated polyether chains with reduced water content, i.e., increased index of refraction. Our measurements cover the directional-directional transmission, as well as the directional-hemispherical transmission and reflection, using a double- beam spectrophotometer with an integrating sphere. For structural information a light-scattering apparatus was employed. Multiflux calculations allow predictions of the switching behaviour for nonvertical incidence and for arbitrarily thick layers. The thermochromic material is a low-cost, nontoxic product. The achieved switching action is reliable however, it may need improvement to allow application in solar architecture.

  1. Thermochemical solar hydrogen generation.

    PubMed

    Licht, Stuart

    2005-10-07

    Solar direct, indirect and hybrid thermochemical processes are presented for the generation of hydrogen and compared to alternate solar hydrogen processes. A hybrid solar thermal/electrochemical process combines efficient photovoltaics and concentrated excess sub-bandgap heat into highly efficient elevated temperature solar electrolysis of water and generation of H2 fuel utilizing the thermodynamic temperature induced decrease of E(H2O) with increasing temperature. Theory and experiment is presented for this process using semiconductor bandgap restrictions and combining photodriven charge transfer, with excess sub-bandgap insolation to lower the water potential, and their combination into highly efficient solar generation of H2 is attainable. Fundamental water thermodynamics and solar photosensitizer constraints determine solar energy to hydrogen fuel conversion efficiencies in the 50% range over a wide range of insolation, temperature, pressure and photosensitizer bandgap conditions.

  2. Reconstruction of six decades of daily total solar shortwave irradiation in the Iberian Peninsula using sunshine duration records

    NASA Astrophysics Data System (ADS)

    Román, Roberto; Bilbao, Julia; de Miguel, Argimiro

    2014-12-01

    Total global solar shortwave (G) irradiation and sunshine duration were recorded at nine Spanish stations located in the Iberian Peninsula. G irradiation under cloudless conditions was simulated by means of a radiative transfer model using satellite data as input. A method based on these cloudless simulations and sunshine duration records was developed to reconstruct G series. This model was validated against experimental data, providing a good agreement for cloudless skies (mean bias error of 0.4% and root mean square error of 5.8%). Monthly averages of modelled and measured G irradiation presented a mean bias error of 0.5% and a root mean square error of 3%. Differences between modelled and measured G irradiation were in agreement within the model uncertainties. The reconstruction model was applied to sunshine duration measurements, giving long-term G series at the nine locations. Monthly, seasonal, and annual G anomalies were calculated and analysed. Averaged series (using the nine locations) showed a statistically significant decrease in annual G from 1950 to the mid 1980s (-1.7%dc-1) together with a significant increase from the mid 1980s to 2011 (1.6%dc-1). The effect of uncertainty in the reconstructed series on statistically significant trends was studied.

  3. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  4. A comparison of shoe insole materials in plantar pressure relief.

    PubMed

    Leber, C; Evanski, P M

    1986-12-01

    A clinical study was performed to evaluate the effectiveness of seven shoe insole materials and their ability to relieve areas of high plantar pressure. The following materials were tested: Latex foam, Plastazote, Dynafoam, Ortho felt, PPTR, Spenco, and Molo. Twenty-six patients with areas of high plantar pressure were tested using each of these materials. The Harris and Beath footprinting technique was used to measure plantar pressure. It was found that the average pressure of a clinically painful plantar area was 398.15kN/m2. All insole materials tested decreased this pressure, with averages ranging from 186.33kN/m2 to 286.35kN/m2. PPT, Plastazote and Spenco were the most effective products tested.

  5. FreeWalker: a smart insole for longitudinal gait analysis.

    PubMed

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  6. Insolation and Resulting Surface Temperatures of Study Regions on the Moon and Implications for Mercury

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald

    2010-05-01

    The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2014 (Hiesinger et al., 2010). The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40µm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia (Hiesinger et al., 2010; Helbert et al., 2005). Previous studies of the lunar surface have shown that thermal emission contributes to the observed signal from the surface and can influence the spectral characteristics, e.g. the depth of absorption bands (e.g. Clark, 2009; Pieters et al., 2009; Sunshine et al., 2009). Therefore accurate knowledge of the solar insolation and resulting thermal variations is needed. In order to calculate insolation and surface temperatures, we use a numerical model which has been described by Bauch et al. (2009). Surface temperatures are depending on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, and albedo. Topography also influences surface temperatures, as it changes the angle of solar incidence, but also leads to shadowed areas, e.g. the floors of polar craters. The model solves the one-dimensional heat transfer equation, based on a depth and temperature dependent thermal inertia. The surface boundary condition is based on the energy balance relation; the energy entering a surface equals the energy leaving the surface. In addition to the direct solar insolation, reflectance and scattering from adjacent surface regions also influence the surface temperatures. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. For our

  7. Framework for the mapping of the monthly average daily solar radiation using an advanced case-based reasoning and a geostatistical technique.

    PubMed

    Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon

    2014-04-15

    For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.

  8. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  9. REL3.0 SW DAILY UTC

    Atmospheric Science Data Center

    2016-10-05

    ... Active Radiation Flux Cloud Fraction Cosine Solar Zenith Angle From Satellite Cosine Solar Zenith Angle From Astronomy ... ISCCP Data Table SSE Renewable Energy Readme Files:  Readme_3.0_sw_daily ...

  10. REL3.0 SW DAILY LOCAL

    Atmospheric Science Data Center

    2016-10-05

    ... Active Radiation Flux Cloud Fraction Cosine Solar Zenith Angle From Satellite Cosine Solar Zenith Angle From Astronomy ... ISCCP Data Table SSE Renewable Energy Readme Files:  Readme_3.0_sw_daily ...

  11. Daily Care

    MedlinePlus

    ... Life Daily Plan Activities Communication Food & Eating Music & Art Personal Care Incontinence Bathing Dressing & Grooming Dental Care ... About Us | News | Events | Press | Careers | Privacy Policy | Copyrights & Reprints | Contact Us National Headquarters Alzheimer's Association National ...

  12. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  13. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska

    PubMed Central

    Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng

    2011-01-01

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085

  14. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  15. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    SciTech Connect

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  16. Arkansas solar retrofit guide

    SciTech Connect

    Not Available

    1981-06-01

    An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is reported. The retrofits examined were greenhouses, air heaters and water heaters. The design, construction, and performance of the retrofits are described, along with some information about sun motion and orientation and greenhouse gardening. Appended are maps, tables, and graphs of insolation in Arkansas. (LEW)

  17. Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors

    PubMed Central

    Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan

    2016-01-01

    Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation. PMID:27706077

  18. Evaluation of Relation between Distance and Insolation Fluctuation Independence based on Coherence and Ensemble Average of Insolation Fluctuations at Two Points

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Inoue, Takato; Suzuoki, Yasuo

    Power output fluctuation of high penetration photovoltaic power generation systems (PVSs) may cause negative impacts on the load frequency control (LFC) of an electric power utility. For the cost-effective mitigation, the proper evaluation of apparent electricity demand fluctuation is important, taking the power output of PVSs into account as a negative demand. If the actual power output patterns are independent among several points, the standard deviation (STD) of total power output fluctuation of PVSs located in several points can be estimated based on the addition theorem of variance. Moreover, the central limit theorem may be applied if the probability distribution of insolation fluctuation is the same among several points. As a fundamental study to apply the stochastic methods, this study evaluates the following two factors to determine the distance between two points with which the insolation patterns of two points can be considered as independent: 1) the coherence of insolation fluctuation for various combinations of two points with different distances, 2) the correlation diagram of two different STDs, i.e. the STD of ensemble average insolation fluctuation observed at two points and the averaged STD of each STD of insolation fluctuation at two points. The results suggest that the insolation fluctuation consisting of the cycles shorter than 30min can be considered as independent if the distance between two points is longer than 5km-10km.

  19. Fully casted soft power generating triboelectric shoe insole

    NASA Astrophysics Data System (ADS)

    Haque, Rubaiyet I.; Farine, Pierre-André; Briand, Danick

    2016-11-01

    Power generating soft triboelectric based shoe insole fully elastomeric and compatible with large-scale fabrication technique has been developed. During the process, film casting and stencil printing techniques were implemented to deposit/pattern elastomeric and soft/flexible materials, such as, polydimethylsiloxane (PDMS) and polyurethane (PU). Carbon- based elastomeric materials were used as electrodes, which were also film casted. The developed triboelectric generator (TENG) was capable of harnessing electrical power effectively from mechanical deformation of the system during walking or running activities. The performance of the device was tested for walking with frequency of 0.9±0.2 Hz. The power (rms value) of 0.25 mW was achieved for load resistance of 100 MΩ,, which corresponded to the power density (rms value) of 1.9 μW/cm2.

  20. Correlating Pluto's Albedo Distribution to Long Term Insolation Patterns

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.; Stern, S. Alan; Young, Leslie A.; Buratti, Bonnie J.; Ennico, Kimberly; Grundy, Will M.; Olkin, Catherine B.; Spencer, John R.; Weaver, Hal A.

    2015-11-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as sharp boundaries for longitudinal variations. These contrasts suggest Pluto undergoes dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, in this talk we will explore the volatile migration process driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (amplitude of 23 degrees over 3 Myrs) and regression of the orbital longitude of perihelion (3.7 Myrs). We will build upon the long-term insolation history model described by Earle and Binzel (2015, Icarus 250, 405-412) with the goal of identifying the most critical timescales that drive the features observed in Pluto’s current post-perihelion epoch. This work was supported by the NASA New Horizons Project.

  1. Characteristics of long-term variation in the amlitude of the geomagnetic solar quiet (Sq) daily variation using the Inter-university Upper atmosphere Gobal Observation NETwork (IUGONET) data analysis system

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Koyama, Y.; Nose, M.; Hori, T.; Otsuka, Y.; Yatagai, A. I.

    2014-12-01

    Characteristics of long-term variation in the amplitude of solar quiet geomagnetic field daily variation (Sq) have been investigated using 1-hour geomagnetic field data obtained from 69 geomagnetic stations in a period of 1947-2013. In the present data analysis, we took advantage of the IUGONET data analysis system. The Sq amplitude clearly showed a 10-12 year solar activity dependence and it tended to enhance during each solar maximum. During the minimum of solar cycle 23/24 in 2008-2009, the Sq amplitude became the smallest in the investigated period. The relationship between the solar F10.7 index and Sq amplitude is approximately linear but 64 percent of geomagnetic stations show a weak nonlinear dependence on the solar F10.7 index. In order to remove the effect of solar activity seen in the long-term variation of the Sq amplitude, we calculated a linear or second order fitting curve between the solar F10.7 index and Sq amplitude during 1947-2013, and examined the residual Sq amplitude, which is defined as the deviation from the fitting curve. As a result, a majority of the trends in the residual Sq amplitude that passed through a trend test showed a negative value in a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. The relationship between the magnetic field intensity and residual Sq amplitude showed an anti-correlation for about 71 percent of geomagnetic stations. On the other hand, the residual Sq amplitude in the equatorial station (Addis Ababa) was anti-correlated with the absolute value of the magnetic field inclination. This implies the movement of the equatorial electrojet due to the secular variation of the ambient magnetic field.

  2. A Novel Shear Reduction Insole Effect on the Thermal Response to Walking Stress, Balance, and Gait

    PubMed Central

    Ammanath, Peethambaran; Le, Tima; Luring, Christopher; Wensman, Jeffrey; Grewal, Gurtej S.; Najafi, Bijan; Pop-Busui, Rodica

    2014-01-01

    Shear stresses have been implicated in the formation of diabetes-related foot ulcers. The aim of this study was to evaluate the effect of a novel shear-reducing insole on the thermal response to walking, balance, and gait. Twenty-seven diabetes peripheral neuropathy patients were enrolled and asked to take 200 steps in both intervention and standard insoles. Thermal foot images of the feet were taken at baseline (1) following a 5-minute temperature acclimatization and (2) after walking. Testing order was randomized, and a 5-minute washout period was used between testing each insole condition. Sudomotor function was also assessed. Gait and balance were measured under single and dual task conditions using a validated body worn sensor system. The mean age was 65.1 years, height was 67.3 inches, weight was 218 pounds, and body mass index was 33.9, 48% were female, and 82% had type 2 diabetes. After walking in both insole conditions, foot temperatures increased significantly in standard insoles. The intervention insole significantly reduced forefoot and midfoot temperature increases (64.1%, P = .008; 48%, P = .046) compared to standard insoles. There were significant negative correlations with sudomotor function and baseline temperatures (r = .53-.57). The intervention demonstrated 10.4% less gait initiation double support time compared to standard insoles (P = .05). There were no differences in static balance measures. We found significantly lower forefoot and midfoot temperature increases following walking with shear-reducing insoles compared to standard insoles. We also found improvements in gait. These findings merit future study for the prevention of foot ulcer. PMID:25107709

  3. U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer

    Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

  4. Local effects of partly-cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Griffin, T. J.

    1983-01-01

    Atmospheric aerosol and turbidity measurements were analyzed and the results are presented. The correlation of global insolation with cloud cover fractions for the first complete year's data set was completed. A theoretical model was developed to parameterize the effects of local aerosols upon insolation received at the ground using satellite radiometric data and insolation measurements under clear sky conditions. A February data set, composed of one minute integrated global insolation and direct solar irradiances, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data was collected to test the model and used to calculate the effects of local aerosols.

  5. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing

    PubMed Central

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775

  6. Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes.

    PubMed

    Chiu, Hung-Ta; Shiang, Tzyy-Yuang

    2007-05-01

    The purpose of this study was to investigate the effects of insoles and additional shock absorption foam on the cushioning properties of various sport shoes with an impact testing method. Three commercial sport shoes were used in this study, and shock absorption foam (TPE5020; Vers Tech Science Co. Ltd., Taiwan) with 2-mm thickness was placed below the insole in the heel region for each shoe. Eight total impacts with potential energy ranged from 1.82 to 6.08 J were performed onto the heel region of the shoe. The order of testing conditions was first without insole, then with insole, and finally interposing the shock absorption foam for each shoe. Peak deceleration of the striker was measured with an accelerometer attached to the striker during impact. The results of this study seemed to show that the insole or additional shock absorption foam could perform its shock absorption effect well for the shoes with limited midsole cushioning. Further, our findings showed that insoles absorbed more, even up to 24-32% of impact energy under low impact energy. It seemed to indicate that insoles play a more important role in cushioning properties of sport shoes under a low impact energy condition.

  7. Studying Maximum Plantar Stress per Insole Design Using Foot CT-Scan Images of Hyperelastic Soft Tissues

    PubMed Central

    Sarikhani, Ali; Motalebizadeh, Abbas; Kamali Doost Azad, Babak

    2016-01-01

    The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot. PMID:27843284

  8. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations.

    PubMed

    Koch, Markus; Lunde, Lars-Kristian; Ernst, Michael; Knardahl, Stein; Veiersted, Kaj Bo

    2016-03-01

    This study aimed to test the validity and reliability of pressure-measurement insoles (medilogic® insoles) when measuring vertical ground reaction forces in field situations. Various weights were applied to and removed from the insoles in static mechanical tests. The force values measured simultaneously by the insoles and force plates were compared for 15 subjects simulating work activities. Reliability testing during the static mechanical tests yielded an average interclass correlation coefficient of 0.998. Static loads led to a creeping pattern of the output force signal. An individual load response could be observed for each insole. The average root mean square error between the insoles and force plates ranged from 6.6% to 17.7% in standing, walking, lifting and catching trials and was 142.3% in kneeling trials. The results show that the use of insoles may be an acceptable method for measuring vertical ground reaction forces in field studies, except for kneeling positions.

  9. Solar repowering for electric generation. Northeastern Station Unit 1, Public Service Company of Oklahoma

    SciTech Connect

    Not Available

    1980-07-15

    The Department of Energy contracted for Black and Veatch to develop a conceptual design for solar repowering Northeastern Station Unit 1 (NES 1) of the Public Service Company of Oklahoma (PSO). NES 1 is located about 50 km (30 miles) northeast of Tulsa, Oklahoma. This plant was selected because it is representative of candidate plants for repowering and for solar-fossil hybrid operation; it is located in a moderate insolation region, utilizes an efficient reheat cycle with steam conditions characteristic of modern power plants, and has sufficient land for repowering. NES 1 has a subcritical, single reheat turbine-generator and a gas-fired steam generator. The basic repowering configuration was established through a series of trade studies and the criterion that proven technology be used. The system selected has a water/steam receiver which supplies superheated steam to the turbine at a design point flow rate sufficient to displace 20 percent of the unit's fossil fuel consumption. This volume contains the appendices: (A) system requirements specification, and (B) daily insolation profiles. (WHK)

  10. Analysis of walking improvement with dynamic shoe insoles, using two accelerometers

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako

    2005-07-01

    The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.

  11. [Providing the Optimal Insolation of a Photobiological Architectural Shell for Microalgae Cultivation].

    PubMed

    Ermachenko, P A; Buzalo, N S; Perevjazka, D S

    2016-01-01

    Translucent architectural shells with microalgae are considered as an element of local photobiological treatment facilities integrated in the urban environment. A mathematical microalgae growth model for the prediction of insolation and temperature behaviour in the medium during microalgae cultivation under dynamically fluctuating natural lighting is presented. The task of optimizing the parameters of photobiological architectural shell with respect to temperature and insolation is set. The results of numerical experiments for the model problem are shown.

  12. Effects of low-energy laser insolation upon the development of postradiation syndrome

    NASA Astrophysics Data System (ADS)

    Pavlova, Rimma N.; Gomberg, Vladimir G.; Boiko, Vladimir A.; Pupkova, Ludmila S.; Reznikov, Leonid L.; Dadali, V. A.

    1996-04-01

    Basic pathogenic research as well as the studies of clinical therapeutic aspects dealing with the long-term gamma radiation effects are of utmost significance nowadays. The main goal of the present study was to establish the capability of low-energy laser insolation to oppose the free radical oxidative chain reactions inherent to the effects of radiation. Adequate doses of low- energy laser insolation were shown to produce positive effects upon the metabolism similar to those of pharmacologic radioprotectors.

  13. Solar Thermal Conversion

    SciTech Connect

    Kreith, F.; Meyer, R. T.

    1982-11-01

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  14. The role of spring insolation in the seasonality of precipitation of the eastern United States

    NASA Astrophysics Data System (ADS)

    Hardt, B. F.; Rowe, H. D.; Springer, G. S.; Edwards, R.; Cheng, H.

    2012-12-01

    Milankovitch theory emphasizes the dominant role of summer insolation changes on the growth and decay of continental ice sheets during the Pleistocene. Evidence from speleothems also shows the clear impacts of summer insolation on precipitation in monsoon regions. In contrast, relatively few records show climatic variability in phase with spring or autumn insolation. Here we present stable isotope records from two stalagmites collected in Buckeye Creek Cave (BCC) in east central North America that is the first to show ten complete precessional cycles that is anti-phased with spring insolation. Based on analysis of modern precipitation, δ18O of speleothem calcite most likely represents changes in the balance of seasonal precipitation, suggesting a relative increase in summer precipitation during spring insolation minima. This variability may be driven by the North Atlantic subtropical anticyclone and a seasonally-lagged sea surface temperature response to spring insolation forcing. Millennial-scale events observed at BCC are weak (~0.3‰) relative to orbital variability (~2‰), but are broadly coincident with the timing found in Chinese and Brazilian speleothem records of monsoon intensity. As the subtropical North Atlantic is the primary moisture source for the Arctic, the limited evidence of Dansgaard-Oeschger or Heinrich events in the BCC stalagmites supports the idea that millennial features of glacial climate originate in the North Atlantic.

  15. Parametric study of orthopedic insole of valgus foot on partial foot amputation.

    PubMed

    Guo, Jun-Chao; Wang, Li-Zhen; Chen, Wei; Du, Cheng-Fei; Mo, Zhong-Jun; Fan, Yu-Bo

    2016-01-01

    Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°-10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.

  16. Solar panel parallel mounting configuration

    NASA Technical Reports Server (NTRS)

    Mutschler, Jr., Edward Charles (Inventor)

    1998-01-01

    A spacecraft includes a plurality of solar panels interconnected with a power coupler and an electrically operated device to provide power to the device when the solar cells are insolated. The solar panels are subject to bending distortion when entering or leaving eclipse. Spacecraft attitude disturbances are reduced by mounting each of the solar panels to an elongated boom made from a material with a low coefficient of thermal expansion, so that the bending of one panel is not communicated to the next. The boom may be insulated to reduce its bending during changes in insolation. A particularly advantageous embodiment mounts each panel to the boom with a single mounting, which may be a hinge. The single mounting prevents transfer of bending moments from the panel to the boom.

  17. Solar energy education. Renewable energy: A background text

    NASA Astrophysics Data System (ADS)

    Some of the most common forms of renewable energy are presented. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the Sun and the solar energy that it yields. Discussions on the Sun's composition and the relationship between the Earth, Sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy.

  18. Pilot study demonstrating that sole mechanosensitivity can be affected by insole use.

    PubMed

    Vie, Bruno; Nester, Christopher James; Porte, Lisa Marie; Behr, Michel; Weber, Jean Paul; Jammes, Yves

    2015-01-01

    Insoles are known to alter plantar loads and thus plantar sensory input. We therefore hypothesised that plantar somatosensory sensation could be modified over time by use of hard metatarsal pads. A sample of 12 healthy female participants was randomly allocated to either soft metatarsal pads (n=6, latex foam, Shore A11) or hard metatarsal pads groups (n = 6, thermoplastic, ShoreA65). All wore the same shoe type and pedometers measured daily activities. Using a bespoke actuated device, multiple mechanical stimuli were applied to the forefoot and rearfoot before and after 8 and 30 days of wearing the pads. A control test comprised estimation of multiple auditory sensations at day 0, 8 and 30. Changes in detection of the mechanical and sound stimuli were estimated using the Stevens power function, Ψ = k × Φ(n) (estimate = Ψ; stimulus = Φ). The k coefficient measured the sensitivity, i.e. the lowest detectable load/sound, and the n coefficient the gain in perception over time. After 30 days, hard metatarsal pads group had increased plantar sensitivity in the forefoot but not the rearfoot. The soft metatarsal pads group showed no changes in plantar sensitivity and the detection of auditory sensation remained stable over the 30 days.Metatarsal pads with relatively high hardness increased the perception of the lowest mechanical stimulus in the forefoot compared to soft metatarsal pads. This provides initial evidence of the potential for changes in plantar somatosensory sensation due to choice of orthotic designs in patients with foot-related problems.

  19. Influence of custom-made and prefabricated insoles before and after an intense run

    PubMed Central

    2017-01-01

    Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with

  20. Toward space solar power: Wireless energy transmission experiments past, present and future

    NASA Astrophysics Data System (ADS)

    Little, Frank E.; McSpadden, James O.; Chang, Kai; Kaya, Nobuyuki

    1998-01-01

    Solar power is a reality. Today, increasing numbers of photovoltaic and other solar-powered installations are in service around the world and in space. These uses range from the primary electric power source for satellites, remote site scientific experiments and villages in developing countries to augmenting the commercial electric grid and providing partial power for individual businesses and homeowners in developed countries. In space, electricity generated by photovoltaic conversion of solar energy is the mainstay of power for low Earth and geostationary satellite constellations. Still, for all its acceptance as a benign and environmentally friendly energy source, terrestrial solar power has yet to be seriously considered a viable technology for providing base electrical generating capacity. The obvious reason is sunshine on Earth is too unreliable. In addition to the diurnal and seasonal cycles, inclement weather reduces the average daily period and intensity of insolation. However, the Sun shines constantly in space. The challenge is to harvest and transmit the energy from space to Earth. The concept of space solar power based on microwave wireless energy transmission was first put forth more than 25 years ago by Dr. Peter Glaser. We review historical experiments in wireless energy transmission which have brought the technology from a laboratory curiosity to its present status. Results from recent experiments and their implications for wireless energy transmission as an enabling technology for space solar power are reviewed. Current developments are discussed along with proposed terrestrial and space experiments.

  1. Starting and steady-state characteristics of dc motors powered by solar cell generators

    NASA Astrophysics Data System (ADS)

    Appelbaum, J.

    1986-03-01

    The performance of dc motors (series, separately-excited, and shunt motors) powered by a solar cell generator and loaded by two different types of loads, one a constant load and one a ventilator load, were analyzed with respect to the transient (starting) and steady state operation. Direct current motors are employed in photovoltaic water pumping systems; therefore, the understanding of the system operation and the matching of the system components (solar cells, dc motor type, and load type) are important factors of the system design. Since the solar cell generator in a nonlinear and time-dependent power supply with an output that varies with the insolation (hourly and daily), the performance characteristics of the dc motor are different when supplied by a solar cell generator than when supplied by a conventional constant voltage source. The transient solution was obtained by using an available computer program - SUPER SCEPTRE. The separately-excited (or permanent magnet) motor with a ventilator load was found to be the most suitable for the solar cell generator. The series motor is quite acceptable, but the shunt motor gives poor performance. In all cases the ventilator load is more compatible with the solar cell generator than with the constant load.

  2. Test facility for solar-cell reference conditions

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1976-01-01

    A test facility, intended primarily for long-term monitoring of the global insolation and its components and the concurrent solar cell performance under a wide variety of measureable atmospheric and weather conditions, is described. Instruments for the measurement of insolation, cell performance, turbidity, water vapor, and cloud cover are described. Preliminary evaluation of the hourly data base generated over a two-month period for a range of sky conditions from clear to overcast is presented.

  3. Greenland during the last interglacial: the relative importance of insolation and oceanic changes

    NASA Astrophysics Data System (ADS)

    Pedersen, Rasmus A.; Langen, Peter L.; Vinther, Bo M.

    2016-09-01

    Insolation changes during the Eemian (the last interglacial period, 129 000-116 000 years before present) resulted in warmer than present conditions in the Arctic region. The NEEM ice core record suggests warming of 8 ± 4 K in northwestern Greenland based on stable water isotopes. Here we use general circulation model experiments to investigate the causes of the Eemian warming in Greenland. Simulations of the atmospheric response to combinations of Eemian insolation and preindustrial oceanic conditions and vice versa are used to disentangle the impacts of the insolation change and the related changes in sea surface temperatures and sea ice conditions. The changed oceanic conditions cause warming throughout the year, prolonging the impact of the summertime insolation increase. Consequently, the oceanic conditions cause an annual mean warming of 2 K at the NEEM site, whereas the insolation alone causes an insignificant change. Taking the precipitation changes into account, however, the insolation and oceanic changes cause more comparable increases in the precipitation-weighted temperature, implying that both contributions are important for the ice core record at the NEEM site. The simulated Eemian precipitation-weighted warming of 2.4 K at the NEEM site is low compared to the ice core reconstruction, partially due to missing feedbacks related to ice sheet changes and an extensive sea ice cover. Surface mass balance calculations with an energy balance model further indicate that the combination of temperature and precipitation anomalies leads to potential mass loss in the north and southwestern parts of the ice sheet. The oceanic conditions favor increased accumulation in the southeast, while the insolation appears to be the dominant cause of the expected ice sheet reduction. Consequently, the Eemian is not a suitable analogue for future ice sheet changes.

  4. Football boot insoles and sensitivity to extent of ankle inversion movement

    PubMed Central

    Waddington, G; Adams, R; Bartold, S

    2003-01-01

    Background: The capacity of the plantar sole of the foot to convey information about foot position is reduced by conventional smooth boot insoles, compared with barefoot surface contact. Objective: To test the hypothesis that movement discrimination may be restored by inserting textured replacement insoles, achieved by changing footwear conditions and measuring the accuracy of judgments of the extent of ankle inversion movement. Methods: An automated testing device, the ankle movement extent discrimination apparatus (AMEDA), developed to assess active ankle function in weight bearing without a balance demand, was used to test the effects of sole inserts in soccer boots. Seventeen elite soccer players, the members of the 2000 Australian Women's soccer squad (34 ankles), took part in the study. Subjects were randomly allocated to start testing in: bare feet, their own football boots, own football boot and replacement insole, and on the left or right side. Subjects underwent six 50 trial blocks, in which they completed all footwear conditions. The sole inserts were cut to size for each foot from textured rubber "finger profile" sheeting. Results: Movement discrimination scores were significantly worse when subjects wore their football boots and socks, compared with barefoot data collected at the same time. The substitution of textured insoles for conventional smooth insoles in the football boots was found to restore movement discrimination to barefoot levels. Conclusions: The lower active movement discrimination scores of athletes when wearing football boots with smooth insoles suggest that the insole is one aspect of football boot and sport shoe design that could be modified to provide the sensory feedback needed for accurate foot positioning. PMID:12663362

  5. REL3.0 SW Daily UTC NC

    Atmospheric Science Data Center

    2016-10-05

    ... Active Radiation Flux Cloud Fraction Cosine Solar Zenith Angle From Satellite Cosine Solar Zenith Angle From Astronomy ... ISCCP Data Table SSE Renewable Energy Readme Files:  Readme_3.0_sw_daily_nc ...

  6. Three dimensional stress analysis of diabetic insole: a finite element approach.

    PubMed

    Barani, Zohreh; Haghpanahi, Mohammad; Katoozian, Hamid

    2005-01-01

    Current research in foot biomechanics includes studies on prevention of recurrence of neuropathic foot ulcers. This paper attempts to prescribe accommodative insoles, which reduce plantar pressure levels particularly under the hallux. There is little quantitative information available regarding the effects of insole materials on reduction of plantar pressure. The insole models available in the literature are mostly two-dimensional (2-D). Hence, there is a need to develop a 3-D model with actual geometry which includes sufficient details. In this study a three-dimensional (3-D) model of the insole was constructed. A linear and non-linear static analysis using finite element method (FEM) was performed. Results were compared for different materials such as Silicon Gel, Plastozot, Polyfoam, and Ethinil Vinyl Acetate (EVA). Our 3-D finite element model was constructed using 16170 ten-node tetrahedral, mixed U-P (displacement-pressure), hyperelastic, solid elements. Four different hyperelastic and foam materials were used and compared and the loading condition was based on the mid-stance phase of the gait. This research has shown that most of these materials are very effective in terms of reduction of plantar stress concentrations. The technique used in this research provides a promising approach to understanding of behavior of insole materials and suggests a design guideline for therapeutic footwear and orthoses.

  7. Performance correlations of five solar collectors tested simultaneously outdoors

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    Collector thermal efficiency, and efficiency degradation with time were measured for 5 flat-plate solar collectors tested simultaneously in an outdoor solar collector test facility. Results indicate that by using collector performance parameters which account for diffuse insolation, outdoor data recorded on 'cloudy' days can be used as a measure of performance, as long as the ratio of direct to total insolation exceeds approximately 0.6. These outdoor results also show good agreement with thermal efficiency data obtained indoors in a solar simulator. Significant efficiency degradation occurred on only one of the five collectors exposed to outdoor conditions for a period of one to two years.

  8. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.

    PubMed

    Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-01-01

    Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.

  9. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Mottola, S.; Davidsson, B.; Schröder, S. E.; Skorov, Y.; Kührt, E.; Groussin, O.; Pajola, M.; Hviid, S. F.; Preusker, F.; Scholten, F.; A'Hearn, M. F.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Sabau, L.; Thomas, N.; Vincent, J.-B.; Wenzel, K.-P.; Agarwal, J.; Güttler, C.; Oklay, N.; Tubiana, C.

    2015-11-01

    Context. The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims: We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods: The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >105 facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results: Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 μm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a

  10. Control Electronics for Solar/Flywheel Power Supply

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1986-01-01

    Control circuit automatically directs flow of electrical energy to and from motor with flywheel that constitutes storage element of solar-power system. When insolation is sufficient for charging, power is supplied by solar-cell array to load and motor. During periods of darkness, motor made to act as generator, drawing kinetic energy from flywheel and supplying it to load.

  11. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.

    PubMed

    Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz

    2013-08-08

    The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere

  12. Drive-Response Analysis of Global Ice Volume, CO2, and Insolation using Information Transfer

    NASA Astrophysics Data System (ADS)

    Brendryen, J.; Hannisdal, B.

    2014-12-01

    The processes and interactions that drive global ice volume variability and deglaciations are a topic of considerable debate. Here we analyze the drive-response relationships between data sets representing global ice volume, CO2 and insolation over the past 800 000 years using an information theoretic approach. Specifically, we use a non-parametric measure of directional information transfer (IT) based on the construct of transfer entropy to detect the relative strength and directionality of interactions in the potentially chaotic and non-linear glacial-interglacial climate system. Analyses of unfiltered data suggest a tight coupling between CO2 and ice volume, detected as strong, symmetric information flow consistent with a two-way interaction. In contrast, IT from Northern Hemisphere (NH) summer insolation to CO2 is highly asymmetric, suggesting that insolation is an important driver of CO2. Conditional analysis further suggests that CO2 is a dominant influence on ice volume, with the effect of insolation also being significant but limited to smaller-scale variability. However, the strong correlation between CO2 and ice volume renders them information redundant with respect to insolation, confounding further drive-response attribution. We expect this information redundancy to be partly explained by the shared glacial-interglacial "sawtooth" pattern and its overwhelming influence on the transition probability distributions over the target interval. To test this, we filtered out the abrupt glacial terminations from the ice volume and CO2 records to focus on the residual variability. Preliminary results from this analysis confirm insolation as a driver of CO2 and two-way interactions between CO2 and ice volume. However, insolation is reduced to a weak influence on ice volume. Conditional analyses support CO2 as a dominant driver of ice volume, while ice volume and insolation both have a strong influence on CO2. These findings suggest that the effect of orbital

  13. Surface Meteorology and Solar Energy (SSE) Data Release 5.1

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].

  14. Effect of custom-made and prefabricated insoles on plantar loading parameters during running with and without fatigue.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Pérez-Soriano, Pedro; Llana-Belloch, Salvador; Macián-Romero, Cecili; Sánchez-Zuriaga, Daniel

    2014-01-01

    Controversy exists whether custom-made insoles are more effective in reducing plantar loading compared to prefabricated insoles. Forty recreational athletes ran using custom-made, prefabricated, and the original insoles of their running shoes, at rest and after a fatigue run. Contact time, stride rate, and plantar loading parameters were measured. Neither the insole conditions nor the fatigue state modified contact time and stride rate. Addressing prevention of running injuries, post-fatigue loading values are of great interest. Custom-made insoles reduced the post-fatigue loading under the hallux (92 vs. 130 kPa, P < 0.05), medial midfoot (70 vs. 105 kPa, P < 0.01), and lateral midfoot (62 vs 96 kPa, P < 0.01). Prefabricated insoles provoked reductions in post-fatigue loading under the toes (120 vs. 175 kPa, P < 0.05), medial midfoot (71 vs. 105 kPa, P < 0.01), and lateral midfoot (68 vs. 96 kPa, P < 0.01). Regarding both study insoles, custom-made insoles reduced by 31% and 54% plantar loading under the medial and lateral heel compared to the prefabricated insoles. Finally, fatigue state did not influence plantar loading regardless the insole condition. In long-distance races, even a slight reduction in plantar loading at each foot strike may suppose a significant decrease in the overall stress experienced by the foot, and therefore the use of insoles may be an important protective mechanism for plantar overloading.

  15. Gully formation on Mars: Two recent phases of formation suggested by links between morphology, slope orientation and insolation history

    NASA Astrophysics Data System (ADS)

    Morgan, Gareth A.; Head, James W.; Forget, François; Madeleine, Jean-Baptiste; Spiga, Aymeric

    2010-08-01

    The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry

  16. Solar Irradiance from GOES Albedo performance in a Hydrologic Model Simulation of Snowmelt Runoff

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.; McGurk, B. J.

    2015-12-01

    In many hydrologic modeling applications, solar radiation has been parameterized using commonly available measures, such as the daily temperature range, due to scarce in situ solar radiation measurement network. However, these parameterized estimates often produce significant biases. Here we test hourly solar irradiance derived from the Geostationary Operational Environmental Satellite (GOES) visible albedo product, using several established algorithms. Focusing on the Sierra Nevada and White Mountain in California, we compared the GOES irradiance and that from a traditional temperature-based algorithm with incoming irradiance from pyranometers at 19 stations. The GOES based estimates yielded 21-27% reduction in root-mean-squared error (average over 19 sites). The derived irradiance is then prescribed as an input to Precipitation-Runoff Modeling System (PRMS). We constrain our experiment to the Tuolumne River watershed and focus our attention on the winter and spring of 1996-2014. A root-mean-squared error reduction of 2-6% in daily inflow to Hetch Hetchy at the lower end of the Tuolumne catchment was achieved by incorporating the insolation estimates at only 8 out of 280 Hydrologic Response Units (HRUs) within the basin. Our ongoing work endeavors to apply satellite-derived irradiance at each individual HRU.

  17. Guidebook for solar process-heat applications

    NASA Astrophysics Data System (ADS)

    Fazzolare, R.; Mignon, G.; Campoy, L.; Luttmann, F.

    1981-01-01

    The potential for solar process heat in Arizona and some of the general technical aspects of solar, such as insolation, siting, and process analysis are explored. Major aspects of a solar plant design are presented. Collectors, storage, and heat exchange are discussed. Reducing hardware costs to annual dollar benefits is also discussed. Rate of return, cash flow, and payback are discussed as they relate to solar systems. Design analysis procedures are presented. The design cost optimization techniques using a yearly computer simulation of a solar process operation is demonstrated.

  18. Effects of custom-made insoles on idiopathic pes cavus foot during walking.

    PubMed

    Choi, Jung-Kyu; Cha, Eun-Jong; Kim, Kyung-Ah; Won, Yonggwan; Kim, Jung-Ja

    2015-01-01

    From a subject group of pes cavus, the purpose of this study was to evaluate the biomechanical characteristics of lower limbs, based on plantar foot pressure and electromyography (EMG) activities, by the effects on two kind of custom-made insoles. Ten individuals among thirty females with a clinical diagnosis of idiopathic pes cavus (mean age (SD): 22.3 (0.08) years) were selected for the study. The plantar foot pressure data and EMG activities of four lower limb muscles were collected, when subjects walked on a treadmill, under three different experimental conditions. The plantar foot pressure data was analyzed, after the bilateral foot was divided into three areas of masks and into four sections of stance phase, to compare plantar foot pressure. The EMG activities were analyzed for integrated EMG (IEMG) value. The results show that plantar foot pressure concentrated in particular parts is decreased by custom-made insoles. In the case of EMG, all the muscle activities decreased significantly. The custom-made insoles dispersed pressure concentrated by the higher medial longitudinal arch and improved the efficient use of muscles. In particular, the extension structure in the forefoot of custom-made insoles was more efficient for pes cavus. Therefore, it could help patients to walk, by offering support to prevent the disease of pes cavus deformity, and to relieve the burden and fatigue in the lower limbs on gait.

  19. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China.

    PubMed

    Liu, Qiang; Fu, Yongshuo H; Zeng, Zhenzhong; Huang, Mengtian; Li, Xiran; Piao, Shilong

    2016-02-01

    Autumn phenology plays a critical role in regulating climate-biosphere interactions. However, the climatic drivers of autumn phenology remain unclear. In this study, we applied four methods to estimate the date of the end of the growing season (EOS) across China's temperate biomes based on a 30-year normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). We investigated the relationships of EOS with temperature, precipitation sum, and insolation sum over the preseason periods by computing temporal partial correlation coefficients. The results showed that the EOS date was delayed in temperate China by an average rate at 0.12 ± 0.01 days per year over the time period of 1982-2011. EOS of dry grassland in Inner Mongolia was advanced. Temporal trends of EOS determined across the four methods were similar in sign, but different in magnitude. Consistent with previous studies, we observed positive correlations between temperature and EOS. Interestingly, the sum of precipitation and insolation during the preseason was also associated with EOS, but their effects were biome dependent. For the forest biomes, except for evergreen needle-leaf forests, the EOS dates were positively associated with insolation sum over the preseason, whereas for dry grassland, the precipitation over the preseason was more dominant. Our results confirmed the importance of temperature on phenological processes in autumn, and further suggested that both precipitation and insolation should be considered to improve the performance of autumn phenology models.

  20. Effects of orthotic insoles on adults with flexible flatfoot under different walking conditions

    PubMed Central

    Zhai, Jun Na; Qiu, Yu Sheng; Wang, Jue

    2016-01-01

    [Purpose] This study was to evaluate the effects of orthotics on adults with flexible flatfoot when wearing orthotic insoles while walking on horizontal ground, walking up and down stairs and to determine if flexible flatfoot needs treatment. [Subjects and Methods] Fifteen college students with flexible flatfoot and fifteen college students with normal feet were recruited. First, load rate and contact area were measured by RSscan force plate when the subjects were walking on horizontal ground, walking up and down 10 cm and 20 cm stairs. Then the subjects with flexible flatfoot were instructed to wear orthotic insoles for 3 months, and plantar pressure was measured again. Finally, the data were subjected to repeated measures ANOVA. [Results] After treatment for 3 months, the plantar pressure of flatfoot was significantly improved. In addition, the data of the subjects with normal feet and flatfoot were significantly influenced by walking down 10 cm or 20 cm stairs. [Conclusion] Orthotic insoles could significantly improve the plantar pressure of flatfoot. Additionally, the arches of subjects with normal feet and flatfoot can be significantly deformed when walking down stairs. Therefore, it is essential for subjects with flexible flatfoot to wear orthotic insoles to avoid needless injury. PMID:27942124

  1. Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.

    PubMed

    Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H

    2014-01-01

    The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.

  2. Solar power satellite status report

    NASA Technical Reports Server (NTRS)

    Davis, H. P.

    1977-01-01

    The development of a solar power satellite program is considered. It is suggested that the solar power satellite is an engineering rather than a science program - that is, that no scientific breakthroughs are required before initiating the project. Available technology is examined, and several key questions are discussed: how efficient is microwave transfer of energy; how feasible is construction in space; and will the advantages of continuous insolation compensate for the costs of building a solar power plant in synchronous orbit 23,000 miles above the earth.

  3. Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole.

    PubMed Central

    Gardner, L I; Dziados, J E; Jones, B H; Brundage, J F; Harris, J M; Sullivan, R; Gill, P

    1988-01-01

    A prospective controlled trial was carried out to determine the usefulness of a viscoelastic polymer insole in prevention of stress fractures and stress reactions of the lower extremities. The subjects were 3,025 US Marine recruits who were followed for 12 weeks of training at Parris Island, South Carolina. Polymer and standard mesh insoles were systematically distributed in boots that were issued to members of odd and even numbered platoons. The most important finding was that an elastic polymer insole with good shock absorbency properties did not prevent stress reactions of bone during a 12-week period of vigorous physical training. To control for the confounding effects of running in running shoes, which occurred for about one and one-half hours per week for the first five weeks, we also examined the association of age of shoes and cost of shoes with injury incidence. A slight trend of increasing stress injuries by increasing age of shoes was observed. However, this trend did not account for the similarity of rates in the two insole groups. In addition, we observed a strong trend of decreasing stress injury rate by history of increasing physical activity, as well as a higher stress injury rate in White compared to Black recruits. The results of the trial were not altered after controlling for these factors. This prospective study confirms previous clinical reports of the association of stress fractures with physical activity history. The clinical application of a shock absorbing insole as a preventive for lower extremity stress reactions is not supported in these uniformly trained recruits. The findings are relevant to civilian populations. PMID:3056045

  4. Quantifying stair gait stability in young and older adults, with modifications to insole hardness.

    PubMed

    Antonio, Patrick J; Perry, Stephen D

    2014-07-01

    Stair gait falls are prevalent in older adults aged 65 years and older. Extrinsic variables such as changes to insole hardness are important factors that can compromise the balance control system and increase the incidence of falls, especially since age-related decline in the cutaneous sensation is common. Balance measurements such as the minimum center of mass/base of support (COM-BOS, termed 'stability margin') and COM-BOS medial/lateral range provide information about stability during stair gait. This study was conducted to investigate stair gait stability of young and older adults, with modifications to insole hardness. Twenty healthy adults (10 young adults, 10 older adults) were recruited (mean age = 23.1, SD 2.1; mean age = 73.2, SD 5.5) and instructed to descend a 4 step staircase, for a total of 40 trials. All participants wore similar canvas shoes of varying sizes, and corresponding insole hardnesses (barefoot, soft, medium, hard). Kinematic equipment utilized 12 infrared markers anteriorly placed on the individual to record COM motion and BOS location. The findings from the study demonstrated that older adults were less stable during stair descent. Consequently, insole conditions revealed that the barefoot condition may increase the likelihood of falls, as opposed to the other insole hardnesses (soft, medium and hard). These results suggest that older adults while barefoot are putting themselves at a great risk of falling during stair descent. Since age-related changes are inevitable and the preferred footwear of choice inside the home is bare feet, this is a crucial issue that should be addressed.

  5. Sensitivity of modeled Cretaceous climate to insolation forcing created by varying Earth-Sun orbital relationships

    SciTech Connect

    Glancy, T.J. Jr.

    1992-01-01

    Rhythmic sedimentation patterns observed within the Cretaceous Western Interior Seaway, such as those in the Bridge Creek Limestone Member of the Greenhorn Limestone Formation exposed near Pueblo, Colorado, appear to be a response to episodic climate change. These climatic variations could, in turn, be forced by the periodic insolation change over the North American continent created by Milankovitch-scale Earth-Sun orbital relationships - eccentricity (100 kiloyears), obliquity (41 kiloyears) and precession of the equinox (23 kiloyears). To test the sensitivity of Cretaceous climate to changes in Milankovitch-scale insolation forcing, a set of seasonal simulations using maximum difference insolation forcing conditions was conducted with the National Center for Atmospheric Research's Community Climate Model using 100 MA Cretaceous paleogeography and paleotopography. Analysis showed statistically significant differences in surface temperature, precipitation, surface wind, storm track location, and upwelling occurred over many regions of the Cretaceous Earth, particularly in the summer and winter monsoon system. During Northern Hemisphere winter, differences in the position of storm passage over Cretaceous western North America under maximum difference insolation forcing conditions varies the precipitation received over the southern Western Interior Seaway at the location where the Bridge Creek Limestone Member rhythmic sedimentation was produced. Northern Hemisphere winter simulations removing all sea ice from the model showed little difference in the climatic effects observed over southwestern North America from the case with sea ice present. Additional simulations varying only the obliquity within the model suggest that the observed Bridge Creek Limestone Member rhythmic sedimentation patterns are controlled by climatic change produced by cyclic variation in the precession of the equinox and eccentricity insolation forcing.

  6. Temporal behavior of a ventilated claystone at the Tournemire URL: Cross-spectral analyses focused on daily harmonics

    NASA Astrophysics Data System (ADS)

    Bailly, David; Matray, Jean-Michel; Ababou, Rachid

    2014-12-01

    The main topic of this communication is the presentation of study, auscultation and supervision procedures of deep geological radioactive waste storage repositories using natural harmonic forcings. In this paper, the effects of natural ventilation on the macroscopic behavior of a clayrock are investigated by means of time series recorded underground over a period of two years in the eastern part of Gallery 1996 at the Tournemire Underground Research Laboratory (URL). This study is based on time series acquired in theatmosphere, at the gallery wall surface, and inside the rock mass. It includes measured signals from 6 thermo-hygrometers, 5 crack-meters (measuring the displacement of 2 shrinkage cracks and 3 tectonic fractures), and a 1 meter-FDR (Frequency Domain Reflectometry) profile probe equipped with 6 sensors for measuring the volumetric pore-water content into the rock mass. Auto-spectral and cross-spectral analyses using the concept of Singular Spectrum Harmonics (SSHs and cross-SSHs) are developed. Our analyses and interpretations focus here mainly on the solar diurnal atmospheric tide (denoted S1 ). This tide corresponds to the insolation cycle of the Earth atmosphere during a mean Solar Day (24 h 00 min). This component is tracked throughout the various measured signals ("Spectral Tracking" of tide fluctuations across signals). This is equivalent, in a way, to analyzing the temporal behavior of the URL during a "Mean Solar Day on Earth". Results indicate that the daily natural forcing caused mainly by a combination of barometric and temperature related fluctuations, is the most important effect overall on our various signals. The daily harmonic induces the fluctuations of gallery air temperature, relative and absolute air humidity and it leads to desaturation of the claystone, which in turn leads to the claystone deformation and damage. The effects of the annual harmonic SA may also be significant (it was fully analyzed in the more complete version of

  7. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  8. Possible signals of poleward surface ocean heat transport, of Arctic basal ice melt, and of the twentieth century solar maximum in the 1904-2012 Isle of Man daily timeseries

    NASA Astrophysics Data System (ADS)

    Matthews, J. B.; Matthews, J. B. R.

    2014-01-01

    This is the second of two papers on observational timeseries of top of ocean heat capture. The first reports hourly and daily meridional central tropical Pacific top 3 m timeseries showing high Southern Hemisphere evaporation (2.67 m yr-1) and Northern Hemisphere trapped heat (12 MJ m-2 day-1). We suggested that wind drift/geostrophic stratified gyre circulation transported warm water to the Arctic and led to three phases of Arctic basal ice melt and fluxes of brackish nutrient-rich waters to north Atlantic on centennial timescales. Here we examine daily top metre 1904-2012 timeseries at Isle of Man west coast ~54° N for evidence of tropical and polar surface waters. We compare these to Central England (CET) daily land-air temperatures and to Arctic floating ice heat content and extent. We find three phases of ocean surface heating consistent with basal icemelt buffering greenhouse gas warming until a regime shift post-1986 led to the modern surface temperature rise of ~1 °C in 20 yr. Three phases were: warming +0.018 °C yr-1 from 1904-1939, slight cooling -0.002 °C yr-11940-86 and strong warming +0.037 °C yr-1 1986-2012. For the same periods CET land-air showed: warming +0.015 °C yr-1, slight cooling -0.004 °C yr-1, about half SST warming at +0.018 °C yr-1. The mid-century cooling and a 1959/1963 hot/cold event is consistent with sunspot/solar radiation maximum 1923-2008 leading to record volumes of Arctic ice meltwater and runoff that peaked in 1962/3 British Isles extreme cold winter. The warming Arctic resulted in wind regime and surface water regime shifts post 1986. This coincides with the onset of rapid Arctic annual ice melt. Continued heat imbalance is likely to lead to tidewater glacier basal icemelt and future sealevel rise after remaining relatively stable over 4000 yr. Our work needs confirmation by further fieldwork concentrating on the dynamics and thermodynamics of ocean top 3 m that controls the 93 % anthropogenic global warming in

  9. Application of an Empirical Correction to Solar Backscattered Ultraviolet (SBUV) Ozone Profiles in the Troposphere and Lower Stratosphere: A Validation Study in Support of the Development of Daily Global Tropospheric Ozone Residual (TOR) Fields

    NASA Astrophysics Data System (ADS)

    Balok, A. E.; Fishman, J.

    2001-05-01

    A comparison of solar backscattered ultraviolet (SBUV) ozone profiles with ozonesonde measurements in the troposphere and lower stratosphere reveal the SBUV algorithm accurately captures the amount of integrated column ozone from 1013 hPa to 63 hPa but incorrectly distributes the amount of ozone in the lowest three layers (1013 hPa - 253 hPa, 253 hPa - 126 hPa, and 126 hPa - 63 hPa). A new global empirical correction technique using a 3-dimensional tropospheric ozone climatology derived from ozonesonde, aircraft, and surface observations is described to redistribute the ozone in the lowest three SBUV layers. The resultant derived stratospheric ozone column can then be used with concurrent total column ozone measurements from the Total Ozone Mapping Spectrometer (TOMS) to derive nearly global (50* N - 50* S) daily tropospheric ozone residual (TOR) maps. The empirically corrected SBUV Layers 1, 2, and 3 are then compared with coincident ozonesonde profiles from Hohenpeissenberg and Natal and show a considerable improvement in the bias between the SBUV Layers and ozonesonde measurements. Additional comparisons of empirically corrected SBUV Layers 1, 2, and 3 with profiles from 6 ozonesonde stations show the bias is reduced on average by 48% 34% and 41%for Layers 1, 2, and 3 respectively.

  10. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, Katharine; Grimm, Rosina; Mikolajewicz, Uwe; Marino, Gianluca; Rohling, Eelco

    2016-04-01

    The periodic deposition of organic rich layers or 'sapropels' in eastern Mediterranean sediments can be linked to orbital-driven changes in the strength and location of (east) African monsoon precipitation. Sapropels are therefore an extremely useful tool for establishing orbital chronologies, and for providing insights about African monsoon variability on long timescales. However, the link between sapropel formation, insolation variations, and African monsoon 'maxima' is not straightforward because other processes (notably, sea-level rise) may have contributed to their deposition, and because there are uncertainties about monsoon-sapropel phase relationships. For example, different phasings are observed between Holocene and early Pleistocene sapropels, and between proxy records and model simulations. To address these issues, we have established geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1, S3, S4, and S5 in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows us to examine in detail the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. Our records suggest that the onset of sapropel deposition and monsoon run-off was near synchronous, yet insolation-sapropel/monsoon phasings varied, whereby monsoon/sapropel onset was relatively delayed (with respect to insolation maxima) after glacial terminations. We suggest that large meltwater discharges into the North Atlantic modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. Hence, the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. We also surmise that both monsoon run-off and sea-level rise were important buoyancy-forcing mechanisms for

  11. Effect of postural insoles on static and functional balance in children with cerebral palsy: A randomized controlled study

    PubMed Central

    Christovão, Thaluanna C. L.; Pasini, Hugo; Grecco, Luanda A. C.; Ferreira, Luiz A. B.; Duarte, Natália A. C.; Oliveira, Cláudia S.

    2015-01-01

    BACKGROUND: Improved gait efficiency is one of the goals of therapy for children with cerebral palsy (CP). Postural insoles can allow more efficient gait by improving biomechanical alignment. OBJECTIVE: The aim of the present study was to determine the effect of the combination of postural insoles and ankle-foot orthoses on static and functional balance in children with CP. METHOD: A randomized, controlled, double-blind, clinical trial. After meeting legal requirements and the eligibility criteria, 20 children between four and 12 years of age were randomly allocated either to the control group (CG) (n=10) or the experimental group (EG) (n=10). The CG used placebo insoles and the EG used postural insoles. The Berg Balance Scale, Timed Up-and-Go Test, Six-Minute Walk Test, and Gross Motor Function Measure-88 were used to assess balance as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. Three evaluations were carried out: 1) immediately following placement of the insoles; 2) after three months of insole use; and 3) one month after suspending insole use. RESULTS: The EG achieved significantly better results in comparison to the CG on the Timed Up-and-Go Test as well as body sway in the anteroposterior and mediolateral directions. CONCLUSION: Postural insoles led to an improvement in static balance among children with cerebral palsy, as demonstrated by the reduction in body sway in the anteroposterior and mediolateral directions. Postural insole use also led to a better performance on the Timed Up-and-Go Test. PMID:25651134

  12. USAF solar thermal applications overview

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.; Simpson, J. A.

    1981-01-01

    Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications.

  13. Development of an efficient family size solar dryer

    SciTech Connect

    Khattab, N.M.

    1996-01-01

    Since the air heater is the most important component in a solar food drying system, improving its performance is desirable, especially when the space available for the dryer is limited and its cost is to be kept as low as possible. The solar system considered is the forced convection type, in which air is driven inside the heater by using a small suction fan of low power consumption. In this work, two configurations of air heaters were tested to increase heat gain without much increase in size or cost. This could be achieved by elongating the air path through the collector or by using two glass covers, between which the air is allowed to flow before it enters the heater. For both configurations, an inexpensive reflecting surface is used to increase heat input. Experimental results show an average increase of daily energy input of 40% and 57% for the first and second heater, respectively. This, in turn, increases the thermal efficiency of both heaters. Although the second type is more efficient than the first, it is accompanied by an increase in power consumption. Tests show that for ratios of temperature rise/insolation up to 0.03, the first type is better from the thermal and economical points of view. However, as this ratio increases, the second type becomes more efficient and economical.

  14. Solar Effective Envelope Design Advisor (SEEDA)

    NASA Astrophysics Data System (ADS)

    Mahaek, Ekkachai

    The lack of effort by mainstream architects in integrating energy-efficient strategies in architectural designing is due to the complexity in a building's energy conscious concepts and theories, the difficulties to visualize and quantify energy consumption, and the late implementing of energy consumption analysis in the conventional design process. This task would be accomplishing by a building system's engineer where results might be determined only after the basic architectural design has been completed. An effective simple tool and method should then be available to assist architects in building's energy-efficient designing at the beginning of the design. The building's energy consumption is directly and mainly influenced by the relationship of the sun, site, and its building configuration. The solar radiations will first impact on the building's envelope, which will have a direct effect on the amount of energy a building will consume. If an architect can define or map the intensity of solar energy on the site's buildable volume, and use this information to determine the levels of solar insolation, a more energy efficient building form can be proposed. This research hypothesis has shared the fundamental techniques of the Solar Envelope projection by Professor Ralph Knowles [Knowles, 1981] of the University of Southern California. However a different approach is taken by including the influence of regional restrictions and the surrounding buildings' shadows when projecting of solar volumes and solar envelope. The research methodology will discuss the development of a computer-based approach to develop a three-dimensional architectural form based on an insolation map related to the design site. The prototype computer program is referred as the Solar Effective Envelope Design Advisor (SEEDA). The solar insolation volume of the site is determined by integrating three types of computer-generated models include the Buildable Volume model based on design constraints

  15. Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature.

    PubMed

    Yin, Qiuzhen

    2013-02-14

    Glacial-interglacial cycles characterized by long cold periods interrupted by short periods of warmth are the dominant feature of Pleistocene climate, with the relative intensity and duration of past and future interglacials being of particular interest for civilization. The interglacials after 430,000 years ago were characterized by warmer climates and higher atmospheric concentrations of carbon dioxide than the interglacials before, but the cause of this climatic transition (the so-called mid-Brunhes event (MBE)) is unknown. Here I show, on the basis of model simulations, that in response to insolation changes only, feedbacks between sea ice, temperature, evaporation and salinity caused vigorous pre-MBE Antarctic bottom water formation and Southern Ocean ventilation. My results also show that strong westerlies increased the pre-MBE overturning in the Southern Ocean via an increased latitudinal insolation gradient created by changes in eccentricity during austral winter and by changes in obliquity during austral summer. The stronger bottom water formation led to a cooler deep ocean during the older interglacials. These insolation-induced differences in the deep-sea temperature and in the Southern Ocean ventilation between the more recent interglacials and the older ones were not expected, because there is no straightforward systematic difference in the astronomical parameters between the interglacials before and after 430,000 years ago. Rather than being a real 'event', the apparent MBE seems to have resulted from a series of individual interglacial responses--including notable exceptions to the general pattern--to various combinations of insolation conditions. Consequently, assuming no anthropogenic interference, future interglacials may have pre- or post-MBE characteristics without there being a systematic change in forcings. These findings are a first step towards understanding the magnitude change of the interglacial carbon dioxide concentration around 430

  16. The impact of the diurnal insolation cycle on the tropical cyclone heat engine

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Perez-Betancourt, Diamilet; Wing, Allison A.

    A hurricane, or tropical cyclone, is understood as a heat engine that moves heat from the warm sea surface to the cold tropopause. The efficiency of this engine depends in part on the strength and duration of solar heating. Over land, peak rainfall associated with individual thunderstorms occurs in the late afternoon. Over ocean, with its markedly higher surface heat capacity, deep convection responds more to radiational cooling than daytime surface heating. However, the role of daily varying solar forcing on the dynamics of tropical cyclones is poorly understood. Recently, Dunion et al. (2014) reported significant, repeating diurnal behavior propagating outward from tropical cyclone centers, using infrared imagery from nine years of North Atlantic tropical cyclones. We study the impact of the diurnal cycle on tropical cyclones using a high resolution 3D numerical model, the System for Atmospheric Modeling (Khairoutdinov and Randall 2003). Simulations are run with and without variable sunlight. We are able to reproduce the observational finding of Dunion et al. (2014), and further identify a diurnally-varying residual circulation in the tropical cyclone at midlevels. The impact of the diurnal cycle on the equilibrium dynamics of tropical cyclones is also discussed.

  17. Influence of a Viscoelastic Insole on Foot, Knee and Back Pain among Members of the United States Army Band

    DTIC Science & Technology

    2010-07-13

    loading conditions on stress in the barefooted heel pad. Medicine and Science in Sports and Exercise. 2005;37:1030-1036. 45. Sobel E, Levitz SJ...you currently wear insoles?  No ( go to Question 13b)  Yes (1) If yes, are these insoles:  Custom made  Bought off...Do you currently wear orthotics?  No ( go to question 14)  Yes If yes, how long have you been wearing orthotics? _______years

  18. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for

  19. Time variation analysis of the daily Forbush decrease indices

    NASA Astrophysics Data System (ADS)

    Patra, Sankar Narayan; Ghosh, Koushik; Panja, Subhash Chandra

    2011-08-01

    In the present paper we have analyzed the daily Forbush decrease indices from January 1, 1967 to December 31, 2003. First filtering the time series by Simple Exponential Smoothing, we have applied Scargle Method of Periodogram on the processed time series in order to search for its time variation. Study exhibits periodicities around 174, 245, 261, 321, 452, 510, 571, 584, 662, 703, 735, 741, 767, 774, 820, 970, 1062, 1082, 1489, 1715, 2317, 2577, 2768, 3241 and 10630 days with confidence levels higher than 90%. Some of these periods are significantly similar to the observed periodicities of other solar activities, like solar filament activity, solar electron flare occurrence, solar-flare rate, solar proton events, solar neutrino flux, solar irradiance, cosmic ray intensity and flare, spectrum of the sunspot, solar wind, southern coronal hole area and solar cycle, which may suggest that the Forbush decrease behaves similarly to these solar activities and these activities may have a common origin.

  20. Effect of therapeutic insoles on the medial longitudinal arch in patients with flatfoot deformity: a three-dimensional loading computed tomography study

    PubMed Central

    Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu

    2014-01-01

    Background Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. Methods We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Findings Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. Interpretation This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. PMID:25457972

  1. Use of an Enactive Insole for Reducing the Risk of Falling on Different Types of Soil Using Vibrotactile Cueing for the Elderly

    PubMed Central

    Otis, Martin J. -D.; Ayena, Johannes C.; Tremblay, Louis E.; Fortin, Pascal E.; Ménélas, Bob-Antoine J.

    2016-01-01

    Background Our daily activities imply displacements on various types of soil. For persons with gait disorder or losing functional autonomy, walking on some types of soil could be challenging because of the risk of falling it represents. Methods In this paper, we present, in a first part, the use of an enactive shoe for an automatic differentiation of several types of soil. In a second part, using a second improved prototype (an enactive insole), twelve participants with Parkinson’s disease (PD) and nine age-matched controls have performed the Timed Up and Go (TUG) test on six types of soil with and without cueing. The frequency of the cueing was set at 10% above the cadence computed at the lower risk of falling (walking over the concrete). Depending on the cadence computed at the lower risk, the enactive insole activates a vibrotactile cueing aiming to improve gait and balance control. Finally, a risk index is computed using gait parameters in relation to given type of soil. Results The frequency analysis of the heel strike vibration allows the differentiation of various types of soil. The risk computed is associated to an appropriate rhythmic cueing in order to improve balance and gait impairment. The results show that a vibrotactile cueing could help to reduce the risk of falling. Conclusions Firstly, this paper demonstrates the feasibility of reducing the risk of falling while walking on different types of soil using vibrotactile cueing. We found a significant difference and a significant decrease in the computed risks of falling for most of types of soil especially for deformable soils which can lead to fall. Secondly, heel strike provides an approximation of the impulse response of the soil that can be analyzed with time and frequency-domain modeling. From these analyses, an index is computed enabling differentiation the types of soil. PMID:27603211

  2. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    NASA Astrophysics Data System (ADS)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the

  3. Local effects of partly-cloudy skies on solar and emitted radiation

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1982-01-01

    A computer automated data acquisition system for atmospheric emittance, and global solar, downwelled diffuse solar, and direct solar irradiances is discussed. Hourly-integrated global solar and atmospheric emitted radiances were measured continuously from February 1981 and hourly-integrated diffuse solar and direct solar irradiances were measured continuously from October 1981. One-minute integrated data are available for each of these components from February 1982. The results of the correlation of global insolation with fractional cloud cover for the first year's data set. A February data set, composed of one-minute integrated global insolation and direct solar irradiance, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data, was collected to test the theoretical model of satellite radiometric data correlation and develop the cloud dependence for the local measurement site.

  4. Feasibility of solar power for Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    NASA, through Project Pathfinder, has put in place an advanced technology program to address future needs of manned space exploration. Included in the missions under study is the establishment of outposts on the surface of Mars. The Surface Power program in Pathfinder is aimed at providing photovoltaic array technology for such an application (as well as for the lunar surface). Another important application is for unmanned precursor missions, such as the photovoltaic-power aircraft, which will scout landing sites and investigate Mars geology for a 1 to 2 year mission without landing on the surface. Effective design and utilization of solar energy depend to a large extent on adequate knowledge of solar radiation characteristics in the region of solar energy system operation. The two major climatic components needed for photovoltaic system designs are the distributions of solar insolation and ambient temperature. These distributions for the Martian climate are given at the two Viking lander locations but can also be used, to the first approximation, for other latitudes. One of the most important results is that there is a large diffuse component of the insolation, even at high optical depth, so that solar energy system operation is still possible. If the power system is to continue to generate power even on high optical opacity days, it is thus important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. In absence of long term insolation and temperature data for Mars, the data presented can be used until updated data are available. The ambient temperature data are given as measured directly by the temperature sensor; the insolation data are calculated from optical depth measurements of the atmosphere.

  5. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    SciTech Connect

    Not Available

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  6. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators

    PubMed Central

    Bookstein, Fred L.; Domjanic, Jacqueline

    2015-01-01

    The plantar surface of the human foot transmits the weight and dynamic force of the owner’s lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the “footprint”) but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today’s standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology. PMID:26308442

  7. Critical insolation-CO2 relation for diagnosing past and future glacial inception

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrey; Winkelmann, Ricarda; Schellnhuber, Hans Joachim

    2016-04-01

    Past rapid growth of Northern Hemisphere continental ice sheets, which terminated rather stable and warm climate periods, is generally attributed to reduced summer insolation in boreal latitudes (Milanković , 1941; Hays et al., 1976, Paillard, 1998). Yet pertinent summer insolation is near to its minimum at present (Berger and Loutre, 2002), and there are no signs of a new ice age (Kemp et al., 2011). This challenges our scientific understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception (Masson-Delmotte et al., 2013). Here we propose a fundamental functional relationship between boreal summer insolation and global CO2 concentration, which explains the beginning of the past eight glacial cycles and can anticipate future periods when glacial inception may occur again. Using a simulations ensemble generated by an Earth system model of intermediate complexity constrained by paleoclimatic data, we show that glacial inception was narrowly missed before the beginning of the Industrial Revolution. This can be explained by the combined effect of relatively high late-Holocene CO2 concentration and low orbital eccentricity of the Earth (Loutre and Berger, 2003). Additionally, our analysis shows that even in the absence of human perturbations no significant buildup of ice sheets would occur within the next several thousand years and that the current interglacial would likely last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1000 to 1500 GtC may already postpone the next glacial inception by at least 100,000 years (Archer and Ganopolski, 2005; Paillard, 2006). Our simulations demonstrate that under natural conditions alone the Earth system would be expected to stay in the delicate interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time.

  8. Critical insolation-CO2 relation for diagnosing past and future glacial inception

    NASA Astrophysics Data System (ADS)

    Ganopolski, A.; Winkelmann, R.; Schellnhuber, H. J.

    2016-01-01

    The past rapid growth of Northern Hemisphere continental ice sheets, which terminated warm and stable climate periods, is generally attributed to reduced summer insolation in boreal latitudes. Yet such summer insolation is near to its minimum at present, and there are no signs of a new ice age. This challenges our understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception. Here we propose a critical functional relationship between boreal summer insolation and global carbon dioxide (CO2) concentration, which explains the beginning of the past eight glacial cycles and might anticipate future periods of glacial inception. Using an ensemble of simulations generated by an Earth system model of intermediate complexity constrained by palaeoclimatic data, we suggest that glacial inception was narrowly missed before the beginning of the Industrial Revolution. The missed inception can be accounted for by the combined effect of relatively high late-Holocene CO2 concentrations and the low orbital eccentricity of the Earth. Additionally, our analysis suggests that even in the absence of human perturbations no substantial build-up of ice sheets would occur within the next several thousand years and that the current interglacial would probably last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1,000 to 1,500 gigatonnes of carbon will postpone the next glacial inception by at least 100,000 years. Our simulations demonstrate that under natural conditions alone the Earth system would be expected to remain in the present delicately balanced interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time.

  9. Prediction of knee joint moment changes during walking in response to wedged insole interventions.

    PubMed

    Lewinson, Ryan T; Stefanyshyn, Darren J

    2016-04-01

    Wedged insoles are prescribed for medial knee osteoarthritis to reduce the knee adduction moment; however, it is currently not possible to predict which patients will in fact experience reduced moments. The purpose of this study was to identify a simple method using two-dimensional data for predicting the expected change in knee adduction moments with wedged insoles. Knee adduction moments during walking were determined for healthy individuals (n = 15) and individuals with medial knee osteoarthritis (n = 19) while wearing their own shoe without an insole (control), with a 6-mm medial wedge and with a 6-mm lateral wedge. The percent changes relative to control were determined. Then, participants completed single-step trials with each footwear condition where only the changes in mediolateral positions of the knee joint center, shank center of mass, ankle joint center, and foot center of mass relative to control were determined. These variables were used as predictors in regression equations where the change in knee adduction moment during walking was the dependent variable. The change in mediolateral positions of the lower extremity during a single step significantly predicted the change in knee adduction moment during walking for the lateral wedge in both the healthy (R(2) = 0.72, p = 0.008) and knee osteoarthritis (R(2) = 0.52, p = 0.026) groups, and also for the medial wedge in both the healthy (R(2) = 0.67, p = 0.016) and knee osteoarthritis (R(2) = 0.54, p = 0.020) groups. The method of using mediolateral position data from a single-step movement to predict walking biomechanics was successful. These data are relatively simple to collect and analyze, offering the possibility for future incorporation into a wedge prediction system.

  10. Critical insolation-CO2 relation for diagnosing past and future glacial inception.

    PubMed

    Ganopolski, A; Winkelmann, R; Schellnhuber, H J

    2016-01-14

    The past rapid growth of Northern Hemisphere continental ice sheets, which terminated warm and stable climate periods, is generally attributed to reduced summer insolation in boreal latitudes. Yet such summer insolation is near to its minimum at present, and there are no signs of a new ice age. This challenges our understanding of the mechanisms driving glacial cycles and our ability to predict the next glacial inception. Here we propose a critical functional relationship between boreal summer insolation and global carbon dioxide (CO2) concentration, which explains the beginning of the past eight glacial cycles and might anticipate future periods of glacial inception. Using an ensemble of simulations generated by an Earth system model of intermediate complexity constrained by palaeoclimatic data, we suggest that glacial inception was narrowly missed before the beginning of the Industrial Revolution. The missed inception can be accounted for by the combined effect of relatively high late-Holocene CO2 concentrations and the low orbital eccentricity of the Earth. Additionally, our analysis suggests that even in the absence of human perturbations no substantial build-up of ice sheets would occur within the next several thousand years and that the current interglacial would probably last for another 50,000 years. However, moderate anthropogenic cumulative CO2 emissions of 1,000 to 1,500 gigatonnes of carbon will postpone the next glacial inception by at least 100,000 years. Our simulations demonstrate that under natural conditions alone the Earth system would be expected to remain in the present delicately balanced interglacial climate state, steering clear of both large-scale glaciation of the Northern Hemisphere and its complete deglaciation, for an unusually long time.

  11. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-10-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially

  12. The 3-Step Pyramid Insole Treatment Concept for Idiopathic Toe Walking.

    PubMed

    Pomarino, David; Ramírez-Llamas, Juliana; Martin, Stephan; Pomarino, Andrea

    2016-09-19

    The idiopathic toe walking (ITW) gait pattern is characterized in children for walking since the beginning on their first steps on the forefoot; however, these children are able to support their whole foot on the ground. ITW can only be diagnosed in the absence of any orthopaedic or neurological condition known to cause tiptoe walking. The aim of this article is to review other references and provide an outline of the different treatment options, including the 3-step-pyramid insole treatment concept for children with ITW.

  13. Regional variations of days of autonomy for solar energy applications

    SciTech Connect

    Grindle, E. II; Vliet, G.C.

    1999-07-01

    A problem faced by designers of stand-alone solar installations is the sizing of the collector area and storage capacity. From a curve of the minimum possible insolation over any period of days for a given site, a functional relationship between the collector-area and storage-capacity that provides a 0% probability of not meeting load (PNML) can be derived. This permits evaluating the regional variations in days-of-autonomy required to provide 100% reliability. Such variations are shown for Texas based on recent insolation data.

  14. Simulation of a solar evacuated collector with black fluid

    SciTech Connect

    Samano, A.; Fernandez, A.

    1983-06-01

    The use of black fluids in an evacuated tube solar collector for intermediate temperatures is analyzed, and an operation mathematical model is proposed. The model is unidimensional and the integral equation for the mass, momentum and energy conservation balances are used. An expression for the pressure drop in the tube is obtained by integrating the momentum equation. The energy conservation equation is integrated analytically for constant insolation and numerically for transient insolation. An adjustment in the global emissivity value for the black fluid was made to make the representation in the mathematical model, and a discussion between the calculated and the experimental results is made.

  15. Joint EPRI-SERI spectral solar radiation database project

    NASA Astrophysics Data System (ADS)

    Riordan, C.

    1987-08-01

    The Solar Energy Research Institute (SERI), the Electric Power Research Institute (EPRI), the Pacific Gas and Electric Company (PG&E) and the Florida Solar Energy Center (FSEC) are cooperating to develop a spectral solar irradiance database to meet the needs of the photovoltaic (PV) community. The common objective is to develop a spectral solar irradiance database for a range of air masses and atmospheric conditions (or climates). Spectral irradiance, broad band irradiance (insolation) and meteorological data will be collected at several sites in the U.S.A. and archived at SERI in a common format. These data will be used at SERI to develop and verify spectral irradiance models that will predict the spectral irradiance environment from available insolation and meteorological data, and thereby expand the database. The expected result is a spectral irradiance database that will be available to the PV community in 1-2 years'time.

  16. Prospects for the construction of solar furnaces for industry

    NASA Astrophysics Data System (ADS)

    La Blanchetais, Ch. H.

    The various techniques and prototype installations employed to absorb and concentrate solar energy for use in applications requiring 100-4000 C temperatures are explored. Mention is made of the Pericles heliostat field and the THEK distributed parabolic concentrator installations, and attention is focused on viable concepts useful for industrial purposes. The Odeillo solar furnace provided design guidelines and requirements for industrial usage. It was found that the reliability of the furnace depends on the annual insolation, that the solar furnaces must be designed to meet specific thermal goals, that simplification and optimization are needed for the orientation and focusing mechanisms, and that solar furnaces are ideally suited for developing nations which experience high levels of insolation. A stepped paraboloid is described for improving the efficiency of a heliostat system, while still employing plane parallel mirrors.

  17. A Study on Forecast of Ensemble Average Insolation in Utility Service Area Considering Diversity of Forecast Error

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouki; Kato, Takeyoshi; Suzuoki, Yasuo

    A photovoltaic power generation system (PVS) is one of the promising measures to develop a low carbon society. Because of the unstable power output characteristics, a robust forecast method must be employed for realizing the high penetration of PVS into an electric power system. Considering the difference in power output patterns among PVSs dispersed in the service area of electric power system, the forecast error would vary among locations, resulting in the reduced forecast error of the ensemble average power output of high penetration PVS. In this paper, by using the multi-point data of insolation observed in Chubu area during four months, we evaluated the forecast error of the ensemble average insolation of 11 districts, and compared it with the forecast error of individual district. As the results, the number of periods with the forecast error larger than the average insolation during four months is reduced by 16 hours for the ensemble average insolation compared with the average value of individual forecast. The largest forecast error during four months is also reduced to 0.45 kWh/m2 for the ensemble average insolation from 0.68 kWh/m2 on average of 11 districts.

  18. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  19. Contrails reduce daily temperature range.

    PubMed

    Travis, David J; Carleton, Andrew M; Lauritsen, Ryan G

    2002-08-08

    The potential of condensation trails (contrails) from jet aircraft to affect regional-scale surface temperatures has been debated for years, but was difficult to verify until an opportunity arose as a result of the three-day grounding of all commercial aircraft in the United States in the aftermath of the terrorist attacks on 11 September 2001. Here we show that there was an anomalous increase in the average diurnal temperature range (that is, the difference between the daytime maximum and night-time minimum temperatures) for the period 11-14 September 2001. Because persisting contrails can reduce the transfer of both incoming solar and outgoing infrared radiation and so reduce the daily temperature range, we attribute at least a portion of this anomaly to the absence of contrails over this period.

  20. Stride Counting in Human Walking and Walking Distance Estimation Using Insole Sensors

    PubMed Central

    Truong, Phuc Huu; Lee, Jinwook; Kwon, Ae-Ran; Jeong, Gu-Min

    2016-01-01

    This paper proposes a novel method of estimating walking distance based on a precise counting of walking strides using insole sensors. We use an inertial triaxial accelerometer and eight pressure sensors installed in the insole of a shoe to record walkers’ movement data. The data is then transmitted to a smartphone to filter out noise and determine stance and swing phases. Based on phase information, we count the number of strides traveled and estimate the movement distance. To evaluate the accuracy of the proposed method, we created two walking databases on seven healthy participants and tested the proposed method. The first database, which is called the short distance database, consists of collected data from all seven healthy subjects walking on a 16 m distance. The second one, named the long distance database, is constructed from walking data of three healthy subjects who have participated in the short database for an 89 m distance. The experimental results show that the proposed method performs walking distance estimation accurately with the mean error rates of 4.8% and 3.1% for the short and long distance databases, respectively. Moreover, the maximum difference of the swing phase determination with respect to time is 0.08 s and 0.06 s for starting and stopping points of swing phases, respectively. Therefore, the stride counting method provides a highly precise result when subjects walk. PMID:27271634

  1. Tips for Daily Living

    MedlinePlus

    ... Tips and Gadgets for Daily Activities Dressing Tips Shopping Tips Modifying the Bathroom Driving After Stroke Medication ... and resources. Find a group in your area . Online Support If there is not a support group ...

  2. Integrated solar energy system optimization

    NASA Astrophysics Data System (ADS)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  3. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M.; Siringan, F. P.; Hori, M.; Okumura, Y.; Banner, J. L.; Lin, K.; Jiang, X.; Taylor, F. W.

    2013-12-01

    Many monsoon-sensitive paleoclimate archives capture the response of the Asian-Australian monsoon system to changes in summer insolation, as well as abrupt climate changes such as the Younger Dryas (YD). The response is commonly a direct one in Holocene and YD archives. In the case of insolation, increased summer insolation leads to increased monsoon rainfall over land, as captured in stalagmite δ18O records from Oman and China. We evaluate this direct response using maritime stalagmite records from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the Palawan stalagmite δ18O record, a proxy of rainfall, to have a similar response to changing insolation and hence, a trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in two partially replicated stalagmite δ18O records is opposite to that expected: rainfall increases over the Holocene, despite the decrease of summer insolation over the Holocene. We interpret the Holocene trend observed at Palawan to be the result of an increase in the maritime monsoon that balances the reduction in the land monsoon; an interpretation that is consistent with previously published results from coupled ocean-atmosphere general circulation model runs. Seawater δ18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. The direct relationship between monsoon rainfall over land as recorded in the YD interval in Chinese stalagmite records is also observed in maritime monsoon rainfall during the YD at Palawan: both records get drier during the YD cold interval. This agreement between YD stalagmite records from China and Palawan contrasts sharply with the inverse relationship between these records over the Holocene. We further investigate the nature of

  4. Why are the Daily Sunspot Observations Interesting? One Observer's Perspective (Abstract)

    NASA Astrophysics Data System (ADS)

    Dempsey, F.

    2016-06-01

    (Abstract only) Daily sunspot counts made for the AAVSO Solar Section may cause the observer to feel in touch with the daily (and longer-term) changes on the sun's surface, and this connection may be more interesting when the solar observer remains aware of the larger solar and geomagnetic environment. The daily sunspot observations may become more interesting when correlated with transient events including solar flares, filaments, coronal holes, and coronal mass ejections that can be followed in near-real time multi-wavelength X-ray and UV solar images as well as particle flux and magnetic field measurements.

  5. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  6. Survey of quantitative data on the solar energy and its spectra distribution

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1976-01-01

    This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.

  7. Nineteenth century Mexican statures in the United States and their relationship with insolation and vitamin D.

    PubMed

    Carson, Scott Alan

    2010-01-01

    The use of height data to measure living standards is now a well-established method in economics. However, there are still some populations, places and times for which the comparison across groups remains unclear. One example is 19th century Mexicans in the US. This study demonstrates that after comparing the statures of Mexicans born in Mexico and the US the primary source of the stature difference between the two groups was birth year, and the stature gap increased as the US economy developed while the Mexican economy stagnated. Moreover, the stature growth of Mexicans born in the US was related to vitamin D, and the Mexican relationship between stature and insolation was more like that of Europeans than Africans.

  8. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    PubMed Central

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  9. Simplified clear sky model for direct and diffuse insolation on horizontal surfaces

    SciTech Connect

    Bird, R.E.; Hulstrom, R.L.

    1981-02-01

    A detailed comparison was made between five simple broadband models for clear sky global insolation. Compared models were those of Atwater and Ball, Davies and Hay, Watt, Hoyt, and Lacis and Hansen. A sixth simple model, called the Bird model, has been formulated by using parts of these five models and by comparison with the results from three rigorous radiative transfer codes. All of the simple models provide results that agree within < 10% with the three rigorous codes when the sun is in the zenith position. The Bird and Hoyt models agree within 3% with each other and with the results of the rigorous codes. However, the Bird model is easier to implement and has broader application than the Hoyt model.

  10. Optimal Planning Strategy for Large PV/Battery System Based on Long-Term Insolation Forecasting

    NASA Astrophysics Data System (ADS)

    Yona, Atsushi; Uchida, Kosuke; Senjyu, Tomonobu; Funabashi, Toshihisa

    Photovoltaic (PV) systems are rapidly gaining acceptance as some of the best alternative energy sources. Usually the power output of PV system fluctuates depending on weather conditions. In order to control the fluctuating power output for PV system, it requires control method of energy storage system. This paper proposes an optimization approach to determine the operational planning of power output for PV system with battery energy storage system (BESS). This approach aims to obtain more benefit for electrical power selling and to smooth the fluctuating power output for PV system. The optimization method applies genetic algorithm (GA) considering PV power output forecast error. The forecast error is based on our previous works with the insolation forecasting at one day ahead by using weather reported data, fuzzy theory and neural network(NN). The validity of the proposed method is confirmed by the computer simulations.

  11. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M. B.; Siringan, F. P.; Banner, J. L.; lin, K.; Taylor, F. W.

    2012-12-01

    The response of the Asian-Australian monsoon system to changes in summer insolation over the Holocene is recorded in many monsoon-sensitive paleoclimate reconstructions. The response is commonly direct; more summer insolation leads to increased monsoon rainfall over land as captured in stalagmite δ18O records from Oman and China. We evaluate this direct response using a maritime stalagmite record from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the stalagmite δ18O record from Palawan, a proxy of rainfall, to have a similar trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in stalagmite δ18O is opposite to that expected: rainfall increases over the Holocene. Our explanation for the Holocene trend observed at Palawan is that the increase in the maritime monsoon balances the reduction in the land monsoon; an explanation that is consistent with previously published coupled ocean-atmosphere general circulation model results. Seawater δ18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. However, the decrease in maritime monsoon rainfall during the Younger Dryas at Palawan matches that observed in Chinese stalagmite records, meeting our original expectation of a similar wet season response in the various Asian-Australian monsoon records. One explanation for the similar Younger Dryas response in these monsoon records is the influence of seasonal changes in sea ice coverage, as previously suggested. A stalagmite δ18O record from Borneo (~800 km SE of Palawan), which lacks evidence of the Younger Dryas, provides supporting evidence for this explanation.

  12. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.

    2011-05-01

    Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.

  13. An adjustable solar concentrator

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Fixed cylindrical converging lenses followed by movable parabolic mirror focus solar energy on conventional linear collector. System is low cost and accomodates daily and seasonal movements of the sun. Mirrors may be moved using simple, low-power electrical motors.

  14. Toothbrushing: Do It Daily.

    ERIC Educational Resources Information Center

    Texas Child Care, 1993

    1993-01-01

    Offers a practical guide for promoting daily toothbrushing in young children. Discusses the importance of proper dental care, explains the causes of tooth decay, describes proper dental care for infants and young children, recommends materials and teaching methods, and discusses visits to the dentist and the benefits of fluoride for dental health.…

  15. Shock-absorbing insoles reduce the incidence of lower limb overuse injuries sustained during Royal Marine training.

    PubMed

    House, Carol; Reece, Allyson; Roiz de Sa, Dan

    2013-06-01

    This study was undertaken to determine whether the incidence of lower limb overuse injuries (LLOIs) sustained during Royal Marine training could be reduced by issuing the recruits with shock-absorbing insoles (SAIs) to wear in their military boots. This was a retrospective longitudinal trial conducted in two phases. Injury data from 1,416 recruits issued with standard Saran insoles and 1,338 recruits issued with SAI were compared. The recruits in the two groups were of similar height, body mass, and aerobic fitness and followed the same training course. The incidence of LLOI sustained by the recruits was lower (p < 0.05) in the SAI Group (19.0%) compared to the Saran Insole Group (31.7%). The incidences of lower limb stress fractures, tibial periostitis, tenosynovitis of foot, achilles tendonopathy, other tendonopathy and anterior knee pain were lower (p < 0.05) in the SAI Group. Tibial stress fracture incidence was lower (p < 0.05) in the SAI Group but metatarsal and femoral stress fracture incidences were the same for the two insole groups. Thus, issuing SAIs to military recruits undertaking a sustained, arduous physical training program with a high incidence of LLOI would provide a beneficial reduction in the incidence of LLOI.

  16. Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Berman, Ana Laura; Silvestri, Gabriel E.; Rojas, Maisa; Tonello, Marcela S.

    2017-01-01

    This paper is a pioneering analysis of past climates in southern South America combining multiproxy reconstructions and the state-of-the-art CMIP5/PMIP3 paleoclimatic models to investigate the time evolution of regional climatic conditions from the Mid-Holocene (MH) to the present. This analysis allows a comparison between the impact of the long term climate variations associated with insolation changes and the more recent effects of anthropogenic forcing on the region. The PMIP3 multimodel experiments suggest that changes in precipitation over almost all southern South America between MH and pre-industrial (PI) times due to insolation variations are significantly larger than those between PI and the present, which are due to changes in greenhouse gas concentrations. Anthropogenic forcing has been particularly intense over western Patagonia inducing reduction of precipitation in summer, autumn and winter as a consequence of progressively weaker westerly winds over the region, which have moved further poleward, between ca. 35-55°S and have become stronger south of about 50°S. Orbital variations between the MH to the PI period increased insolation over southern South America during summer and autumn inducing warmer conditions in the PI, accentuated by the effect of anthropogenic forcing during the last century. On the other hand, changes in orbital parameters from the MH to the PI period reduced insolation during winter and spring inducing colder conditions, which have been reversed by the anthropogenic forcing.

  17. Spatial synchronization of an insole pressure distribution system with a 3D motion analysis system for center of pressure measurements.

    PubMed

    Fradet, Laetitia; Siegel, Johannes; Dahl, Marieke; Alimusaj, Merkur; Wolf, Sebastian I

    2009-01-01

    Insole pressure systems are often more appropriate than force platforms for analysing center of pressure (CoP) as they are more flexible in use and indicate the position of the CoP that characterizes the contact foot/shoe during gait with shoes. However, these systems are typically not synchronized with 3D motion analysis systems. The present paper proposes a direct method that does not require a force platform for synchronizing an insole pressure system with a 3D motion analysis system. The distance separating 24 different CoPs measured optically and their equivalents measured by the insoles and transformed in the global coordinate system did not exceed 2 mm, confirming the suitability of the method proposed. Additionally, during static single limb stance, distances smaller than 7 mm and correlations higher than 0.94 were found between CoP trajectories measured with insoles and force platforms. Similar measurements were performed during gait to illustrate the characteristics of the CoP measured with each system. The distance separating the two CoPs was below 19 mm and the coefficient of correlation above 0.86. The proposed method offers the possibility to conduct new experiments, such as the investigation of proprioception in climbing stairs or in the presence of obstacles.

  18. Decentalized solar photovoltaic energy systems

    SciTech Connect

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  19. Hydrogen production through solar energy water electrolysis

    NASA Astrophysics Data System (ADS)

    Dini, D.

    Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Hydrogen energy production from direct solar energy conversion facilities located on the shores of oceans and lakes is discussed. The electrolysis interface is shown to be conveniently adapted to direct solar energy conversion; this, however, will depend on technical and economic feasibility aspects as they emerge from the research phases. The basic requirements for relatively immense solar collection areas for large-scale central conversion facilities, with widely variable electricity charges, are outlined. The operation of electrolysis and photovoltaic array combination is verified at various insolation levels. It is pointed out that solar cell arrays and electrolyzers are producing the expected results with solar energy inputs that are continuously varying.

  20. Altering gait by way of stimulation of the plantar surface of the foot: the immediate effect of wearing textured insoles in older fallers

    PubMed Central

    2012-01-01

    Background Evidence suggests that textured insoles can alter gait and standing balance by way of enhanced plantar tactile stimulation. However, to date, this has not been explored in older people at risk of falling. This study investigated the immediate effect of wearing textured insoles on gait and double-limb standing balance in older fallers. Methods Thirty older adults >65 years (21 women, mean [SD] age 79.0 [7.1]), with self-reported history of ≥2 falls in the previous year, conducted tests of level-ground walking over 10 m (GAITRite system), and double-limb standing with eyes open and eyes closed over 30 seconds (Kistler force platform) under two conditions: wearing textured insoles (intervention) and smooth (control) insoles in their usual footwear. Results Wearing textured insoles caused significantly lower gait velocity (P = 0.02), step length (P = 0.04) and stride length (P = 0.03) compared with wearing smooth insoles. No significant differences were found in any of the balance parameters (P > 0.05). Conclusions A textured insole worn by older adults with a history of falls significantly lowers gait velocity, step length and stride length, suggesting that this population may not have an immediate benefit from this type of intervention. The effects of prolonged wear remain to be investigated. PMID:22546376

  1. Ankle motion influences the external knee adduction moment and may predict who will respond to lateral wedge insoles?: an ancillary analysis from the SILK trial

    PubMed Central

    Chapman, G.J.; Parkes, M.J.; Forsythe, L.; Felson, D.T.; Jones, R.K.

    2015-01-01

    Summary Objective Lateral wedge insoles are a potential simple treatment for medial knee osteoarthritis (OA) patients by reducing the external knee adduction moment (EKAM). However in some patients, an increase in their EKAM is seen. Understanding the role of the ankle joint complex in the response to lateral wedge insoles is critical in understanding and potentially identifying why some patients respond differently to lateral wedge insoles. Method Participants with medial tibiofemoral OA underwent gait analysis whilst walking in a control shoe and a lateral wedge insole. We evaluated if dynamic ankle joint complex coronal plane biomechanical measures could explain and identify those participants that increased (biomechanical non-responder) or decreased (biomechanical responder) EKAM under lateral wedge conditions compared to the control shoe. Results Of the 70 participants studied (43 male), 33% increased their EKAM and 67% decreased their EKAM. Overall, lateral wedge insoles shifted the centre of foot pressure laterally, increased eversion of the ankle/subtalar joint complex (STJ) and the eversion moment compared to the control condition. Ankle angle at peak EKAM and peak eversion ankle/STJ complex angle in the control condition predicted if individuals were likely to decrease EKAM under lateral wedge conditions. Conclusions Coronal plane ankle/STJ complex biomechanical measures play a key role in reducing EKAM when wearing lateral wedge insoles. These findings may assist in the identification of those individuals that could benefit more from wearing lateral wedge insoles. PMID:25749010

  2. The last interglacial climate in EC-Earth - comparing the direct and indirect impacts of the insolation changes

    NASA Astrophysics Data System (ADS)

    Anker Pedersen, Rasmus; Langen, Peter Lang; Vinther, Bo

    2016-04-01

    The last interglacial warm climate state was influenced by substantial changes in the annual insolation cycle. The impact of the insolation changes has been investigated using a time-slice simulation with the EC-Earth earth system model. The model climate was forced with the insolation and atmospheric greenhouse gas concentrations from 125,000 years before present, and the resulting quasi-equilibrium state has been analyzed and compared to a pre-industrial climate state. The simulations indicate an annual mean global warming of approximately 1 K. The tropical region exhibits lower temperatures and stronger monsoonal systems, while the Arctic region shows a warming of about 3 K throughout the year. Arctic sea ice changes appear to be an important driver of warming, especially in relation to a northward shift of the ice edge in the North Atlantic region. Proxy data from ice and ocean sediment cores indicate substantial warming in parts of the North Atlantic region that could be related to similar sea ice changes. The relative importance of the sea ice and sea surface temperature changes and the direct contribution from the insolation is further investigated using a series of experiments in an atmosphere-only version of the model. Based on the results from the coupled model, we assess the relative contributions using hybrid simulations of the atmospheric response to a combination of last interglacial sea surface temperatures and sea ice conditions and pre-industrial insolation, and vice versa. Special attention is given to the simulated response over the Greenland ice sheet and the potential implications for proxy data from ice cores. Both temperature and precipitation changes could impact the ice core records, and the seasonal and spatial changes over Greenland are analyzed in detail. At the NEEM ice core location, a general warming tendency is accompanied by an increase of summer snowfall that contributes to a further increase of the precipitation

  3. Theoretical Variation of Solar Radiation in a Tropical Mountain Valley

    NASA Astrophysics Data System (ADS)

    Flórez Botero, L. Z.; Ochoa, A.; Jiménez, J. F.

    2015-12-01

    Solar radiation over the earth's surface varies in response to global factors such as the atmosphere and the relative movement of Earth around the sun, and local factors related to the earth's surface features and topography. The aim of this study is to know the effect of local factors in spatial and temporal variability of solar radiation in a tropical mountain valley in Colombia. We estimated the potential solar radiation on simplified schemes of valleys by the means of theoretical exercises with different slopes and aspects for further analysis. Despite the closeness of the studied area to the line of Ecuador where the annual variation of radiation is almost zero we detected some differences. Changes were found in solar radiation on different valley schemes in terms of hours of sunshine and total energy that reaches the surface depending on the slope, the orientation of the slopes and the diurnal variation of the solar altitude angle. Results suggest that different aspects lead changes in the annual insolation up to 4 MJ / m2 on June and a lag of about two hours in the diurnal cycle of insolation in the southeast (135°) and northwest (315°) facing peaks with the highest radiation around 8 hours after sunrise. The annual variation cycle, related to the slope, does not show major changes, but the diurnal cycle of the cells with the major slope has the lower insolation with a maximum of about one hour before the other cells. Finally, a better understanding of the real dynamics of sunshine in the Valley of Aburrá - Colombia is possible knowing the variation of the annual cycle and the diurnal cycle of insolation in a synthetic valley reliant on the different aspects and slopes allows. This represents an opportunity to improve urban planning and rural productive activities that depends directly on the availability of energy.

  4. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  5. A comparison of customised and prefabricated insoles to reduce risk factors for neuropathic diabetic foot ulceration: a participant-blinded randomised controlled trial

    PubMed Central

    2012-01-01

    Background Neuropathic diabetic foot ulceration may be prevented if the mechanical stress transmitted to the plantar tissues is reduced. Insole therapy is one practical method commonly used to reduce plantar loads and ulceration risk. The type of insole best suited to achieve this is unknown. This trial compared custom-made functional insoles with prefabricated insoles to reduce risk factors for ulceration of neuropathic diabetic feet. Method A participant-blinded randomised controlled trial recruited 119 neuropathic participants with diabetes who were randomly allocated to custom-made functional or prefabricated insoles. Data were collected at issue and six month follow-up using the F-scan in-shoe pressure measurement system. Primary outcomes were: peak pressure, forefoot pressure time integral, total contact area, forefoot rate of load, duration of load as a percentage of stance. Secondary outcomes were patient perceived foot health (Bristol Foot Score), quality of life (Audit of Diabetes Dependent Quality of Life). We also assessed cost of supply and fitting. Analysis was by intention-to-treat. Results There were no differences between insoles in peak pressure, or three of the other four kinetic measures. The custom-made functional insole was slightly more effective than the prefabricated insole in reducing forefoot pressure time integral at issue (27% vs. 22%), remained more effective at six month follow-up (30% vs. 24%, p=0.001), but was more expensive (UK £656 vs. £554, p<0.001). Full compliance (minimum wear 7 hours a day 7 days per week) was reported by 40% of participants and 76% of participants reported a minimum wear of 5 hours a day 5 days per week. There was no difference in patient perception between insoles. Conclusion The custom-made insoles are more expensive than prefabricated insoles evaluated in this trial and no better in reducing peak pressure. We recommend that where clinically appropriate, the more cost effective prefabricated insole

  6. Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere.

    PubMed

    Vandergoes, Marcus J; Newnham, Rewi M; Preusser, Frank; Hendy, Chris H; Lowell, Thomas V; Fitzsimons, Sean J; Hogg, Alan G; Kasper, Haino Uwe; Schlüchter, Christian

    2005-07-14

    In agreement with the Milankovitch orbital forcing hypothesis it is often assumed that glacial-interglacial climate transitions occurred synchronously in the Northern and Southern hemispheres of the Earth. It is difficult to test this assumption, because of the paucity of long, continuous climate records from the Southern Hemisphere that have not been dated by tuning them to the presumed Northern Hemisphere signals. Here we present an independently dated terrestrial pollen record from a peat bog on South Island, New Zealand, to investigate global and local factors in Southern Hemisphere climate changes during the last two glacial-interglacial cycles. Our record largely corroborates the Milankovitch model of orbital forcing but also exhibits some differences: in particular, an earlier onset and longer duration of the Last Glacial Maximum. Our results suggest that Southern Hemisphere insolation may have been responsible for these differences in timing. Our findings question the validity of applying orbital tuning to Southern Hemisphere records and suggest an alternative mechanism to the bipolar seesaw for generating interhemispheric asynchrony in climate change.

  7. Planetary Radii Across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits

    NASA Astrophysics Data System (ADS)

    Fortney, Jonathan J.; Barnes, J. W.; Marley, M. S.

    2006-09-01

    The forthcoming CoRoT and Kepler space missions promise to detect hundreds of transiting planets in the next several years. CoRoT may be able to detect planets as small at 2 Earth radii (13000 km) and Kepler as small as 1 Mercury radius (2500 km). Planetary systems for which radial velocity measurements can be made will allow for a determination of planetary mass, and hence, bulk density. However, obtaining radial velocities will often take years, and many planets will have no direct mass determination. Here we compute mass-radius relations for planets from 0.01 M_Earth to 10 M_Jupiter. We use high pressure equations of state for iron, rock, ice, helium, and hydrogen and make as few assumptions as necessary regarding composition to compute planetary radii over a significant phase space. For the hydrogen/helium-rich planets, we compute self-consistent model atmospheres at distances from 0.02 to 10 AU from the Sun, to correctly include the effects of stellar insolation on the contraction of planets with masses from 1 M_Neptune to 10 M_Jupiter. For all compositions we provide analytic fits to the derived mass-radius relations, which should allow for fast and useful mass estimates when only planetary radii are known. JJF is funded by a Spitzer Fellowship from NASA.

  8. Investigations on postural stability and spatiotemporal parameters of human gait using developed wearable smart insole.

    PubMed

    Das, Ratan; Kumar, Neelesh

    2015-01-01

    Measurement of spatiotemporal parameters of human gait is important for designing new, intelligent and efficient prosthetic and orthotic devices. The paper presents a novel application of smart insole for measuring force generated at various pressure points during dynamic gait on a human foot. Besides recording and analysing the spatiotemporal parameters during stance phase, the developed sensor is also used for development of active orthotic devices. Data from the sensors is analysed in LabVIEW software for detection of plantar force and temporal gait parameters. The smart instrumentation allows processing, display and storage of gait parameters and gait events in real time. Variations of pressure pattern reported by gait experiments can also be used in identifying an accidental fall. This information will be used as a feedback signal for controlling the motion of an indigenously developed gait assistive device, i.e. an active orthotic device. Pressure at the heel and great toe points is higher than the metatarsal heads during dynamic walk. It is higher at the heel and metatarsals points than the toe point during standing position.

  9. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars

    USGS Publications Warehouse

    Tanaka, K.L.

    2005-01-01

    Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (???3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago. ?? 2005 Nature Publishing Group.

  10. [Quantification of gait using insole type foot pressure monitor : clinical application for chronic hemiplegia].

    PubMed

    Naito, Yutaro; Kimura, Yoshiko; Hashimoto, Takashi; Mori, Masao; Takemoto, Yoshimi

    2014-03-01

    Home-based stroke hemiplegia patients tend to fall easily. Poor toe clearance is reported to be one of the causes of falling, although there are many other related factors. We developed a low-priced insole type portable foot pressure measurement device, and measured the foot pressure distribution and the foot pressure-time curve of 20 chronic hemiplegia patients and compared them with 36 healthy controls. We also analyzed the outdoor gait of a chronic hemiplegia patient on flat ground, on rough terrain, walking up stairs and on a downward slope. The result was that the load rate of the unaffected heel was significantly increased in hemiplegic gait, and there was a significant negative correlation between the affected side stance phase rate and gait time for 10 m distance (r = -0.73, P < 0.01). The primary role of the unaffected side and the poor toe clearance on the affected side were assured in the uneven ground gait, and it was suggested that chronic hemiplegia patients tend to be highly dependent on their unaffected side during indoor and outdoor gait.

  11. Use of pressure insoles to compare in-shoe loading for modern running shoes.

    PubMed

    Dixon, S J

    2008-10-01

    The primary objective of this paper was to compare in-shoe loading for different models of running shoe using measurements of force distribution. It was hypothesised that a shoe designed with minimal focus on cushioning would demonstrate significantly higher peak forces and rates of loading than running shoes designed with cushioning midsoles. Loading was compared using in-shoe peak forces for six footwear conditions. It was found that peak rate of loading at the heel provided clear distinctions between shoes. In support of the study hypothesis, the shoe with minimal focus on cushioning had a significantly higher rate of loading than all but one of the other test shoes. Data collected for midfoot and forefoot areas of the foot highlighted the importance of considering loading across the foot surface. The results of the present study demonstrate that pressure insoles provide a useful tool for the assessment of loading across the foot plantar surface for different footwear conditions. There are numerous models of running shoe for individuals to select from, with limited information available regarding the performance of the shoes during running. The current study demonstrates differences in loads across the foot plantar surface during running, indicating differences in performance for different footwear models.

  12. Progress in passive solar energy systems. Volume 8. Part 1

    SciTech Connect

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  13. Performance correlations of five solar collectors tested simultaneously outdoors

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    Collector thermal efficiency, and efficiency degradation with time were measured for 5 flat-plate solar collectors tested simultaneously in an outdoor solar collector test facility. Results indicate that by using collector performance parameters which account for diffuse isolation, outdoor data recorded on cloud days can be used as a measure of performance, as long as the ratio of direct to total insolation exceeds approximately 0.6. These outdoor results also show good agreement with thermal efficiency data obtained indoors in a solar simulator. Significant efficiency degradation occurred on only one of the five collectors exposed to outdoor conditions for a period of one to two years.

  14. An introduction to quiet daily geomagnetic fields

    USGS Publications Warehouse

    Campbell, W.H.

    1989-01-01

    On days that are quiet with respect to solar-terrestrial activity phenomena, the geomagnetic field has variations, tens of gamma in size, with major spectral components at about 24, 12, 8, and 6 hr in period. These quiet daily field variations are primarily due to the dynamo currents flowing in the E region of the earth's ionosphere, are driven by the global thermotidal wind systems, and are dependent upon the local tensor conductivity and main geomagnetic field vector. The highlights of the behavior and interpretation of these quiet field changes, from their discovery in 1634 until the present, are discussed as an introduction to the special journal issue on Quiet Daily Geomagnetic Fields. ?? 1989 Birkha??user Verlag.

  15. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  16. New daily persistent headache.

    PubMed

    Tyagi, Alok

    2012-08-01

    New daily persistent headache (NDPH) is a chronic headache developing in a person who does not have a past history of headaches. The headache begins acutely and reaches its peak within 3 days. It is important to exclude secondary causes, particularly headaches due to alterations in cerebrospinal fluid (CSF) pressure and volume. A significant proportion of NDPH sufferers may have intractable headaches that are refractory to treatment. The condition is best viewed as a syndrome rather than a diagnosis. The headache can mimic chronic migraine and chronic tension-type headache, and it is also important to exclude secondary causes, particularly headaches due to alterations in CSF pressure and volume. A large proportion of NDPH sufferers have migrainous features to their headache and should be managed with treatments used for treating migraine. A small group of NDPH sufferers may have intractable headaches that are refractory to treatment.

  17. Climatic and insolation control on the high-resolution total air content in the NGRIP ice core

    NASA Astrophysics Data System (ADS)

    Eicher, O.; Baumgartner, M.; Schilt, A.; Schmitt, J.; Schwander, J.; Stocker, T. F.; Fischer, H.

    2015-11-01

    Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3-5 % (3-4.2 mL kg-1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.

  18. Climatic and insolation control on the high-resolution total air content in the NGRIP ice core

    NASA Astrophysics Data System (ADS)

    Eicher, Olivier; Baumgartner, Matthias; Schilt, Adrian; Schmitt, Jochen; Schwander, Jakob; Stocker, Thomas F.; Fischer, Hubertus

    2016-10-01

    Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure and temperature, its record in polar ice cores was initially considered as a proxy for past ice sheet elevation changes. However, the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with a different insolation history. In our high-resolution record we also find a decrease of 4-6 % (4-5 mL kg-1) in TAC as a response to Dansgaard-Oeschger events (DO events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming but also shows a two-step decline that lasts for several centuries into the warm interstadial. The TAC response is larger than expected considering only changes in air density by local temperature and atmospheric pressure as a driver, pointing to a transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.

  19. Geographical Extent Feasible for Standard Deviation Calculation using 1/√N Rule regarding Ensemble Average Insolation Fluctuation

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Inoue, Takato; Honda, Nobuyuki; Koaizawa, Kazumasa; Nishino, Shinichi; Suzuoki, Yasuo

    In this study, we evaluated the practical usability of so-called 1/√N rule, focusing on three factors, i.e. the geographical extent, the location of representative point, and the topological difference. First, by using the insolation data observed at 37 points mainly located in the Nobi Plain, we calculated the correlation diagram between two different standard deviations (STDs) of geographical average insolation fluctuation, i.e. STD of ensemble average insolation of N points (σe) and STD calculated with the representative point data by using 1/√N rule (σN). As the results of evaluating the slope and R2 values of regression line of correlation diagram and the P-value of χ2-test regarding frequency distribution of σe and σN, the 1/√N rule would be applicable for the area of around 20km radius. The representative point for calculating σN should be carefully selected even within the area of 15km radius. Because the difference in weather condition is much larger in the Matsumoto Basin area than in the Nobi Plain area even if the area size is the same, the 1/√N rule should be applied to smaller area than the area of 20km radius available for the Nobi Plain area.

  20. Enhanced solar energy options using earth-orbiting mirrors

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Billman, K. W.; Bowen, S. W.

    1978-01-01

    A system of orbiting space reflectors is described, analyzed, and shown to economically provide nearly continuous insolation to preselected ground sites, producing benefits hitherto lacking in conventional solar farms and leading to large reductions in energy costs for such installations. Free-flying planar mirrors of about 1 sq km are shown to be optimum and can be made at under 10 g/sq m of surface, thus minimizing material needs and space transportation costs. Models are developed for both the design of such mirrors and for the analysis of expected ground insolation as a function of orbital parameters, time, and site location. Various applications (agricultural, solar-electric production, weather enhancement, etc.) are described.

  1. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response

    DOE PAGES

    Raugei, Marco; Sgouridis, Sgouris; Murphy, David; ...

    2017-01-01

    A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt 'extended' boundaries for their analysis of PV without acknowledging thatmore » such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. Here in this paper, we provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and 'extended' system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.« less

  2. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response

    SciTech Connect

    Raugei, Marco; Sgouridis, Sgouris; Murphy, David; Fthenakis, Vasilis; Frischknecht, Rolf; Breyer, Christian; Bardi, Ugo; Barnhart, Charles; Buckley, Alastair; Carbajales-Dale, Michael; Csala, Denes; de Wild-Scholten, Mariska; Heath, Garvin; Jæger-Waldau, Arnulf; Jones, Christopher; Keller, Arthur; Leccisi, Enrica; Mancarella, Pierluigi; Pearsall, Nicola; Siegel, Adam; Sinke, Wim; Stolz, Philippe

    2017-01-01

    A recent paper by Ferroni and Hopkirk (2016) asserts that the ERoEI (also referred to as EROI) of photovoltaic (PV) systems is so low that they actually act as net energy sinks, rather than delivering energy to society. Such claim, if accurate, would call into question many energy investment decisions. In the same paper, a comparison is also drawn between PV and nuclear electricity. We have carefully analysed this paper, and found methodological inconsistencies and calculation errors that, in combination, render its conclusions not scientifically sound. Ferroni and Hopkirk adopt 'extended' boundaries for their analysis of PV without acknowledging that such choice of boundaries makes their results incompatible with those for all other technologies that have been analysed using more conventional boundaries, including nuclear energy with which the authors engage in multiple inconsistent comparisons. In addition, they use out-dated information, make invalid assumptions on PV specifications and other key parameters, and conduct calculation errors, including double counting. Here in this paper, we provide revised EROI calculations for PV electricity in Switzerland, adopting both conventional and 'extended' system boundaries, to contrast with their results, which points to an order-of-magnitude underestimate of the EROI of PV in Switzerland by Ferroni and Hopkirk.

  3. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  4. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  5. Three computer codes to read, plot and tabulate operational test-site recorded solar data

    NASA Technical Reports Server (NTRS)

    Stewart, S. D.; Sampson, R. S., Jr.; Stonemetz, R. E.; Rouse, S. L.

    1980-01-01

    Computer programs used to process data that will be used in the evaluation of collector efficiency and solar system performance are described. The program, TAPFIL, reads data from an IBM 360 tape containing information (insolation, flowrates, temperatures, etc.) from 48 operational solar heating and cooling test sites. Two other programs, CHPLOT and WRTCNL, plot and tabulate the data from the direct access, unformatted TAPFIL file. The methodology of the programs, their inputs, and their outputs are described.

  6. Monte Carlo simulation of the performance of PMMA luminescent solar collectors

    NASA Astrophysics Data System (ADS)

    Carrascosa, M.; Agullo-Lopez, F.; Unamuno, S.

    1983-10-01

    A Monte Carlo method has been developed to simulate the performance of luminescent solar collectors (LSC) consisting of a PMMA plate with an attached film (or multiple-film stack) of dye-activated PMMA. Rhodamine 6G and Fluorol 555 have been considered as dopant dyes. Direct and diffuse solar spectra have been simulated in order to compare extreme insolation conditions. Efficiency factors have been determined as a function of the main geometrical and optical parameters of the LSC.

  7. Influence of the Solar Luminosity on the Glaciations, sea Level Changes and Resulting Earthquakes.

    NASA Astrophysics Data System (ADS)

    Shopov, Y. Y.; Stoykova, D. A.; Tsankov, L. T.; Sanabria, M. E.; Georgieva, D. I.; Ford, D. C.; Georgiev, L. N.

    2002-12-01

    Glaciations were attributed to variations of the Earth's orbit (Milankovitch cycles). But the best ever dated paleoclimatic record (from Devils Hole, Nevada) demonstrated that the end of the last glacial period (termination II) happened 10 000 years before the one suggested by the orbital variations, i.e. the result appeared before the reason. This fact suggests that there is something wrong in the theory. Calcite speleothems luminescence of organics depends exponentially upon soil temperatures that are determined primarily by the solar radiation. So the microzonality of luminescence of speleothems may be used as an indirect Solar Insolation (radiation) proxy index. We obtained luminescence solar insolation proxy records in speleothems (from Jewel Cave, South Dakota, US and Duhlata cave, Bulgaria). These records exhibit very rapid increasing of the solar insolation at 139 kyrs BP responsible for the termination II (the end of the last glaciation) and demonstrate that solar luminosity variations contribute to Earth's heating almost as much as the orbital variations of the Earth's orbit (Milankovitch cycles). The most powerful cycle of the solar luminosity (11500 yrs) is responsible for almost 1/2 of the variations in solar insolation experimental records. Changes in the speed of Earth's rotation during glacial- interglacial transitions produce fracturing of the Earth's crust and major earthquakes along the fractures. The intensity of this process is as higher as faster is the change of the sea level and as higher is its amplitude. Glaciations and deglaciations drive changes of the sea level. Much higher dimensions of this process should be caused by eruptive increasing of solar luminosity, which may be caused only by collision of large asteroids with the Sun. We demonstrate that such collision may cause "Bible Deluge" type of event.

  8. Physical Behavior in Older Persons during Daily Life: Insights from Instrumented Shoes.

    PubMed

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Paraschiv-Ionescu, Anisoara; Major, Kristof; Büla, Christophe; Aminian, Kamiar

    2016-08-03

    Activity level and gait parameters during daily life are important indicators for clinicians because they can provide critical insights into modifications of mobility and function over time. Wearable activity monitoring has been gaining momentum in daily life health assessment. Consequently, this study seeks to validate an algorithm for the classification of daily life activities and to provide a detailed gait analysis in older adults. A system consisting of an inertial sensor combined with a pressure sensing insole has been developed. Using an algorithm that we previously validated during a semi structured protocol, activities in 10 healthy elderly participants were recorded and compared to a wearable reference system over a 4 h recording period at home. Detailed gait parameters were calculated from inertial sensors. Dynamics of physical behavior were characterized using barcodes that express the measure of behavioral complexity. Activity classification based on the algorithm led to a 93% accuracy in classifying basic activities of daily life, i.e., sitting, standing, and walking. Gait analysis emphasizes the importance of metrics such as foot clearance in daily life assessment. Results also underline that measures of physical behavior and gait performance are complementary, especially since gait parameters were not correlated to complexity. Participants gave positive feedback regarding the use of the instrumented shoes. These results extend previous observations in showing the concurrent validity of the instrumented shoes compared to a body-worn reference system for daily-life physical behavior monitoring in older adults.

  9. Physical Behavior in Older Persons during Daily Life: Insights from Instrumented Shoes

    PubMed Central

    Moufawad el Achkar, Christopher; Lenoble-Hoskovec, Constanze; Paraschiv-Ionescu, Anisoara; Major, Kristof; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity level and gait parameters during daily life are important indicators for clinicians because they can provide critical insights into modifications of mobility and function over time. Wearable activity monitoring has been gaining momentum in daily life health assessment. Consequently, this study seeks to validate an algorithm for the classification of daily life activities and to provide a detailed gait analysis in older adults. A system consisting of an inertial sensor combined with a pressure sensing insole has been developed. Using an algorithm that we previously validated during a semi structured protocol, activities in 10 healthy elderly participants were recorded and compared to a wearable reference system over a 4 h recording period at home. Detailed gait parameters were calculated from inertial sensors. Dynamics of physical behavior were characterized using barcodes that express the measure of behavioral complexity. Activity classification based on the algorithm led to a 93% accuracy in classifying basic activities of daily life, i.e., sitting, standing, and walking. Gait analysis emphasizes the importance of metrics such as foot clearance in daily life assessment. Results also underline that measures of physical behavior and gait performance are complementary, especially since gait parameters were not correlated to complexity. Participants gave positive feedback regarding the use of the instrumented shoes. These results extend previous observations in showing the concurrent validity of the instrumented shoes compared to a body-worn reference system for daily-life physical behavior monitoring in older adults. PMID:27527172

  10. Solar radiation: absence of air pollution trends at Mauna Loa.

    PubMed

    Ellis, H T; Pueschel, R F

    1971-05-21

    Measurements of solar radiation made at Mauna Loa, Hawaii, over a period of 13 years give no evidence that human activities affect atmospheric turbidity on a global scale. Short-term fluctuations in insolation appear to be associated with naturally produced tropospheric aerosols. The intrusion of volcanic dust into the stratosphere results in prolonged increases in atmospheric opacity due to the extended residence times of aerosols in the stratosphere.

  11. IEA small solar-power-system project, operation status

    NASA Astrophysics Data System (ADS)

    1982-04-01

    Data collected from routine operation of the Small Solar Power Systems Project are summarized, and an overview is given of the data evaluation. The operation status of the data collection system and central receiver system is included as well as the status of the evaluation work organization. Some insolation and wind data are given. Tours by visitors are reported and the status of existing reports is given.

  12. Development and testing of shingle-type solar cell molecules

    NASA Technical Reports Server (NTRS)

    Shepard, N. F.

    1978-01-01

    The details of a shingle module design which produces in excess of 97 watts/sq m of module area at 1 kW/sq m insolation and at 60 C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract.

  13. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  14. Summer insolation is the primary driver for orbital-scale dust storm variability in East Asia

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Kienast, Stephanie S.; Haug, Gerald H.

    2016-04-01

    Eolian dust plays an important role in the global climate system through its influence on radiation, albedo and precipitation properties, and through delivering micronutrients like iron to the oceans. Glacial periods of Earth's climate are recognized to be dustier than interglacials, but the conditions leading to greater dust mobilization are poorly defined. We present a high-resolution dust flux record based on 230Th-normalised 4He flux from Ocean Drilling Program (ODP) site 882 in the Subarctic North Pacific covering the last 170,000 years. Today, dust storms in the vast dry regions of East Asia are almost exclusively springtime phenomena, due to a specific set of climate conditions driven by the seasonal evolution of the meridional temperature gradient between high and low latitudes. The dust flux record points to high dust storm activity in East Asia during cold periods, with highest dust flux during Marine Isotope Stages 4 and 5d. We interpret periods of higher dust supply as the result of an expansion of the dust season into the summer, primarily controlled by reduced summer insolation at high latitudes and resulting lower air temperatures in Siberia over orbital timescales. Changes in the extent of the large Northern Hemisphere ice sheets in North America and Fennoscandinavia, and atmospheric teleconnections, act as a secondary control. On millennial timescales, the occurrence of Heinrich Stadials 1 and 11 signals during the last two terminations in Subarctic North Pacific dust records indicates that dust flux variability over millennial timescales was influenced by climate changes in the North Atlantic.

  15. The influences of solar radiation changes on the meteorological variables during the total solar eclipse of 9th March 2016 in Central Bangka, Indonesia

    NASA Astrophysics Data System (ADS)

    Gandini, Ryantika; Ardi, NanangDwi; Iid Mujtahiddin, M.

    2016-11-01

    Observations of the meteorological variables have been conducted in Terentang coastal area, Central Bangka which is located in totality path of Total Solar Eclipse on March 9, 2016. These measurements were made before, during, and after the solar eclipse using a portable automatic weather station with 1 Hz data recording to investigate the influence of total solar eclipse on the incoming solar radiation and other weather variables. Due to the cloudiness at the first phase of the eclipse, the reduction of the radiation was not proportional to the percentage of the solar obscuration. Along with the disappearance of thick clouds, solar radiation changes reach the lowest value from 123 W/m2 to zero point at 5 minutes before the maximum phase. In contrast to the radiation decrement, decreasing air temperature was not comparable to the solar obscuration because it was not only determined by radiation, but also surrounding environment. High relative humidity, on average 89%, was discovered as an effect of the low atmospheric pressure which was affected by the insolation decline. The effect of total solar eclipse can be seen more clearly with spectrum analysis using Fourier transformation to identify periodogram patterns of each meteorology variable. This transformation produced a spectrum's peak totality which is higher than before and after the event on the insolation. The spectrum represents that total solar eclipse has considerable effect to the incoming solar radiation and others which is indicated by the change of the amplitude.

  16. The Nonlinear Response of the Equatorial Pacific Ocean-Atmosphere System to Periodic Variations in Insolation and its Association with the Abrupt Climate Transitions during the Quaternary.

    NASA Astrophysics Data System (ADS)

    Lopes, P. G.

    2015-12-01

    The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as

  17. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  18. Effects of insolation on habitability and the isotopic history of Martian water

    NASA Astrophysics Data System (ADS)

    Moores, John

    Three aspects of the Habitability of the Northern Plains of Mars to organics and terrestrial-like microbial life were assessed. (1) Protection offered by small surface features and; (2) the breakdown of rocks to form soils were examined using a radiative transfer computer model. Two separate sublimation experiments provided a basis to improve; (3) estimates of the amount of available water today and in the past by determining the fractionation of HDO between present-day reservoirs. (1) UV radiation sterilizes the hardiest of terrestrial organisms within minutes on the Martian surface. Small surface features including pits, trenches, flat faces and overhangs may create "safe havens" for organisms by blocking much of the UV flux. In the most favorable cases, this flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks while terrestrial microorganisms could persist for several tens of martian years. (2) The production of soils on the surface is considered by analogy with the arid US Southwest. Here differential insolation of incipient cracks of random orientations predicts crack orientation distributions consistent with field observations by assuming that only crack orientations which shield their interiors, minimizing their water loss, can grow, eventually disrupting the clast. (3) Disaggregated water ice to simulate the polar caps was produced by flash freezing in liquid nitrogen and crushing. When dust was added to the mixtures, the D/H ratio of the sublimate gas was seen to decrease with time from the bulk ratio. The more dust was added to the mixture, the more pronounced was this effect. The largest fractionation factor observed during these experiments was 2.5. Clean ice was also prepared and overlain by dust to simulate ground ice. Here, the movement of water vapor was modeled using an effective diffusivity that incorporated both adsorption on grains and diffusion. For low temperatures (<-55

  19. Quantification of Daily Physical Activity

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Breit, Greg; Quintana, Jason

    1994-01-01

    The influence of physical activity on the maintenance and adaptation of musculoskeletal tissue is difficult to assess. Cumulative musculoskeletal loading is hard to quantify and the attributes of the daily tissue loading history affecting bone metabolism have not been completely identified. By monitoring the vertical component of the daily ground reaction force (GRFz), we have an indirect measure of cumulative daily lower limb musculoskeletal loading to correlate with bone density and structure. The objective of this research is to develop instrumentation and methods of analysis to quantify activity level in terms of the daily history of ground reaction forces.

  20. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    NASA Astrophysics Data System (ADS)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  1. The Immediate Effect of Lateral Wedge Insoles, With and Without a Subtalar Strap, on the Lateral Trunk Lean Motion in Patients With Knee Osteoarthritis

    PubMed Central

    Esfandiari, Elham; Kamyab, Mojtaba; Yazdi, Hamid Reza; Foroughi, Nasim; Sanjari, Mohammad Ali

    2013-01-01

    Background: Orthotic interventions for knee osteoarthritis (OA) aim to reduce mechanical loading on the medial compartment of the knee and may lessen the lateral trunk lean as the most important compensatory gait strategy. The lateral wedge insole is a known orthotic intervention for knee OA. However, the question whether the addition of a subtalar strap to the wedge improves its effect has not been addressed in the literature. Objective: To compare the effects of lateral wedge insoles, with and without a subtalar strap, on the lateral trunk lean in patients with knee OA. Methods: Twenty-three patients aged over 40 years, with grade I or II OA of the medial compartment of one knee, based on the American College of Rheumatology criteria, were included in this study. The patients were diagnosed with OA based on a clinical examination, and the diagnosis was confirmed with radiographs. A 3-dimensional motion measurement system was used to collect the gait data for 3 different conditions: (1) with no insole, (2) with a lateral wedge insole, and (3) with a lateral wedge insole and a subtalar strap. The immediate effect of the 3 test conditions on the lateral trunk lean was compared during a gait cycle a stance phase and at the point of midstance. Results: Based on the laboratory coordinate system, the 3 conditions had no significant effect on the lateral trunk lean during a gait cycle and a stance phase and at the point of midstance in patients with knee OA. Conclusion: The results of this study demonstrated that the lateral wedge insoles, with and without a subtalar strap, had no immediate effect on the lateral trunk lean in patients with knee OA. However, the long-term effect of lateral wedge insoles on the lateral trunk lean in these patients requires further investigation. PMID:24600533

  2. Solar collection

    NASA Astrophysics Data System (ADS)

    Cole, S. I.

    1984-08-01

    Solar dishes, photovoltaics, passive solar building and solar hot water systems, Trombe walls, hot air panels, hybrid solar heating systems, solar grain dryers, solar greenhouses, solar hot water worhshops, and solar workshops are discussed. These solar technologies are applied to residential situations.

  3. Ash loading and insolation at Hanford, Washington during and after the eruption of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Laulainen, N. S.

    1982-01-01

    The effects of volcanic ash suspended in the atmosphere on the incident solar radiation was monitored at the Hanford Meteorological Station (HMS) subsequent to the major eruption of Mount St. Helens on May 18, 1980. Passage of the ash plume over Hanford resulted in a very dramatic decrease of solar radiation intensity to zero. A reduction in visibility to less than 1 km was observed, as great quantities of ash fell out of the plume onto the ground. Ash loading in the atmosphere remained very high for several days following the eruption, primarily as a result of resuspension from the surface. Visibilities remained low (2 to 8 km) during this period. Estimates of atmospheric turbidity were made from the ratio of diffuse-to-direct solar radiation; these turbidities were used to estimate extinction along a horizontal path, a quantity which can be related to visibility. Comparisons of observed and estimated visibilities were very good, in spite of the rather coarse approximations used in the estimates. Atmospheric clarity and visibility improved to near pre-eruption conditions following a period of rain showers. The diffuse-to-direct ratio of solar radiation provided a useful index for estimating volcanic ash loading of the atmosphere.

  4. Experimental investigation of insolation-driven dust ejection from Mars' CO2 ice caps

    NASA Astrophysics Data System (ADS)

    Kaufmann, E.; Hagermann, A.

    2017-01-01

    Mars' polar caps are - depending on hemisphere and season - partially or totally covered with CO2 ice. Icy surfaces such as the polar caps of Mars behave differently from surfaces covered with rock and soil when they are irradiated by solar light. The latter absorb and reflect incoming solar radiation within a thin layer beneath the surface. In contrast, ices are partially transparent in the visible spectral range and opaque in the infrared. Due to this fact, the solar radiation can penetrate to a certain depth and raise the temperature of the ice or dust below the surface. This may play an important role in the energy balance of icy surfaces in the solar system, as already noted in previous investigations. We investigated the temperature profiles inside CO2 ice samples including a dust layer under Martian conditions. We have been able to trigger dust eruptions, but also demonstrated that these require a very narrow range of temperature and ambient pressure. We discuss possible implications for the understanding of phenomena such as arachneiform patterns or fan shaped deposits as observed in Mars' southern polar region.

  5. Criteria for the evaluation of laser solar energy converter systems

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1985-01-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  6. Criteria for the evaluation of laser solar energy converter systems

    NASA Astrophysics Data System (ADS)

    Harries, W. L.

    1985-10-01

    Assuming that a parabolic insolation-collection mirror-based solar pumped laser has a collector and heat emitter whose weights are proportional to their areas, and that the weight of the laser is negligible by comparison, the output power/unit weight can be expressed in terms of the efficiencies and working temperatures of the system. This ratio appears to be several times higher for an IBr laser than for one operating on C3F7I, because the solar utilization efficiency is greater for the former despite its lower working temperature.

  7. Solar Energy Reporting

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Last year the people of Cleveland, Ohio were troubled by natural gas shortages during one of the coldest winters on record. The severe winter generated a great deal of interest in solar energy as an alternative source of heat. Home owners, home builders and civic officials wanted to know just how much solar energy is available in Cleveland. Now they get a daily report through the city's news media, from information supplied as a community service by NASA's Lewis Research Center. Lewis routinely makes daily measurements of solar energy as part of its continuing research in behalf of the Department of Energy. The measuring device is a sun sensor called a pyranometer (upper photo) located atop a building at the NASA Center. To make the information conveniently available to news media, Lewis developed a Voice Output Integrating Insolometer, an automated system that acquires information from the sun sensor and translates it into a recorded telephone message. The Lewis pyranometer collects sun data for 15 hours daily and measures the total solar energy yield. For reporting to the public, the information is electronically converted to a specific reading. A media representative calling in gets a voice-synthesized announcement of a two or three digit number; the number corresponds to the kilowatt-hours of solar energy that would be available to a typical 500-square-foot solar collector system. Response in Cleveland has been favorable and interest is developing in other parts of the country.

  8. Relationship between Standard Deviation and Maximum Fluctuation Width of Ensemble Average Insolation Observed at Multi-points in Large Area

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Inoue, Takato; Honda, Nobuyuki; Koaizawa, Kazumasa; Nishino, Shinichi; Suzuoki, Yasuo

    For the detailed impact assessment of the total power output fluctuation of high penetration photovoltaic power generation system in terms of the load-frequency control, this study evaluated the relationship between the standard deviation (STD) including only shorter cycles than 32 minute and the maximum fluctuation width (MFW) calculated with various window width by using the two data-sets of multi-points observed insolation data. The main results are as follows. The R2 of regression line of STD - MFW correlation diagram is larger than 0.85 for various seasons, while the slope of regression line slightly varies with seasons. The slope of regression line is almost the same for various area sizes during the same season, although the variation ranges of both STD and MFW reduce with larger window width due to a so-called smoothing effect. The results suggest that if the STD of geographical average insolation can be calculated by using stochastic method, the MFW can be calculated with a linear function of STD because of the good correlation between STD and MFW independently of seasons and area sizes.

  9. Environmental data for sites in the National Solar Data Network

    SciTech Connect

    Not Available

    1981-06-01

    Environmental information collected at the sites of the National Solar Data Network is presented in the form of tables for each solar site. The sites are grouped into 12 zones, each of which consists of several adjacent states. The insolation table presents the total, diffuse, direct, maximum, and extraterrestrial radiation for the solar site. It also shows the ratio of total to extraterrestrial radiation as a percent. The temperature table gives the average, daytime, nighttime, maximum, minimum and inlet-water temperatures for the solar site. All of the passive and some of the active solar sites are equipped with wind sensors which provide information for two wind tables furnishing wind speed and direction. For some sites, a humidity table provides relative humidity values for day and night. It also gives values for the maximum and minimum humidity for each day. A technical discussion of the instruments and measurements used to obtain these data tables is included. (LEW)

  10. Insolation and Resulting Surface Temperatures of the Kuiper-Rudaki Study Region on Mercury.

    NASA Astrophysics Data System (ADS)

    Bauch, Karin E.; Hiesinger, Harald; D'Amore, Mario; Helbert, Jörn; Weinauer, Julia

    2016-04-01

    The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2017 [1]. The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40μm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia [1, 2]. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. In order to calculate insolation and surface temperatures, we use a numerical model, which has been described by [7]. Surface temperatures are dependent on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, topography, and albedo. Lunar and Mercurian surface temperatures show the same general characteristics. Both have very steep temperature gradients at sunrise and sunset, due to the lack of an atmosphere. However, there are major differences due to the orbital characteristics. On Mercury the 3:2 resonant rotation rate and the eccentric orbit causes local noon at longitudes 0° and 180° to coincide with perihelion, which leads to "hot poles". At longitudes 90° and 270° , local noon coincides with aphelion, which results in "cold poles" [8]. At these longitudes brief secondary sunrises and sunsets are visible, when Mercury's orbital angular velocity exceeds the spin rate during perihelion [8]. Here we present diurnal temperature curves of the Kuiper-Rudaki study region, based on thermophysical estimates and MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging [9]) albedo data with a resolution of 1000m/px. Our study region spans more than 90° along the equator, thus allowing us to study both, hot and

  11. SSPS monthly data, October 1984. Plant operation report and daily operation summary

    SciTech Connect

    Not Available

    1984-01-01

    Operation and maintenance highlights and test and evaluation highlights are presented for the Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics for October, 1984: monthly operation summary; CRS daily operation summary; and DCS daily operation summary.

  12. SSPS monthly data, (December 1984). Plant operation report and daily operation summary

    SciTech Connect

    Not Available

    1984-01-01

    Operation and maintenance highlights and test and evaluation highlights are presented for the Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics for December 1984: monthly operation summary; CRS daily operation summary; and DCS daily operation summary.

  13. SSPS monthly data, August 1984: plant operation report and daily operation summary

    SciTech Connect

    Not Available

    1984-08-01

    Operation and maintenance highlights and test and evaluation highlights are presented for the Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics: monthly operation summary for August 1984; CRS daily operation summary; and DCS daily operation summary.

  14. SSPS monthly data, September 1984: plant operation report and daily operation summary

    SciTech Connect

    Not Available

    1984-09-01

    Operation and maintenance highlights and test and evaluation highlights are presented for Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics: monthly operation and summary for September 1984; CRS daily operation summary; and DCS daily operation summary. (LEW).

  15. Plant operation report and daily evaluation summary. SSPS monthly data, April 1984

    SciTech Connect

    Not Available

    1984-01-01

    Operation and maintenance highlights and test and evaluation highlights are presented for the Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics; monthly operation summary for April 1984; CRS daily operation summary; DCS daily operation summary.

  16. SSPS monthly data, November 1984. Plant operation report and daily operation summary

    SciTech Connect

    Not Available

    1984-01-01

    Operation and maintenance highlights and test and evaluation highlights are presented for the Small Solar Power Systems (SSPS) Central Receiver System (CRS) and Distributed Collector System (DCS). The major portion of this report consists of the following plant statistics for November 1984: monthly operation summary, CRS daily operation summary, and DCS daily operation summary.

  17. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  18. Solar Village--Educational Initiative for Kids.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Ilyian, Salman; Toren, Zehava; Anabosi, Fawzi

    2003-01-01

    Explains a model of a solar village in the context of the school which does not contribute to air pollution by using only solar energy. Suggests that pupils would be active participants in building systems and understanding the contact between the knowledge of the basic science of solar energy and the technology processes in daily life.…

  19. Solar Energy for Pacific Northwest Buildings.

    ERIC Educational Resources Information Center

    Reynolds, John S.

    Data presented in this report indicate that solar space and water heating are possible in the Pacific Northwest. The first section of the report contains solar records from several stations in the region illustrating space heating needs that could be met, on an average daily basis, by solar energy. The data are summarized, and some preliminary…

  20. Method and Apparatus for Monitoring of Daily Activity in Terms of Ground Reaction Forces

    NASA Technical Reports Server (NTRS)

    Whalen, Robert T. (Inventor); Breit, Gregory A. (Inventor)

    2001-01-01

    A device to record and analyze habitual daily activity in terms of the history of gait-related musculoskeletal loading is disclosed. The device consists of a pressure-sensing insole placed into the shoe or embedded in a shoe sole, which detects contact of the foot with the ground. The sensor is coupled to a portable battery-powered digital data logger clipped to the shoe or worn around the ankle or waist. During the course of normal daily activity, the system maintains a record of time-of-occurrence of all non-spurious foot-down and lift-off events. Off line, these data are filtered and converted to a history of foot-ground contact times, from which measures of cumulative musculoskeletal loading, average walking- and running-specific gait speed, total time spent walking and running, total number of walking steps and running steps, and total gait-related energy expenditure are estimated from empirical regressions of various gait parameters to the contact time reciprocal. Data are available as cumulative values or as daily averages by menu selection. The data provided by this device are useful for assessment of musculoskeletal and cardiovascular health and risk factors associated with habitual patterns of daily activity.

  1. Daily Records of the Changing Sun by the Skylab-3 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This montage shows changing faces of the Sun, recorded daily during the 59 days spent in orbit by Skylab's second crew. The Sun spun more than two full turns around its axis. Solar rotation is apparent in these daily portraits, as are real changes on the Sun. Bright features are centers of activity on the Sun. This image contains daily records from August 17, 1973 through September 5, 1973.

  2. Daily Records of the Changing Sun by the Skylab-3 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This montage shows changing faces of the Sun, recorded daily during the 59 days spent in orbit by Skylab's second crew. The Sun spun more than two full turns around its axis. Solar rotation is apparent in these daily portraits, as are real changes on the Sun. Bright features are centers of activity on the Sun. This image contains daily records from July 28, 1973 through August 16, 1973.

  3. Daily Records of the Changing Sun by the Skylab-3 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This montage shows changing faces of the Sun, recorded daily during the 59 days spent in orbit by Skylab's second crew. The Sun spun more than two full turns around its axis. Solar rotation is apparent in these daily portraits, as are real changes on the Sun. Bright features are centers of activity on the Sun. This image contains daily records from September 6, 1973 through September 24, 1973.

  4. The patient with daily headaches.

    PubMed

    Maizels, Morris

    2004-12-15

    The term "chronic daily headache" (CDH) describes a variety of headache types, of which chronic migraine is the most common. Daily headaches often are disabling and may be challenging to diagnose and treat. Medication overuse, or drug rebound headache, is the most treatable cause of refractory daily headache. A pathologic underlying cause should be considered in patients with recent-onset daily headache, a change from a previous headache pattern, or associated neurologic or systemic symptoms. Treatment of CDH focuses on reduction of headache triggers and use of preventive medication, most commonly anti-depressants, antiepileptic drugs, and beta blockers. Medication overuse must be treated with discontinuation of symptomatic medicines, a transitional therapy, and long-term prophylaxis. Anxiety and depression are common in patients with CDH and should be identified and treated. Although the condition is challenging, appropriate treatment of patients with CDH can bring about significant improvement in the patient's quality-of-life.

  5. Effects of moving cloud shadows on electric utilities with dispersed solar photovoltaic generation

    SciTech Connect

    Jewell, W.T.

    1986-01-01

    Residential utility-interactive solar photovoltaic (PV) generators were simulated throughout the southeast Tulsa, Oklahoma area. As cloud shadows pass over such PV systems, their generation varies with the incident solar radiation (insolation), and the electric utility must follow these changes with its own generators, similar to how it now follows continuous changes in electrical loads. A two-dimensional simulation of time-varying incident solar radiation was developed and used to study the effect of moving cloud shadows on the Public Service Company of Oklahoma (PSO) electric utility system, to which the PV generator were connected. The insolation simulation was first combined with a distribution feeder model to estimate possible changes in PV generation over several time periods. The insolation and feeder models were then used to provide data to the PSO power-flow simulation to estimate the effects on the PSO system. During the worst cumulus cloud pattern at peak-solar-radiation times, PSO will begin to see significant effects from the dispersed PV generation when PV installed penetration in southeast Tulsa reaches approximately 15% (when PV represents approximately 15% of the installed generation in southeast Tulsa.

  6. Solar energy utilization in the USSR

    NASA Astrophysics Data System (ADS)

    Shpilrain, E. E.

    1991-05-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economic. In higher latitudes, only seasonal use of solar energy is reasonable. Up to now, the main application of solar energy has been to produce low-temperature heat for hot water production, drying of agricultural goods, space heating and thermal treatment of concrete. A substantial proportion of the solar heating installations are flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 square meters. The collectors are produced by large- and small-scale industry. Where selective coatings are applied to the absorber plates, black nickel or chromium are the main coating materials. Recently launched new projects aim to develop and produce advanced collectors, with enhanced efficiency and reliability. There has been substantial progress in developing photovoltaic (PV) cells for space applications, but terrestrial application of PV is still in a very early stage. Annual production of PV cells totals about 100 kW, based on mono- or polycrystalline silicon. R&D work on thin-film PV cells is in progress. Work is in progress on the development of automated production lines to manufacture 1 MW/yr of crystalline and amorphous silicon. A 5-MW tower-type demonstration plant, with a circular heliostat field, uses steam as the working fluid. Experience with this plant has revealed several disadvantages, including commonwealth of independent states.

  7. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability confirmed by Chinese loess

    NASA Astrophysics Data System (ADS)

    Hao, Q.; Wang, L.; Oldfield, F.; Peng, S.; Qin, L.; Song, Y.; Xu, B.; Qiao, Y.; Bloemendal, J.; Guo, Z.

    2013-12-01

    The growth and decay of the Northern Hemisphere ice volume led to alternations of glacial and interglacial climate and major changes in sea level during the Quaternary period. Unfortunately, long-term continuous records of ice-sheet variability in the Northern during the Quaternary period Hemisphere only are scarce because benthic δ18O records represent an integrated signal of changes in ice volume in both polar regions. Direct sedimentary records of Northern Hemisphere polar ice sheets exist only for the late Quaternary and longer term records are scarce. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)--as recorded in the aeolian dust deposits on the Chinese Loess Plateau--can serve as a useful proxy of Arctic climate variability. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections over the past 900 kyr to address the timing of build-up of Northern hemisphere ice sheets around 413 kyr mimina in eccentricity and precessional variability. These periods are regarded as the astronomical analogues of the present interglacial. The results show that during periods of low eccentricity and precessional variability around 400 kyr and 800 kyr ago, the grain-size-inferred intensity of the EAWM remains weak for up to 20 kyr after the end of the interglacial episodes MIS 11, MIS 19 and MIS 21. In contrast, there is a rapid increase in the EAWM after the end of most other interglacials. We conclude that, for these interglacials at 400 kyr intervals, the weak EAWM winds maintain a non-glacial climate at high northern latitudes for much longer than expected from the conventional loess and marine oxygen isotope records. During these times, the less severe summer insolation minima at 65° N (modulated by 413-kyr eccentricity cycles) would have suppressed ice and snow accumulation, leading to a weak Siberian High and

  8. Test-retest reliability of an insole plantar pressure system to assess gait along linear and curved trajectories

    PubMed Central

    2014-01-01

    Background Previous studies have assessed reliability of insole technology for evaluating foot pressure distribution during linear walking. Since in natural motion straight walking is intermingled with turns, we determined the test-retest reliability of insole assessment for curved as well as linear trajectories, and estimated the minimum number of steps required to obtain excellent reliability for each output variable. Methods Sixteen young healthy participants were recruited. Each performed, two days apart, two sessions of three walking conditions: linear (LIN) and curved, clockwise (CW) and counter-clockwise (CCW). The Pedar-X system was used to collect pressure distribution. Foot print was analyzed both as a whole and as subdivided into eight regions: medial and lateral heel, medial and lateral arch, I metatarsal head, II-V metatarsal heads, hallux, lateral toes. Reliability was assessed by using intraclass correlation coefficient (ICC) for clinically relevant variables from analysis of 50 steps per trajectory: Peak Force (PF); Peak Pressure (PP); Contact Area (CA); Stance Duration (S). Results When considering whole-foot, all variables showed an ICC >0.80, therefore highly reliable. This was true for both LIN and curved trajectories. There was no difference in ICC of the four variables between left and right foot. When collapsing foot and trajectories, S had a lower ICC than PP and CA, and PP lower than CA. Mean percent error between the values of first and second session was <5%. When separately considering the eight foot regions, ICCs of PF, PP and CA for all regions and trajectories were generally >0.90, indicating excellent reliability. In curved trajectories, S showed smaller ICCs. Since the least ICC value for S was 0.60 in LIN trajectory, we estimated that to achieve an ICC ≥0.90 more than 200 steps should be collected. Conclusions High reliability of insole dynamic variables (PF, PP, CA) is obtained with 50 steps using the Pedar-X system. On the

  9. Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data

    PubMed Central

    Arizmendi, Fernando; Barreiro, Marcelo; Masoller, Cristina

    2017-01-01

    Understanding the complex dynamics of the atmosphere is of paramount interest due to its impact in the entire climate system and in human society. Here we focus on identifying, from data, the geographical regions which have similar atmospheric properties. We study surface air temperature (SAT) time series with monthly resolution, recorded at a regular grid covering the Earth surface. We consider two datasets: NCEP CDAS1 and ERA Interim reanalysis. We show that two surprisingly simple measures are able to extract meaningful information: i) the distance between the lagged SAT and the incoming solar radiation and ii) the Shannon entropy of SAT and SAT anomalies. The distance uncovers well-defined spatial patterns formed by regions with similar SAT response to solar forcing while the entropy uncovers regions with similar degree of SAT unpredictability. The entropy analysis also allows identifying regions in which SAT has extreme values. Importantly, we uncover differences between the two datasets which are due to the presence of extreme values in one dataset but not in the other. Our results indicate that the distance and entropy measures can be valuable tools for the study of other climatological variables, for anomaly detection and for performing model inter-comparisons. PMID:28358355

  10. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  11. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  12. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  13. Residential heating costs: a comparison of geothermal, solar and conventional resources

    SciTech Connect

    Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  14. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability confirmed by Chinese loess

    NASA Astrophysics Data System (ADS)

    Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Peng, Shuzhen; Qin, Li; Song, Yang; Xu, Bing; Qiao, Yansong; Bloemendal, Jan; Guo, Zhengtang

    2014-05-01

    The growth and decay of the Northern Hemisphere ice volume led to alternations of glacial and interglacial climate. Unfortunately, long-term continuous records of ice-sheet variability in the Northern Hemisphere during the Quaternary period only are scarce because benthic δ18O records represent an integrated signal of changes in ice volume in both polar regions. However, variations in Northern Hemisphere ice sheets influence the Siberian High (an atmospheric pressure system), so variations in the East Asian winter monsoon (EAWM)—as recorded in the aeolian dust deposits on the Chinese Loess Plateau—can serve as a useful proxy of Arctic climate variability. Here we present an EAWM proxy record using grain-size variations in two parallel loess sections over the past 900 kyr to address the timing of build-up of Northern hemisphere ice sheets around 413 kyr mimina in eccentricity and precessional variability. These periods are regarded as the astronomical analogues of the present interglacial. The grain-size-inferred intensity of the EAWM records shows that the wind strength of EAWM increased rapidly after the end of most interglacials. However, during periods of low eccentricity and precessional variability around 400 kyr and 800 kyr ago, EAWM remains weak for up to 20 kyr after the end of the interglacial episodes MIS 11, MIS 19 and MIS 21. We conclude that the delayed increase in wind strength of the EAWM was caused by delayed buildup of Arctic ice sheets at the ends of the interglacials at 400 kyr intervals, which had led to much longer climate of interglacial mode at high northern latitudes than expected from the marine oxygen isotope records. During these times, the less severe summer insolation minima at 65° N (modulated by 413-kyr eccentricity cycles) would have suppressed ice and snow accumulation, leading to a weak Siberian High and, consequently, weak EAWM winds. Astronomically driven insolation during the present interglacial and in the near future is

  15. Evaluating Inuence of Power Output Fluctuation of Photovoltaic Power Generation Systems on LFC based on Multiple Observation of Insolation

    NASA Astrophysics Data System (ADS)

    Yanagawa, Shigeyuki; Kato, Takeyoshi; Tabata, Akimori; Suzuoki, Yasuo

    A large-scale installation of a photovoltaic power generation system (PV system) may cause some diculties in the operation of electric power systems. Taking into account a smoothing effect of power outputs of PV systems by dispersed installation, this paper discusses the LFC (Load Frequency Control) capacity for power output fluctuation of PV systems based on the insolation data simultaneously observed at 5 points around Nagoya, Japan. The main results are (1) the frequency deviation might not exceed the tolerance (0.05Hz)when the installed PV system is 2% of system capacity, which is Japan’s target value toward 2010, (2) when the larger capacity of PV system is installed, the frequency deviation would be larger than 0.05Hz, and the capacity of LFC generator must be increased, (3) the frequency deviation due to the installation of PV system might be larger in holiday with smaller electricity demand than in weekday.

  16. Winter to Spring Transition in Europe 48-45 degrees N: From Temperature Control by Advection to Control by Insolation

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Hu, H.; Jusem, J. C.; Starr, D.

    1999-01-01

    As established in previous studies, and analyzed further herein for the years 1988-1998, warm advection from the North Atlantic is the predominant control of the surface-air temperature in northern-latitude Europe in late winter. This thesis is supported by the substantial correlation Cti between the speed of the southwesterly surface winds over the eastern North Atlantic, as quantified by a specific Index Ina, and the 2-meter level temperature Ts over central Europe (48-54 deg N; 5-25 deg E), for January, February and early March. In mid-March and subsequently, the correlation Cti drops drastically (quite often it is negative). The change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature. As (a) the sun rises higher in the sky, (b) the snows melt (the surface absorptivity can increase by a factor of 3.0), (c) the ocean-surface winds weaken, and (d) the temperature difference between land and ocean (which we analyze) becomes small, absorption of insolation replaces the warm advection as the dominant control of the continental temperature. We define the onset of spring by this transition, which evaluated for the period of our study occurs at pentad 16 (Julian Date 76, that is, March 16). The control by insolation means that the surface is cooler under cloudy conditions than under clear skies. This control produces a much smaller interannual variability of the surface temperature and of the lapse rate than prevailing in winter, when the control is by advection. Regional climatic data would be of greatest value for agriculture and forestry if compiled for well-defined seasons. For continental northern latitudes, analysis presented here of factors controlling the surface temperature appears an appropriate tool for this task.

  17. A Multi-Stage Human Factors and Comfort Assessment of Instrumented Insoles Designed for Use in a Connected Health Infrastructure

    PubMed Central

    Harte, Richard; Quinlan, Leo R.; Glynn, Liam; Rodriguez-Molinero, Alejandro; Scharf, Thomas; Carenas, Carlos; Reixach, Elisenda; Garcia, Joan; Carrabina, Jordi; ÓLaighin, Gearóid

    2015-01-01

    Wearable electronics are gaining widespread use as enabling technologies, monitoring human physical activity and behavior as part of connected health infrastructures. Attention to human factors and comfort of these devices can greatly positively influence user experience, with a subsequently higher likelihood of user acceptance and lower levels of device rejection. Here, we employ a human factors and comfort assessment methodology grounded in the principles of human-centered design to influence and enhance the design of an instrumented insole. A use case was developed and interrogated by stakeholders, experts, and end users, capturing the context of use and user characteristics for the instrumented insole. This use case informed all stages of the design process through two full design cycles, leading to the development of an initial version 1 and a later version 2 prototype. Each version of the prototype was subjected to an expert human factors inspection and controlled comfort assessment using human volunteers. Structured feedback from the first cycle of testing was the driver of design changes implemented in the version 2 prototype. This prototype was found to have significantly improved human factors and comfort characteristics over the first version of the prototype. Expert inspection found that many of the original problems in the first prototype had been resolved in the second prototype. Furthermore, a comfort assessment of this prototype with a group of young healthy adults showed it to be indistinguishable from their normal footwear. This study demonstrates the power and effectiveness of human factors and comfort assessment methodologies in influencing and improving the design of wearable devices. PMID:26694468

  18. Conceptual design of a solar cogeneration facility at Pioneer Mill Co. , Ltd

    SciTech Connect

    Not Available

    1981-04-01

    Results are reported of a conceptual design study of the retrofit of a solar central receiver system to an existing cogeneration facility at a Hawaii raw sugar factory. Background information on the site, the existing facility, and the project organization is given. Then the results are presented o the work to select the site specific configuration, including the working fluid, receiver concept, heliostat field site, and the determination of the solar facility size and of the role of thermal storage. The system selected would use water-steam as its working fluid in a twin-cavity receiver collecting sunlight from 41,420 m/sup 2/ of heliostat mirrors. The lates version of the system specification is appended, as are descriptions of work to measure site insolation and a site insolation mathematical model and interface data for the local utility. (LEW)

  19. Modeling Topographic Influences on Solar Radiation: A Manual for the SOLARFLUX Model

    NASA Astrophysics Data System (ADS)

    Rich, Paul M.; Hetrick, William A.; Saving, Shawn C.

    1995-11-01

    SOLARFLUX is a geographical information system (GIS) based computer program (running under ARC/INFO and GRID) that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. A convenient user interface allows specification of program parameters, including latitude, time interval for simulation, file name of topographic surface, atmospheric conditions (transmissivity), and file names for output. The user specifies a topographic surface as an array of elevation values (GRID), SOLARFLUX generates five basic types of output: 1 ) total direct radiation, 2) duration of direct sunlight, 3) total diffuse radiation, 4) skyview factor, and 5) hemispherical viewsheds of sky obstruction for specific surface locations. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modeling insolation on complex surfaces, our theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modeling.

  20. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX Model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1995-11-01

    SOLARFLUX is a geographical information system (GIS) based computer program (running under ARC/INFO and GRID) that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. A convenient user interface allows specification of program parameters including latitude, time interval for simulation, file name of a topographic surface, atmospheric conditions (transmittivity), and file names for output. The user specifies a topographic surface as an array of elevation values (GRID). SOLARFLUX generates five basic types of output: 1) total direct radiation, 2) duration of direct sunlight, 3) total diffuse radiation, 4) skyview factor, and 5) hemispherical viewsheds of sky obstruction for specified surface locations. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modeling insolation on complex surfaces, our theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modeling.

  1. Comparison of Two Types of Insoles on Musculoskeletal Symptoms and Plantar Pressure Distribution in a Work Environment: A Randomized Clinical Trial

    PubMed Central

    Almeida, Josiane S.; Vanderlei, Franciele M.; Pastre, Eliane C.; Martins, Rodrigo A.D.M.; Padovani, Carlos R.; Filho, Guaracy C.

    2016-01-01

    Background The aim of the present study was to assess plantar pressure distribution and musculoskeletal symptoms following the use of customized insoles among female assembly line workers. Methods The study included 29 female assembly line workers (age, 29.76 ± 5.79 years; weight, 63.79 ± 12.11 kg) with musculoskeletal symptoms who work predominantly while standing. The Nordic Musculoskeletal Questionnaire was administered to the study population. Plantar pressure was determined using a computerized plantar pressure feedback system. A control group (n=13) used ethylvinylacetate insoles (Podaly®) that were individually heat molded and heat glued. The intervention group (n=14) also used the insoles and a strip of the same material was added to the site of greatest plantar pressure as determined by the electronic feedback device. After five weeks, the plantar pressure data were collected again and the questionnaire was administered a second time. Results There was no significant difference between groups with regard to pain in any anatomic site. However, within each group the lumbar region exhibited a reduction in symptoms in the intervention group (P<0.05), and the feet exhibited a reduction in symptoms in both groups (P<0.05). Mean plantar pressure increased and plantar surface decreased in the intervention group (P<0.05). Conclusion Insoles increased foot comfort in both groups. However, the added strip did not significantly modify either plantar pressure or other symptoms in female workers. PMID:27231116

  2. The effect of different types of insoles or shoe modifications on medial loading of the knee in persons with medial knee osteoarthritis: a randomised trial

    PubMed Central

    Chapman, Graham J.; Parkes, Matthew J.; Forsythe, Laura.; Felson, David T.

    2015-01-01

    ABSTRACT Many conservative treatments exist for medial knee osteoarthritis (OA) which aims to reduce the external knee adduction moment (EKAM). The objective of this study was to determine the difference between different shoes and lateral wedge insoles on EKAM, knee adduction angular impulse (KAAI), external knee flexion moment, pain, and comfort when walking in individuals with medial knee OA. Seventy individuals with medial knee OA underwent three‐dimensional walking gait analysis in five conditions (barefoot, control shoe, typical wedge, supported wedge, and mobility shoe) with pain and comfort recorded concurrently. The change in EKAM, KAAI, external knee flexion moment, pain, and comfort were assessed using multiple linear regressions and pairwise comparisons. Compared with the control shoe, lateral wedge insoles and barefoot walking significantly reduced early stance EKAM and KAAI. The mobility shoe showed no effect. A significant reduction in latter stance EKAM was seen in the lateral wedge insoles compared to the other conditions, with only the barefoot condition reducing the external knee flexion moment. However, the mobility shoe showed significant immediate knee pain reduction and improved comfort scores. Different lateral wedge insoles show comparable reductions in medial knee loading and in our study, the mobility shoe did not affect medial loading. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 33:1646–1654, 2015. PMID:25991385

  3. The effects of short foot exercises and arch support insoles on improvement in the medial longitudinal arch and dynamic balance of flexible flatfoot patients

    PubMed Central

    Kim, Eun-Kyung; Kim, Jin Seop

    2016-01-01

    [Purpose] The purpose of the present study is to apply short foot exercises and arch support insoles in order to improve the medial longitudinal arch of flatfoot and compare the results to identify the effects of the foregoing exercises on the dynamic balance of the feet and the lower limbs. [Subjects and Methods] Fourteen university students with flexible flatfoot were selected by conducting navicular drop tests and randomly assigned to a short foot exercise group of seven subjects and an arch support insoles group of seven subjects. The intervention in the experiment was implemented for 30 minutes per time, three times per week for five weeks in total. [Results] In inter-group comparison conducted through navicular drop tests and Y-balance tests, the short foot exercise group showed significant differences. Among intra-group comparisons, in navicular drop tests, the short foot exercise group showed significant decreases. In Y-balance tests, both the short foot exercise group and the arch support insoles group showed significant increases. [Conclusion] In the present study, it could be seen that to improve flatfoot, applying short foot exercises was more effective than applying arch support insoles in terms of medial longitudinal arch improvement and dynamic balance ability. PMID:27942135

  4. The effect of different types of insoles or shoe modifications on medial loading of the knee in persons with medial knee osteoarthritis: a randomised trial.

    PubMed

    Jones, Richard K; Chapman, Graham J; Parkes, Matthew J; Forsythe, Laura; Felson, David T

    2015-11-01

    Many conservative treatments exist for medial knee osteoarthritis (OA) which aims to reduce the external knee adduction moment (EKAM). The objective of this study was to determine the difference between different shoes and lateral wedge insoles on EKAM, knee adduction angular impulse (KAAI), external knee flexion moment, pain, and comfort when walking in individuals with medial knee OA. Seventy individuals with medial knee OA underwent three-dimensional walking gait analysis in five conditions (barefoot, control shoe, typical wedge, supported wedge, and mobility shoe) with pain and comfort recorded concurrently. The change in EKAM, KAAI, external knee flexion moment, pain, and comfort were assessed using multiple linear regressions and pairwise comparisons. Compared with the control shoe, lateral wedge insoles and barefoot walking significantly reduced early stance EKAM and KAAI. The mobility shoe showed no effect. A significant reduction in latter stance EKAM was seen in the lateral wedge insoles compared to the other conditions, with only the barefoot condition reducing the external knee flexion moment. However, the mobility shoe showed significant immediate knee pain reduction and improved comfort scores. Different lateral wedge insoles show comparable reductions in medial knee loading and in our study, the mobility shoe did not affect medial loading.

  5. Solar energy system economic evaluation: Contemporary Newman, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An economic evaluation of performance of the solar energy system (based on life cycle costs versus energy savings) for five cities considered to be representative of a broad range of environmental and economic conditions in the United States is discussed. The considered life cycle costs are: hardware, installation, maintenance, and operating costs for the solar unique components of the total system. The total system takes into consideration long term average environmental conditions, loads, fuel costs, and other economic factors applicable in each of five cities. Selection criteria are based on availability of long term weather data, heating degree days, cold water supply temperature, solar insolation, utility rates, market potential, and type of solar system.

  6. Project Ahupua'a: solar meteorological field measurements on the Island of Hawaii, Summer 1978. 5. Southern flank of Mauna Loa

    SciTech Connect

    Ekern, P.C.; Becker, R.J.

    1982-10-01

    Between 12-21 June 1978, four instrumented vans were deployed in a nearly linear transect above Na'alehu, along the steep southeastern slope of Mauna Loa. The transect, traversing a pronounced rainfall and insolation gradient, was designed to monitor sunlight and other meteorological variables related to solar energy. Surprisingly, many locations here receive more insolation during winter than during summer. Stronger than normal trade wind conditions prevailed during the period. A minor distrubance moved eastward to the north of the Island of Hawaii on 20 June, weakened the trade winds for nearly 24 h, and offered the opportunity to examine the development of island-generated circulations unhindered by the large scale flow. The amount of insolation recieved at the transect stations was less than the long-term mean. Persistent cloudiness attenuated insolation. Orographic cloud limited morning insolation while a sea breeze-anabatic cloud depleted afternoon insolation. Peak sunlight values were recorded during the mid-morning transition. This pattern occurred on all nine trade wind days. On 20 June, no orographic cloud formed and maximum values of insolation were received at three of the four transect sites. Strong gusty surface winds recorded along the transect may have been associated with a low level jet stream with Mauna Loa acting as a western boundary to the trade wind current. All transect stations experienced nocturnal wind pulses. Wind speed fluctuations, occasionally exceeding 5 m s/sup -1/, occurred with pronounced changes in wind direction. Increasing winds veered toward the prevailing trade wind direction, decreasing winds backed. Low level jet stream instabilities were a likely cause of these fluctuations.

  7. The effectiveness of shoe insoles for the prevention and treatment of low back pain: a systematic review and meta-analysis of randomised controlled trials

    PubMed Central

    2014-01-01

    Background Low back pain (LBP) is a significant public health problem in Western industrialised countries and has been reported to affect up to 80% of adults at some stage in their lives. It is associated with high health care utilisation costs, disability, work loss and restriction of social activities. An intervention of foot orthoses or insoles has been suggested to reduce the risk of developing LBP and be an effective treatment strategy for people suffering from LBP. However, despite the common usage of orthoses and insoles, there is a lack of clear guidelines for their use in relation to LBP. The aim of this review is to investigate the effectiveness of foot orthoses and insoles in the prevention and treatment of non specific LBP. Methods A systematic search of MEDLINE, CINAHL, EMBASE and The Cochrane Library was conducted in May 2013. Two authors independently reviewed and selected relevant randomised controlled trials. Quality was evaluated using the Cochrane Collaboration Risk of Bias Tool and the Downs and Black Checklist. Meta-analysis of study data were conducted where possible. Results Eleven trials were included: five trials investigated the treatment of LBP (n = 293) and six trials examined the prevention of LBP (n = 2379) through the use of foot orthoses or insoles. Meta-analysis showed no significant effect in favour of the foot orthoses or insoles for either the treatment trials (standardised mean difference (SMD) -0.74, CI 95%: -1.5 to 0.03) or the prevention trials (relative risk (RR) 0.78, CI 95%: 0.50 to 1.23). Conclusions There is insufficient evidence to support the use of insoles or foot orthoses as either a treatment for LBP or in the prevention of LBP. The small number, moderate methodological quality and the high heterogeneity of the available trials reduce the strength of current findings. Future research should concentrate on identification of LBP patients most suited to foot orthoses or insole treatment, as there is some

  8. Close Resemblance Between Local Summer Insolation, O2/N2 and Total Air Content from the Dome Fuji Ice Core, Antarctica

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Nakazawa, T.; Aoki, S.; Fujii, Y.; Watanabe, O.; Severinghaus, J. P.

    2004-12-01

    O2/N2 ratio from ice cores has shown depleted values compared to the atmosphere due to selective exclusion of O2 during bubble formation at the base of firn. The long record from the Vostok ice core revealed that O2/N2 ratio records the local summer insolation. Insolation may affect physical properties of the firn near the surface, which later determines how much O2/N2 is fractionated the during bubble close-off process. We present here a supportive record of O2/N2 ratio for the last 340 kyr along the Dome Fuji ice core, Antarctica, which shows variations similar to the summer insolation at 77° S. Moreover, the variation of total air content (TAC) in the Dome Fuji core resembles that of O2/N2. High TAC and high O2/N2 ratio appear at times of low summer insolation. Since the TAC variation is too large to be explained by the elevation change at the Dome Fuji site in the past, a possible cause is variation of the so-called ``lock-in zone'' thickness on the orders of several meters. The lock-in zone is a region 0-10 m thick at the bottom of firn where horizontal impermeable layers prevent vertical gas mixing. At times of low insolation, the firn would retain inhomogeneities such as wind crusts and high-density layers. These small-scale inhomogeneities do not affect bulk density very much but may help trap the gases at a lower bulk density (and higher porosity and thus TAC) through formation of a thicker lock-in zone than in times of high insolation. High insolation would homogenize the firn structure through recrystallization. O2/N2 ratio would be less depleted if there is a lock-in zone within the total close-off zone, because O2 molecules once excluded from bubbles would eventually be re-trapped in the ice in the lock-in zone.

  9. Thermo-electronic solar power conversion with a parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Olukunle, Olawole C.; De, Dilip K.

    2016-02-01

    We consider the energy dynamics of the power generation from the sun when the solar energy is concentrated on to the emitter of a thermo-electronic converter with the help of a parabolic mirror. We use the modified Richardson-Dushman equation. The emitter cross section is assumed to be exactly equal to the focused area at a height h from the base of the mirror to prevent loss of efficiency. We report the variation of output power with solar insolation, height h, reflectivity of the mirror, and anode temperature, initially assuming that there is no space charge effect. Our methodology allows us to predict the temperature at which the anode must be cooled in order to prevent loss of efficiency of power conversion. Novel ways of tackling the space charge problem have been discussed. The space charge effect is modeled through the introduction of a parameter f (0 < f < 1) in the thermos-electron emission equation. We find that the efficiency of the power conversion depends on solar insolation, height h, apart from radii R of the concentrator aperture and emitter, and the collector material properties. We have also considered solar thermos electronic power conversion by using single atom-layer graphene as an emitter.

  10. Electric power - photovoltaic or solar dynamic

    SciTech Connect

    Thomas, R.L.; Hallinan, G.J.; Hieatt, J.L.

    1985-09-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  11. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  12. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables

  13. Regional Per Capita Solar Electric Footprint for the United States

    SciTech Connect

    Denholm, P.; Margolis, R.

    2007-12-01

    In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

  14. Daily practices, consumption and citizenship.

    PubMed

    Mazzarino, Jane M; Morigi, Valdir J; Kaufmann, Cristine; Farias, Alessandra M B; Fernandes, Diefersom A

    2011-12-01

    This paper promotes a reflection on the relationship between daily practices and consumption. Understanding how conflicts, resistance and consensus are generated from daily consumption practices opens up possibilities for reflecting on the construction of sustainability in the context of diversity, one of the landmarks of the globalized world. Within this socio-cultural context, the central issue is: can consumption generate citizenship practices? The concepts of subject and agent help one think about collective action and subjectivation processes and their interferences on the collective consuming behavior. Based on empirical data from a research carried out in the municipality of Estrela in 2007, in the Taquari Valley - Rio Grande do Sul (Southern Brazil) on local reality consumption practices, it was possible to conclude that various reasoning mechanisms and values underlie the daily consumption practices. Citizenship construction, based on consumption practices, depends on the subject's reflection capacity on his/her daily practices or on what goes through the circulation of environmental information based on sociability spaces.

  15. Tractor Operation and Daily Care.

    ERIC Educational Resources Information Center

    Fore, J. M.; And Others

    Written for the tractor operator, the manual describes, with the aid of colored illustrations and diagrams, the tasks involved in the proper operation and daily maintenance of tractors. It offers explanations for the desirability of the various servicing and adjustment operations, as well as guidelines for tractor operation and safety. The…

  16. Digital Daily Cycles of Individuals

    NASA Astrophysics Data System (ADS)

    Aledavood, Talayeh; Lehmann, Sune; Saramäki, Jari

    2015-10-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We begin at the aggregate level, discuss earlier results, and illustrate differences between population-level daily rhythms in different media. Then we move on to the individual level, and show that there is a strong individual-level variation beyond averages: individuals typically have their distinctive daily pattern that persists in time. We conclude by discussing the driving forces behind these signature daily patterns, from personal traits (morningness/eveningness) to variation in activity level and external constraints, and outline possibilities for future research.

  17. Southern California Daily Energy Report

    EIA Publications

    2016-01-01

    EIA has updated its Southern California Daily Energy Report to provide additional information on key energy market indicators for the winter season. The dashboard includes information that EIA regularly compiles about energy operations and the management of natural gas and electricity systems in Southern California in the aftermath of a leak at the Aliso Canyon natural gas storage facility outside of Los Angeles

  18. Teaching Activities of Daily Living.

    ERIC Educational Resources Information Center

    McCormack, James E.

    Provided are strategies for teaching activities of daily living (ADL), which include dressing, eating, grooming, toileting, and basic homemakine, to severely retarded students. Reviewed are the steps necessary to teach ADL skills: ADL assessment, identification of appropriate strategies and tactics, and task analysis. Explained are four common…

  19. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    NASA Astrophysics Data System (ADS)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  20. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  1. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  2. Are policy incentives for solar power effective? Evidence from residential installations in the Northeast

    SciTech Connect

    Crago, Christine Lasco; Chernyakhovskiy, Ilya

    2017-01-01

    State incentives for solar power have grown significantly in the past several years. This paper examines the effectiveness of policy incentives to increase residential solar photovoltaic (PV) capacity. We use county-level panel data and control for demographic characteristics, solar resources, and pro-environmental preferences. Results show that among financial incentives, rebates have the most impact with an additional $1 per watt rebate increasing annual PV capacity additions by close to 50%. Factors that affect financial returns to solar PV such as electricity price and solar insolation are also found to be significant. Results also point to a significant positive relationship between hybrid vehicle sales and residential PV capacity growth, indicating the importance of pro-environmental preferences as a predictor of solar PV demand. Back of the envelope calculations suggest that the cost of carbon mitigation through rebates is around $184 per ton of CO2.

  3. Observability of market daily volatility

    NASA Astrophysics Data System (ADS)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  4. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  5. Single daily dosing of aminoglycosides.

    PubMed

    Preston, S L; Briceland, L L

    1995-01-01

    To evaluate the rationale behind dosing aminoglycosides as a single daily dose versus traditional dosing approaches, we conducted a MEDLINE search to identify all pertinent articles, and also reviewed the references of all articles. Single daily dosing of aminoglycosides is not a new concept, having been examined since 1974. The advantages of this regimen include optimum concentration-dependent bactericidal activity, longer dosing intervals due to the postantibiotic effect (PAE), and prevention of bacterial adaptive resistance. Because of longer dosing intervals, toxicity may also be delayed or reduced. Costs may be reduced due to decreased monitoring and administration. Clinically, the regimen has been implemented in various patient populations with reported success. Questions remain, however, about optimum dose, peak and trough serum concentrations, and dose adjustment in patients with renal impairment or neutropenia. More clinical experience with this method in large numbers of patients has to be published. Pharmacists can be instrumental in monitoring patients receiving once-daily therapy and by educating health care professionals as to the rationale behind the therapy.

  6. In the hot seat : Insolation and ENSO controls on vegetation productivity in tropical Africa inferred from NDVI

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. L.; Cohen, A. S.

    2010-12-01

    Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and

  7. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    NASA Astrophysics Data System (ADS)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning

  8. A novel tool for continuous fracture aftercare - Clinical feasibility and first results of a new telemetric gait analysis insole.

    PubMed

    Braun, Benedikt J; Bushuven, Eva; Hell, Rebecca; Veith, Nils T; Buschbaum, Jan; Holstein, Joerg H; Pohlemann, Tim

    2016-02-01

    Weight bearing after lower extremity fractures still remains a highly controversial issue. Even in ankle fractures, the most common lower extremity injury no standard aftercare protocol has been established. Average non weight bearing times range from 0 to 7 weeks, with standardised, radiological healing controls at fixed time intervals. Recent literature calls for patient-adapted aftercare protocols based on individual fracture and load scenarios. We show the clinical feasibility and first results of a new, insole embedded gait analysis tool for continuous monitoring of gait, load and activity. Ten patients were monitored with a new, independent gait analysis insole for up to 3 months postoperatively. Strict 20 kg partial weight bearing was ordered for 6 weeks. Overall activity, load spectrum, ground reaction forces, clinical scoring and general health data were recorded and correlated. Statistical analysis with power analysis, t-test and Spearman correlation was performed. Only one patient completely adhered to the set weight bearing limit. Average time in minutes over the limit was 374 min. Based on the parameters load, activity, gait time over 20 kg weight bearing and maximum ground reaction force high and low performers were defined after 3 weeks. Significant difference in time to painless full weight bearing between high and low performers was shown. Correlation analysis revealed a significant correlation between weight bearing and clinical scoring as well as pain (American Orthopaedic Foot and Ankle Society (AOFAS) Score rs=0.74; Olerud-Molander Score rs=0.93; VAS pain rs=-0.95). Early, continuous gait analysis is able to define aftercare performers with significant differences in time to full painless weight bearing where clinical or radiographic controls could not. Patient compliance to standardised weight bearing limits and protocols is low. Highly individual rehabilitation patterns were seen in all patients. Aftercare protocols should be adjusted to real

  9. Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity

    SciTech Connect

    Branz, Howard M.; Regan, William; Gerst, Kacy J.; Borak, J. Brian; Santori, Elizabeth A.

    2015-08-12

    Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide. However, PV is unlikely to economically supply much more than 10% of the world's electricity unless there is a dramatic reduction in the cost of electricity storage. There is an important scientific and technological opportunity to address the storage challenge by developing inexpensive hybrid solar converters that collect solar heat at temperatures between about 200 and 600 °C and also incorporate PV. Since heat can be stored and converted to electricity at relatively low cost, collection of high exergy content (high temperature) solar heat can provide energy that is dispatchable on demand to meet loads that are not well matched to solar insolation. However, PV cells can collect and convert much of the solar spectrum to electricity more efficiently and inexpensively than solar thermal systems. Advances in spectrum-splitting optics, high-temperature PV cells, thermal management and system design are needed for transformational hybrid converters. We propose that maximizing the exergy output from the solar converters while minimizing the cost of exergy can help propel solar energy toward a higher contribution to carbon-free electricity in the long term than the prevailing paradigm of maximizing the energy output while minimizing the cost of energy

  10. Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Xia, Lili; Robock, Alan; Cole, Jason; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-07-01

    Geoengineering via solar radiation management could affect agricultural productivity due to changes in temperature, precipitation, and solar radiation. To study rice and maize production changes in China, we used results from 10 climate models participating in the Geoengineering Model Intercomparison Project (GeoMIP) G2 scenario to force the Decision Support System for Agrotechnology Transfer (DSSAT) crop model. G2 prescribes an insolation reduction to balance a 1% a-1 increase in CO2 concentration (1pctCO2) for 50 years. We first evaluated the DSSAT model using 30 years (1978-2007) of daily observed weather records and agriculture practices for 25 major agriculture provinces in China and compared the results to observations of yield. We then created three sets of climate forcing for 42 locations in China for DSSAT from each climate model experiment: (1) 1pctCO2, (2) G2, and (3) G2 with constant CO2 concentration (409 ppm) and compared the resulting agricultural responses. In the DSSAT simulations: (1) Without changing management practices, the combined effect of simulated climate changes due to geoengineering and CO2 fertilization during the last 15 years of solar reduction would change rice production in China by -3.0 ± 4.0 megaton (Mt) (2.4 ± 4.0%) as compared with 1pctCO2 and increase Chinese maize production by 18.1 ± 6.0 Mt (13.9 ± 5.9%). (2) The termination of geoengineering shows negligible impacts on rice production but a 19.6 Mt (11.9%) reduction of maize production as compared to the last 15 years of geoengineering. (3) The CO2 fertilization effect compensates for the deleterious impacts of changes in temperature, precipitation, and solar radiation due to geoengineering on rice production, increasing rice production by 8.6 Mt. The elevated CO2 concentration enhances maize production in G2, contributing 7.7 Mt (42.4%) to the total increase. Using the DSSAT crop model, virtually all of the climate models agree on the sign of the responses, even though

  11. Solar-Geophysical Data Number 438, February 1981. Part 1 (prompt reports). Data for January 1981, December 1980 and late data

    SciTech Connect

    Coffey, H.E.

    1981-02-01

    Contents include: index for 1970-1980; January 1981 data -- alert periods, daily solar indices, solar flares, solar radio emission, coronal holes, inferred interplanetary magnetic field polarities, mean solar magnetic field, spacecraft observations, December 1980 data -- daily solar-activity centers, sudden ionospheric disturbances, spacecraft observations, solar radio emission, cosmic rays, geomagnetic indices, radio-propagation indices; late data -- solar radio emission November, December 1980, spacecraft observations November 1980, cosmic rays, Huancayo Oct 1980 -- climax, alert, Deep River Nov 1980.

  12. 50 CFR 20.24 - Daily limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Daily limit. 20.24 Section 20.24 Wildlife... (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.24 Daily limit. No person shall take in any 1 calendar day, more than the daily bag limit or aggregate daily bag limit, whichever applies....

  13. Measurement of solar radiation at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  14. When Daily Sunspot Births Become Positively Correlated

    NASA Astrophysics Data System (ADS)

    Shapoval, Alexander; Le Mouël, Jean-Louis; Shnirman, Mikhail; Courtillot, Vincent

    2015-10-01

    We study the first differences w(t) of the International Sunspot Number (ISSN) daily series for the time span 1850 - 2013. The one-day correlations ρ1 between w(t) and w(t+1) are computed within four-year sliding windows and are found to shift from negative to positive values near the end of Cycle 17 ({˜} 1945). They remain positive during the last Grand Maximum and until {˜} 2009, when they fall to zero. We also identify a prominent regime change in {˜} 1915, strengthening previous evidence of major anomalies in solar activity at this date. We test an autoregressive process of order 1 (AR(1)) as a model that can reproduce the high-frequency component of ISSN: we compute ρ1 for this AR(1) process and find that it is negative. Positive values of ρ1 are found only if the process involves positive correlation: this leads us to suggest that the births of successive spots are positively correlated during the last Grand Maximum.

  15. Performance of solar collector arrays and collector controllers in the National Solar Data Network

    NASA Astrophysics Data System (ADS)

    Logee, T. L.; Kendall, P. W.

    1984-07-01

    The accumulated National Solar Data Network (NSDN) data has been analyzed with regard to collector and collector control performance. The collector data is presented in the ASHRAE format as efficiency vs. operating points, (Tinlet - Tambient)/insolation. Collector controls were analyzed by determining the losses caused by control problems common to the NSDN solar systems. This study of collectors and collector controls has several objectives which are: (1) to compare actual and predicted collector performance; (2) to determine which generic types of components performed well and which performed poorly; (3) to determine why predicted performance was not achieved in the field; (4) to determine the types and causes of failures; (5) to determine the reliability weaknesses; and (6) to determine whether there are any component integration problems.

  16. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  17. Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    NASA Technical Reports Server (NTRS)

    Huning, J. R.; Logan, T. L.; Smith, J. H.

    1982-01-01

    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics.

  18. Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin

    PubMed Central

    Head, James W.; Marchant, David R.; Kreslavsky, Mikhail A.

    2008-01-01

    Features seen in portions of a typical midlatitude Martian impact crater show that gully formation follows a geologically recent period of midlatitude glaciation. Geological evidence indicates that, in the relatively recent past, sufficient snow and ice accumulated on the pole-facing crater wall to cause glacial flow and filling of the crater floor with debris-covered glaciers. As glaciation waned, debris-covered glaciers ceased flowing, accumulation zones lost ice, and newly exposed wall alcoves continued as the location for limited snow/frost deposition, entrapment, and preservation. Analysis of the insolation geometry of this pole-facing crater wall, and similar occurrences in other craters at these latitudes on Mars, shows that they are uniquely favored for accumulation of snow and ice, and a relatively more rapid exposure to warmer summer temperatures. We show that, after the last glaciation, melting of residual snow and ice in alcoves could have formed the fluvial channels and sedimentary fans of the gullies. Recent modeling shows that top-down melting can occur in these microenvironments under conditions similar to those currently observed on Mars, if small amounts of snow or frost accumulate in alcoves and channels. Accumulation and melting is even more favored in the somewhat wetter, relatively recent geological past of Mars, after the period of active glaciation. PMID:18725636

  19. a Study of the Impact of Insolation on Remote Sensing-Based Landcover and Landuse Data Extraction

    NASA Astrophysics Data System (ADS)

    Becek, K.; Borkowski, A.; Mekik, Ç.

    2016-06-01

    We examined the dependency of the pixel reflectance of hyperspectral imaging spectrometer data (HISD) on a normalized total insolation index (NTII). The NTII was estimated using a light detection and ranging (LiDAR)-derived digital surface model (DSM). The NTII and the pixel reflectance were dependent, to various degrees, on the band considered, and on the properties of the objects. The findings could be used to improve land cover (LC)/land use (LU) classification, using indices constructed from the spectral bands of imaging spectrometer data (ISD). To study this possibility, we investigated the normalized difference vegetation index (NDVI) at various NTII levels. The results also suggest that the dependency of the pixel reflectance and NTII could be used to mitigate the shadows in ISD. This project was carried out using data provided by the Hyperspectral Image Analysis Group and the NSF-funded Centre for Airborne Laser Mapping (NCALM), University of Houston, for the purpose of organizing the 2013 Data Fusion Contest (IEEE 2014). This contest was organized by the IEEE GRSS Data Fusion Technical Committee.

  20. Formation of gullies on Mars: link to recent climate history and insolation microenvironments implicate surface water flow origin.

    PubMed

    Head, James W; Marchant, David R; Kreslavsky, Mikhail A

    2008-09-09

    Features seen in portions of a typical midlatitude Martian impact crater show that gully formation follows a geologically recent period of midlatitude glaciation. Geological evidence indicates that, in the relatively recent past, sufficient snow and ice accumulated on the pole-facing crater wall to cause glacial flow and filling of the crater floor with debris-covered glaciers. As glaciation waned, debris-covered glaciers ceased flowing, accumulation zones lost ice, and newly exposed wall alcoves continued as the location for limited snow/frost deposition, entrapment, and preservation. Analysis of the insolation geometry of this pole-facing crater wall, and similar occurrences in other craters at these latitudes on Mars, shows that they are uniquely favored for accumulation of snow and ice, and a relatively more rapid exposure to warmer summer temperatures. We show that, after the last glaciation, melting of residual snow and ice in alcoves could have formed the fluvial channels and sedimentary fans of the gullies. Recent modeling shows that top-down melting can occur in these microenvironments under conditions similar to those currently observed on Mars, if small amounts of snow or frost accumulate in alcoves and channels. Accumulation and melting is even more favored in the somewhat wetter, relatively recent geological past of Mars, after the period of active glaciation.

  1. Screen-printed piezoelectric shoe-insole energy harvester using an improved flexible PZT-polymer composites

    NASA Astrophysics Data System (ADS)

    Almusallam, A.; Torah, R. N.; Zhu, D.; Tudor, M. J.; Beeby, S. P.

    2013-12-01

    This paper reports improved screen-printed piezoelectric composites that can be printed on fabrics or flexible substrates. The materials are flexible and are processed at lower temperature (130°C). One main PZT particle size (2μm) was mixed separately with smaller piezoelectric particles (0.1, 0.3 and 0.8μm) with different weight ratios to investigate the piezoelectric property d33. The blended PZT powder was then mixed with 40% polymer binder and printed on Alumina substrates. The applied poling field, temperature and time were 8MV/m, 160°C and 10min, respectively. The optimum material gives a d33 of 36pC/N with particle sizes of 2μm and 0.8μm and mixed percentages of 82% and 18%, respectively. A screen-printed piezoelectric shoe-insoles (PSI) has been developed as a self-powered force mapping sensor. The PSI was simulated, fabricated and tested. ANSYS results show that one element of PSI sole can produce an open- circuit voltage of 3V when a human of average weight of 70kg makes a gait strike. Experimental results show that one element produced 2V which is less than the simulated results because of the reduction of poling field for the practical device.

  2. Analysis of daily latitude variations

    NASA Technical Reports Server (NTRS)

    Graber, M. A.

    1978-01-01

    The daily latitude measurements of the International polar motion service are analyzed. The results indicate that the annual polar oscillation is probably due to local phenomena with amplitudes varying from 0.05 to 0.15 min. Within the resolution of the residuals (150 cm), there is no indication of the sharp changes which might be associated with earthquake effects. Then, applying Schuster's test to a periodogram of the residuals indicates that there are probably several processes occurring at amplitudes between 0.007 and 0.03 min whose solution awaits a more precise measurement technique.

  3. Managing Hypertriglyceridemia in Daily Practice.

    PubMed

    Pramono, Laurentius A; Harbuwono, Dante S

    2015-07-01

    Hypertriglyceridemia is a form of dyslipidemia, which usually occurs in combination with hypercholesterolemia, high-LDL or low-HDL cholesterol level. Most studies suggest that hypertriglyceridemia is associated with many metabolic disorders such as metabolic syndrome, diabetes, obesity, and also cardio-cerebrovascular diseases. Treatment of hypertriglyceridemia is often not comprehensively addressed by many physicians, who usually only include prescribing drugs without encouraging patients to perform physical activity, to take a true healthy diet for dyslipidemia and to stop smoking. This review article discusses evaluation, diagnosis and a comprehensive, yet simple management of hypertriglyceridemia, which can be easily applied in daily clinical practice.

  4. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  5. Solar energy system economic evaluation for Solaron Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic analysis of the solar energy system that was installed at Akron, Ohio is developed for this and four other sites typical of a wide range of environmental and economic conditions. The analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed parameters of present worth of system cost over a projected twenty year life: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results show that only in Albuquerque, New Mexico, where insolation is 1828 Btu/sq ft/day and the conventional energy cost is high, is this solar energy system marginally profitable.

  6. The 1-kW solar Stirling experiment

    NASA Technical Reports Server (NTRS)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  7. Solar production of intermediate temperature process heat, phase 1 design

    NASA Astrophysics Data System (ADS)

    1980-08-01

    The system consists of 42,420 sq ft of parabolic trough, single axis tracking, concentrating solar collectors. The collectors are oriented in a North-South configuration and track East-West. A heat transfer fluid (Gulf Synfluid 4cs) is circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370 F and 450 F respectively. These temperatures are constantly maintained via a variable flow rate through the collectors (the flow rate varies in direct proportion to the level of insolation). Superheated steam is the final product of the solar energy system. Final steam quality at the steam generator is 420 F and 165 Psia.

  8. NOAA Data Rescue of Key Solar Databases and Digitization of Historical Solar Images

    NASA Astrophysics Data System (ADS)

    Coffey, H. E.

    2006-08-01

    Over a number of years, the staff at NOAA National Geophysical Data Center (NGDC) has worked to rescue key solar databases by converting them to digital format and making them available via the World Wide Web. NOAA has had several data rescue programs where staff compete for funds to rescue important and critical historical data that are languishing in archives and at risk of being lost due to deteriorating condition, loss of any metadata or descriptive text that describe the databases, lack of interest or funding in maintaining databases, etc. The Solar-Terrestrial Physics Division at NGDC was able to obtain funds to key in some critical historical tabular databases. Recently the NOAA Climate Database Modernization Program (CDMP) funded a project to digitize historical solar images, producing a large online database of historical daily full disk solar images. The images include the wavelengths Calcium K, Hydrogen Alpha, and white light photos, as well as sunspot drawings and the comprehensive drawings of a multitude of solar phenomena on one daily map (Fraunhofer maps and Wendelstein drawings). Included in the digitization are high resolution solar H-alpha images taken at the Boulder Solar Observatory 1967-1984. The scanned daily images document many phases of solar activity, from decadal variation to rotational variation to daily changes. Smaller versions are available online. Larger versions are available by request. See http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarimages.html. The tabular listings and solar imagery will be discussed.

  9. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  10. Summer aridity in the United States: Response to mid-Holocene changes in insolation, ocean mean-state, and ocean variability

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Ashfaq, M.; Shuman, B.; Williams, J. W.; Bartlein, P. J.; Sloan, L. C.

    2006-12-01

    We have tested the response of summer precipitation to mid-Holocene insolation forcing and insolation- induced atmosphere-ocean feedbacks. Using a high-resolution nested climate modeling system, we find that mid-Holocene insolation forcing results in drier-than-present conditions over the central continental United States and northern Rocky Mountains, as well as wetter-than-present conditions over the Atlantic seaboard and northwestern Great Plains. We find that changes in ocean mean-state and variability do not change the basic pattern of response, primarily because changes in large- and fine-scale climate dynamics are very similar with and without ocean feedbacks. Notably, drier-than-present conditions over the central U.S. are associated with enhanced anticyclonic circulation aloft over the mid-continent and reduced low-level moisture content over the Gulf of Mexico, while wetter-than-present conditions over the Atlantic seaboard are associated with enhanced low-level cyclonic circulation and elevated low-level moisture content. We also find that changes in soil moisture likely enhance the response of precipitation over many areas. While ocean feedbacks result in changes in the magnitude of precipitation response over large areas of the continental U.S., we find that the effects of changes in ocean mean-state and variability oppose each other over most of these areas. The simulated patterns of precipitation and soil moisture agree with proxy moisture records from most regions, indicating both that insolation was the largest determinant of mid-Holocene summer aridity in the continental U.S. and that high-resolution climate modeling systems are able to capture the basic response of mid-latitude warm-season aridity to changes in external climate forcing.

  11. Immediate coronal plane kinetic effects of novel lateral-offset sole shoes and lateral-wedge insole shoes in healthy individuals.

    PubMed

    Kang, Jong Woo; Park, Hae Soo; Na, Choon Kyun; Park, Jong Woong; Hong, Jungwha; Lee, Soon Hyuck

    2013-02-01

    To investigate kinetic differences in the coronal plane between healthy individuals wearing shoes with lateral-offset soles and shoes with lateral-wedge insoles while walking, hip abduction, knee adduction, and ankle abduction moments were estimated using a 3-dimensional motion analysis system under 3 different conditions: wearing conventional shoes (control), wearing lateral-offset sole shoes (condition A), and wearing lateral-wedge insole shoes (condition B). Forty-eight healthy individuals (24 men and 24 women) were tested. Condition A resulted in a significantly reduced peak knee adduction moment compared with the control (condition A=0.316 Nm/kg; control=0.380 Nm/kg; P=.006). The peak knee adduction moment of condition B was also lower than that of the control (condition B=0.299 Nm/kg; P=.002); however, the peak knee adduction moment was not significantly different between conditions A and B (P=.386). Condition B resulted in an increased mean ankle abduction moment in the stance phase compared with the control and condition A (control=0.007 Nm/kg; condition A=0.013 Nm/kg; condition B=0.023 Nm/kg) (control vs condition A, P=.051; control vs condition B, P<.001; condition A vs condition B, P=.002). The hip abduction moments were not significantly different between the control and condition A, control and condition B, or conditions A and B. Wearing lateral-offset sole shoes reduces the peak knee adduction moment and exerts less influence on ankle moment than does wearing lateral-wedge insole shoes. Neither lateral-offset sole shoes nor lateral-wedge insole shoes induce kinetic changes in the coronal plane of the hip.

  12. Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator

    NASA Astrophysics Data System (ADS)

    Miao, L.; Zhang, M.; Tanemura, S.; Tanaka, T.; Kang, Y. P.; Xu, G.

    2012-06-01

    We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply both thermal energy and electricity. The main design concepts are (1) the hot side of the TEM is bonded to the solar selective absorber installed in an evacuated glass tube, (2) the cold side of the TEM is also bonded to the heat sink, and (3) the outer circulated water is heated by residual solar energy after TEM generation. We present an example solar thermal simulation based on energy balance and heat transfer as used in solar engineering to predict the electrical conversion efficiency and solar thermal conversion efficiency for different values of parameters such as the solar insolation, concentration ratio, and TEM ZT values.

  13. Solar cogeneration: Cimarron River station, Central Telephone and Utilities-Western Power

    SciTech Connect

    Harder, J.E.

    1981-04-01

    The site-specific conceptual design progress is described for a solar central receiver cogeneration facility at a Kansas utility. The process is described which led to the selection of the preferred solar cogeneration facility. The status of the conceptual design is presented. The evaluation of system performance is described. A test program is described that is to determine the magnitude of impact that local environmental factors have on collector system performance and to measure the direct normal insolation at the cogeneration facility site. The system specification is appended. (LEW)

  14. Phosphorus balance with daily dialysis.

    PubMed

    Kooienga, Laura

    2007-01-01

    Hyperphosphatemia is an almost universal finding in patients with end-stage renal disease and is associated with increased all-cause mortality, cardiovascular mortality, and vascular calcification. These associations have raised the question of whether reducing phosphorus levels could result in improved survival. In light of the recent findings that increased per-session dialysis dose, as assessed by urea kinetics, did not result in improved survival, the definition of adequacy of dialysis should be re-evaluated and consideration given to alternative markers. Two alternatives to conventional thrice weekly dialysis (CHD) are nocturnal hemodialysis (NHD) and short daily hemodialysis (SDHD). The elimination kinetics of phosphorus as they relate to these alternative daily dialysis schedules and the clinical implications of overall phosphorus balance are discussed here. The total weekly phosphorus removal with NHD is more than twice that removed by CHD (4985 mg/week +/- 1827 mg vs. 2347 mg/week +/- 697 mg) and this is associated with a significantly lower average serum phosphorous (4.0 mg/dl vs. 6.5 mg/dl). In spite of the observed increase in protein and phosphorus intake seen in patients on SDHD, phosphate binder requirements and serum phosphorus levels are generally stable to decrease although this effect is strongly dependent on the frequency and overall treatment time.

  15. Daily cycles in coastal dunes

    USGS Publications Warehouse

    Hunter, R.E.; Richmond, B.M.

    1988-01-01

    Daily cycles of summer sea breezes produce distinctive cyclic foreset deposits in dune sands of the Texas and Oregon coasts. In both areas the winds are strong enough to transport sand only during part of the day, reach a peak during the afternoon, and vary little in direction during the period of sand transport. Cyclicity in the foreset deposits is made evident by variations in the type of sedimentary structure, the texture, and the heavy-mineral content of the sand. Some of the cyclic deposits are made up entirely of one basic type of structure, in which the character of the structure varies cyclically; for example, the angle of climb in a climbing-wind-ripple structure may vary cyclically. Other cyclic deposits are characterized by alternations of two or more structural types. Variations in the concentration of fine-grained heavy minerals, which account for the most striking cyclicity, arise mainly because of segregation on wind-rippled depositional surfaces: where the ripples climb at low angles, the coarsegrained light minerals, which accumulate preferentially on ripple crests, tend to be excluded from the local deposit. Daily cyclic deposits are thickest and best developed on small dunes and are least recognizable near the bases of large dunes. ?? 1988.

  16. Origin and Use of the Laplace Distribution in Daily Sunspot Numbers

    NASA Astrophysics Data System (ADS)

    Noble, P. L.; Wheatland, M. S.

    2013-02-01

    Recently Pop ( Solar Phys. 276, 351, 2012) identified a Laplace (or double exponential) distribution in the number of days with a given absolute value in the change over a day, in sunspot number, for days on which the sunspot number does change. We show this phenomenological rule has a physical origin attributable to sunspot formation, evolution, and decay, rather than being due to the changes in sunspot number caused by groups rotating onto and off the visible disc. We also demonstrate a simple method to simulate daily sunspot numbers over a solar cycle using the Pop ( Solar Phys. 276, 351, 2012) result, together with a model for the cycle variation in the mean sunspot number. The procedure is applied to three recent solar cycles. We check that the simulated sunspot numbers reproduce the observed distribution of daily changes over those cycles.

  17. Fort Hood solar total energy project: technical support and systems integration. Third semiannual report, May 1, 1979-October 31, 1979

    SciTech Connect

    Not Available

    1980-02-01

    Work on the Fort Hood STES which was planned by DOE as a Large Scale Experiment for the Solar Total Energy Program is described. The history of the design evolution and management of the project which began in 1973 is summarized. The project was discontinued by DOE in December 1979. Supporting studies underway at the time are reported including: (1) reassessment of energy loads, (2) revised system concept, (3) plant sizing calculations, and (4) insolation variation measurement planning. (WHK)

  18. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  19. Intent to Quit among Daily and Non-Daily College Student Smokers

    ERIC Educational Resources Information Center

    Pinsker, E. A.; Berg, C. J.; Nehl, E. J.; Prokhorov, A. V.; Buchanan, T. S.; Ahluwalia, J. S.

    2013-01-01

    Given the high prevalence of young adult smoking, we examined (i) psychosocial factors and substance use among college students representing five smoking patterns and histories [non-smokers, quitters, native non-daily smokers (i.e. never daily smokers), converted non-daily smokers (i.e. former daily smokers) and daily smokers] and (ii) smoking…

  20. Solar energy harvesting in the epicuticle of the oriental hornet ( Vespa orientalis)

    NASA Astrophysics Data System (ADS)

    Plotkin, Marian; Hod, Idan; Zaban, Arie; Boden, Stuart A.; Bagnall, Darren M.; Galushko, Dmitry; Bergman, David J.

    2010-12-01

    The Oriental hornet worker correlates its digging activity with solar insolation. Solar radiation passes through the epicuticle, which exhibits a grating-like structure, and continues to pass through layers of the exo-endocuticle until it is absorbed by the pigment melanin in the brown-colored cuticle or xanthopterin in the yellow-colored cuticle. The correlation between digging activity and the ability of the cuticle to absorb part of the solar radiation implies that the Oriental hornet may harvest parts of the solar radiation. In this study, we explore this intriguing possibility by analyzing the biophysical properties of the cuticle. We use rigorous coupled wave analysis simulations to show that the cuticle surfaces are structured to reduced reflectance and act as diffraction gratings to trap light and increase the amount absorbed in the cuticle. A dye-sensitized solar cell (DSSC) was constructed in order to show the ability of xanthopterin to serve as a light-harvesting molecule.

  1. Daily doses of biologically active UV radiation retrieved from commonly available parameters.

    PubMed

    de La Casinière, Alain; Touré, Mamadou Lamine; Masserot, Dominique; Cabot, Thierry; Pinedo Vega, Jose Luis

    2002-08-01

    A multiple linear correlation is done between atmospheric transmissivity for four biologically active radiation daily doses (UVB, erythemal, DNA and plant damage) T, and three parameters (daily sunshine fraction sigma, cosine of the daily minimum solar zenith angle mu min and daily total ozone column omega). T is defined as the ratio of a daily dose to its extra-atmospheric value. The data used are spectral UV measurements (390-400 nm at 0.5 nm step) recorded along year 2000 and over 8 months of year 2001 at Briançon Station (Alps, 1300 m above sea level) that forms part of the French UV network. The coefficients obtained from year 2000 correlation permit to retrieve daily doses for year 2001 with an average error running from 3 to 9% for monthly mean values and from 2 to 4.5% for 3-monthly mean values, depending on daily dose type. The retrieval of yearly mean value gives an error between 4 and 7.5%. Retrieving the daily dose of a given day, where sigma > or = 0.2, introduces error running from 16 to 32% depending on daily dose. An attempt to retrieve the yearly mean UVB daily dose for a northern France site, from the previous coefficients, gives encouraging results.

  2. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, S.P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  3. Analysis of daily latitude variations

    NASA Technical Reports Server (NTRS)

    Graber, M. A.

    1979-01-01

    The daily latitude measurements of the International Polar Motion Service are analyzed. The annual oscillation in the data was modeled by separate oscillations in each observatory's latitude data. The separate oscillations varied in amplitude from 0.05 sec to 0.15 sec with standard deviations of about 0.007 sec. Within the resolution of the latitude residuals (150 cm), there is no indication of the sharp changes which might be associated with earthquake effects. Then, applying Schuster's test to a periodogram of the residuals indicates that there are probably several processes occurring at amplitudes between 0.007 sec and 0.03 sec whose solution awaits a more precise measurement technique.

  4. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Sutton, C.

    1980-07-01

    The objectives, instruments, operation and spacecraft design for the Solar Maximum Mission are discussed. The satellite, first in a series of Multi-Mission Modular Spacecraft, was launched on February 14, 1980, to take advantage of the current maximum in the solar activity cycle to study solar flares at wavelengths from the visible to the gamma-ray. The satellite carries six instruments for the simultaneous study of solar flares, namely the coronagraph/polarimeter, X-ray polychromator, ultraviolet spectrometer and polarimeter, hard X-ray imaging spectrometer, hard X-ray burst spectrometer and gamma-ray spectrometer, and an active cavity radiometer for the accurate determination of the solar constant. In contrast to most satellite operations, Solar Maximum Mission investigators work together for the duration of the flight, comparing data obtained by the various instruments and planning observing programs daily on the basis of flare predictions and indicators. Thus far into the mission, over 50 data sets on reasonably large flares have been obtained, and important observations of coronal transients, magnetic fields in the transition region, flare time spectra, and material emitting X-rays between flares have been obtained.

  5. Daily Medicine Record for Your Child

    MedlinePlus

    ... the-Counter Pain Relievers and Fever Reducers Daily Medicine Record for Your Child (English) Share Tweet Linkedin ... Age: ____ 2 years old___ Weight: ___ 30 pounds ___ Daily Medicine Record Child’s name: ___________________ Today’s date: _________________ Age: ____________ Weight: ________________ (pounds) ...

  6. Predicting Complete Ground Reaction Forces and Moments During Gait With Insole Plantar Pressure Information Using a Wavelet Neural Network.

    PubMed

    Sim, Taeyong; Kwon, Hyunbin; Oh, Seung Eel; Joo, Su-Bin; Choi, Ahnryul; Heo, Hyun Mu; Kim, Kisun; Mun, Joung Hwan

    2015-09-01

    In general, three-dimensional ground reaction forces (GRFs) and ground reaction moments (GRMs) that occur during human gait are measured using a force plate, which are expensive and have spatial limitations. Therefore, we proposed a prediction model for GRFs and GRMs, which only uses plantar pressure information measured from insole pressure sensors with a wavelet neural network (WNN) and principal component analysis-mutual information (PCA-MI). For this, the prediction model estimated GRFs and GRMs with three different gait speeds (slow, normal, and fast groups) and healthy/pathological gait patterns (healthy and adolescent idiopathic scoliosis (AIS) groups). Model performance was validated using correlation coefficients (r) and the normalized root mean square error (NRMSE%) and was compared to the prediction accuracy of the previous methods using the same dataset. As a result, the performance of the GRF and GRM prediction model proposed in this study (slow group: r = 0.840-0.989 and NRMSE% = 10.693-15.894%; normal group: r = 0.847-0.988 and NRMSE% = 10.920-19.216%; fast group: r = 0.823-0.953 and NRMSE% = 12.009-20.182%; healthy group: r = 0.836-0.976 and NRMSE% = 12.920-18.088%; and AIS group: r = 0.917-0.993 and NRMSE% = 7.914-15.671%) was better than that of the prediction models suggested in previous studies for every group and component (p < 0.05 or 0.01). The results indicated that the proposed model has improved performance compared to previous prediction models.

  7. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  8. Insolation-Driven Changes in Aridity Within the Amazon Basin Over the Last 40,000 Years

    NASA Astrophysics Data System (ADS)

    Ettwein, V. J.; Maslin, M. A.; Boot, C. S.; Burns, S. J.; Leng, M. J.; Pancost, R. D.; Weyhenmeyer, C. E.

    2003-12-01

    Annual precipitation over the Amazon Basin is thought to be strongly linked to the average latitudinal position of the Inter-Tropical Convergence Zone (ITCZ). A more southerly ITCZ is considered to bring moisture to the Basin via the humid northeasterly trade winds, drawn in from the tropical North Atlantic. When the ITCZ is constrained further to the north these trades are restricted, and so the Basin should become more arid. Past changes in Amazon Basin hydrology therefore have the potential to monitor shifts in the palaeo-latitude of the ITCZ over northern South America. However, great debate surrounds the Pleistocene moisture history of the Amazon Basin largely due to the paucity of reliable, uninterrupted, regionally-representative proxy records back through the last glacial maximum (LGM). As a result, reconstructions are often highly-localised and based on qualitative indicators of change. On the other hand, material collected from the Amazon Fan (ODP Site 942) has allowed us to examine an average effective moisture signal from the whole of the Amazon Basin for the last 40 ka within a single sedimentary sequence. Quantitative reconstructions of effective moisture based upon δ 18O analyses of planktonic foraminifera, suggest a significant reduction in Amazon River outflow during both the LGM and Lateglacial (to ˜60% and ˜55% of modern flow, respectively), becoming increasingly moister toward the modern day. This trend is similar to other records from South America, including the Cariaco Basin, and correlates well with insolation records implying the ITCZ as a driver. The signal also displays centennial and millennial-scale variability which are most likely climate-driven, and Heinrich Events are apparent as more arid periods within the record. We provide further evidence for glacial-stage aridity vs. Holocene humidity through a quantified reconstruction of the fire history of the Amazon Basin, where biomass burning-specific biomarkers are of coincident

  9. Results of heating mode performance tests of a solar-assisted heat pump

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  10. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  11. The 1991 Japan Solar Energy Society. Japan Wind Energy Association Joint Conference

    NASA Astrophysics Data System (ADS)

    1991-09-01

    Thie paper summarizes the lectures presented at the research presentation conference held by the Japan Solar Energy Society and the Japan Wind Energy Association. The contents include a lecture relating to photovoltaic cells intended for efficiency improvement; a lecture relating to a light power generation system including the field test reports, improvements on peripheral devices and output characteristics; a lecture relating to optical chemistry; a lecture relating to heat pumps utilizing solar heat and well water; a lecture relating air conditioning utilizing photovoltaic cells; a lecture relating to heat systems utilizing solar heat directly; a lecture relating to heat collection; a lecture relating to cold heat for cooling using earth tubes; a lecture relating to direct utilization of ground water heat and solar heat; a lecture relating to underground heat storage; a lecture relating to accumulation of cold heat and hot heat; a lecture relating to insolation on the amount of insolation and spectroscopy; a lecture relating to light collection intended of energy saving; a lecture relating to improving materials including light collecting plates and thin films; a lecture relating to development and characteristics of solar cars; and a lecture relating to wind energy.

  12. The Daily Practices of Successful Principals

    ERIC Educational Resources Information Center

    Brock, Barbara L.; Grady, Marilyn L.

    2011-01-01

    While many books outline the attributes of successful school leaders, few describe how those traits manifest in daily practice. "The Daily Practices of Successful Principals" goes beyond the outward picture of excellence and provides a compendium of daily practices used by successful principals in various settings. Written by former administrators…

  13. Investigation of X-ray and optical solar flare activities during solar cycles 22 and 23

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Bushueva, T. P.

    2003-02-01

    Daily X-ray flare indices (XFI) for the interval from January 1986 till June 2002 were calculated. The XFI behaviour during solar cycles 22 and 23 was studied. We compare the daily XFI with the daily optical flare indices (OFI) and with the International Relative Sunspot Numbers. The energy emitted by X-ray flares during 77 months of solar cycle 22 is shown to be about five times larger than the analogous value for the present solar cycle. We revealed statistically significant maxima in power spectra of the XFI and OFI. They correspond to periods of 25.5, 36.5, 73, 116, and 150d which presumably are appropriate to characteristic frequencies of the solar flare activity. A hypothesis on an possible effect of Mercury's variable electric charge on the origin of solar flares is proposed and corresponding estimates were made.

  14. Solar Power System Evaluated for the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2000-01-01

    distribution power cables use various gauges of copper conductors with ethylene tetrafluoroethylene insulation. To assess power system design options and sizing, we developed a dedicated Fortran code to predict detailed power system performance and estimate system mass. This code also modeled the requisite Mars surface environments: solar insolation, Sun angles, dust storms, dust deposition, and thermal and ultraviolet radiation. Using this code, trade studies were performed to assess performance and mass sensitivities to power system design parameters (photovoltaic array geometry and orientation) and mission parameters (landing date and landing site latitude, terrain slope, and dust storm activity). Mission analysis cases were also run. Power results are shown in this graph for an analysis case with a September 1, 2012, landing date; 18.95 North latitude landing site; two seasonal dusts storms; and tent arrays. To meet user load requirements and the ISRU energy requirement, an 8-metric ton (MT) power system and 4000-m2 photovoltaic array area were required for the assumed advanced CuInS2 thin-film solar cell technology. In this figure, the top curve is the average daytime photovoltaic array power, the middle curve is average daytime user load power, and the bottom curve is nighttime power. At mission day 1, daytime user power exceeds 120 kW before falling off to 80 kW at the end of the mission. Throughout the mission, nighttime user power is set to the nighttime power requirement. In this analysis, "nighttime" is defined as the 13- to 15-hr period when array power output is below the daytime power requirement. During dust storms, power system capability falls off dramatically so that by mission day 900, a daily energy balance cannot be maintained. Under these conditions, the ISRU plant is placed in standby mode, and the regenerative fuel cell energy storage is gradually discharged to meet user loads.

  15. A cellular glass substrate solar concentrator

    NASA Technical Reports Server (NTRS)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  16. Validation of the FLAGSOL parabolic trough solar power plant performance model

    SciTech Connect

    Price, H.W.; Svoboda, P.; Kearney, D.

    1994-10-01

    This paper describes the results of a validation of the FLAGSOL parabolic trough solar power plant performance model. The validation was accomplished by simulating an operating solar electric generating system (SEGS) parabolic trough solar thermal power plant and comparing the model output results with actual plant operating data. This comparison includes instantaneous, daily, and annual total solar thermal electric output, gross solar electric generation, and solar mode parasitic electric consumption. The results indicate that the FLAGSOL model adequately predicts the gross solar electric output of an operating plant, both on a daily and an annual basis.

  17. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  18. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  19. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  20. Surface solar radiation from geostationary satellites for renewable energy

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan; Liu, Hongqing; Heidinger, Andrew; Goldberg, Mitchell

    With the launch of the new Geostationary Operational Environmental Satellite, GOES-R, the US National Oceanic and Atmospheric Administration (NOAA) will begin a new era of geostationary remote sensing. One of its flagship instruments, the Advanced Baseline Imager (ABI), will expand frequency and coverage of multispectral remote sensing of atmospheric and surface properties. Products derived from ABI measurements will primarily be heritage meteorological products (cloud and aerosol properties, precipitation, winds, etc.), but some will be for interdisciplinary use, such as for the solar energy industry. The planned rapid observations (5-15 minutes) from ABI provide an opportunity to obtain information needed for solar energy applications where frequent observations of solar radiation reaching the surface are essential for planning and load management. In this paper we describe a physical, radiative-transfer-based algorithm for the retrieval of surface solar irradiance that uses atmospheric and surface parameters derived independently from multispectral ABI radiances. The algorithm is designed to provide basic radiation budget products (total solar irradiance at the surface), as well as products specifically needed for the solar energy industry (average, midday and clear-sky insolation, clear-sky days, diffuse and direct normal radiation, etc.). Two alternative algorithms, which require less ABI atmosphere and surface products or no explicit knowledge of the surface albedo, are also explored along with their limitations. The accuracy of surface solar radiation retrievals are assessed using long-term MODIS and GOES satellite data and surface measurements at the Surface Radiation (SURFRAD) network.

  1. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  2. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  3. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  4. Sedoanalgesia in pediatric daily surgery

    PubMed Central

    Ozkan, Aybars; Okur, Mesut; Kaya, Murat; Kaya, Ertugrul; Kucuk, Adem; Erbas, Mesut; Kutlucan, Leyla; Sahan, Leyla

    2013-01-01

    Purpose: The present report was focused on clinical advantages of sedoanalgesia in the pediatric outpatient surgical cases. Method: Sedoanalgesia has been used to sedate patients for a variety of pediatric procedures in our department between 2007 and 2010. This is a retrospective review of 2720 pediatric patients given ketamine for sedation with midazolam premedication. Ketamine was given intravenously (1-2 mg/kg) together with atropine (0.02 mg/kg) and midazolam (0.1 mg/kg) + a local infiltration anesthetic 2 mg/kg 0.5% bupivacaine hydrochloride. Result: Median age of the patients included in the study was 5.76 ± 2.12 (0-16 years). The main indications for ketamine include circumcision (69%), inguinal pathologies (inguinal hernia (17%), orchidopexy (2.68%), hydrocele (3.38%), hypospadias (1.94%), urethral fistula repair (0.33%), urethral dilatation (0.25%), and other conditions. All of our patients were discharged home well. In this regard, we have the largest group of patients ever given ketamine. Conclusion: Sedoanalgesia might be used as a quite effective method for daily surgical procedures in children. PMID:23936597

  5. Materials and optics for solar energy conversion and advanced lighting technology; Proceedings of the Meeting, San Diego, CA, Aug. 19-21, 1986

    SciTech Connect

    Lampert, C.M.; Holly, S.

    1987-01-01

    The present conference encompasses topics in the fields of optical switching materials, photovoltaic materials, holographic films, and solar optical materials, as well as insolation and illumination testing and measurement technologies, light source hardware and applications, novel optical techniques in illumination and lighting, and the production of lighting effects in the entertainment industry. Attention is given to thermochromic and electrochromic materials for optical switching and energy-efficient windows, tin oxide antireflection coatings, holographic solar concentration and greenhouse lighting, long-lived glass mirrors for space, exposure testing of solar absorbers, optical projection equipment, medium and short arc metal halide lamps, and nonimaging optics for illumination.

  6. To develop a dynamic model of a collector loop for purpose of improved control of solar heating and cooling. Final technical report. [TRNSYS code

    SciTech Connect

    Herczfeld, P R; Fischl, R

    1980-01-01

    The program objectives were to (1) assess the feasibility of using the TRNSYS computer code for solar heating and cooling control studies and modify it wherever possible, and (2) develop a new dynamic model of the solar collector which reflects the performance of the collector under transient conditions. Also, the sensitivity of the performance of this model to the various system parameters such as collector time constants, flow rates, turn-on and turn-off temperature set points, solar insolation, etc., was studied. Results are presented and discussed. (WHK)

  7. Validation of the guidelines for portable meteorological instrument packages. Task IV. Development of an insolation handbook and instrumentation package

    SciTech Connect

    1980-10-01

    The purpose of this report is to show how the objective of developing guidelines for a solar energy related portable meteorology instrument package, under the auspices of the International Energy Agency (IEA), was carried out and preliminarily demonstrated and validated. A project to develop guidelines for such packages was initiated at IEA's Solar Heating and Cooling of Buildings Program Expert's Meeting held in Norrkoping, Sweden in February 1976. An international comparison of resultant devices was conducted on behalf of the IEA at a conference held in Hamburg, Federal Republic of Germany, in 1978. Results of the 1978 Hamburg comparison of two devices and the Swiss Mobile Solar Radiation System, using German meteorological standards, are discussed. The consensus of the IEA Task Group is that the objective of the subtask has been accomplished.

  8. SSPS monthly data, January 1985: plant operation report and daily operation summary

    SciTech Connect

    Not Available

    1985-01-01

    The operational, maintenance and evaluation activities and highlights that were required during the month of January 1985 for the Central Receiver System and the Distributed Collector System are summarized. Daily operational reports for these small solar power system plants are provided. Definitions of terms relating to the power systems are included. (BCS)

  9. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    USGS Publications Warehouse

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  10. Experimental Performance of a Solar Thermoelectric Cogenerator Comprising Thermoelectric Modules and Parabolic Trough Concentrator without Evacuated Tube

    NASA Astrophysics Data System (ADS)

    Miao, L.; Kang, Y. P.; Li, C.; Tanemura, S.; Wan, C. L.; Iwamoto, Y.; Shen, Y.; Lin, H.

    2015-06-01

    A prototype practical solar-thermoelectric cogenerator composed of (1) a primary component of a pile of solar-selective absorber (SSA) slab, thermoelectric (TE) modules, and a depressed water flow tube (multichannel cooling heat sink, MCS), and (2) a parabolic trough concentrator with aperture area of 2m × 2m and east-west focal axis was constructed. Its cogeneration performance under the best climatic and solar insolation conditions in Guangzhou, China was tested. For simplicity, the evacuated glass tube to cover the primary component was eliminated from the system. Six Bi2Te3 TE modules were arranged in series, directly bonded to the rear surface of the solar absorber slab. The hot-side temperature of the TE module reached up to 152°C. The experimentally obtained instantaneous results for the solar to electrical conversion efficiency, heat exchange coefficient of the MCS, and overall system efficiency under the best environmental and solar insolation conditions were about 1.14%, 56.1%, and 49.5%, respectively. To justify these values, an equivalent thermal network diagram based on a single-temperature-node heat transfer model representing the respective system components was used to analyze the thermal transfer and losses of the system. Finally, electrical power of 18° W was generated, with 2 L/min of hot water at 37°C being produced and stored in the insulated container.

  11. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    NASA Astrophysics Data System (ADS)

    Anderson, Martha C.; Kustas, William P.; Alfieri, Joseph G.; Gao, Feng; Hain, Christopher; Prueger, John H.; Evett, Steven; Colaizzi, Paul; Howell, Terry; Chávez, José L.

    2012-12-01

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and groundwater supplies are being depleted at unsustainable rates to support irrigated agriculture as well as municipal and industrial uses. Gridded evapotranspiration (ET) information at field scales can be obtained periodically using land-surface temperature-based surface energy balance algorithms applied to moderate resolution satellite data from systems like Landsat, which collects thermal-band imagery every 16 days at a resolution of approximately 100 m. The challenge is in finding methods for interpolating between ET snapshots developed at the time of a clear-sky Landsat overpass to provide complete daily time-series over a growing season. This study examines the efficacy of a simple gap-filling algorithm designed for applications in data-sparse regions, which does not require local ground measurements of weather or rainfall, or estimates of soil texture. The algorithm relies on general conservation of the ratio between actual ET and a reference ET, generated from satellite insolation data and standard meteorological fields from a mesoscale model. The algorithm was tested with ET retrievals from the Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated DisALEXI flux disaggregation technique, which uses Landsat-scale thermal imagery to reduce regional ALEXI maps to a finer spatial resolution. Daily ET at the Landsat scale was compared with lysimeter and eddy covariance flux measurements collected during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment of 2008 (BEAREX08), conducted in an irrigated agricultural area in the Texas Panhandle under highly advective conditions. The simple gap-filling algorithm performed

  12. Cokriging estimation of daily suspended sediment loads

    USGS Publications Warehouse

    Li, Z.; Zhang, Y.-K.; Schilling, K.; Skopec, M.

    2006-01-01

    Daily suspended sediment loads (S) were estimated using cokriging (CK) of S with daily river discharge based on weekly, biweekly, or monthly sampled sediment data. They were also estimated with ordinary kriging (OK) and a rating curve method. The estimated daily loads were compared with the daily measured values over a nine-year-period. The results show that the estimated daily sediment loads with the CK using the weekly measured data best matched the measured daily values. The rating curve method based on the same data provides a fairly good match but it tends to underestimate the peak and overestimate the low values. The CK estimation was better than the rating curve because CK considers the temporal correlation among the data values and honors the measured points whereas the rating curve method does not. For the site studied, weekly sampling may be frequent enough for estimating daily sediment loads with CK when daily discharge data is available. The estimated daily loads with CK were less reliable when the sediment samples were taken less frequently, i.e., biweekly or monthly. The OK estimates using the weekly measured data significantly underestimates the daily S because unlike CK and the rating curve, OK makes no use of the correlation of sediment loads with frequently measured river discharge. ?? 2005 Elsevier B.V. All rights reserved.

  13. Evaluation of solar thermal storage for base load electricity generation

    NASA Astrophysics Data System (ADS)

    Adinberg, R.

    2012-10-01

    In order to stabilize solar electric power production during the day and prolong the daily operating cycle for several hours in the nighttime, solar thermal power plants have the options of using either or both solar thermal storage and fossil fuel hybridization. The share of solar energy in the annual electricity production capacity of hybrid solar-fossil power plants without energy storage is only about 20%. As it follows from the computer simulations performed for base load electricity demand, a solar annual capacity as high as 70% can be attained by use of a reasonably large thermal storage capacity of 22 full load operating hours. In this study, the overall power system performance is analyzed with emphasis on energy storage characteristics promoting a high level of sustainability for solar termal electricity production. The basic system parameters, including thermal storage capacity, solar collector size, and annual average daily discharge time, are presented and discussed.

  14. Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study" published in Clim. Past, 7, 1103-1122, 2011

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-11-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially

  15. Theoretical studies on performance evaluation of solar thermoelectronic energy converter with graphene emitter

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle; de, Dilip

    In this paper we consider detailed energy dynamics of solar thermoelectronic energy converter using graphene as the emitter. The emitter is heated by solar energy concentrated by a parabolic mirror concentrator. We study the performance evaluation of the energy conversion using temperature dependent work function of graphene and model the space charge problem by introducing a factor in the emitter and collector current densities. We present computations on power output and efficiency as function of solar insolation, height of emitter from the base of the mirror, reflection coefficient of the mirror, temperature and work function of collector. Effect of molecular doping on the performance of the graphene solar tech is also discussed. Please schedule our papers so that they are well separated in time for presentations.

  16. Comparison of DOE-2 and TRNSYS solar-heating-system simulation

    SciTech Connect

    Eden, A.; Morgan, M.

    1980-12-01

    The analysis and comparison of the output of the solar energy section of DOE-2 called Component Based Simulator (CBS) and TRNSYS are discussed. The adequacy and sensitivity of CBS when various active solar energy collectors and systems were interfaced with a standard space heating system were investigated. The analysis included both single- and double-glazed collectors with selectively and nonselectively coated absorbing surfaces located in four different environments. The results of the study show the agreement between the two programs to be remarkably similar. Graphs are presented to illustrate the minor differences in annual average collector efficiency and annual average part solar as well as the thermal load and insolation levels. In addition, difficulties encountered by the researchers when performing this study and when attempting to model the collector systems with each program's components are discussed and recommendations offered to facilitate the solar simulation process for future CBS users.

  17. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  18. Altering Knee Abduction Angular Impulse Using Wedged Insoles for Treatment of Patellofemoral Pain in Runners: A Six-Week Randomized Controlled Trial

    PubMed Central

    Lewinson, Ryan T.; Wiley, J. Preston; Humble, R. Neil; Worobets, Jay T.; Stefanyshyn, Darren J.

    2015-01-01

    Objective Determine if a change in internal knee abduction angular impulse (KAAI) is related to pain reduction for runners with patellofemoral pain (PFP) by comparing lateral and medial wedge insole interventions, and increased KAAI and decreased KAAI groups. Design Randomized controlled clinical trial (ClinicalTrials.gov ID# NCT01332110). Setting Biomechanics laboratory and community. Patients Thirty-six runners with physician-diagnosed PFP enrolled in the trial, and 27 were analyzed. Interventions Runners with PFP were randomly assigned to either an experimental 3 mm lateral wedge or control 6 mm medial wedge group. Participants completed a biomechanical gait analysis to quantify KAAIs with their assigned insole, and then used their assigned insole for six-weeks during their regular runs. Usual pain during running was measured at baseline and at six-week follow-up using a visual analog scale. Statistical tests were performed to identify differences between wedge types, differences between biomechanical response types (i.e. increase or decrease KAAI), as well as predictors of pain reduction. Main Outcome Measures Percent change in KAAI relative to neutral, and % change in pain over six weeks. Results Clinically meaningful reductions in pain (>33%) were measured for both footwear groups; however, no significant differences between footwear groups were found (p = 0.697). When participants were regrouped based on KAAI change (i.e., increase or decrease), again, no significant differences in pain reduction were noted (p = 0.146). Interestingly, when evaluating absolute change in KAAI, a significant relationship between absolute % change in KAAI and % pain reduction was observed (R2 = 0.21; p = 0.030), after adjusting for baseline pain levels. Conclusion The greater the absolute % change in KAAI during running, the greater the % reduction in pain over six weeks, regardless of wedge type, and whether KAAIs increased or decreased. Lateral and medial wedge insoles were

  19. Postoperative insole-paedobarographic gait analysis for patients with flap coverages of weight-bearing and non-weight-bearing areas of the foot.

    PubMed

    Meyer-Marcotty, M V; Sutmoeller, K; Kopp, J; Vogt, P M

    2012-04-01

    Functional results regarding shoe modifications, gait analysis and long-term durability of the reconstructed foot have not been reported using insole paedobarography. This article presents insole-paedobarographic gait analysis and discusses the various pressure distribution patterns following the reconstruction of the foot. This retrospective study reports on the clinical and functional results in 23 out of 39 patients who received flap coverage of their feet in our department in the period from 2001 to 2010. Mean follow-up time amounted to 46.6 months. Patients were separated into two groups, those with flap coverage to the sole of the foot (group 1) and those with flap coverage to non-weight-bearing areas of the foot (group 2). Gait analysis was accomplished by using insole paedobarography. The results of the gait analysis have shown that in both patient groups, when comparing affected feet with sound feet, the affected feet were exposed to significantly less support time (group 1; affected vs. sound feet: 0.44 ± 0.07 s vs. 0.55 ± 0.11 s, p = 0.047), (group 2; affected vs. sound feet: 0.47 ± 0.07 s vs. 0.54 ± 0.07 s, p = 0.029). In addition, in both patient groups, the analysis of peak-pressure distributions revealed greater pressures on the affected feet compared to the sound feet (group 1; affected vs. sound feet: 47.9 ± 10.13 N cm(-2) vs. 36.3 ± 7.5 N cm(-2), p = 0.008), (group 2; affected vs. sound feet: 38.08 ± 13.98 N cm(-2) vs. 32.92 ± 14.77 N cm(-2), p = 0.061). The insole paedobarography can contribute to a more precise gait analysis following a soft-tissue reconstruction not only of the sole but also of other foot regions as well. It can help to identify and correct movement sequences and peak-pressure distributions which are damaging to the flaps. The resulting potential minimisation of the ulceration rate can lead to a further optimisation in the rate of completely rehabilitated patients and a reduction in the revision rate.

  20. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  1. Development and Testing of Shingle-type Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1979-01-01

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.

  2. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  3. Irrigation market for solar thermal parabolic dish systems

    NASA Astrophysics Data System (ADS)

    Habib-Agahi, H.; Jones, S. C.

    1981-09-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  4. Turbine sizing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1979-01-01

    Since the insolation is intermittent, thermal energy storage is necessary to extend the time of power generation with solar heat past sunset. There are two approaches to specifying the size of turbine-generator units depending on the system operation. In the first approach, the turbine operates at its full capacity when operating on direct solar heat, and at reduced capacity when operating on collected heat out of energy storage. In the second approach, the turbine will always operate at a uniform level either on derated energy from the receiver or from energy storage. Both of these approaches have certain advantages and disadvantages. In this paper, a simple analysis is outlined and exercised to compare the performance and economics of these two approaches.

  5. Communicating Solar Astronomy to the public

    NASA Astrophysics Data System (ADS)

    Yaji, Kentaro; Solar Observatory NAOJ, The

    2015-08-01

    The Sun is the nearest star to us, so that the public is greatly interested in the Sun itself and in solar activity. The Solar Observatory, National Astronomical Observatory of Japan is one of the solar research divisions. Various data of the Sun obtained with our instruments, systematically accumulated more than one hundred years since 1910s, are open to not only researchers but also the public as online database. So, we have many chances that the public request solar images for the education and the media. In addition, we release daily solar observation informations on the web and with social media and guide visitors to our observation facilities. It is reviewed about the public relations and outreach activities of the Solar Observatory, including recent solar observation topics.

  6. Heat transparent high intensity high efficiency solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1982-01-01

    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell.

  7. A solar EUV flux model

    SciTech Connect

    Tobiska, W.K.; Barth, C.A. )

    1990-06-01

    A model of the solar extreme ultraviolet (EUV) irradiance variability has been developed for aeronomical use and has been named SERF2 by the Solar Electromagnetic Radiation Flux Study. The model is valid between 1981 and 1989 and is based on the Atmosphere Explorer E (AE-E) satellite EUV data set which is correlated with independent solar emissions measured during and after the AE-E mission. Additionally, spectral modifications are made to the model based on 18 separate rocket flights for all levels of solar activity. Two daily measured solar emissions, the H Lyman {alpha} line at 121.6 nm observed by the Solar Mesosphere Explorer satellite and the Ottawa 10.7-cm radio flux observed at the ground, are used in the model as indices for full-disk solar EUV chromospheric irradiance variations and transition region-coronal irradiance variations, respectively. The model wavelength equation coefficients are presented in tabular form for 39 wavelength groups or discrete lines from 1.9 to 105.0 nm along with spectral weighting function coefficients which modify the irradiance magnitudes based upon model wavelength fits to rocket-observed spectra. The model satisfies the general constraint of duplicating rocket-observed EUV irradiance for a wise variety of solar activity conditions. The model development is discussed, an example calculation is given, and the comparisons with constraining rocket data sets are shown.

  8. Solar dynamic power for the Space Station

    NASA Technical Reports Server (NTRS)

    Archer, J. S.; Diamant, E. S.

    1986-01-01

    This paper describes a computer code which provides a significant advance in the systems analysis capabilities of solar dynamic power modules. While the code can be used to advantage in the preliminary analysis of terrestrial solar dynamic modules its real value lies in the adaptions which make it particularly useful for the conceptualization of optimized power modules for space applications. In particular, as illustrated in the paper, the code can be used to establish optimum values of concentrator diameter, concentrator surface roughness, concentrator rim angle and receiver aperture corresponding to the main heat cycle options - Organic Rankine and Brayton - and for certain receiver design options. The code can also be used to establish system sizing margins to account for the loss of reflectivity in orbit or the seasonal variation of insolation. By the simulation of the interactions among the major components of a solar dynamic module and through simplified formulations of the major thermal-optic-thermodynamic interactions the code adds a powerful, efficient and economic analytical tool to the repertory of techniques available for the design of advanced space power systems.

  9. The case for solar/hydrogen energy

    NASA Astrophysics Data System (ADS)

    Escher, W. J. D.

    Available solar technologies for producing H2-based fuels for all uses by the turn of the century are discussed. Although the annual global insolation is over 20 times the total remaining fossil fuels, the source is diffuse and variable, and areas of greatest input are not collocated with sites of greatest use. Therefore, the H2 supply must be transportable and storable, and the production facilities require large areas. Hydrogen fuels have a naturally occurring, nearly limitless supply, water, are nonpolluting, recyclable, and have the highest energy conversion efficiency of all liquid fuels. The production energy sources feasible before the year 2000 are identified as thermal heat engines, solar cells, hydroelectric plants, and wind turbines. Water electrolysis is concluded to be the sole method available for solar/hydrogen systems, and it is shown that ocean cryotanker transport of H2 fuels could be accomplished at the same efficiency and cost as with LNG fuels. Systems for production and/or storage of H2 fuels for the home, in automobiles, and on ocean platforms are described, and an international program to develop the H2-based fuel system is recommended.

  10. Nimbus-7 ERB Solar Analysis Tape (ESAT) user's guide

    NASA Technical Reports Server (NTRS)

    Major, Eugene; Hickey, John R.; Kyle, H. Lee; Alton, Bradley M.; Vallette, Brenda J.

    1988-01-01

    Seven years and five months of Nimbus-7 Earth Radiation Budget (ERB) solar data are available on a single ERB Solar Analysis Tape (ESAT). The period covered is November 16, 1978 through March 31, 1986. The Nimbus-7 satellite performs approximately 14 orbits per day and the ERB solar telescope observes the sun once per orbit as the satellite crosses the southern terminator. The solar data were carefully calibrated and screened. Orbital and daily mean values are given for the total solar irradiance plus other spectral intervals (10 solar channels in all). In addition, selected solar activity indicators are included on the ESAT. The ESAT User's Guide is an update of the previous ESAT User's Guide (NASA TM 86143) and includes more detailed information on the solar data calibration, screening procedures, updated solar data plots, and applications to solar variability. Details of the tape format, including source code to access ESAT, are included.

  11. Testing the relationship between the solar radiation dose and surface DMS concentrations using in situ data

    NASA Astrophysics Data System (ADS)

    Miles, C. J.; Bell, T. G.; Lenton, T. M.

    2009-09-01

    The proposed strong positive relationship between dimethylsulphide (DMS) concentration and the solar radiation dose (SRD) received into the surface ocean is tested using data from the Atlantic Meridional Transect (AMT) programme. In situ, daily data sampled concurrently with DMS concentrations is used for the component variables of the SRD (mixed layer depth, MLD, surface insolation, I0, and a light attenuation coefficient, k) to calculate SRDinsitu. This is the first time in situ data for all of the components, including k, has been used to test the SRD-DMS relationship over large spatial scales. We find a significant correlation (ρ=0.55 n=65 p<0.01) but the slope of this relationship (0.006 nM/W m-2) is less than previously found at the global (0.019 nM/W m-2) and regional scales (Blanes Bay, Mediterranean, 0.028 nM/W m-2; Sargasso Sea 0.017 nM/W m-2). The correlation is improved (ρ=0.74 n=65 p<0.01) by replacing the in situ data with an estimated I0 (which assumes a constant 50% removal of the top of atmosphere value; 0.5×TOA), a MLD climatology and a fixed value for k following previous work. Equally strong, but non-linear relationships are also found between DMS and both in situ MLD (ρ=0.61 n=65 p<0.01) and the estimated I0 (ρ=0.73 n=65 p<0.01) alone. Using a satellite-retrieved, cloud-adjusted surface UVA irradiance to calculate a UV radiation dose (UVRD) with a climatological MLD also provides an equivalent correlation (ρ=0.67 n=54 p<0.01) to DMS. With this data, MLD appears the dominant control upon DMS concentrations and remains a useful shorthand to prediction without fully resolving the biological processes involved. However, the implied relationship between the incident solar/ultraviolet radiation (modulated by MLD), and sea surface DMS concentrations, is critical for closing a climate feedback loop.

  12. Investigation of the Relative Effects of Insolation, Groundwater, and Spatial Variability in Temperature Dynamics of Two Headwater Streams

    NASA Astrophysics Data System (ADS)

    Belica, L.; Caldwell, P. V.; Mitasova, H.; McCarter, J. B.; Smith, J.; Nelson, S. A. C.

    2015-12-01

    Forested headwater streams account for much of the aquatic species diversity and contribute valuable recreational fisheries in the mountains of the Southeastern United States. Stream temperature is key regulator of headwater ecosystems and thermal regime is such a critical factor that it limits where many species can survive, grow, and successfully reproduce. Forested headwater streams are dynamic systems located in complex terrain. The variability of heat exchange between a stream and its surroundings results in thermal variations along its course. Understanding the spatial variability of heat fluxes along headwater streams is important to understanding the thermal dynamics and their effects on the biota. Solar radiation and groundwater inflow are two primary components of the heat budget of headwater streams and are spatially variable over short distances. A comparative analysis of north-facing and south-facing watersheds the Coweeta Basin of the Southern Appalachian Mountains found that temperatures of north-facing streams were cooler than south-facing streams for most of the year, but were warmer in summer. A north-south watershed pair with similar discharge, drainage areas, elevation, slope, and landcover characteristics was selected for further study. Water temperature was monitored longitudinally from the stream origins to the outlets beginning in late 2014. Preliminary data suggested variation in solar radiation resulting from the spatial heterogeneity of evergreen and deciduous trees and seasonal changes in leaf density could explain temperature patterns. We used the Subcanopy Solar Radiation Model, which accounts for topographic and vegetative shading by using a light penetration index derived from LIDAR data, to produce spatially explicit estimates of solar radiation and elucidate spatial and temporal variations in solar radiation along the two streams. Groundwater influence on stream temperature dynamics was investigated using salt-dilution gaging

  13. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  14. Weather, season, and daily stroke admissions in Hong Kong

    NASA Astrophysics Data System (ADS)

    Goggins, William B.; Woo, Jean; Ho, Suzanne; Chan, Emily Y. Y.; Chau, P. H.

    2012-09-01

    Previous studies examining daily temperature and stroke incidence have given conflicting results. We undertook this retrospective study of all stroke admissions in those aged 35 years old and above to Hong Kong public hospitals from 1999 through 2006 in order to better understand the effects of meteorological conditions on stroke risk in a subtropical setting. We used Poisson Generalized Additive Models with daily hemorrhagic (HS) and ischemic stroke (IS) counts separately as outcomes, and daily mean temperature, humidity, solar radiation, rainfall, air pressure, pollutants, flu consultation rates, day of week, holidays, time trend and seasonality as predictors. Lagged effects of temperature, humidity and pollutants were also considered. A total of 23,457 HS and 107,505 IS admissions were analyzed. Mean daily temperature had a strong, consistent, negative linear association with HS admissions over the range (8.2-31.8°C) observed. A 1°C lower average temperature over the same day and previous 4 days (lags 0-4) being associated with a 2.7% (95% CI: 2.0-3.4%, P < .0.0001) higher admission rate after controlling for other variables. This association was stronger among older subjects and females. Higher lag 0-4 average change in air pressure from previous day was modestly associated with higher HS risk. The association between IS and temperature was weaker and apparent only below 22°C, with a 1°C lower average temperature (lags 0-13) below this threshold being associated with a 1.6% (95% CI:1.0-2.2%, P < 0.0001) higher IS admission rate. Pollutant levels were not associated with HS or IS. Future studies should examine HS and IS risk separately.

  15. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements

    PubMed Central

    Stöggl, Thomas; Martiner, Alex

    2017-01-01

    ABSTRACT The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force–time curves revealed comparable shapes between all three systems. Force impulses were 13–34% lower with OpenGo when compared to AMTI. Despite differences in mean values in some exercise modes, correlations towards AMTI were between r = 0.8 and r = 1.0 in most situations. During fast motions, with high force and impact, OpenGo provided lower force and latency in force kinetics. During balance tasks, discrepancy in the centre of pressure was found medio-lateral, while anterio–posterior direction was closer to AMTI. With awareness of these limitations, OpenGo can be applied in both clinical and research settings to evaluate temporal, force and balance parameters during different types of motion. The fully mobile OpenGo system allows for the easy and quick system application, analysis and feedback under complex field conditions, as well. PMID:27010531

  16. The Role of Insolation and the Equatorial Pacific in South American Climate during the Holocene: A Paleoclimate Record from Laguna Blanca, Venezuela

    NASA Astrophysics Data System (ADS)

    Polissar, P. J.; Abbott, M.; Wolfe, A. P.; Bezada, M.; Vuille, M.

    2009-12-01

    Insolation forcing of tropical climate at precessional timescales appears to be a widespread phenomenon in South America. This could reflect the influence of local insolation changes on rainfall and evaporation, and hence migration of the marine intertropical convergence zone (ITCZ) and its terrestrial expression, the South American summer monsoon. However, modern interannual climate variability in South America is also closely linked to ocean-atmosphere interactions in the tropical Pacific expressed primarily as the El Niño-Southern Oscillation (ENSO). The timing of climate changes in the Northern and Southern Hemisphere tropics is one way to distinguish between these mechanisms. Precessional forcing of Atlantic ITCZ migration would cause changes in the northern and southern hemispheres that are opposite in sign. In contrast, ENSO variability has a similar character in the Andean regions of both hemispheres. Here we develop a new terrestrial paleoclimate record in the northern tropics of South America. Lake level fluctuations from Laguna Blanca, located in the Venezuelan Andes, exhibit arid-humid intervals during the past 10,000 years that occur at the same time as those in the neotropics of both hemispheres. This pattern suggests that millennial-scale climate trends in Andean South America may reflect changes in the mean state and variability of the equatorial Pacific Ocean.

  17. Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison

    NASA Astrophysics Data System (ADS)

    Bassinot, F. C.; Marzin, C.; Braconnot, P.; Marti, O.; Mathien-Blard, E.; Lombard, F.; Bopp, L.

    2011-07-01

    The relative abundance of Globigerinoides bulloides was used to infer Holocene paleo-productivity changes on the Oman margin and at the southern tip of India. Today, the primary productivity at both sites reaches its maximum during the summer season, when monsoon winds result in local Eckman pumping, which brings more nutrients to the surface. On a millennium time-scale, however, the % G. bulloides records indicate an opposite evolution of paleo-productivity at these sites through the Holocene. The Oman Margin productivity was maximal at ~9 ka (boreal summer insolation maximum) and has decreased since then, suggesting a direct response to insolation forcing. On the contrary, the productivity at the southern tip of India was minimum at ~9 ka, and strengthened towards the present. Paleo-reconstructions of wind patterns, marine productivity and foraminifera assemblages were obtained using the IPSL-CM4 climate model coupled to the PISCES marine biogeochemical model and the FORAMCLIM ecophysiological model. These reconstructions are fully coherent with the marine core data. They confirm that the evolution of particulate export production and foraminifera assemblages at our two sites were directly linked with the strength of the upwelling. Model simulations at 9 ka and 6 ka BP show that the relative evolution between the two sites since the early Holocene can be explained by the weakening but also the southward shift of monsoon winds over the Arabian Sea during boreal summer.

  18. The role of shoe design on the prediction of free torque at the shoe-surface interface using pressure insole technology.

    PubMed

    Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger

    2016-09-01

    The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.

  19. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  20. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  1. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  2. CONC/11: a computer program for calculating the performance of dish-type solar thermal collectors and power systems

    SciTech Connect

    Jaffe, L. D.

    1984-02-15

    CONC/11 is a computer program designed for calculating the performance of dish-type solar thermal collectors and power systems. It is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. CONC/11 is written in Athena Extended Fortran (similar to Fortran 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers.

  3. CONC/11: A computer program for calculating the performance of dish-type solar thermal collectors and power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1984-01-01

    The CONC/11 computer program designed for calculating the performance of dish-type solar thermal collectors and power systems is discussed. This program is intended to aid the system or collector designer in evaluating the performance to be expected with possible design alternatives. From design or test data on the characteristics of the various subsystems, CONC/11 calculates the efficiencies of the collector and the overall power system as functions of the receiver temperature for a specified insolation. If desired, CONC/11 will also determine the receiver aperture and the receiver temperature that will provide the highest efficiencies at a given insolation. The program handles both simple and compound concentrators. The CONC/11 is written in Athena Extended FORTRAN (similar to FORTRAN 77) to operate primarily in an interactive mode on a Sperry 1100/81 computer. It could also be used on many small computers. A user's manual is also provided for this program.

  4. Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams

    DTIC Science & Technology

    2009-01-01

    solar wind model (Arge and Pizzo, 2000), based on daily updating solar magnetic field synoptic maps, is then used to map the outflows from the corona ...worldwide. University of California Peer Reviewed Title: Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar...currently valid OMB control number. 1. REPORT DATE 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Solar Wind

  5. The Daily Routine of the Oldest Old.

    ERIC Educational Resources Information Center

    Barer, Barbara M.

    Individuals who are beyond the age of 85 have to confront the decrements of aging that are commonly recognized. This study examined the daily routine of the oldest old through interviews. Subjects were asked about the logistics of their daily lives, what they liked best to do, what they didn't like to do, what made a day good for them, and what…

  6. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  7. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  8. How the Daily Press Looks at Hunger.

    ERIC Educational Resources Information Center

    Robinson, Sondra G.

    Utilizing both content analysis of 139 editorials appearing in 19 United States daily newspapers and the results of a survey of 146 newspaper editors, a study asked three questions: (1) To what extent is hunger covered in the news and editorial columns of U.S. daily newspapers? (2) How is hunger defined as a problem in terms of its causes in those…

  9. Techniques for Daily Living: Curriculum Guides.

    ERIC Educational Resources Information Center

    Wooldridge, Lillian; And Others

    Presented are specific guides concerning techniques for daily living which were developed by the child care staff at the Illinois Braille and Sight Saving School. The guides are designed for cottage parents of the children, who may have both visual and other handicaps, and show what daily living skills are necessary and appropriate for the…

  10. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 1 General Provisions 1 2014-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  11. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 1 General Provisions 1 2013-01-01 2012-01-01 true Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  12. 1 CFR 5.6 - Daily publication.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 1 General Provisions 1 2012-01-01 2012-01-01 false Daily publication. 5.6 Section 5.6 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER GENERAL § 5.6 Daily publication. There shall be an edition of the Federal Register published for each official Federal working day....

  13. Daily Stressors in Primary Education Students

    ERIC Educational Resources Information Center

    Fernández-Baena, F. Javier; Trianes, María V.; Escobar, Milagros; Blanca, María J.; Muñoz, Ángela M.

    2015-01-01

    Daily stress can have a bearing on children's emotional and academic development. This study aimed to assess daily stressors and to determine their prevalence among primary education students, taking into account their gender, academic year, social adaptation, and the school location. A sample of 7,354 Spanish schoolchildren aged between 6 and 13…

  14. Daily Spiritual Experiences and Prosocial Behavior

    ERIC Educational Resources Information Center

    Einolf, Christopher J.

    2013-01-01

    This paper examines how the Daily Spiritual Experiences Scale (DSES) relates to range of prosocial behaviors, using a large, nationally representative U.S. data set. It finds that daily spiritual experiences are a statistically and substantively significant predictor of volunteering, charitable giving, and helping individuals one knows personally.…

  15. Variability of solar ultraviolet irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Donnelly, R. F.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.

    1991-01-01

    A model of solar Lyman alpha irradiance developed by multiple linear regression analysis, including the daily values and 81-day running means of the full disk equivalent width of the Helium line at 1083 nm, predicts reasonably well both the short- and long-term variations observed in Lyman alpha. In contrast, Lyman alpha models calculated from the 10.7-cm radio flux overestimate the observed variations in the rising portion and maximum period of solar cycle, and underestimates them during solar minimum. Models are shown of Lyman alpha based on the He-line equivalent width and 10.7-cm radio flux for those time intervals when no satellite observations exist, namely back to 1974 and after April 1989, when the measurements of the Solar Mesosphere Satellite were terminated.

  16. Adolescent daily and general maladjustment: is there reactivity to daily repeated measures methodologies?

    PubMed

    Nishina, Adrienne

    2012-01-01

    The present study examined whether repeated exposure to daily surveys about negative social experiences predicts changes in adolescents' daily and general maladjustment, and whether question content moderates these changes. Across a 2-week period, 6th-grade students (N = 215; mode age = 11) completed 5 daily reports tapping experienced or experienced and witnessed negative events, or they completed no daily reports. General maladjustment was measured in 2-week intervals before, at the end of, and 2 weeks after the daily report study. Daily maladjustment either decreased or did not change across the 5 daily report exposures. General maladjustment decreased across the three 2-week intervals. Combined, results indicate that short-term daily report studies do not place youth at risk for increased maladjustment.

  17. Solar power from satellites

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1977-01-01

    Microwave beaming of satellite-collected solar energy to earth for conversion to useful industrial power is evaluated for feasibility, with attention given to system efficiencies and costs, ecological impact, hardware to be employed, available options for energy conversion and transmission, and orbiting and assembly. Advantages of such a power generation and conversion system are listed, plausible techniques for conversion of solar energy (thermionic, thermal electric, photovoltaic) and transmission to earth (lasers, arrays of mirrors, microwave beams) are compared. Structural fatigue likely to result from brief daily eclipses, 55% system efficiency at the present state of the art, present projections of system costs, and projected economic implications of the technology are assessed. Two-stage orbiting and assembly plans are described.

  18. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  19. Solar Meter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The instrument pictured is an inexpensive solar meter which is finding wide acceptance among architects, engineers and others engaged in construction of solar energy facilities. It detects the amount of solar energy available at a building site, information necessary to design the most efficient type of solar system for a particular location. Incorporating technology developed by NASA's Lewis Research Center, the device is based upon the solar cell, which provides power for spacecraft by converting the sun's energy to electricity. The meter is produced by Dodge Products, Inc., Houston, Texas, a company formed to bring the technology to the commercial marketplace.

  20. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  1. Solar 22 years cycle

    NASA Astrophysics Data System (ADS)

    Kotov, Valery A.; Sanchez, Francis M.

    2017-01-01

    Seven observatories performed in 1968-2015 numerous daily measurements of general magnetic field of the Sun seen as a star (of a mean line-of-sight field component of the visible solar hemisphere). The new data 2013-2015 confirmed the recent prediction about saw-edged profile of the mean curve of the Hale's 22 years magnetic cycle and, thus, a hypothesis about its cosmological (partial) origin. This is supported by a special analysis of epochs of extrema of Wolf's sunspot number, demonstrating a remarkable stability, since Galileo's time, of the initial phase of the cycle, which can hardly be explained by dynamo theory exclusively.

  2. Solar Indices Forecasting Tool

    NASA Astrophysics Data System (ADS)

    Henney, Carl John; Shurkin, Kathleen; Arge, Charles; Hill, Frank

    2016-05-01

    Progress to forecast key space weather parameters using SIFT (Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model is highlighted in this presentation. Using a magnetic flux transport model, ADAPT, we estimate the solar near-side field distribution that is used as input into empirical models for predicting F10.7(solar 10.7 cm, 2.8 GHz, radio flux), the Mg II core-to-wing ratio, and selected bands of solar far ultraviolet (FUV) and extreme ultraviolet (EUV) irradiance. Input to the ADAPT model includes the inferred photospheric magnetic field from the NISP ground-based instruments, GONG & VSM. Besides a status update regarding ADAPT and SIFT models, we will summarize the findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL. The input data utilized by ADAPT is obtained by NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The 10.7 cm solar radio flux data service, utilized by the ADAPT/SIFT F10.7 forecasting model, is operated by the National Research Council of Canada and National Resources Canada, with the support of the Canadian Space Agency.

  3. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  4. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  5. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors

    SciTech Connect

    Montes, M.J.

    2009-12-15

    Usual size of parabolic trough solar thermal plants being built at present is approximately 50 MW{sub e}. Most of these plants do not have a thermal storage system for maintaining the power block performance at nominal conditions during long non-insolation periods. Because of that, a proper solar field size, with respect to the electric nominal power, is a fundamental choice. A too large field will be partially useless under high solar irradiance values whereas a small field will mainly make the power block to work at part-load conditions. This paper presents an economic optimization of the solar multiple for a solar-only parabolic trough plant, using neither hybridization nor thermal storage. Five parabolic trough plants have been considered, with the same parameters in the power block but different solar field sizes. Thermal performance for each solar power plant has been featured, both at nominal and part-load conditions. This characterization has been applied to perform a simulation in order to calculate the annual electricity produced by each of these plants. Once annual electric energy generation is known, levelized cost of energy (LCOE) for each plant is calculated, yielding a minimum LCOE value for a certain solar multiple value within the range considered. (author)

  6. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor ( SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated ( R 2 = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site productivity.

  7. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  8. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    PubMed

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R (2) = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  9. Solar urticaria in an infant.

    PubMed

    Harris, A; Burge, S M; George, S A

    1997-01-01

    A 2-year-old girl presented with a history of an erythematous rash which occurred immediately after exposure to sunlight and had been a problem since birth. Extensive laboratory investigations to exclude genophotodermatoses, photosensitivity secondary to metabolic disorders and photoaggravated dermatoses were negative. Monochromator irradiation phototesting demonstrated immediate erythematous flares to all ultraviolet B (UVB), UVA and visible wavelengths up to 500 nm. A diagnosis of solar urticaria was made and she responded to loratidine 10 mg daily. We believe this is the first report of solar urticaria, confirmed by phototesting with a monochromator so early in life.

  10. Solar electricity supply isolines of generation capacity and storage.

    PubMed

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W

    2015-03-24

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.

  11. Dynamic conversion of solar generated heat to electricity

    NASA Technical Reports Server (NTRS)

    Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.

    1974-01-01

    The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.

  12. Solar electricity supply isolines of generation capacity and storage

    PubMed Central

    Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.

    2015-01-01

    The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261

  13. Insignificant solar-terrestrial triggering of earthquakes

    USGS Publications Warehouse

    Love, Jeffrey J.; Thomas, Jeremy N.

    2013-01-01

    We examine the claim that solar-terrestrial interaction, as measured by sunspots, solar wind velocity, and geomagnetic activity, might play a role in triggering earthquakes. We count the number of earthquakes having magnitudes that exceed chosen thresholds in calendar years, months, and days, and we order these counts by the corresponding rank of annual, monthly, and daily averages of the solar-terrestrial variables. We measure the statistical significance of the difference between the earthquake-number distributions below and above the median of the solar-terrestrial averages by χ2 and Student's t tests. Across a range of earthquake magnitude thresholds, we find no consistent and statistically significant distributional differences. We also introduce time lags between the solar-terrestrial variables and the number of earthquakes, but again no statistically significant distributional difference is found. We cannot reject the null hypothesis of no solar-terrestrial triggering of earthquakes.

  14. Performance of the Birmingham Solar-Oscillations Network (BiSON)

    NASA Astrophysics Data System (ADS)

    Hale, S. J.; Howe, R.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.

    2016-01-01

    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.

  15. A note on solar elevation dependence of clear sky snow albedo

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1981-01-01

    Recent attempts to match shortwave albedo of snow for clear skies using approximate spectral solar fluxes and solutions of the radiative transfer equation for snow were unsuccessful until a separate surface reflection term was introduced. A separate consideration of specular reflection from surface snow grains has been objected to as being ad hoc. Results based on a new parameterization of shortwave radiation are discussed. Compared to the previous radiation models, new model gives higher diffuse insolation and predicts higher albedos. The difference between observed and predicted albedos is substantially reduced without invoking surface reflection.

  16. Characterization of vegetation properties: Canopy modeling of pinyon-juniper and ponderosa pine woodlands; Final report. Modeling topographic influences on solar radiation: A manual for the SOLARFLUX model

    SciTech Connect

    Rich, P.M.; Hetrick, W.A.; Saving, S.C.

    1994-12-31

    This report is comprised of two studies. The first study focuses on plant canopies in pinyon-juniper woodland, ponderosa pine woodland, and waste sites at Los Alamos National Laboratory which involved five basic areas of research: (1) application of hemispherical photography and other gap fraction techniques to study solar radiation regimes and canopy architecture, coupled with application of time-domain reflectometry to study soil moisture; (2) detailed characterization of canopy architecture using stand mapping and allometry; (3) development of an integrated geographical information system (GIS) database for relating canopy architecture with ecological, hydrological, and system modeling approaches; (4) development of geometric models that simulate complex sky obstruction, incoming solar radiation for complex topographic surfaces, and the coupling of incoming solar radiation with energy and water balance, with simulations of incoming solar radiation for selected native vegetation and experimental waste cover design sites; and (5) evaluation of the strengths and limitations of the various field sampling techniques. The second study describes an approach to develop software that takes advantage of new generation computers to model insolation on complex topographic surfaces. SOLARFLUX is a GIS-based (ARC/INFO, GRID) computer program that models incoming solar radiation based on surface orientation (slope and aspect), solar angle (azimuth and zenith) as it shifts over time, shadows caused by topographic features, and atmospheric conditions. This manual serves as the comprehensive guide to SOLARFLUX. Included are discussions on modelling insolation on complex surfaces, the theoretical approach, program setup and operation, and a set of applications illustrating characteristics of topographic insolation modelling.

  17. Estimating solar access of typical residential rooftops: A case study in San Jose, CA

    SciTech Connect

    Levinson, Ronnen M.; Gupta, Smita; Akbari, Hashem; Pomerantz, Melvin

    2008-03-03

    Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes rooftop shading in a residential neighborhood of San Jose, CA, one of four regions analyzed in a wider study of the solar access of California homes.High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a 4 km2 residential neighborhood. Hourly shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels.In the year in which surface heights were measured (2005), shadows from all sources ("total shading") reduced the insolation received by S-, SW-, and W-facing residential roofing planes in the study area by 13 - 16percent. Shadows cast by trees and buildings in neighboring parcels reduced insolation by no more than 2percent. After 30 years of simulated maximal tree growth, annual total shading increased to 19 - 22percent, and annual extraparcel shading increased to 3 - 4percent.

  18. Percent Daily Value: What Does It Mean?

    MedlinePlus

    Healthy Lifestyle Nutrition and healthy eating What do the Daily Value numbers mean on food labels? Answers from ... 15, 2016 Original article: http://www.mayoclinic.org/healthy-lifestyle/nutrition-and-healthy-eating/expert-answers/food-and- ...

  19. AMSR2 Daily Arctic Sea Ice - 2014

    NASA Video Gallery

    In this animation, the daily Arctic sea ice and seasonal land cover change progress through time, from March 21, 2014 through the 3rd of August, 2014. Over the water, Arctic sea ice changes from da...

  20. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  1. Application of model reference adaptive control to solar thermal utilization systems

    SciTech Connect

    Tanaka, T. )

    1990-05-01

    A proportional plus integral plus derivative (PID) controller is used to obtain usable energy from the sun in almost all the solar systems in Japan. However, it is difficult to collect the heat continuously close to a prescribed temperature using a PID controller because the solar radiation is often interrupted by passing clouds. The authors investigated, therefore, a model reference adaptive control (MRAC) system. In order to demonstrate its effectiveness, we constructed a MRAC system and introduced it into the collector loop of a solar system. This paper gives an outline of the MRAC algorithm and describes the experimental results for the outlet fluid temperature response of the loop by the MRAC and PID. From these results, it is shown that the MRAC algorithm is suitable for controlling a system affected by irregular disturbances in the insolation.

  2. Solar Energy Economics Revisited: The Promise and Challenge of Orbiting Reflectors for World Energy Supply

    NASA Technical Reports Server (NTRS)

    Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.

    1978-01-01

    A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.

  3. The response of SST to insolation and ice sheet variability from MIS 3 to MIS 11 in the northwestern Mediterranean Sea (Gulf of Lions)

    NASA Astrophysics Data System (ADS)

    Cortina, Aleix; Sierro, Francisco Javier; Flores, José Abel; Martrat, Belen; Grimalt, Joan O.

    2015-12-01

    Here we present a sea surface temperature (SST) record based on the Uk'37 index from the PRGL1 borehole (Promess1) drilled on the upper slope of the Gulf of Lions (GL). This is the first continuous and high-resolution record in the northwestern Mediterranean Sea from marine oxygen isotope stage 3 (MIS) 3 to MIS 11. Due the location of the GL, the SST proxy can be considered to be a reliable tool to study the climate link between high latitude and midlatitude. During glacial inceptions, the northern ice sheet signal via cold northwesterly winds was first recorded in our study area in comparison with southern locations, highlighting the strong sensitivity of this location to high-latitude dynamics. Moreover, the amplitude of the millennial-scale variability in the western Mediterranean basin seems to be the result of both ice sheet and insolation variability.

  4. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  5. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  6. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  7. Plant operation report and daily evaluation summary

    SciTech Connect

    Not Available

    1984-01-02

    This report summarizes the operational and maintenance activities and highlights of the Small Solar Power System (SSPS) that were required during the month. The operation, maintenance, and cost data are attached to this report.

  8. Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison

    NASA Astrophysics Data System (ADS)

    Bassinot, F. C.; Marzin, C.; Braconnot, P.; Marti, O.; Mathien-Blard, E.; Lombard, F.; Bopp, L.

    2011-02-01

    The relative abundance of Globigerinoides bulloides was used to infer Holocene paleo-productivity changes at ODP Site 723 (19°03' N, 57°37' E; Oman Margin) and core MD77-191 (07°30' N, 76°43' E; Southern tip of India). Today, the primary productivity at both sites peaks during the summer season, when monsoon winds result in local Eckman pumping, which brings more nutrients to the surface. On a millennium time-scale, however, the % G.~bulloides records indicate an opposite evolution of paleo-productivity at these sites through the Holocene. The Oman Margin productivity was maximal at ~9 ka (boreal summer insolation maximum) and decreased since then, suggesting a direct response to insolation forcing. On the opposite, the productivity at the southern tip of India was minimum at ~9 ka, and strengthened towards the present. Paleo-reconstructions of wind patterns, marine productivity and foraminifera assemblages were obtained using the IPSL-CM4 climate model coupled to the PISCES marine biogeochemical model and the FORAMCLIM ecophysiological model. These reconstructions are fully coherent with the marine core data. They confirm that the evolution of particulate export production and foraminifera assemblages at our two sites have been directly linked with the strength of the upwelling. Model simulations at 9 ka and 6 ka BP show that the relative evolution between the two sites since the early Holocene can be explained by the weakening but also the southward shift of monsoon winds over the Arabian sea during boreal summer.

  9. Twice-Daily versus Once-Daily Pramipexole Extended Release Dosage Regimens in Parkinson's Disease.

    PubMed

    Yun, Ji Young; Kim, Young Eun; Yang, Hui-Jun; Kim, Han-Joon; Jeon, Beomseok

    2017-01-01

    This open-label study aimed to compare once-daily and twice-daily pramipexole extended release (PER) treatment in Parkinson's disease (PD). PD patients on dopamine agonist therapy, but with unsatisfactory control, were enrolled. Existing agonist doses were switched into equivalent PER doses. Subjects were consecutively enrolled into either once-daily-first or twice-daily-first groups and received the prescribed amount in one or two, respectively, daily doses for 8 weeks. For the second period, subjects switched regimens in a crossover manner. The forty-four patients completed a questionnaire requesting preference during their last visit. We measured the UPDRS-III, Hoehn and Yahr stages (H&Y) in medication-on state, Parkinson's disease sleep scale (PDSS), and Epworth Sleepiness Scale. Eighteen patients preferred a twice-daily regimen, 12 preferred a once-daily regimen, and 14 had no preference. After the trial, 14 subjects wanted to be on a once-daily regimen, 25 chose a twice-daily regimen, and 5 wanted to maintain the prestudy regimen. Main reasons for choosing the twice-daily regimen were decreased off-duration, more tolerable off-symptoms, and psychological stability. The mean UPDRS-III, H&Y, and PDSS were not different. Daytime sleepiness was significantly high in the once-daily regimen, whereas nocturnal hallucinations were more common in the twice-daily. Multiple dosing should be considered if once-daily dosing is unsatisfactory. This study is registered as NCT01515774 at ClinicalTrials.gov.

  10. Twice-Daily versus Once-Daily Pramipexole Extended Release Dosage Regimens in Parkinson's Disease

    PubMed Central

    Kim, Young Eun; Yang, Hui-Jun; Kim, Han-Joon

    2017-01-01

    This open-label study aimed to compare once-daily and twice-daily pramipexole extended release (PER) treatment in Parkinson's disease (PD). PD patients on dopamine agonist therapy, but with unsatisfactory control, were enrolled. Existing agonist doses were switched into equivalent PER doses. Subjects were consecutively enrolled into either once-daily-first or twice-daily-first groups and received the prescribed amount in one or two, respectively, daily doses for 8 weeks. For the second period, subjects switched regimens in a crossover manner. The forty-four patients completed a questionnaire requesting preference during their last visit. We measured the UPDRS-III, Hoehn and Yahr stages (H&Y) in medication-on state, Parkinson's disease sleep scale (PDSS), and Epworth Sleepiness Scale. Eighteen patients preferred a twice-daily regimen, 12 preferred a once-daily regimen, and 14 had no preference. After the trial, 14 subjects wanted to be on a once-daily regimen, 25 chose a twice-daily regimen, and 5 wanted to maintain the prestudy regimen. Main reasons for choosing the twice-daily regimen were decreased off-duration, more tolerable off-symptoms, and psychological stability. The mean UPDRS-III, H&Y, and PDSS were not different. Daytime sleepiness was significantly high in the once-daily regimen, whereas nocturnal hallucinations were more common in the twice-daily. Multiple dosing should be considered if once-daily dosing is unsatisfactory. This study is registered as NCT01515774 at ClinicalTrials.gov. PMID:28265478

  11. Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981

    SciTech Connect

    Welch, K.M.

    1981-01-01

    The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

  12. Assessing the performance of global solar radiation empirical formulations in Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Mubiru, J.; Banda, E. J. K. B.; D'Ujanga, F.; Senyonga, T.

    2007-01-01

    Solar radiation incident on the Earth’s surface is a determining factor of climate on Earth, hence having a proper solar radiation database is crucial in understanding climate processes in the Earth’s atmosphere. Solar radiation data may be used in the development of insolation maps, analysis of crop growth and in the simulation of solar systems. Unfortunately, measured solar radiation data may not be available in locations where it is most needed. An alternative to obtaining observed data is to estimate it using an appropriate solar radiation model. The purpose of this study is to assess the performance of thirteen global solar radiation empirical formulations, in Kampala, Uganda, located in an African Equatorial region. The best performing formulations were determined using the ranking method. The mean bias error, root mean square error and t-statistic value were calculated and utilized in the ranking process. Results have shown that the formulation: {bar H}/{bar H }_0 = a + b({bar S}/{bar S} _0 ) + c( {bar S } /{bar S} _0)^2 is ranked the highest and therefore is the recommended empirical equation for the estimation of the monthly mean global solar irradiation in Kampala, Uganda and in other African Equatorial locations with similar climate and terrain.

  13. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  14. Solar Wind and Global Electron Hemispheric Power in Solar Minimum Intervals

    NASA Astrophysics Data System (ADS)

    Emery, B. A.; Richardson, I. G.; Evans, D. S.; Rich, F. J.; Wilson, G.

    2008-12-01

    We assess the periodicities of the hourly and daily solar wind velocity (Vsw) and average global electron auroral hemispheric power (Hpeg) with Lomb-Scargle (L-S) and Fast Fourier Transforms (FFTs) using three Carrington Rotations (CRs) to a year or more of data in two different solar minimum periods. The first Whole Sun Month (WSM) interval (96223-96252) was during the last solar minimum where the solar magnetic field relaxed into a dipole. A strong 'semiannual' periodicity in Vsw maximizing in equinoxes was found, which enhanced the equinoctial maxima found in Hpeg (and Kp) due to the preferred solar wind and magnetospheric reconnection during equinoxes. In the present solar minimum, the solar magnetic field has considerable quadrupole components during the Whole Heliospheric Interval (WHI, 08080-08107). Hpeg exhibits solar rotational periodicities similar to those for Vsw using both L-S and FFT analyses, where the 9- day periodicity is particularly strong in the present solar minimum period. The 9-day periodicity in the WHI CR was caused by three periods of slow-speed solar wind from near the ecliptic plane as seen in the sign of IMF Bx. Periodicities are examined in Vsw since 1972, and in Hpeg since 1978 to assess solar cycle variations. Periodicities longer than 100 days are not as strong or as well correlated between Vsw and Hpeg compared to the shorter solar rotational periodicities.

  15. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    PubMed

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  16. Test results: SEGS LS-2 solar collector

    NASA Astrophysics Data System (ADS)

    Dudley, Vernon E.; Kolb, Gregory J.; Mahoney, A. Roderick; Mancini, Thomas R.; Matthews, Chauncey W.; Sloan, Michael; Kearney, David

    1994-12-01

    A SEGS LS-2 parabolic trough solar collector was tested to determine the collector efficiency and thermal losses with two types of receiver selective coatings, combined with three different receiver configurations: glass envelope with either vacuum or air in the receiver annulus, and glass envelope removed from the receiver. As expected, collector performance was significantly affected by each variation in receiver configuration. Performance decreased when the cermet selective coating was changed to a black chrome coating, and progressively degraded as air was introduced into the vacuum annulus, and again when the glass envelope was removed from the receiver. For each receiver configuration, performance equations were derived relating collector efficiency and thermal losses to the operating temperature. For the bare receiver (no glass envelope) efficiency and thermal losses are shown as a function of wind speed. An incident angle modifier equation was also developed for each receiver case. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature. Results from the experiments were compared with predictions from a one-dimensional analytical model of the solar receiver. Differences between the model and experiment were generally within the band of experimental uncertainty.

  17. Development of electro-optic systems for self cleaning concentrated solar reflectors

    NASA Astrophysics Data System (ADS)

    Stark, Jeremy W.

    The current demand for energy usage in the world is increasing at a rapid pace; in China alone, the electricity usage has increased by 12% per year from 2006-2010, where more than 75% of electrical power is produced by coal burning facilities. Numerous studies have shown the effects of carbon dioxide emissions on global climate change, and even showing the permanence of high carbon dioxide levels after emissions cease. Current trends away from carbon emitting power facilities are pushing solar energy into a position for many new solar power plants to be constructed. Terrestrial solar energy at AM1.5 is generally given at 1kW/m2, which is a vast free source of energy that can be be harvested to meet the global demand for electricity. Aside from some areas receiving intermittent levels of solar insolation, one of the largest hindrances to large scale solar power production is obscuration of sunlight on solar collectors caused by dust deposition. In areas with the highest average solar insolation, dust deposition is a major problem for maintaining a constant maximum power output. The southern Negev desert in Israel receives on average 17g/m2 per month in dust deposition on solar installations, which in turn causes losses of a third of the total power output of the installation. In these areas, water is a scarce commodity, which can only be used to clean solar installations at a prohibitive cost. To resolve this problem, a cost effective solution would be the application of electrodynamic screens (EDS), which can be implemented by embedding a set of parallel electrodes into the sun facing surface of solar collectors, including concentrating mirrors or photovoltaic (PV) modules, and applying a low frequency pulsed voltage to these electrodes. Three major contributions made in the course of this research in advancing (EDS) for self-cleaning solar mirrors are: (1) development of non-contact specular reflectometer for solar mirrors that allows measurement of reflectance

  18. Temporal disaggregation of daily meteorological grid data

    NASA Astrophysics Data System (ADS)

    Vormoor, K.; Skaugen, T.

    2012-04-01

    For operational flood forecasting, the Norwegian Water Resources and Energy Administration (NVE) applies the conceptual HBV rainfall-runoff model for 117 catchments. The hydrological models are calibrated and run using an extensive meteorological grid data set providing daily temperature and precipitation data back to 1957 for entire Norway at 1x1 km grid resolution (seNorge grids). The daily temporal resolution is dictated by the resolution of historical meteorological data. However, since meteorological forecasts and runoff observations are also available at a much finer than a daily time-resolution (e.g. 6 hourly), and many hydrological extreme events happens at a temporal scale of less than daily, it is important to try to establish a historical dataset of meteorological input at a finer corresponding temporal resolution. We present a simple approach for the temporal disaggregation of the daily meteorological seNorge grids into 6-hour values by consulting a HIRLAM hindcast grid data series with an hourly time resolution and a 10x10 km grid resolution. The temporal patterns of the hindcast series are used to disaggregate the daily interpolated observations from the seNorge grids. In this way, we produce a historical grid dataset from 1958-2010 with 6-hourly temperature and precipitation for entire Norway on a 1x1 km grid resolution. For validation and to see if additional information is gained, the disaggregated data is compared with observed values from selected meteorological stations. In addition, the disaggregated data is evaluated against daily data, simply split into four fractions. The validation results indicate that additional information is indeed gained and point out the benefit of disaggregated data compared to daily data split into four. With regard to temperature, the disaggregated values show very low deviations (MAE, RMSE), and are highly correlated with observed values. Regarding precipitation, the disaggregated data shows cumulative

  19. Stochastic daily modeling of arctic tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Erler, A.; Epstein, H. E.; Frazier, J.

    2011-12-01

    ArcVeg is a dynamic vegetation model that has simulated interannual variability of production and abundance of arctic tundra plant types in previous studies. In order to address the effects of changing seasonality on tundra plant community composition and productivity, we have uniquely adapted the model to operate on the daily timescale. Each section of the model-weather generation, nitrogen mineralization, and plant growth dynamics-are driven by daily fluctuations in simulated temperature conditions. These simulation dynamics are achieved by calibrating stochastic iterative loops and mathematical functions with raw field data. Air temperature is the fundamental driver in the model, parameterized by climate data collected in the field across numerous arctic tundra sites, and key daily statistics are extracted (mean and standard deviation of temperature for each day of the year). Nitrogen mineralization is calculated as an exponential function from the simulated temperature. The seasonality of plant growth is driven by the availability of nitrogen and constrained by historical patterns and dynamics of the remotely sensed normalized difference vegetation index (NDVI), as they pertain to the seasonal onset of growth. Here we describe the methods used for daily weather generation, nitrogen mineralization, and the daily competition among twelve plant functional types for nitrogen and subsequent growth. This still rather simple approach to vegetation dynamics has the capacity to generate complex relationships between seasonal patterns of temperature and arctic tundra vegetation community structure and function.

  20. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... a solar eclipse where an observer on Earth can watch the Moon's shadow obscure more than 90% the Sun's disk, the Multiangle Imaging ... total solar eclipse of November 23, 2003. The path of the Moon's umbral shadow began in the Indian Ocean in the far Southern Hemisphere, ...