Chase, Katherine J.; Caldwell, Rodney R.; Stanley, Andrea K.
2014-01-01
This report documents the construction of a precipitation-runoff model for simulating natural streamflow in the Smith River watershed, Montana. This Precipitation-Runoff Modeling System model, constructed in cooperation with the Meagher County Conservation District, can be used to examine the general hydrologic framework of the Smith River watershed, including quantification of precipitation, evapotranspiration, and streamflow; partitioning of streamflow between surface runoff and subsurface flow; and quantifying contributions to streamflow from several parts of the watershed. The model was constructed by using spatial datasets describing watershed topography, the streams, and the hydrologic characteristics of the basin soils and vegetation. Time-series data (daily total precipitation, and daily minimum and maximum temperature) were input to the model to simulate daily streamflow. The model was calibrated for water years 2002–2007 and evaluated for water years 1996–2001. Though water year 2008 was included in the study period to evaluate water-budget components, calibration and evaluation data were unavailable for that year. During the calibration and evaluation periods, simulated-natural flow values were compared to reconstructed-natural streamflow data. These reconstructed-natural streamflow data were calculated by adding Bureau of Reclamation’s depletions data to the observed streamflows. Reconstructed-natural streamflows represent estimates of streamflows for water years 1996–2007 assuming there was no agricultural water-resources development in the watershed. Additional calibration targets were basin mean monthly solar radiation and potential evapotranspiration. The model estimated the hydrologic processes in the Smith River watershed during the calibration and evaluation periods. Simulated-natural mean annual and mean monthly flows generally were the same or higher than the reconstructed-natural streamflow values during the calibration period, whereas they were lower during the evaluation period. The shape of the annual hydrographs for the simulated-natural daily streamflow values matched the shape of the hydrographs for the reconstructed-natural values for most of the calibration period, but daily streamflow values were underestimated during the evaluation period for water years 1996–1998. The model enabled a detailed evaluation of the components of the water budget within the Smith River watershed during the water year 1996–2008 study period. During this study period, simulated mean annual precipitation across the Smith River watershed was 16 inches, out of which 14 inches evaporated or transpired and 2 inches left the basin as streamflow. Per the precipitation-runoff model simulations, during most of the year, surface runoff rarely (less than 2 percent of the time during water years 2002–2008) makes up more than 10 percent of the total streamflow. Subsurface flow (the combination of interflow and groundwater flow) makes up most of the total streamflow (99 or more percent of total streamflow for 71 percent of the time during water years 2002–2008).
Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm
NASA Astrophysics Data System (ADS)
Mathai, J.; Mujumdar, P.
2017-12-01
A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.
Chase, K.J.
2011-01-01
This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation. A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area. Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4 percent higher than observed for the test period. Downstream from the reservoir, simulated mean annual streamflow was 17 percent lower than observed streamflow for the calibration period and 12 percent lower than observed streamflow for the test period. Simulated mean April-July streamflow downstream from the reservoir was 13 percent lower than observed streamflow for the calibration period and 6 percent lower than observed streamflow for the test period. Calibrating to solar radiation, potential evapotranspiration, and snow-covered area improved the model representation of evapotranspiration, snow accumulation, and snowmelt processes. Simulated basin mean monthly solar radiation values for both the calibration and test periods were within 9 percent of observed values except during the month of December (28 percent different). Simulated basin potential evapotranspiration values for both the calibration and test periods were within 10 percent of observed values except during the months of January (100 percent different) and February (13 percent different). The larger percent errors in simulated potential evaporation occurred in the winter months when observed potential evapotranspiration values were very small; in January the observed value was 0.000 inches and in February the observed value was 0.009 inches. Simulated start of melting of the snowpack occurred at about the same time as observed start of melting. The simulated snowpack accumulated to 90-100 percent snow-covered area 1 to 3 months earlier than observed snowpack. This overestimated snowpack during the winter corresponded to underestimated streamflow during the same period. In addition to the primary-parameter file, four other parameter files were created: for a "recent" period (1991-2005), a historical period (1967-90), a "wet" period (1989-97), and a "dry" period (1998-2005). For each data file of projected precipitation and air temperature, a single parameter file can be used to simulate a s
Free internet datasets for streamflow modelling using SWAT in the Johor river basin, Malaysia
NASA Astrophysics Data System (ADS)
Tan, M. L.
2014-02-01
Streamflow modelling is a mathematical computational approach that represents terrestrial hydrology cycle digitally and is used for water resources assessment. However, such modelling endeavours require a large amount of data. Generally, governmental departments produce and maintain these data sets which make it difficult to obtain this data due to bureaucratic constraints. In some countries, the availability and quality of geospatial and climate datasets remain a critical issue due to many factors such as lacking of ground station, expertise, technology, financial support and war time. To overcome this problem, this research used public domain datasets from the Internet as "input" to a streamflow model. The intention is simulate daily and monthly streamflow of the Johor River Basin in Malaysia. The model used is the Soil and Water Assessment Tool (SWAT). As input free data including a digital elevation model (DEM), land use information, soil and climate data were used. The model was validated by in-situ streamflow information obtained from Rantau Panjang station for the year 2006. The coefficient of determination and Nash-Sutcliffe efficiency were 0.35/0.02 for daily simulated streamflow and 0.92/0.21 for monthly simulated streamflow, respectively. The results show that free data can provide a better simulation at a monthly scale compared to a daily basis in a tropical region. A sensitivity analysis and calibration procedure should be conducted in order to maximize the "goodness-of-fit" between simulated and observed streamflow. The application of Internet datasets promises an acceptable performance of streamflow modelling. This research demonstrates that public domain data is suitable for streamflow modelling in a tropical river basin within acceptable accuracy.
van Heeswijk, Marijke
2006-01-01
Surface water has been diverted from the Salmon Creek Basin for irrigation purposes since the early 1900s, when the Bureau of Reclamation built the Okanogan Project. Spring snowmelt runoff is stored in two reservoirs, Conconully Reservoir and Salmon Lake Reservoir, and gradually released during the growing season. As a result of the out-of-basin streamflow diversions, the lower 4.3 miles of Salmon Creek typically has been a dry creek bed for almost 100 years, except during the spring snowmelt season during years of high runoff. To continue meeting the water needs of irrigators but also leave water in lower Salmon Creek for fish passage and to help restore the natural ecosystem, changes are being considered in how the Okanogan Project is operated. This report documents development of a precipitation-runoff model for the Salmon Creek Basin that can be used to simulate daily unregulated streamflows. The precipitation-runoff model is a component of a Decision Support System (DSS) that includes a water-operations model the Bureau of Reclamation plans to develop to study the water resources of the Salmon Creek Basin. The DSS will be similar to the DSS that the Bureau of Reclamation and the U.S. Geological Survey developed previously for the Yakima River Basin in central southern Washington. The precipitation-runoff model was calibrated for water years 1950-89 and tested for water years 1990-96. The model was used to simulate daily streamflows that were aggregated on a monthly basis and calibrated against historical monthly streamflows for Salmon Creek at Conconully Dam. Additional calibration data were provided by the snowpack water-equivalent record for a SNOTEL station in the basin. Model input time series of daily precipitation and minimum and maximum air temperatures were based on data from climate stations in the study area. Historical records of unregulated streamflow for Salmon Creek at Conconully Dam do not exist for water years 1950-96. Instead, estimates of historical monthly mean unregulated streamflow based on reservoir outflows and storage changes were used as a surrogate for the missing data and to calibrate and test the model. The estimated unregulated streamflows were corrected for evaporative losses from Conconully Reservoir (about 1 ft3/s) and ground-water losses from the basin (about 2 ft3/s). The total of the corrections was about 9 percent of the mean uncorrected streamflow of 32.2 ft3/s (23,300 acre-ft/yr) for water years 1949-96. For the calibration period, the basinwide mean annual evapotranspiration was simulated to be 19.1 inches, or about 83 percent of the mean annual precipitation of 23.1 inches. Model calibration and testing indicated that the daily streamflows simulated using the precipitation-runoff model should be used only to analyze historical and forecasted annual mean and April-July mean streamflows for Salmon Creek at Conconully Dam. Because of the paucity of model input data and uncertainty in the estimated unregulated streamflows, the model is not adequately calibrated and tested to estimate monthly mean streamflows for individual months, such as during low-flow periods, or for shorter periods such as during peak flows. No data were available to test the accuracy of simulated streamflows for lower Salmon Creek. As a result, simulated streamflows for lower Salmon Creek should be used with caution. For the calibration period (water years 1950-89), both the simulated mean annual streamflow and the simulated mean April-July streamflow compared well with the estimated uncorrected unregulated streamflow (UUS) and corrected unregulated streamflow (CUS). The simulated mean annual streamflow exceeded UUS by 5.9 percent and was less than CUS by 2.7 percent. Similarly, the simulated mean April-July streamflow exceeded UUS by 1.8 percent and was less than CUS by 3.1 percent. However, streamflow was significantly undersimulated during the low-flow, baseflow-dominated months of November through F
Progress report on daily flow-routing simulation for the Carson River, California and Nevada
Hess, G.W.
1996-01-01
A physically based flow-routing model using Hydrological Simulation Program-FORTRAN (HSPF) was constructed for modeling streamflow in the Carson River at daily time intervals as part of the Truckee-Carson Program of the U.S. Geological Survey (USGS). Daily streamflow data for water years 1978-92 for the mainstem river, tributaries, and irrigation ditches from the East Fork Carson River near Markleeville and West Fork Carson River at Woodfords down to the mainstem Carson River at Fort Churchill upstream from Lahontan Reservoir were obtained from several agencies and were compiled into a comprehensive data base. No previous physically based flow-routing model of the Carson River has incorporated multi-agency streamflow data into a single data base and simulated flow at a daily time interval. Where streamflow data were unavailable or incomplete, hydrologic techniques were used to estimate some flows. For modeling purposes, the Carson River was divided into six segments, which correspond to those used in the Alpine Decree that governs water rights along the river. Hydraulic characteristics were defined for 48 individual stream reaches based on cross-sectional survey data obtained from field surveys and previous studies. Simulation results from the model were compared with available observed and estimated streamflow data. Model testing demonstrated that hydraulic characteristics of the Carson River are adequately represented in the models for a range of flow regimes. Differences between simulated and observed streamflow result mostly from inadequate data characterizing inflow and outflow from the river. Because irrigation return flows are largely unknown, irrigation return flow percentages were used as a calibration parameter to minimize differences between observed and simulated streamflows. Observed and simulated streamflow were compared for daily periods for the full modeled length of the Carson River and for two major subreaches modeled with more detailed input data. Hydrographs and statistics presented in this report describe these differences. A sensitivity analysis of four estimated components of the hydrologic system evaluated which components were significant in the model. Estimated ungaged tributary streamflow is not a significant component of the model during low runoff, but is significant during high runoff. The sensitivity analysis indicates that changes in the estimated irrigation diversion and estimated return flow creates a noticeable change in the statistics. The modeling for this study is preliminary. Results of the model are constrained by current availability and accuracy of observed hydrologic data. Several inflows and outflows of the Carson River are not described by time-series data and therefore are not represented in the model.
Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado
Parker, R.S.; Norris, J.M.
1989-01-01
Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)
Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.
2017-10-24
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.
Christiansen, Daniel E.
2012-01-01
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted a study to examine techniques for estimation of daily streamflows using hydrological models and statistical methods. This report focuses on the use of a hydrologic model, the U.S. Geological Survey's Precipitation-Runoff Modeling System, to estimate daily streamflows at gaged and ungaged locations. The Precipitation-Runoff Modeling System is a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The Cedar River Basin was selected to construct a Precipitation-Runoff Modeling System model that simulates the period from January 1, 2000, to December 31, 2010. The calibration period was from January 1, 2000, to December 31, 2004, and the validation periods were from January 1, 2005, to December 31, 2010 and January 1, 2000 to December 31, 2010. A Geographic Information System tool was used to delineate the Cedar River Basin and subbasins for the Precipitation-Runoff Modeling System model and to derive parameters based on the physical geographical features. Calibration of the Precipitation-Runoff Modeling System model was completed using a U.S. Geological Survey calibration software tool. The main objective of the calibration was to match the daily streamflow simulated by the Precipitation-Runoff Modeling System model with streamflow measured at U.S. Geological Survey streamflow gages. The Cedar River Basin daily streamflow model performed with a Nash-Sutcliffe efficiency ranged from 0.82 to 0.33 during the calibration period, and a Nash-Sutcliffe efficiency ranged from 0.77 to -0.04 during the validation period. The Cedar River Basin model is meeting the criteria of greater than 0.50 Nash-Sutcliffe and is a good fit for streamflow conditions for the calibration period at all but one location, Austin, Minnesota. The Precipitation-Runoff Modeling System model accurately simulated streamflow at four of six uncalibrated sites within the basin. Overall, there was good agreement between simulated and measured seasonal and annual volumes throughout the basin for calibration and validation sites. The calibration period ranged from 0.2 to 20.8 percent difference, and the validation period ranged from 0.0 to 19.5 percent difference across all seasons and total annual runoff. The Precipitation-Runoff Modeling System model tended to underestimate lower streamflows compared to the observed streamflow values. This is an indication that the Precipitation-Runoff Modeling model needs more detailed groundwater and storage information to properly model the low-flow conditions in the Cedar River Basin.
Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin; ...
2017-01-10
On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaomang; Yang, Tiantian; Hsu, Koulin
On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks $-$ Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basinsmore » on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. Finally, the evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.« less
Ockerman, Darwin J.
2005-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds together) occurs as streamflow channel infiltration. Diffuse recharge (direct infiltration of rainfall to the aquifer) accounts for the remaining 23 percent of recharge. For the Hondo Creek watershed, the HSPF recharge estimates for 1992–2003 averaged about 22 percent less than those estimated by the Puente method, a method the U.S. Geological Survey has used to compute annual recharge to the Edwards aquifer since 1978. HSPF recharge estimates for the Verde Creek watershed average about 40 percent less than those estimated by the Puente method.
Guay, Joel R.
2002-01-01
To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated mean annual streamflow for the State Street gaging station at the outlet of the study basin and the simulated mean annual basin infiltration (combined infiltration from all the channels and land surfaces) were 8,720 and 41,600 acre-feet, respectively, for water years 1950-98. Simulated annual streamflow at the State Street gaging station ranged from 16.8 acre-feet in water year 1961 to 70,400 acre-feet in water year 1993, and simulated basin infiltration ranged from 2,770 acre-feet in water year 1961 to 149,000 acre-feet in water year 1983.The effects of increased urbanization on the hydrology of the study basin were evaluated by increasing the size of the effective impervious and non-effective impervious urban areas simulated in the calibrated rainfall-runoff model by 50 and 100 percent, respectively. The rainfall-runoff model simulated a long-term time series of monthly flows in and out of the channels and land surfaces using daily rainfall and potential evaporation data for water years 1950?98. Increasing the effective impervious and non-effective impervious urban areas by 100 percent resulted in a 5-percent increase in simulated mean annual streamflow at the State Street gaging station, and a 2.2-percent increase in simulated basin infiltration. Results of a frequency analysis of the simulated annual streamflow at the State Street gaging station showed that when effective impervious and non-effective impervious areas were increased 100 percent, simulated annual streamflow increased about 100 percent for low-flow conditions and was unchanged for high-flow conditions. The simulated increase in streamflow at the State Street gaging station potentially could infiltrate along the stream channel further downstream, outside of the model area.
Effect of monthly areal rainfall uncertainty on streamflow simulation
NASA Astrophysics Data System (ADS)
Ndiritu, J. G.; Mkhize, N.
2017-08-01
Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic monthly rainfalls were 86 and 90% of the mean naturalised streamflow. In calibration, 33% of the naturalised flow located within the streamflow ranges with historic rainfall simulations and using stochastic rainfalls increased this to 66%. In validation the respective percentages of naturalised flows located within the simulated streamflow ranges were 32 and 72% respectively. The analysis reveals that monthly areal rainfall uncertainty is significant and incorporating it into streamflow simulation would add validity to the results.
Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan
2015-05-01
Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
A nonparametric stochastic method for generating daily climate-adjusted streamflows
NASA Astrophysics Data System (ADS)
Stagge, J. H.; Moglen, G. E.
2013-10-01
A daily stochastic streamflow generation model is presented, which successfully replicates statistics of the historical streamflow record and can produce climate-adjusted daily time series. A monthly climate model relates general circulation model (GCM)-scale climate indicators to discrete climate-streamflow states, which in turn control parameters in a daily streamflow generation model. Daily flow is generated by a two-state (increasing/decreasing) Markov chain, with rising limb increments randomly sampled from a Weibull distribution and the falling limb modeled as exponential recession. When applied to the Potomac River, a 38,000 km2 basin in the Mid-Atlantic United States, the model reproduces the daily, monthly, and annual distribution and dynamics of the historical streamflow record, including extreme low flows. This method can be used as part of water resources planning, vulnerability, and adaptation studies and offers the advantage of a parsimonious model, requiring only a sufficiently long historical streamflow record and large-scale climate data. Simulation of Potomac streamflows subject to the Special Report on Emissions Scenarios (SRES) A1b, A2, and B1 emission scenarios predict a slight increase in mean annual flows over the next century, with the majority of this increase occurring during the winter and early spring. Conversely, mean summer flows are projected to decrease due to climate change, caused by a shift to shorter, more sporadic rain events. Date of the minimum annual flow is projected to shift 2-5 days earlier by the 2070-2099 period.
Simulation of water-quality data at selected stream sites in the Missouri River Basin, Montana
Knapton, J.R.; Jacobson, M.A.
1980-01-01
Modification of sampling programs at some water-quality stations in the Missouri River basin in Montana has eliminated the means by which solute loads have been directly obtained in past years. To compensate for this loss, water-quality and streamflow data were statistically analyzed and solute loads were simulated using computer techniques.Functional relationships existing between specific conductance and solute concentration for monthly samples were used to develop linear regression models. The models were then used to simulate daily solute concentrations using daily specific conductance as the independent variable. Once simulated, the solute concentrations, in milligrams per liter, were transformed into daily solute loads, in tons, using mean daily streamflow records.Computer output was formatted into tables listing simulated mean monthly solute concentrations, in milligrams per liter, and the monthly and annual solute loads, in tons, for water years 1975-78.
Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment
NASA Astrophysics Data System (ADS)
Kothari, Mahesh; Gharde, K. D.
2015-07-01
The streamflow prediction is an essentially important aspect of any watershed modelling. The black box models (soft computing techniques) have proven to be an efficient alternative to physical (traditional) methods for simulating streamflow and sediment yield of the catchments. The present study focusses on development of models using ANN and fuzzy logic (FL) algorithm for predicting the streamflow for catchment of Savitri River Basin. The input vector to these models were daily rainfall, mean daily evaporation, mean daily temperature and lag streamflow used. In the present study, 20 years (1992-2011) rainfall and other hydrological data were considered, of which 13 years (1992-2004) was for training and rest 7 years (2005-2011) for validation of the models. The mode performance was evaluated by R, RMSE, EV, CE, and MAD statistical parameters. It was found that, ANN model performance improved with increasing input vectors. The results with fuzzy logic models predict the streamflow with single input as rainfall better in comparison to multiple input vectors. While comparing both ANN and FL algorithms for prediction of streamflow, ANN model performance is quite superior.
Jeton, A.E.; Dettinger, M.D.; Smith, J. LaRue
1996-01-01
Precipitation-runoff models of the East Fork Carson and North Fork American Rivers were developed and calibrated for use in evaluating the sensitivity of streamflow in the north-central Sierra Nevada to climate change. The East Fork Carson River drains part of the rain-shadowed, eastern slope of the Sierra Nevada and is generally higher than the North Fork American River, which drains the wetter, western slope. First, a geographic information system was developed to describe the spatial variability of basin characteristics and to help estimate model parameters. The result was a partitioning of each basin into noncontiguous, but hydrologically uniform, land units. Hydrologic descriptions of these units were developed and the Precipitation- Runoff Modeling System (PRMS) was used to simulate water and energy balances for each unit in response to daily weather conditions. The models were calibrated and verified using historical streamflows over 22-year (Carson River) and 42-year (American River) periods. Simulated annual streamflow errors average plus 10 percent of the observed flow for the East Fork Carson River basin and plus 15 percent for the North Fork American River basin. Interannual variability is well simulated overall, but, at daily scales, wet periods are simulated more accurately than drier periods. The simulated water budgets for the two basins are significantly different in seasonality of streamflow, sublimation, evapotranspiration, and snowmelt. The simulations indicate that differences in snowpack and snowmelt timing can play pervasive roles in determining the sensitivity of water resources to climate change, in terms of both resource availability and amount. The calibrated models were driven by more than 25 hypothetical climate-change scenarios, each 100 years long. The scenarios were synthesized and spatially disaggregated by methods designed to preserve realistic daily, monthly, annual, and spatial statistics. Simulated streamflow timing was not very sensitive to changes in mean precipitation, but was sensitive to changes in mean temperatures. Changes in annual streamflow amounts were amplified reflections of imposed mean precipitation changes, with especially large responses to wetter climates. In contrast, streamflow amount was surprisingly insensitive to mean temperature changes as a result of temporal links between peak snowmelt and the beginning of warm-season evapotranspiration. Comparisons of simulations driven by temporally detailed climate-model changes in which mean temperature changes vary from month to month and simulations in which uniform climate changes were imposed throughout the year indicate that the snowpack accumulates the influences of short-term conditions so that season average climate changes were more important than shorter term changes.
Kuhn, Gerhard
1988-01-01
The U.S. Geological Survey 's precipitation-runoff modeling system was calibrated for this study by using daily streamflow data for April through September, 1980 and 1981, from the Williams Draw basin in Jackson County, Colorado. The calibrated model then was verified by using daily streamflow data for April through September, 1982 and 1983. Transferability of the model was tested by application to adjoining Bush Draw basin by using daily streamflow data for April through September, 1981 through 1983. Four model parameters were optimized in the calibration: (1) BST, base air temperature used to determine the form of precipitation (rain, snow, or a mixture); (2) SMAX, maximum available water-holding capacity of the soil zone; (3) TRNCF, transmission coefficient for the vegetation canopy over the snowpack; and (4) DSCOR, daily precipitation correction factor for snow. For calibration and verification, volume and timing of simulated streamflow were reasonably close to recorded streamflow; differences were least during years that had considerable snowpack accumulation and were most during years that had minimal or no snowpack accumulation. Calibration and optimization of parameters were facilitated by snowpack water-equivalent data. Application of the model to Bush Draw basin to test for transferability indicated inaccurate results in simulation of streamflow volume. Weighted values of SMAX, TRNCF, and DSCOR from the calibration basin were used for Bush Draw. The inadequate results obtained by use of weighted parameters indicate that snowpack water-equivalent data are needed for successful application of the precipitation-runoff modeling system in this area, because frequent windy conditions cause variations in snowpack accumulation. (USGS)
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland J.; Markstrom, Steve L.; Regan, R. Steve; Elliott, Caroline M.; Jones, John W.
2013-01-01
A hydrologic model of the Apalachicola–Chattahoochee–Flint River Basin (ACFB) has been developed as part of a U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center effort to provide integrated science that helps resource managers understand the effect of climate change on a range of ecosystem responses. The hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. The ACFB PRMS model simulates streamflow throughout the approximately 50,700 square-kilometer basin on a daily time step for the period 1950–99 using gridded climate forcings of air temperature and precipitation, and parameters derived from spatial data layers of altitude, land cover, soils, surficial geology, depression storage (small water bodies), and data from 56 USGS streamgages. Measured streamflow data from 35 of the 56 USGS streamgages were used to calibrate and evaluate simulated basin streamflow; the remaining gage locations were used for model delineation only. The model matched measured daily streamflow at 31 of the 35 calibration gages with Nash-Sutcliffe Model Efficiency Index (NS) greater than 0.6. Streamflow data for some calibration gages were augmented for regulation and water use effects to represent more natural flow volumes. Time-static parameters describing land cover limited the ability of the simulation to match historical runoff in the more developed subbasins. Overall, the PRMS simulation of the ACFB provides a good representation of basin hydrology on annual and monthly time steps. Calibration subbasins were analyzed by separating the 35 subbasins into five classes based on physiography, land use, and stream type (tributary or mainstem). The lowest NS values were rarely below 0.6, whereas the median NS for all five classes was within 0.74 to 0.96 for annual mean streamflow, 0.89 to 0.98 for mean monthly streamflow, and 0.82 to 0.98 for monthly mean streamflow. The median bias for all five classes was within –4.3 to 0.8 percent for annual mean streamflow, –6.3 to 0.5 percent for mean monthly streamflow, and –9.3 to 1.3 percent for monthly mean streamflow. The NS results combined with the percent bias results indicated a good to very good streamflow volume simulation for all subbasins. This simulation of the ACFB provides a foundation for future modeling and interpretive studies. Streamflow and other components of the hydrologic cycle simulated by PRMS can be used to inform other types of simulations; water-temperature, hydrodynamic, and ecosystem-dynamics simulations are three examples. In addition, possible future hydrologic conditions could be studied using this model in combination with land cover projections and downscaled general circulation model results.
Koczot, Kathryn M.; Jeton, Anne E.; McGurk, Bruce; Dettinger, Michael D.
2005-01-01
Precipitation-runoff processes in the Feather River Basin of northern California determine short- and long-term streamflow variations that are of considerable local, State, and Federal concern. The river is an important source of water and power for the region. The basin forms the headwaters of the California State Water Project. Lake Oroville, at the outlet of the basin, plays an important role in flood management, water quality, and the health of fisheries as far downstream as the Sacramento-San Joaquin Delta. Existing models of the river simulate streamflow in hourly, daily, weekly, and seasonal time steps, but cannot adequately describe responses to climate and land-use variations in the basin. New spatially detailed precipitation-runoff models of the basin have been developed to simulate responses to climate and land-use variations at a higher spatial resolution than was available previously. This report characterizes daily rainfall, snowpack evolution, runoff, water and energy balances, and streamflow variations from, and within, the basin above Lake Oroville. The new model's ability to predict streamflow is assessed. The Feather River Basin sits astride geologic, topographic, and climatic divides that establish a hydrologic character that is relatively unusual among the basins of the Sierra Nevada. It straddles a north-south geologic transition in the Sierra Nevada between the granitic bedrock that underlies and forms most of the central and southern Sierra Nevada and volcanic bedrock that underlies the northernmost parts of the range (and basin). Because volcanic bedrock generally is more permeable than granitic, the northern, volcanic parts of the basin contribute larger fractions of ground-water flow to streams than do the southern, granitic parts of the basin. The Sierra Nevada topographic divide forms a high altitude ridgeline running northwest to southeast through the middle of the basin. The topography east of this ridgeline is more like the rain-shadowed basins of the northeastern Sierra Nevada than the uplands of most western Sierra Nevada river basins. The climate is mediterranean, with most of the annual precipitation occurring in winter. Because the basin includes large areas that are near the average snowline, rainfall and rain-snow mixtures are common during winter storms. Consequently, the overall timing and rates of runoff from the basin are highly sensitive to winter temperature fluctuations. The models were developed to simulate runoff-generating processes in eight drainages of the Feather River Basin. Together, these models simulate streamflow from 98 percent of the basin above Lake Oroville. The models simulate daily water and heat balances, snowpack evolution and snowmelt, evaporation and transpiration, subsurface water storage and outflows, and streamflow to key streamflow gage sites. The drainages are modeled as 324 hydrologic-response units, each of which is assumed homogeneous in physical characteristics and response to precipitation and runoff. The models were calibrated with emphasis on reproducing monthly streamflow rates, and model simulations were compared to the total natural inflows into Lake Oroville as reconstructed by the California Department of Water Resources for April-July snowmelt seasons from 1971 to 1997. The models are most sensitive to input values and patterns of precipitation and soil characteristics. The input precipitation values were allowed to vary on a daily basis to reflect available observations by making daily transformations to an existing map of long-term mean monthly precipitation rates that account for altitude and rain-shadow effects. The models effectively simulate streamflow into Lake Oroville during water years (October through September) 1971-97, which is demonstrated in hydrographs and statistical results presented in this report. The Butt Creek model yields the most accurate historical April-July simulations, whereas the West Branch
User’s guide for the Delaware River Basin Streamflow Estimator Tool (DRB-SET)
Stuckey, Marla H.; Ulrich, James E.
2016-06-09
IntroductionThe Delaware River Basin Streamflow Estimator Tool (DRB-SET) is a tool for the simulation of streamflow at a daily time step for an ungaged stream location in the Delaware River Basin. DRB-SET was developed by the U.S. Geological Survey (USGS) and funded through WaterSMART as part of the National Water Census, a USGS research program on national water availability and use that develops new water accounting tools and assesses water availability at the regional and national scales. DRB-SET relates probability exceedances at a gaged location to those at an ungaged stream location. Once the ungaged stream location has been identified by the user, an appropriate streamgage is automatically selected in DRB-SET using streamflow correlation (map correlation method). Alternately, the user can manually select a different streamgage or use the closest streamgage. A report file is generated documenting the reference streamgage and ungaged stream location information, basin characteristics, any warnings, baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) daily mean streamflow, and the mean and median streamflow. The estimated daily flows for the ungaged stream location can be easily exported as a text file that can be used as input into a statistical software package to determine additional streamflow statistics, such as flow duration exceedance or streamflow frequency statistics.
Zarriello, Phillip J.; Bent, Gardner C.
2004-01-01
The 36.1-square-mile UsquepaugQueen River Basin in south-central Rhode Island is an important water resource. Streamflow records indicate that withdrawals may have diminished flows enough to affect aquatic habitat. Concern over the effect of withdrawals on streamflow and aquatic habitat prompted the development of a Hydrologic Simulation ProgramFORTRAN (HSPF) model to evaluate the water-management alternatives and land-use change in the basin. Climate, streamflow, and water-use data were collected to support the model development. A logistic-regression equation was developed for long-term simulations to predict the likelihood of irrigation, the primary water use in the basin, from antecedent potential evapotranspiration and precipitation for generating irrigation demands. The HSPF model represented the basin by 13 pervious-area and 2 impervious-area land-use segments and 20 stream reaches. The model was calibrated to the period January 1, 2000 to September 30, 2001, at three continuous streamflow-gaging stations that monitor flow from 10, 54, and 100 percent of the basin drainage area. Hydrographs and flow-duration curves of observed and simulated discharges, along with statistics compiled for various model-fit metrics, indicate a satisfactory model performance. The calibrated HSPF model was modified to evaluate streamflow (1) under no withdrawals to streamflow under current (200001) withdrawal conditions under long-term (19602001) climatic conditions, (2) under withdrawals by the former Ladd School water-supply wells, and (3) under fully developed land use. The effects of converting from direct-stream withdrawals to ground-water withdrawals were evaluated outside of the HSPF model by use of the STRMDEPL program, which calculates the time delayed response of ground-water withdrawals on streamflow depletion. Simulated effects of current withdrawals relative to no withdrawals indicate about a 20-percent decrease in the lowest mean daily streamflows at the basin outlet, but withdrawals have little effect on flows that are exceeded less than about 90 percent of the time. Tests of alternative model structures to evaluate model uncertainty indicate that the lowest mean daily flows ranged between 3 and 5 cubic feet per second (ft3/s) without withdrawals and 2.2 to 4 ft3/s with withdrawals. Changes in the minimum daily streamflows are more pronounced, however; at the upstream streamflow-gaging station, a minimum daily flow of 0.2 ft3/s was sustained without withdrawals, but simulations with withdrawals indicate that the reach would stop flowing part of a day about 5 percent of the time. The effect on streamflow of potential ground-water withdrawals of 0.20, 0.90, and 1.78 million gallons per day (Mgal/d) at the former Ladd School near the central part of the basin were evaluated. The lowest daily mean flows in model reach 3, the main stem of the Queen River closest to the pumped wells, decreased by about 50 percent for withdrawals of 0.20 Mgal/d (from about 0.4 to 0.2 ft3/s) in comparison to current withdrawals. Reach 3 would occasionally stop flowing during part of the day at the 0.20-Mgal/d withdrawal rate because of diurnal fluctuation in streamflow. The higher withdrawal rates (0.90 and 1.78 Mgal/d) would cause reach 3 to stop flowing about 10 to 20 percent of the time, but the effects of pumping rapidly diminished downstream because of tributary inflows. Simulation results indicate little change in the annual 1-, 7-, and 30-day low flows at the 0.20 Mgal/d pumping rate, but at the 1.78 Mgal/d pumping rate, reach 3 stopped flowing for nearly a 7-day period every year and for a 30-day period about every other year. At the 0.90 Mgal/d pumping rate, reach 3 stopped flowing about every other year for a 7-day period and about once every 5 years for a 30-day period. Land-use change was simulated by converting model hydrologic-response units (HRUs) representing undeveloped areas to HRUs representing developed areas o
NASA Astrophysics Data System (ADS)
Dhakal, A. S.; Adera, S.; Niswonger, R. G.; Gardner, M.
2016-12-01
The ability of the Precipitation-Runoff Modeling System (PRMS) to predict peak intensity, peak timing, base flow, and volume of streamflow was examined in Arroyo Hondo (180 km2) and Upper Alameda Creek (85 km2), two sub-watersheds of the Alameda Creek watershed in Northern California. Rainfall-runoff volume ratios vary widely, and can exceed 0.85 during mid-winter flashy rainstorm events. Due to dry antecedent soil moisture conditions, the first storms of the hydrologic year often produce smaller rainfall-runoff volume ratios. Runoff response in this watershed is highly hysteretic; large precipitation events are required to generate runoff following a 4-week period without precipitation. After about 150 mm of cumulative rainfall, streamflow responds quickly to subsequent storms, with variations depending on rainstorm intensity. Inputs to PRMS included precipitation, temperature, topography, vegetation, soils, and land cover data. The data was prepared for input into PRMS using a suite of data processing Python scripts written by the Desert Research Institute and U.S. Geological Survey. PRMS was calibrated by comparing simulated streamflow to measured streamflow at a daily time step during the period 1995 - 2014. The PRMS model is being used to better understand the different patterns of streamflow observed in the Alameda Creek watershed. Although Arroyo Hondo receives more rainfall than Upper Alameda Creek, it is not clear whether the differences in streamflow patterns are a result of differences in rainfall or other variables, such as geology, slope and aspect. We investigate the ability of PRMS to simulate daily streamflow in the two sub-watersheds for a variety of antecedent soil moisture conditions and rainfall intensities. After successful simulation of watershed runoff processes, the model will be expanded using GSFLOW to simulate integrated surface water and groundwater to support water resources planning and management in the Alameda Creek watershed.
Simulation of streamflow in the McTier Creek watershed, South Carolina
Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.
2010-01-01
The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient of model-fit efficiency index, Pearson's correlation coefficient, the root mean square error, the bias, and the mean absolute error. In addition, a number of graphical tools were used to assess how well the models captured the characteristics of the observed data at the Monetta and New Holland streamflow-gaging stations. The graphical tools included temporal plots of simulated and observed daily mean flows, flow-duration curves, single-mass curves, and various residual plots. The results indicated that TOPMODEL and GBMM generally produced simulations that reasonably capture the quantity, variability, and timing of the observed streamflow. For the periods modeled, the total volume of simulated daily mean flows as compared to the total volume of the observed daily mean flow from TOPMODEL was within 1 to 5 percent, and the total volume from GBMM was within 1 to 10 percent. A noticeable characteristic of the simulated hydrographs from both models is the complexity of balancing groundwater recession and flow at the streamgage when flows peak and recede rapidly. However, GBMM results indicate that groundwater recession, which affects the receding limb of the hydrograph, was more difficult to estimate with the spatially explicit curve number approach. Although the purpose of this report is not to directly compare both models, given the characteristics of the McTier Creek watershed and the fact that GBMM uses the spatially explicit curve number approach as compared to the variable-source-area concept in TOPMODEL, GBMM was able to capture the flow characteristics reasonably well.
Ockerman, Darwin J.; Roussel, Meghan C.
2009-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the San Antonio River Authority, configured, calibrated, and tested a Hydrological Simulation Program ? FORTRAN watershed model for the approximately 238-square-mile Leon Creek watershed in Bexar County, Texas, and used the model to simulate streamflow and water quality (focusing on loads and yields of selected constituents). Streamflow in the model was calibrated and tested with available data from five U.S. Geological Survey streamflow-gaging stations for 1997-2004. Simulated streamflow volumes closely matched measured streamflow volumes at all streamflow-gaging stations. Total simulated streamflow volumes were within 10 percent of measured values. Streamflow volumes are greatly influenced by large storms. Two months that included major floods accounted for about 50 percent of all the streamflow measured at the most downstream gaging station during 1997-2004. Water-quality properties and constituents (water temperature, dissolved oxygen, suspended sediment, dissolved ammonia nitrogen, dissolved nitrate nitrogen, and dissolved and total lead and zinc) in the model were calibrated using available data from 13 sites in and near the Leon Creek watershed for varying periods of record during 1992-2005. Average simulated daily mean water temperature and dissolved oxygen at the most downstream gaging station during 1997-2000 were within 1 percent of average measured daily mean water temperature and dissolved oxygen. Simulated suspended-sediment load at the most downstream gaging station during 2001-04 (excluding July 2002 because of major storms) was 77,700 tons compared with 74,600 tons estimated from a streamflow-load regression relation (coefficient of determination = .869). Simulated concentrations of dissolved ammonia nitrogen and dissolved nitrate nitrogen closely matched measured concentrations after calibration. At the most downstream gaging station, average simulated monthly mean concentrations of dissolved ammonia and nitrate concentrations during 1997-2004 were 0.03 and 0.37 milligram per liter, respectively. For the most downstream station, the measured and simulated concentrations of dissolved and total lead and zinc for stormflows during 1993-97 after calibration do not match particularly closely. For base-flow conditions during 1997-2004 at the most downstream station, the simulated/measured match is better. For example, median simulated concentration of total lead (for 2,041 days) was 0.96 microgram per liter, and median measured concentration (for nine samples) of total lead was 1.0 microgram per liter. To demonstrate an application of the Leon Creek watershed model, streamflow constituent loads and yields for suspended sediment, dissolved nitrate nitrogen, and total lead were simulated at the mouth of Leon Creek (outlet of the watershed) for 1997-2004. The average suspended-sediment load was 51,800 tons per year. The average suspended-sediment yield was 0.34 ton per acre per year. The average load of dissolved nitrate at the outlet of the watershed was 802 tons per year. The corresponding yield was 10.5 pounds per acre per year. The average load of lead at the outlet was 3,900 pounds per year. The average lead yield was 0.026 pound per acre per year. The degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error associated with the Leon Creek model. Major storms contribute most of the streamflow loads for certain constituents. For example, the three largest stormflows contributed about 64 percent of the entire suspended-sediment load at the most downstream station during 1997-2004.
Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.
2012-01-01
Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.
Williamson, Tanja N.; Lant, Jeremiah G.; Claggett, Peter; Nystrom, Elizabeth A.; Milly, Paul C.D.; Nelson, Hugh L.; Hoffman, Scott A.; Colarullo, Susan J.; Fischer, Jeffrey M.
2015-11-18
The Water Availability Tool for Environmental Resources (WATER) is a decision support system for the nontidal part of the Delaware River Basin that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. In order to quantify the uncertainty associated with these simulations, however, streamflow and the associated hydroclimatic variables of potential evapotranspiration, actual evapotranspiration, and snow accumulation and snowmelt must be simulated and compared to long-term, daily observations from sites. This report details model development and optimization, statistical evaluation of simulations for 57 basins ranging from 2 to 930 km2 and 11.0 to 99.5 percent forested cover, and how this statistical evaluation of daily streamflow relates to simulating environmental changes and management decisions that are best examined at monthly time steps normalized over multiple decades. The decision support system provides a database of historical spatial and climatic data for simulating streamflow for 2001–11, in addition to land-cover and general circulation model forecasts that focus on 2030 and 2060. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that were parameterized by using three hydrologic response units: forested, agricultural, and developed land cover. This integration enables the regional hydrologic modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model.
NASA Astrophysics Data System (ADS)
Farmer, W. H.; Archfield, S. A.; Over, T. M.; Kiang, J. E.
2015-12-01
In the United States and across the globe, the majority of stream reaches and rivers are substantially impacted by water use or remain ungaged. The result is large gaps in the availability of natural streamflow records from which to infer hydrologic understanding and inform water resources management. From basin-specific to continent-wide scales, many efforts have been undertaken to develop methods to estimate ungaged streamflow. This work applies and contrasts several statistical models of daily streamflow to more than 1,700 reference-quality streamgages across the conterminous United States using a cross-validation methodology. The variability of streamflow simulation performance across the country exhibits a pattern familiar to other continental scale modeling efforts performed for the United States. For portions of the West Coast and the dense, relatively homogeneous and humid regions of the eastern United States models produce reliable estimates of daily streamflow using many different prediction methods. Model performance for the middle portion of the United States, marked by more heterogeneous and arid conditions, and with larger contributing areas and sparser networks of streamgages, is consistently poor. A discussion of the difficulty of statistical interpolation and regionalization in these regions raises additional questions of data availability and quality, hydrologic process representation and dominance, and intrinsic variability.
Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng
2017-01-01
The Hydrological Simulation Program–Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient (R2) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R2 was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses. PMID:29257117
Li, Zhaofu; Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng
2017-12-19
The Hydrological Simulation Program-Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R ²) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R ² was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.
Effects of water-supply reservoirs on streamflow in Massachusetts
Levin, Sara B.
2016-10-06
State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The reservoir simulation tool was used to simulate 35 single- and multiple-reservoir systems in Massachusetts over a 44-year period (water years 1961 to 2004) under two water-use scenarios. The no-pumping scenario assumes no water withdrawal pumping, and the pumping scenario incorporates average annual pumping rates from 2000 to 2004. By comparing the results of the two scenarios, the total streamflow alteration can be parsed into the portion of streamflow alteration caused by the presence of a reservoir and the additional streamflow alteration caused by the level of water use of the system.For each reservoir system, the following metrics were computed to characterize the frequency, duration, and magnitude of reservoir outflow volumes compared with unaltered streamflow conditions: (1) the median number of days per year in which the reservoir did not spill, (2) the median duration of the longest consecutive period of no-spill days per year, and (3) the lowest annual flow duration exceedance probability at which the outflows are significantly different from estimated unaltered streamflow at the 95-percent confidence level. Most reservoirs in the study do not spill during the summer months even under no-pumping conditions. The median number of days during which there was no spillage was less than 365 for all reservoirs in the study, indicating that, even under reported pumping conditions, the reservoirs refill to full volume and spill at least once during nondrought years, typically in the spring.Thirteen multiple-reservoir systems consisting of two or three hydrologically connected reservoirs were included in the study. Because operating rules used to manage multiple-reservoir systems are not available, these systems were simulated under two pumping scenarios, one in which water transfers between reservoirs are minimal and one in which reservoirs continually transferred water to intermediate or terminal reservoirs. These two scenarios provided upper and lower estimates of spillage under average pumping conditions from 2000 to 2004.For sites with insufficient data to simulate daily water balances, a proxy method to estimate the three spillage metrics was developed. A series of 4,000 Monte Carlo simulations of the reservoir water balance were run. In each simulation, streamflow, physical reservoir characteristics, and daily climate inputs were randomly varied. Tobit regression equations that quantify the relation between streamflow alteration and physical and operational characteristics of reservoirs were developed from the results of the Monte Carlo simulations and can be used to estimate each of the three spillage metrics using only the withdrawal ratio and the ratio of the surface area to the drainage area, which are available statewide for all reservoirs.A graphical user-interface for the Massachusetts Reservoir Simulation Tool was developed in a Microsoft Access environment. The simulation tool contains information for 70 reservoirs in Massachusetts and allows for simulation of additional scenarios than the ones considered in this report, including controlled releases, dam seepage and leakage, demand management plans, and alternative water withdrawal and transfer rules.
NASA Astrophysics Data System (ADS)
Kumar, Brijesh; Lakshmi, Venkat
2018-03-01
The paper examines the quality of Tropical Rainfall Monitoring Mission (TRMM) 3B42 V7 precipitation product to simulate the streamflow using Soil Water Assessment Tool (SWAT) model for various rainfall intensities over the Himalayan region. The SWAT model has been set up for Gandak River Basin with 41 sub-basins and 420 HRUs. Five stream gauge locations are used to simulate the streamflow for a time span of 10 years (2000-2010). Daily streamflow for the simulation period is collected from Central Water Commission (CWC), India and Department of Hydrology and Meteorology (DHM), Nepal. The simulation results are found good in terms of Nash-Sutcliffe efficiency (NSE) {>}0.65, coefficient of determination (R2) {>}0.67 and Percentage Bias (PBIAS){<}15%, at each stream gauge sites. Thereafter, we have calculated the PBIAS and RMSE-observations standard deviation ratio (RSR) statistics between TRMM simulated and observed streamflow for various rainfall intensity classes, viz., light ({<}7.5 mm/d), moderate (7.5 to 35.4 mm/d), heavy (35.5 to 124.4 mm/d) and extremely heavy ({>}124.4 mm/d). The PBIAS and RSR show that TRMM simulated streamflow is suitable for moderate to heavy rainfall intensities. However, it does not perform well for light- and extremely-heavy rainfall intensities. The finding of the present work is useful for the problems related to water resources management, irrigation planning and hazard analysis over the Himalayan regions.
Simulated hydrologic response to climate change during the 21st century in New Hampshire
Bjerklie, David M.; Sturtevant, Luke P.
2018-01-24
The U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services and the Department of Health and Human Services, has developed a hydrologic model to assess the effects of short- and long-term climate change on hydrology in New Hampshire. This report documents the model and datasets developed by using the model to predict how climate change will affect the hydrologic cycle and provide data that can be used by State and local agencies to identify locations that are vulnerable to the effects of climate change in areas across New Hampshire. Future hydrologic projections were developed from the output of five general circulation models for two future climate scenarios. The scenarios are based on projected future greenhouse gas emissions and estimates of land-use and land-cover change within a projected global economic framework. An evaluation of the possible effect of projected future temperature on modeling of evapotranspiration is summarized to address concerns regarding the implications of the future climate on model parameters that are based on climate variables. The results of the model simulations are hydrologic projections indicating increasing streamflow across the State with large increases in streamflow during winter and early spring and general decreases during late spring and summer. Wide spatial variability in changes to groundwater recharge is projected, with general decreases in the Connecticut River Valley and at high elevations in the northern part of the State and general increases in coastal and lowland areas of the State. In general, total winter snowfall is projected to decrease across the State, but there is a possibility of increasing snow in some locations, particularly during November, February, and March. The simulated future changes in recharge and snowfall vary by watershed across the State. This means that each area of the State could experience very different changes, depending on topography or other factors. Therefore, planning for infrastructure and public safety needs to be flexible in order to address the range of possible outcomes indicated by the various model simulations. The absolute magnitude and timing of the daily streamflows, especially the larger floods, are not considered to be reliably simulated compared to changes in frequency and duration of daily streamflows and changes in accumulated monthly and seasonal streamflow volumes. Simulated current and future streamflow, groundwater recharge, and snowfall datasets include simulated data derived from the five general circulation models used in this study for a current reference time period and two future time periods. Average monthly streamflow time series datasets are provided for 27 streamgages in New Hampshire. Fourteen of the 27 streamgages associated with daily streamflow time series showed a good calibration. Average monthly groundwater recharge and snowfall time series for the same reference time period and two future time periods are also provided for each of the 467 hydrologic response units that compose the model.
Spatial interpolation schemes of daily precipitation for hydrologic modeling
Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.
2012-01-01
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Dettinger, M. D.; Cayan, D. R.; Cayan, D. R.; Meyer, M. K.
2001-12-01
Sensitivities of river basins in the Sierra Nevada of California to historical and future climate variations and changes are analyzed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-year period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th Century until about 1975, when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st Century with an attendant +2.5ºC warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. In contrast, a control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995, yields climate and streamflow-timing conditions much like the 1980s and 1990s throughout its duration. Long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. The various projected trends in the business-as-usual simulations become readily visible above simulated natural climatic and hydrologic variability by about 2020.
Konrad, Christopher P.
2004-01-01
A precipitation-runoff model for the Methow River Basin was used to simulate six alternatives: (1) baseline of current flow, (2) line irrigation canals to limit seepage losses, (3) increase surface-water diversions through unlined canals for aquifer recharge, (4) convert from surface-water to ground-water resources to supply water for irrigation, and (5) reduce tree density in forested headwater catchments, and (6) natural flow. Daily streamflow from October 1, 1959, to September 30, 2001 (water years 1960?2001) was simulated. Lining irrigation canals (alternative 2) increased flows in the Chewuch, Twisp, and the Methow (upstream and at Twisp) Rivers during September because of lower diversion rates, but not in the Methow River near Pateros. Increasing diversions for aquifer recharge (alternative 3) increased streamflow from September into January, but reduced streamflow earlier in the summer. Conversion of surface-water diversions to ground-water wells (alternative 4) resulted in the largest increase in September streamflow of any alternative, but also marginally lower January flows (at most -8 percent in the 90-percent exceedence value). Forest-cover reduction (alternative 5) produced large increases in streamflow during high-flow periods in May and June and earlier onset of high flows and small increases in January streamflows. September streamflows were largely unaffected by alternative 5. Natural streamflow (alternative 6) was higher in September and lower in January than the baseline alternative.
Ely, D. Matthew; Kahle, Sue C.
2012-01-01
A three-dimensional, transient numerical model of groundwater and surface-water flow was constructed for Chamokane Creek basin to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate the effects of potential increases in groundwater pumping on groundwater and surface-water resources in the basin. The Chamokane Creek model was constructed using the U.S. Geological Survey (USGS) integrated model, GSFLOW. GSFLOW was developed to simulate coupled groundwater and surface-water resources. The model uses 1,000-foot grid cells that subdivide the model domain by 102 rows and 106 columns. Six hydrogeologic units in the model are represented using eight model layers. Daily precipitation and temperature were spatially distributed and subsequent groundwater recharge was computed within GSFLOW. Streamflows in Chamokane Creek and its major tributaries are simulated in the model by routing streamflow within a stream network that is coupled to the groundwater-flow system. Groundwater pumpage and surface-water diversions and returns specified in the model were derived from monthly and annual pumpage values previously estimated from another component of this study and new data reported by study partners. The model simulation period is water years 1980-2010 (October 1, 1979, to September 30, 2010), but the model was calibrated to the transient conditions for water years 1999-2010 (October 1, 1998, to September 30, 2010). Calibration was completed by using traditional trial-and-error methods and automated parameter-estimation techniques. The model adequately reproduces the measured time-series groundwater levels and daily streamflows. At well observation points, the mean difference between simulated and measured hydraulic heads is 7 feet with a root-mean-square error divided by the total difference in water levels of 4.7 percent. Simulated streamflow was compared to measured streamflow at the USGS streamflow-gaging station-Chamokane Creek below Falls, near Long Lake (12433200). Annual differences between measured and simulated streamflow for the site ranged from -63 to 22 percent. Calibrated model output includes a 31-year estimate of monthly water budget components for the hydrologic system. Five model applications (scenarios) were completed to obtain a better understanding of the relation between groundwater pumping and surface-water resources. The calibrated transient model was used to evaluate: (1) the connection between the upper- and middle-basin groundwater systems, (2) the effect of surface-water and groundwater uses in the middle basin, (3) the cumulative impacts of claims registry use and permit-exempt wells on Chamokane Creek streamflow, (4) the frequency of regulation due to impacted streamflow, and (5) the levels of domestic and stockwater use that can be regulated. The simulation results indicated that streamflow is affected by existing groundwater pumping in the upper and middle basins. Simulated water-management scenarios show streamflow increased relative to historical conditions as groundwater and surface-water withdrawals decreased.
Dettinger, M.D.; Cayan, D.R.; Meyer, M.K.; Jeton, A.
2004-01-01
Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5??C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.
Dudley, Robert W.; Nielsen, Martha G.
2011-01-01
The U.S. Geological Survey (USGS) began a study in 2008 to investigate anticipated changes in summer streamflows and stream temperatures in four coastal Maine river basins and the potential effects of those changes on populations of endangered Atlantic salmon. To achieve this purpose, it was necessary to characterize the quantity and timing of streamflow in these rivers by developing and evaluating a distributed-parameter watershed model for a part of each river basin by using the USGS Precipitation-Runoff Modeling System (PRMS). The GIS (geographic information system) Weasel, a USGS software application, was used to delineate the four study basins and their many subbasins, and to derive parameters for their geographic features. The models were calibrated using a four-step optimization procedure in which model output was evaluated against four datasets for calibrating solar radiation, potential evapotranspiration, annual and seasonal water balances, and daily streamflows. The calibration procedure involved thousands of model runs that used the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The calibrated watershed models performed satisfactorily, in that Nash-Sutcliffe efficiency (NSE) statistic values for the calibration periods ranged from 0.59 to 0.75 (on a scale of negative infinity to 1) and NSE statistic values for the evaluation periods ranged from 0.55 to 0.73. The calibrated watershed models simulate daily streamflow at many locations in each study basin. These models enable natural resources managers to characterize the timing and amount of streamflow in order to support a variety of water-resources efforts including water-quality calculations, assessments of water use, modeling of population dynamics and migration of Atlantic salmon, modeling and assessment of habitat, and simulation of anticipated changes to streamflow and water temperature resulting from changes forecast for air temperature and precipitation.
Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.
2015-10-14
The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.
Massachusetts reservoir simulation tool—User’s manual
Levin, Sara B.
2016-10-06
IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.
NASA Astrophysics Data System (ADS)
KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.
2017-12-01
The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.
Reconstruction of missing daily streamflow data using dynamic regression models
NASA Astrophysics Data System (ADS)
Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault
2015-12-01
River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.
Stuckey, Marla H.; Koerkle, Edward H.; Ulrich, James E.
2012-01-01
BaSE uses the map correlation method and flow-duration exceedance probability regression equations to estimate baseline daily mean streamflow for an ungaged location. The output from BaSE is a Microsoft Excel® report file that summarizes the reference streamgage and ungaged location information, including basin characteristics, percent difference in basin characteristics between the two locations, any warning associated with the basin characteristics, mean and median streamflow for the ungaged location, and a daily hydrograph of streamflow for water years 1960–2008 for the ungaged location. The daily mean streamflow for the ungaged location can be exported as a text file to be used as input into other statistical software packages. BaSE estimates daily mean streamflow for baseline conditions only, and any alterations to streamflow from regulation, large water use, or substantial mining are not reflected in the estimated streamflow.
Viger, Roland J.; Hay, Lauren E.; Jones, John W.; Buell, Gary R.
2010-01-01
This report documents an extension of the Precipitation Runoff Modeling System that accounts for the effect of a large number of water-holding depressions in the land surface on the hydrologic response of a basin. Several techniques for developing the inputs needed by this extension also are presented. These techniques include the delineation of the surface depressions, the generation of volume estimates for the surface depressions, and the derivation of model parameters required to describe these surface depressions. This extension is valuable for applications in basins where surface depressions are too small or numerous to conveniently model as discrete spatial units, but where the aggregated storage capacity of these units is large enough to have a substantial effect on streamflow. In addition, this report documents several new model concepts that were evaluated in conjunction with the depression storage functionality, including: ?hydrologically effective? imperviousness, rates of hydraulic conductivity, and daily streamflow routing. All of these techniques are demonstrated as part of an application in the Upper Flint River Basin, Georgia. Simulated solar radiation, potential evapotranspiration, and water balances match observations well, with small errors for the first two simulated data in June and August because of differences in temperatures from the calibration and evaluation periods for those months. Daily runoff simulations show increasing accuracy with streamflow and a good fit overall. Including surface depression storage in the model has the effect of decreasing daily streamflow for all but the lowest flow values. The report discusses the choices and resultant effects involved in delineating and parameterizing these features. The remaining enhancements to the model and its application provide a more realistic description of basin geography and hydrology that serve to constrain the calibration process to more physically realistic parameter values.
Analysis of trends in selected streamflow statistics for the Concho River Basin, Texas, 1916-2009
Barbie, Dana L.; Wehmeyer, Loren L.; May, Jayne E.
2012-01-01
Six U.S. Geological Survey streamflow-gaging stations were selected for analysis. Streamflow-gaging station 08128000 South Concho River at Christoval has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1931-95, 2002-9. Streamflow-gaging station 08128400 Middle Concho River above Tankersley has downward trends for annual maximum daily discharge and annual instantaneous peak discharge for the combined period 1962-95, 2002-9. Streamflow-gaging station 08128500 Middle Concho River near Tankersley has no significant trends in the streamflow statistics considered for the period 1931-60. Streamflow-gaging station 08134000 North Concho River near Carlsbad has downward trends for annual mean daily discharge, annual 7-day minimum daily discharge, annual maximum daily discharge, and annual instantaneous peak discharge for the period 1925-2009. Streamflow-gaging stations 08136000 Concho River at San Angelo and 08136500 Concho River at Paint Rock have downward trends for 1916-2009 for all streamflow statistics calculated, but streamflow-gaging station 08136000 Concho River at San Angelo has an upward trend for annual maximum daily discharge during 1964-2009. The downward trends detected during 1916-2009 for the Concho River at San Angelo are not unexpected because of three reservoirs impounding and profoundly regulating streamflow.
NASA Astrophysics Data System (ADS)
Bowman, A. L.; Franz, K.; Hogue, T. S.
2015-12-01
We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.
Model simulation of the Manasquan water-supply system in Monmouth County, New Jersey
Chang, Ming; Tasker, Gary D.; Nieswand, Steven
2001-01-01
Model simulation of the Manasquan Water Supply System in Monmouth County, New Jersey, was completed using historic hydrologic data to evaluate the effects of operational and withdrawal alternatives on the Manasquan reservoir and pumping system. Changes in the system operations can be simulated with the model using precipitation forecasts. The Manasquan Reservoir system model operates by using daily streamflow values, which were reconstructed from historical U.S. Geological Survey streamflow-gaging station records. The model is able to run in two modes--General Risk analysis Model (GRAM) and Position Analysis Model (POSA). The GRAM simulation procedure uses reconstructed historical streamflow records to provide probability estimates of certain events, such as reservoir storage levels declining below a specific level, when given an assumed set of operating rules and withdrawal rates. POSA can be used to forecast the likelihood of specified outcomes, such as streamflows falling below statutory passing flows, associated with a specific working plan for the water-supply system over a period of months. The user can manipulate the model and generate graphs and tables of streamflows and storage, for example. This model can be used as a management tool to facilitate the development of drought warning and drought emergency rule curves and safe yield values for the water-supply system.
Wilby, Robert L.; Dettinger, Michael D.
2000-01-01
Simulations of future climate using general circulation models (GCMs) suggest that rising concentrations of greenhouse gases may have significant consequences for the global climate. Of less certainty is the extent to which regional scale (i.e., sub-GCM grid) environmental processes will be affected. In this chapter, a range of downscaling techniques are critiqued. Then a relatively simple (yet robust) statistical downscaling technique and its use in the modelling of future runoff scenarios for three river basins in the Sierra Nevada, California, is described. This region was selected because GCM experiments driven by combined greenhouse-gas and sulphate-aerosol forcings consistently show major changes in the hydro-climate of the southwest United States by the end of the 21st century. The regression-based downscaling method was used to simulate daily rainfall and temperature series for streamflow modelling in three Californian river basins under current-and future-climate conditions. The downscaling involved just three predictor variables (specific humidity, zonal velocity component of airflow, and 500 hPa geopotential heights) supplied by the U.K. Meteorological Office couple ocean-atmosphere model (HadCM2) for the grid point nearest the target basins. When evaluated using independent data, the model showed reasonable skill at reproducing observed area-average precipitation, temperature, and concomitant streamflow variations. Overall, the downscaled data resulted in slight underestimates of mean annual streamflow due to underestimates of precipitation in spring and positive temperature biases in winter. Differences in the skill of simulated streamflows amongst the three basins were attributed to the smoothing effects of snowpack on streamflow responses to climate forcing. The Merced and American River basins drain the western, windward slope of the Sierra Nevada and are snowmelt dominated, whereas the Carson River drains the eastern, leeward slope and is a mix of rainfall runoff and snowmelt runoff. Simulated streamflow in the American River responds rapidly and sensitively to daily-scale temperature and precipitation fluctuations and errors; in the Merced and Carson Rivers, the response to the same short-term influences is much less. Consequently, the skill of simulated flows was significantly lower in the American River model than in the Carson and Merced. The physiography of the three basins also accounts for differences in their sensitivities to future climate change. Increases in winter precipitation exceeding +100% coupled with mean temperature rises greater than +2°C result in increased winter streamflows in all three basins. In the Merced and Carson basins, these streamflow increases reflect large changes in winter snowpack, whereas the streamflow changes in the lower elevation American basin are driven primarily by rainfall runoff. Furthermore, reductions in winter snowpack in the American River basin, owing to less precipitation falling as snow and earlier melting of snow at middle elevations, lead to less spring and summer streamflow. Taken collectively, the downscaling results suggest significant changes to both the timing and magnitude of streamflows in the Sierra Nevada by the end of the 21st Century. In the higher elevation basins, the HadCM2 scenario implies more annual streamflow and more streamflow during the spring and summer months that are critical for water-resources management in California. Depending on the relative significance of rainfall runoff and snowmelt, each basin responds in its own way to regional climate forcing. Generally, then, climate scenarios need to be specified — by whatever means — with sufficient temporal and spatial resolution to capture subtle orographic influences if projections of climate-change responses are to be useful and reproducible.
Dash, R.G.; Edelmann, P.R.
1997-01-01
Traveltime and gains and losses within a stream are important basic characteristics of streamflow. The lower Purgatoire River flows more than 160 river miles from Trinidad to the Arkansas River near Las Animas. A better knowledge of streamflow traveltime and streamflow gains and losses along the lower Purgatoire River would enable more informed management decisions about the availability of water supplies for irrigation use in southeastern Colorado. In 1994-95, the U.S.\\x11Geological Survey, in cooperation with the Purgatoire River Water Conservancy District and the Arkansas River Compact Administration, evaluated streamflow traveltime and estimated streamflow gains and losses using historical surface-water records. Traveltime analyses were used along the lower Purgatoire River to determine when streamflows would arrive at selected downstream sites. The substantial effects of diversions for irrigation and unmeasured return flows in the most upstream reach of the river prevented the tracking of streamflow through reach\\x111. Therefore, the estimation of streamflow traveltime for the 60.6 miles of river downstream from Trinidad could not be made.Hourly streamflow data from 1990 through 1994 were used to estimate traveltimes of more than 30 streamflow events for about 100 miles of the lower Purgatoire River. In the middle reach of the river, the traveltime of streamflow for the 40.1\\x11miles ranged from about 11 to about 47\\x11hours, and in the lower reach of the river, traveltime for the 58.5 miles ranged from about 6 to about 61 hours.Traveltime in the river reaches generally increased as streamflow decreased, but also varied for a specific streamflow in both reaches. Streamflow gains and losses were estimated using daily streamflow data at the upstream and downstream sites, available tributary inflow data, and daily diversion data. Differences between surface-water inflows and surface-water outflows in a reach determined the quantity of water gained or lost. In the most upstream reach of the river near Trinidad, difficulties in establishing streamflow traveltimes prevented the estimation of streamflow gains or losses. From 1984 through 1992, more than 2,900 daily estimates of streamflow gains or losses were made for the last 100\\x11miles of the lower Purgatoire River that indicated daily gains and losses in streamflow were common during all four seasons of the year. Although some large daily streamflow gains and losses were computed, most daily estimates indicated small gains and losses in streamflow. The daily median streamflow gain or loss for the middle reach of the river was close to zero during every season, whereas median values for the lower most reach of the river indicated a daily gain in streamflow during every season.
Parrett, Charles; Hull, J.A.
1990-01-01
Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)
Archfield, Stacey A.; Steeves, Peter A.; Guthrie, John D.; Ries, Kernell G.
2013-01-01
Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals) at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.
Farmer, William H.; Knight, Rodney R.; Eash, David A.; Kasey J. Hutchinson,; Linhart, S. Mike; Christiansen, Daniel E.; Archfield, Stacey A.; Over, Thomas M.; Kiang, Julie E.
2015-08-24
Daily records of streamflow are essential to understanding hydrologic systems and managing the interactions between human and natural systems. Many watersheds and locations lack streamgages to provide accurate and reliable records of daily streamflow. In such ungaged watersheds, statistical tools and rainfall-runoff models are used to estimate daily streamflow. Previous work compared 19 different techniques for predicting daily streamflow records in the southeastern United States. Here, five of the better-performing methods are compared in a different hydroclimatic region of the United States, in Iowa. The methods fall into three classes: (1) drainage-area ratio methods, (2) nonlinear spatial interpolations using flow duration curves, and (3) mechanistic rainfall-runoff models. The first two classes are each applied with nearest-neighbor and map-correlated index streamgages. Using a threefold validation and robust rank-based evaluation, the methods are assessed for overall goodness of fit of the hydrograph of daily streamflow, the ability to reproduce a daily, no-fail storage-yield curve, and the ability to reproduce key streamflow statistics. As in the Southeast study, a nonlinear spatial interpolation of daily streamflow using flow duration curves is found to be a method with the best predictive accuracy. Comparisons with previous work in Iowa show that the accuracy of mechanistic models with at-site calibration is substantially degraded in the ungaged framework.
Integrating remotely sensed surface water extent into continental scale hydrology
NASA Astrophysics Data System (ADS)
Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad
2016-12-01
In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that remotely sensed surface water extent holds potential for improving rainfall-runoff streamflow simulations, potentially leading to a better forecast of the peak flow.
Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models
NASA Astrophysics Data System (ADS)
Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.
2016-12-01
This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.
A statistical analysis of the daily streamflow hydrograph
NASA Astrophysics Data System (ADS)
Kavvas, M. L.; Delleur, J. W.
1984-03-01
In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2017-12-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2018-01-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
Linking river management to species conservation using dynamic landscape scale models
Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.
2013-01-01
Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.
Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.
2007-01-01
Analysts and managers of surface-water resources might have interest in selected statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The selected statistics are the annual mean, maximum, minimum, and L-scale of daily meanstreamflow. Annual L-scale of streamflow is a robust measure of the variability of the daily mean streamflow for a given year. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated in 2006a data and reporting process to generate annual statistics for 712 USGS streamflow-gaging stations in Texas. A graphical depiction of the history of the annual statistics for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective of streamflow for the watershed. Each figure consists off our time-series plots of the annual statistics of daily mean streamflow for each streamflow-gaging station. Each of the four plots is augmented with horizontal lines that depict the mean and median annual values of the corresponding statistic for the period of record. Monotonic trends for each of the four annual statistics also are identified using Kendall's T. The history of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.
Lizarraga, Joy S.; Ockerman, Darwin J.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Fort Worth District; the City of Corpus Christi; the Guadalupe-Blanco River Authority; the San Antonio River Authority; and the San Antonio Water System, configured, calibrated, and tested a watershed model for a study area consisting of about 5,490 mi2 of the Frio River watershed in south Texas. The purpose of the model is to contribute to the understanding of watershed processes and hydrologic conditions in the lower Frio River watershed. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge by using a numerical representation of physical characteristics of the landscape, and meteorological and streamflow data. Additional time-series inputs to the model include wastewater-treatment-plant discharges, surface-water withdrawals, and estimated groundwater inflow from Leona Springs. Model simulations of streamflow, ET, and groundwater recharge were done for various periods of record depending upon available measured data for input and comparison, starting as early as 1961. Because of the large size of the study area, the lower Frio River watershed was divided into 12 subwatersheds; separate Hydrological Simulation Program-FORTRAN models were developed for each subwatershed. Simulation of the overall study area involved running simulations in downstream order. Output from the model was summarized by subwatershed, point locations, reservoir reaches, and the Carrizo-Wilcox aquifer outcrop. Four long-term U.S. Geological Survey streamflow-gaging stations and two short-term streamflow-gaging stations were used for streamflow model calibration and testing with data from 1991-2008. Calibration was based on data from 2000-08, and testing was based on data from 1991-99. Choke Canyon Reservoir stage data from 1992-2008 and monthly evaporation estimates from 1999-2008 also were used for model calibration. Additionally, 2006-08 ET data from a U.S. Geological Survey meteorological station in Medina County were used for calibration. Streamflow and ET calibration were considered good or very good. For the 2000-08 calibration period, total simulated flow volume and the flow volume of the highest 10 percent of simulated daily flows were calibrated to within about 10 percent of measured volumes at six U.S. Geological Survey streamflow-gaging stations. The flow volume of the lowest 50 percent of daily flows was not simulated as accurately but represented a small percent of the total flow volume. The model-fit efficiency for the weekly mean streamflow during the calibration periods ranged from 0.60 to 0.91, and the root mean square error ranged from 16 to 271 percent of the mean flow rate. The simulated total flow volumes during the testing periods at the long-term gaging stations exceeded the measured total flow volumes by approximately 22 to 50 percent at three stations and were within 7 percent of the measured total flow volumes at one station. For the longer 1961-2008 simulation period at the long-term stations, simulated total flow volumes were within about 3 to 18 percent of measured total flow volumes. The calibrations made by using Choke Canyon reservoir volume for 1992-2008, reservoir evaporation for 1999-2008, and ET in Medina County for 2006-08, are considered very good. Model limitations include possible errors related to model conceptualization and parameter variability, lack of data to better quantify certain model inputs, and measurement errors. Uncertainty regarding the degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error. A sensitivity analysis was performed for the Upper San Miguel subwatershed model to show the effect of changes to model parameters on the estimated mean recharge, ET, and surface runoff from that part of the Carrizo-Wilcox aquifer outcrop. Simulated recharge was most sensitive to the changes in the lower-zone ET (LZ
Wesolowski, Edwin A.
1999-01-01
A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant.The purpose of the model was to simulate conditions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model.The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected to be most useful for low streamflow simulations. The Ardmore BLTM/QUAL2E model was calibrated and verified with water-quality data from nine sites where two sets of five samples were collected. The streamflow during the water-quality sampling in Caddo Creek at site 7 ranged from 8.4 to 20 cubic feet per second, of which about 5.0 to 9.7 cubic feet per second was contributed by Sand Creek. The model simulates the fate and transport of 10 water-quality constituents. The model was verified by running it using data that were not used in calibration; only phytoplankton were not verified.Measured and simulated concentrations of dissolved oxygen exhibited a marked daily pattern that was attributable to waste loading and algal activity. Dissolved-oxygen measurements during this study and simulated dissolved-oxygen concentrations using the Ardmore Water-Quality Model, for the conditions of this study, illustrate that the dissolved-oxygen sag curve caused by the upstream wastewater discharges is confined to Sand Creek.
Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin
Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.
2008-01-01
In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.
NASA Astrophysics Data System (ADS)
Dhakal, A. S.; Adera, S.
2017-12-01
Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS's model outputs as well as empirically generated flow data for their use in water resources management decisions. PRMS is also being used to better understand the streamflow patterns in the San Antonio Creek watershed for a variety of antecedent soil moisture conditions as the creek is generally dry between late Spring and early Fall.
NASA Astrophysics Data System (ADS)
White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John
2017-08-01
Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral
in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management the most. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of parameterization when attempting to quantify uncertainty in land-cover change simulations.
White, Jeremy; Stengel, Victoria G.; Rendon, Samuel H.; Banta, John
2017-01-01
Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash–Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management the most. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of parameterization when attempting to quantify uncertainty in land-cover change simulations.
Asquith, William H.; Vrabel, Joseph; Roussel, Meghan C.
2007-01-01
Analysts and managers of surface-water resources might have interest in the zero-flow potential for U.S.Geological Survey (USGS) streamflow-gaging stations in Texas. The USGS, in cooperation with the Texas Commission on Environmental Quality, initiated a data and reporting process to generate summaries of percentages of zero daily mean streamflow for 712 USGS streamflow-gaging stations in Texas. A summary of the percentages of zero daily mean streamflow for most active and inactive, continuous-record gaging stations in Texas provides valuable information by conveying the historical perspective for zero-flow potential for the watershed. The summaries of percentages of zero daily mean streamflow for each station are graphically depicted using two thematic perspectives: annual and monthly. The annual perspective consists of graphs of annual percentages of zero streamflow by year with the addition of lines depicting the mean and median annual percentage of zero streamflow. Monotonic trends in the percentages of zero streamflow also are identified using Kendall's T. The monthly perspective consists of graphs of the percentage of zero streamflow by month with lines added to indicate the mean and median monthly percentage of zero streamflow. One or more summaries could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of zero-flow or other low-flow conditions in Texas.
Risley, John; Moradkhani, Hamid; Hay, Lauren E.; Markstrom, Steve
2011-01-01
In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across the United States. Simulated daily streamflow and energy output from the watershed models were used to compute a range of statistics. With a side-by-side comparison of the statistical analyses for the 14 basins, regional climatic and hydrologic trends over the twenty-first century could be qualitatively identified. Low-flow statistics (95% exceedance, 7-day mean annual minimum, and summer mean monthly streamflow) decreased for almost all basins. Annual maximum daily streamflow also decreased in all the basins, except for all four basins in California and the Pacific Northwest. An analysis of the supply of available energy and water for the basins indicated that ratios of evaporation to precipitation and potential evapotranspiration to precipitation for most of the basins will increase. Probability density functions (PDFs) were developed to assess the uncertainty and multimodality in the impact of climate change on mean annual streamflow variability. Kolmogorov?Smirnov tests showed significant differences between the beginning and ending twenty-first-century PDFs for most of the basins, with the exception of four basins that are located in the western United States. Almost none of the basin PDFs were normally distributed, and two basins in the upper Midwest had PDFs that were extremely dispersed and skewed.
Moyer, Douglas; Hyer, Kenneth
2003-01-01
Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 7,000 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 33,000 to 260,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 95-percent reduction in the current fecal coliform load delivered from the watershed to Blacks Run would result in compliance with the designated water-quality goals and associated TMDL.
Moyer, Douglas; Hyer, Kenneth
2003-01-01
Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 25 to 800 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 19,000 to 340,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, deer, dogs, ducks, geese, humans, muskrats, and raccoons. According to model results, an 89-percent reduction in the current fecal coliform load delivered from the watershed to Accotink Creek would result in compliance with the designated water-quality goals and associated TMDL.
Integrating remotely sensed surface water extent into continental scale hydrology.
Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad
2016-12-01
In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R 2 , RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that remotely sensed surface water extent holds potential for improving rainfall-runoff streamflow simulations, potentially leading to a better forecast of the peak flow.
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
A Sequential Monte Carlo Approach for Streamflow Forecasting
NASA Astrophysics Data System (ADS)
Hsu, K.; Sorooshian, S.
2008-12-01
As alternatives to traditional physically-based models, Artificial Neural Network (ANN) models offer some advantages with respect to the flexibility of not requiring the precise quantitative mechanism of the process and the ability to train themselves from the data directly. In this study, an ANN model was used to generate one-day-ahead streamflow forecasts from the precipitation input over a catchment. Meanwhile, the ANN model parameters were trained using a Sequential Monte Carlo (SMC) approach, namely Regularized Particle Filter (RPF). The SMC approaches are known for their capabilities in tracking the states and parameters of a nonlinear dynamic process based on the Baye's rule and the proposed effective sampling and resampling strategies. In this study, five years of daily rainfall and streamflow measurement were used for model training. Variable sample sizes of RPF, from 200 to 2000, were tested. The results show that, after 1000 RPF samples, the simulation statistics, in terms of correlation coefficient, root mean square error, and bias, were stabilized. It is also shown that the forecasted daily flows fit the observations very well, with the correlation coefficient of higher than 0.95. The results of RPF simulations were also compared with those from the popular back-propagation ANN training approach. The pros and cons of using SMC approach and the traditional back-propagation approach will be discussed.
Gazoorian, Christopher L.
2015-01-01
A graphical user interface, with an integrated spreadsheet summary report, has been developed to estimate and display the daily mean streamflows and statistics and to evaluate different water management or water withdrawal scenarios with the estimated monthly data. This package of regression equations, U.S. Geological Survey streamgage data, and spreadsheet application produces an interactive tool to estimate an unaltered daily streamflow hydrograph and streamflow statistics at ungaged sites in New York. Among other uses, the New York Streamflow Estimation Tool can assist water managers with permitting water withdrawals, implementing habitat protection, estimating contaminant loads, or determining the potential affect from chemical spills.
Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.
2010-01-01
Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed unregulated, daily mean streamflow at 18 streamgages located across southern New England. Nash-Sutcliffe efficiency goodness-of-fit values are between 0.69 and 0.98, and percent root-mean-square-error values are between 19 and 283 percent. The MA SYE tool provides an estimate of streamflow adjusted for current (2000-04) water withdrawals and discharges using a spatially referenced database of permitted groundwater and surface-water withdrawal and discharge volumes. For a user-selected basin, the database is queried to obtain the locations of water withdrawal or discharge volumes within the basin. Groundwater and surface-water withdrawals and discharges are subtracted and added, respectively, from the unregulated, daily streamflow at an ungaged site to obtain a streamflow time series that includes the effects of these withdrawals and discharges. Users also have the option of applying an analytical solution to the time-varying, groundwater withdrawal and discharge volumes that take into account the effects of the aquifer properties on the timing and magnitude of streamflow alteration. For the MA SYE tool, it is assumed that groundwater and surface-water divides are coincident. For areas of southeastern Massachusetts and Cape Cod where this assumption is known to be violated, groundwater-flow models are used to estimate average monthly streamflows at fixed locations. There are several limitations to the quality and quantity of the spatially referenced database of groundwater and surface-water withdrawals and discharges. The adjusted streamflow values do not account for the effects on streamflow of climate change, septic-system discharge, impervious area, non-public water-supply withdrawals less than 100,000 gallons per day, and impounded surface-water bodies.
Barbie, Dana L.; Wehmeyer, Loren L.
2012-01-01
Trends in selected streamflow statistics during 1922-2009 were evaluated at 19 long-term streamflow-gaging stations considered indicative of outflows from Texas to Arkansas, Louisiana, Galveston Bay, and the Gulf of Mexico. The U.S. Geological Survey, in cooperation with the Texas Water Development Board, evaluated streamflow data from streamflow-gaging stations with more than 50 years of record that were active as of 2009. The outflows into Arkansas and Louisiana were represented by 3 streamflow-gaging stations, and outflows into the Gulf of Mexico, including Galveston Bay, were represented by 16 streamflow-gaging stations. Monotonic trend analyses were done using the following three streamflow statistics generated from daily mean values of streamflow: (1) annual mean daily discharge, (2) annual maximum daily discharge, and (3) annual minimum daily discharge. The trend analyses were based on the nonparametric Kendall's Tau test, which is useful for the detection of monotonic upward or downward trends with time. A total of 69 trend analyses by Kendall's Tau were computed - 19 periods of streamflow multiplied by the 3 streamflow statistics plus 12 additional trend analyses because the periods of record for 2 streamflow-gaging stations were divided into periods representing pre- and post-reservoir impoundment. Unless otherwise described, each trend analysis used the entire period of record for each streamflow-gaging station. The monotonic trend analysis detected 11 statistically significant downward trends, 37 instances of no trend, and 21 statistically significant upward trends. One general region studied, which seemingly has relatively more upward trends for many of the streamflow statistics analyzed, includes the rivers and associated creeks and bayous to Galveston Bay in the Houston metropolitan area. Lastly, the most western river basins considered (the Nueces and Rio Grande) had statistically significant downward trends for many of the streamflow statistics analyzed.
Hutchinson, Kasey J.; Christiansen, Daniel E.
2013-01-01
The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, used the Soil and Water Assessment Tool to simulate streamflow and nitrate loads within the Cedar River Basin, Iowa. The goal was to assess the ability of the Soil and Water Assessment Tool to estimate streamflow and nitrate loads in gaged and ungaged basins in Iowa. The Cedar River Basin model uses measured streamflow data from 12 U.S. Geological Survey streamflow-gaging stations for hydrology calibration. The U.S. Geological Survey software program, Load Estimator, was used to estimate annual and monthly nitrate loads based on measured nitrate concentrations and streamflow data from three Iowa Department of Natural Resources Storage and Retrieval/Water Quality Exchange stations, located throughout the basin, for nitrate load calibration. The hydrology of the model was calibrated for the period of January 1, 2000, to December 31, 2004, and validated for the period of January 1, 2005, to December 31, 2010. Simulated daily, monthly, and annual streamflow resulted in Nash-Sutcliffe coefficient of model efficiency (ENS) values ranging from 0.44 to 0.83, 0.72 to 0.93, and 0.56 to 0.97, respectively, and coefficient of determination (R2) values ranging from 0.55 to 0.87, 0.74 to 0.94, and 0.65 to 0.99, respectively, for the calibration period. The percent bias ranged from -19 to 10, -16 to 10, and -19 to 10 for daily, monthly, and annual simulation, respectively. The validation period resulted in daily, monthly, and annual ENS values ranging from 0.49 to 0.77, 0.69 to 0.91, and -0.22 to 0.95, respectively; R2 values ranging from 0.59 to 0.84, 0.74 to 0.92, and 0.36 to 0.92, respectively; and percent bias ranging from -16 for all time steps to percent bias of 14, 15, and 15, respectively. The nitrate calibration was based on a small subset of the locations used in the hydrology calibration with limited measured data. Model performance ranges from unsatisfactory to very good for the calibration period (January 1, 2000, to December 31, 2004). Results for the validation period (January 1, 2005, to December 31, 2010) indicate a need for an increase of measured data as well as more refined documented management practices at a higher resolution. Simulated nitrate loads resulted in monthly and annual ENS values ranging from 0.28 to 0.82 and 0.61 to 0.86, respectively, and monthly and annual R2 values ranging from 0.65 to 0.81 and 0.65 to 0.88, respectively, for the calibration period. The monthly and annual calibration percent bias ranged from 4 to 7 and 5 to 7, respectively. The validation period resulted in all but two ENS values less than zero. Monthly and annual validation R2 values ranged from 0.5 to 0.67 and 0.25 to 0.48, respectively. Monthly and annual validation percent bias ranged from 46 to 68 for both time steps. A daily calibration and validation for nitrate loads was not performed because of the poor monthly and annual results; measured daily nitrate data are available for intervals of time in 2009 and 2010 during which a successful monthly and annual calibration could not be achieved. The Cedar River Basin is densely gaged relative to other basins in Iowa; therefore, an alternative hydrology scenario was created to assess the predictive capabilities of the Soil and Water Assessment Tool using fewer locations of measured data for model hydrology calibration. Although the ability of the model to reproduce measured values improves with the number of calibration locations, results indicate that the Soil and Water Assessment Tool can be used to adequately estimate streamflow in less densely gaged basins throughout the State, especially at the monthly time step. However, results also indicate that caution should be used when calibrating a subbasin that consists of physically distinct regions based on only one streamflow-gaging station.
Technique for estimation of streamflow statistics in mineral areas of interest in Afghanistan
Olson, Scott A.; Mack, Thomas J.
2011-01-01
A technique for estimating streamflow statistics at ungaged stream sites in areas of mineral interest in Afghanistan using drainage-area-ratio relations of historical streamflow data was developed and is documented in this report. The technique can be used to estimate the following streamflow statistics at ungaged sites: (1) 7-day low flow with a 10-year recurrence interval, (2) 7-day low flow with a 2-year recurrence interval, (3) daily mean streamflow exceeded 90 percent of the time, (4) daily mean streamflow exceeded 80 percent of the time, (5) mean monthly streamflow for each month of the year, (6) mean annual streamflow, and (7) minimum monthly streamflow for each month of the year. Because they are based on limited historical data, the estimates of streamflow statistics at ungaged sites are considered preliminary.
Testing the ability of a semidistributed hydrological model to simulate contributing area
NASA Astrophysics Data System (ADS)
Mengistu, S. G.; Spence, C.
2016-06-01
A dry climate, the prevalence of small depressions, and the lack of a well-developed drainage network are characteristics of environments with extremely variable contributing areas to runoff. These types of regions arguably present the greatest challenge to properly understanding catchment streamflow generation processes. Previous studies have shown that contributing area dynamics are important for streamflow response, but the nature of the relationship between the two is not typically understood. Furthermore, it is not often tested how well hydrological models simulate contributing area. In this study, the ability of a semidistributed hydrological model, the PDMROF configuration of Environment Canada's MESH model, was tested to determine if it could simulate contributing area. The study focused on the St. Denis Creek watershed in central Saskatchewan, Canada, which with its considerable topographic depressions, exhibits wide variation in contributing area, making it ideal for this type of investigation. MESH-PDMROF was able to replicate contributing area derived independently from satellite imagery. Daily model simulations revealed a hysteretic relationship between contributing area and streamflow not apparent from the less frequent remote sensing observations. This exercise revealed that contributing area extent can be simulated by a semi-distributed hydrological model with a scheme that assumes storage capacity distribution can be represented with a probability function. However, further investigation is needed to determine if it can adequately represent the complex relationship between streamflow and contributing area that is such a key signature of catchment behavior.
NASA Astrophysics Data System (ADS)
Hevesi, J. A.; Woolfenden, L. R.; Nishikawa, T.
2014-12-01
Communities in the Santa Rosa Plain watershed (SRPW), Sonoma County, CA, USA are experiencing increasing demand for limited water resources. Streamflow in the SRPW is runoff dominated; however, groundwater also is an important resource in the basin. The watershed has an area of 262 mi2 that includes natural, agricultural, and urban land uses. To evaluate the hydrologic system, an integrated hydrologic model was developed using the U.S. Geological Survey coupled groundwater and surface-water flow model, GSFLOW. The model uses a daily time step and a grid-based discretization of the SRPW consisting of 16,741 10-acre cells for 8 model layers to simulate all water budget components of the surface and subsurface hydrologic system. Simulation results indicate significant impacts on streamflow and recharge in response to the below average precipitation during the dry periods. The recharge and streamflow distributions simulated for historic dry periods were compared to future dry periods projected from 4 GCM realizations (two different GCMs and two different CO2 forcing scenarios) for the 21st century, with the dry periods defined as 3 consecutive years of below average precipitation. For many of the projected dry periods, the decreases in recharge and streamflow were greater than for the historic dry periods due to a combination of lower precipitation and increases in simulated evapotranspiration for the warmer 21st century projected by the GCM realizations. The greatest impact on streamflow for both historic and projected future dry periods is the diminished baseflow from late spring to early fall, with an increase in the percentage of intermittent and dry stream reaches. The results indicate that the coupled model is a useful tool for water managers to better understand the potential effects of future dry periods on spatially and temporally distributed streamflow and recharge, as well as other components of the water budget.
Aerial photography provides a historical vehicle for determining long term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of impervious surfaces and streamflow to be explored. Impervious surface area in ...
Spatiotemporal tracer variability in glacier melt and its influence on hydrograph separation
NASA Astrophysics Data System (ADS)
Schmieder, Jan; Marke, Thomas; Strasser, Ulrich
2017-04-01
Glaciers are important seasonal water contributors in many mountainous regions. Knowledge on the timing and amount of glacier melt water is crucial for water resources management, especially in downstream regions where the water is needed (hydropower, drinking water) or where it represents a potential risk (drought, flood). This becomes even more relevant in a changing climate. Environmental tracers are a useful tool in the assessment of ice water resources, because they provide information about the sources, flow paths and traveling times of water contributing to streamflow at the catchment scale. Hydrometric and meteorological measurements combined with tracer analyses help to unravel streamflow composition and improve the understanding of hydroclimatological processes. Empirical studies on runoff composition are necessary to parameterize and validate hydrological models in a process-oriented manner, rather than comparing total measured and simulated runoff only. In the present study three approaches of hydrograph separation are compared to decide which sampling frequency is required to capture the spatiotemporal variability of glacier melt, and to draw implications for future studies of streamflow partitioning. Therefore glacier melt contributions to a proglacial stream at the sub-daily, daily, and seasonal scale were estimated using electrical conductivity and oxygen-18 as tracers. The field work was conducted during December 2015 and September 2016 in the glaciated (34%) high-elevation catchment of the Hochjochbach, a small sub-basin (17 km2) of the Oetztaler Ache river in the Austrian Alps, ranging from 2400 to 3500 m a.s.l. in elevation. Hydroclimatological data was provided by an automatic weather station and a streamflow gauging station equipped with a pressure transducer. Water samples of streamflow, glacier melt, and rain were collected throughout the winter period (December to March) and the ablation season (July to September). In the proposed contribution, the experimental setup and preliminary results are described and discussed for the three approaches (sub-daily, daily, seasonal) of three-component hydrograph separations (glacier melt, rain, and groundwater).
On the probability distribution of daily streamflow in the United States
Blum, Annalise G.; Archfield, Stacey A.; Vogel, Richard M.
2017-01-01
Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.
Aerial photography provides a historical vehicle for determining long term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of impervious surfaces and streamflow to be explored. Impervious surfac...
Stone, M.A.J.; Mann, Larry J.; Kjelstrom, L.C.
1993-01-01
Statistical summaries and graphs of streamflow data were prepared for 13 gaging stations with 5 or more years of continuous record on and near the Idaho National Engineering Laboratory. Statistical summaries of streamflow data for the Big and Little Lost Rivers and Birch Creek were analyzed as a requisite for a comprehensive evaluation of the potential for flooding of facilities at the Idaho National Engineering Laboratory. The type of statistical analyses performed depended on the length of streamflow record for a gaging station. Streamflow statistics generated for stations with 5 to 9 years of record were: (1) magnitudes of monthly and annual flows; (2) duration of daily mean flows; and (3) maximum, median, and minimum daily mean flows. Streamflow statistics generated for stations with 10 or more years of record were: (1) magnitudes of monthly and annual flows; (2) magnitudes and frequencies of daily low, high, instantaneous peak (flood frequency), and annual mean flows; (3) duration of daily mean flows; (4) exceedance probabilities of annual low, high, instantaneous peak, and mean annual flows; (5) maximum, median, and minimum daily mean flows; and (6) annual mean and mean annual flows.
Stuckey, Marla H.
2016-06-09
The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.
Stamey, Timothy C.
1998-01-01
Simple and reliable methods for estimating hourly streamflow are needed for the calibration and verification of a Chattahoochee River basin model between Buford Dam and Franklin, Ga. The river basin model is being developed by Georgia Department of Natural Resources, Environmental Protection Division, as part of their Chattahoochee River Modeling Project. Concurrent streamflow data collected at 19 continuous-record, and 31 partial-record streamflow stations, were used in ordinary least-squares linear regression analyses to define estimating equations, and in verifying drainage-area prorations. The resulting regression or drainage-area ratio estimating equations were used to compute hourly streamflow at the partial-record stations. The coefficients of determination (r-squared values) for the regression estimating equations ranged from 0.90 to 0.99. Observed and estimated hourly and daily streamflow data were computed for May 1, 1995, through October 31, 1995. Comparisons of observed and estimated daily streamflow data for 12 continuous-record tributary stations, that had available streamflow data for all or part of the period from May 1, 1995, to October 31, 1995, indicate that the mean error of estimate for the daily streamflow was about 25 percent.
Kuhn, Gerhard; Arnold, L. Rick
2006-01-01
The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 to (1) apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise the existing transit-loss accounting program for Fountain Creek to incorporate new water-management strategies and allow for incorporation of future changes in water-management strategies, and (4) integrate the two accounting programs into a single program with a Web-based user interface. The purpose of this report is to present the results of applying a stream-aquifer model to the Monument Creek study reach.Transit losses were estimated for reusable-water flows in Monument Creek that ranged from 1 to 200 cubic feet per second (ft3/s) and for native streamflows that ranged from 0 to 1,000 ft3/s. Transit losses were estimated for bank-storage, channel-storage, and evaporative losses. The same stream-aquifer model used in the previously completed (1988) Fountain Creek study was used in the Monument Creek study.Sixteen model nodes were established for the Monument Creek study reach, defining 15 subreaches. Channel length, aquifer length, and aquifer width for the subreaches were estimated from available topographic and geologic maps. Thickness of alluvial deposits and saturated thickness were estimated using lithologic and water-level data from about 100 wells and test holes in or near the Monument Creek study reach. Estimated average transmissivities for the subreaches ranged from 2,000 to 12,000 feet squared per day, and a uniform value of 0.20 was used for storage coefficient.Qualitative comparison of recorded and simulated streamflow at the downstream node for the calibration and verification simulations indicated that the two streamflows compared reasonably well. No adjustments were made to the model parameters. Differences between recorded and simulated streamflow volumes for all calibration and verification simulations ranged from about –8.8 to 7.5 percent; the total error for all simulations was about –0.7 percent.The model was used to estimate bank-storage losses for 10 to 15 native streamflows for each reusable-water flow of 1, 3, 5, 7, 10, 15, 20, 30, 40, 50, 100, and 200 ft3/s. Then the 10 to 15 bank-storage loss values were used in least-squares linear regression to estimate a relation between bank-storage loss and native streamflow for each of the 12 reusable-water flow rates. The 12 regression relations then were used to develop “look-up” tables of bank-storage loss for reusable-water flows ranging from 1 to 200 ft3/s (in 1-ft3/s increments). Additional model simulations indicated that (1) when the ratio of downstream native streamflow to upstream native streamflow was less than 1, bank-storage loss generally increased and (2) when the ratio of downstream native streamflow to upstream native streamflow was larger than 1, bank-storage loss generally decreased. These results were used to develop a bank-storage loss adjustment factor based on the ratio of native streamflow at the downstream node to native streamflow at the upstream node. The model also was used to estimate a recovery period, which is the length of time needed for the bank-storage loss to return to the stream. The recovery period was 1 day for six subreaches; 2 days for four subreaches; between 3 and 12 days for four subreaches; and 28 days for one subreach.Channel-storage losses are about 10 percent of the reusable-water flow for most of the subreaches, except for two subreaches, where the channel-storage losses are about 20 percent, and one subreach, where the losses are about 30 percent, owing to the greater channel lengths. Evaporative losses were estimated by the use of monthly pan-evaporation data and the incremental increase in stream width resulting from any reusable-water flows. Monthly pan-evaporation data were converted to a daily rate. The daily rate, when multiplied by the stream-width increase (in feet) that results from reusable-water flow and by the subreach length (in miles) gives the daily evaporative loss in cubic feet per second.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
Moyer, Douglas; Hyer, Kenneth
2003-01-01
Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Christians Creek, in Augusta County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Christians Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Christians Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Christians Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Christians Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Christians Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 2,000 colonies per 100 milliliters, and peak concentrations during stormflow periods ranged from 23,000 to 730,000 colonies per 100 milliliters. Additionally, fecal coliform bacteria concentrations were generally higher upstream and lower downstream. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were beaver, cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 96-percent reduction in the current fecal coliform load delivered from the watershed to Christians Creek would result in compliance with the designated water-quality goals and associated TMDL.
The impact of lake and reservoir parameterization on global streamflow simulation.
Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke
2017-05-01
Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and using appropriate parameterization in large-scale hydrological simulations.
Liscum, Fred; East, Jeffery W.
2000-01-01
The City of Houston is considering the transfer of water from the Trinity River to Lake Houston (on the San Jacinto River) to alleviate concerns about adequate water supplies for future water demands. The U.S. Geological Survey, in cooperation with the City of Houston, conducted a study to estimate the effects on the water quality of Lake Houston from the transfer of Trinity River water. A water-quality model, CE–QUAL–W2, was used to simulate six water-quality properties and constituents for scenarios of interbasin transfer of Trinity River water. Three scenarios involved the transferred Trinity River water augmenting streamflow in the East Fork of Lake Houston, and three scenarios involved the transferred water replacing streamflow from the West Fork of the San Jacinto River.The estimated effects on Lake Houston were determined by comparing volume-weighted daily mean water temperature, phosphorus, ammonia nitrogen, nitrite plus nitrate nitrogen, algal biomass, and dissolved oxygen simulated for each of the transfer scenarios to simulations for a base dataset. The effects of the interbasin transfer on Lake Houston do not appear to be detrimental to water temperature, ammonia nitrogen, or dissolved oxygen. Phosphorus and nitrite plus nitrate nitrogen showed fairly large changes when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Algal biomass showed large decreases when Trinity River water was transferred to augment East Fork Lake Houston streamflow and large increases when Trinity River water was transferred to replace West Fork San Jacinto River streamflow. Regardless of the scenario simulated, the model indicated that light was the limiting factor for algal biomass growth.
A Flexible Framework Hydrological Informatic Modeling System - HIMS
NASA Astrophysics Data System (ADS)
WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.
2017-12-01
Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.
Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.
2012-01-01
The U.S. Geological Survey (USGS) maintains approximately 148 real-time streamgages in Iowa for which daily mean streamflow information is available, but daily mean streamflow data commonly are needed at locations where no streamgages are present. Therefore, the USGS conducted a study as part of a larger project in cooperation with the Iowa Department of Natural Resources to develop methods to estimate daily mean streamflow at locations in ungaged watersheds in Iowa by using two regression-based statistical methods. The regression equations for the statistical methods were developed from historical daily mean streamflow and basin characteristics from streamgages within the study area, which includes the entire State of Iowa and adjacent areas within a 50-mile buffer of Iowa in neighboring states. Results of this study can be used with other techniques to determine the best method for application in Iowa and can be used to produce a Web-based geographic information system tool to compute streamflow estimates automatically. The Flow Anywhere statistical method is a variation of the drainage-area-ratio method, which transfers same-day streamflow information from a reference streamgage to another location by using the daily mean streamflow at the reference streamgage and the drainage-area ratio of the two locations. The Flow Anywhere method modifies the drainage-area-ratio method in order to regionalize the equations for Iowa and determine the best reference streamgage from which to transfer same-day streamflow information to an ungaged location. Data used for the Flow Anywhere method were retrieved for 123 continuous-record streamgages located in Iowa and within a 50-mile buffer of Iowa. The final regression equations were computed by using either left-censored regression techniques with a low limit threshold set at 0.1 cubic feet per second (ft3/s) and the daily mean streamflow for the 15th day of every other month, or by using an ordinary-least-squares multiple linear regression method and the daily mean streamflow for the 15th day of every other month. The Flow Duration Curve Transfer method was used to estimate unregulated daily mean streamflow from the physical and climatic characteristics of gaged basins. For the Flow Duration Curve Transfer method, daily mean streamflow quantiles at the ungaged site were estimated with the parameter-based regression model, which results in a continuous daily flow-duration curve (the relation between exceedance probability and streamflow for each day of observed streamflow) at the ungaged site. By the use of a reference streamgage, the Flow Duration Curve Transfer is converted to a time series. Data used in the Flow Duration Curve Transfer method were retrieved for 113 continuous-record streamgages in Iowa and within a 50-mile buffer of Iowa. The final statewide regression equations for Iowa were computed by using a weighted-least-squares multiple linear regression method and were computed for the 0.01-, 0.05-, 0.10-, 0.15-, 0.20-, 0.30-, 0.40-, 0.50-, 0.60-, 0.70-, 0.80-, 0.85-, 0.90-, and 0.95-exceedance probability statistics determined from the daily mean streamflow with a reporting limit set at 0.1 ft3/s. The final statewide regression equation for Iowa computed by using left-censored regression techniques was computed for the 0.99-exceedance probability statistic determined from the daily mean streamflow with a low limit threshold and a reporting limit set at 0.1 ft3/s. For the Flow Anywhere method, results of the validation study conducted by using six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 1,016 to 138 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 1,690 to 237 ft3/s. Values of the percent root-mean-square error ranged from 115 percent to 26.2 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 13.0 to 5.3 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.80 to 0.40. Percent-bias values ranged from 25.4 to 4.0 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.35. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.86 to 0.56. For the streamgage with the best agreement between observed and estimated streamflow, higher streamflows appear to be underestimated. For the streamgage with the worst agreement between observed and estimated streamflow, low flows appear to be overestimated whereas higher flows seem to be underestimated. Estimated cumulative streamflows for the period October 1, 2004, to September 30, 2009, are underestimated by -25.8 and -7.4 percent for the closest and poorest comparisons, respectively. For the Flow Duration Curve Transfer method, results of the validation study conducted by using the same six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 437 to 93.9 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 906 to 169 ft3/s. Values of the percent root-mean-square-error ranged from 67.0 to 25.6 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 12.5 to 4.4 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.79 to 0.40. Percent-bias values ranged from 22.7 to 0.94 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.38. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.89 to 0.48. For the streamgage with the closest agreement between observed and estimated streamflow, there is relatively good agreement between observed and estimated streamflows. For the streamgage with the poorest agreement between observed and estimated streamflow, streamflows appear to be substantially underestimated for much of the time period. Estimated cumulative streamflow for the period October 1, 2004, to September 30, 2009, are underestimated by -9.3 and -22.7 percent for the closest and poorest comparisons, respectively.
NASA Astrophysics Data System (ADS)
Huang, Q. Z.; Hsu, S. Y.; Li, M. H.
2016-12-01
The long-term streamflow prediction is important not only to estimate water-storage of a reservoir but also to the surface water intakes, which supply people's livelihood, agriculture, and industry. Climatology forecasts of streamflow have been traditionally used for calculating the exceedance probability curve of streamflow and water resource management. In this study, we proposed a stochastic approach to predict the exceedance probability curve of long-term streamflow with the seasonal weather outlook from Central Weather Bureau (CWB), Taiwan. The approach incorporates a statistical downscale weather generator and a catchment-scale hydrological model to convert the monthly outlook into daily rainfall and temperature series and to simulate the streamflow based on the outlook information. Moreover, we applied Bayes' theorem to derive a method for calculating the exceedance probability curve of the reservoir inflow based on the seasonal weather outlook and its imperfection. The results show that our approach can give the exceedance probability curves reflecting the three-month weather outlook and its accuracy. We also show how the improvement of the weather outlook affects the predicted exceedance probability curves of the streamflow. Our approach should be useful for the seasonal planning and management of water resource and their risk assessment.
Determination of streamflow of the Arkansas River near Bentley in south-central Kansas
Perry, Charles A.
2012-01-01
The Kansas Department of Agriculture, Division of Water Resources, requires that the streamflow of the Arkansas River just upstream from Bentley in south-central Kansas be measured or calculated before groundwater can be pumped from the well field. When the daily streamflow of the Arkansas River near Bentley is less than 165 cubic feet per second (ft3/s), pumping must be curtailed. Daily streamflow near Bentley was calculated by determining the relations between streamflow data from two reference streamgages with a concurrent record of 24 years, one located 17.2 miles (mi) upstream and one located 10.9 mi downstream, and streamflow at a temporary gage located just upstream from Bentley (Arkansas River near Bentley, Kansas). Flow-duration curves for the two reference streamgages indicate that during 1988?2011, the mean daily streamflow was less than 165 ft3/s 30 to 35 percent of the time. During extreme low-flow (drought) conditions, the reach of the Arkansas River between Hutchinson and Maize can lose flow to the adjacent alluvial aquifer, with streamflow losses as much as 1.6 cubic feet per second per mile. Three models were developed to calculate the streamflow of the Arkansas River near Bentley, Kansas. The model chosen depends on the data available and on whether the reach of the Arkansas River between Hutchinson and Maize is gaining or losing groundwater from or to the adjacent alluvial aquifer. The first model was a pair of equations developed from linear regressions of the relation between daily streamflow data from the Bentley streamgage and daily streamflow data from either the Arkansas River near Hutchinson, Kansas, station (station number 07143330) or the Arkansas River near Maize, Kansas, station (station number 07143375). The standard error of the Hutchinson-only equation was 22.8 ft3/s, and the standard error of the Maize-only equation was 22.3 ft3/s. The single-station model would be used if only one streamgage was available. In the second model, the flow gradient between the streamflow near Hutchinson and the streamflow near Maize was used to calculate the streamflow at the Bentley streamgage. This equation resulted in a standard error of 26.7 ft3/s. In the third model, a multiple regression analysis between both the daily streamflow of the Arkansas River near Hutchinson, Kansas, and the daily streamflow of the Arkansas River near Maize, Kansas, was used to calculate the streamflow at the Bentley streamgage. The multiple regression equation had a standard error of 21.2 ft3/s, which was the smallest of the standard errors for all the models. An analysis of the number of low-flow days and the number of days when the reach between Hutchinson and Maize loses flow to the adjacent alluvial aquifer indicates that the long-term trend is toward fewer days of losing conditions. This trend may indicate a long-term increase in water levels in the alluvial aquifer, which could be caused by one or more of several conditions, including an increase in rainfall, a decrease in pumping, a decrease in temperature, and an increase in streamflow upstream from the Hutchinson-to-Maize reach of the Arkansas River.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Waldron, Marcus C.; Archfield, Stacey A.
2006-01-01
Factors affecting reservoir firm yield, as determined by application of the Massachusetts Department of Environmental Protection's Firm Yield Estimator (FYE) model, were evaluated, modified, and tested on 46 streamflow-dominated reservoirs representing 15 Massachusetts drinking-water supplies. The model uses a mass-balance approach to determine the maximum average daily withdrawal rate that can be sustained during a period of record that includes the 1960s drought-of-record. The FYE methodology to estimate streamflow to the reservoir at an ungaged site was tested by simulating streamflow at two streamflow-gaging stations in Massachusetts and comparing the simulated streamflow to the observed streamflow. In general, the FYE-simulated flows agreed well with observed flows. There were substantial deviations from the measured values for extreme high and low flows. A sensitivity analysis determined that the model's streamflow estimates are most sensitive to input values for average annual precipitation, reservoir drainage area, and the soil-retention number-a term that describes the amount of precipitation retained by the soil in the basin. The FYE model currently provides the option of using a 1,000-year synthetic record constructed by randomly sampling 2-year blocks of concurrent streamflow and precipitation records 500 times; however, the synthetic record has the potential to generate records of precipitation and streamflow that do not reflect the worst historical drought in Massachusetts. For reservoirs that do not have periods of drawdown greater than 2 years, the bootstrap does not offer any additional information about the firm yield of a reservoir than the historical record does. For some reservoirs, the use of a synthetic record to determine firm yield resulted in as much as a 30-percent difference between firm-yield values from one simulation to the next. Furthermore, the assumption that the synthetic traces of streamflow are statistically equivalent to the historical record is not valid. For multiple-reservoir systems, the firm-yield estimate was dependent on the reservoir system's configuration. The firm yield of a system is sensitive to how the water is transferred from one reservoir to another, the capacity of the connection between the reservoirs, and how seasonal variations in demand are represented in the FYE model. Firm yields for 25 (14 single-reservoir systems and 11 multiple-reservoir systems) reservoir systems were determined by using the historical records of streamflow and precipitation. Current water-use data indicate that, on average, 20 of the 25 reservoir systems in the study were operating below their estimated firm yield; during months with peak demands, withdrawals exceeded the firm yield for 8 reservoir systems.
NASA Astrophysics Data System (ADS)
Dugger, A. L.; Zhang, Y.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L.; Rafieeinasab, A.; Sampson, K. M.; Salas, F.; Read, L.; Pan, L.; Yates, D. N.; Cosgrove, B.; Clark, E. P.
2017-12-01
Streamflow extremes (lows and peaks) tend to have disproportionately higher impacts on the human and natural systems compared to mean streamflow. Examining and understanding the spatiotemporal distributions of streamflow extremes is of significant interests to both the research community and the water resources management. In this work, the output from the 24-year (1993 through 2016) retrospective runs of the National Water Model (NWM) version of WRF-Hydro will be analyzed for streamflow extremes over the CONUS domain. The CONUS domain was configured at 1-km resolution for land surface grid and 250-m resolution for terrain routing. The WRF-Hydro runs were forced by the regridded and downscaled NLDAS2 data. The analyses focus on daily mean streamflow values over the full water year and within the summer and winter seasons. Connections between NWM streamflow and other hydrologic variables (e.g. snowpack, soil moisture/saturation and ET) with variations in large-scale climate phenomena, e.g., El Niño - Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and North American monsoon are examined. The CONUS domain has a diverse environment and is characterized by complex terrain, heterogeneous land surfaces and ecosystems, and numerous hydrological basins. The potential dependence of streamflow extremes on regional terrain character, climatic conditions, and ecologic zones will also be investigated.
Improvement of the variable storage coefficient method with water surface gradient as a variable
USDA-ARS?s Scientific Manuscript database
The variable storage coefficient (VSC) method has been used for streamflow routing in continuous hydrological simulation models such as the Agricultural Policy/Environmental eXtender (APEX) and the Soil and Water Assessment Tool (SWAT) for more than 30 years. APEX operates on a daily time step and ...
Ordinary kriging as a tool to estimate historical daily streamflow records
Farmer, William H.
2016-01-01
Efficient and responsible management of water resources relies on accurate streamflow records. However, many watersheds are ungaged, limiting the ability to assess and understand local hydrology. Several tools have been developed to alleviate this data scarcity, but few provide continuous daily streamflow records at individual streamgages within an entire region. Building on the history of hydrologic mapping, ordinary kriging was extended to predict daily streamflow time series on a regional basis. Pooling parameters to estimate a single, time-invariant characterization of spatial semivariance structure is shown to produce accurate reproduction of streamflow. This approach is contrasted with a time-varying series of variograms, representing the temporal evolution and behavior of the spatial semivariance structure. Furthermore, the ordinary kriging approach is shown to produce more accurate time series than more common, single-index hydrologic transfers. A comparison between topological kriging and ordinary kriging is less definitive, showing the ordinary kriging approach to be significantly inferior in terms of Nash–Sutcliffe model efficiencies while maintaining significantly superior performance measured by root mean squared errors. Given the similarity of performance and the computational efficiency of ordinary kriging, it is concluded that ordinary kriging is useful for first-order approximation of daily streamflow time series in ungaged watersheds.
Stogner, Sr., Robert W.
2000-01-01
The Fountain Creek watershed, located in and along the eastern slope of the Front Range section of the southern Rocky Mountains, drains approximately 930 square miles of parts of Teller, El Paso, and Pueblo Counties in eastern Colorado. Streamflow in the watershed is dominated by spring snowmelt runoff and storm runoff during the summer monsoon season. Flooding during the 1990?s has resulted in increased streambank erosion. Property loss and damage associated with flooding and bank erosion has cost area residents, businesses, utilities, municipalities, and State and Federal agencies millions of dollars. Precipitation (4 stations) and streamflow (6 stations) data, aerial photographs, and channel reconnaissance were used to evaluate trends in precipitation and streamflow and changes in channel morphology. Trends were evaluated for pre-1977, post-1976, and period-of-record time periods. Analysis revealed the lack of trend in total annual and seasonal precipitation during the pre-1977 time period. In general, the analysis also revealed the lack of trend in seasonal precipitation for all except the spring season during the post-1976 time period. Trend analysis revealed a significant upward trend in long-term (period of record) total annual and spring precipitation data, apparently due to a change in total annual precipitation throughout the Fountain Creek watershed. During the pre-1977 time period, precipitation was generally below average; during the post- 1976 time period, total annual precipitation was generally above average. During the post- 1976 time period, an upward trend in total annual and spring precipitation was indicated at two stations. Because two of four stations evaluated had upward trends for the post-1976 period and storms that produce the most precipitation are isolated convection storms, it is plausible that other parts of the watershed had upward precipitation trends that could affect trends in streamflow. Also, because of the isolated nature of convection storms that hit some areas of the watershed and not others, it is difficult to draw strong conclusions on relations between streamflow and precipitation. Trends in annual instantaneous peak streamflow, 70th percentile, 90th percentile, maximum daily-mean streamflow (100th percentile), 7-, 14-, and 30-day high daily-mean stream- flow duration, minimum daily-mean streamflow (0th percentile), 10th percentile, 30th percentile, and 7-, 14-, 30-day low daily-mean streamflow duration were evaluated. In general, instantaneous peak streamflow has not changed significantly at most of the stations evaluated. Trend analysis revealed the lack of a significant upward trend in streamflow at all stations for the pre-1977 time period. Trend tests indicated a significant upward trend in high and low daily-mean streamflow statistics for the post-1976 period. Upward trends in high daily-mean streamflow statistics may be an indication that changes in land use within the watershed have increased the rate and magnitude of runoff. Upward trends in low daily-mean 2 Trends in Precipitation and Streamflow and Changes in Stream Morphology in the Fountain Creek Watershed, Colorado, 1939-99 streamflow statistics may be related to changes in water use and management. An analysis of the relation between streamflow and precipitation indicated that changes in water management have had a marked effect on streamflow. Observable change in channel morphology and changes in distribution and density of vegetation varied with magnitude, duration, and frequency of large streamflow events, and increases in the magnitude and duration of low streamflows. Although more subtle, low stream- flows were an important component of day-to-day channel erosion. Substantial changes in channel morphology were most often associated with infrequent large or catastrophic streamflow events that erode streambed and banks, alter stream course, and deposit large amounts of sediment in the flood plain.
Surface-Water Conditions in Georgia, Water Year 2005
Painter, Jaime A.; Landers, Mark N.
2007-01-01
INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
Asquith, William H.; Heitmuller, Franklin T.
2008-01-01
Analysts and managers of surface-water resources have interest in annual mean and annual harmonic mean statistics of daily mean streamflow for U.S. Geological Survey (USGS) streamflow-gaging stations in Texas. The mean streamflow represents streamflow volume, whereas the harmonic mean streamflow represents an appropriate statistic for assessing constituent concentrations that might adversely affect human health. In 2008, the USGS, in cooperation with the Texas Commission on Environmental Quality, conducted a large-scale documentation of mean and harmonic mean streamflow for 620 active and inactive, continuous-record, streamflow-gaging stations using period of record data through water year 2007. About 99 stations within the Texas USGS streamflow-gaging network are part of the larger national Hydroclimatic Data Network and are identified. The graphical depictions of annual mean and annual harmonic mean statistics in this report provide a historical perspective of streamflow at each station. Each figure consists of three time-series plots, two flow-duration curves, and a statistical summary of the mean annual and annual harmonic mean streamflow statistics for available data for each station.The first time-series plot depicts daily mean streamflow for the period 1900-2007. Flow-duration curves follow and are a graphical depiction of streamflow variability. Next, the remaining two time-series plots depict annual mean and annual harmonic mean streamflow and are augmented with horizontal lines that depict mean and harmonic mean for the period of record. Monotonic trends for the annual mean streamflow and annual harmonic mean streamflow also are identified using Kendall's tau, and the slope of the trend is depicted using the nonparametric (linear) Theil-Sen line, which is only drawn for p-values less than .10 of tau. The history of annual mean and annual harmonic mean streamflow of one or more streamflow-gaging stations could be used in a watershed, river basin, or other regional context by analysts and managers of surface-water resources to guide scientific, regulatory, or other inquiries of streamflow conditions in Texas.
Farmer, William H.; Koltun, Greg
2017-01-01
Study regionThe state of Ohio in the United States, a humid, continental climate.Study focusThe estimation of nonexceedance probabilities of daily streamflows as an alternative means of establishing the relative magnitudes of streamflows associated with hydrologic and water-quality observations.New hydrological insights for the regionSeveral methods for estimating nonexceedance probabilities of daily mean streamflows are explored, including single-index methodologies (nearest-neighboring index) and geospatial tools (kriging and topological kriging). These methods were evaluated by conducting leave-one-out cross-validations based on analyses of nearly 7 years of daily streamflow data from 79 unregulated streamgages in Ohio and neighboring states. The pooled, ordinary kriging model, with a median Nash–Sutcliffe performance of 0.87, was superior to the single-site index methods, though there was some bias in the tails of the probability distribution. Incorporating network structure through topological kriging did not improve performance. The pooled, ordinary kriging model was applied to 118 locations without systematic streamgaging across Ohio where instantaneous streamflow measurements had been made concurrent with water-quality sampling on at least 3 separate days. Spearman rank correlations between estimated nonexceedance probabilities and measured streamflows were high, with a median value of 0.76. In consideration of application, the degree of regulation in a set of sample sites helped to specify the streamgages required to implement kriging approaches successfully.
Sams, J. I.; Witt, E. C.
1995-01-01
The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.
River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998
Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.
2001-01-01
The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake/ reservoir and river operations including diversion of Truckee River water to the Truckee Canal for transport to the Carson River Basin. In addition to the operations and streamflow-routing modules, the modeling system is structured to allow integration of other modules, such as water-quality and precipitation-runoff modules. The USGS Truckee River Basin operations model was designed to provide simulations that allow comparison of the effects of alternative management practices or allocations on streamflow or reservoir storages in the Truckee River Basin over long periods of time. Because the model was not intended to reproduce historical streamflow or reservoir storage values, a traditional calibration that includes statistical comparisons of observed and simulated values would be problematic with this model and database. This report describes a chronology and background of decrees, agreements, and laws that affect Truckee River operational practices; the construction of the Truckee River daily operations model; the simulation of Truckee River Basin operations, both current and proposed under the draft TROA and WQSA; and suggested model improvements and limitations. The daily operations model uses Hydrological Simulation Program?FORTRAN (HSPF) to simulate flow-routing and reservoir and river operations. The operations model simulates reservoir and river operations that govern streamflow in the Truckee River from Lake Tahoe to Pyramid Lake, including diversions through the Truckee Canal to Lahontan Reservoir in the Carson River Basin. A general overview is provided of daily operations and their simulation. Supplemental information that documents the extremely complex operating rules simulated by the model is available.
Effects of water-management alternatives on streamflow in the Ipswich River basin, Massachusetts
Zarriello, Philip J.
2001-01-01
Management alternatives that could help mitigate the effects of water withdrawals on streamflow in the Ipswich River Basin were evaluated by simulation with a calibrated Hydrologic Simulation Program--Fortran (HSPF) model. The effects of management alternatives on streamflow were simulated for a 35-year period (196195). Most alternatives examined increased low flows compared to the base simulation of average 1989-93 withdrawals. Only the simulation of no septic-effluent inflow, and the simulation of a 20-percent increase in withdrawals, further lowered flows or caused the river to stop flowing for longer periods of time than the simulation of average 198993 withdrawals. Simulations of reduced seasonal withdrawals by 20 percent, and by 50 percent, resulted in a modest increase in low flow in a critical habitat reach (model reach 8 near the Reading town well field); log-Pearson Type III analysis of simulated daily-mean flow indicated that under these reduced withdrawals, model reach 8 would stop flowing for a period of seven consecutive days about every other year, whereas under average 198993 withdrawals this reach would stop flowing for a seven consecutive day period almost every year. Simulations of no seasonal withdrawals, and simulations that stopped streamflow depletion when flow in model reach 19 was below 22 cubic feet per second, indicated flow would be maintained in model reach 8 at all times. Simulations indicated wastewater-return flows would augment low flow in proportion to the rate of return flow. Simulations of a 1.5 million gallons per day return flow rate indicated model reach 8 would stop flowing for a period of seven consecutive days about once every 5 years; simulated return flow rates of 1.1 million gallons per day indicated that model reach 8 would stop flowing for a period of seven consecutive days about every other year. Simulation of reduced seasonal withdrawals, combined with no septic effluent return flow, indicated only a slight increase in low flow compared to low flows simulated under average 198993 withdrawals. Simulation of reduced seasonal withdrawal, combined with 2.6 million gallons per day wastewater-return flows, provided more flow in model reach 8 than that simulated under no withdrawals.
Wagner, Daniel M.; Krieger, Joshua D.; Merriman, Katherine R.
2014-01-01
The U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) conducted a statistical analysis of trends in precipitation, streamflow, reservoir pool elevations, and reservoir releases in Arkansas and selected sites in Louisiana, Missouri, and Oklahoma for the period 1951–2011. The Mann-Kendall test was used to test for trends in annual and seasonal precipitation, annual and seasonal streamflows of 42 continuous-record USGS streamflow-gaging stations, annual pool elevations and releases from 16 USACE reservoirs, and annual releases from 11 dams on the Arkansas River. A statistically significant (p≤0.10) upward trend was observed in annual precipitation for the State, with a Sen slope of approximately 0.10 inch per year. Autumn and winter were the only seasons that had statistically significant trends in precipitation. Five of six physiographic sections and six of seven 4-digit hydrologic unit code (HUC) regions in Arkansas had statistically significant upward trends in autumn precipitation, with Sen slopes of approximately 0.06 to 0.10 inch per year. Sixteen sites had statistically significant upward trends in the annual mean daily streamflow and were located on streams that drained regions with statistically significant upward trends in annual precipitation. Expected annual rates of change corresponding to statistically significant trends in annual mean daily streamflows, which ranged from 0.32 to 0.88 percent, were greater than those corresponding to regions with statistically significant upward trends in annual precipitation, which ranged from 0.19 to 0.28 percent, suggesting that the observed trends in regional annual precipitation do not fully account for the observed trends in annual mean daily streamflows. Trends in annual maximum daily streamflows were similar to trends in the annual mean daily streamflows but were only statistically significant at seven sites. There were more statistically significant trends (28 of 42 sites) in the annual minimum daily streamflows than in the annual means or maximums. Statistically significant trends in the annual minimum daily streamflows were upward at 18 sites and downward at 10 sites. Despite autumn being the only season that had statistically significant upward trends in seasonal precipitation, statistically significant upward trends in seasonal mean streamflows occurred in every season but spring. Trends in the annual mean, maximum, and minimum daily pool elevations of USACE reservoirs were consistent between metrics for reservoirs in the White, Arkansas, and Ouachita River watersheds, while trends varied between metrics at DeQueen Lake, Millwood Lake, and Lake Chicot. Most of the statistically significant trends in pool elevation metrics were upward and gradual—Sen slopes were less than 0.37 foot per year—and were likely the result of changes in reservoir regulation plans. Trends in the annual mean and maximum daily releases from USACE reservoirs were generally upward in all HUC regions. There were few statistically significant trends in the annual mean daily releases because the reservoirs are operated to maintain a regulation stage at a downstream site according to guidelines set forth in the regulation plans of the reservoirs. The annual number of low-flow days was both increasing and decreasing for reservoirs in northern Arkansas and southern Missouri and generally increasing for reservoirs in southern Arkansas.
NASA Astrophysics Data System (ADS)
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2018-06-01
Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.
Environmental flow allocation and statistics calculator
Konrad, Christopher P.
2011-01-01
The Environmental Flow Allocation and Statistics Calculator (EFASC) is a computer program that calculates hydrologic statistics based on a time series of daily streamflow values. EFASC will calculate statistics for daily streamflow in an input file or will generate synthetic daily flow series from an input file based on rules for allocating and protecting streamflow and then calculate statistics for the synthetic time series. The program reads dates and daily streamflow values from input files. The program writes statistics out to a series of worksheets and text files. Multiple sites can be processed in series as one run. EFASC is written in MicrosoftRegistered Visual BasicCopyright for Applications and implemented as a macro in MicrosoftOffice Excel 2007Registered. EFASC is intended as a research tool for users familiar with computer programming. The code for EFASC is provided so that it can be modified for specific applications. All users should review how output statistics are calculated and recognize that the algorithms may not comply with conventions used to calculate streamflow statistics published by the U.S. Geological Survey.
Methods to estimate historical daily streamflow for ungaged stream locations in Minnesota
Lorenz, David L.; Ziegeweid, Jeffrey R.
2016-03-14
Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water; however, streamgages cannot be installed at every location where streamflow information is needed. Therefore, methods for estimating streamflow at ungaged stream locations need to be developed. This report presents a statewide study to develop methods to estimate the structure of historical daily streamflow at ungaged stream locations in Minnesota. Historical daily mean streamflow at ungaged locations in Minnesota can be estimated by transferring streamflow data at streamgages to the ungaged location using the QPPQ method. The QPPQ method uses flow-duration curves at an index streamgage, relying on the assumption that exceedance probabilities are equivalent between the index streamgage and the ungaged location, and estimates the flow at the ungaged location using the estimated flow-duration curve. Flow-duration curves at ungaged locations can be estimated using recently developed regression equations that have been incorporated into StreamStats (http://streamstats.usgs.gov/), which is a U.S. Geological Survey Web-based interactive mapping tool that can be used to obtain streamflow statistics, drainage-basin characteristics, and other information for user-selected locations on streams.
Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model
Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.
2004-01-01
Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored in a unique WDM dataset identified by an attribute that associates each well with the model reach from which water is withdrawn. Other attributes identify the type and characteristics of the data. The interface allows users to easily add new pumping wells, delete exiting pumping wells, or change properties of the simulated aquifer or well. Development of this application enhanced the ability of the HSPF model to simulate complex water-use conditions in the Ipswich River Basin. The STRMDEPL program and the GenScn extension provide a valuable tool for water managers to evaluate the effects of pumped wells on streamflow and to test alternative water-use scenarios. Copyright ASCE 2004.
Wood, Molly S.; Fosness, Ryan L.
2013-01-01
The U.S. Geological Survey, in cooperation with the Bureau of Land Management (BLM), collected streamflow data in 2012 and estimated streamflow statistics for stream segments designated "Wild," "Scenic," or "Recreational" under the National Wild and Scenic Rivers System in the Owyhee Canyonlands Wilderness in southwestern Idaho. The streamflow statistics were used by BLM to develop and file a draft, federal reserved water right claim in autumn 2012 to protect federally designated "outstanding remarkable values" in the stream segments. BLM determined that the daily mean streamflow equaled or exceeded 20 and 80 percent of the time during bimonthly periods (two periods per month) and the bankfull streamflow are important streamflow thresholds for maintaining outstanding remarkable values. Prior to this study, streamflow statistics estimated using available datasets and tools for the Owyhee Canyonlands Wilderness were inaccurate for use in the water rights claim. Streamflow measurements were made at varying intervals during February–September 2012 at 14 monitoring sites; 2 of the monitoring sites were equipped with telemetered streamgaging equipment. Synthetic streamflow records were created for 11 of the 14 monitoring sites using a partial‑record method or a drainage-area-ratio method. Streamflow records were obtained directly from an operating, long-term streamgage at one monitoring site, and from discontinued streamgages at two monitoring sites. For 10 sites analyzed using the partial-record method, discrete measurements were related to daily mean streamflow at a nearby, telemetered “index” streamgage. Resulting regression equations were used to estimate daily mean and annual peak streamflow at the monitoring sites during the full period of record for the index sites. A synthetic streamflow record for Sheep Creek was developed using a drainage-area-ratio method, because measured streamflows did not relate well to any index site to allow use of the partial-record method. The synthetic and actual daily mean streamflow records were used to estimate daily mean streamflow that was exceeded 80, 50, and 20 percent of the time (80-, 50-, and 20-percent exceedances) for bimonthly and annual periods. Bankfull streamflow statistics were calculated by fitting the synthetic and actual annual peak streamflow records to a log Pearson Type III distribution using Bulletin 17B guidelines in the U.S. Geological Survey PeakFQ program. The coefficients of determination (R2) for the regressions between the monitoring and index sites ranged from 0.74 for Wickahoney Creek to 0.98 for the West Fork Bruneau River and Deep Creek. Confidence in computed streamflow statistics is highest among other sites for the East Fork Owyhee River and the West Fork Bruneau River on the basis of regression statistics, visual fit of the related data, and the range and number of streamflow measurements. Streamflow statistics for sites with the greatest uncertainty included Big Jacks, Little Jacks, Cottonwood, Wickahoney, and Sheep Creeks. The uncertainty in computed streamflow statistics was due to a number of factors which included the distance of index sites relative to monitoring sites, relatively low streamflow conditions that occurred during the study, and the limited number and range of streamflow measurements. However, the computed streamflow statistics are considered the best possible estimates given available datasets in the remote study area. Streamflow measurements over a wider range of hydrologic and climatic conditions would improve the relations between streamflow characteristics at monitoring and index sites. Additionally, field surveys are needed to verify if the streamflows selected for the water rights claims are sufficient for maintaining outstanding remarkable values in the Wild and Scenic rivers included in the study.
Hoard, C.J.
2010-01-01
The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Accuracy of selected techniques for estimating ice-affected streamflow
Walker, John F.
1991-01-01
This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.
Zarriello, Phillip J.; Ries, Kernell G.
2000-01-01
Water withdrawals from the 155-square-mile Ipswich River Basin in northeastern Massachusetts affect aquatic habitat, water quality, and recreational use of the river. To better understand the effects of these withdrawals on streamflow, particularly low flow, the Hydrological Simulation Program-FORTRAN (HSPF) was used to develop a watershed-scale precipitation-runoff model of the Ipswich River to simulate its hydrology and complex water-use patterns.An analytical solution was used to compute time series of streamflow depletions resulting from ground-water withdrawals at wells. The flow depletions caused by pumping from the wells were summed along with any surface-water withdrawals to calculate the total withdrawal along a stream reach. The water withdrawals, records of precipitation, and streamflow records on the Ipswich River at South Middleton and at Ipswich for the period 1989?93 were used to calibrate the model. Model-fit analysis indicates that the simulated flows matched observed flows over a wide range of conditions; at a minimum, the coefficient of model-fit efficiency indicates that the model explained 79 percent of the variance in the observed daily flow.Six alternative water-withdrawal and land-use scenarios were simulated with the model. Three scenarios were examined for the 1989?93 calibration period, and three scenarios were examined for the 1961?95 period to test alternative withdrawals and land use over a wider range of climatic conditions, and to compute 1-, 7-, and 30-day low-flow frequencies using a log-Pearson Type III analysis. Flow-duration curves computed from results of the 1989?93 simulations indicate that, at the South Middleton and Ipswich gaging stations, streamflows when no water withdrawals are being made are nearly identical to streamflows when no ground-water withdrawals are made. Streamflow under no water withdrawals at both stations are about an order of magnitude larger at the 99.8 percent exceedence probability than simulations with only ground-water withdrawals. Long-term simulations indicate that the differences between streamflow with no water withdrawals and average 1989?93 water withdrawals is similar to the difference between simulations for the same water-use conditions made for the 1989?93 period at both sites. The 7-day, 10-year low-flow (7Q10, a widely used regulatory statistic) at the South Middleton station was 4.1 cubic feet per second (ft3/s) with no water withdrawals and 1991 land use, 5.8 ft3/s no withdrawals and undeveloped land, and 0.54 ft3/s with average 1989?93 water withdrawals and 1991 land use. The 7Q10 at the Ipswich station was about 8.3 ft3/s for simulations with no water withdrawals for both the 1991 land use and the undeveloped land conditions, and 2.7 ft3/s for simulations with average 1989?93 water withdrawals and 1991 land use. Simulation results indicate that surface-water withdrawals have little effect on the duration and frequency of low flows, but the cumulative ground-water withdrawals substantially decrease low flows.
Holtschlag, David J.
2011-01-01
In Michigan, index flow Q50 is a streamflow characteristic defined as the minimum of median flows for July, August, and September. The state of Michigan uses index flow estimates to help regulate large (greater than 100,000 gallons per day) water withdrawals to prevent adverse effects on characteristic fish populations. At sites where long-term streamgages are located, index flows are computed directly from continuous streamflow records as GageQ50. In an earlier study, a multiple-regression equation was developed to estimate index flows IndxQ50 at ungaged sites. The index equation explains about 94 percent of the variability of index flows at 147 (index) streamgages by use of six explanatory variables describing soil type, aquifer transmissivity, land cover, and precipitation characteristics. This report extends the results of the previous study, by use of Monte Carlo simulations, to evaluate alternative flow estimators, DiscQ50, IntgQ50, SiteQ50, and AugmQ50. The Monte Carlo simulations treated each of the available index streamgages, in turn, as a miscellaneous site where streamflow conditions are described by one or more instantaneous measurements of flow. In the simulations, instantaneous flows were approximated by daily mean flows at the corresponding site. All estimators use information that can be obtained from instantaneous flow measurements and contemporaneous daily mean flow data from nearby long-term streamgages. The efficacy of these estimators was evaluated over a set of measurement intensities in which the number of simulated instantaneous flow measurements ranged from 1 to 100 at a site. The discrete measurement estimator DiscQ50 is based on a simple linear regression developed between information on daily mean flows at five or more streamgages near the miscellaneous site and their corresponding GageQ50 index flows. The regression relation then was used to compute a DiscQ50 estimate at the miscellaneous site by use of the simulated instantaneous flow measurement. This process was repeated to develop a set of DiscQ50 estimates for all simulated instantaneous measurements, a weighted DiscQ50 estimate was formed from this set. Results indicated that the expected value of this weighted estimate was more precise than the IndxQ50 estimate for all measurement intensities evaluated. The integrated index-flow estimator, IntgQ50, was formed by computing a weighted average of the index estimate IndxQ50 and the DiscQ50 estimate. Results indicated that the IntgQ50 estimator was more precise than the DiscQ50 estimator at low measurement intensities of one to two measurements. At greater measurement intensities, the precision of the IntgQ50 estimator converges to the DiscQ50 estimator. Neither the DiscQ50 nor the IntgQ50 estimators provided site-specific estimates. In particular, although expected values of DiscQ50 and IntgQ50 estimates converge with increasing measurement intensity, they do not necessarily converge to the site-specific value of Q50. The site estimator of flow, SiteQ50, was developed to facilitate this convergence at higher measurement intensities. This is accomplished by use of the median of simulated instantaneous flow values for each measurement intensity level. A weighted estimate of the median and information associated with the IntgQ50 estimate was used to form the SiteQ50 estimate. Initial simulations indicate that the SiteQ50 estimator generally has greater precision than the IntgQ50 estimator at measurement intensities greater than 3, however, additional analysis is needed to identify streamflow conditions under which instantaneous measurements will produce estimates that generally converge to the index flows. A preliminary augmented index regression equation was developed, which contains the index regression estimate and two additional variables associated with base-flow recession characteristics. When these recession variables were estimated as the medians of recession parameters compute
Simulated runoff at many stream locations in the Methow River Basin, Washington
Mastin, Mark C.
2015-01-01
Comparisons of the simulated runoff with observed runoff at six selected long-term streamflow-gaging stations showed that the simulated annual runoff was within +15.4 to -9.6 percent of the annual observed runoff. The simulated runoff generally matched the seasonal flow patterns, with bias at some stations indicated by over-simulation of the October–November late autumn season and under-simulation of the snowmelt runoff months of May and June. Sixty-one time series of daily runoff for a 26-year period representative of the long-term runoff pattern, water years 1988–2013, were simulated and provided to the trophic modeling team.
NASA Astrophysics Data System (ADS)
Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed
2017-04-01
One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.
NASA Astrophysics Data System (ADS)
Ye, Xuchun; Xu, Chong-Yu; Li, Xianghu; Zhang, Qi
2018-05-01
The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h( q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h( q). However, the relationship between the width of the singularity spectrum (Δ α) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.
NASA Astrophysics Data System (ADS)
Do, Hong Xuan; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth
2018-04-01
This is the first part of a two-paper series presenting the Global Streamflow Indices and Metadata archive (GSIM), a worldwide collection of metadata and indices derived from more than 35 000 daily streamflow time series. This paper focuses on the compilation of the daily streamflow time series based on 12 free-to-access streamflow databases (seven national databases and five international collections). It also describes the development of three metadata products (freely available at https://doi.pangaea.de/10.1594/PANGAEA.887477): (1) a GSIM catalogue collating basic metadata associated with each time series, (2) catchment boundaries for the contributing area of each gauge, and (3) catchment metadata extracted from 12 gridded global data products representing essential properties such as land cover type, soil type, and climate and topographic characteristics. The quality of the delineated catchment boundary is also made available and should be consulted in GSIM application. The second paper in the series then explores production and analysis of streamflow indices. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.
Dudley, Robert W.
2008-01-01
The U.S. Geological Survey (USGS), in cooperation with the Maine Department of Marine Resources Bureau of Sea Run Fisheries and Habitat, began a study in 2004 to characterize the quantity, variability, and timing of streamflow in the Dennys River. The study included a synoptic summary of historical streamflow data at a long-term streamflow gage, collecting data from an additional four short-term streamflow gages, and the development and evaluation of a distributed-parameter watershed model for the Dennys River Basin. The watershed model used in this investigation was the USGS Precipitation-Runoff Modeling System (PRMS). The Geographic Information System (GIS) Weasel was used to delineate the Dennys River Basin and subbasins and derive parameters for their physical geographic features. Calibration of the models used in this investigation involved a four-step procedure in which model output was evaluated against four calibration data sets using computed objective functions for solar radiation, potential evapotranspiration, annual and seasonal water budgets, and daily streamflows. The calibration procedure involved thousands of model runs and was carried out using the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The SCE method reliably produces satisfactory solutions for large, complex optimization problems. The primary calibration effort went into the Dennys main stem watershed model. Calibrated parameter values obtained for the Dennys main stem model were transferred to the Cathance Stream model, and a similar four-step SCE calibration procedure was performed; this effort was undertaken to determine the potential to transfer modeling information to a nearby basin in the same region. The calibrated Dennys main stem watershed model performed with Nash-Sutcliffe efficiency (NSE) statistic values for the calibration period and evaluation period of 0.79 and 0.76, respectively. The Cathance Stream model had an NSE value of 0.68. The Dennys River Basin models make use of limited streamflow-gaging station data and provide information to characterize subbasin hydrology. The calibrated PRMS watershed models of the Dennys River Basin provide simulated daily streamflow time series from October 1, 1985, through September 30, 2006, for nearly any location within the basin. These models enable natural-resources managers to characterize the timing and quantity of water moving through the basin to support many endeavors including geochemical calculations, water-use assessment, Atlantic salmon population dynamics and migration modeling, habitat modeling and assessment, and other resource-management scenario evaluations. Characterizing streamflow contributions from subbasins in the basin and the relative amounts of surface- and ground-water contributions to streamflow throughout the basin will lead to a better understanding of water quantity and quality in the basin. Improved water-resources information will support Atlantic salmon protection efforts.
The effects of changing land cover on streamflow simulation in Puerto Rico
Van Beusekom, Ashley E.; Hay, Lauren E.; Viger, Roland; Gould, William A.; Collazo, Jaime; Henareh Khalyani, Azad
2014-01-01
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from four land cover scenes for the period 1953-2012. The PRMS simulations based on static land cover illustrated consistent differences in simulated streamflow across the island. It was determined that the scale of the analysis makes a difference: large regions with localized areas that have undergone dramatic land cover change may show negligible difference in total streamflow, but streamflow simulations using dynamic land cover parameters for a highly altered subwatershed clearly demonstrate the effects of changing land cover on simulated streamflow. Incorporating dynamic parameterization in these highly altered watersheds can reduce the predictive uncertainty in simulations of streamflow using PRMS. Hydrologic models that do not consider the projected changes in land cover may be inadequate for water resource management planning for future conditions.
Refinement and evaluation of the Massachusetts firm-yield estimator model version 2.0
Levin, Sara B.; Archfield, Stacey A.; Massey, Andrew J.
2011-01-01
The firm yield is the maximum average daily withdrawal that can be extracted from a reservoir without risk of failure during an extended drought period. Previously developed procedures for determining the firm yield of a reservoir were refined and applied to 38 reservoir systems in Massachusetts, including 25 single- and multiple-reservoir systems that were examined during previous studies and 13 additional reservoir systems. Changes to the firm-yield model include refinements to the simulation methods and input data, as well as the addition of several scenario-testing capabilities. The simulation procedure was adapted to run at a daily time step over a 44-year simulation period, and daily streamflow and meteorological data were compiled for all the reservoirs for input to the model. Another change to the model-simulation methods is the adjustment of the scaling factor used in estimating groundwater contributions to the reservoir. The scaling factor is used to convert the daily groundwater-flow rate into a volume by multiplying the rate by the length of reservoir shoreline that is hydrologically connected to the aquifer. Previous firm-yield analyses used a constant scaling factor that was estimated from the reservoir surface area at full pool. The use of a constant scaling factor caused groundwater flows during periods when the reservoir stage was very low to be overestimated. The constant groundwater scaling factor used in previous analyses was replaced with a variable scaling factor that is based on daily reservoir stage. This change reduced instability in the groundwater-flow algorithms and produced more realistic groundwater-flow contributions during periods of low storage. Uncertainty in the firm-yield model arises from many sources, including errors in input data. The sensitivity of the model to uncertainty in streamflow input data and uncertainty in the stage-storage relation was examined. A series of Monte Carlo simulations were performed on 22 reservoirs to assess the sensitivity of firm-yield estimates to errors in daily-streamflow input data. Results of the Monte Carlo simulations indicate that underestimation in the lowest stream inflows can cause firm yields to be underestimated by an average of 1 to 10 percent. Errors in the stage-storage relation can arise when the point density of bathymetric survey measurements is too low. Existing bathymetric surfaces were resampled using hypothetical transects of varying patterns and point densities in order to quantify the uncertainty in stage-storage relations. Reservoir-volume calculations and resulting firm yields were accurate to within 5 percent when point densities were greater than 20 points per acre of reservoir surface. Methods for incorporating summer water-demand-reduction scenarios into the firm-yield model were developed as well as the ability to relax the no-fail reliability criterion. Although the original firm-yield model allowed monthly reservoir releases to be specified, there have been no previous studies examining the feasibility of controlled releases for downstream flows from Massachusetts reservoirs. Two controlled-release scenarios were tested—with and without a summer water-demand-reduction scenario—for a scenario with a no-fail criterion and a scenario that allows for a 1-percent failure rate over the entire simulation period. Based on these scenarios, about one-third of the reservoir systems were able to support the flow-release scenarios at their 2000–2004 usage rates. Reservoirs with higher storage ratios (reservoir storage capacity to mean annual streamflow) and lower demand ratios (mean annual water demand to annual firm yield) were capable of higher downstream release rates. For the purposes of this research, all reservoir systems were assumed to have structures which enable controlled releases, although this assumption may not be true for many of the reservoirs studied.
Durbin, Timothy J.
1974-01-01
The Stanford Watershed Model was used to simulate the effects of urbanization on the discharge from five drainage basins in the upper Santa Ana Valley, an area with an average annual precipitation of 15 inches. The drainage basins ranged in size from 3.72 to 83.4 square miles. Using the model, synthetic records of streamflow for each basin were generated to represent various degrees of urban development. Examination of the synthetic records indicated that urbanization has the following effects on streamflow in the area:Average annual runoff from a drainage basin with an effective impervious area of 10 percent of the drainage area is approximately 2 inches, and increases by 1 inch for each increase in effective impervious cover equal to 10 percent of the drainage area. About 30 percent of a fully urbanized area is effectively impervious.Urbanization can increase the magnitude of peak discharge and daily mean discharge with a recurrence interval of 2 years by a factor of three to six.Peak discharges and daily mean discharges that have recurrence intervals greater than a limiting value ranging from 50 to 200 years or more are little affected by urbanization.
NASA Astrophysics Data System (ADS)
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Lerat, Julien; Kuczera, George
2017-03-01
Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. This study focuses on approaches for representing error heteroscedasticity with respect to simulated streamflow, i.e., the pattern of larger errors in higher streamflow predictions. We evaluate eight common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter λ) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and the United States, and two lumped hydrological models. Performance is quantified using predictive reliability, precision, and volumetric bias metrics. We find the choice of heteroscedastic error modeling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with λ of 0.2 and 0.5, and the log scheme (λ = 0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Paradoxically, calibration of λ is often counterproductive: in perennial catchments, it tends to overfit low flows at the expense of abysmal precision in high flows. The log-sinh transformation is dominated by the simpler Pareto optimal schemes listed above. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
Application of a snowmelt-runoff model using LANDSAT data. [Dinwoody Creek Basin, Wyoming
NASA Technical Reports Server (NTRS)
1980-01-01
The snowmelt-runoff model developed for two small central European watersheds simulate daily streamflow on the 228 sq km Dinwoody Creek basin in Wyoming, using snowcover extent for LANDSAT and conventionally measured temperature and precipitation. For the six-month snowmelt seasons of 1976 and 1974, the simulated seasonal runoff volumes were within 5 and 1%, respectively, of the measured runoff. Also the daily fluctuations of discharge were simulated to a high degree by the model. Thus far the limiting basin size for applying the model has not been reached, and improvements can be expected if the hydrometeorological data can be obtained from a station inside the basin. LANDSAT provides an efficient way to obtain the critical snowcover input parameter required by the model.
Using 3D dynamic cartography and hydrological modelling for linear streamflow mapping
NASA Astrophysics Data System (ADS)
Drogue, G.; Pfister, L.; Leviandier, T.; Humbert, J.; Hoffmann, L.; El Idrissi, A.; Iffly, J.-F.
2002-10-01
This paper presents a regionalization methodology and an original representation of the downstream variation of daily streamflow using a conceptual rainfall-runoff model (HRM) and the 3D visualization tools of the GIS ArcView. The regionalization of the parameters of the HRM model was obtained by fitting simultaneously the runoff series from five sub-basins of the Alzette river basin (Grand-Duchy of Luxembourg) according to the permeability of geological formations. After validating the transposability of the regional parameter values on five test basins, streamflow series were simulated with the model at ungauged sites in one medium size geologically contrasted test basin and interpolated assuming a linear increase of streamflow between modelling points. 3D spatio-temporal cartography of mean annual and high raw and specific discharges are illustrated. During a severe flooding, the propagation of the flood waves in the different parts of the stream network shows an important contribution of sub-basins lying on impervious geological formations (direct runoff) compared with those including permeable geological formations which have a more contrasted hydrological response. The effect of spatial variability of rainfall is clearly perceptible.
Stern, Michelle A.; Flint, Lorraine E.; Minear, Justin T.; Flint, Alan L.; Wright, Scott A.
2016-01-01
A daily watershed model of the Sacramento River Basin of northern California was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay-Delta. To compensate for sparse data, a unique combination of model inputs was developed, including meteorological variables, potential evapotranspiration, and parameters defining hydraulic geometry. A slight decreasing trend of sediment loads and concentrations was statistically significant in the lowest 50% of flows, supporting the observed historical sediment decline. Historical changes in climate, including seasonality and decline of snowpack, contribute to changes in streamflow, and are a significant component describing the mechanisms responsible for the decline in sediment. Several wet and dry hypothetical climate change scenarios with temperature changes of 1.5 °C and 4.5 °C were applied to the base historical conditions to assess the model sensitivity of streamflow and sediment to changes in climate. Of the scenarios evaluated, sediment discharge for the Sacramento River Basin increased the most with increased storm magnitude and frequency and decreased the most with increases in air temperature, regardless of changes in precipitation. The model will be used to develop projections of potential hydrologic and sediment trends to the Bay-Delta in response to potential future climate scenarios, which will help assess the hydrological and ecological health of the Bay-Delta into the next century.
Simulation of streamflow temperatures in the Yakima River basin, Washington, April-October 1981
Vaccaro, J.J.
1986-01-01
The effects of storage, diversion, return flow, and meteorological variables on water temperature in the Yakima River, in Washington State, were simulated, and the changes in water temperature that could be expected under four alternative-management scenarios were examined for improvement in anadromous fish environment. A streamflow routing model and Lagrangian streamflow temperature model were used to simulate water discharge and temperature in the river. The estimated model errors were 12% for daily discharge and 1.7 C for daily temperature. Sensitivity analysis of the simulation of water temperatures showed that the effect of reservoir outflow temperatures diminishes in a downstream direction. A 4 C increase in outflow temperatures results in a 1.0 C increase in mean irrigation season water temperature at Umtanum in the upper Yakima River basin, but only a 0.01C increase at Prosser in the lower basin. The influence of air temperature on water temperature increases in a downstream direction and is the dominant influence in the lower basin. A 4 C increase in air temperature over the entire basin resulted in a 2.34 C increase in river temperatures at Prosser in the lower basin and 1.46 C at Umtanum in the upper basin. Changes in wind speed and model wind-function parameters had little effect on the model predicted water temperature. Of four alternative management scenarios suggested by the U.S. Bureau of Indian Affairs and the Yakima Indian Nation, the 1981 reservoir releases maintained without diversions or return flow in the river basin produced water temperatures nearest those considered as preferable for salmon and steelhead trout habitat. The alternative management scenario for no reservoir storage and no diversions or return flows in the river basin (estimate of natural conditions) produced conditions that were the least like those considered as preferable for salmon and steelhead trout habitat. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Bergeron, Jean
Snow cover estimation is a principal source of error for spring streamflow simulations in Québec, Canada. Optical and near infrared remote sensing can improve snow cover area (SCA) estimation due to high spatial resolution but is limited by cloud cover and incoming solar radiation. Passive microwave remote sensing is complementary by its near-transparence to cloud cover and independence to incoming solar radiation, but is limited by its coarse spatial resolution. The study aims to create an improved SCA product from blended passive microwave (AMSR-E daily L3 Brightness Temperature) and optical (MODIS Terra and Aqua daily snow cover L3) remote sensing data in order to improve estimation of river streamflow caused by snowmelt with Québec's operational MOHYSE hydrological model through direct-insertion of the blended SCA product in a coupled snowmelt module (SPH-AV). SCA estimated from AMSR-E data is first compared with SCA estimated with MODIS, as well as with in situ snow depth measurements. Results show good agreement (+95%) between AMSR-E-derived and MODIS-derived SCA products in spring but comparisons with Environment Canada ground stations and SCA derived from Advanced Very High Resolution Radiometer (AVHRR) data show lesser agreements (83 % and 74% respectively). Results also show that AMSR-E generally underestimates SCA. Assimilating the blended snow product in SPH-AV coupled with MOHYSE yields significant improvement of simulated streamflow for the aux Écorces et au Saumon rivers overall when compared with simulations with no update during thaw events, These improvements are similar to results driven by biweekly ground data. Assimilation of remotely-sensed passive microwave data was also found to have little positive impact on springflood forecast due to the difficulty in differentiating melting snow from snow-free surfaces. Considering the direct-insertion and Newtonian nudging assimilation methods, the study also shows the latter method to be superior to the former, notably when assimilating noisy data. Keywords: Snow cover, spring streamflow, MODIS, AMSR-E, hydrological model.
NASA Astrophysics Data System (ADS)
Engeland, K.; Steinsland, I.; Petersen-Øverleir, A.; Johansen, S.
2012-04-01
The aim of this study is to assess the uncertainties in streamflow simulations when uncertainties in both observed inputs (precipitation and temperature) and streamflow observations used in the calibration of the hydrological model are explicitly accounted for. To achieve this goal we applied the elevation distributed HBV model operating on daily time steps to a small catchment in high elevation in Southern Norway where the seasonal snow cover is important. The uncertainties in precipitation inputs were quantified using conditional simulation. This procedure accounts for the uncertainty related to the density of the precipitation network, but neglects uncertainties related to measurement bias/errors and eventual elevation gradients in precipitation. The uncertainties in temperature inputs were quantified using a Bayesian temperature interpolation procedure where the temperature lapse rate is re-estimated every day. The uncertainty in the lapse rate was accounted for whereas the sampling uncertainty related to network density was neglected. For every day a random sample of precipitation and temperature inputs were drawn to be applied as inputs to the hydrologic model. The uncertainties in observed streamflow were assessed based on the uncertainties in the rating curve model. A Bayesian procedure was applied to estimate the probability for rating curve models with 1 to 3 segments and the uncertainties in their parameters. This method neglects uncertainties related to errors in observed water levels. Note that one rating curve was drawn to make one realisation of a whole time series of streamflow, thus the rating curve errors lead to a systematic bias in the streamflow observations. All these uncertainty sources were linked together in both calibration and evaluation of the hydrologic model using a DREAM based MCMC routine. Effects of having less information (e.g. missing one streamflow measurement for defining the rating curve or missing one precipitation station) was also investigated.
Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon
2016-04-01
Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.
Potential Impact of Climate Change on Streamflow of Major Ethiopian Rivers
NASA Astrophysics Data System (ADS)
Gizaw, M. S.; Zhang, S.; Biftu, G. F.; Gan, T. Y.; Tan, X.; Moges, S. A.; Koivusalo, H.
2017-12-01
In this study, HSPF (Hydrologic Simulation Program-FORTRAN) was used to analyze the potential impact of climate change on the streamflow of four major river basins in Ethiopia: Awash, Baro, Genale and Tekeze. The calibrated and validated HSPF model was forced with daily climate data of 10 CMIP5 (Coupled Model Intercomparison Project phase 5) Global Climate Models (GCMs) for the 1971-2000 control period and the RCP4.5 and RCP8.5 climate projections of 2041-2070 (2050s) and 2071-2100 (2080s). The ensemble median of these 10 GCMs projects the temperature in the four study areas to increase by about 2.3 ˚C (3.3 ˚C) in 2050s (2080s) whereas the mean annual precipitation is projected to increase by about 6% (9%) in 2050s (2080s). This results in about 3% (6%) increase in the projected annual streamflow in Awash, Baro and Tekeze rivers whereas the annual streamflow of Genale river is projected to increase by about 18% (33%) in the 2050s (2080s). However, such projected increase in the mean annual streamflow due to increasing precipitation over Ethiopia contradicts the decreasing trends in mean annual precipitation observed in recent decades. Regional climate models of high resolutions could provide more realistic climate projections for Ethiopia's complex topography, thus reducing the uncertainties in future streamflow projections.
Global Climate Model Simulated Hydrologic Droughts and Floods in the Nelson-Churchill Watershed
NASA Astrophysics Data System (ADS)
Vieira, M. J. F.; Stadnyk, T. A.; Koenig, K. A.
2014-12-01
There is uncertainty surrounding the duration, magnitude and frequency of historical hydroclimatic extremes such as hydrologic droughts and floods prior to the observed record. In regions where paleoclimatic studies are less reliable, Global Climate Models (GCMs) can provide useful information about past hydroclimatic conditions. This study evaluates the use of Coupled Model Intercomparison Project 5 (CMIP5) GCMs to enhance the understanding of historical droughts and floods across the Canadian Prairie region in the Nelson-Churchill Watershed (NCW). The NCW is approximately 1.4 million km2 in size and drains into Hudson Bay in Northern Manitoba, Canada. One hundred years of observed hydrologic records show extended dry and wet periods in this region; however paleoclimatic studies suggest that longer, more severe droughts have occurred in the past. In Manitoba, where hydropower is the primary source of electricity, droughts are of particular interest as they are important for future resource planning. Twenty-three GCMs with daily runoff are evaluated using 16 metrics for skill in reproducing historic annual runoff patterns. A common 56-year historic period of 1950-2005 is used for this evaluation to capture wet and dry periods. GCM runoff is then routed at a grid resolution of 0.25° using the WATFLOOD hydrological model storage-routing algorithm to develop streamflow scenarios. Reservoir operation is naturalized and a consistent temperature scenario is used to determine ice-on and ice-off conditions. These streamflow simulations are compared with the historic record to remove bias using quantile mapping of empirical distribution functions. GCM runoff data from pre-industrial and future projection experiments are also bias corrected to obtain extended streamflow simulations. GCM streamflow simulations of more than 650 years include a stationary (pre-industrial) period and future periods forced by radiative forcing scenarios. Quantile mapping adjusts for magnitude only while maintaining the GCM's sequencing of events, allowing for the examination of differences in historic and future hydroclimatic extremes. These bias corrected streamflow scenarios provide an alternative to stochastic simulations for hydrologic data analysis and can aid future resource planning and environmental studies.
Lee, T.M.; Sacks, L.A.; Hughes, J.D.
2010-01-01
The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland storage, rainfall-runoff processes, and groundwater-level differences in the upper basin allow it to generate approximately half of the streamflow from the Charlie Creek basin. Therefore, future development in the upper basin that would alter the hydraulic connectivity of wetlands during high flow conditions or expand recharging groundwater conditions could substantially affect streamflow in Charlie Creek. LIDAR (Light detection and ranging) based topographic maps and integrated modeling results were used to quantify the water stored in wetlands and other topographic depressions, and to describe the network of shallow stream channels connecting wetlands to Charlie Creek and its tributaries over distances of several thousand feet. Peak flows at all but one streamflow station were underpredicted in MIKE SHE simulations, possibly because the hydraulics of surface channels connecting wetlands to stream channels were not explicitly simulated in the model. Explicitly simulating the smaller channels connecting wetlands and stream channels should improve the ability of future watershed models to simulate peak flows in streams with headwater wetlands. The runoff potential was greater in the lower half of the Charlie Creek basin than in the upper half, and the streambed of Charlie Creek had greater potential to both directly gain streamflow from groundwater and lose streamflow to groundwater. Charlie Creek is more incised into the surficial aquifer in the lower basin than in the upper basin, and the streambed intersects the top of the intermediate aquifer system at two known locations. Groundwater levels in the intermediate aquifer system varied widely in the lower half of the basin from artesian conditions inducing upward flow toward the surficial aquifer and streams, to recharging conditions allowing downward flow and stream leakage. Recharge areas were greatest in May 2004 when rainfall was at a seasonal low and irrigation pumping was at a seasonal high. Recharge conditions
Assessment of the timing of daily peak streamflow during melt season in a snow dominated watershed
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that gauge-observed daily streamflow peak times (DPT) during spring snowmelt can exhibit distinct temporal shifts through the season. These shifts have been attributed to three processes that affect the timing of snowmelt arrival: 1) melt flux translation through the snow...
NASA Astrophysics Data System (ADS)
Beamer, J. P.; Hill, D. F.; Liston, G. E.; Arendt, A. A.; Hood, E. W.
2013-12-01
In Prince William Sound (PWS), Alaska, there is a pressing need for accurate estimates of the spatial and temporal variations in coastal freshwater discharge (FWD). FWD into PWS originates from streamflow due to rainfall, annual snowmelt, and changes in stored glacier mass and is important because it helps establish spatial and temporal patterns in ocean salinity and temperature, and is a time-varying boundary condition for oceanographic circulation models. Previous efforts to model FWD into PWS have been heavily empirical, with many physical processes absorbed into calibration coefficients that, in many cases, were calibrated to streams and rivers not hydrologically similar to those discharging into PWS. In this work we adapted and validated a suite of high-resolution (in space and time), physically-based, distributed weather, snowmelt, and runoff-routing models designed specifically for snow melt- and glacier melt-dominated watersheds like PWS in order to: 1) provide high-resolution, real-time simulations of snowpack and FWD, and 2) provide a record of historical variations of FWD. SnowModel, driven with gridded topography, land cover, and 32 years (1979-2011) of 3-hourly North American Regional Reanalysis (NARR) atmospheric forcing data, was used to simulate snowpack accumulation and melt across a PWS model domain. SnowModel outputs of daily snow water equivalent (SWE) depth and grid-cell runoff volumes were then coupled with HydroFlow, a runoff-routing model which routed snowmelt, glacier-melt, and rainfall to each watershed outlet (PWS coastline) in the simulation domain. The end product was a continuous 32-year simulation of daily FWD into PWS. In order to validate the models, SWE and snow depths from SnowModel were compared with observed SWE and snow depths from SnoTel and snow survey data, and discharge from HydroFlow was compared with observed streamflow measurements. As a second phase of this research effort, the coupled models will be set-up to run in real-time, where daily measurements from weather stations in the PWS will be used to drive simulations of snow cover and streamflow. In addition, we will deploy a strategic array of instrumentation aimed at validating the simulated weather estimates and the calculations of freshwater discharge. Upon successful implementation and validation of the modeling system, it will join established and ongoing computational and observational efforts that have a common goal of establishing a comprehensive understanding of the physical behavior of PWS.
Spatial Correlation Of Streamflows: An Analytical Approach
NASA Astrophysics Data System (ADS)
Betterle, A.; Schirmer, M.; Botter, G.
2016-12-01
The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the absence of discharge measurements.
Esralew, Rachel A.; Andrews, William J.; Smith, S. Jerrod
2011-01-01
The U.S. Geological Survey, in cooperation with the city of Oklahoma City, collected water-quality samples from the North Canadian River at the streamflow-gaging station near Harrah, Oklahoma (Harrah station), since 1968, and at an upstream streamflow-gaging station at Britton Road at Oklahoma City, Oklahoma (Britton Road station), since 1988. Statistical summaries and frequencies of detection of water-quality constituent data from water samples, and summaries of water-quality constituent data from continuous water-quality monitors are described from the start of monitoring at those stations through 2009. Differences in concentrations between stations and time trends for selected constituents were evaluated to determine the effects of: (1) wastewater effluent discharges, (2) changes in land-cover, (3) changes in streamflow, (4) increases in urban development, and (5) other anthropogenic sources of contamination on water quality in the North Canadian River downstream from Oklahoma City. Land-cover changes between 1992 and 2001 in the basin between the Harrah station and Lake Overholser upstream included an increase in developed/barren land-cover and a decrease in pasture/hay land cover. There were no significant trends in median and greater streamflows at either streamflow-gaging station, but there were significant downward trends in lesser streamflows, especially after 1999, which may have been associated with decreases in precipitation between 1999 and 2009 or construction of low-water dams on the river upstream from Oklahoma City in 1999. Concentrations of dissolved chloride, lead, cadmium, and chlordane most frequently exceeded the Criterion Continuous Concentration (a water-quality standard for protection of aquatic life) in water-quality samples collected at both streamflow-gaging stations. Visual trends in annual frequencies of detection were investigated for selected pesticides with frequencies of detection greater than 10 percent in all water samples collected at both streamflow-gaging stations. Annual frequencies of detection of 2,4-dichlorophenoxyacetic acid and bromacil increased with time. Annual frequencies of detection of atrazine, chlorpyrifos, diazinon, dichlorprop, and lindane decreased with time. Dissolved nitrogen and phosphorus concentrations were significantly greater in water samples collected at the Harrah station than at the Britton Road station, whereas specific conductance was greater at the Britton Road station. Concentrations of dissolved oxygen, biochemical oxygen demand, and fecal coliform bacteria were not significantly different between stations. Daily minimum, mean, and maximum specific conductance collected from continuous water-quality monitors were significantly greater at the Britton Road station than in water samples collected at the Harrah station. Daily minimum, maximum, and diurnal fluctuations of water temperature collected from continuous water-quality monitors were significantly greater at the Harrah station than at the Britton Road station. The daily maximums and diurnal range of dissolved oxygen concentrations were significantly greater in water samples collected at the Britton Road station than at the Harrah station, but daily mean dissolved oxygen concentrations in water at those streamflow-gaging stations were not significantly different. Daily mean and diurnal water temperature ranges increased with time at the Britton Road and Harrah streamflow-gaging stations, whereas daily mean and diurnal specific conductance ranges decreased with time at both streamflow-gaging stations from 1988–2009. Daily minimum dissolved oxygen concentrations collected from continuous water-quality monitors more frequently indicated hypoxic conditions at the Harrah station than at the Britton Road station after 1999. Fecal coliform bacteria counts in water decreased slightly from 1988–2009 at the Britton Road station. The Seasonal Kendall's tau test indicated significant downward trends in
Trend analysis of hydro-climatic variables in the north of Iran
NASA Astrophysics Data System (ADS)
Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.
2018-04-01
Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.
Changes in the flood frequency in the Mahanadi basin under observed and projected future climate
NASA Astrophysics Data System (ADS)
Modi, P. A.; Lakshmi, V.; Mishra, V.
2017-12-01
The Mahanadi river basin is vulnerable to multiple types of extreme events due to its topography and river networks. These extreme events are not efficiently captured by the current LSMs partly due to lack of spatial hydrological data and uncertainty in the models. This study compares and evaluates the hydrologic simulations of the recently developed community Noah model with multi-parameterization options which is an upgradation of baseline Noah LSM. The model is calibrated and validated for the Mahanadi river basin and is driven by major atmospheric forcing from the Indian Meteorological Department (IMD), Global Precipitation Measurement (GPM), Tropical rainfall Measurement Mission (TRMM) and Multi-Source Weighted-Ensemble Precipitation (MSWEP designed for hydrological modeling) precipitation datasets along with some additional forcing derived from the VIC model at 0.25-degree spatial resolution. The Noah-MP LSM is calibrated using observed daily streamflow data from 1978-1989 (India-WRIS) at the gauge stations with least human interventions with a Nash Sutcliffe Efficiency higher than 0.60. Noah MP was calibrated using different schemes for runoff with variation in all parameters sensitive to surface and sub-surface runoff. Streamflow routing was performed using a stand-alone model (VIC model) to route daily model runoff at required gauge station. Surface runoff is mainly affected by the uncertainties in major atmospheric forcing and highly sensitive parameters pertaining to soil properties. Noah MP is validated using observed streamflow from 1975-2010 which indicates the consistency of streamflow with the historical observations (NSE>0.65) thus indicating an increase in probability of future flood events.
Ockerman, Darwin J.; McNamara, Kenna C.
2003-01-01
The U.S. Geological Survey developed watershed models (Hydrological Simulation Program—FORTRAN) to simulate streamflow and estimate streamflow constituent loads from five basins that compose the San Antonio River watershed in Bexar County, Texas. Rainfall and streamflow data collected during 1997–2001 were used to calibrate and test the model. The model was configured so that runoff from various land uses and discharges from other sources (such as wastewater recycling facilities) could be accounted for to indicate sources of streamflow. Simulated streamflow volumes were used with land-use-specific, water-quality data to compute streamflow loads of selected constituents from the various streamflow sources.Model simulations for 1997–2001 indicate that inflow from the upper Medina River (originating outside Bexar County) represents about 22 percent of total streamflow. Recycled wastewater discharges account for about 20 percent and base flow (ground-water inflow to streams) about 18 percent. Storm runoff from various land uses represents about 33 percent. Estimates of sources of streamflow constituent loads indicate recycled wastewater as the largest source of dissolved solids and nitrate plus nitrite nitrogen (about 38 and 66 percent, respectively, of the total loads) during 1997–2001. Stormwater runoff from urban land produced about 49 percent of the 1997–2001 total suspended solids load. Stormwater runoff from residential and commercial land (about 23 percent of the land area) produced about 70 percent of the total lead streamflow load during 1997–2001.
Aerial photography provides a historical vehicle for determining long term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of impervious surfaces and streamflow to be explored. Impervious surface a...
Wiley, Jeffrey B.; Evaldi, Ronald D.; Eychaner, James H.; Chambers, Douglas B.
2001-01-01
The effects of mountaintop removal coal mining and the valley fills created by this mining method in southern West Virginia were investigated by comparing data collected at valley-fill, mined, and unmined sites. Bed material downstream of valley-fill sites had a greater number of particles less than 2 millimeters and a smaller median particle size than the mined and unmined sites. At the 84th percentile of sampled data, however, bed material at each site type had about the same size particles. Bankfull cross-sectional areas at a riffle section were approximately equal at valley-fill and unmined sites, but not enough time has passed and insufficient streamflows since the land was disturbed may have prevented the stream channel at valley-fill sites from reaching equilibrium. The 90-percent flow durations at valley-fill sites generally were 6-7 times greater than at unmined sites. Some valley-fill sites, however, exhibited streamflows similar to unmined sites, and some unmined sites exhibited streamflows similar to valley-fill sites. Daily streamflows from valley-fill sites generally are greater than daily streamflows from unmined sites during periods of low streamflow. Valley-fill sites have a greater percentage of base-flow and a lower percentage of flow from storm runoff than unmined sites. Water temperatures from a valley-fill site exhibited lower daily fluctuations and seasonal variations than water temperatures from an unmined site.
Regionalization of harmonic-mean streamflows in Kentucky
Martin, Gary R.; Ruhl, Kevin J.
1993-01-01
Harmonic-mean streamflow (Qh), defined as the reciprocal of the arithmetic mean of the reciprocal daily streamflow values, was determined for selected stream sites in Kentucky. Daily mean discharges for the available period of record through the 1989 water year at 230 continuous record streamflow-gaging stations located in and adjacent to Kentucky were used in the analysis. Periods of record affected by regulation were identified and analyzed separately from periods of record unaffected by regulation. Record-extension procedures were applied to short-term stations to reducetime-sampling error and, thus, improve estimates of the long-term Qh. Techniques to estimate the Qh at ungaged stream sites in Kentucky were developed. A regression model relating Qh to total drainage area and streamflow-variability index was presented with example applications. The regression model has a standard error of estimate of 76 percent and a standard error of prediction of 78 percent.
Lambing, J.H.
1987-01-01
A sampling program was conducted at six stream sites. The purpose of the study was to collect baseline data on concentrations of suspended sediment and selected trace metals in streamflow. Included in this report are tables of daily data for mean streamflow, suspended sediment concentration, and suspended sediment discharge at two streamflow gaging stations on the Clark Fork; periodic data for instantaneous streamflow, onsite water quality, and trace metal and suspended sediment concentrations in the Clark Fork and tributaries; and summary statistics for all the water quality data. Also included are graphs for each site showing median concentrations of trace metals, relationship of concentrations of trace metals to suspended sediment, and median concentrations of trace metals in suspended sediments. Hydrographs for two sites on the main stem show daily mean streamflow, suspended sediment concentration, and suspended sediment discharge for the period of study. (Author 's abstract)
Hydrological impact of high-density small dams in a humid catchment, Southeast China
NASA Astrophysics Data System (ADS)
Lu, W.; Lei, H.; Yang, D.
2017-12-01
The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.
NASA Astrophysics Data System (ADS)
Demaria, E. M.; Valdes, J. B.; Wi, S.; Serrat-Capdevila, A.; Valdés-Pineda, R.; Durcik, M.
2016-12-01
In under-instrumented basins around the world, accurate and timely forecasts of river streamflows have the potential of assisting water and natural resource managers in their management decisions. The Upper Zambezi river basin is the largest basin in southern Africa and its water resources are critical to sustainable economic growth and poverty reduction in eight riparian countries. We present a real-time streamflow forecast for the basin using a multi-model-multi-satellite approach that allows accounting for model and input uncertainties. Three distributed hydrologic models with different levels of complexity: VIC, HYMOD_DS, and HBV_DS are setup at a daily time step and a 0.25 degree spatial resolution for the basin. The hydrologic models are calibrated against daily observed streamflows at the Katima-Mulilo station using a Genetic Algorithm. Three real-time satellite products: Climate Prediction Center's morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and Tropical Rainfall Measuring Mission (TRMM-3B42RT) are bias-corrected with daily CHIRPS estimates. Uncertainty bounds for predicted flows are estimated with the Inverse Variance Weighting method. Because concentration times in the basin range from a few days to more than a week, we include the use of precipitation forecasts from the Global Forecasting System (GFS) to predict daily streamflows in the basin with a 10-days lead time. The skill of GFS-predicted streamflows is evaluated and the usefulness of the forecasts for short term water allocations is presented.
Modeling Streamflow and Water Temperature in the North Santiam and Santiam Rivers, Oregon, 2001-02
Sullivan, Annett B.; Roundsk, Stewart A.
2004-01-01
To support the development of a total maximum daily load (TMDL) for water temperature in the Willamette Basin, the laterally averaged, two-dimensional model CE-QUAL-W2 was used to construct a water temperature and streamflow model of the Santiam and North Santiam Rivers. The rivers were simulated from downstream of Detroit and Big Cliff dams to the confluence with the Willamette River. Inputs to the model included bathymetric data, flow and temperature from dam releases, tributary flow and temperature, and meteorologic data. The model was calibrated for the period July 1 through November 21, 2001, and confirmed with data from April 1 through October 31, 2002. Flow calibration made use of data from two streamflow gages and travel-time and river-width data. Temperature calibration used data from 16 temperature monitoring locations in 2001 and 5 locations in 2002. A sensitivity analysis was completed by independently varying input parameters, including point-source flow, air temperature, flow and water temperature from dam releases, and riparian shading. Scenario analyses considered hypothetical river conditions without anthropogenic heat inputs, with restored riparian vegetation, with minimum streamflow from the dams, and with a more-natural seasonal water temperature regime from dam releases.
Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004
Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.
2005-01-01
Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were estimated for each study site using regional regression equations. This report describes Physical Habitat Simulation System modeling results for bull trout, Chinook salmon, and steelhead trout during summer streamflows. Habitat/discharge relations were summarized for adult and spawning life stages at each study site. Adult fish passage and discharge relations were evaluated at specific transects identified as a potential low-streamflow passage barrier at each study site. Continuous summer water temperature data for selected study sites were summarized and compared with Idaho Water Quality Standards and various water temperature requirements of targeted fish species. Continuous summer water temperature data recorded in 2003 and streamflow relations were evaluated for Fourth of July Creek using the Stream Segment Temperature model that simulates mean and maximum daily water temperatures with changes in streamflow. Results of these habitat studies can be used to prioritize and direct cost-effective actions to improve fish habitat for ESA-listed anadromous and native fish species in the basin. These actions may include acquiring water during critical low-flow periods by leasing or modifying irrigation delivery systems to minimize out-of-stream diversions.
Simulated peak inflows for glacier dammed Russell Fiord, near Yakutat, Alaska
Neal, Edward G.
2004-01-01
In June 2002, Hubbard Glacier advanced across the entrance to 35-mile-long Russell Fiord creating a glacier-dammed lake. After closure of the ice and moraine dam, runoff from mountain streams and glacial melt caused the level in ?Russell Lake? to rise until it eventually breached the dam on August 14, 2002. Daily mean inflows to the lake during the period of closure were estimated on the basis of lake stage data and the hypsometry of Russell Lake. Inflows were regressed against the daily mean streamflows of nearby Ophir Creek and Situk River to generate an equation for simulating Russell Lake inflow. The regression equation was used to produce 11 years of synthetic daily inflows to Russell Lake for the 1992-2002 water years. A flood-frequency analysis was applied to the peak daily mean inflows for these 11 years of record to generate a 100-year peak daily mean inflow of 235,000 cubic feet per second. Regional-regression equations also were applied to the Russell Lake basin, yielding a 100-year inflow of 157,000 cubic feet per second.
ModABa Model: Annual Flow Duration Curves Assessment in Ephemeral Basins
NASA Astrophysics Data System (ADS)
Pumo, Dario; Viola, Francesco; Noto, Leonardo V.
2013-04-01
A representation of the streamflow regime for a river basin is required for a variety of hydrological analyses and engineering applications, from the water resource allocation and utilization to the environmental flow management. The flow duration curve (FDC) represents a comprehensive signature of temporal runoff variability often used to synthesize catchment rainfall-runoff responses. Several models aimed to the theoretical reconstruction of the FDC have been recently developed under different approaches, and a relevant scientific knowledge specific to this topic has been already acquired. In this work, a new model for the probabilistic characterization of the daily streamflows in perennial and ephemeral catchments is introduced. The ModABa model (MODel for Annual flow duration curves assessment in intermittent BAsins) can be thought as a wide mosaic whose tesserae are frameworks, models or conceptual schemes separately developed in different recent studies. Such tesserae are harmoniously placed and interconnected, concurring together towards a unique final aim that is the reproduction of the FDC of daily streamflows in a river basin. Two separated periods within the year are firstly identified: a non-zero period, typically characterized by significant streamflows, and a dry period, that, in the cases of ephemeral basins, is the period typically characterized by absence of streamflow. The proportion of time the river is dry, providing an estimation of the probability of zero flow occurring, is empirically estimated. Then, an analysis concerning the non-zero period is performed, considering the streamflow disaggregated into a slow subsuperficial component and a fast superficial component. A recent analytical model is adopted to derive the non zero FDC relative to the subsuperficial component; this last is considered to be generated by the soil water excess over the field capacity in the permeable portion of the basin. The non zero FDC relative to the fast streamflow component is directly derived from the precipitation duration curve through a simple filter model. The fast component of streamflow is considered to be formed by two contributions that are the entire amount of rainfall falling onto the impervious portion of the basin and the excess of rainfall over a fixed threshold, defining heavy rain events, falling onto the permeable portion. The two obtained FDCs are then overlapped, providing a unique non-zero FDC relative to the total streamflow. Finally, once the probability that the river is dry and the non zero FDC are known, the annual FDC of the daily total streamflow is derived applying the theory of total probability. The model is calibrated on a small catchment with ephemeral streamflows using a long period of daily precipitation, temperature and streamflow measurements, and it is successively validated in the same basin using two different time periods. The high model performances obtained in both the validation periods, demonstrate how the model, once calibrated, is able to accurately reproduce the empirical FDC starting from easily derivable parameters arising from a basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. In this sense, the model reveals itself as a valid tool for streamflow predictions in ungauged basins.
Low-flow characteristics of streams in Ohio through water year 1997
Straub, David E.
2001-01-01
This report presents selected low-flow and flow-duration characteristics for 386 sites throughout Ohio. These sites include 195 long-term continuous-record stations with streamflow data through water year 1997 (October 1 to September 30) and for 191 low-flow partial-record stations with measurements into water year 1999. The characteristics presented for the long-term continuous-record stations are minimum daily streamflow; average daily streamflow; harmonic mean flow; 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 5-, 10-, 20-, and 50-year recurrence intervals; and 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, 50-, 40-, 30-, 20-, and 10-percent daily duration flows. The characteristics presented for the low-flow partial-record stations are minimum observed streamflow; estimated 1-, 7-, 30-, and 90-day minimum average low flow with 2-, 10-, and 20-year recurrence intervals; and estimated 98-, 95-, 90-, 85- and 80-percent daily duration flows. The low-flow frequency and duration analyses were done for three seasonal periods (warm weather, May 1 to November 30; winter, December 1 to February 28/29; and autumn, September 1 to November 30), plus the annual period based on the climatic year (April 1 to March 31).
Payne, G.A.
1983-01-01
Streamflow and suspended-sediment-transport data were collected in Garvin Brook watershed in Winona County, southeastern Minnesota, during 1982. The data collection was part of a study to determine the effectiveness of agricultural best-management practices designed to improve rural water quality. The study is part of a Rural Clean Water Program demonstration project undertaken by the U.S. Department of Agriculture. Continuous streamflow data were collected at three gaging stations during March through September 1982. Suspended-sediment samples were collected at two of the gaging stations. Samples were collected manually at weekly intervals. During periods of rapidly changing stage, samples were collected at 30-minute to 12-hour intervals by stage-activated automatic samplers. The samples were analyzed for suspendedsediment concentration and particle-size distribution. Particlesize distributions were also determined for one set of bedmaterial samples collected at each sediment-sampling site. The streamflow and suspended-sediment-concentration data were used to compute records of mean-daily flow, mean-daily suspended-sediment concentration, and daily suspended-sediment discharge. The daily records are documented and results of analyses for particle-size distribution and of vertical sampling in the stream cross sections are given.
NASA Astrophysics Data System (ADS)
Do, Hong; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth; Senerivatne, Sonia
2017-04-01
In-situ observations of daily streamflow with global coverage are a crucial asset for understanding large-scale freshwater resources which are an essential component of the Earth system and a prerequisite for societal development. Here we present the Global Streamflow Indices and Metadata archive (G-SIM), a collection indices derived from more than 20,000 daily streamflow time series across the globe. These indices are designed to support global assessments of change in wet and dry extremes, and have been compiled from 12 free-to-access online databases (seven national databases and five international collections). The G-SIM archive also includes significant metadata to help support detailed understanding of streamflow dynamics, with the inclusion of drainage area shapefile and many essential catchment properties such as land cover type, soil and topographic characteristics. The automated procedure in data handling and quality control of the project makes G-SIM a reproducible, extendible archive and can be utilised for many purposes in large-scale hydrology. Some potential applications include the identification of observational trends in hydrological extremes, the assessment of climate change impacts on streamflow regimes, and the validation of global hydrological models.
Lambing, John H.; Sando, Steven K.
2009-01-01
This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112 percent of the long-term mean annual peak flow (15,600 ft3/s). About 81 percent of the annual flow volume was discharged during the post-breach period. Daily loads of suspended sediment were estimated directly by using high-frequency sampling of the daily sediment monitoring. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to either streamflow or suspended-sediment discharge. Regression equations for estimating trace-element discharge in water year 2008 were developed from instantaneous streamflow and concentration data for periodic water-quality samples collected during all or part of water years 2004-08. The equations were applied to records of daily mean streamflow or daily suspended-sediment loads to produce estimated daily trace-element loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. Relatively small to moderately large daily net losses from the project area were common during the pre-breach period when low-flow conditions were prevalent. Outflow loads from the project area sharply increased immediately after the breaching of Milltown Dam and during the rising limb and peak flow of the annual hydrograph. Net losses of suspended sediment and trace elements from the project area decreased as streamflow decreased during the summer, eventually becoming small or reaching an approximate net balance between inflow and outflow. Estimated daily loads of suspended sediment and trace elements for all three stations were summed to determine cumulative inflow and outflow loads for the pre-breach and post-breach periods, as well as for the entire water year 2008. Overall, the mass balance between the combined inflow loads from two upstream source areas (upper Clark Fork and Blackfoot River basins) and the outflow loads at Clark Fork above Missoula indicates net losses
Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon
Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.
2017-10-20
This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.
Yurewicz, M.C.; Carey, W.P.; Garrett, J.W.
1988-01-01
Streamflow and water quality data were collected for three major tributaries to Reelfoot Lake, in West Tennessee, for the period October 1987 through March 1988. The data are presented in graphs and tables. Mean daily discharge data were collected at one site each in the drainage basins of North Reelfoot Creek, South Reelfoot Creek, and Running Slough. Daily mean suspended-sediment concentration data were collected at a site in the North Reelfoot Creek basin. Water quality samples were collected during storm events at the same locations that daily mean streamflow data were collected. Water quality samples were analyzed for concentrations of nutrients and triazine herbicides. Water temperature and specific conductance were measured at the time that samples were collected. (USGS)
Farmer, William H.; Over, Thomas M.; Vogel, Richard M.
2015-01-01
Understanding the spatial structure of daily streamflow is essential for managing freshwater resources, especially in poorly-gaged regions. Spatial scaling assumptions are common in flood frequency prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g. drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this study, scaling analyses of daily streamflow from 173 streamgages in the southeastern US resulted in three important findings. First, the use of only positive integer moment orders, as has been done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above an exceedance probability near the median; negative moment orders (inverse moments) are needed for lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression results show that mean flows scale with an exponent of one, low flows scale with spatial scaling exponents greater than one, and high flows scale with exponents less than one. The relationship between scaling exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This signature may improve our understanding of the physical processes generating streamflow at different exceedance probabilities.
Streamflow record extension for selected streams in the Susitna River Basin, Alaska
Curran, Janet H.
2012-01-01
Daily streamflow records for water years 1950–2010 in the Susitna River Basin range in length from 4 to 57 years, and many are distributed within that period in a way that might not adequately represent long-term streamflow conditions. Streamflow in the basin is affected by the Pacific Decadal Oscillation (PDO), a multi-decadal climate pattern that shifted from a cool phase to a warm phase in 1976. Records for many streamgages in the basin fell mostly within one phase of the PDO, such that monthly and annual statistics from observed records might not reflect streamflow conditions over a longer period. Correlations between daily discharge values sufficed for extending streamflow records at 11 of the 14 streamgages in the basin on the basis of relatively long-term records for one or more of the streamgages within the basin, or one outside the basin, that were defined as index stations. Streamflow at the index stations was hydrologically responsive to glacier melt and snowmelt, and correlated well with flow from similar high-elevation, glaciated basins, but flow in low-elevation basins without glaciers could not be correlated to flow at any of the index stations. Kendall-Theil Robust Line multi-segment regression equations developed for one or more index stations were used to extend daily discharge values to the full 61-year period for all 11 streamgages. Monthly and annual statistics prepared for the extended records show shifts in timing of breakup and freeze-up and magnitude of snowmelt peaks largely predicted by the PDO phase.
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
NASA Astrophysics Data System (ADS)
Ashouri, H.; Nguyen, P.; Thorstensen, A. R.; Hsu, K. L.; Sorooshian, S.
2014-12-01
This study evaluates the performance of a newly developed long-term high-resolution satellite-based precipitation products, named Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Climate Data Record (PERSIANN-CDR), in hydrological modeling. PERSIANN-CDR estimations are biased corrected using GPCP monthly climatology data. PERSIANN-CDR provides daily rainfall estimates at 0.25° x 0.25° grid boxes for 1983-2014 (delayed present). This newly released product makes it feasible to model the streamflow over the past 30 years. Three test basins from the Distributed Hydrologic Model Intercomparison Project - Phase 2 (DMIP 2) are chosen. Comparing with other satellite products, the Version 7 TRMM Multi-satellite Precipitation Analysis (TMPA) product is used. Stage IV radar data is used as a reference data for evaluating the PERSIANN-CDR and TMPA precipitation data. All products are scaled to 0.25° and daily spatiotemporal resolution. The study is performed in two phases. In the first phase, the 2003-2011 period where all the products are available is chosen. Precipitation evaluation results, presented on Taylor Diagrams, show that TMPA and PERSIANN-CDR have close performances. The National Weather Service (NWS) Office of Hydrologic Development (OHD) Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) is then forced with the PERSIANN-CDR and the TMPA precipitation products, as well as the stage IV radar data. USGS Streamflow observations at the outlet of the basins are used as the reference streamflow data. The results show that in general, in all the three DMIP 2 basins the simulated hydrographs forced with PERSIANN-CDR and TMPA show good agreement, as the statistical measures such as root mean square error, bias, and correlation coefficient are close. In addition, with respect to the streamflow peaks, PERSIANN-CDR shows better performance than Stage IV radar data in capturing the extreme streamflow magnitudes. Based on the results from the first phase of the study and given the fact that PERSIANN-CDR covers the 1983-2014, in the second phase of the study we model the streamflow for the period of 1983-2014. The results will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Huntington, T. G.; Kim, J.
2017-12-01
Dissolved Organic Carbon leaches from the terrestrial watersheds to serve as one of the largest sources of marine DOC. Runoff, slope, soil organic matter and land cover characteristics are the primary spatial factors controlling the variability of fluvial Dissolved Organic Carbon fluxes through the catchment. In large, more heterogeneous catchments, streamflow dissolved organic carbon dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. A number of studies have demonstrated that the amount of wetlands, especially peatlands, controls the watershed level transport of DOC in streams.The Penobscot River Watershed is located in north-central Maine and drains into the Gulf of Maine. It is the second largest watershed in New England. The Penobscot River Watershed is primarily forested but also contains extensive bogs, marshes, and wooded swamps.Studying the spatial and temporal changes in DOC export in the Penobscot River Watershed allows us to better understand and detect carbon sinks to carbon source shifts (or vice versa) in northern forested ecosystems.The Regional Hydro-Ecological Simulation System, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The study is focused on simulating the DOC concentration and flux with RHESSys in the Penobscot River Watershed. The simulated results are compared with field measurements of DOC from the watershed and the model results from the LOADEST and the temporal DOC export patterns are explored. Future changes in the amount of streamflow DOC will also be investigated by using projected land cover and climate change scenarios. Incremental increases in the loss of wetland areas have been implemented to explore the sensitivity of this watershed to wetland loss and progressive changes in forested land cover have been implemented to understand the role of vegetation types to the DOC flux.The simulated daily streamflow for the period of 2004-2013 corresponded well with observed daily streamflowat USGS gauge station. in addition, the simulated DOC flux and concentration values matched well with observed data and LODEST model results.
NASA Astrophysics Data System (ADS)
Liu, Z.; Rajib, M. A.; Jafarzadegan, K.; Merwade, V.
2015-12-01
Application of land surface/hydrologic models within an operational flood forecasting system can provide probable time of occurrence and magnitude of streamflow at specific locations along a stream. Creating time-varying spatial extent of flood inundation and depth requires the use of a hydraulic or hydrodynamic model. Models differ in representing river geometry and surface roughness which can lead to different output depending on the particular model being used. The result from a single hydraulic model provides just one possible realization of the flood extent without capturing the uncertainty associated with the input or the model parameters. The objective of this study is to compare multiple hydraulic models toward generating ensemble flood inundation extents. Specifically, relative performances of four hydraulic models, including AutoRoute, HEC-RAS, HEC-RAS 2D, and LISFLOOD are evaluated under different geophysical conditions in several locations across the United States. By using streamflow output from the same hydrologic model (SWAT in this case), hydraulic simulations are conducted for three configurations: (i) hindcasting mode by using past observed weather data at daily time scale in which models are being calibrated against USGS streamflow observations, (ii) validation mode using near real-time weather data at sub-daily time scale, and (iii) design mode with extreme streamflow data having specific return periods. Model generated inundation maps for observed flood events both from hindcasting and validation modes are compared with remotely sensed images, whereas the design mode outcomes are compared with corresponding FEMA generated flood hazard maps. The comparisons presented here will give insights on probable model-specific nature of biases and their relative advantages/disadvantages as components of an operational flood forecasting system.
,
2008-01-01
This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that illustrates application of the code to a field setting. Brief descriptions of the main program routine and of each of the modules and subroutines of the INFIL3.0 code, as well as definitions of the variables used in each subroutine, are provided in an appendix.
Ryter, Derek W.; Correll, Jessica S.
2016-01-14
A hypothetical severe drought was simulated by using aquifer recharge flow rates during the drought year of 2011 for a period of 10 years. All other flows including evapotranspiration and groundwater pumping were set at estimated 2011 rates. The hypothetical drought caused a decrease in water in aquifer storage by about 7 percent in Reach I and 7 percent in Reach II. Another analysis of the effects of hypothetical drought estimated the effects of drought on streamflow and lake storage. The hypothetical drought was simulated by decreasing recharge by 75 percent for a selected 10-year period (1994–2004) during the 1980–2011 simulation. In Reach I, the amounts of water stored in Canton Lake and streamflow at the Seiling, Okla., streamflow-gaging station were analyzed. Streamflow at the Seiling station decreased by a mean of 75 percent and was still diminished by 10 percent after 2011. In Reach II, the effect of drought on the streamflow at the Yukon, Okla., streamflow-gaging station was examined. The greatest mean streamflow decrease was approximately 60 percent during the simulated drought, and after 2011, the mean decrease in streamflow was still about 5 percent. Canton Lake storage decreased by as much as 83 percent during the simulated drought and did not recover by 2011.
NASA Astrophysics Data System (ADS)
Farmer, W. H.; Kiang, J. E.
2017-12-01
The development, deployment and maintenance of water resources management infrastructure and practices rely on hydrologic characterization, which requires an understanding of local hydrology. With regards to streamflow, this understanding is typically quantified with statistics derived from long-term streamgage records. However, a fundamental problem is how to characterize local hydrology without the luxury of streamgage records, a problem that complicates water resources management at ungaged locations and for long-term future projections. This problem has typically been addressed through the development of point estimators, such as regression equations, to estimate particular statistics. Physically-based precipitation-runoff models, which are capable of producing simulated hydrographs, offer an alternative to point estimators. The advantage of simulated hydrographs is that they can be used to compute any number of streamflow statistics from a single source (the simulated hydrograph) rather than relying on a diverse set of point estimators. However, the use of simulated hydrographs introduces a degree of model uncertainty that is propagated through to estimated streamflow statistics and may have drastic effects on management decisions. We compare the accuracy and precision of streamflow statistics (e.g. the mean annual streamflow, the annual maximum streamflow exceeded in 10% of years, and the minimum seven-day average streamflow exceeded in 90% of years, among others) derived from point estimators (e.g. regressions, kriging, machine learning) to that of statistics derived from simulated hydrographs across the continental United States. Initial results suggest that the error introduced through hydrograph simulation may substantially bias the resulting hydrologic characterization.
Streamflow characteristics and trends in New Jersey, water years 1897-2003
Watson, Kara M.; Reiser, Robert G.; Nieswand, Steven P.; Schopp, Robert D.
2005-01-01
Streamflow statistics were computed for 111 continuous-record streamflow-gaging stations with 20 or more years of continuous record and for 500 low-flow partial-record stations, including 66 gaging stations with less than 20 years of continuous record. Daily mean streamflow data from water year 1897 through water year 2001 were used for the computations at the gaging stations. (The water year is the 12-month period, October 1 through September 30, designated by the calendar year in which it ends). The characteristics presented for the long-term continuous-record stations are daily streamflow, harmonic mean flow, flow frequency, daily flow durations, trend analysis, and streamflow variability. Low-flow statistics for gaging stations with less than 20 years of record and for partial-record stations were estimated by correlating base-flow measurements with daily mean flows at long-term (more than 20 years) continuous-record stations. Instantaneous streamflow measurements through water year 2003 were used to estimate low-flow statistics at the partial-record stations. The characteristics presented for partial-record stations are mean annual flow; harmonic mean flow; and annual and winter low-flow frequency. The annual 1-, 7-, and 30-day low- and high-flow data sets were tested for trends. The results of trend tests for high flows indicate relations between upward trends for high flows and stream regulation, and high flows and development in the basin. The relation between development and low-flow trends does not appear to be as strong as for development and high-flow trends. Monthly, seasonal, and annual precipitation data for selected long-term meteorological stations also were tested for trends to analyze the effects of climate. A significant upward trend in precipitation in northern New Jersey, Climate Division 1 was identified. For Climate Division 2, no general increase in average precipitation was observed. Trend test results indicate that high flows at undeveloped, unregulated sites have not been affected by the increase in average precipitation. The ratio of instantaneous peak flow to 3-day mean flow, ratios of flow duration, ratios of high-flow/low-flow frequency, and coefficient of variation were used to define streamflow variability. Streamflow variability was significantly greater among the group of gaging stations located outside the Coastal Plain than among the group of gaging stations located in the Coastal Plain.
Kuhn, Gerhard
2002-01-01
The U.S Geological Survey, in cooperation with the Grand Mesa, Uncompahgre, and Gunnison National Forests, began a study in 2000 to develop selected streamflow characteristics for 60 streamflow-gaging stations in and near the Grand Mesa, Uncompahgre, and Gunnison National Forests. The study area is located in southwestern Colorado within the Gunnison River, Dolores River, and Plateau Creek Basins, which are tributaries of the Colorado River. In addition to presenting the compiled daily, monthly, and annual discharge data for the 60 stations, the report presents tabular and graphical results for the following computed streamflow characteristics: (1) Instantaneous peak-flow frequency; (2) flow duration for daily mean discharges on an annual (water year) basis and on a monthly basis, and flow duration for the annual and monthly mean discharges; (3) low-flow and high-flow frequency of daily mean discharges for periods of 1, 3, 7, 15, 30, 60, 120, and 183 consecutive days; and (4) annual and monthly mean and median discharges for each year and month of record, and frequency of the annual and monthly mean and median discharges. All discharge data and results from the streamflow-characteristics analyses are presented in Microsoft Excel workbooks on the enclosed CD-ROM.
What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ping Yang; Daniel B. Ames; Andre Fonseca
This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicatemore » that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.« less
Asquith, W.H.; Mosier, J. G.; Bush, P.W.
1997-01-01
The watershed simulation model Hydrologic Simulation Program—Fortran (HSPF) was used to generate simulated flow (runoff) from the 13 watersheds to the six bay systems because adequate gaged streamflow data from which to estimate freshwater inflows are not available; only about 23 percent of the adjacent contributing watershed area is gaged. The model was calibrated for the gaged parts of three watersheds—that is, selected input parameters (meteorologic and hydrologic properties and conditions) that control runoff were adjusted in a series of simulations until an adequate match between model-generated flows and a set (time series) of gaged flows was achieved. The primary model input is rainfall and evaporation data and the model output is a time series of runoff volumes. After calibration, simulations driven by daily rainfall for a 26-year period (1968–93) were done for the 13 watersheds to obtain runoff under current (1983–93), predevelopment (pre-1940 streamflow and pre-urbanization), and future (2010) land-use conditions for estimating freshwater inflows and for comparing runoff under the three land-use conditions; and to obtain time series of runoff from which to estimate time series of freshwater inflows for trend analysis.
Herbert Ssegane; Devendra M. Amatya; E.W. Tollner; Zhaohua Dai; Jami E. Nettles
2013-01-01
Commonly used methods to predict streamflow at ungauged watersheds implicitly predict streamflow magnitude and temporal sequence concurrently. An alternative approach that has not been fully explored is the conceptualization of streamflow as a composite of two separable components of magnitude and sequence, where each component is estimated separately and then combined...
NASA Astrophysics Data System (ADS)
Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng
2017-06-01
The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.
Lind, Greg D.; Stonewall, Adam J.
2018-02-13
In this study, “naturalized” daily streamflow records, created by the U.S. Army Corps of Engineers and the Bureau of Reclamation, were used to compute 1-, 3-, 7-, 10-, 15-, 30-, and 60-day annual maximum streamflow durations, which are running averages of daily streamflow for the number of days in each duration. Once the annual maximum durations were computed, the floodduration frequencies could be estimated. The estimated flood-duration frequencies correspond to the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent probabilities of their occurring or being exceeded each year. For this report, the focus was on the Willamette River Basin in Oregon, which is a subbasin of the Columbia River Basin. This study is part of a larger one encompassing the entire Columbia Basin.
Bera, Maitreyee; Ortel, Terry W.
2018-01-12
The U.S. Geological Survey, in cooperation with DuPage County Stormwater Management Department, is testing a near real-time streamflow simulation system that assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek and West Branch DuPage River drainage basins in DuPage County, Illinois. As part of this effort, the U.S. Geological Survey maintains a database of hourly meteorological and hydrologic data for use in this near real-time streamflow simulation system. Among these data are next generation weather radar-multisensor precipitation estimates and quantitative precipitation forecast data, which are retrieved from the North Central River Forecasting Center of the National Weather Service. The DuPage County streamflow simulation system uses these quantitative precipitation forecast data to create streamflow predictions for the two simulated drainage basins. This report discusses in detail how these data are processed for inclusion in the Watershed Data Management files used in the streamflow simulation system for the Salt Creek and West Branch DuPage River drainage basins.
NASA Astrophysics Data System (ADS)
Jiao, Y.; Yuan, X.; Yang, D.
2017-12-01
During the past five decades, significant decreasing trends in streamflow records were observed at many hydrological gauges within the middle reaches of the Yellow River basin, China, leading to an intensified water resource shortage and a rising hydrological drought risk. This phenomenon is generally considered as a consequence of climate changes and human interventions, such as greenhouse gas emissions, regional land use/cover changes, dam and reservoir constructions and direct water withdrawals. There are many studies on the attribution of streamflow decline and hydrological drought change in this region, while a consolidated conclusion is missing.In this study, we focus on historical and future hydrological drought characteristics over a semi-arid watershed located in the middle reaches of the Yellow River basin. Daily climate simulations from several IPCC CMIP5 models were collected to drive a newly developed eco-hydrological model CLM-GBHM with detailed description of river network and sub-basin topological relationship, to simulate streamflow series under different forcings and scenarios. The standard streamflow index was calculated and used to figure out the characteristics (e.g., frequency, duration and severity) of both historical and future hydrological droughts. The causes and contributions in terms of natural and anthropogenic influences will be investigated based on an optimal fingerprinting method, and the relative importance of internal variability, model and scenario uncertainties for future projections will also be estimated using a separation method. This study will facilitate the implementation of adaptation strategies for hydrological drought over the semi-arid watershed in a changing environment.
NASA Astrophysics Data System (ADS)
Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.
2014-12-01
This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.
NASA Astrophysics Data System (ADS)
Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.
2015-12-01
This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.
Carlson, Carl S.; Desimone, Leslie A.; Weiskel, Peter K.
2008-01-01
Continued population growth and land development for commercial, industrial, and residential uses have created concerns regarding the future supply of potable water and the quantity of ground water discharging to streams in the area of Interstate 495 in eastern Massachusetts. Two ground-water models developed in 2002-2004 for the Assabet and Upper Charles River Basins were used to simulate water supply and land-use scenarios relevant for the entire Interstate-495 corridor. Future population growth, water demands, and commercial and residential growth were projected for year 2030 by the Metropolitan Area Planning Council. To assess the effects of future development on subbasin streamflows, seven scenarios were simulated by using existing computer-based ground-water-flow models with the data projected for year 2030. The scenarios incorporate three categories of projected 2030 water- and land-use data: (1) 2030 water use, (2) 2030 land use, and (3) a combination of 2030 water use and 2030 land use. Hydrologic, land-use, and water-use data from 1997 through 2001 for the Assabet River Basin study and 1989 through 1998 for the Upper Charles River Basin study were used to represent current conditions - referred to as 'basecase' conditions - in each basin to which each 2030 scenario was compared. The effects of projected 2030 land- and water-use change on streamflows in the Assabet River Basin depended upon the time of year, the hydrologic position of the subbasin in the larger basin, and the relative areas of new commercial and residential development projected for a subbasin. Effects of water use and land use on streamflow were evaluated by comparing average monthly nonstorm streamflow (base flow) for March and September simulated by using the models. The greatest decreases in streamflow (up to 76 percent in one subbasin), compared to the basecase, occurred in September, when streamflows are naturally at their lowest level. By contrast, simulated March streamflows decreased less than 6.5 percent from basecase streamflows in all subbasins for all scenarios. The simulations showed similar effects in the Upper Charles River Basin, but increased water use contributed to decreased simulated streamflow in most subbasins. Simulated changes in March streamflows for 2030 in the Upper Charles River Basin were within +- 6 percent of the basecase for all scenarios and subbasins. Percentage decreases in simulated September streamflows for 2030 were greater than in March but less than the September decreases that resulted for some subbasins in the Assabet River Basin. Only two subbasins of the Upper Charles River Basin had projected decreases greater than 5 percent. In the Mill River subbasin, the decrease was 11 percent, and in the Mine Brook subbasin, 6.6 percent. Changes in water use and wastewater return flow generally were found to have the greatest effect in the summer months when streamflow and aquifer recharge rates are low and water use is high. September increases in main-stem streamflow of both basins were due mainly to increased discharge of treated effluent from wastewater-treatment facilities on the main-stem rivers. In the Assabet River Basin, wastewater-treatment-facility discharge became a smaller proportion of total streamflow with distance downstream. In contrast, wastewater-treatment facility discharge in the Upper Charles River Basin became a greater proportion of streamflow with distance downstream. The effects of sewer-line extension and low-impact development on streamflows in two different subbasins of the Assabet River Basin also were simulated. The result of extending sewer lines with a corresponding decrease in septic-system return flow caused September streamflows to decrease as much as 15 percent in the Fort Pond Brook subbasin. The effect of low-impact development was simulated in the Hop Brook subbasin in areas projected for commercial development. In this simulation, the greater the area where low-i
Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration
NASA Astrophysics Data System (ADS)
Bai, P.
2017-12-01
Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.
The effects of changing land cover on streamflow simulation in Puerto Rico
A.E. Van Beusekom; L.E. Hay; R.J. Viger; W.A. Gould; J.A. Collazo; A. Henareh Khalyani
2014-01-01
This study quantitatively explores whether land cover changes have a substantive impact on simulated streamflow within the tropical island setting of Puerto Rico. The Precipitation Runoff Modeling System (PRMS) was used to compare streamflow simulations based on five static parameterizations of land cover with those based on dynamically varying parameters derived from...
Relation of nitrate concentrations to baseflow in the Raccoon River, Iowa
Schilling, K.E.; Lutz, D.S.
2004-01-01
Excessive nitrate-nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28-year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.
Kuhn, Gerhard; Ellis, S.R.
1984-01-01
Numerous reservoirs have been proposed for the White River basin in Colorado and Utah, primarily to provide water for oil-shale development. A multireservoir-flow model was used to simulate the effects of streamflow withdrawal at four of the proposed reservoirs using historical streamflow data from the 1932-81 water years. The proposed reservoirs considered in the study were Avery, Powell Park, Taylor Draw, and White River Reservoirs; construction of Taylor Draw Dam was completed during the study. Annual streamflow depletions from the White River ranging from about 93,000 to 226,000 acre-feet were simulated for the 50 year period. Simulated streamflow throughout the year generally became smaller and more constant as streamflow throughout the year generally became smaller and more constant as streamflow depletion increased. Minimum streamflow requirements would not have been met for a maximum of 13 years and water-use requirements associated with the proposed reservoirs would not have been met for a maximum of 3 years. The current water-use pattern, which depletes about 40,000 acre-feet per year and is dominated by irrigation of hay meadows and pastureland, was maintained in the simulation. Relations between reservoir active capacity and yield applicable to the White River also were developed. These relations show that reservoir storage of about 400,000 acre-feet is the maximum practicable for the White River. (USGS)
Ziegeweid, Jeffrey R.; Magdalene, Suzanne
2015-01-01
The new regression equations were used to calculate revised estimates of historical streamflows for Stillwater and Prescott starting in 1910 and ending when index-velocity streamgages were installed. Monthly, annual, 30-year, and period of record statistics were examined between previous and revised estimates of historical streamflows. The abilities of the new regression equations to estimate historical streamflows were evaluated by using percent differences to compare new estimates of historical daily streamflows to discrete streamflow measurements made at Stillwater and Prescott before the installation of index-velocity streamgages. Although less variability was observed between estimated and measured streamflows at Stillwater compared to Prescott, the percent difference data indicated that the new estimates closely approximated measured streamflows at both locations.
21st Century Projections of High Streamflow Events in the UK and Germany
NASA Astrophysics Data System (ADS)
Cioffi, Francesco; Rosario Conticello, Federico; Lall, Upmanu; Merz, Bruno
2017-04-01
Radiative effects of anthropogenic changes in atmospheric composition are expected to enhance the hydrological cycle leading to more frequent and intense floods. To explore if there will be an increased risk of river flooding in the future, 21st century projections under global warming scenarios of High Streamflow Events (HSEs) for UK and German rivers are carried out, using a model that statistically relates large-scale atmospheric predictors - 850 hPa Geopotential Height (GPH850) and Integrated Water Vapor Transport (IVT) - to the occurrence of HSEs in one or simultaneously in several streamflow gauges. Here, HSE is defined as the streamflow exceeding the 99th percentile of daily flowrate time series measured at streamflow gauges. For the common period 1960-2012, historical data from 57 streamflow gauges in UK and 61 streamflow gauges in Germany, as well as, reanalysis data of GPH850 and IVT fields, bounded from 90W to 70E and from 20N to 80N are used. The link between GPH850 configurations and HSEs, and more precisely, identification of the GPH850 states potentially able to generate HSEs, is performed by a combined Kohonen Networks (Self Organized Map, SOM) and Event Syncronization approach. Complex network and modularity methods are used to cluster streamflow gauges that share common GPH850 configurations. Then a model based on a conditional Poisson distribution, in which the parameter of the Poisson distribution is assumed to be a nonlinear function of GPH850 and IVT, allows for the identification of GPH850 state and threshold of IVT beyond which there is the HSE highest probability. Using that model, projections of 21st century changes in frequency of HSEs occurrence in UK and Germany are estimated using the simulated fields of GPH850 and IVT from selected GCMs belonging to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). Among the different GCMs, those are selected whose retrospective predictor fields have consistent statistics with the corresponding reanalysis data.
Multi-year encoding of daily rainfall and streamflow via the fractal-multifractal method
NASA Astrophysics Data System (ADS)
Puente, C. E.; Maskey, M.; Sivakumar, B.
2017-12-01
A deterministic geometric approach, the fractal-multifractal (FM) method, which has been proven to be faithful in encoding daily geophysical sets over a year, is used to describe records over multiple years at a time. Looking for FM parameter trends over longer periods, the present study shows FM descriptions of daily rainfall and streamflow gathered over five consecutive years optimizing deviations on accumulated sets. The results for 100 and 60 sets of five years for rainfall streamflow, respectively, near Sacramento, California illustrate that: (a) encoding of both types of data sets may be accomplished with relatively small errors; and (b) predicting the geometry of both variables appears to be possible, even five years ahead, training neural networks on the respective FM parameters. It is emphasized that the FM approach not only captures the accumulated sets over successive pentades but also preserves other statistical attributes including the overall "texture" of the records.
Statewide analysis of the drainage-area ratio method for 34 streamflow percentile ranges in Texas
Asquith, William H.; Roussel, Meghan C.; Vrabel, Joseph
2006-01-01
The drainage-area ratio method commonly is used to estimate streamflow for sites where no streamflow data are available using data from one or more nearby streamflow-gaging stations. The method is intuitive and straightforward to implement and is in widespread use by analysts and managers of surface-water resources. The method equates the ratio of streamflow at two stream locations to the ratio of the respective drainage areas. In practice, unity often is assumed as the exponent on the drainage-area ratio, and unity also is assumed as a multiplicative bias correction. These two assumptions are evaluated in this investigation through statewide analysis of daily mean streamflow in Texas. The investigation was made by the U.S. Geological Survey in cooperation with the Texas Commission on Environmental Quality. More than 7.8 million values of daily mean streamflow for 712 U.S. Geological Survey streamflow-gaging stations in Texas were analyzed. To account for the influence of streamflow probability on the drainage-area ratio method, 34 percentile ranges were considered. The 34 ranges are the 4 quartiles (0-25, 25-50, 50-75, and 75-100 percent), the 5 intervals of the lower tail of the streamflow distribution (0-1, 1-2, 2-3, 3-4, and 4-5 percent), the 20 quintiles of the 4 quartiles (0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95, and 95-100 percent), and the 5 intervals of the upper tail of the streamflow distribution (95-96, 96-97, 97-98, 98-99 and 99-100 percent). For each of the 253,116 (712X711/2) unique pairings of stations and for each of the 34 percentile ranges, the concurrent daily mean streamflow values available for the two stations provided for station-pair application of the drainage-area ratio method. For each station pair, specific statistical summarization (median, mean, and standard deviation) of both the exponent and bias-correction components of the drainage-area ratio method were computed. Statewide statistics (median, mean, and standard deviation) of the station-pair specific statistics subsequently were computed and are tabulated herein. A separate analysis considered conditioning station pairs to those stations within 100 miles of each other and with the absolute value of the logarithm (base-10) of the ratio of the drainage areas greater than or equal to 0.25. Statewide statistics of the conditional station-pair specific statistics were computed and are tabulated. The conditional analysis is preferable because of the anticipation that small separation distances reflect similar hydrologic conditions and the observation of large variation in exponent estimates for similar-sized drainage areas. The conditional analysis determined that the exponent is about 0.89 for streamflow percentiles from 0 to about 50 percent, is about 0.92 for percentiles from about 50 to about 65 percent, and is about 0.93 for percentiles from about 65 to about 85 percent. The exponent decreases rapidly to about 0.70 for percentiles nearing 100 percent. The computation of the bias-correction factor is sensitive to the range analysis interval (range of streamflow percentile); however, evidence suggests that in practice the drainage-area method can be considered unbiased. Finally, for general application, suggested values of the exponent are tabulated for 54 percentiles of daily mean streamflow in Texas; when these values are used, the bias correction is unity.
NASA Astrophysics Data System (ADS)
Demirel, Mehmet; Moradkhani, Hamid
2015-04-01
Changes in two climate elasticity indices, i.e. temperature and precipitation elasticity of streamflow, were investigated using an ensemble of bias corrected CMIP5 dataset as forcing to two hydrologic models. The Variable Infiltration Capacity (VIC) and the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic models, were calibrated at 1/16 degree resolution and the simulated streamflow was routed to the basin outlet of interest. We estimated precipitation and temperature elasticity of streamflow from: (1) observed streamflow; (2) simulated streamflow by VIC and SAC-SMA models using observed climate for the current climate (1963-2003); (3) simulated streamflow using simulated climate from 10 GCM - CMIP5 dataset for the future climate (2010-2099) including two concentration pathways (RCP4.5 and RCP8.5) and two downscaled climate products (BCSD and MACA). The streamflow sensitivity to long-term (e.g., 30-year) average annual changes in temperature and precipitation is estimated for three periods i.e. 2010-40, 2040-70 and 2070-99. We compared the results of the three cases to reflect on the value of precipitation and temperature indices to assess the climate change impacts on Columbia River streamflow. Moreover, these three cases for two models are used to assess the effects of different uncertainty sources (model forcing, model structure and different pathways) on the two climate elasticity indices.
Linhart, S. Mike; Nania, Jon F.; Christiansen, Daniel E.; Hutchinson, Kasey J.; Sanders, Curtis L.; Archfield, Stacey A.
2013-01-01
A variety of individuals from water resource managers to recreational users need streamflow information for planning and decisionmaking at locations where there are no streamgages. To address this problem, two statistically based methods, the Flow Duration Curve Transfer method and the Flow Anywhere method, were developed for statewide application and the two physically based models, the Precipitation Runoff Modeling-System and the Soil and Water Assessment Tool, were only developed for application for the Cedar River Basin. Observed and estimated streamflows for the two methods and models were compared for goodness of fit at 13 streamgages modeled in the Cedar River Basin by using the Nash-Sutcliffe and the percent-bias efficiency values. Based on median and mean Nash-Sutcliffe values for the 13 streamgages the Precipitation Runoff Modeling-System and Soil and Water Assessment Tool models appear to have performed similarly and better than Flow Duration Curve Transfer and Flow Anywhere methods. Based on median and mean percent bias values, the Soil and Water Assessment Tool model appears to have generally overestimated daily mean streamflows, whereas the Precipitation Runoff Modeling-System model and statistical methods appear to have underestimated daily mean streamflows. The Flow Duration Curve Transfer method produced the lowest median and mean percent bias values and appears to perform better than the other models.
Eggleston, Jack R.; Zarriello, Phillip J.; Carlson, Carl S.
2015-12-31
Model simulations indicate that under average base-flow conditions, the Birch Road wells have a small effect on flow in the Sudbury River during most months, even at the maximum pumping rate of 4.9 ft3/s (3.17 Mgal/d). Maximum percent streamflow depletion in the Sudbury River caused by simulated pumping takes place during simulated drought conditions, when streamflow decreased by as much as 21 percent under maximum continuous pumping. Simulations also indicate that groundwater withdrawals at the Birch Road site could be managed so that adverse streamflow impacts are substantially ameliorated. Under the most ecologically conservative simulated drought conditions, simulated streamflow depletion was reduced from 21 percent to 3 percent by pumping at the maximum rate for 6 months rather than for 12 months. Simulations that return 10 percent of the Birch Road well withdrawals to Pod Meadow Pond indicate a modest reduction in the Sudbury River streamflow depletion and provide a larger percentage increase to streamflow just downstream of the pond. The groundwater model also indicates that well locations can have a large effect on the sustainable pumping rate and so should be chosen carefully. The model provides a tool for evaluating alternative pumping rates and schedules not included in this analysis.
Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States
Wolock, David
2003-01-01
This dataset represents point locations and flow characteristics for current (as of November 20, 2001) and historical U.S. Geological Survey (USGS) streamgages in the conterminous United States. The flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The attributes associated with each streamgage include: Station number Station name Station latitude (decimal degrees in North American Datum of 1983, NAD 83) Station longitude (decimal degrees in NAD 83) First date (year, month, day) of streamflow data Last date (year, month, day) of streamflow data Number of days of streamflow data Minimum and maximum daily flow for the period of record (cubic feet per second) Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) Average and standard deviation of daily flow for the period of record (cubic feet per second) Mean annual base-flow index (BFI: see supplemental information) computed for the period of record (fraction, ranging from 0 to 1) Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) Number of years of data used to compute the base-flow index (years) Reported drainage area (square miles) Reported contributing drainage area (square miles) National Water Information System (NWIS)-Web page URL for streamgage Hydrologic Unit Code (HUC, 8 digit) Hydrologic landscape region (HLR) River Reach File 1 (RF1) segment identification number (E2RF1##) Station numbers, names, locations, and drainage areas were acquired through the National Water Information System (NWIS)-Web (http://water.usgs.gov/nwis) on November 20, 2001. The streamflow data used to compute flow characteristics were copied from the Water server (water.usgs.gov:/www/htdocs/nwisweb/data1/discharge/) on November 2, 2001. The missing value indicator for all attributes is -99. Some streamflow characteristics are missing for: (1) streamgages measuring flow subject to tidal effects, which cause flow to reverse directions, (2) streamgages with site information but no streamflow data at the time the data were retrieved, and (3) streamgages with record length too short to compute the base-flow index.
Living with a large reduction in permited loading by using a hydrograph-controlled release scheme
Conrads, P.A.; Martello, W.P.; Sullins, N.R.
2003-01-01
The Total Maximum Daily Load (TMDL) for ammonia and biochemical oxygen demand for the Pee Dee, Waccamaw, and Atlantic Intracoastal Waterway system near Myrtle Beach, South Carolina, mandated a 60-percent reduction in point-source loading. For waters with a naturally low background dissolved-oxygen concentrations, South Carolina anti-degradation rules in the water-quality regulations allows a permitted discharger a reduction of dissolved oxygen of 0.1 milligrams per liter (mg/L). This is known as the "0.1 rule." Permitted dischargers within this region of the State operate under the "0.1 rule" and cannot cause a cumulative impact greater than 0.1 mg/L on dissolved-oxygen concentrations. For municipal water-reclamation facilities to serve the rapidly growing resort and retirement community near Myrtle Beach, a variable loading scheme was developed to allow dischargers to utilize increased assimilative capacity during higher streamflow conditions while still meeting the requirements of a recently established TMDL. As part of the TMDL development, an extensive real-time data-collection network was established in the lower Waccamaw and Pee Dee River watershed where continuous measurements of streamflow, water level, dissolved oxygen, temperature, and specific conductance are collected. In addition, the dynamic BRANCH/BLTM models were calibrated and validated to simulate the water quality and tidal dynamics of the system. The assimilative capacities for various streamflows were also analyzed. The variable-loading scheme established total loadings for three streamflow levels. Model simulations show the results from the additional loading to be less than a 0.1 mg/L reduction in dissolved oxygen. As part of the loading scheme, the real-time network was redesigned to monitor streamflow entering the study area and water-quality conditions in the location of dissolved-oxygen "sags." The study reveals how one group of permit holders used a variable-loading scheme to implement restrictive permit limits without experiencing prohibitive capital expenditures or initiating a lengthy appeals process.
The effect of flow data resolution on sediment yield estimation and channel design
NASA Astrophysics Data System (ADS)
Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.
2016-07-01
The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.
Winters, Karl E.
2013-01-01
Annual mean streamflow and streamflow-duration curves for the 1951–56 and 2011 water years were assessed for 19 unregulated U.S. Geological Survey (USGS) streamflow-gaging stations. At eight of these streamflow-gaging stations, the annual mean streamflow was lower in 2011 than for any year during 1951–56; many of these stations are located in eastern Texas. Annual mean streamflows for streamflow-gaging stations in the Guadalupe, Blanco, and upper Frio River Basins were lower in 1956 than in 2011. The streamflow-duration curves for many streamflow-gaging stations indicate a lack of (or diminished) storm runoff during 2011. Low streamflows (those exceeded 90 to 95 percent of days) were lower for 1956 than for 2011 at seven streamflow-gaging stations. For most of these stations, the lowest of the low streamflows during 1951–56 occurred in 1956. During March to September 2011, record daily lows were measured at USGS streamflow-gaging station 08041500 Village Creek near Kountze, Tex., which has more than 70 years of record. Many other USGS streamflow-gaging stations in Texas started the 2011 water year with normal streamflow but by the end of the water year were flowing at near-record lows.
Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model
NASA Astrophysics Data System (ADS)
Arumugam, S.; Libera, D.
2017-12-01
Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.
NASA Astrophysics Data System (ADS)
Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.
2017-12-01
The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.
Granato, Gregory E.; Ries, Kernell G.; Steeves, Peter A.
2017-10-16
Streamflow statistics are needed by decision makers for many planning, management, and design activities. The U.S. Geological Survey (USGS) StreamStats Web application provides convenient access to streamflow statistics for many streamgages by accessing the underlying StreamStatsDB database. In 2016, non-interpretive streamflow statistics were compiled for streamgages located throughout the Nation and stored in StreamStatsDB for use with StreamStats and other applications. Two previously published USGS computer programs that were designed to help calculate streamflow statistics were updated to better support StreamStats as part of this effort. These programs are named “GNWISQ” (Get National Water Information System Streamflow (Q) files), updated to version 1.1.1, and “QSTATS” (Streamflow (Q) Statistics), updated to version 1.1.2.Statistics for 20,438 streamgages that had 1 or more complete years of record during water years 1901 through 2015 were calculated from daily mean streamflow data; 19,415 of these streamgages were within the conterminous United States. About 89 percent of the 20,438 streamgages had 3 or more years of record, and about 65 percent had 10 or more years of record. Drainage areas of the 20,438 streamgages ranged from 0.01 to 1,144,500 square miles. The magnitude of annual average streamflow yields (streamflow per square mile) for these streamgages varied by almost six orders of magnitude, from 0.000029 to 34 cubic feet per second per square mile. About 64 percent of these streamgages did not have any zero-flow days during their available period of record. The 18,122 streamgages with 3 or more years of record were included in the StreamStatsDB compilation so they would be available via the StreamStats interface for user-selected streamgages. All the statistics are available in a USGS ScienceBase data release.
Nustad, Rochelle A.; Bales, Jerad D.
2006-01-01
The Bureau of Reclamation identified eight water-supply alternatives for the Red River Valley Water Supply Project. Of those alternatives, six were considered for this study. Those six alternatives include a no-action alternative, two in-basin alternatives, and three interbasin alternatives. To address concerns of stakeholders and to provide information for an environmental impact statement, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, developed and applied a water-quality model to simulate the transport of total dissolved solids, sulfate, chloride, sodium, and total phosphorus during unsteady-flow conditions and to simulate the effects of the water-supply alternatives on water quality in the Red River and the Sheyenne River. The physical domain of the model, hereinafter referred to as the Red River model, includes the Red River from Wahpeton, North Dakota, to Emerson, Manitoba, and the Sheyenne River from below Baldhill Dam, North Dakota, to the confluence with the Red River. Boundary conditions were specified for May 15 through October 31, 2003, and January 15 through June 30, 2004. Measured streamflow data were available for August 1 through October 31, 2003, and April 1 through June 30, 2004, but water-quality data were available only for September 15 through 16, 2003, and May 10 through 13, 2004. The water-quality boundary conditions were assumed to be time invariant for the entire calibration period and to be equal to the measured value. The average difference between the measured and simulated streamflows was less than 4 percent for both calibration periods, and most differences were less than 2 percent. The average differences are considered to be acceptable because the differences are less than 5 percent, or the same as the error that would be expected in a typical streamflow measurement. Simulated total dissolved solids, sulfate, chloride, and sodium concentrations generally were less than measured concentrations for both calibration periods. The average absolute differences generally were less than 25 percent. Total phosphorus was simulated as a nonconservative constituent by assuming that concentrations change according to a first-order decay rate. The average difference between the measured and simulated total phosphorus concentrations was 6.2 percent for the 2003 calibration period and -24 percent for the 2004 calibration period. The Red River model demonstrates sensitivity to changes in boundary conditions so a reasonable assumption is that the model can be used to compare relative effects of the various water-supply alternatives. The calibrated Red River model was used to simulate the effects of the six water-supply alternatives by using measured streamflows for September 1, 1976, through August 31, 1977, when streamflows throughout the Red River Basin were relatively low. Streamflows for the Red River at Fargo, North Dakota, were less than 17.9 cubic feet per second on 159 days of that 12-month period, and monthly average streamflows for the Red River at Grand Forks, North Dakota, and the Red River at Emerson, Manitoba, were less than 30 percent of the respective long-term average monthly streamflows for 11 of the 12 months during September 1976 through August 1977. Water-quality boundary conditions were generated using a stochastic approach in which probability distributions derived from all available historical data on instream concentrations were used to produce daily concentrations at model boundaries. Return flow concentrations were estimated from source concentrations and current (2006) wastewater-treatment technology. Because no historical information on ungaged local inflow constituent concentrations is available to estimate those boundary conditions, time-invariant concentrations for the low-flow 2003 calibration period were used as the ungaged local inflow boundary conditions. The effects of the water-supply alternatives on water quality in the Red River and
NASA Astrophysics Data System (ADS)
Firoz, A. B. M.; Nauditt, Alexandra; Fink, Manfred; Ribbe, Lars
2018-01-01
Hydrological droughts are one of the most damaging disasters in terms of economic loss in central Vietnam and other regions of South-east Asia, severely affecting agricultural production and drinking water supply. Their increasing frequency and severity can be attributed to extended dry spells and increasing water abstractions for e.g. irrigation and hydropower development to meet the demand of dynamic socioeconomic development. Based on hydro-climatic data for the period from 1980 to 2013 and reservoir operation data, the impacts of recent hydropower development and other alterations of the hydrological network on downstream streamflow and drought risk were assessed for a mesoscale basin of steep topography in central Vietnam, the Vu Gia Thu Bon (VGTB) River basin. The Just Another Modelling System (JAMS)/J2000 was calibrated for the VGTB River basin to simulate reservoir inflow and the naturalized discharge time series for the downstream gauging stations. The HEC-ResSim reservoir operation model simulated reservoir outflow from eight major hydropower stations as well as the reconstructed streamflow for the main river branches Vu Gia and Thu Bon. Drought duration, severity, and frequency were analysed for different timescales for the naturalized and reconstructed streamflow by applying the daily varying threshold method. Efficiency statistics for both models show good results. A strong impact of reservoir operation on downstream discharge at the daily, monthly, seasonal, and annual scales was detected for four discharge stations relevant for downstream water allocation. We found a stronger hydrological drought risk for the Vu Gia river supplying water to the city of Da Nang and large irrigation systems especially in the dry season. We conclude that the calibrated model set-up provides a valuable tool to quantify the different origins of drought to support cross-sectorial water management and planning in a suitable way to be transferred to similar river basins.
Use of hydrologic landscape classification to diagnose streamflow predictability in Oregon
We implement a spatially lumped rainfall-runoff model to predict daily streamflow at 88 catchments within Oregon, USA and analyze its performance within the context of Oregon Hydrologic Landscapes (OHL) classification. OHL classification is used to characterize the physio-climat...
Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.
2000-01-01
This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal
NASA Astrophysics Data System (ADS)
Yang, W.; Long, D.
2017-12-01
Both land use/cover change (LUCC) and climate change exert significant impacts on runoff, which needs to be thoroughly examined in the context of urbanization, population growth, and climate change. The majority of studies focus on the impacts of either LUCC or climate on runoff in the upper reaches of the Panjiakou Reservoir in the Luanhe River basin, North China. In this study, first, two land use change matrices for periods 1970‒1980 and 1980‒2000 were constructed based on the theory of the Markov Chain which were used to predict the land use scenario of the basin in year 2020. Second, a distributed hydrological model, Soil Water Assessment Tools (SWAT), was set up and driven mainly by the China Gauge-based Daily Precipitation Analysis (CGDPA) product and outputs from three general circulation models (GCMs) of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP). Third, under the land use scenario in 2000, streamflow at the Chengde gauging station for the period 1998‒2014 was simulated with the CGDPA as input, and streamflow for the period 2015‒2025 under four representative concentration pathways (RCPs) was simulated using the outputs from GCMs and compared under the land use scenarios in 2000 and 2020. Results show that during 2015‒2025, the ensemble average precipitation in summer (i.e., from June to August) may increase up to 20% but decrease by -16% in fall (i.e., from September to November). The streamflow may increase in all the seasons, particularly in spring (i.e., from March to May) and summer reaching 150% and 142%, respectively. Furthermore, the streamflow may increase even more when the land use scenario for the period 1998‒2025 remains the same as that in 2000. The minimum (61mm) and maximum (77mm) mean annual runoff depth occur under the RCP4.5 and RCP6 scenarios, respectively, compared with the mean annual observed streamflow of 33 mm from 1998 to 2014. Finally, we analyzed the correlation among the main land use types (i.e., agricultural land, forest, and pasture) and evapotranspiration, surface runoff contribution to streamflow (SURQ), groundwater contribution to streamflow (GWQ), and the sum of the surface runoff and groundwater contributions to streamflow (SSGQ), respectively. It was found that the increase in agricultural land may induce the increase in SURQ but the decrease in GWQ.
NASA Astrophysics Data System (ADS)
Mandal, D.; Bhatia, N.; Srivastav, R. K.
2016-12-01
Soil Water Assessment Tool (SWAT) is one of the most comprehensive hydrologic models to simulate streamflow for a watershed. The two major inputs for a SWAT model are: (i) Digital Elevation Models (DEM), and (ii) Land Use and Land Cover Maps (LULC). This study aims to quantify the uncertainty in streamflow predictions using SWAT for San Bernard River in Brazos-Colorado coastal watershed, Texas, by incorporating the respective datasets from different sources: (i) DEM data will be obtained from ASTER GDEM V2, GMTED2010, NHD DEM, and SRTM DEM datasets with ranging resolution from 1/3 arc-second to 30 arc-second, and (ii) LULC data will be obtained from GLCC V2, MRLC NLCD2011, NOAA's C-CAP, USGS GAP, and TCEQ databases. Weather variables (Precipitation and Max-Min Temperature at daily scale) will be obtained from National Climatic Data Centre (NCDC) and SWAT in-built STASGO tool will be used to obtain the soil maps. The SWAT model will be calibrated using SWAT-CUP SUFI-2 approach and its performance will be evaluated using the statistical indices of Nash-Sutcliffe efficiency (NSE), ratio of Root-Mean-Square-Error to standard deviation of observed streamflow (RSR), and Percent-Bias Error (PBIAS). The study will help understand the performance of SWAT model with varying data sources and eventually aid the regional state water boards in planning, designing, and managing hydrologic systems.
Statistical summaries of streamflow in Oklahoma through 1999
Tortorelli, R.L.
2002-01-01
Statistical summaries of streamflow records through 1999 for gaging stations in Oklahoma and parts of adjacent states are presented for 188 stations with at least 10 years of streamflow record. Streamflow at 113 of the stations is regulated for specific periods. Data for these periods were analyzed separately to account for changes in streamflow due to regulation by dams or other human modification of streamflow. A brief description of the location, drainage area, and period of record is given for each gaging station. A brief regulation history also is given for stations with a regulated streamflow record. This descriptive information is followed by tables of mean annual discharges, magnitude and probability of exceedance of annual high flows, magnitude and probability of exceedance of annual instantaneous peak flows, durations of daily mean flow, magnitude and probability of non-exceedance of annual low flows, and magnitude and probability of non-exceedance of seasonal low flows.
Influence of groundwater pumping on streamflow restoration following upstream dam removal
Constantz, J.; Essaid, H.
2007-01-01
We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter-watersbed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/ groundwater simulations (using MODFLOW-2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi-arid, and and conditions. As a result of including the impact of groundwater pumping, post-dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi-arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal.
Chalise, D. R.; Haj, Adel E.; Fontaine, T.A.
2018-01-01
The hydrological simulation program Fortran (HSPF) [Hydrological Simulation Program Fortran version 12.2 (Computer software). USEPA, Washington, DC] and the precipitation runoff modeling system (PRMS) [Precipitation Runoff Modeling System version 4.0 (Computer software). USGS, Reston, VA] models are semidistributed, deterministic hydrological tools for simulating the impacts of precipitation, land use, and climate on basin hydrology and streamflow. Both models have been applied independently to many watersheds across the United States. This paper reports the statistical results assessing various temporal (daily, monthly, and annual) and spatial (small versus large watershed) scale biases in HSPF and PRMS simulations using two watersheds in the Black Hills, South Dakota. The Nash-Sutcliffe efficiency (NSE), Pearson correlation coefficient (r">rr), and coefficient of determination (R2">R2R2) statistics for the daily, monthly, and annual flows were used to evaluate the models’ performance. Results from the HSPF models showed that the HSPF consistently simulated the annual flows for both large and small basins better than the monthly and daily flows, and the simulated flows for the small watershed better than flows for the large watershed. In comparison, the PRMS model results show that the PRMS simulated the monthly flows for both the large and small watersheds better than the daily and annual flows, and the range of statistical error in the PRMS models was greater than that in the HSPF models. Moreover, it can be concluded that the statistical error in the HSPF and the PRMSdaily, monthly, and annual flow estimates for watersheds in the Black Hills was influenced by both temporal and spatial scale variability.
Mehl, Steffen W.; Hill, Mary C.
2011-01-01
This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.
Kane, Thomas G.; Bauer, David J.; Martinez, Clair M.
1994-01-01
Streamflow and precipitation data collected at and near Yucca Mountain, Nevada, during water years 1986-90 are presented in this report. The data were collected and compiled as part of the studies by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, to characterize surface-water hydrology in the Yucca Mountain area. Streamflow data include daily-mean discharges and peak discharges at 5 continuous-record gaging stations, and peak discharges at 10 crest-stage, partial-record stations and 2 miscellaneous sites. Precipitation data include cumulative totals at 20 stations maintained by the U.S. Geological Survey and daily totals at 15 stations maintained by the Weather Service Nuclear Support Office, National Oceanic and Atmospheric Administration.
Sando, Roy; Chase, Katherine J.
2017-03-23
A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.
Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington
Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.
2011-01-01
Five applications (scenarios) of the model were completed to obtain a better understanding of the relation between pumpage and surface-water resources and groundwater levels. For the first three scenarios, the calibrated transient model was used to simulate conditions without: (1) pumpage from all hydrogeologic units, (2) pumpage from basalt hydrogeologic units, and (3) exempt-well pumpage. The simulation results indicated potential streamflow capture by the existing pumpage from 1960 through 2001. The quantity of streamflow capture generally was inversely related to the total quantity of pumpage eliminated in the model scenarios. For the fourth scenario, the model simulated 1994 through 2001 under existing conditions with additional pumpage estimated for pending groundwater applications. The differences between the calibrated model streamflow and this scenario indicated additional decreases in streamflow of 91 cubic feet per second in the model domain. Existing conditions representing 1994 through 2001 were projected through 2025 for the fifth scenario and indicated additional streamflow decreases of 38 cubic feet per second and groundwater-level declines.
This study presents a method to predict flow duration curves (FDCs) and streamflow for ungauged catchments in the Mid-Atlantic Region, USA. We selected 29 catchments from the Appalachian Plateau, Ridge and Valley, and Piedmont physiographic provinces to develop and test the propo...
For many water quality-impaired stream segments, streamflow and water quality monitoring sites are not available. Lack of available streamflow data at impaired ungauged sites leads to uncertainties in total maximum daily load (TMDL) estimation. We developed a technique to minimiz...
Calculation of streamflow statistics for Ontario and the Great Lakes states
Piggott, Andrew R.; Neff, Brian P.
2005-01-01
Basic, flow-duration, and n-day frequency statistics were calculated for 779 current and historical streamflow gages in Ontario and 3,157 streamflow gages in the Great Lakes states with length-of-record daily mean streamflow data ending on December 31, 2000 and September 30, 2001, respectively. The statistics were determined using the U.S. Geological Survey’s SWSTAT and IOWDM, ANNIE, and LIBANNE software and Linux shell and PERL programming that enabled the mass processing of the data and calculation of the statistics. Verification exercises were performed to assess the accuracy of the processing and calculations. The statistics and descriptions, longitudes and latitudes, and drainage areas for each of the streamflow gages are summarized in ASCII text files and ESRI shapefiles.
Holmberg, Michael J.; Stogner, Sr., Robert W.; Bruce, James F.
2016-11-29
To evaluate the influence of military training activities on streamflow and water quality, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, began a hydrologic data collection network on the U.S. Army Garrison Fort Carson in 1978 and on the Piñon Canyon Maneuver Site in 1983. This report is a summary and characterization of the precipitation, streamflow, and water-quality data collected at 43 sites between October 1, 2012, and September 30, 2014 (water years 2013 and 2014).Variations in the frequency of daily precipitation, seasonal distribution, and seasonal and annual precipitation at 5 stations at the U.S. Army Garrison Fort Carson and 18 stations at or near the Piñon Canyon Maneuver Site were evaluated. Isohyetal diagrams indicated a general pattern of increase in total annual precipitation from east to west at the U.S. Army Garrison Fort Carson and the Piñon Canyon Maneuver Site. Between about 54 and 79 percent of daily precipitation was 0.1 inch or less in magnitude. Precipitation events were larger and more frequent between July and September.Daily streamflow data from 16 sites were used to evaluate temporal and spatial variations in streamflow for the water years 2013 and 2014. At all sites, median daily mean streamflow for the 2-year period ranged from 0.0 to 9.60 cubic feet per second. Daily mean streamflow hydrographs are included in this report. Five sites on the Piñon Canyon Maneuver Site were monitored for peak stage using crest-stage gages.At the Piñon Canyon Maneuver Site, five sites had a stage recorder and precipitation gage, providing a paired streamflow-precipitation dataset. There was a statistically significant correlation between precipitation and streamflow based on Spearman’s rho correlation (rho values ranged from 0.17 to 0.35).Suspended-sediment samples were collected in April through October for water years 2013–14 at one site at the U.S. Army Garrison Fort Carson and five sites at the Piñon Canyon Maneuver Site. Suspended-sediment-transport curves were used to illustrate the relation between streamflow and suspended-sediment concentration. All these sediment-transport curves showed a streamflow dependent suspended-sediment concentration relation except for the U.S. Geological Survey station Bent Canyon Creek at mouth near Timpas, CO.Water-quality data were collected and reported from seven sites on the U.S. Army Garrison Fort Carson and the Piñon Canyon Maneuver Site during water years 2013–14. Sample results exceeding an established water-quality standard were identified. Selected water-quality properties and constituents were stratified to compare spatial variation among selected characteristics using boxplots.Trilinear diagrams were used to classify water type based on ionic concentrations of water-quality samples collected during the study period.At the U.S. Army Garrison Fort Carson and the Piñon Canyon Maneuver Site, 27 samples were classified as very hard or brackish. Seven samples had a lower hardness character relative to the other samples. Four of those nine samples were collected at two U.S. Geological Survey stations (Turkey Creek near Fountain, CO, and Little Fountain Creek above Highway 115 at Fort Carson, CO), which have different geologic makeup. Three samples collected at the Piñon Canyon Maneuver Site had a markedly lower hardness likely because of dilution from an increase in streamflow.
Development of a HEC-RAS temperature model for the North Santiam River, northwestern Oregon
Stonewall, Adam J.; Buccola, Norman L.
2015-01-01
Much of the error in temperature predictions resulted from the model’s inability to accurately simulate the full range of diurnal fluctuations during the warmest months. Future iterations of the model could be improved by the collection and inclusion of additional streamflow and temperature data, especially near the mouth of the South Santiam River. Presently, the model is able to predict hourly and daily water temperatures under a wide variety of conditions with a typical error of 0.8 and 0.7 °C, respectively.
Dietsch, Benjamin J.; Wehmeyer, Loren L.
2012-01-01
Selected results of the model include streamflow yields for the subwatersheds and water-balance information for the Carrizo–Wilcox aquifer outcrop area. For the entire model domain, the area-weighted mean streamflow yield from 1961 to 2008 was 1.12 inches/year. The mean annual rainfall on the outcrop area during the 1961–2008 simulation period was 21.7 inches. Of this rainfall, an annual mean of 20.1 inches (about 93 percent) was simulated as evapotranspiration, 1.2 inches (about 6 percent) was simulated as groundwater recharge, and 0.5 inches (about 2 percent) was simulated as surface runoff.
Attribution of Observed Streamflow Changes in Key British Columbia Drainage Basins
NASA Astrophysics Data System (ADS)
Najafi, Mohammad Reza; Zwiers, Francis W.; Gillett, Nathan P.
2017-11-01
We study the observed decline in summer streamflow in four key river basins in British Columbia (BC), Canada, using a formal detection and attribution (D&A) analysis procedure. Reconstructed and simulated streamflow is generated using the semidistributed variable infiltration capacity hydrologic model, which is driven by 1/16° gridded observations and downscaled climate model data from the Coupled Model Intercomparison Project phase 5 (CMIP5), respectively. The internal variability of the regional hydrologic components using 5100 years of streamflow was simulated using CMIP5 preindustrial control runs. Results show that the observed changes in summer streamflow are inconsistent with simulations representing the responses to natural forcing factors alone, while the response to anthropogenic and natural forcing factors combined is detected in these changes. A two-signal D&A analysis indicates that the effects of anthropogenic (ANT) forcing factors are discernable from natural forcing in BC, albeit with large uncertainties.
Climate change streamflow scenarios designed for critical period water resources planning studies
NASA Astrophysics Data System (ADS)
Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.
2003-04-01
Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the Pacific Northwest (PNW) region of the US, and the resulting streamflow scenarios will be made freely available on the internet for a large number of sites in the PNW to help defray the costs of including climate change information in other studies.
Feaster, Toby D.; Westcott, Nancy E.; Hudson, Robert J.M.; Conrads, Paul; Bradley, Paul M.
2012-01-01
Rainfall is an important forcing function in most watershed models. As part of a previous investigation to assess interactions among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations in the Edisto River Basin, the topography-based hydrological model (TOPMODEL) was applied in the McTier Creek watershed in Aiken County, South Carolina. Measured rainfall data from six National Weather Service (NWS) Cooperative (COOP) stations surrounding the McTier Creek watershed were used to calibrate the McTier Creek TOPMODEL. Since the 1990s, the next generation weather radar (NEXRAD) has provided rainfall estimates at a finer spatial and temporal resolution than the NWS COOP network. For this investigation, NEXRAD-based rainfall data were generated at the NWS COOP stations and compared with measured rainfall data for the period June 13, 2007, to September 30, 2009. Likewise, these NEXRAD-based rainfall data were used with TOPMODEL to simulate streamflow in the McTier Creek watershed and then compared with the simulations made using measured rainfall data. NEXRAD-based rainfall data for non-zero rainfall days were lower than measured rainfall data at all six NWS COOP locations. The total number of concurrent days for which both measured and NEXRAD-based data were available at the COOP stations ranged from 501 to 833, the number of non-zero days ranged from 139 to 209, and the total difference in rainfall ranged from -1.3 to -21.6 inches. With the calibrated TOPMODEL, simulations using NEXRAD-based rainfall data and those using measured rainfall data produce similar results with respect to matching the timing and shape of the hydrographs. Comparison of the bias, which is the mean of the residuals between observed and simulated streamflow, however, reveals that simulations using NEXRAD-based rainfall tended to underpredict streamflow overall. Given that the total NEXRAD-based rainfall data for the simulation period is lower than the total measured rainfall at the NWS COOP locations, this bias would be expected. Therefore, to better assess the use of NEXRAD-based rainfall estimates as compared to NWS COOP rainfall data on the hydrologic simulations, TOPMODEL was recalibrated and updated simulations were made using the NEXRAD-based rainfall data. Comparisons of observed and simulated streamflow show that the TOPMODEL results using measured rainfall data and NEXRAD-based rainfall are comparable. Nonetheless, TOPMODEL simulations using NEXRAD-based rainfall still tended to underpredict total streamflow volume, although the magnitude of differences were similar to the simulations using measured rainfall. The McTier Creek watershed was subdivided into 12 subwatersheds and NEXRAD-based rainfall data were generated for each subwatershed. Simulations of streamflow were generated for each subwatershed using NEXRAD-based rainfall and compared with subwatershed simulations using measured rainfall data, which unlike the NEXRAD-based rainfall were the same data for all subwatersheds (derived from a weighted average of the six NWS COOP stations surrounding the basin). For the two simulations, subwatershed streamflow were summed and compared to streamflow simulations at two U.S. Geological Survey streamgages. The percentage differences at the gage near Monetta, South Carolina, were the same for simulations using measured rainfall data and NEXRAD-based rainfall. At the gage near New Holland, South Carolina, the percentage differences using the NEXRAD-based rainfall were twice as much as those using the measured rainfall. Single-mass curve comparisons showed an increase in the total volume of rainfall from north to south. Similar comparisons of the measured rainfall at the NWS COOP stations showed similar percentage differences, but the NEXRAD-based rainfall variations occurred over a much smaller distance than the measured rainfall. Nonetheless, it was concluded that in some cases, using NEXRAD-based rainfall data in TOPMODEL streamflow simulations may provide an effective alternative to using measured rainfall data. For this investigation, however, TOPMODEL streamflow simulations using NEXRAD-based rainfall data for both calibration and simulations did not show significant improvements with respect to matching observed streamflow over simulations generated using measured rainfall data.
Operational Hydrologic Forecasts in the Columbia River Basin
NASA Astrophysics Data System (ADS)
Shrestha, K. Y.; Curry, J. A.; Webster, P. J.; Toma, V. E.; Jelinek, M.
2013-12-01
The Columbia River Basin (CRB) covers an area of ~670,000 km2 and stretches across parts of seven U.S. states and one Canadian province. The basin is subject to a variable climate, and moisture stored in snowpack during the winter is typically released in spring and early summer. These releases contribute to rapid increases in flow. A number of impoundments have been constructed on the Columbia River main stem and its tributaries for the purposes of flood control, navigation, irrigation, recreation, and hydropower. Storage reservoirs allow water managers to adjust natural flow patterns to benefit water and energy demands. In the past decade, the complexity of water resource management issues in the basin has amplified the importance of streamflow forecasting. Medium-range (1-10 day) numerical weather forecasts of precipitation and temperature can be used to drive hydrological models. In this work, probabilistic meteorological variables from the European Center for Medium Range Weather Forecasting (ECMWF) are used to force the Variable Infiltration Capacity (VIC) model. Soil textures were obtained from FAO data; vegetation types / land cover information from UMD land cover data; stream networks from USGS HYDRO1k; and elevations from CGIAR version 4 SRTM data. The surface energy balance in 0.25° (~25 km) cells is closed through an iterative process operating at a 6 hour timestep. Output fluxes from a number of cells in the basin are combined through one-dimensional flow routing predicated on assumptions of linearity and time invariance. These combinations lead to daily mean streamflow estimates at key locations throughout the basin. This framework is suitable for ingesting daily numerical weather prediction data, and was calibrated using USGS mean daily streamflow data at the Dalles Dam (TDA). Operational streamflow forecasts in the CRB have been active since October 2012. These are 'naturalized' or unregulated forecasts. In 2013, increases of ~2600 m3/s (~48% of average discharge for water years 1879-2012) or greater were observed at TDA during the following periods: 29 March to 12 April, 5 May to 11 May, and 19 June to 29 June. Precipitation and temperature forecasts during these periods are shown along with changes in the model simulated snowpack. We evaluate the performance of the ensemble mean 10 days in advance of each of these three events, and comment on how the distribution of ensemble members affected forecast confidence in each situation.
Wu, Yiping; Chen, Ji
2013-01-01
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.
McKean, Sarah E.; Anderholm, Scott K.
2014-01-01
The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow at Azotea Tunnel Outlet occurred from May through June, with a median duration of slightly longer than a month. Years with higher maximum daily streamflow generally are associated with higher annual streamflow than years with lower maximum daily streamflow. The amount of water that can be diverted for the SJCP is controlled by the availability of streamflow and is limited by several factors including legal limits for diversion, limits from the SJCP infrastructure including the size of the diversion dams and tunnels, the capacity of Heron Reservoir, and operational constraints that limit when water can be diverted. The average annual streamflow at Azotea Tunnel Outlet was 94,710 acre-feet, and the annual streamflow at Azotea Tunnel Outlet was approximately 75 percent of the annual streamflow available for the SJCP. The average annual percentage of available streamflow not diverted for the SJCP was 14 percent because of structural limitations of the capacity of infrastructure, 1 percent because of limitations of the reservoir storage capacity, and 29 percent because of the limitations from operations. For most years, the annual available streamflow not diverted for unknown reasons exceeded the sum of the water not diverted because of structural, capacity, and operational limitations.
Burns, A.W.
1989-01-01
An interactive-accounting model was used to simulate dissolved solids, streamflow, and water supply operations in the Arkansas River basin, Colorado. Model calibration of specific conductance to streamflow relations at three sites enabled computation of dissolved-solids loads throughout the basin. To simulate streamflow only, all water supply operations were incorporated in the regression relations for streamflow. Calibration for 1940-85 resulted in coefficients of determination that ranged from 0.89 to 0.58, and values in excess of 0.80 were determined for 16 of 20 nodes. The model then incorporated 74 water users and 11 reservoirs to simulate the water supply operations for two periods, 1943-74 and 1975-85. For the 1943-74 calibration, coefficients of determination for streamflow ranged from 0.87 to 0.02. Calibration of the water supply operations resulted in coefficients of determination that ranged from 0.87 to negative for simulated irrigation diversions of 37 selected water users. Calibration for 1975-85 was not evaluated statistically, but average values and plots of reservoir contents indicated reasonableness of the simulation. To demonstrate the utility of the model, six specific alternatives were simulated to consider effects of potential enlargement of Pueblo Reservoir. Three general major alternatives were simulated: the 1975-85 calibrated model data, the calibrated model data with an addition of 30 cu ft/sec in Fountain Creek flows, and the calibrated model data plus additional municipal water in storage. These three major alternatives considered the options of reservoir enlargement or no enlargement. A 40,000-acre-foot reservoir enlargement resulted in average increases of 2,500 acre-ft in transmountain diversions, of 800 acre-ft in storage diversions, and of 100 acre-ft in winter-water storage. (USGS)
Techniques for estimating selected streamflow characteristics of rural unregulated streams in Ohio
Koltun, G.F.; Whitehead, Matthew T.
2002-01-01
This report provides equations for estimating mean annual streamflow, mean monthly streamflows, harmonic mean streamflow, and streamflow quartiles (the 25th-, 50th-, and 75th-percentile streamflows) as a function of selected basin characteristics for rural, unregulated streams in Ohio. The equations were developed from streamflow statistics and basin-characteristics data for as many as 219 active or discontinued streamflow-gaging stations on rural, unregulated streams in Ohio with 10 or more years of homogenous daily streamflow record. Streamflow statistics and basin-characteristics data for the 219 stations are presented in this report. Simple equations (based on drainage area only) and best-fit equations (based on drainage area and at least two other basin characteristics) were developed by means of ordinary least-squares regression techniques. Application of the best-fit equations generally involves quantification of basin characteristics that require or are facilitated by use of a geographic information system. In contrast, the simple equations can be used with information that can be obtained without use of a geographic information system; however, the simple equations have larger prediction errors than the best-fit equations and exhibit geographic biases for most streamflow statistics. The best-fit equations should be used instead of the simple equations whenever possible.
A comparison of hydrologic models for ecological flows and water availability
Peter V. Caldwell; Jonathan G. Kennen; Ge Sun; Julie E. Kiang; Jon B. Butcher; Michele C. Eddy; Lauren E. Hay; Jacob H. LaFontaine; Ernie F. Hain; Stacy A. C. Nelson; Steve G. McNulty
2015-01-01
Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow...
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
Zhang, Lei; Lu, Wenxi; An, Yonglei; Li, Di; Gong, Lei
2012-01-01
The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010-2039, 2040-2069, and 2070-2099) relative to a baseline of 1961-1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash-Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m(3) s(-1) per decade, and a significant upward trend in summer, with an increase rate of 1.32 m(3) s(-1) per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH (4) (+) -N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision makers and strategies of adaptation to climate change.
Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee
2014-01-01
Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...
Burns, Douglas A.; Gazoorian, Christopher L.
2015-01-01
Natural discharge at the Mount Marion streamgage was estimated by summing the natural discharge estimated for the Coldbrook streamgage and the discharge estimated for the intervening basin area through application of the New York Streamflow Estimation Tool, recently developed for estimating unaltered streamflow at ungaged locations in the State. Estimates of natural daily discharge at the Mount Marion streamgage were about three times greater than gaged daily discharge throughout the moderate- to low-flow range from October 1, 1970, to September 30, 2012, the period of record for full water years at this streamgage. The relative difference between the two discharge time series declined as flow increased beyond the moderate range, but gaged daily discharge was still 25 to 43 percent less than estimated natural daily discharge for the high-flow metrics calculated in this analysis, and the mean relative difference was 43 percent for the annual 1-day maximum discharge. Overall, these estimates of natural discharge reflect the absence of effects of the Shandaken Tunnel and Ashokan Reservoir on flows in the Esopus Creek over broad time frames. However, caution is warranted if one is attempting to apply the natural estimates at short time scales because the regression prediction intervals indicate that uncertainty at a daily time step ranges from about 40 to 80 percent.
New method for calculating a mathematical expression for streamflow recession
Rutledge, Albert T.
1991-01-01
An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
Wesolowski, Edwin A.
1996-01-01
Pursuant to Section 303(d) of the Clean Water Act, both North Dakota and Minnesota identified part of the Red River of the North (Red River) as water-quality limited. The states are required to determine the total maximum daily load (TMDL) that can be discharged to a water-quality limited reach from various pollution sources without contravening water-quality standards (U.S. Environmental Protection Agency, 1991). A work group consisting of local, State, and Federal agency representatives that was organized in June 1994 decided that a TMDL should be developed in phases for a subreach of the Red River at Fargo, N. Dak., and Moorhead, Minn. (fig. 1). In the first phase, which is the basis for this report, the focus is on attainment of the instream dissolved-oxygen (DO) standard during low streamflows, and only Fargo and Moorhead wastewater-treatment-plant discharges and Sheyenne River inflow are considered. The study reach begins about 0.1 mile (mi) downstream (north) of the 12th Avenue North bridge in Fargo and extends 30.8 mi downstream to a site 0.8 mi upstream of the confluence of the Buffalo and Red Rivers (fig. 1). Nitrification of total ammonia (ammonia) from Fargo and Moorhead wastewater consumes most of the DO in the study reach (Wesolowski, 1994). Because the new (1995) Fargo plant already is nitrifying its wastewater, the work group needed to determine the maximum ammonia concentration for wastewater from the nonnitrifying Moorhead plant. To accomplish this task, the Red River at Fargo Water-Quality (RRatFGO QW) model (Wesolowski, 1994, 1996b) was used to simulate the effects of various wastewater-management alternatives during low streamflow. This report presents the results of those simulations to determine the usefulness of the model for management decisions. The simulations and report were completed in cooperation with the North Dakota Department of Health.
NASA Astrophysics Data System (ADS)
Moore, R. D.; Mahrlein, M.; Chuang, Y. C. M.
2016-12-01
Forest cover changes associated with natural disturbance and forest management can have significant influences on the magnitude and timing of streamflow. This study quantified the effect of a wildfire that burned over 60% of the catchment of Fishtrap Creek in the southern interior of British Columbia in August 2003. Fishtrap Creek has been gauged from 1970 to present. The catchment drains 158 km2 at the gauging station and has a snow-dominated hydrologic regime. In 2006, about one-third of the burned area was salvage logged. A semi-distributed hydrologic model was calibrated and tested using the pre-fire streamflow data. Simulated daily streamflow based on the "best" parameter set, and assuming pre-fire forest cover, was used as a "virtual" control in a paired-catchment analysis. Each year was divided into 73 five-day periods (pentads), and separate pre-fire regressions were fit for each of the 73 pentad time series. This approach avoids issues with autocorrelation and can address seasonally varying model bias. Statistically significant increases in streamflow were detected in late winter and through the month of April, with no evidence for increased peak flows, which is inferred to reflect a de-synchronization of snowmelt between disturbed and undisturbed areas of the catchment. The results of the model-based change detection are consistent with statistical analyses using climatic variables as covariates, but have the advantage of providing more temporal detail. However, the power of the change detection can be limited by insufficiently long records of streamflow and driving weather variables for both the pre- and post-fire periods and model structural errors (e.g., an inability to reproduce winter baseflow). An interesting side result of the study was the identification of parameter uncertainty associated with uncertainty regarding forest cover during the calibration period.
NASA Astrophysics Data System (ADS)
Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu
2015-04-01
Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change
Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.
2016-02-24
The Souris River Basin is a 61,000-square-kilometer basin in the Provinces of Saskatchewan and Manitoba and the State of North Dakota. In May and June of 2011, record-setting rains were seen in the headwater areas of the basin. Emergency spillways of major reservoirs were discharging at full or nearly full capacity, and extensive flooding was seen in numerous downstream communities. To determine the probability of future extreme floods and droughts, the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, developed a stochastic model for simulating Souris River Basin precipitation, evapotranspiration, and natural (unregulated) streamflow. Simulations from the model can be used in future studies to simulate regulated streamflow, design levees, and other structures; and to complete economic cost/benefit analyses.Long-term climatic variability was analyzed using tree-ring chronologies to hindcast precipitation to the early 1700s and compare recent wet and dry conditions to earlier extreme conditions. The extended precipitation record was consistent with findings from the Devils Lake and Red River of the North Basins (southeast of the Souris River Basin), supporting the idea that regional climatic patterns for many centuries have consisted of alternating wet and dry climate states.A stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration for the Souris River Basin was developed using recorded meteorological data and extended precipitation records provided through tree-ring analysis. A significant climate transition was seen around1970, with 1912–69 representing a dry climate state and 1970–2011 representing a wet climate state. Although there were some distinct subpatterns within the basin, the predominant differences between the two states were higher spring through early fall precipitation and higher spring potential evapotranspiration for the wet compared to the dry state.A water-balance model was developed for simulating monthly natural (unregulated) mean streamflow based on precipitation, temperature, and potential evapotranspiration at select streamflow-gaging stations. The model was calibrated using streamflow data from the U.S. Geological Survey and Environment Canada, along with natural (unregulated) streamflow data from the U.S. Army Corps of Engineers. Correlation coefficients between simulated and natural (unregulated) flows generally were high (greater than 0.8), and the seasonal means and standard deviations of the simulated flows closely matched the means and standard deviations of the natural (unregulated) flows. After calibrating the model for a monthly time step, monthly streamflow for each subbasin was disaggregated into three values per month, or an approximately 10-day time step, and a separate routing model was developed for simulating 10-day streamflow for downstream gages.The stochastic climate simulation model for precipitation, temperature, and potential evapotranspiration was combined with the water-balance model to simulate potential future sequences of 10-day mean streamflow for each of the streamflow-gaging station locations. Flood risk, as determined by equilibrium flow-frequency distributions for the dry (1912–69) and wet (1970–2011) climate states, was considerably higher for the wet state compared to the dry state. Future flood risk will remain high until the wet climate state ends, and for several years after that, because there may be a long lag-time between the return of drier conditions and the onset of a lower soil-moisture storage equilibrium.
Bumgarner, Johnathan R.; Thompson, Florence E.
2012-01-01
The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995-2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts. Model hydrology was calibrated with streamflow data collected at the U.S. Geological Survey streamflow-gaging station 08167500 Guadalupe River near Spring Branch, Tex., for 1995-2010. Simulated monthly streamflow showed very good agreement with measured monthly streamflow: a percent bias of -5, a coefficient of determination of 0.91, and a Nash-Sutcliffe coefficient of model efficiency of 0.85. Modified land-cover input datasets were generated for the model in order to simulate the replacement of ashe juniper with grasslands in 23 brush-management subbasins in the watershed. Each of the 23 simulations showed an increase in simulated water yields in the targeted subbasins and to Canyon Lake. The simulated increases in average annual water yields in the subbasins ranged from 6,370 to 119,000 gallons per acre of ashe juniper replaced with grasslands with an average of 38,900 gallons. The simulated increases in average annual water yields to Canyon Lake from upstream subbasins ranged from 6,640 to 72,700 gallons per acre of ashe juniper replaced with grasslands with an average of 34,700 gallons.
NASA Astrophysics Data System (ADS)
David, McInerney; Mark, Thyer; Dmitri, Kavetski; George, Kuczera
2017-04-01
This study provides guidance to hydrological researchers which enables them to provide probabilistic predictions of daily streamflow with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality). Reliable and precise probabilistic prediction of daily catchment-scale streamflow requires statistical characterization of residual errors of hydrological models. It is commonly known that hydrological model residual errors are heteroscedastic, i.e. there is a pattern of larger errors in higher streamflow predictions. Although multiple approaches exist for representing this heteroscedasticity, few studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating 8 common residual error schemes, including standard and weighted least squares, the Box-Cox transformation (with fixed and calibrated power parameter, lambda) and the log-sinh transformation. Case studies include 17 perennial and 6 ephemeral catchments in Australia and USA, and two lumped hydrological models. We find the choice of heteroscedastic error modelling approach significantly impacts on predictive performance, though no single scheme simultaneously optimizes all performance metrics. The set of Pareto optimal schemes, reflecting performance trade-offs, comprises Box-Cox schemes with lambda of 0.2 and 0.5, and the log scheme (lambda=0, perennial catchments only). These schemes significantly outperform even the average-performing remaining schemes (e.g., across ephemeral catchments, median precision tightens from 105% to 40% of observed streamflow, and median biases decrease from 25% to 4%). Theoretical interpretations of empirical results highlight the importance of capturing the skew/kurtosis of raw residuals and reproducing zero flows. Recommendations for researchers and practitioners seeking robust residual error schemes for practical work are provided.
Prudic, David E.
1989-01-01
Computer models are widely used to simulate groundwater flow for evaluating and managing the groundwater resource of many aquifers, but few are designed to also account for surface flow in streams. A computer program was written for use in the US Geological Survey modular finite difference groundwater flow model to account for the amount of flow in streams and to simulate the interaction between surface streams and groundwater. The new program is called the Streamflow-Routing Package. The Streamflow-Routing Package is not a true surface water flow model, but rather is an accounting program that tracks the flow in one or more streams which interact with groundwater. The program limits the amount of groundwater recharge to the available streamflow. It permits two or more streams to merge into one with flow in the merged stream equal to the sum of the tributary flows. The program also permits diversions from streams. The groundwater flow model with the Streamflow-Routing Package has an advantage over the analytical solution in simulating the interaction between aquifer and stream because it can be used to simulate complex systems that cannot be readily solved analytically. The Streamflow-Routing Package does not include a time function for streamflow but rather streamflow entering the modeled area is assumed to be instantly available to downstream reaches during each time period. This assumption is generally reasonable because of the relatively slow rate of groundwater flow. Another assumption is that leakage between streams and aquifers is instantaneous. This assumption may not be reasonable if the streams and aquifers are separated by a thick unsaturated zone. Documentation of the Streamflow-Routing Package includes data input instructions; flow charts, narratives, and listings of the computer program for each of four modules; and input data sets and printed results for two test problems, and one example problem. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Gudmundsson, Lukas; Do, Hong Xuan; Leonard, Michael; Westra, Seth
2018-04-01
This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM), which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a) describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate), Part 2 introduces a set of quality controlled time-series indices representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.
Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.
2009-01-01
The Nebraska Department of Natural Resources approved instream-flow appropriations on the Platte River to maintain fish communities, whooping crane roost habitat, and wet meadows used by several wild bird species. In the lower Platte River region, the Nebraska Game and Parks Commission owns an appropriation filed to maintain streamflow for fish communities between the Platte River confluence with the Elkhorn River and the mouth of the Platte River. Because Elkhorn River flow is an integral part of the flow in the reach addressed by this appropriation, the Upper Elkhorn and Lower Elkhorn Natural Resources Districts are involved in overall management of anthropogenic effects on the availability of surface water for instream requirements. The Physical Habitat Simulation System (PHABSIM) and other estimation methodologies were used previously to determine instream requirements for Platte River biota, which led to the filing of five water appropriations applications with the Nebraska Department of Natural Resources in 1993 by the Nebraska Game and Parks Commission. One of these requested instream-flow appropriations of 3,700 cubic feet per second was for the reach from the Elkhorn River to the mouth of the Platte River. Four appropriations were granted with modifications in 1998, by the Nebraska Department of Natural Resources. Daily streamflow data for the periods of record were summarized for 17 streamflow-gaging stations in Nebraska to evaluate streamflow characteristics, including low-flow intervals for consecutive durations of 1, 3, 7, 14, 30, 60, and 183 days. Temporal trends in selected streamflow statistics were not adjusted for variability in precipitation. Results indicated significant positive temporal trends in annual flow for the period of record at eight streamflow-gaging stations - Platte River near Duncan (06774000), Platte River at North Bend (06796000), Elkhorn River at Neligh (06798500), Logan Creek near Uehling (06799500), Maple Creek near Nickerson (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.
Fabian Nippgen; Brian L. McGlynn; Ryan E. Emanuel; James M. Vose
2016-01-01
The rainfall-runoff response of watersheds is affected by the legacy of past hydroclimatic conditions. We examined how variability in precipitation affected streamflow using 21 years of daily streamflow and precipitation data from five watersheds at the Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. The gauged watersheds contained both...
NASA Astrophysics Data System (ADS)
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.
2016-12-01
One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.
Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul
2014-01-01
As part of an ongoing effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin, analyses and simulations of the hydrology of the Edisto River Basin were made using the topography-based hydrological model (TOPMODEL). A primary focus of the investigation was to assess the potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River Basin. Scaling up was done in a step-wise manner, beginning with applying the calibration parameters, meteorological data, and topographic-wetness-index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made for subsequent simulations, culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River Basin and updated calibration parameters for some of the TOPMODEL calibration parameters. The scaling-up process resulted in nine simulations being made. Simulation 7 best matched the streamflows at station 02175000, Edisto River near Givhans, SC, which was the downstream limit for the TOPMODEL setup, and was obtained by adjusting the scaling factor, including streamflow routing, and using NEXRAD precipitation data for the Edisto River Basin. The Nash-Sutcliffe coefficient of model-fit efficiency and Pearson’s correlation coefficient for simulation 7 were 0.78 and 0.89, respectively. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the McTier Creek and Edisto River models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the substantial difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variable in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD–H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek Basin were used in the water-quality load models.
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
NASA Astrophysics Data System (ADS)
Tanguy, M.; Prudhomme, C.; Harrigan, S.; Smith, K. A.; Parry, S.
2017-12-01
Forecasting hydrological extremes is challenging, especially at lead times over 1 month for catchments with limited hydrological memory and variable climates. One simple way to derive monthly or seasonal hydrological forecasts is to use historical climate data to drive hydrological models using the Ensemble Streamflow Prediction (ESP) method. This gives a range of possible future streamflow given known initial hydrologic conditions alone. The degree of skill of ESP depends highly on the forecast initialisation month and catchment type. Using dynamic rainfall forecasts as driving data instead of historical data could potentially improve streamflow predictions. A lot of effort is being invested within the meteorological community to improve these forecasts. However, while recent progress shows promise (e.g. NAO in winter), the skill of these forecasts at monthly to seasonal timescales is generally still limited, and the extent to which they might lead to improved hydrological forecasts is an area of active research. Additionally, these meteorological forecasts are currently being produced at 1 month or seasonal time-steps in the UK, whereas hydrological models require forcings at daily or sub-daily time-steps. Keeping in mind these limitations of available rainfall forecasts, the objectives of this study are to find out (i) how accurate monthly dynamical rainfall forecasts need to be to outperform ESP, and (ii) how the method used to disaggregate monthly rainfall forecasts into daily rainfall time series affects results. For the first objective, synthetic rainfall time series were created by increasingly degrading observed data (proxy for a `perfect forecast') from 0 % to +/-50 % error. For the second objective, three different methods were used to disaggregate monthly rainfall data into daily time series. These were used to force a simple lumped hydrological model (GR4J) to generate streamflow predictions at a one-month lead time for over 300 catchments representative of the range of UK's hydro-climatic conditions. These forecasts were then benchmarked against the traditional ESP method. It is hoped that the results of this work will help the meteorological community to identify where to focus their efforts in order to increase the usefulness of their forecasts within hydrological forecasting systems.
Senior, Lisa A.; Koerkle, Edward H.
2003-01-01
The Christina River Basin drains 565 square miles (mi2) in Pennsylvania, Maryland, and Delaware. Water from the basin is used for recreation, drinking water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, White Clay Creek, and Red Clay Creek. The White Clay Creek is the second largest of the subbasins and drains an area of 108 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in non point-source evaluation, four independent models, one for each of the three major subbasins and for the Christina River, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base- flow samples were collected during 1998 at two sites in the White Clay Creek subbasin and at nine sites in the other subbasins.The HSPF model for the White Clay Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 17 reaches draining areas that ranged from 1.37 to 13 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the White Clay Creek Basin are agricultural, forested, residential, and urban.The hydrologic component of the model was run at an hourly time step and primarily calibrated using streamflow data from two U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Additional calibration was done using data from two other USGS streamflow-measurement stations with periods of record shorter than the calibration period. Daily precipitation data from two National Oceanic and Atmospheric Administration (NOAA) gages and hourly precipitation and other meteorological data for one NOAA gage were used for model input. The difference between simulated and observed streamflow volume ranged from -0.9 to 1.8 percent for the 4-year period at the two calibration sites with 4-year records. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 89.1 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 14.4 percent and the overall error for the 4-year period was -0.9 percent. Calibration errors for 36 storm periods at the two calibration sites for total volume, low-flowrecession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the hourly rainfall data.The water-quality component of the model was calibrated using data collected by the USGS and state agencies at three USGS streamflow-measurement stations with variable water-quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for up to five storms in 1998 at each of the two nonpoint-source monitoring sites in the White Clay Creek Basin indicate that simulation error is commonly as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved nutrients than for particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual events. The accuracy of the water-quality calibration under stormflow conditions is limited by the relatively small amount of water-quality data available for the White Clay Creek Basin.Users of the White Clay Creek HSPF model should be aware of model limitations and consider the following if the model is used for predictive purposes: streamflow and water quality for individual storm events may not be well simulated, but the model performance is reasonable when evaluated over longer periods of time; the observed flow-duration curve for the simulation period is similar to the long-term flow-duration curve at White Clay Creek near Newark, Del., indicating that the calibration period is representative of all but highest 0.1 percent and lowest 0.1 percent of flows at that site; relative errors in streamflow and water-quality simulations are greater for smaller drainage areas than for larger areas; and calibration for water-quality was based on sparse data.
Statistical downscaling of GCM simulations to streamflow using relevance vector machine
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Mujumdar, P. P.
2008-01-01
General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.
Pool, D.R.; Dickinson, Jesse
2007-01-01
A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.
Ryberg, Karen R.; Vecchia, Aldo V.
2012-01-01
Hydrologic time series data and associated anomalies (multiple components of the original time series representing variability at longer-term and shorter-term time scales) are useful for modeling trends in hydrologic variables, such as streamflow, and for modeling water-quality constituents. An R package, called waterData, has been developed for importing daily hydrologic time series data from U.S. Geological Survey streamgages into the R programming environment. In addition to streamflow, data retrieval may include gage height and continuous physical property data, such as specific conductance, pH, water temperature, turbidity, and dissolved oxygen. The package allows for importing daily hydrologic data into R, plotting the data, fixing common data problems, summarizing the data, and the calculation and graphical presentation of anomalies.
Temporal variability in the suspended sediment load and streamflow of the Doce River
NASA Astrophysics Data System (ADS)
Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva
2017-10-01
Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.
2015-12-01
The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). More than 1,700 gaged watersheds across the CONUS were modeled to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models with remotely-sensed data products (i.e. - snow water equivalent) and estimates of uncertainty. Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison. As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. - snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve simulations of streamflow for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of simulated and measured information for model development and calibration at a given location of interest. In addition, these calibration strategies have been developed to be flexible so that new data products or simulated information can be assimilated. This analysis provides a foundation to understand how well models work when streamflow data is either not available or is limited and could be used to further inform hydrologic model parameter development for ungaged areas.
NASA Astrophysics Data System (ADS)
Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.
2017-12-01
The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.
Marginal economic value of streamflow: A case study for the Colorado River Basin
Thomas C. Brown; Benjamin L. Harding; Elizabeth A. Payton
1990-01-01
The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and...
Environmental Setting of the Sugar Creek and Leary Weber Ditch Basins, Indiana, 2002-04
Lathrop, Timothy R.
2006-01-01
The U.S. Geological Survey operates streamflow-gaging stations at Sugar Creek at New Palestine and at Leary Weber Ditch at Mohawk within the study area. Mean daily streamflow for Sugar Creek is higher than streamflow at Leary Weber Ditch. Through most of its length, Sugar Creek is a gaining stream and base flow is supported by ground-water sources. At Leary Weber Ditch, there is little to no streamflow when tile drains are dry. Modifications to the natural hydrology of the study area include a large system of tile drains, the intersection of Sugar Creek by several major roads, and outflows from nearby wastewater-treatment plants. Leary Weber Ditch is affected only by tile drains.
Factors related to the joint probability of flooding on paired streams
Koltun, G.F.; Sherwood, J.M.
1998-01-01
The factors related to the joint probabilty of flooding on paired streams were investigated and quantified to provide information to aid in the design of hydraulic structures where the joint probabilty of flooding is an element of the design criteria. Stream pairs were considered to have flooded jointly at the design-year flood threshold (corresponding to the 2-, 10-, 25-, or 50-year instantaneous peak streamflow) if peak streamflows at both streams in the pair were observed or predicted to have equaled or exceeded the threshold on a given calendar day. Daily mean streamflow data were used as a substitute for instantaneous peak streamflow data to determine which flood thresholds were equaled or exceeded on any given day. Instantaneous peak streamflow data, when available, were used preferentially to assess flood-threshold exceedance. Daily mean streamflow data for each stream were paired with concurrent daily mean streamflow data at the other streams. Observed probabilities of joint flooding, determined for the 2-, 10-, 25-, and 50-year flood thresholds, were computed as the ratios of the total number of days when streamflows at both streams concurrently equaled or exceeded their flood thresholds (events) to the total number of days where streamflows at either stream equaled or exceeded its flood threshold (trials). A combination of correlation analyses, graphical analyses, and logistic-regression analyses were used to identify and quantify factors associated with the observed probabilities of joint flooding (event-trial ratios). The analyses indicated that the distance between drainage area centroids, the ratio of the smaller to larger drainage area, the mean drainage area, and the centroid angle adjusted 30 degrees were the basin characteristics most closely associated with the joint probabilty of flooding on paired streams in Ohio. In general, the analyses indicated that the joint probabilty of flooding decreases with an increase in centroid distance and increases with increases in drainage area ratio, mean drainage area, and centroid angle adjusted 30 degrees. Logistic-regression equations were developed, which can be used to estimate the probability that streamflows at two streams jointly equal or exceed the 2-year flood threshold given that the streamflow at one of the two streams equals or exceeds the 2-year flood threshold. The logistic-regression equations are applicable to stream pairs in Ohio (and border areas of adjacent states) that are unregulated, free of significant urban influences, and have characteristics similar to those of the 304 gaged stream pairs used in the logistic-regression analyses. Contingency tables were constructed and analyzed to provide information about the bivariate distribution of floods on paired streams. The contingency tables showed that the percentage of trials in which both streams in the pair concurrently flood at identical recurrence-interval ranges generally increased as centroid distances decreased and was greatest for stream pairs with adjusted centroid angles greater than or equal to 60 degrees and drainage area ratios greater than or equal to 0.01. Also, as centroid distance increased, streamflow at one stream in the pair was more likely to be in a less than 2-year recurrence-interval range when streamflow at the second stream was in a 2-year or greater recurrence-interval range.
Senior, Lisa A.; Koerkle, Edward H.
2003-01-01
The Christina River Basin drains 565 mi2 (square miles) in Pennsylvania and Delaware. Water from the basin is used for recreation, drinking-water supply, and to support aquatic life. The Christina River Basin includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Brandywine Creek is the largest of the subbasins and drains an area of 327 mi2. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the streams. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point and nonpoint-source contributions of nutrients and suspended sediment on streamwater quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program—Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at six sites in the Brandywine Creek subbasin and five sites in the other subbasins.The HSPF model for the Brandywine Creek Basin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into 35 reaches draining areas that ranged from 0.6 to 18 mi2. Three of the reaches contain regulated reservoir. Eleven different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the basin are forested, agricultural, residential, and urban. The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data for eight U.S. Geological Survey (USGS) stream-flow-measurement stations for the period of January 1, 1994, through October 29, 1998. Daily precipitation data for three National Oceanic and Atmospheric Administration (NOAA) gages and hourly data for one NOAA gage were used for model input. The difference between observed and simulated streamflow volume ranged from -2.7 to 3.9 percent for the nearly 5-year period at the eight calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error. For example, at a site near the bottom of the basin (drainage area of 237 mi2), annual differences between observed and simulated streamflow ranged from -14.0 to 18.8 percent and the overall error for the 5-year period was 1.0 percent. Calibration errors for 36 storm periods at the eight calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using monitoring data collected at six USGS streamflow-measurement stations with variable water quality monitoring periods ending October 1998. Because of availability, monitoring data for suspended solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended-solids data may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for two to six individual storms in 1998 at each of the six monitoring sites indicate that simulation error is commonly as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved nutrients than for particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual events. Assessment of the water-quality calibration under stormflow conditions is limited by the relatively small amount of available water-quality data in the basin. Duration curves for simulated and reported sediment concentration at Brandywine Creek at Wilmington, Del., are similar, indicating model performance is better when evaluated over longer periods than when evaluated on individual storm events.
Ranking streamflow model performance based on Information theory metrics
NASA Astrophysics Data System (ADS)
Martinez, Gonzalo; Pachepsky, Yakov; Pan, Feng; Wagener, Thorsten; Nicholson, Thomas
2016-04-01
The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic model evaluation and selection. We simulated 10-year streamflow time series in five watersheds located in Texas, North Carolina, Mississippi, and West Virginia. Eight model of different complexity were applied. The information-theory based metrics were obtained after representing the time series as strings of symbols where different symbols corresponded to different quantiles of the probability distribution of streamflow. The symbol alphabet was used. Three metrics were computed for those strings - mean information gain that measures the randomness of the signal, effective measure complexity that characterizes predictability and fluctuation complexity that characterizes the presence of a pattern in the signal. The observed streamflow time series has smaller information content and larger complexity metrics than the precipitation time series. Watersheds served as information filters and and streamflow time series were less random and more complex than the ones of precipitation. This is reflected the fact that the watershed acts as the information filter in the hydrologic conversion process from precipitation to streamflow. The Nash Sutcliffe efficiency metric increased as the complexity of models increased, but in many cases several model had this efficiency values not statistically significant from each other. In such cases, ranking models by the closeness of the information-theory based parameters in simulated and measured streamflow time series can provide an additional criterion for the evaluation of hydrologic model performance.
NASA Astrophysics Data System (ADS)
Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.; Nelson, Stacy A. C.
2015-08-01
Changes in streamflow are an important area of ongoing research in the hydrologic sciences. To better understand spatial patterns in past changes in streamflow, we examined relationships between watershed-scale spatial characteristics and trends in streamflow. Trends in streamflow were identified by analyzing mean daily flow observations between 1940 and 2009 from 967 U.S. Geological Survey stream gages. Results indicated that streamflow across the continental U.S., as a whole, increased while becoming less extreme between 1940 and 2009. However, substantial departures from the continental U.S. (CONUS) scale pattern occurred at the regional scale, including increased annual maxima, decreased annual minima, overall drying trends, and changes in streamflow variability. A subset of watersheds belonging to a reference data set exhibited significantly smaller trend magnitudes than those observed in nonreference watersheds. Boosted regression tree models were applied to examine the influence of watershed characteristics on streamflow trend magnitudes at both the CONUS and regional scale. Geographic location was found to be of particular importance at the CONUS scale while local variability in hydroclimate and topography tended to have a strong influence on regional-scale patterns in streamflow trends. This methodology facilitates detailed, data-driven analyses of how the characteristics of individual watersheds interact with large-scale hydroclimate forces to influence how changes in streamflow manifest.
Streamflow response to increasing precipitation extremes altered by forest management
NASA Astrophysics Data System (ADS)
Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.
2016-04-01
Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.
Stamey, Timothy C.
2001-01-01
In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.
WaterWatch - Maps, graphs, and tables of current, recent, and past streamflow conditions
Jian, Xiaodong; Wolock, David; Lins, Harry F.
2008-01-01
WaterWatch (http://water.usgs.gov/waterwatch/) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent, and past streamflow conditions for the United States. The real-time information generally is updated on an hourly basis. WaterWatch provides streamgage-based maps that show the location of more than 3,000 long-term (30 years or more) USGS streamgages; use colors to represent streamflow conditions compared to historical streamflow; feature a point-and-click interface allowing users to retrieve graphs of stream stage (water elevation) and flow; and highlight locations where extreme hydrologic events, such as floods and droughts, are occurring.The streamgage-based maps show streamflow conditions for real-time, average daily, and 7-day average streamflow. The real-time streamflow maps highlight flood and high flow conditions. The 7-day average streamflow maps highlight below-normal and drought conditions.WaterWatch also provides hydrologic unit code (HUC) maps. HUC-based maps are derived from the streamgage-based maps and illustrate streamflow conditions in hydrologic regions. These maps show average streamflow conditions for 1-, 7-, 14-, and 28-day periods, and for monthly average streamflow; highlight regions of low flow or hydrologic drought; and provide historical runoff and streamflow conditions beginning in 1901.WaterWatch summarizes streamflow conditions in a region (state or hydrologic unit) in terms of the long-term typical condition at streamgages in the region. Summary tables are provided along with time-series plots that depict variations through time. WaterWatch also includes tables of current streamflow information and locations of flooding.
NASA Astrophysics Data System (ADS)
Wu, Pan; Wang, Xu-Sheng; Liang, Sihai
2018-06-01
Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011-2030 (2020s), 2046-2065 (2050s), 2080-2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.
Streamflow characteristics of the Colorado River Basin in Utah through September 1981
Christensen, R.C.; Johnson, E.B.; Plantz, G.G.
1987-01-01
This report summarizes discharge data and other streamflow characteristics developed from gag ing-station records collected through September 1981 at 337 stations in the Colorado River Basin in Utah. Data also are included for 14 stations in adjacent areas of the bordering states of Arizona, Colorado, and Wyoming (fig. 1). The study leading to this report was done in cooperation with the U.S. Bureau of Land Management, which needs the streamflow data in order to evaluate impacts of mining on the hydrologic system. The report also will be beneficial to other Federal, State, and county agencies and to individuals concerned with water supply and water problems in the Colorado River Basin.The streamflow characteristics in the report could be useful in many water-related studies that involve the following:Definition of baseline-hydrologic conditions; studies of the effects of man's activities on streamflow; frequency analyses of low and high flows; regional analyses of streamflow characteristics; design of water-supply systems; water-power studies; forecasting of stream discharge; time-series analyses of streamflow; design of flood-control structures; stream-pollution studies; and water-chemistry transport studies.The basic data used to develop the summaries in this report are records of daily and peak discharge collected by the U.S. Geological Survey and other Federal agencies. Much of the work of the Geological Survey was done in cooperation with Federal, State, and county agencies. Discharge recordsincluded in the report generally were for stations with at least 1 complete water year of record and nearby stations that were on the same stream and had different streamflow characteristics. A water year is a 12-month period ending September 30, and it is designated by the calendar year in which it ends. For streams that have had significant changes in regulation by reservoirs or diversions, the records before and after those changes were used separately to provide streamflow characteristics for each period of homogeneous streamflow and to show the change in the characteristics. Summaries for annual peak discharge are included only for stations with 5 or more years of data. The summaries of annual lowest and highest mean-discharge frequency are reported for stations with 10 or more years of daily-discharge record and for which computer-generated frequency curves provided a reasonable fit of the plotted data.
Coon, William F.; Reddy, James E.
2008-01-01
Onondaga Lake in Onondaga County, New York, has been identified as one of the Nation?s most contaminated lakes as a result of industrial and sanitary-sewer discharges and stormwater nonpoint sources, and has received priority cleanup status under the national Water Resources Development Act of 1990. A basin-scale precipitation-runoff model of the Onondaga Lake basin was identified as a desirable water-resources management tool to better understand the processes responsible for the generation of loads of sediment and nutrients that are transported to Onondaga Lake. During 2003?07, the U.S. Geological Survey (USGS) developed a model based on the computer program, Hydrological Simulation Program?FORTRAN (HSPF), which simulated overland flow to, and streamflow in, the major tributaries of Onondaga Lake, and loads of sediment, phosphorus, and nitrogen transported to the lake. The simulation period extends from October 1997 through September 2003. The Onondaga Lake basin was divided into 107 subbasins and within these subbasins, the land area was apportioned among 19 pervious and impervious land types on the basis of land use and land cover, hydrologic soil group (HSG), and aspect. Precipitation data were available from three sources as input to the model. The model simulated streamflow, water temperature, concentrations of dissolved oxygen, and concentrations and loads of sediment, orthophosphate, total phosphorus, nitrate, ammonia, and organic nitrogen in the four major tributaries to Onondaga Lake?Onondaga Creek, Harbor Brook, Ley Creek, and Ninemile Creek. Simulated flows were calibrated to data from nine USGS streamflow-monitoring sites; simulated nutrient concentrations and loads were calibrated to data collected at six of the nine streamflow-monitoring sites. Water-quality samples were collected, processed, and analyzed by personnel from the Onondaga County Department of Water Environment Protection. Several time series of flow, and sediment and nutrient loads were generated for known sources of these constituents, including the Tully Valley mudboils (flow and sediment), Otisco Lake (flow and nutrients), the Marcellus wastewater-treatment plant (flow and nutrients), and springs from carbonate bedrock (flow). Runoff from the impervious sewered areas of the City of Syracuse was adjusted for the quantity that was treatable at the county wastewater-treatment plant; the excess flows were routed to nearby streams through combined-sanitary-and-storm-sewer overflows. The mitigative effects that the Onondaga Reservoir and Otisco Lake were presumed to have on loads of sediment and particulate constituents were simulated by adjustment of parameter values that controlled sediment settling rates, deposition, and scour in the reservoir and lake. Graphical representations of observed and simulated data, and relevant statistics, were compared to assess model performance. Simulated daily and monthly streamflows were rated ?very good? (within 10 percent of observed flows) at all calibration sites, except Onondaga Creek at Cardiff, which was rated ?fair? (10?15 percent difference). Simulations of monthly average water temperatures were rated ?very good? (within 7 percent of observed temperatures) at all sites. No observed data were available by which to directly assess the model?s simulation of suspended sediment loads. Available measured total suspended solids data provided an indirect means of comparison but, not surprisingly, yielded only ?fair? to ?poor? ratings (greater than 30 percent difference) for simulated monthly sediment loads at half the water-quality calibration sites. Simulations of monthly orthophosphate loads ranged from ?very good? (within 15 percent of measured loads) at three sites to ?poor? (greater than 35 percent difference) at one site; simulations of ammonia nitrogen loads ranged from ?very good? at one site to ?fair? (25?35 percent difference) at two sites. Simulations of monthly total phosphorus, nitrate, and or
USGS Streamgages Linked to the Medium Resolution NHD
Stewart, David W.; Rea, Alan; Wolock, David M.
2006-01-01
The locations of approximately 23,000 current and historical U.S. Geological Survey (USGS) streamgages in the United States and Puerto Rico (with the exception of Alaska) have been snapped to the medium resolution National Hydrography Dataset (NHD). The NHD contains geospatial information about mapped surface-water features, such as streams, lakes, and reservoirs, etc., creating a hydrologic network that can be used to determine what is upstream or downstream from a point of interest on the NHD network. An automated snapping process made the initial determination of the NHD location of each streamgage. These initial NHD locations were comprehensively reviewed by local USGS personnel to ensure that streamgages were snapped to the correct NHD reaches. About 75 percent of the streamgages snapped to the appropriate NHD reach location initially and 25 percent required adjustment and relocation. This process resulted in approximately 23,000 gages being successfully snapped to the NHD. This dataset contains the latitude and longitude coordinates of the point on the NHD to which the streamgage is snapped and the location of the gage house for each streamgage. A process known as indexing may be used to create reference points (event tables) to the NHD reaches, expressed as a reach code and measure (distance along the reach). Indexing is dependent on the version of NHD to which the indexing is referenced. These data are well suited for use in indexing because nearly all the streamgage NHD locations have been reviewed and adjusted if necessary, to ensure they will index to the appropriate NHD reach. Flow characteristics were computed from the daily streamflow data recorded at each streamgage for the period of record. The flow characteristics associated with each streamgage include: *First date (year, month, day) of streamflow data *Last date (year, month, day) of streamflow data *Number of days of streamflow data *Number of days of non-zero streamflow data *Minimum and maximum daily flow for the period of record (cubic feet per second) *Percentiles (1, 5, 10, 20, 25, 50, 75, 80, 90, 95, 99) of daily flow for the period of record (cubic feet per second) *Average and standard deviation of daily flow for the period of record (cubic feet per second) *Mean annual base-flow index (BFI) computed for the period of record (fraction, ranging from 0 to 1) *Year-to-year standard deviation of the annual base-flow index computed for the period of record (fraction) *Number of years of data used to compute the base-flow index (years) The streamflow data used to compute flow characteristics were copied from the NWIS-Web historical daily discharge archive (nadww01.er.usgs.gov:/www/htdocs/nwisweb/data/discharge) on June 15, 2005.
Clark, Brian R.; Hart, Rheannon M.
2009-01-01
The Mississippi Embayment Regional Aquifer Study (MERAS) was conducted with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater. This report documents the construction and calibration of a finite-difference groundwater model for use as a tool to quantify groundwater availability within the Mississippi embayment. To approximate the differential equation, the MERAS model was constructed with the U.S. Geological Survey's modular three-dimensional finite-difference code, MODFLOW-2005; the preconditioned conjugate gradient solver within MODFLOW-2005 was used for the numerical solution technique. The model area boundary is approximately 78,000 square miles and includes eight States with approximately 6,900 miles of simulated streams, 70,000 well locations, and 10 primary hydrogeologic units. The finite-difference grid consists of 414 rows, 397 columns, and 13 layers. Each model cell is 1 square mile with varying thickness by cell and by layer. The simulation period extends from January 1, 1870, to April 1, 2007, for a total of 137 years and 69 stress periods. The first stress period is simulated as steady state to represent predevelopment conditions. Areal recharge is applied throughout the MERAS model area using the MODFLOW-2005 Recharge Package. Irrigation, municipal, and industrial wells are simulated using the Multi-Node Well Package. There are 43 streams simulated by the MERAS model. Each stream or river in the model area was simulated using the Streamflow-Routing Package. The perimeter of the model area and the base of the flow system are represented as no-flow boundaries. The downgradient limit of each model layer is a no-flow boundary, which approximates the extent of water with less than 10,000 milligrams per liter of dissolved solids. The MERAS model was calibrated by making manual changes to parameter values and examining residuals for hydraulic heads and streamflow. Additional calibration was achieved through alternate use of UCODE-2005 and PEST. Simulated heads were compared to 55,786 hydraulic-head measurements from 3,245 wells in the MERAS model area. Values of root mean square error between simulated and observed hydraulic heads of all observations ranged from 8.33 feet in 1919 to 47.65 feet in 1951, though only six root mean square error values are greater than 40 feet for the entire simulation period. Simulated streamflow generally is lower than measured streamflow for streams with streamflow less than 1,000 cubic feet per second, and greater than measured streamflow for streams with streamflow more than 1,000 cubic feet per second. Simulated streamflow is underpredicted for 18 observations and overpredicted for 10 observations in the model. These differences in streamflow illustrate the large uncertainty in model inputs such as predevelopment recharge, overland flow, pumpage (from stream and aquifer), precipitation, and observation weights. The groundwater-flow budget indicates changes in flow into (inflows) and out of (outflows) the model area during the pregroundwater-irrigation period (pre-1870) to 2007. Total flow (sum of inflows or outflows) through the model ranged from about 600 million gallons per day prior to development to 18,197 million gallons per day near the end of the simulation. The pumpage from wells represents the largest outflow components with a net rate of 18,197 million gallons per day near the end of the model simulation in 2006. Groundwater outflows are offset primarily by inflow from aquifer storage and recharge.
NASA Astrophysics Data System (ADS)
Erkyihun, Solomon Tassew; Rajagopalan, Balaji; Zagona, Edith; Lall, Upmanu; Nowak, Kenneth
2016-05-01
A model to generate stochastic streamflow projections conditioned on quasi-oscillatory climate indices such as Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) is presented. Recognizing that each climate index has underlying band-limited components that contribute most of the energy of the signals, we first pursue a wavelet decomposition of the signals to identify and reconstruct these features from annually resolved historical data and proxy based paleoreconstructions of each climate index covering the period from 1650 to 2012. A K-Nearest Neighbor block bootstrap approach is then developed to simulate the total signal of each of these climate index series while preserving its time-frequency structure and marginal distributions. Finally, given the simulated climate signal time series, a K-Nearest Neighbor bootstrap is used to simulate annual streamflow series conditional on the joint state space defined by the simulated climate index for each year. We demonstrate this method by applying it to simulation of streamflow at Lees Ferry gauge on the Colorado River using indices of two large scale climate forcings: Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO), which are known to modulate the Colorado River Basin (CRB) hydrology at multidecadal time scales. Skill in stochastic simulation of multidecadal projections of flow using this approach is demonstrated.
Ockerman, Darwin J.
2007-01-01
A watershed model (Hydrological Simulation Program?FORTRAN) was developed, calibrated, and tested by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, San Antonio River Authority, San Antonio Water System, and Guadalupe-Blanco River Authority, to simulate streamflow and estimate ground-water recharge in the upper Cibolo Creek watershed in south-central Texas. Rainfall, evapotranspiration, and streamflow data were collected during 1992?2004 for model calibrations and simulations. Estimates of average ground-water recharge during 1992?2004 from simulation were 79,800 acre-feet (5.47 inches) per year or about 15 percent of rainfall. Most of the recharge (about 74 percent) occurred as infiltration of streamflow in Cibolo Creek. The remaining recharge occurred as diffuse infiltration of rainfall through the soil and rock layers and karst features. Most recharge (about 77 percent) occurred in the Trinity aquifer outcrop. The remaining 23 percent occurred in the downstream part of the watershed that includes the Edwards aquifer recharge zone (outcrop). Streamflow and recharge in the study area are greatly influenced by large storms. Storms during June 1997, October 1998, and July 2002 accounted for about 11 percent of study-area rainfall, 61 percent of streamflow, and 16 percent of the total ground-water recharge during 1992?2004. Annual streamflow and recharge also were highly variable. During 1999, a dry year with about 16 inches of rain and no measurable runoff at the watershed outlet, recharge in the watershed amounted to only 0.99 inch compared with 13.43 inches during 1992, a relatively wet year with about 54 inches of rainfall. Simulation of flood-control/recharge-enhancement structures showed that certain structures might reduce flood peaks and increase recharge. Simulation of individual structures on tributaries showed relatively little effect. Larger structures on the main stem of Cibolo Creek were more effective than structures on tributaries, both in terms of flood-peak reduction and recharge enhancement. One simulated scenario that incorporated two main-stem structures resulted in a 37-percent reduction of peak flow at the watershed outlet and increases in stream-channel recharge of 6.6 percent in the Trinity aquifer outcrop and 12.6 percent in the Edwards aquifer (recharge zone) outcrop.
Thermal effects of dams in the Willamette River basin, Oregon
Rounds, Stewart A.
2010-01-01
Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm
Blodgett, J.C.; Oltmann, R.N.; Poeschel, K.R.
1984-01-01
Daily mean and monthly discharges were estimated for 10 sites on the Carson and Truckee Rivers for periods of incomplete records and for tributary sites affected by reservoir regulation. On the basis of the hydrologic characteristics, stream-flow data for a water year were grouped by month or season for subsequent regression analysis. In most cases, simple linear regressions adequately defined a relation of streamflow between gaging stations, but in some instances a nonlinear relation for several months of the water year was derived. Statistical data are presented to indicate the reliability of the estimated streamflow data. Records of discharges including historical and estimated data for the gaging stations for the water years 1944-80 are presented. (USGS)
Cool-Season Moisture Delivery and Multi-Basin Streamflow Anomalies in the Western United States
NASA Astrophysics Data System (ADS)
Malevich, Steven B.
Widespread droughts can have a significant impact on western United States streamflow, but the causes of these events are not fully understood. This dissertation examines streamflow from multiple western US basins and establishes the robust, leading modes of variability in interannual streamflow throughout the past century. I show that approximately 50% of this variability is associated with spatially widespread streamflow anomalies that are statistically independent from streamflow's response to the El Nino-Southern Oscillation (ENSO). The ENSO-teleconnection accounts for approximately 25% of the interannual variability in streamflow, across this network. These atmospheric circulation anomalies associated with the most spatially widespread variability are associated with the Aleutian low and the persistent coastal atmospheric ridge in the Pacific Northwest. I use a watershed segmentation algorithm to explicitly track the position and intensity of these features and compare their variability to the multi-basin streamflow variability. Results show that latitudinal shifts in the coastal atmospheric ridge are more strongly associated with streamflow's north-south dipole response to ENSO variability while more spatially widespread anomalies in streamflow most strongly relate to seasonal changes in the coastal ridge intensity. This likely reflects persistent coastal ridge blocking of cool-season precipitation into western US river basins. I utilize the 35 model runs of the Community Earth System Model Large Ensemble (CESMLE) to determine whether the model ensemble simulates the anomalously strong coastal ridges and extreme widespread wintertime precipitation anomalies found in the observation record. Though there is considerable bias in the CESMLE, the CESMLE runs simulate extremely widespread dry precipitation anomalies with a frequency of approximately one extreme event per century during the historical simulations (1920 - 2005). These extremely widespread dry events correspond significantly with anomalously intense coastal atmospheric ridges. The results from these three papers connect widespread interannual streamflow anomalies in the western US--and especially extremely widespread streamflow droughts--with semi-permanent atmospheric ridge anomalies near the coastal Pacific Northwest. This is important to western US water managers because these widespread events appear to have been a robust feature of the past century. The semi-permanent atmospheric features associated with these widespread dry streamflow anomalies are projected to change position significantly in the next century as a response to global climate change. This may change widespread streamflow anomaly characteristic in the western US, though my results do not show evidence of these changes within the instrument record of last century.
Rutledge, A.T.
1998-01-01
The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.
Sloto, Ronald A.
2004-01-01
This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide
IOD and ENSO impacts on the extreme stream-flows of Citarum river in Indonesia
NASA Astrophysics Data System (ADS)
Sahu, Netrananda; Behera, Swadhin K.; Yamashiki, Yosuke; Takara, Kaoru; Yamagata, Toshio
2012-10-01
Extreme stream-flow events of Citarum River are derived from the daily stream-flows at the Nanjung gauge station. Those events are identified based on their persistently extreme flows for 6 or more days during boreal fall when the seasonal mean stream-flow starts peaking-up from the lowest seasonal flows of June-August. Most of the extreme events of high-streamflows were related to La Niña conditions of tropical Pacific. A few of them were also associated with the negative phases of IOD and the newly identified El Niño Modoki. Unlike the cases of extreme high streamflows, extreme low streamflow events are seen to be associated with the positive IODs. Nevertheless, it was also found that the low-stream-flow events related to positive IOD events were also associated with El Niño events except for one independent event of 1977. Because the occurrence season coincides the peak season of IOD, not only the picked extreme events are seen to fall under the IOD seasons but also there exists a statistically significant correlation of 0.51 between the seasonal IOD index and the seasonal streamflows. There also exists a significant lag correlation when IOD of June-August season leads the streamflows of September-November. A significant but lower correlation coefficient (0.39) is also found between the seasonal streamflow and El Niño for September-November season only.
Petsch, Harold E.
1979-01-01
Statistical summaries of daily streamflow data for 189 stations west of the Continental Divide in Colorado are presented in this report. Duration tables, high-flow sequence tables, and low-flow sequence tables provide information about daily mean discharge. The mean, variance, standard deviation, skewness, and coefficient of variation are provided for monthly and annual flows. Percentages of average flow are provided for monthly flows and first-order serial-correlation coefficients are provided for annual flows. The text explain the nature and derivation of the data and illustrates applications of the tabulated information by examples. The data may be used by agencies and individuals engaged in water studies. (USGS)
Modifying WEPP to improve streamflow simulation in a Pacific Northwest watershed
A. Srivastava; M. Dobre; J. Q. Wu; W. J. Elliot; E. A. Bruner; S. Dun; E. S. Brooks; I. S. Miller
2013-01-01
The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow...
NASA Astrophysics Data System (ADS)
Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie
2017-08-01
This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.
NASA Astrophysics Data System (ADS)
Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.
2017-12-01
Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.
Impact of Climate Change on Water Resources in the Guadalquivir River Basin
NASA Astrophysics Data System (ADS)
Yeste Donaire, P.; García-Valdecasas-Ojeda, M.; Góngora García, T. M.; Gámiz-Fortis, S. R.; Castro-Diez, Y.; Esteban-Parra, M. J.
2017-12-01
Climate change has lead to a decrease of precipitation and an increase of temperature in the Mediterranean Basin during the last fifty years. These changes will be more intense over the course of the 21thcentury according to global climate projections. As a consequence, water resources are expected to decrease, particularly in the Guadalquivir River Basin. This study focuses on the hydrological response of the Guadalquivir River Basin to the climate change. For this end, firstly, the implementation of the Variable Infiltration Capacity (VIC) model in the Basin was carried out. The VIC model was calibrated with a dataset of daily precipitation, temperature and streamflow for the period 1990-2000. Precipitation and temperature data were extracted from SPAIN02, a dataset that covers the Peninsular Spain at 0.11º of spatial resolution. Streamflow data were gathered for a representative subset of gauging stations in the basin. These data were provided by the Spanish Center for Public Work Experimentation and Study (CEDEX). Subsequently, the VIC model was validated for the period 2000-2005 in order to verify that the model outputs fit well with the observational data. After the validation of the VIC model for present climate, secondly, the effect of climate change on the Guadalquivir River Basin will be analyzed by developing several simulations of the streamflow for future climate. Precipitation and temperature data will be obtained in this case from future projections coming from high resolution (at 0.088º) simulations carried out with the Weather Research and Forecasting (WRF) model for the Iberian Peninsula. These last simulations will be driven under two different Representative Concentration Pathway (RCP) scenarios, RCP 4.5 and RCP 8.5 for the periods 2021-50 and 2071-2100. The first results of this work show that the VIC model outputs are in good agreement with the observed streamflow for both the calibration and validation periods. In the context of climate change, a generalized decrease in surface and subsurface water resources is expected in the Guadalquivir River Basin. All these results will be of interest for water policy makers and practitioners in the next decades. ACKNOWLEDGEMENTS: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía) and CGL2013-48539-R (MINECO-Spain, FEDER).
Changes in the relation between snow station observations and basin scale snow water resources
NASA Astrophysics Data System (ADS)
Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.
2017-12-01
Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.
NASA Astrophysics Data System (ADS)
Abul Ehsan Bhuiyan, Md; Nikolopoulos, Efthymios I.; Anagnostou, Emmanouil N.; Quintana-Seguí, Pere; Barella-Ortiz, Anaïs
2018-02-01
This study investigates the use of a nonparametric, tree-based model, quantile regression forests (QRF), for combining multiple global precipitation datasets and characterizing the uncertainty of the combined product. We used the Iberian Peninsula as the study area, with a study period spanning 11 years (2000-2010). Inputs to the QRF model included three satellite precipitation products, CMORPH, PERSIANN, and 3B42 (V7); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset. We calibrated the QRF model for two seasons and two terrain elevation categories and used it to generate ensemble for these conditions. Evaluation of the combined product was based on a high-resolution, ground-reference precipitation dataset (SAFRAN) available at 5 km 1 h-1 resolution. Furthermore, to evaluate relative improvements and the overall impact of the combined product in hydrological response, we used the generated ensemble to force a distributed hydrological model (the SURFEX land surface model and the RAPID river routing scheme) and compared its streamflow simulation results with the corresponding simulations from the individual global precipitation and reference datasets. We concluded that the proposed technique could generate realizations that successfully encapsulate the reference precipitation and provide significant improvement in streamflow simulations, with reduction in systematic and random error on the order of 20-99 and 44-88 %, respectively, when considering the ensemble mean.
NASA Astrophysics Data System (ADS)
Wang, Hong; Sun, Fubao; Xia, Jun; Liu, Wenbin
2017-04-01
Under the Grain for Green Project in China, vegetation recovery construction has been widely implemented on the Loess Plateau for the purpose of soil and water conservation. Now it is becoming controversial whether the recovery construction involving vegetation, particularly forest, is reducing the streamflow in the rivers of the Yellow River basin. In this study, we chose the Wei River, the largest branch of the Yellow River, with revegetated construction area as the study area. To do that, we apply the widely used Soil and Water Assessment Tool (SWAT) model for the upper and middle reaches of the Wei River basin. The SWAT model was forced with daily observed meteorological forcings (1960-2009) calibrated against daily streamflow for 1960-1969, validated for the period of 1970-1979, and used for analysis for 1980-2009. To investigate the impact of LUCC (land use and land cover change) on the streamflow, we firstly use two observed land use maps from 1980 and 2005 that are based on national land survey statistics merged with satellite observations. We found that the mean streamflow generated by using the 2005 land use map decreased in comparison with that using the 1980 one, with the same meteorological forcings. Of particular interest here is that the streamflow decreased on agricultural land but increased in forest areas. More specifically, the surface runoff, soil flow, and baseflow all decreased on agricultural land, while the soil flow and baseflow of forest areas increased. To investigate that, we then designed five scenarios: (S1) the present land use (1980) and (S2) 10 %, (S3) 20 %, (S4) 40 %, and (S5) 100 % of agricultural land that was converted into mixed forest. We found that the streamflow consistently increased with agricultural land converted into forest by about 7.4 mm per 10 %. Our modeling results suggest that forest recovery construction has a positive impact on both soil flow and baseflow by compensating for reduced surface runoff, which leads to a slight increase in the streamflow in the Wei River with the mixed landscapes on the Loess Plateau that include earth-rock mountain area.
Regional regression equations for estimation of natural streamflow statistics in Colorado
Capesius, Joseph P.; Stephens, Verlin C.
2009-01-01
The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Department of Transportation, developed regional regression equations for estimation of various streamflow statistics that are representative of natural streamflow conditions at ungaged sites in Colorado. The equations define the statistical relations between streamflow statistics (response variables) and basin and climatic characteristics (predictor variables). The equations were developed using generalized least-squares and weighted least-squares multilinear regression reliant on logarithmic variable transformation. Streamflow statistics were derived from at least 10 years of streamflow data through about 2007 from selected USGS streamflow-gaging stations in the study area that are representative of natural-flow conditions. Basin and climatic characteristics used for equation development are drainage area, mean watershed elevation, mean watershed slope, percentage of drainage area above 7,500 feet of elevation, mean annual precipitation, and 6-hour, 100-year precipitation. For each of five hydrologic regions in Colorado, peak-streamflow equations that are based on peak-streamflow data from selected stations are presented for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year instantaneous-peak streamflows. For four of the five hydrologic regions, equations based on daily-mean streamflow data from selected stations are presented for 7-day minimum 2-, 10-, and 50-year streamflows and for 7-day maximum 2-, 10-, and 50-year streamflows. Other equations presented for the same four hydrologic regions include those for estimation of annual- and monthly-mean streamflow and streamflow-duration statistics for exceedances of 10, 25, 50, 75, and 90 percent. All equations are reported along with salient diagnostic statistics, ranges of basin and climatic characteristics on which each equation is based, and commentary of potential bias, which is not otherwise removed by log-transformation of the variables of the equations from interpretation of residual plots. The predictor-variable ranges can be used to assess equation applicability for ungaged sites in Colorado.
SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments
NASA Astrophysics Data System (ADS)
Fu, Congsheng; James, April L.; Yao, Huaxia
2014-04-01
Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With significant changes to the infiltration module (introducing macropore flow and reduced bedrock percolation), more than 90% of interflow was generated close to the soil-bedrock interface and the contribution of groundwater flow to total runoff was reduced to small amounts, consistent with hydrological process understanding in this terrain. These two changes also allowed for a positive linear relationship between NSE of SWE and Q, whereas prior to these changes there was a negative relationship. With these key revisions to the infiltration and bedrock percolations modules, it is concluded that SWAT-CS can reasonably capture key hydrological processes within Canadian Shield catchments. Further testing will examine water quality modeling and larger-scale applications.
Analysis of managed aquifer recharge for retiming streamflow in an alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.
2017-01-01
Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.
NASA Astrophysics Data System (ADS)
Newman, A. J.; Sampson, K. M.; Wood, A. W.; Hopson, T. M.; Brekke, L. D.; Arnold, J.; Raff, D. A.; Clark, M. P.
2013-12-01
Skill in model-based hydrologic forecasting depends on the ability to estimate a watershed's initial moisture and energy conditions, to forecast future weather and climate inputs, and on the quality of the hydrologic model's representation of watershed processes. The impact of these factors on prediction skill varies regionally, seasonally, and by model. We are investigating these influences using a watershed simulation platform that spans the continental US (CONUS), encompassing a broad range of hydroclimatic variation, and that uses the current simulation models of National Weather Service streamflow forecasting operations. The first phase of this effort centered on the implementation and calibration of the SNOW-17 and Sacramento soil moisture accounting (SAC-SMA) based hydrologic modeling system for a range of watersheds. The base configuration includes 630 basins in the United States Geological Survey's Hydro-Climatic Data Network 2009 (HCDN-2009, Lins 2012) conterminous U.S. basin subset. Retrospective model forcings were derived from Daymet (http://daymet.ornl.gov/), and where available, a priori parameter estimates were based on or compared with the operational NWS model parameters. Model calibration was accomplished by several objective, automated strategies, including the shuffled complex evolution (SCE) optimization approach developed within the NWS in the early 1990s (Duan et al. 1993). This presentation describes outcomes from this effort, including insights about measuring simulation skill, and on relationships between simulation skill and model parameters, basin characteristics (climate, topography, vegetation, soils), and the quality of forcing inputs. References: %Z Thornton, P.; Thornton, M.; Mayer, B.; Wilhelmi, N.; Wei, Y.; Devarakonda, R; Cook, R. Daymet: Daily Surface Weather on a 1 km Grid for North America. 1980-2008; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2012; Volume 10.
Quantifying discharge uncertainty from remotely sensed precipitation data products in Puerto Rico
NASA Astrophysics Data System (ADS)
Weerasinghe, H.; Raoufi, R.; Yoon, Y.; Beighley, E., II; Alshawabkeh, A.
2014-12-01
Preterm birth is a serious health issue in the United States that contributes to over one-third of all infant deaths. Puerto Rico being one of the hot spots, preliminary research found that the high preterm birth rate can be associated with exposure to some contaminants in water used on daily basis. Puerto Rico has more than 200 contaminated sites including 16 active Superfund sites. Risk of exposure to contaminants is aggravated by unlined landfills lying over the karst regions, highly mobile and dynamic nature of the karst aquifers, and direct contact with surface water through sinkholes and springs. Much of the population in the island is getting water from natural springs or artesian wells that are connected with many of these potentially contaminated karst aquifers. Mobility of contaminants through surface water flows and reservoirs are largely known and are highly correlated with the variations in hydrologic events and conditions. In this study, we quantify the spatial and temporal distribution of Puerto Rico's surface water stores and fluxes to better understand potential impacts on the distribution of groundwater contamination. To quantify and characterize Puerto Rico's surface waters, hydrologic modeling, remote sensing and field measurements are combined. Streamflow measurements are available from 27 U.S. Geological Survey (USGS) gauging stations with drainage areas ranging from 2 to 510 km2. Hillslope River Routing (HRR) model is used to simulate hourly streamflow from watersheds larger than 1 km2 that discharge to ocean. HRR model simulates vertical water balance, lateral surface and subsurface runoff and river discharge. The model consists of 4418 sub-catchments with a mean model unit area (i.e., sub-catchment) of 1.8 km2. Using gauged streamflow measurements for validation, we first assess model results for simulated discharge using three precipitation products: TRMM-3B42 (3 hour temporal resolution, 0.25 degree spatial resolution); NWS stage-III radar rainfall (~ 5 min temporal resolution and 4 km spatial resolution); and gauge measurements from 37 rainfall stations for the period 2000-2012. We then explore methods for combining each product to improve overall model performance. Effects of varied spatial and temporal rainfall resolutions on simulated discharge are also investigated.
NASA Technical Reports Server (NTRS)
Panday, Prajjwal K.; Williams, Christopher A.; Frey, Karen E.; Brown, Molly E.
2013-01-01
Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash-Sutcliffe metric approx. 0.84, annual volume bias <3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002-2006 period is estimated to be 29.7+/-2.9% (which includes 4.2+/-0.9% from snowfall that promptly melts), whereas 70.3+/-2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000-5500m range contributes the most to basin runoff, averaging 56.9+/-3.6% of all snowmelt input and 28.9+/-1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds.
NASA Astrophysics Data System (ADS)
Mouzon, N. R.; Null, S. E.
2014-12-01
Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.
Martin, Gary R.; Zarriello, Phillip J.; Shipp, Allison A.
2001-01-01
Rainfall, streamflow, and water-quality data collected in the Chenoweth Run Basin during February 1996?January 1998, in combination with the available historical sampling data, were used to characterize hydrologic conditions and to develop and calibrate a Hydrological Simulation Program?Fortran (HSPF) model for continuous simulation of rainfall, streamflow, suspended-sediment, and total-orthophosphate (TPO4) transport relations. Study results provide an improved understanding of basin hydrology and a hydrologic-modeling framework with analytical tools for use in comprehensive waterresource planning and management. Chenoweth Run Basin, encompassing 16.5 mi2 in suburban eastern Jefferson County, Kentucky, contains expanding urban development, particularly in the upper third of the basin. Historical water-quality problems have interfered with designated aquatic-life and recreation uses in the stream main channel (approximately 9 mi in length) and have been attributed to organic enrichment, nutrients, metals, and pathogens in urban runoff and wastewater inflows. Hydrologic conditions in Jefferson County are highly varied. In the Chenoweth Run Basin, as in much of the eastern third of the county, relief is moderately sloping to steep. Also, internal drainage in pervious areas is impeded by the shallow, fine-textured subsoils that contain abundant silts and clays. Thus, much of the precipitation here tends to move rapidly as overland flow and (or) shallow subsurface flow (interflow) to the stream channels. Data were collected at two streamflowgaging stations, one rain gage, and four waterquality- sampling sites in the basin. Precipitation, streamflow, and, consequently, constituent loads were above normal during the data-collection period of this study. Nonpoint sources contributed the largest portion of the sediment loads. However, the three wastewatertreatment plants (WWTP?s) were the source of the majority of estimated total phosphorus (TP) and TPO4 transport downstream from the WWTP?s. HSPF, a hydrologic model capable of simulating mixed-land-use basins, includes land surface, subsurface, and instream waterquantity- and water-quality-modeling components. The HSPF model was used to represent several important hydrologic features of the Chenoweth Run Basin including (1) numerous small lakes and ponds, through which approximately 25 percent of the basin drains; (2) potential seasonal ground-waterseepage losses in stream channels; (3) contributions from WWTP effluents and bypass flows; and (4) the transport and transformations of sediments and nutrients. The HSPF model was calibrated and verified for flow simulation on the basis of measured total, annual, seasonal, monthly, daily, hourly, and 5-minute-interval storm discharge data. The occurrence of numerous storms during the study period permitted a splitsample procedure to be used for a model verification on the basis of storm volumes and peaks. Total simulated and observed discharge during the model calibration period differed by approximately -5.4 percent at the upper gaging station and 3.1 percent at the lower station. The model results for the total and annual water balances were classified as very good on the basis of the calibration criteria reported in other modeling studies. The model had correlation coefficients ranging from 0.89 to 0.98 for hourly to monthly mean flows, respectively. The coefficients of model-fit efficiency for daily and monthly discharge simulations were near the excellent range (exceeding 0.97). However, the model was calibrated for a comparatively short 24-month period during which flows were above normal. Increased model error might be expected during an extended period of nearnormal flows. The model was calibrated for simulation of sediment and TPO4 transport. The simulated mean-annual load (over 24 months) ranged from -33 to -28 percent of the estimated sediment load and within +/- 1 percent of the estimated TPO4 load at the two streamflow-gaging s
A physically based analytical model of flood frequency curves
NASA Astrophysics Data System (ADS)
Basso, S.; Schirmer, M.; Botter, G.
2016-09-01
Predicting magnitude and frequency of floods is a key issue in hydrology, with implications in many fields ranging from river science and geomorphology to the insurance industry. In this paper, a novel physically based approach is proposed to estimate the recurrence intervals of seasonal flow maxima. The method links the extremal distribution of streamflows to the stochastic dynamics of daily discharge, providing an analytical expression of the seasonal flood frequency curve. The parameters involved in the formulation embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is linked to the antecedent wetness condition in the watershed, needs to be calibrated on the observed maxima. The performance of the method is discussed through a set of applications in four rivers featuring heterogeneous daily flow regimes. The model provides reliable estimates of seasonal maximum flows in different climatic settings and is able to capture diverse shapes of flood frequency curves emerging in erratic and persistent flow regimes. The proposed method exploits experimental information on the full range of discharges experienced by rivers. As a consequence, model performances do not deteriorate when the magnitude of events with return times longer than the available sample size is estimated. The approach provides a framework for the prediction of floods based on short data series of rainfall and daily streamflows that may be especially valuable in data scarce regions of the world.
Post-processing of multi-hydrologic model simulations for improved streamflow projections
NASA Astrophysics Data System (ADS)
khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid
2016-04-01
Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.
2014-12-01
The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.
NASA Technical Reports Server (NTRS)
Lee, S.; Ni-Meister, W.; Toll, D.; Nigro, J.; Guiterrez-Magness, A.; Engman, T.
2010-01-01
The accuracy of streamflow predictions in the EPA's BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) decision support tool is affected by the sparse meteorological data contained in BASINS. The North American Land Data Assimilation System (NLDAS) data with high spatial and temporal resolutions provide an alternative to the NOAA National Climatic Data Center (NCDC)'s station data. This study assessed the improvement of streamflow prediction of the Hydrological Simulation Program-FORTRAN (HSPF) model contained within BASINS using the NLDAS 118 degree hourly precipitation and evapotranspiration estimates in seven watersheds of the Chesapeake Bay region. Our results demonstrated consistent improvements of daily streamflow predictions in five of the seven watersheds when NLDAS precipitation and evapotranspiration data was incorporated into BASINS. The improvement of using the NLDAS data is significant when watershed's meteorological station is either far away or not in a similar climatic region. When the station is nearby, using the NLDAS data produces similar results. The correlation coefficients of the analyses using the NLDAS data were greater than 0.8, the Nash-Sutcliffe (NS) model fit efficiency greater than 0.6, and the error in the water balance was less than 5%. Our analyses also showed that the streamflow improvements were mainly contributed by the NLDAS's precipitation data and that the improvement from using NLDAS's evapotranspiration data was not significant; partially due to the constraints of current BASINS-HSPF settings. However, NLDAS's evapotranspiration data did improve the baseflow prediction. This study demonstrates the NLDAS data has the potential to improve stream flow predictions, thus aid the water quality assessment in the EPA nonpoint water quality assessment decision tool.
NASA Astrophysics Data System (ADS)
Schnier, S.; Cai, X.; Sivapalan, M.
2014-12-01
About half of all humans alive today live in cities, with that number projected to grow to 70% by 2050. Because most people live in cities, urban streamflow patterns and precipitation events have a large impact on the global population. Urban environments can alter natural streamflow and precipitation patterns in a localized area. This study introduces a novel way to characterize this interference: the weekly hydrometeorological signature. Daily streamflow and precipitation data is collected from USGS gages around three climatically-different major American cities: Chicago, Los Angeles, and Charlotte. The following hypothesis is tested: a persistent weekly pattern (Monday through Sunday) exists in the hydrometeorological data which is unique to each city. All three cities appear to exhibit a persistent weekly pattern which is unique to that city for various climatological, industrial, and topographic reasons. Further study is needed; however these findings have important implications for understanding urban weather and can serve as a unique identifier, or fingerprint, for human interference to local streamflow and precipitation patterns.
NASA Astrophysics Data System (ADS)
Davids, J. C.; Rutten, M.; Van De Giesen, N.
2016-12-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and costs are high. Achieving adequate maintenance of sophisticated monitoring equipment often exceeds local technical and resource capacity, and permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of Citizen Hydrology, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is repeatable and scalable. However, there is currently a limited understanding of the impact of decreased observational frequency on the accuracy of key streamflow statistics like minimum flow, maximum flow, and runoff. As a first step towards evaluating the tradeoffs between traditional continuous monitoring approaches and emerging Citizen Hydrology methods, we randomly selected 50 active U.S. Geological Survey (USGS) streamflow gauges in California. We used historical 15 minute flow data from 01/01/2008 through 12/31/2014 to develop minimum flow, maximum flow, and runoff values (7 year total) for each gauge. In order to mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, along with their respective distributions, from 50 subsample iterations with four different subsampling intervals (i.e. daily, three day, weekly, and monthly). Based on our results we conclude that, depending on the types of questions being asked, and the watershed characteristics, Citizen Hydrology streamflow measurements can provide useful and accurate information. Depending on watershed characteristics, minimum flows were reasonably estimated with subsample intervals ranging from daily to monthly. However, maximum flows in most cases were poorly characterized, even at daily subsample intervals. In general, runoff volumes were accurately estimated from daily, three day, weekly, and even in some cases, monthly observations.
Performance of a system of reservoirs on futuristic front
NASA Astrophysics Data System (ADS)
Saha, Satabdi; Roy, Debasri; Mazumdar, Asis
2017-10-01
Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.
Goode, Daniel J.; Koerkle, Edward H.; Hoffman, Scott A.; Regan, R. Steve; Hay, Lauren E.; Markstrom, Steven L.
2010-01-01
A model was developed to simulate inflow to reservoirs and watershed runoff to streams during three high-flow events between September 2004 and June 2006 for the main-stem subbasin of the Delaware River draining to Trenton, N.J. The model software is a modified version of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The PRMS model simulates time periods associated with main-stem flooding that occurred in September 2004, April 2005, and June 2006 and uses both daily and hourly time steps. Output from the PRMS model was formatted for use as inflows to a separately documented reservoir and riverrouting model, the HEC-ResSim model, developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center to evaluate flooding. The models were integrated through a graphical user interface. The study area is the 6,780 square-mile watershed of the Delaware River in the states of Pennsylvania, New Jersey, and New York that drains to Trenton, N.J. A geospatial database was created for use with a geographic information system to assist model discretization, determine land-surface characterization, and estimate model parameters. The USGS National Elevation Dataset at 100-meter resolution, a Digital Elevation Model (DEM), was used for model discretization into streams and hydrologic response units. In addition, geospatial processing was used to estimate initial model parameters from the DEM and other data layers, including land use. The model discretization represents the study area using 869 hydrologic response units and 452 stream segments. The model climate data for point stations were obtained from multiple sources. These sources included daily data for 22 National Weather Service (NWS) Cooperative Climate Station network stations, hourly data for 15 stations from the National Climatic Data Center, hourly data for 1 station from the NWS Middle Atlantic River Forecast Center records, and daily and hourly data for 7 stations operated by the New York City Department of Environmental Protection. The NWS Multisensor Precipitation Estimate data set for 2001-2007 was used for computing daily precipitation for the model and for computing hourly precipitation for storm simulation periods. Calibration of the PRMS model included regression and optimization algorithms, as well as manual adjustments of model parameters. The general goal of the calibration procedure was to minimize the difference between discharge measured at USGS streamgages and the corresponding discharge simulated by the model. Daily streamflow data from 35 USGS streamgages were used in model calibration. The streamflow data represent areas draining from 20.2 to 6,780 square miles. The PRMS model simulates reservoir inflow and watershed runoff for use as input into HECResSim for the purpose of evaluating and comparing the effects of different watershed conditions on main-stem flooding in the Delaware River watershed draining to Trenton, N.J. The PRMS model is useful as a planning tool to simulate the effects of land-use changes and different antecedent conditions on local runoff and reservoir inflow and, as input to the HEC-ResSim model, on flood flows in the main stem of the Delaware River.
NASA Astrophysics Data System (ADS)
Zume, Joseph; Tarhule, Aondover
2008-06-01
Visual MODFLOW, a numerical groundwater flow model, was used to evaluate the impacts of groundwater exploitation on streamflow depletion in the Alluvium and Terrace aquifer of the Beaver-North Canadian River (BNCR) in northwestern Oklahoma, USA. Water demand in semi-arid northwestern Oklahoma is projected to increase by 53% during the next five decades, driven primarily by irrigation, public water supply, and agricultural demand. Using MODFLOW’s streamflow routing package, pumping-induced changes in baseflow and stream leakage were analyzed to estimate streamflow depletion in the BNCR system. Simulation results indicate groundwater pumping has reduced baseflow to streams by approximately 29% and has also increased stream leakage into the aquifer by 18% for a net streamflow loss of 47%. The magnitude and intensity of streamflow depletion, however, varies for different stream segments, ranging from 0 to 20,804 m3/d. The method provides a framework for isolating and quantifying impacts of aquifer pumping on stream function in semiarid alluvial environments.
Granato, Gregory E.
2009-01-01
Streamflow information is important for many planning and design activities including water-supply analysis, habitat protection, bridge and culvert design, calibration of surface and ground-water models, and water-quality assessments. Streamflow information is especially critical for water-quality assessments (Warn and Brew, 1980; Di Toro, 1984; Driscoll and others, 1989; Driscoll and others, 1990, a,b). Calculation of streamflow statistics for receiving waters is necessary to estimate the potential effects of point sources such as wastewater-treatment plants and nonpoint sources such as highway and urban-runoff discharges on receiving water. Streamflow statistics indicate the amount of flow that may be available for dilution and transport of contaminants (U.S. Environmental Protection Agency, 1986; Driscoll and others, 1990, a,b). Streamflow statistics also may be used to indicate receiving-water quality because concentrations of water-quality constituents commonly vary naturally with streamflow. For example, concentrations of suspended sediment and sediment-associated constituents (such as nutrients, trace elements, and many organic compounds) commonly increase with increasing flows, and concentrations of many dissolved constituents commonly decrease with increasing flows in streams and rivers (O'Connor, 1976; Glysson, 1987; Vogel and others, 2003, 2005). Reliable, efficient and repeatable methods are needed to access and process streamflow information and data. For example, the Nation's highway infrastructure includes an innumerable number of stream crossings and stormwater-outfall points for which estimates of stream-discharge statistics may be needed. The U.S. Geological Survey (USGS) streamflow data-collection program is designed to provide streamflow data at gaged sites and to provide information that can be used to estimate streamflows at almost any point along any stream in the United States (Benson and Carter, 1973; Wahl and others, 1995; National Research Council, 2004). The USGS maintains the National Water Information System (NWIS), a distributed network of computers and file servers used to store and retrieve hydrologic data (Mathey, 1998; U.S. Geological Survey, 2008). NWISWeb is an online version of this database that includes water data from more than 24,000 streamflow-gaging stations throughout the United States (U.S. Geological Survey, 2002, 2008). Information from NWISWeb is commonly used to characterize streamflows at gaged sites and to help predict streamflows at ungaged sites. Five computer programs were developed for obtaining and analyzing streamflow from the National Water Information System (NWISWeb). The programs were developed as part of a study by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, to develop a stochastic empirical loading and dilution model. The programs were developed because reliable, efficient, and repeatable methods are needed to access and process streamflow information and data. The first program is designed to facilitate the downloading and reformatting of NWISWeb streamflow data. The second program is designed to facilitate graphical analysis of streamflow data. The third program is designed to facilitate streamflow-record extension and augmentation to help develop long-term statistical estimates for sites with limited data. The fourth program is designed to facilitate statistical analysis of streamflow data. The fifth program is a preprocessor to create batch input files for the U.S. Environmental Protection Agency DFLOW3 program for calculating low-flow statistics. These computer programs were developed to facilitate the analysis of daily mean streamflow data for planning-level water-quality analyses but also are useful for many other applications pertaining to streamflow data and statistics. These programs and the associated documentation are included on the CD-ROM accompanying this report. This report and the appendixes on the
Assessing the hydrologic response to wildfires in mountainous regions
NASA Astrophysics Data System (ADS)
Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak
2018-04-01
This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good
results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a watershed are scale-dependent. Also, using full streamflow statistics through application of flow duration curves revealed that the wildfires had a higher effect on peak flows, which may increase the risk of flash floods in post-wildfire conditions.
NASA Astrophysics Data System (ADS)
Castiglioni, S.; Toth, E.
2009-04-01
In the calibration procedure of continuously-simulating models, the hydrologist has to choose which part of the observed hydrograph is most important to fit, either implicitly, through the visual agreement in manual calibration, or explicitly, through the choice of the objective function(s). Changing the objective functions it is in fact possible to emphasise different kind of errors, giving them more weight in the calibration phase. The objective functions used for calibrating hydrological models are generally of the quadratic type (mean squared error, correlation coefficient, coefficient of determination, etc) and are therefore oversensitive to high and extreme error values, that typically correspond to high and extreme streamflow values. This is appropriate when, like in the majority of streamflow forecasting applications, the focus is on the ability to reproduce potentially dangerous flood events; on the contrary, if the aim of the modelling is the reproduction of low and average flows, as it is the case in water resource management problems, this may result in a deterioration of the forecasting performance. This contribution presents the results of a series of automatic calibration experiments of a continuously-simulating rainfall-runoff model applied over several real-world case-studies, where the objective function is chosen so to highlight the fit of average and low flows. In this work a simple conceptual model will be used, of the lumped type, with a relatively low number of parameters to be calibrated. The experiments will be carried out for a set of case-study watersheds in Central Italy, covering an extremely wide range of geo-morphologic conditions and for whom at least five years of contemporary daily series of streamflow, precipitation and evapotranspiration estimates are available. Different objective functions will be tested in calibration and the results will be compared, over validation data, against those obtained with traditional squared functions. A companion work presents the results, over the same case-study watersheds and observation periods, of a system-theoretic model, again calibrated for reproducing average and low streamflows.
Impact of Climate Change on Mercury Transport along the Carson River-Lahontan Reservoir System
NASA Astrophysics Data System (ADS)
Flickinger, A.; Carroll, R. W. H.; Warwick, J. J.; Schumer, R.
2014-12-01
Historic mining practices have left the Carson River and Lahontan Reservoir (CRLR) system contaminated with high levels of mercury (Hg). Hg levels in Lahontan Reservoir planktivorous and predatory fish exceed federal consumption limits. Inputs of Hg to the system are mainly a result of erosion during high flow and diffusion from sediment during low flow, and the relationships between streamflow and both mercury transport and bioaccumulation are non-linear. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. VIC results suggest that the hydrology of the system is likely to experience higher frequencies of both high and low extreme flows, and the monthly averages of future flows are expected to be higher in the winter and lower in the summer compared to observed flows. VIC daily streamflow estimates are biased-corrected using an empirical cumulative distribution function to match observed data over the historic period of 1950-1999. Future reservoir stage and outflows are modeled assuming reservoir operations are a function of river/canal inflows, previous reservoir stage and downstream agricultural demands. VIC and reservoir flows drive the CRLR Hg transport model (RIVMOD, WASP5, and MERC4). Daily output for both total and dissolved inorganic Hg and methylmercury (MeHg) are averaged at the decadal timescale to assess changes and uncertainty in predicted spatial and temporal Hg species water column concentrations as a function of altered hydrology with respect to changing climate. Future research will use CRLR output in a bioenergetics and Hg mass balance model for Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in Lahontan Reservoir. These future simulations will help to assess possible changes in ecosystem health with respect to hydrologic conditions and associated changes to Hg transport.
NASA Astrophysics Data System (ADS)
Clark, E.; Wood, A.; Nijssen, B.; Clark, M. P.
2017-12-01
Short- to medium-range (1- to 7-day) streamflow forecasts are important for flood control operations and in issuing potentially life-save flood warnings. In the U.S., the National Weather Service River Forecast Centers (RFCs) issue such forecasts in real time, depending heavily on a manual data assimilation (DA) approach. Forecasters adjust model inputs, states, parameters and outputs based on experience and consideration of a range of supporting real-time information. Achieving high-quality forecasts from new automated, centralized forecast systems will depend critically on the adequacy of automated DA approaches to make analogous corrections to the forecasting system. Such approaches would further enable systematic evaluation of real-time flood forecasting methods and strategies. Toward this goal, we have implemented a real-time Sequential Importance Resampling particle filter (SIR-PF) approach to assimilate observed streamflow into simulated initial hydrologic conditions (states) for initializing ensemble flood forecasts. Assimilating streamflow alone in SIR-PF improves simulated streamflow and soil moisture during the model spin up period prior to a forecast, with consequent benefits for forecasts. Nevertheless, it only consistently limits error in simulated snow water equivalent during the snowmelt season and in basins where precipitation falls primarily as snow. We examine how the simulated initial conditions with and without SIR-PF propagate into 1- to 7-day ensemble streamflow forecasts. Forecasts are evaluated in terms of reliability and skill over a 10-year period from 2005-2015. The focus of this analysis is on how interactions between hydroclimate and SIR-PF performance impact forecast skill. To this end, we examine forecasts for 5 hydroclimatically diverse basins in the western U.S. Some of these basins receive most of their precipitation as snow, others as rain. Some freeze throughout the mid-winter while others experience significant mid-winter melt events. We describe the methodology and present seasonal and inter-basin variations in DA-enhanced forecast skill.
Temporal rainfall estimation using input data reduction and model inversion
NASA Astrophysics Data System (ADS)
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a demonstration of equifinality. The use of a likelihood function that considers both rainfall and streamflow error combined with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.
Arnold, L.R.
2017-08-03
The U.S. Army Garrison Fort Carson (AGFC) and the Piñon Canyon Maneuver Site (PCMS) are facilities operated by the U.S. Department of the Army in southern Colorado. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, established a hydrologic and water-quality data-collection network at the AGFC in June 1978 and at the PCMS in October 1982. The data-collection networks are designed to assess the quantity and quality of water resources and monitor the effects of military training activities on streamflow and water quality. Two preexisting U.S. Geological Survey streamgages at the PCMS were incorporated into the data-collection network at the time it was established, providing periods of record that begin as early as 1966. This report presents and summarizes precipitation, streamflow, suspended-sediment, and water-quality data from 34 U.S. Geological Survey sites on or near the AGFC and the PCMS for the period of record at each site. (Streamflow data are presented as discharge in cubic feet per second.)At AGFC, daily sum precipitation ranged from 0 to 11.85 inches, daily mean discharge ranged from 0 to 836 cubic feet per second, and daily mean suspended-sediment discharge ranged from 0 to 39,900 tons per day. With the exception of total (unfiltered) mercury and filtered sulfate at two sites and filtered manganese at three sites, 95th percentile trace element concentrations and median total (unfiltered) metal concentrations were less than regulatory numeric standards for all samples. However, individual water-quality results occasionally exceeded respective regulatory numeric standards.At the PCMS, daily sum precipitation ranged from 0 to 4.59 inches, daily mean discharge ranged from 0 to 4,190 cubic feet per second, and daily mean suspended-sediment discharge ranged from 0 to 21,100 tons per day. Water-quality results, 95th percentile trace element concentrations, and median total (unfiltered) metal concentrations were less than regulatory numeric standards for most properties and constituents except for filtered chloride at one site, filtered sulfate at six sites, filtered phosphorus at one site, filtered manganese at three sites, and total (unfiltered) iron at three sites. Individual water-quality values also occasionally exceeded respective regulatory numeric standards.
Nielsen, Martha G.; Locke, Daniel B.
2012-01-01
In order to evaluate water availability in the State of Maine, the U.S. Geological Survey (USGS) and the Maine Geological Survey began a cooperative investigation to provide the first rigorous evaluation of watersheds deemed "at risk" because of the combination of instream flow requirements and proportionally large water withdrawals. The study area for this investigation includes the Harvey and Merrill Brook watersheds and the Freeport aquifer in the towns of Freeport, Pownal, and Yarmouth, Maine. A numerical groundwater- flow model was used to evaluate groundwater withdrawals, groundwater-surface-water interactions, and the effect of water-management practices on streamflow. The water budget illustrates the effect that groundwater withdrawals have on streamflow and the movement of water within the system. Streamflow measurements were made following standard USGS techniques, from May through September 2009 at one site in the Merrill Brook watershed and four sites in the Harvey Brook watershed. A record-extension technique was applied to estimate long-term monthly streamflows at each of the five sites. The conceptual model of the groundwater system consists of a deep, confined aquifer (the Freeport aquifer) in a buried valley that trends through the middle of the study area, covered by a discontinuous confining unit, and topped by a thin upper saturated zone that is a mixture of sandy units, till, and weathered clay. Harvey and Merrill Brooks flow southward through the study area, and receive groundwater discharge from the upper saturated zone and from the deep aquifer through previously unknown discontinuities in the confining unit. The Freeport aquifer gets most of its recharge from local seepage around the edges of the confining unit, the remainder is received as inflow from the north within the buried valley. Groundwater withdrawals from the Freeport aquifer in the study area were obtained from the local water utility and estimated for other categories. Overall, the public-supply withdrawals (105.5 million gallons per year (Mgal/yr)) were much greater than those for any other category, being almost 7 times greater than all domestic well withdrawals (15.3 Mgal/yr). Industrial withdrawals in the study area (2.0 Mgal/yr) are mostly by a company that withdraws from an aquifer at the edge of the Merrill Brook watershed. Commercial withdrawals are very small (1.0 Mgal/yr), and no irrigation or other agricultural withdrawals were identified in this study area. A three-dimensional, steady-state groundwater-flow model was developed to evaluate stream-aquifer interactions and streamflow depletion from pumping, to help refine the conceptual model, and to predict changes in streamflow resulting from changes in pumping and recharge. Groundwater levels and flow in the Freeport aquifer study area were simulated with the three-dimensional, finite-difference groundwater-flow modeling code, MODFLOW-2005. Study area hydrology was simulated with a 3-layer model, under steady-state conditions. The groundwater model was used to evaluate changes that could occur in the water budgets of three parts of the local hydrologic system (the Harvey Brook watershed, the Merrill Brook watershed, and the buried aquifer from which pumping occurs) under several different climatic and pumping scenarios. The scenarios were (1) no pumping well withdrawals; (2) current (2009) pumping, but simulated drought conditions (20-percent reduction in recharge); (3) current (2009) recharge, but a 50-percent increase in pumping well withdrawals for public supply; and (4) drought conditions and increased pumping combined. In simulated drought situations, the overall recharge to the buried valley is about 15 percent less and the total amount of streamflow in the model area is reduced by about 19 percent. Without pumping, infiltration to the buried valley aquifer around the confining unit decreased by a small amount (0.05 million gallons per day (Mgal/d)), and discharge to the streams increased by about 8 percent (0.3 Mgal/d). A 50-percent increase in pumping resulted in a simulated decrease in streamflow discharge of about 4 percent (0.14 Mgal/d). Streamflow depletion in Harvey Brook was evaluated by use of the numerical groundwater-flow model and an analytical model. The analytical model estimated negligible depletion from Harvey Brook under current (2009) pumping conditions, whereas the numerical model estimated that flow to Harvey Brook decreased 0.38 cubic feet per second (ft3/s) because of the pumping well withdrawals. A sensitivity analysis of the analytical model method showed that conducting a cursory evaluation using an analytical model of streamflow depletion using available information may result in a very wide range in results, depending on how well the hydraulic conductivity variables and aquifer geometry of the system are known, and how well the aquifer fits the assumptions of the model. Using the analytical model to evaluate the streamflow depletion with an incomplete understanding of the hydrologic system gave results that seem unlikely to reflect actual streamflow depletion in the Freeport aquifer study area. In contrast, the groundwater-flow model was a more robust method of evaluating the amount of streamflow depletion that results from withdrawals in the Freeport aquifer, and could be used to evaluate streamflow depletion in both streams. Simulations of streamflow without pumping for each measurement site were compared to the calibratedmodel streamflow (with pumping), the difference in the total being streamflow depletion. Simulations without pumping resulted in a simulated increase in the steady-state flow rate of 0.38 ft3/s in Harvey Brook and 0.01 ft3/s in Merrill Brook. This translates into a streamflow-depletion amount equal to about 8.5 percent of the steady-state base flow in Harvey Brook, and an unmeasurable amount of depletion in Merrill Brook. If pumping was increased by 50 percent and recharge reduced by 20 percent, the amount of streamflow depletion in Harvey Brook could reach 1.41 ft3/s.
Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon
Gannett, Marshall W.; Lite, Kenneth E.
2004-01-01
This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to streams is also well simulated throughout the model. Ground-water discharge to streams in the area of the confluence of the Deschutes, Crooked, and Metolius Rivers is closely matched. The model was also calibrated to transient conditions from 1978 to 1997 using traditional trial-and-error methods. Climatic cycles during this period provided an excellent regional hydrologic signal for calibration. Climate-driven water-level fluctuations are simulated with reasonable accuracy over most of the model area. The timing and magnitude of simulated water-level fluctuations caused by annual pulses of recharge from precipitation match those observed reasonably well, given the limitations of the time discretization in the model. Water-level fluctuations caused by annual canal leakage are simulated very well over most of the area where such fluctuations occur. The transient model also simulates the volumetric distribution and temporal variations in ground-water discharge reasonably well. The match between simulated and measured volume of and variations in ground-water discharge is, however, somewhat dependent on geographic scale. The rates of and variations in ground-water discharge are matched best at regional scales. Example simulations were made to demonstrate the utility of the model for evaluating the effects of ground-water pumping or canal lining. Pumping simulations show that pumped water comes largely from aquifer storage when pumping begins, but as the water table stabilizes, the pumping increasingly diminishes the discharge to streams and, hence, streamflow. The time it takes for pumping to affect streamflow varies spatially depending, in general, on the location of pumping relative to the discharge areas. Canal-lining simulations show similar effects.
NASA Astrophysics Data System (ADS)
Betterle, A.; Schirmer, M.; Botter, G.
2017-12-01
Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.
Austin, Samuel H.; Nelms, David L.
2017-01-01
Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.
Petsch, Harold E.
1979-01-01
Statistical summaries of daily streamflow data for 246 stations east of the Continental Divide in Colorado and adjacent States are presented in this report. Duration tables, high-flow sequence tables, and low-flow sequence tables provide information about daily mean discharge. The mean, variance, standard deviation, skewness, and coefficient of variation are provided for monthly and annual flows. Percentages of average flow are provided for monthly flows and first-order serial-correlation coefficients are provided for annual flows. The text explains the nature and derivation of the data and illustrates applications of the tabulated information by examples. The data may be used by agencies and individuals engaged in water studies. (USGS)
NASA Astrophysics Data System (ADS)
Abitew, T. A.; Roy, T.; Serrat-Capdevila, A.; van Griensven, A.; Bauwens, W.; Valdes, J. B.
2016-12-01
The Tekeze Basin supports one of Africans largest Arch Dam located in northern Ethiopian has vital role in hydropower generation. However, little has been done on the hydrology of the basin due to limited in situ hydroclimatological data. Therefore, the main objective of this research is to simulate streamflow upstream of the Tekeze Dam using Soil and Water Assessment Tool (SWAT) forced by bias-corrected multiple satellite rainfall products (CMORPH, TMPA and PERSIANN-CCS). This talk will present the potential as well as skills of bias-corrected satellite rainfall products for streamflow prediction in in Tropical Africa. Additionally, the SWAT model results will also be compared with previous conceptual Hydrological models (HyMOD and HBV) from SERVIR Streamflow forecasting in African Basin project (http://www.swaat.arizona.edu/index.html).
Wood, Molly S.
2014-01-01
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), estimated streamflow statistics for stream segments designated “Wild,” “Scenic,” or “Recreational” under the National Wild and Scenic Rivers System in the Owyhee Canyonlands Wilderness in southwestern Idaho. The streamflow statistics were used by the BLM to develop and file a draft, federal reserved water right claim to protect federally designated “outstanding remarkable values” in the Jarbidge River. The BLM determined that the daily mean streamflow equaled or exceeded 20, 50, and 80 percent of the time during bimonthly periods (two periods per month) and the bankfull (66.7-percent annual exceedance probability) streamflow are important thresholds for maintaining outstanding remarkable values. Although streamflow statistics for the Jarbidge River below Jarbidge, Nevada (USGS 13162225) were published previously in 2013 and used for the draft water right claim, the BLM and USGS have since recognized the need to refine streamflow statistics given the approximate 40 river mile distance and intervening tributaries between the original point of estimation (USGS 13162225) and at the mouth of the Jarbidge River, which is the downstream end of the Wild and Scenic River segment. A drainage-area-ratio method was used in 2013 to estimate bimonthly exceedance probability streamflow statistics at the mouth of the Jarbidge River based on available streamgage data on the Jarbidge and East Fork Jarbidge Rivers. The resulting bimonthly streamflow statistics were further adjusted using a scaling factor calculated from a water balance on streamflow statistics calculated for the Bruneau and East Fork Bruneau Rivers and Sheep Creek. The final, adjusted bimonthly exceedance probability and bankfull streamflow statistics compared well with available verification datasets (including discrete streamflow measurements made at the mouth of the Jarbidge River) and are considered the best available estimates for streamflow statistics in the Jarbidge Wild and Scenic River segment.
NASA Astrophysics Data System (ADS)
Kang, D.; Gao, H.; Dery, S. J.
2012-12-01
The Variable Infiltration Capacity (VIC) model, a macroscale surface hydrology model, was applied to the Fraser River Basin (FRB) of British Columbia, Canada. Previous modeling studies have demonstrated that the FRB is a snow-dominated system but with climate change may evolve to a pluvial regime. The ultimate goal of this model application is to evaluate the changing contribution of snowmelt to streamflow in the FRB both spatially and temporally. To this end, the National Centers for Environmental Prediction (NCEP) reanalysis data combined with meteorological observations over 1953 to 2006 are used to drive the model at a resolution of 0.25°. Model simulations are first validated with daily discharge observations from the Water Survey of Canada (WSC). In addition, the snow water equivalent (SWE) results from VIC are compared with snow pillow observations from the B.C. Ministry of Environment. Then peak SWE values simulated each winter are compared with the annual runoff data to quantify the changing contribution of snowmelt to the hydrology of the FRB. With perturbed model forcings such as precipitation and air temperature, how streamflow and surface energy-mass balance are changed is evaluated. Finally, interactions between the land surface and ambient atmosphere are evaluated by analyzing VIC results such as evaporation, soil moisture, snowmelt and sensible-latent heat flux with corresponding meteorological forcings, i.e. precipitation and air temperature.
NASA Astrophysics Data System (ADS)
Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.
2014-09-01
This study assessed the effect of using observed monthly leaf area index (LAI) on hydrologic model performance and the simulation of streamflow during drought using the variable infiltration capacity (VIC) hydrological model in the Goulburn-Broken catchment of Australia, which has heterogeneous vegetation, soil and climate zones. VIC was calibrated with both observed monthly LAI and long-term mean monthly LAI, which were derived from the Global Land Surface Satellite (GLASS) observed monthly LAI dataset covering the period from 1982 to 2012. The model performance under wet and dry climates for the two different LAI inputs was assessed using three criteria, the classical Nash-Sutcliffe efficiency, the logarithm transformed flow Nash-Sutcliffe efficiency and the percentage bias. Finally, the percentage deviation of the simulated monthly streamflow using the observed monthly LAI from simulated streamflow using long-term mean monthly LAI was computed. The VIC model predicted monthly streamflow in the selected sub-catchments with model efficiencies ranging from 61.5 to 95.9% during calibration (1982-1997) and 59 to 92.4% during validation (1998-2012). Our results suggest systematic improvements from 4 to 25% in the Nash-Sutcliffe efficiency in pasture dominated catchments when the VIC model was calibrated with the observed monthly LAI instead of the long-term mean monthly LAI. There was limited systematic improvement in tree dominated catchments. The results also suggest that the model overestimation or underestimation of streamflow during wet and dry periods can be reduced to some extent by including the year-to-year variability of LAI in the model, thus reflecting the responses of vegetation to fluctuations in climate and other factors. Hence, the year-to-year variability in LAI should not be neglected; rather it should be included in model calibration as well as simulation of monthly water balance.
NASA Astrophysics Data System (ADS)
García-Valdecasas Ojeda, Matilde; De Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Esteban-Parra, María Jesus
2016-04-01
Variable Infiltration Capacity (VIC) model is a large-scale, semi-distributed hydrologic model [1]. Its most important properties are related to the land surface, modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), as well as to the local water influx (i.e. water can only enter a grid cell via the atmosphere and the channel flow between grid cells is ignored). The portions of surface and subsurface water runoff that reach the local channel network, are assumed to stay in the channel, and cannot flow back into the soil. In a second step, routing of streamflow is performed separately from the land surface simulation, using a separate model, the Routing Model, described in [2]. The final goal of our research consists into set an optimal hydrological and climate model to study the evolution of the streamflow of Guadalquivir Basin with different future land use, land cover and climate scenarios. In this work we study the coupling between VIC model, Routing model and Weather Research and Forecasting (WRF) model in order to perform the evolution of the streamflow for the Guadalquivir Basin (Spain). For this end, a calibration of the most relevant VIC model parameters using real streamflow daily time series, obtained from CEDEX (Centro de Estudios y Experimentación de Obras Públicas, Spain) database [3] was performed. In the time period under study, i.e. the decades 1988-1997 (calibration step) and 1998-2007 (verification step), the VIC model has been coupled with observational climate data, obtained from SPAIN02 database [4]. Additionally, we carried out a sensitivity analysis of WRF model to different parameterizations using different cumulus, microphysics and surface/planetary boundary layer schemes for the period 1995-1996. WRF runs were carried over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain [5]. The optimal parameters set resulting from such analysis have been used to obtain a high-resolution 35 yr period (1980-2014) dataset, driven by Interim ECMWF Re-Analysis (ERA-Interim) data [6]. Finally, the real streamflow daily time series were compared with the ones obtained by the previously calibrated VIC with SPAIN02 dataset and with WRF dataset, using different groups of meteorological variables. This last analysis allows us to check the robustness of VIC and WRF coupling, and to find the most relevant meteorological inputs for Guadalquivir streamflow system. Key words: Regional Climate Models, VIC, WRF, calibration, meteorological variables Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER). [1] http://vic.readthedocs.org/en/master/ [2] Lohmann D, Raschke E, Nijssen B, Lettenmaier D P, 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model, Hydrolog. Sci. J., 43(1), 131-141. [3] www.cedex.es [4] http://www.meteo.unican.es/en/datasets/spain02 [5] EUROCORDEX: http://www.euro-cordex.net/ [6] Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137:553-597.
Analytical flow duration curves for summer streamflow in Switzerland
NASA Astrophysics Data System (ADS)
Santos, Ana Clara; Portela, Maria Manuela; Rinaldo, Andrea; Schaefli, Bettina
2018-04-01
This paper proposes a systematic assessment of the performance of an analytical modeling framework for streamflow probability distributions for a set of 25 Swiss catchments. These catchments show a wide range of hydroclimatic regimes, including namely snow-influenced streamflows. The model parameters are calculated from a spatially averaged gridded daily precipitation data set and from observed daily discharge time series, both in a forward estimation mode (direct parameter calculation from observed data) and in an inverse estimation mode (maximum likelihood estimation). The performance of the linear and the nonlinear model versions is assessed in terms of reproducing observed flow duration curves and their natural variability. Overall, the nonlinear model version outperforms the linear model for all regimes, but the linear model shows a notable performance increase with catchment elevation. More importantly, the obtained results demonstrate that the analytical model performs well for summer discharge for all analyzed streamflow regimes, ranging from rainfall-driven regimes with summer low flow to snow and glacier regimes with summer high flow. These results suggest that the model's encoding of discharge-generating events based on stochastic soil moisture dynamics is more flexible than previously thought. As shown in this paper, the presence of snowmelt or ice melt is accommodated by a relative increase in the discharge-generating frequency, a key parameter of the model. Explicit quantification of this frequency increase as a function of mean catchment meteorological conditions is left for future research.
Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009
Conrads, Paul; Roehl, Edwin A.; Davie, Steven R.
2011-01-01
The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on chloride concentrations at the intake. To accommodate these concerns, two ANN chloride models were developed for the intake. The first model (ANN M1e) used all the data. The second model (ANN M2e) only used data when specific conductance at Interstate 95 was less than 175 microsiemens per centimeter at 25 degrees Celsius. Deleting the conductivity data greater than 175 microsiemens per centimeter removed the "plateau" effect observed in the data. The chloride simulations with the ANN M1 model have a low sensitivity to specific conductance (salinity) at Interstate 95, whereas the chloride simulations with the ANN M2 model have a high sensitivity to salinity at Interstate 95. The two modeling approaches (Tetra Tech's EFDC model and the one described in this report) were integrated into a decision support system (DSS) that combines the historical database, output from EFDC, ANN models, ANN model simulation controls, streaming graphics, and model output. The DSS was developed as a Microsoft ExcelTM/Visual Basic for Applications program, which allowed the DSS to be prototyped, easily modified, and distributed in a familiar spreadsheet format. The EFDC and ANN models were used to simulate various harbor deepening scenarios. To accommodate the geometry changes in the harbor, the ANN models used the EFDC model-simulated salinity changes for a historical condition as input. The DSS uses a graphical user interface and allows the user to interrogate the ANN models and EFDC output. Two scenarios were simulated using the Savannah Chloride Model DSS to demonstrate different input options. One scenario decreased winter streamflows to a constant streamflow for 45 days. Streamflows during the period January 1 to February 15 were set to a constant 3,600 cubic feet per second for the simulation period of October 1, 2006, to October 1, 2009. The decreased winter streamflow resulted in predictions of increased specific conductance by as much as 50 microsiemens per centimeter and chlorid
Constantz, James E.; Stonestrom, David A.; Stewart, Amy E.; Niswonger, Richard G.; Smith, Tyson R.
2001-01-01
Spatial and temporal patterns in streamflow are rarely monitored for ephemeral streams. Flashy, erosive streamflows common in ephemeral channels create a series of operational and maintenance problems, which makes it impractical to deploy a series of gaging stations along ephemeral channels. Streambed temperature is a robust and inexpensive parameter to monitor remotely, leading to the possibility of analyzing temperature patterns to estimate streamflow frequency and duration along ephemeral channels. A simulation model was utilized to examine various atmospheric and hydrological upper boundary conditions compared with a series of hypothetical temperature‐monitoring depths within the streambed. Simulation results indicate that streamflow events were distinguished from changing atmospheric conditions with greater certainty using temperatures at shallow depths (e.g., 10–20 cm) as opposed to the streambed surface. Three ephemeral streams in the American Southwest were instrumented to monitor streambed temperature for determining the accuracy of using this approach to ascertain the long‐term temporal and spatial extent of streamflow along each stream channel. Streambed temperature data were collected at the surface or at shallow depth along each stream channel, using thermistors encased in waterproof, single‐channel data loggers tethered to anchors in the channel. On the basis of comparisons with site information, such as direct field observations and upstream flow records, diurnal temperature variations successfully detected the presence and duration of streamflow for all sites.
NASA Astrophysics Data System (ADS)
Dierauer, J. R.; Allen, D. M.
2016-12-01
Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.
NASA Astrophysics Data System (ADS)
Krogh, S. A.; Pomeroy, J. W.
2017-12-01
Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Norton, P. A., II
2015-12-01
The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.
Marginal Economic Value of Streamflow: A Case Study for the Colorado River Basin
NASA Astrophysics Data System (ADS)
Brown, Thomas C.; Harding, Benjamin L.; Payton, Elizabeth A.
1990-12-01
The marginal economic value of streamflow leaving forested areas in the Colorado River Basin was estimated by determining the impact on water use of a small change in streamflow and then applying economic value estimates to the water use changes. The effect on water use of a change in streamflow was estimated with a network flow model that simulated salinity levels and the routing of flow to consumptive uses and hydroelectric dams throughout the Basin. The results show that, under current water management institutions, the marginal value of streamflow in the Colorado River Basin is largely determined by nonconsumptive water uses, principally energy production, rather than by consumptive agricultural or municipal uses. The analysis demonstrates the importance of a systems framework in estimating the marginal value of streamflow.
Nigro, Joseph; Toll, David; Partington, Ed; Ni-Meister, Wenge; Lee, Shihyan; Gutierrez-Magness, Angelica; Engman, Ted; Arsenault, Kristi
2010-01-01
The USEPA has estimated that over 20,000 water bodies within the United States do not meet water quality standards. One of the regulations in the Clean Water Act of 1972 requires states to monitor the total maximum daily load, or the amount of pollution that can be carried by a water body before it is determined to be "polluted," for any watershed in the United States (Copeland, 2005). In response to this mandate, the USEPA developed Better Assessment Science Integrating Nonpoint Sources (BASINS) as a decision support tool for assessing pollution and to guide the decision-making process for improving water quality. One of the models in BASINS, the Hydrological Simulation Program-Fortran (HSPF), computes continuous streamflow rates and pollutant concentration at each basin outlet. By design, precipitation and other meteorological data from weather stations serve as standard model input. In practice, these stations may be unable to capture the spatial heterogeneity of precipitation events, especially if they are few and far between. An attempt was made to resolve this issue by substituting station data with NASA-modified/NOAA precipitation data. Using these data within HSPF, streamflow was calculated for seven watersheds in the Chesapeake Bay Basin during low flow periods, convective storm periods, and annual flows. In almost every case, the modeling performance of HSPF increased when using the NASA-modified precipitation data, resulting in better streamflow statistics and, potentially, in improved water quality assessment.
NASA Astrophysics Data System (ADS)
Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.
2016-12-01
More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.
Davids, Jeffrey C; van de Giesen, Nick; Rutten, Martine
2017-07-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and accurate but expensive monitoring equipment at limited numbers of sites. Consequently, observation frequency and costs are high, but spatial coverage of the data is limited. Citizen Hydrology can possibly overcome these challenges by leveraging easily scaled mobile technology and local residents to collect hydrologic data at many sites. However, understanding of how decreased observational frequency impacts the accuracy of key streamflow statistics such as minimum flow, maximum flow, and runoff is limited. To evaluate this impact, we randomly selected 50 active United States Geological Survey streamflow gauges in California. We used 7 years of historical 15-min flow data from 2008 to 2014 to develop minimum flow, maximum flow, and runoff values for each gauge. To mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, and their respective distributions, from 50 subsample iterations with four different subsampling frequencies ranging from daily to monthly. Minimum flows were estimated within 10% for half of the subsample iterations at 39 (daily) and 23 (monthly) of the 50 sites. However, maximum flows were estimated within 10% at only 7 (daily) and 0 (monthly) sites. Runoff volumes were estimated within 10% for half of the iterations at 44 (daily) and 12 (monthly) sites. Watershed flashiness most strongly impacted accuracy of minimum flow, maximum flow, and runoff estimates from subsampled data. Depending on the questions being asked, lower frequency Citizen Hydrology observations can provide useful hydrologic information.
Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.
2006-01-01
Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three streamflow-gaging stations were used to characterize the flow regime: North Fork Shenandoah River at Cootes Store, Va. (1925-2002), North Fork Shenandoah River at Mount Jackson, Va. (1943-2002), and North Fork Shenandoah River near Strasburg, Va. (1925-2002). The predominant mesohabitat types (14 percent riffle, 67.3 percent run, and 18.7 percent pool) were classified along the entire river (100 miles) to assist in the selection of reaches for hydraulic and fish community data collection. The upper section has predominantly particle substrate, ranging in size from sand to boulders, and the shortest habitat units. The middle section is a transitional section with increased bedrock substrate and habitat unit length. The lower section has predominantly bedrock substrate and the longest habitat units in the river. The model simulations show that weighted usable-habitat area in the upper management section is highest at flows higher than the 25-percent exceedance flow for July, August, and September. During these three months, total weighted usable-habitat area in this section is often less than the simulated maximum weighted usable-habitat area. Habitat area in the middle management section is highest at flows between the 25- and 75-percent exceedance flows for July, August, and September. In the middle section during these months, both the actual weighted usable-habitat area and the simulated maximum weighted usable-habitat area are associated with this flow range. Weighted usable-habitat area in the lower management section is highest at flows lower than the 75-percent exceedance flow for July, August, and September. In the lower section during these three months, some weighted usable-habitat area is available, but the normal range of flows does not include the simulated maximum weighted usable-habitat area. A time-series habitat analysis associated with the historic streamflow, zero water withdrawals, and doubled water withdrawals was completed. During s
Thomas E. Lisle; Jack Lewis
1992-01-01
A model is presented that simulates the effects of streamflow and sediment transport on survival of salmonid embryos incubating in spawning gravels in a natural channel. Components of the model include a 6-yr streamflow record, an empirical bed load-transport function, a relation between transport and infiltration of sandy bedload into a gravel bed, effects of fine-...
Can we improve streamflow simulation by using higher resolution rainfall information?
NASA Astrophysics Data System (ADS)
Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles
2013-04-01
The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.
Griffin, Eleanor R.; Wiele, Stephen M.
1996-01-01
A one-dimensional model of unsteady discharge waves was applied to research flowr that were released from Glen Canyon Dam in support of the Glen Canyon Environmental Studies. These research flows extended over periods of 11 days during which the discharge followed specific, regular patterns repeated on a daily cycle that were similar to the daily releases for power generation. The model was used to produce discharge hydrographs at 38 selected sites in Marble and Grand Canyons for each of nine unsteady flows released from the dam in 1990 and 1991. In each case, the discharge computed from stage measurements and the associated stage-discharge relation at the streamflow-gaging station just below the dam (09379910 Colorado River Hlow Glen Canyon Dam) was routed to Diamond Creek, which is 386 kilometers downstream. Steady and unsteady tributary inflows downstream from the dam were included in the model calculations. Steady inflow to the river from tributaries downstream from the dam was determined for each case by comparing the steady base flow preceding and following the unsteady flow measured at six streamflow-gaging stations between Glen Canyon Dam and Diamond Creek. During three flow periods, significant unsteady inflow was received from the Paria River, or the Little Colorado River, or both. The amount and timing of unsteady inflow was determined using the discharge computed from records of streamflow-gaging stations on the tributaries. Unsteady flow then was added to the flow calculated by the model at the appropriate location. Hydrographs were calculated using the model at 5 streamflow-gaging stations downstream from the dam and at 33 beach study sites. Accuracy of model results was evaluated by comparing the results to discharge hydrographs computed from the records of the five streamflow-gaging stations between Lees Ferry and Lake Mead. Results show that model predictions of wave speed and shape agree well with data from the five streamflow-gaging stations.
Potential Utility of the Real-Time TMPA-RT Precipitation Estimates in Streamflow Prediction
NASA Technical Reports Server (NTRS)
Su, Fengge; Gao, Huilin; Huffman, George J.; Lettenmaier, Dennis P.
2010-01-01
We investigate the potential utility of the real-time Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA-RT) data for streamflow prediction, both through direct comparisons of TMPA-RT estimates with a gridded gauge product, and through evaluation of streamflow simulations over four tributaries of La Plata Basin (LPB) in South America using the two precipitation products. Our assessments indicate that the relative accuracy and the hydrologic performance of TMPA-RT-based streamflow simulations generally improved after February 2005. The improvements in TMPA-RT since 2005 are closely related to upgrades in the TMPA-RT algorithm in early February, 2005 which include use of additional microwave sensors (AMSR-E and AMSU-B) and implementation of different calibration schemes. Our work suggests considerable potential for hydrologic prediction using purely satellite-derived precipitation estimates (no adjustments by in situ gauges) in parts of the globe where in situ observations are sparse.
Mann, Michael P.; Rizzardo, Jule; Satkowski, Richard
2004-01-01
Accurate streamflow statistics are essential to water resource agencies involved in both science and decision-making. When long-term streamflow data are lacking at a site, estimation techniques are often employed to generate streamflow statistics. However, procedures for accurately estimating streamflow statistics often are lacking. When estimation procedures are developed, they often are not evaluated properly before being applied. Use of unevaluated or underevaluated flow-statistic estimation techniques can result in improper water-resources decision-making. The California State Water Resources Control Board (SWRCB) uses two key techniques, a modified rational equation and drainage basin area-ratio transfer, to estimate streamflow statistics at ungaged locations. These techniques have been implemented to varying degrees, but have not been formally evaluated. For estimating peak flows at the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals, the SWRCB uses the U.S. Geological Surveys (USGS) regional peak-flow equations. In this study, done cooperatively by the USGS and SWRCB, the SWRCB estimated several flow statistics at 40 USGS streamflow gaging stations in the north coast region of California. The SWRCB estimates were made without reference to USGS flow data. The USGS used the streamflow data provided by the 40 stations to generate flow statistics that could be compared with SWRCB estimates for accuracy. While some SWRCB estimates compared favorably with USGS statistics, results were subject to varying degrees of error over the region. Flow-based estimation techniques generally performed better than rain-based methods, especially for estimation of December 15 to March 31 mean daily flows. The USGS peak-flow equations also performed well, but tended to underestimate peak flows. The USGS equations performed within reported error bounds, but will require updating in the future as peak-flow data sets grow larger. Little correlation was discovered between estimation errors and geographic locations or various basin characteristics. However, for 25-percentile year mean-daily-flow estimates for December 15 to March 31, the greatest estimation errors were at east San Francisco Bay area stations with mean annual precipitation less than or equal to 30 inches, and estimated 2-year/24-hour rainfall intensity less than 3 inches.
System dynamics model for predicting floods from snowmelt in North American prairie watersheds
NASA Astrophysics Data System (ADS)
Li, L.; Simonovic, S. P.
2002-09-01
This study uses a system dynamics approach to explore hydrological processes in the geographic locations where the main contribution to flooding is coming from the snowmelt. Temperature is identified as a critical factor that affects watershed hydrological processes. Based on the dynamic processes of the hydrologic cycle occurring in a watershed, the feedback relationships linking the watershed structure, as well as the climate factors, to the streamflow generation were identified prior to the development of a system dynamics model. The model is used to simulate flood patterns generated by snowmelt under temperature change in the spring. Model structure captures a vertical water balance using five tanks representing snow, interception, surface, subsurface and groundwater storage. Calibration and verification results show that temperature change and snowmelt play a key role in flood generation. Results indicate that simulated values match observed data very well. The goodness-of-fit between simulated and observed peak flow data is measured using coefficient of efficiency, coefficient of determination and square of the residual mass curve coefficient. For the Assiniboine River all three measures were in the interval between 0·92 and 0·96 and for the Red River between 0·89 and 0·97. The model is capable of capturing the essential dynamics of streamflow formation. Model input requires a set of initial values for all state variables and the time series of daily temperature and precipitation information. Data from the Red River Basin, shared by Canada and the USA, are used in the model development and testing.
Senior, Lisa A.; Koerkle, Edward H.
2003-01-01
The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Brandywine Creek, Red Clay Creek, White Clay Creek, and Christina River. The Christina River subbasin (exclusive of the Brandywine, Red Clay, and White Clay Creek subbasins) drains an area of 76 mi2. Streams in the Christina River Basin are used for recreation, drinking water supply, and support of aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency water-quality management strategy included a modeling component to evaluate the effects of point- and nonpoint-source contributions of nutrients and suspended sediment on stream water quality. To assist in nonpoint-source evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program–Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in small subbasins predominantly covered by one land use following a nonpoint- source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at two sites in the Christina River subbasin and nine sites elsewhere in the Christina River Basin.The HSPF model for the Christina River subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 3.8 to 21.9 mi2. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Christina River subbasin are residential, urban, forested, agricultural, and open.The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data from two U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Daily precipitation data from one National Oceanic and Atmospheric Administration (NOAA) meteorologic station and hourly data from one NOAA meteorologic station were used for model input. The difference between observed and simulated streamflow volume ranged from -2.3 to 5.3 percent for a 10-month portion of the calibration period at the two calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error for the 4-year period. For example, at Christina River at Coochs Bridge, near the bottom of the free-flowing part of the subbasin (drainage area of 21 mi2), annual differences between observed and simulated streamflow ranged from -6.9 to 6.5 percent and the overall error for the 4-year period was -1.1 percent. Calibration errors for 36 storm periods at the three calibration sites for total volume, low-flow recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were within the recommended criteria of 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using nonpoint-source monitoring data collected at two USGS streamflow-measurement stations and other water-quality monitoring data. The period of record for water-quality monitoring was variable at the stations, with a start date ranging from October 1994 to January 1998 and an end date of October 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspended-sediment concentrations, although suspended-solids data may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulaion. Comparison of observed to simulated loads for up to six storms in 1998 at the two nonpoint-source monitoring sites (Little Mill Creek near Newport and Christina River at Coochs Bridge, Del.) indicate that simulation error is commonly as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved nutrients than for particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria; much larger errors are possible for individual events. Assessment of the water-quality calibration under stormflow conditions is limited by the relatively small amount of available water-quality data in the subbasin.Users of the Christina River subbasin HSPF model and HSPF models for other subbasins in the Christina River Basin should be aware of model limitations and consider the following if the model is used for predictive purposes: streamflow-duration curves suggest the model simulates streamflow reasonably well when measured over a broad range of conditions and time although streamflow and the corresponding water quality for individual storm events may not be well simulated; streamflow-duration curves for the simulation period compare well with duration curves for the 8-year period ending in 2001 at Christina River at Coochs Bridge, Del., and include all but the extreme high-flow and low-flow events; and calibration for water quality was based on limited data, with the result of increasing uncertainty in the water-quality simulation.
Singh, R.; Archfield, S.A.; Wagener, T.
2014-01-01
Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.
Jordan, P.R.; Hart, R.J.
1985-01-01
A streamflow routing model was used to calculate the transit losses and traveltimes. Channel and aquifer characteristics, and the model control parameters, were estimated from available data and then verified to the extent possible by comparing model simulated streamflow to observed streamflow at streamflow gaging stations. Transit losses and traveltimes for varying reservoir release rates and durations then were simulated for two different antecedent streamflow (drought) conditions. For the severe-drought antecedent-streamflow condition, it was assumed that only the downstream water use requirement would be released from the reservoir. For a less severe drought (LSD) antecedent streamflow condition, it was assumed than any releases from Marion Lake for water supply use downstream, would be in addition to a nominal dry weather release of 5 cu ft/sec. Water supply release rates of 10 and 25 cu ft/sec for the severe drought condition and 5, 10, and 25 cu ft/sec for the less severe drought condition were simulated for periods of 28 and 183 days commencing on July 1. Transit losses for the severe drought condition for all reservoir release rates and durations ranged from 12% to 78% of the maximum downstream flow rate and from 27% to 91% of the total volume of reservoir storage released. For the LSD condition, transit losses ranged from 7% to 29% of the maximum downstream flow rate and from 10% to 48% of the total volume of release. The 183-day releases had larger total transit losses, but losses on a percentage basis were less than the losses for the 28-day release period for both antecedent streamflow conditions. Traveltimes to full response (80% of the maximum downstream flow rate), however, showed considerable variation. For the release of 5 cu ft/sec during LSD conditions, base flow exceeded 80% of the maximum flow rate near the confluence; the traveltime to full response was undefined for those simulations. For the releases of 10 and 25 cu ft/sec during the same drought condition, traveltimes to full response ranged from 4.4 to 6.5 days. For releases of 10 and 25 cu ft/sec during severe drought conditions, traveltimes to full response near the confluence with the Neosho River ranged from 8.3 to 93 days. (Lantz-PTT)
Hydrogeology and Simulated Effects of Ground-Water Withdrawals in the Big River Area, Rhode Island
Granato, Gregory E.; Barlow, Paul M.; Dickerman, David C.
2003-01-01
The Rhode Island Water Resources Board is considering expanded use of ground-water resources from the Big River area because increasing water demands in Rhode Island may exceed the capacity of current sources. This report describes the hydrology of the area and numerical simulation models that were used to examine effects of ground-water withdrawals during 1964?98 and to describe potential effects of different withdrawal scenarios in the area. The Big River study area covers 35.7 square miles (mi2) and includes three primary surface-water drainage basins?the Mishnock River Basin above Route 3, the Big River Basin, and the Carr River Basin, which is a tributary to the Big River. The principal aquifer (referred to as the surficial aquifer) in the study area, which is defined as the area of stratified deposits with a saturated thickness estimated to be 10 feet or greater, covers an area of 10.9 mi2. On average, an estimated 75 cubic feet per second (ft3/s) of water flows through the study area and about 70 ft3/s flows out of the area as streamflow in either the Big River (about 63 ft3/s) or the Mishnock River (about 7 ft3/s). Numerical simulation models are used to describe the hydrology of the area under simulated predevelopment conditions, conditions during 1964?98, and conditions that might occur in 14 hypothetical ground-water withdrawal scenarios with total ground-water withdrawal rates in the area that range from 2 to 11 million gallons per day. Streamflow depletion caused by these hypothetical ground-water withdrawals is calculated by comparison with simulated flows for the predevelopment conditions, which are identical to simulated conditions during the 1964?98 period but without withdrawals at public-supply wells and wastewater recharge. Interpretation of numerical simulation results indicates that the three basins in the study area are in fact a single ground-water resource. For example, the Carr River Basin above Capwell Mill Pond is naturally losing water to the Mishnock River Basin. Withdrawals in the Carr River Basin can deplete streamflows in the Mishnock River Basin. Withdrawals in the Mishnock River Basin deplete streamflows in the Big River Basin and can intercept water flowing to the Flat River Reservoir North of Hill Farm Road in Coventry, Rhode Island. Withdrawals in the Big River Basin can deplete streamflows in the western unnamed tributary to the Carr River, but do not deplete streamflows in the Mishnock River Basin or in the Carr River upstream of Capwell Mill Pond. Because withdrawals deplete streamflows in the study area, the total amount of ground water that may be withdrawn for public supply depends on the minimum allowable streamflow criterion that is applied for each basin.
Ryter, Derek W.; Kunkel, Christopher D.; Peterson, Steven M.; Traylor, Jonathan P.
2015-08-13
The hypothetical decrease in recharge during the simulated drought caused groundwater in storage over the entire model in the study area to decrease by 361,500 acre-feet (14,100 acre-feet in the North Canadian River alluvial aquifer and 347,400 acre-feet in the Central Oklahoma aquifer), or approximately 0.2 percent of the total groundwater in storage over the drought period. This small percentage of groundwater loss showed that the Central Oklahoma aquifer as a bedrock aquifer has relatively low rates of recharge from the surface relative to the approximate storage. The budget for base flow to the North Canadian River indicated that the change in groundwater flow to the North Canadian River decreased during the 10-year drought by 386,500 acre-feet, or 37 percent. In all other parts of the Citizen Potawatomi Nation Tribal Jurisdictional Area, base flow decreased by 292,000 acre-feet, or 28 percent. Streamflow in the North Canadian River at the streamflow-gaging station at Shawnee, Okla., decreased during the hypothetical drought by as much as 28 percent, and the mean change in streamflow decreased as much as 16 percent. Streamflow at the Shawnee streamflow-gaging station did not recover to nondrought conditions until about 3 years after the simulated drought ended, during the relatively wet year of 2007.
NASA Astrophysics Data System (ADS)
Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.
2017-12-01
The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We will also investigate the hydrologic sensitivity to precipitation and temperature changes by altering input temperature and precipitation. Finally, our findings will point toward future process-based studies and simulated hydrologic responses that can be used to prepare flood hazard maps for cities around Devils Lake.
NASA Astrophysics Data System (ADS)
Dugger, A. L.; Rafieeinasab, A.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L. R.; Pan, L.; Zhang, Y.; Sampson, K. M.; Cosgrove, B.
2016-12-01
Evaluation of physically-based hydrologic models applied across large regions can provide insight into dominant controls on runoff generation and how these controls vary based on climatic, biological, and geophysical setting. To make this leap, however, we need to combine knowledge of regional forcing skill, model parameter and physics assumptions, and hydrologic theory. If we can successfully do this, we also gain information on how well our current approximations of these dominant physical processes are represented in continental-scale models. In this study, we apply this diagnostic approach to a 5-year retrospective implementation of the WRF-Hydro community model configured for the U.S. National Weather Service's National Water Model (NWM). The NWM is a water prediction model in operations over the contiguous U.S. as of summer 2016, providing real-time estimates and forecasts out to 30 days of streamflow across 2.7 million stream reaches as well as distributed snowpack, soil moisture, and evapotranspiration at 1-km resolution. The WRF-Hydro system permits not only the standard simulation of vertical energy and water fluxes common in continental-scale models, but augments these processes with lateral redistribution of surface and subsurface water, simple groundwater dynamics, and channel routing. We evaluate 5 years of NLDAS-2 precipitation forcing and WRF-Hydro streamflow and evapotranspiration simulation across the contiguous U.S. at a range of spatial (gage, basin, ecoregion) and temporal (hourly, daily, monthly) scales and look for consistencies and inconsistencies in performance in terms of bias, timing, and extremes. Leveraging results from other CONUS-scale hydrologic evaluation studies, we translate our performance metrics into a matrix of likely dominant process controls and error sources (forcings, parameter estimates, and model physics). We test our hypotheses in a series of controlled model experiments on a subset of representative basins from distinct "problem" environments (Southeast U.S. Coastal Plain, Central and Coastal Texas, Northern Plains, and Arid Southwest). The results from these longer-term model diagnostics will inform future improvements in forcing bias correction, parameter calibration, and physics developments in the National Water Model.
Whitbeck, David E.
2006-01-01
The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.
A Precipitation-Runoff Model for the Blackstone River Basin, Massachusetts and Rhode Island
Barbaro, Jeffrey R.; Zarriello, Phillip J.
2007-01-01
A Hydrological Simulation Program-FORTRAN (HSPF) precipitation-runoff model of the Blackstone River Basin was developed and calibrated to study the effects of changing land- and water-use patterns on water resources. The 474.5 mi2 Blackstone River Basin in southeastern Massachusetts and northern Rhode Island is experiencing rapid population and commercial growth throughout much of its area. This growth and the corresponding changes in land-use patterns are increasing stress on water resources and raising concerns about the future availability of water to meet residential and commercial needs. Increased withdrawals and wastewater-return flows also could adversely affect aquatic habitat, water quality, and the recreational value of the streams in the basin. The Blackstone River Basin was represented by 19 hydrologic response units (HRUs): 17 types of pervious areas (PERLNDs) established from combinations of surficial geology, land-use categories, and the distribution of public water and public sewer systems, and two types of impervious areas (IMPLNDs). Wetlands were combined with open water and simulated as stream reaches that receive runoff from surrounding pervious and impervious areas. This approach was taken to achieve greater flexibility in calibrating evapotranspiration losses from wetlands during the growing season. The basin was segmented into 50 reaches (RCHRES) to represent junctions at tributaries, major lakes and reservoirs, and drainage areas to streamflow-gaging stations. Climatological, streamflow, water-withdrawal, and wastewater-return data were collected during the study to develop the HSPF model. Climatological data collected at Worcester Regional Airport in Worcester, Massachusetts and T.F. Green Airport in Warwick, Rhode Island, were used for model calibration. A total of 15 streamflow-gaging stations were used in the calibration. Streamflow was measured at eight continuous-record streamflow-gaging stations that are part of the U.S. Geological Survey cooperative streamflow-gaging network, and at seven partial-record stations installed in 2004 for this study. Because the model-calibration period preceded data collection at the partial-record stations, a continuous streamflow record was estimated at these stations by correlation with flows at nearby continuous-record stations to provide additional streamflow data for model calibration. Water-use information was compiled for 1996-2001 and included municipal and commercial/industrial withdrawals, private residential withdrawals, golf-course withdrawals, municipal wastewater-return flows, and on-site septic effluent return flows. Streamflow depletion was computed for all time-varying ground-water withdrawals prior to simulation. Water-use data were included in the model to represent the net effect of water use on simulated hydrographs. Consequently, the calibrated values of the hydrologic parameters better represent the hydrologic response of the basin to precipitation. The model was calibrated for 1997-2001 to coincide with the land-use and water-use data compiled for the study. Four long-term stations (Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island) that monitor flow at 3.3, 5.4, 19, and 88 percent of the total basin area, respectively, provided the primary model-calibration points. Hydrographs, scatter plots, and flow-duration curves of observed and simulated discharges, along with various model-fit statistics, indicated that the model performed well over a range of hydrologic conditions. For example, the total runoff volume for the calibration period simulated at the Nipmuc River near Harrisville, Rhode Island; Quinsigamond River at North Grafton, Massachusetts; Branch River at Forestdale, Rhode Island; and Blackstone River at Woonsocket, Rhode Island streamflow-gaging stations differed from the observed runoff v
Diverse multi-decadal changes in streamflow within a rapidly urbanizing region
NASA Astrophysics Data System (ADS)
Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.
2018-01-01
The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing groundwater infiltration into sewers. The impacts of urbanization on streamflow within the metropolitan area have undoubtedly been felt by a wide of range of communities.
Streamflow Prediction based on Chaos Theory
NASA Astrophysics Data System (ADS)
Li, X.; Wang, X.; Babovic, V. M.
2015-12-01
Chaos theory is a popular method in hydrologic time series prediction. Local model (LM) based on this theory utilizes time-delay embedding to reconstruct the phase-space diagram. For this method, its efficacy is dependent on the embedding parameters, i.e. embedding dimension, time lag, and nearest neighbor number. The optimal estimation of these parameters is thus critical to the application of Local model. However, these embedding parameters are conventionally estimated using Average Mutual Information (AMI) and False Nearest Neighbors (FNN) separately. This may leads to local optimization and thus has limitation to its prediction accuracy. Considering about these limitation, this paper applies a local model combined with simulated annealing (SA) to find the global optimization of embedding parameters. It is also compared with another global optimization approach of Genetic Algorithm (GA). These proposed hybrid methods are applied in daily and monthly streamflow time series for examination. The results show that global optimization can contribute to the local model to provide more accurate prediction results compared with local optimization. The LM combined with SA shows more advantages in terms of its computational efficiency. The proposed scheme here can also be applied to other fields such as prediction of hydro-climatic time series, error correction, etc.
Weaver, J. Curtis
2015-03-12
In 2013, the U.S. Geological Survey, in cooperation with the North Carolina Division of Water Resources, compiled updated low-flow characteristics and flow-duration statistics for selected continuous-record streamgages in North Carolina. The compilation of updated streamflow statistics provides regulators and planners with relevant hydrologic information reflective of the recent droughts, which can be used to better manage the quantity and quality of streams in North Carolina. Streamflow records available through the 2012 water year1 were used to determine the annual (based on climatic year2) and winter 7-day, 10-year (7Q10, W7Q10) low-flow discharges, the 30-day, 2-year (30Q2) low-flow discharge, and the 7-day, 2-year (7Q2) low-flow discharge. Consequently, streamflow records available through March 31, 2012 (or the 2011 climatic year) were used to determine the updated low-flow characteristics. Low-flow characteristics were published for 177 unregulated sites, 56 regulated sites, and 33 sites known or considered to be affected by varying degrees of minor regulation and (or) diversions upstream from the streamgages (266 sites total). The updated 7Q10 discharges were compared for 63 streamgages across North Carolina where (1) long-term streamflow record consisted of 30 or more climatic years of data available as of the 1998 climatic year, and (2) streamflows were not known to be regulated. The 7Q10 discharges did not change for 3 sites, whereas increases and decreases were noted at 5 and 55 sites, respectively. Positive changes (increases) ranged from 4.3 percent (site 362) to 34.1 percent (site 112) with a median of 13.2 percent. Negative percentage changes (decreases) ranged from –3.3 percent (site 514) to –80.0 percent (site 308) with a median of –22.2 percent. The median percentage change for all 63 streamgages was –18.4 percent. Streamflow statistics determined as a part of this compilation included minimum, mean, maximum, and flow-duration statistics of daily mean discharges for categorical periods. Flow-duration statistics based on the daily mean discharge records were compiled in this study for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles. Flow-duration statistics were determined for each complete water year of record at a streamgage as well as the available period of record (or selected periods if flows were regulated) and selected seasonal, monthly, and calendar day periods. In addition to the streamflow statistics compiled for each of the water years, the number of days the daily mean discharge was at or below the 10th percentile was summed for each water year as well as the number of events during the water year when streamflow was consistently at or below the 10th percentile. All low-flow characteristics for the streamgages were added into the StreamStatsDB, which is a database accessible to users through the recently released USGS StreamStats application for North Carolina. The minimum, mean, maximum, and flow-duration statistics of daily mean discharges based on the available (or selected if regulated flows) period of record were updated in the North Carolina StreamStatsDB. However, for the selected seasonal, monthly, calendar day, and annual water year periods, tab-delimited American Standard Code for Information Interchange (ASCII) tables of the streamflow statistics are available online to users from a link provided in the StreamStats application. 1The annual period from October 1 through September 30, designated by the year in which the period ends. 2The annual period from April 1 through March 31, designated by the year in which the period begins.
NASA Astrophysics Data System (ADS)
Arumugam, S.; Mazrooei, A.; Lakshmi, V.; Wood, A.
2017-12-01
Subseasonal-to-seasonal (S2S) forecasts of soil moisture and streamflow provides critical information for water and agricultural systems to support short-term planning and mangement. This study evaluates the role of observed streamflow and remotely-sensed soil moisture from SMAP (Soil Moisture Active Passive) mission in improving S2S streamflow and soil moisture forecasting using data assimilation (DA). We first show the ability to forecast soil moisture at monthly-to-seaasonal time scale by forcing climate forecasts with NASA's Land Information System and then compares the developed soil moisture forecast with the SMAP data over the Southeast US. Our analyses show significant skill in forecasting real-time soil moisture over 1-3 months using climate information. We also show that the developed soil moisture forecasts capture the observed severe drought conditions (2007-2008) over the Southeast US. Following that, we consider both SMAP data and observed streamflow for improving S2S streamflow and soil moisture forecasts for a pilot study area, Tar River basin, in NC. Towards this, we consider variational assimilation (VAR) of gauge-measured daily streamflow data in improving initial hydrologic conditions of Variable Infiltration Capacity (VIC) model. The utility of data assimilation is then assessed in improving S2S forecasts of streamflow and soil moisture through a retrospective analyses. Furthermore, the optimal frequency of data assimilation and optimal analysis window (number of past observations to use) are also assessed in order to achieve the maximum improvement in S2S forecasts of streamflow and soil moisture. Potential utility of updating initial conditions using DA and providing skillful forcings are also discussed.
NASA Technical Reports Server (NTRS)
Schumann, H. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The DCS water-stage data from the USGS streamflow gaging station on the Verde River near Camp Verde furnished information sufficient for the accurate computation of daily mean streamflow rates during the first 2 months of operation. Daily mean flow rates computed from the DCS data agreed with those computed from the digital recorder data within + or - 5% during periods of stable or slowly changing flow and within + or - 10% during periods of rapidly changing high flow. The SRP was furnished near-real time DCS information on snow moisture content and streamflow rates for use in the management and operation of the multiple-use reservoir system. The SRP, by prudent water management and the use of near-real time hydrologic data furnished by microwave and ERTS DCS telemetry, was successful in anticipating the amount of flow into the Salt and Verde Rivers and in the subsequent release of water at rates that did not create flooding in metropolitan Phoenix. Only minor flooding occurred along the Gila River west of Phoenix. According to the Maricopa County Civil Defense agency, wage and salary losses of about $11,400,000 resulted from closing of roads across the Salt River in the winter and spring of 1972-73; however, the number and duration of the closing were minimized by use of DCS data.
NASA Astrophysics Data System (ADS)
Maslova, I.; Ticlavilca, A. M.; McKee, M.
2012-12-01
There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.
Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle
2016-12-05
Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.
Streamflow Impacts of Biofuel Policy-Driven Landscape Change
Khanal, Sami; Anex, Robert P.; Anderson, Christopher J.; Herzmann, Daryl E.
2014-01-01
Likely changes in precipitation (P) and potential evapotranspiration (PET) resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity. PMID:25289698
Lambert, P.M.; Marston, T.; Kimball, B.A.; Stolp, B.J.
2011-01-01
Roosevelt City, Utah, asserts a need for an additional supply of water to meet municipal demands and has identified a potential location for additional groundwater development at the Sprouse well field near the West Channel of the Uinta River. Groundwater is commonly hydraulically linked to surface water and, under some conditions, the pumpage of groundwater can deplete water in streams and other water bodies. In 2008, the U.S. Geological Survey, in cooperation with Roosevelt City, the Utah Department of Natural Resources, and the Ute Indian Tribe, began a study to improve understanding of the local interconnection between groundwater and surface water and to assess the potential for streamflow depletion from future groundwater withdrawals at a potential Roosevelt City development location—the Sprouse well field near the West Channel of the Uinta River.In the study, streamflow gains and losses at the river/aquifer boundary near the well field and changes in those conditions over time were assessed through (1) synoptic measurement of discharge in the stream at multiple sites using tracer-dilution methods, (2) periodic measurement of the vertical hydraulic gradient across the streambed, and (3) continuous measurement of stream and streambed water temperature using heat as a tracer of flow across the streambed. Although some contradictions among the results of the three assessment methods were observed, results of the approaches generally indicated (1) losing streamflow conditions on the West Channel of the Uinta River north of and upstream from the Sprouse well field within the study area, (2) gaining streamflow conditions south of and downstream from the well field, and (3) some seasonal changes in those conditions that correspond with seasonal changes in stream stage and local water-table altitudes.A numerical groundwater flow model was developed on the basis of previously reported observations and observations made during this study, and was used to estimate potential streamflow depletion that might result from future groundwater withdrawals at the Sprouse well field. The model incorporates concepts of transient groundwater flow conditions including fluctuations in groundwater levels and storage, and the distribution of and temporal variations in gains to and losses from streamflow in the West Channel of the Uinta River near the Sprouse well field. Two predictive model simulations incorporated additional future discharge from the Sprouse well field totaling 325 acre-feet annually and biennially during summer months. Results of the predictive model simulations indicate that the water withdrawn by the additional pumping was derived initially from aquifer storage and then, with time, predominantly from streamflow depletion. By the 10th year of the predictive simulation incorporating annual summer pumping from an additional public-supply well in the Sprouse well field, the simulation results indicate that 89 percent of a future annual 325 acre-feet of discharge is derived from depletion of streamflow in the West Channel of the Uinta River. A similar result was observed in a predictive model simulating the same discharge rate but with the new well being pumped every other year.
NASA Astrophysics Data System (ADS)
Arsenault, R.; Mai, J.; Latraverse, M.; Tolson, B.
2017-12-01
Probabilistic ensemble forecasts generated by the ensemble streamflow prediction (ESP) methodology are subject to biases due to errors in the hydrological model's initial states. In day-to-day operations, hydrologists must compensate for discrepancies between observed and simulated states such as streamflow. However, in data-scarce regions, little to no information is available to guide the streamflow assimilation process. The manual assimilation process can then lead to more uncertainty due to the numerous options available to the forecaster. Furthermore, the model's mass balance may be compromised and could affect future forecasts. In this study we propose a data-driven approach in which specific variables that may be adjusted during assimilation are defined. The underlying principle was to identify key variables that would be the most appropriate to modify during streamflow assimilation depending on the initial conditions such as the time period of the assimilation, the snow water equivalent of the snowpack and meteorological conditions. The variables to adjust were determined by performing an automatic variational data assimilation on individual (or combinations of) model state variables and meteorological forcing. The assimilation aimed to simultaneously optimize: (1) the error between the observed and simulated streamflow at the timepoint where the forecasts starts and (2) the bias between medium to long-term observed and simulated flows, which were simulated by running the model with the observed meteorological data on a hindcast period. The optimal variables were then classified according to the initial conditions at the time period where the forecast is initiated. The proposed method was evaluated by measuring the average electricity generation of a hydropower complex in Québec, Canada driven by this method. A test-bed which simulates the real-world assimilation, forecasting, water release optimization and decision-making of a hydropower cascade was developed to assess the performance of each individual process in the reservoir management chain. Here the proposed method was compared to the PF algorithm while keeping all other elements intact. Preliminary results are encouraging in terms of power generation and robustness for the proposed approach.
NASA Astrophysics Data System (ADS)
Sinha, T.; Arumugam, S.
2012-12-01
Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.
NASA Astrophysics Data System (ADS)
Konrad, C.; Brasher, A.; May, J.
2007-12-01
River restoration depends on re-establishment of the range of physical and biological processes that comprise the river ecosystem. Streamflow is the definitive physical processes for river ecosystems, so hydrologic alteration represents a potentially significant issue to be addressed by restoration efforts. Given adaptation of lotic species to naturally variable streamflow patterns over evolutionary time scales, however, lotic communities are resilient to at least some forms of hydrologic variability. As a result, river restoration may be successful despite limited but biologically insignificant hydrologic alteration. The responses of benthic invertebrate assemblages to variation in streamflow patterns across the western United States were investigated to identify biologically important forms and magnitudes of hydrologic variability. Biological responses to streamflow patterns were analyzed in terms of ceilings and floors on invertebrate assemblage diversity and structure using a non-parametric screening procedure and quantile regression. Variability at daily and monthly time scales was the most common streamflow pattern associated with broad metrics of invertebrate assemblages including abundance; richness and relative abundance of Ephemeroptera, Plecoptera, Trichoptera and non-insects; dominance; and diversity. Low flow magnitude and annual variability were associated with richness and trophic structure. The frequency, magnitude, and duration of high flows were associated with abundance and richness. Longer term streamflow metrics (calculated over at least 5 years) were more important than recent flows (30 and 100 days prior to invertebrate sampling). The results can be used as general guidance about when hydrologic alteration is likely to be an important factor and what streamflow patterns may need to be re-established for successful river restoration.
Stochastic Watershed Models for Risk Based Decision Making
NASA Astrophysics Data System (ADS)
Vogel, R. M.
2017-12-01
Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation
The importance of warm season warming to western U.S. streamflow changes
Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.
2011-01-01
Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.
Estimation of the ARNO model baseflow parameters using daily streamflow data
NASA Astrophysics Data System (ADS)
Abdulla, F. A.; Lettenmaier, D. P.; Liang, Xu
1999-09-01
An approach is described for estimation of baseflow parameters of the ARNO model, using historical baseflow recession sequences extracted from daily streamflow records. This approach allows four of the model parameters to be estimated without rainfall data, and effectively facilitates partitioning of the parameter estimation procedure so that parsimonious search procedures can be used to estimate the remaining storm response parameters separately. Three methods of optimization are evaluated for estimation of four baseflow parameters. These methods are the downhill Simplex (S), Simulated Annealing combined with the Simplex method (SA) and Shuffled Complex Evolution (SCE). These estimation procedures are explored in conjunction with four objective functions: (1) ordinary least squares; (2) ordinary least squares with Box-Cox transformation; (3) ordinary least squares on prewhitened residuals; (4) ordinary least squares applied to prewhitened with Box-Cox transformation of residuals. The effects of changing the seed random generator for both SA and SCE methods are also explored, as are the effects of the bounds of the parameters. Although all schemes converge to the same values of the objective function, SCE method was found to be less sensitive to these issues than both the SA and the Simplex schemes. Parameter uncertainty and interactions are investigated through estimation of the variance-covariance matrix and confidence intervals. As expected the parameters were found to be correlated and the covariance matrix was found to be not diagonal. Furthermore, the linearized confidence interval theory failed for about one-fourth of the catchments while the maximum likelihood theory did not fail for any of the catchments.
Feaster, Toby D.; Conrads, Paul
2000-01-01
In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t
Evaluation of selected surface-water-quality stations in Wyoming
Rucker, S.J.; DeLong, L.L.
1987-01-01
The U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, has conducted a surface-water-quality program in Wyoming since 1965. The purpose has been to determine the chemical quality of the water in terms of the major dissolved constituents (salinity). Changing agricultural techniques and energy development have stimulated a need for an expanded program involving additional types of data. This report determines the adequacy of the data collected thus far to describe the chemical quality. The sampling program was evaluated by determining how well the data describe the dissolved-solids load of the streams. Monthly mean loads were estimated at 16 stations throughout the network where daily streamflow and daily specific conductance were available. Monthly loads were then compared with loads estimated from daily streamflow and data derived from analyses of samples collected on a monthly basis at these same stations. Agreement was good. Solute-load hydrographs were constructed for 37 stations and from some reaches where streamflow records were available. Because stations where no discharge records are available are not amenable to this type of analysis, data collected at these stations are of limited usefulness. This report covers analyses of data for all qualifying sites in Wyoming except those in the Green River Basin, which were analyzed in U.S. Geological Survey Water Resources Investigations 77-103. The salinity in most of the streams evaluated is adequately described by the data collected. Reduced sampling is feasible, and time and money can be diverted to collecting other data. (USGS)
NASA Astrophysics Data System (ADS)
Neri, Mattia; Toth, Elena
2017-04-01
The study presents the implementation of different regionalisation approaches for the transfer of model parameters from similar and/or neighbouring gauged basin to an ungauged catchment, and in particular it uses a semi-distributed continuously-simulating conceptual rainfall-runoff model for simulating daily streamflows. The case study refers to a set of Apennine catchments (in the Emilia-Romagna region, Italy), that, given the spatial proximity, are assumed to belong to the same hydrologically homogeneous region and are used, alternatively, as donors and regionalised basins. The model is a semi-distributed version of the HBV model (TUWien model) in which the catchment is divided in zones of different altitude that contribute separately to the total outlet flow. The model includes a snow module, whose application in the Apennine area has been, so far, very limited, even if snow accumulation and melting phenomena do have an important role in the study basins. Two methods, both widely applied in the recent literature, are applied for regionalising the model: i) "parameters averaging", where each parameter is obtained as a weighted mean of the parameters obtained, through calibration, on the donor catchments ii) "output averaging", where the model is run over the ungauged basin using the entire set of parameters of each donor basin and the simulated outputs are then averaged. In the first approach, the parameters are regionalised independently from each other, in the second one, instead, the correlation among the parameters is maintained. Since the model is a semi-distributed one, where each elevation zone contributes separately, the study proposes to test also a modified version of the second approach ("output averaging"), where each zone is considered as an autonomous entity, whose parameters are transposed to the ungauged sub-basin corresponding to the same elevation zone. The study explores also the choice of the weights to be used for averaging the parameters (in the "parameters averaging" approach) or for averaging the simulated streamflow (in the "output averaging" approach): in particular, weights are estimated as a function of the similarity/distance of the ungauged basin/zone to the donors, on the basis of a set of geo-morphological catchment descriptors. The predictive accuracy of the different regionalisation methods is finally assessed by jack-knife cross-validation against the observed daily runoff for all the study catchments.
Ensemble reconstruction of severe low flow events in France since 1871
NASA Astrophysics Data System (ADS)
Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Devers, Alexandre; Graff, Benjamin
2016-04-01
This work presents a study of severe low flow events that occurred from 1871 onwards for a large number of near-natural catchments in France. It aims at assessing and comparing their characteristics to improve our knowledge on historical events and to provide a selection of benchmark events for climate change adaptation purposes. The historical depth of streamflow observations is generally limited to the last 50 years and therefore offers too small a sample of severe low flow events to properly explore the long-term evolution of their characteristics and associated impacts. In order to overcome this limit, this work takes advantage of a 140-year ensemble hydrometeorological dataset over France based on: (1) a probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France (Caillouet et al., 2015), and (2) a continuous hydrological modelling that uses the high-resolution meteorological reconstructions as forcings over the whole period. This dataset provides an ensemble of 25 equally plausible daily streamflow time series for a reference network of stations in France over the whole 1871-2012 period. Severe low flow events are identified based on a combination of a fixed threshold and a daily variable threshold. Each event is characterized by its deficit, duration and timing by applying the Sequent Peak Algorithm. The procedure is applied to the 25 simulated time series as well as to the observed time series in order to compare observed and simulated events over the recent period, and to characterize in a probabilistic way unrecorded historical events. The ensemble aspect of the reconstruction leads to address specific issues, for properly defining events across ensemble simulations, as well as for adequately comparing the simulated characteristics to the observed ones. This study brings forward the outstanding 1921 and 1940s events but also older and less known ones that occurred during the last decade of the 19th century. For the first time, severe low flow events are qualified in a homogeneous way over 140 years on a large set of near-natural French catchments, allowing for detailed analyses of the effect of climate variability and anthropogenic climate change on low flow hydrology. Caillouet, L., Vidal, J.-P., Sauquet, E., and Graff, B. (2015) Probabilistic precipitation and temperature downscaling of the Twentieth Century Reanalysis over France, Clim. Past Discuss., 11, 4425-4482, doi:10.5194/cpd-11-4425-2015
Cigrand, Charles V.
2018-03-26
The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the existing conditions and streamflows from the design rainfall events were then done to serve as a baseline for evaluating flood-mitigation scenarios. After these simulations were completed, three different flood-mitigation scenarios were developed with HEC–RAS: a detention-storage scenario, a conveyance improvement scenario, and a combination of both. In the detention-storage scenario, four in-channel detention structures were placed upstream from the city of West Branch to attenuate peak streamflows. To investigate possible improvements to conveying floodwaters through the city of West Branch, a section of abandoned railroad embankment and an old truss bridge were removed in the model, because these structures were producing backwater areas during flooding events. The third scenario combines the detention and conveyance scenarios so their joint efficiency could be evaluated. The scenarios with the design rainfall events were run in the HEC–RAS model so their flood-mitigation effects could be analyzed across a wide range of flood magnitudes.
On improving cold region hydrological processes in the Canadian Land Surface Scheme
NASA Astrophysics Data System (ADS)
Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard
2017-01-01
Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.
NASA Astrophysics Data System (ADS)
Tobin, K. J.; Bennett, M. E.
2017-12-01
Over the last decade autocalibration routines have become commonplace in watershed modeling. This approach is most often used to simulate a streamflow at a basin's outlet. In alpine settings spring/early summer snowmelt is by far the dominant signal in this system. Therefore, there is great potential for a modeled watershed to underperform during other times of the year. This tendency has been noted in many prior studies. In this work, the Soil and Water Assessment Tool (SWAT) model was autocalibrated with the SUFI-2 routine. Two mountainous watersheds from Idaho and Utah were examined. In this study, the basins were calibrated on a monthly satellite based on the MODIS 16A2 product. The gridded MODIS product was ideally suited to derive an estimate of ET on a subbasin basis. Soil moisture data was derived from extrapolation of in situ sites from the SNOwpack TELemetry (SNOTEL) network. Previous work has indicated that in situ soil moisture can be applied to derive an estimate at a significant distance (>30 km) away from the in situ site. Optimized ET and soil moisture parameter values were then applied to streamflow simulations. Preliminary results indicate improved streamflow performance both during calibration (2005-2011) and validation (2012-2014) periods. Streamflow performance was monitored with not only standard objective metrics (bias and Nash Sutcliffe coefficients) but also improved baseflow accuracy, demonstrating the utility of this approach in improving watershed modeling fidelity outside the main snowmelt season.
NASA Astrophysics Data System (ADS)
Zhu, Q.; Xu, Y. P.; Hsu, K. L.
2017-12-01
A new satellite-based precipitation dataset, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with long-term time series dating back to 1983 can be one valuable dataset for climate studies. This study investigates the feasibility of using PERSIANN-CDR as a reference dataset for climate studies. Sixteen CMIP5 models are evaluated over the Xiang River basin, southern China, by comparing their performance on precipitation projection and streamflow simulation, particularly on extreme precipitation and streamflow events. The results show PERSIANN-CDR is a valuable dataset for climate studies, even on extreme precipitation events. The precipitation estimates and their extreme events from CMIP5 models are improved significantly compared with rain gauge observations after bias-correction by the PERSIANN-CDR precipitation estimates. Given streamflows simulated with raw and bias-corrected precipitation estimates from 16 CMIP5 models, 10 out of 16 are improved after bias-correction. The impact of bias-correction on extreme events for streamflow simulations are unstable, with eight out of 16 models can be clearly claimed they are improved after the bias-correction. Concerning the performance of raw CMIP5 models on precipitation, IPSL-CM5A-MR excels the other CMIP5 models, while MRI-CGCM3 outperforms on extreme events with its better performance on six extreme precipitation metrics. Case studies also show that raw CCSM4, CESM1-CAM5, and MRI-CGCM3 outperform other models on streamflow simulation, while MIROC5-ESM-CHEM, MIROC5-ESM and IPSL-CM5A-MR behaves better than the other models after bias-correction.
NASA Astrophysics Data System (ADS)
Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.
2015-12-01
Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.
August median streamflow on ungaged streams in Eastern Coastal Maine
Lombard, Pamela J.
2004-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.
Hydrologic modeling of two glaciated watersheds in Northeast Pennsylvania
Srinivasan, M.S.; Hamlett, J.M.; Day, R.L.; Sams, J.I.; Petersen, G.W.
1998-01-01
A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36 x 106 m3 and the simulated streamflow volume was 13.82 x 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36??106 m3 and the simulated streamflow volume was 13.82??106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.
Variability and predictability of the streamflows in Coastal and Andean Ecuador
NASA Astrophysics Data System (ADS)
Quishpe-Vásquez, César; Córdoba-Machado, Samir; Palomino-Lemus, Reiner; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
The main objective of this study is to examine the variability and the predictability in available water resources in Coastal and Andean Ecuador. For this aim, we use the streamflow data from a network of hydrological stations, provided by the National Institute of Meteorology and Hydrology of Ecuador (IHNAMI), distributed over the Ecuadorian territory and strategically located in the watersheds of its main rivers. A number of 20 stations with a continuous period of daily data covering a period of 42 years (1973-2015) were selected. To analyze the spatio-temporal variability of streamflow in Ecuador, principal component analysis (PCA) along with a study of trends have been applied to the streamflow data at monthly time scales. The significance and magnitude of trends have been analyzed using Man-Kendall test and Sen slope. Moreover, to analyze the predictability of the streamflow, the spatio-temporal effects of the ENSO phenomenon on the country have been evaluated through a correlation analysis using different lags between different El Niño indices (Niño 1+2, Niño Modoki, Trans-Niño and Niño 3.4) and the seasonal streamflow. The results show two main regions that differ in terms of variability. We found that the variations in water resources have a close relationship between the magnitude and the seasonal distribution of the streamflow and the ENSO. However, each index shows a different impact on the streamflow depending on the season and the region. In general, the higher correlations between the ENSO indices and the streamflow are observed in the stations closer to the coast. KEY WORDS: Ecuador streamflow; trends; PCA; variability; predictability; ENSO. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.
2005-01-01
In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation, the model computes the velocity field, water-surface elevations, and boundary shear stress throughout the modeled reach. The 17.5 kilometer model reach was subdivided into two segments on the basis of predominant grain size: a straight reach with a sand, gravel, and cobble substrate located between the upstream model boundary at river kilometer 245.9 and the upstream end of Ambush Rock at river kilometer 244.6, and a meandering reach with a predominately sand substrate located between upstream end of Ambush Rock and the downstream model boundary at river kilometer 228.4. Model cell size in the x and y (horizontal) dimensions is 5 meters by 5 meters along the computational grid centerline with 15 nodes in the z (vertical) dimension. The model was calibrated to historical streamflows evenly distributed between 141.6 and 2,548.9 cubic meters per second. The model was validated by comparing simulated velocities with velocities measured at 15 cross sections during steady streamflow. These 15 cross sections were each measured multiple (7-13) times to obtain velocities suitable for comparison to the model results. Comparison of modeled and measured velocities suggests that the model does a good job of reproducing flow patterns in the river, although some discrepancies were noted. The model was used to simulate water-surface elevation, depth, velocity, bed shear stress, and sediment mobility for Kootenai River streamflows of 170, 566, 1,130, 1,700, and 2,270 cubic meters per second (6,000, 20,000, 40,000, 60,000, and 80,000 cubic feet per second). The three lowest streamflow simulations represent a range of typical river conditions before and since the construction of Libby Dam, and the highest streamflow simulation (2,270 cubic meters per second) is approximately equal to the annual median peak streamflow prior to emplacement of Libby Dam in 1972. Streamflow greater than 566 cubic meters per second were incrementally increased by 570 cubic meters per second. For each
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Xitian; Yang, Zong-Liang; Xia, Youlong
2014-12-27
This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relativemore » to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.« less
Analysis of the U.S. geological survey streamgaging network
Scott, A.G.
1987-01-01
This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U.S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3,493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19.9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17.8 percent. The existing streamgaging networks in four Districts were further analyzed to determine the impacts that satellite telemetry would have on the cost effectiveness. Satellite telemetry was not found to be cost effective on the basis of hydrologic data collection alone, given present cost of equipment and operation.This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U. S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3, 493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19. 9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17. 8 percent. Additional study results are discussed.
Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.
2012-01-01
The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.
Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.
2013-01-01
Potential changes in climate could alter interactions between environmental and societal systems and adversely affect the availability of water resources in many coastal communities. Changes in streamflow patterns in conjunction with sea-level rise may change the salinity-intrusion dynamics of coastal rivers. Several municipal water-supply intakes are located along the Georgia and South Carolina coast that are proximal to the present day saltwater-freshwater interface of tidal rivers. Increases in the extent of salinity intrusion resulting from climate change could threaten the availability of freshwater supplies in the vicinity of these intakes. To effectively manage these supplies, water-resource managers need estimates of potential changes in the frequency, duration, and magnitude of salinity intrusion near their water-supply intakes that may occur as a result of climate change. This study examines potential effects of climate change, including altered streamflow and sea-level rise, on the dynamics of saltwater intrusion near municipal water-supply intakes in two coastal areas. One area consists of the Atlantic Intracoastal Waterway (AIW) and the Waccamaw River near Myrtle Beach along the Grand Strand of the South Carolina Coast, and the second area is on or near the lower Savannah River near Savannah, Georgia. The study evaluated how future sea-level rise and a reduction in streamflows can potentially affect salinity intrusion and threaten municipal water supplies and the biodiversity of freshwater tidal marshes in these two areas. Salinity intrusion occurs as a result of the interaction between three principal forces—streamflow, mean coastal water levels, and tidal range. To analyze and simulate salinity dynamics at critical coastal gaging stations near four municipal water-supply intakes, various data-mining techniques, including artificial neural network (ANN) models, were used to evaluate hourly streamflow, salinity, and coastal water-level data collected over a period exceeding 10 years. The ANN models were trained (calibrated) to learn the specific interactions that cause salinity intrusions, and resulting models were able to accurately simulate historical salinity dynamics in both study areas. Changes in sea level and streamflow quantity and timing can be simulated by the salinity intrusion models to evaluate various climate-change scenarios. The salinity intrusion models for the study areas are deployed in a decision support system to facilitate the use of the models for management decisions by coastal water-resource managers. The report describes the use of the salinity-intrusion models decision support system to evaluate salinity-intrusion dynamics for various climate-change scenarios, including incremental increases in sea level in combination with incremental decreases in streamflow. Operation of municipal water-treatment plants is problematic when the specific-conductance values for source water are greater than 1,000 to 2,000 microsiemens per centimeter (µS/cm). High specific-conductance values contribute to taste problems that require treatment. Data from a gage downstream from a municipal water intake indicate specific conductance exceeded 1,000 µS/cm about 5.4 percent of the time over the 14-year period from August 1995 to August 2008. Simulations of specific conductance at this gaging station that incorporates sea-level rises resulted in a doubling of the exceedances to 11.0 percent for a 1-foot increase and 17.6 percent for a 2-foot increase. The frequency of intrusion of water with specific conductance values of 1,000 µS/cm was less sensitive to incremental reductions in streamflow than to incremental increases in sea level. Simulations of conditions associated with a 10-percent reduction in streamflow, in combination with a 1-foot rise in sea level, increased the percentage of time specific conductance exceeded 1,000 µS/cm at this site from 11.0 to 13.3 percent, and a 20-percent reduction in streamflow increased the percentage of time to 16.6 percent. Precipitation and temperature data from a global circulation model were used, after scale adjustments, as input to a watershed model of the Yadkin-Pee Dee River basin, which flows into the Waccamaw River and Atlantic Intracoastal Waterway study area in South Carolina. The simulated streamflow for historical conditions and projected climate change in the future was used as input for the ANN model in decision support system. Results of simulations incorporating climate-change projections for alterations in streamflow indicate an increase in the frequency of salinity-intrusion events and a shift in the seasonal occurrence of the intrusion events from the summer to the fall.
NASA Technical Reports Server (NTRS)
Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf
2012-01-01
Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.
Statistical summaries of selected Iowa streamflow data through September 2013
Eash, David A.; O'Shea, Padraic S.; Weber, Jared R.; Nguyen, Kevin T.; Montgomery, Nicholas L.; Simonson, Adrian J.
2016-01-04
Statistical summaries of streamflow data collected at 184 streamgages in Iowa are presented in this report. All streamgages included for analysis have at least 10 years of continuous record collected before or through September 2013. This report is an update to two previously published reports that presented statistical summaries of selected Iowa streamflow data through September 1988 and September 1996. The statistical summaries include (1) monthly and annual flow durations, (2) annual exceedance probabilities of instantaneous peak discharges (flood frequencies), (3) annual exceedance probabilities of high discharges, and (4) annual nonexceedance probabilities of low discharges and seasonal low discharges. Also presented for each streamgage are graphs of the annual mean discharges, mean annual mean discharges, 50-percent annual flow-duration discharges (median flows), harmonic mean flows, mean daily mean discharges, and flow-duration curves. Two sets of statistical summaries are presented for each streamgage, which include (1) long-term statistics for the entire period of streamflow record and (2) recent-term statistics for or during the 30-year period of record from 1984 to 2013. The recent-term statistics are only calculated for streamgages with streamflow records pre-dating the 1984 water year and with at least 10 years of record during 1984–2013. The streamflow statistics in this report are not adjusted for the effects of water use; although some of this water is used consumptively, most of it is returned to the streams.
Esralew, Rachel A.; Baker, Ronald J.
2008-01-01
Hydrologic changes in New Jersey stream basins resulting from human activity can affect the flow and ecology of the streams. To assess future changes in streamflow resulting from human activity an understanding of the natural variability of streamflow is needed. The natural variability can be classified using Ecologically Relevant Hydrologic Indices (ERHIs). ERHIs are defined as selected streamflow statistics that characterize elements of the flow regime that substantially affect biological health and ecological sustainability. ERHIs are used to quantitatively characterize aspects of the streamflow regime, including magnitude, duration, frequency, timing, and rate of change. Changes in ERHI values can occur as a result of human activity, and changes in ERHIs over time at various stream locations can provide information about the degree of alteration in aquatic ecosystems at or near those locations. New Jersey streams can be divided into four classes (A, B, C, or D), where streams with similar ERHI values (determined from cluster analysis) are assigned the same stream class. In order to detect and quantify changes in ERHIs at selected streamflow-gaging stations, a 'baseline' period is needed. Ideally, a baseline period is a period of continuous daily streamflow record at a gaging station where human activity along the contributing stream reach or in the stream's basin is minimal. Because substantial urbanization and other development had already occurred before continuous streamflow-gaging stations were installed, it is not possible to identify baseline periods that meet this criterion for many reaches in New Jersey. Therefore, the baseline period for a considerably altered basin can be defined as a period prior to a substantial human-induced change in the drainage basin or stream reach (such as regulations or diversions), or a period during which development did not change substantially. Index stations (stations with minimal urbanization) were defined as streamflow-gaging stations in basins that contain less than 15 percent urban land use throughout the period of continuous streamflow record. A minimum baseline period of record for each stream class was determined by comparing the variability of selected ERHIs among consecutive 5-, 10-, 15-, and 20-year time increments for index stations. On the basis of this analysis, stream classes A and D were assigned a minimum of 20 years of continuous record as a baseline period and stream classes B and C, a minimum of 10 years. Baseline periods were calculated for 85 streamflow-gaging stations in New Jersey with 10 or more years of continuous daily streamflow data, and the values of 171 ERHIs also were calculated for these baseline periods for each station. Baseline periods were determined by using historical streamflow-gaging station data, estimated changes in impervious surface in the drainage basin, and statistically significant changes in annual base flow and runoff. Historical records were reviewed to identify years during which regulation, diversions, or withdrawals occurred in the drainage basins. Such years were not included in baseline periods of record. For some sites, the baseline period of record was shorter than the minimum period of record specified for the given stream class. In such cases, the baseline period was rated as 'poor'. Impervious surface was used as an indicator of urbanization and change in streamflow characteristics owing to increases in storm runoff and decreases in base flow. Percentages of impervious surface were estimated for 85 streamflow-gaging stations from available municipal population-density data by using a regression model. Where the period of record was sufficiently long, all years after the impervious surface exceeded 10 to 20 percent were excluded from the baseline period. The percentage of impervious surface also was used as a criterion in assigning qualitative ratings to baseline periods. Changes in trends of annual base fl
Forecasting daily streamflow using online sequential extreme learning machines
NASA Astrophysics Data System (ADS)
Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.
2016-06-01
While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.
Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt
NASA Technical Reports Server (NTRS)
Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.
2015-01-01
Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.
2013-01-01
Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.
Hay, Lauren E.; LaFontaine, Jacob H.; Markstrom, Steven
2014-01-01
The accuracy of statistically downscaled general circulation model (GCM) simulations of daily surface climate for historical conditions (1961–99) and the implications when they are used to drive hydrologic and stream temperature models were assessed for the Apalachicola–Chattahoochee–Flint River basin (ACFB). The ACFB is a 50 000 km2 basin located in the southeastern United States. Three GCMs were statistically downscaled, using an asynchronous regional regression model (ARRM), to ⅛° grids of daily precipitation and minimum and maximum air temperature. These ARRM-based climate datasets were used as input to the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, physical-process watershed model used to simulate and evaluate the effects of various combinations of climate and land use on watershed response. The ACFB was divided into 258 hydrologic response units (HRUs) in which the components of flow (groundwater, subsurface, and surface) are computed in response to climate, land surface, and subsurface characteristics of the basin. Daily simulations of flow components from PRMS were used with the climate to simulate in-stream water temperatures using the Stream Network Temperature (SNTemp) model, a mechanistic, one-dimensional heat transport model for branched stream networks.The climate, hydrology, and stream temperature for historical conditions were evaluated by comparing model outputs produced from historical climate forcings developed from gridded station data (GSD) versus those produced from the three statistically downscaled GCMs using the ARRM methodology. The PRMS and SNTemp models were forced with the GSD and the outputs produced were treated as “truth.” This allowed for a spatial comparison by HRU of the GSD-based output with ARRM-based output. Distributional similarities between GSD- and ARRM-based model outputs were compared using the two-sample Kolmogorov–Smirnov (KS) test in combination with descriptive metrics such as the mean and variance and an evaluation of rare and sustained events. In general, precipitation and streamflow quantities were negatively biased in the downscaled GCM outputs, and results indicate that the downscaled GCM simulations consistently underestimate the largest precipitation events relative to the GSD. The KS test results indicate that ARRM-based air temperatures are similar to GSD at the daily time step for the majority of the ACFB, with perhaps subweekly averaging for stream temperature. Depending on GCM and spatial location, ARRM-based precipitation and streamflow requires averaging of up to 30 days to become similar to the GSD-based output.Evaluation of the model skill for historical conditions suggests some guidelines for use of future projections; while it seems correct to place greater confidence in evaluation metrics which perform well historically, this does not necessarily mean those metrics will accurately reflect model outputs for future climatic conditions. Results from this study indicate no “best” overall model, but the breadth of analysis can be used to give the product users an indication of the applicability of the results to address their particular problem. Since results for historical conditions indicate that model outputs can have significant biases associated with them, the range in future projections examined in terms of change relative to historical conditions for each individual GCM may be more appropriate.
Lizarraga, Joy S.; Ockerman, Darwin J.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire watershed was 34.3 inches. Using the HSPF model it was estimated that for 2000-2007, less than 10 percent of the annual mean rainfall on the study watershed exited the watershed as streamflow, whereas about 82 percent, or an average of 28.2 inches per year, exited the watershed as ET. Estimated annual mean groundwater recharge for the entire study area was 3.0 inches, or about 9 percent of annual mean rainfall. Estimated annual mean recharge was largest in water-budget zone 3, the zone where the Carrizo Sand outcrops. In water-budget zone 3, the estimated annual mean recharge was 5.1 inches or about 15 percent of annual mean rainfall. Estimated annual mean recharge was smallest in water-budget zone 6, about 1.1 inches or about 3 percent of annual mean rainfall. The Cibolo Creek subwatershed and the subwatershed of the San Antonio River upstream from Cibolo Creek had the largest and smallest basin yields, about 4.8 inches and 1.2 inches, respectively. Estimated annual ET and annual recharge generally increased with increasing annual rainfall. Also, ET was larger in zones 8 and 9, the most downstream zones in the watershed. Model limitations include possible errors related to model conceptualization and parameter variability, lack of data to quantify certain model inputs, and measurement errors. Uncertainty regarding the degree to which available rainfall data represent actual rainfall is potentially the most serious source of measurement error.
Slack, J.R.; Landwehr, Jurate Maciunas
1992-01-01
Records of streamflow can provide an account of climatic variation over a hydrologic basin. The ability to do so is conditioned on the absence of confounding factors that diminish the climate signal. A national data set of streamflow records that are relatively free of confounding anthropogenic influences has been developed for the purpose of studying the variation in surface-water conditions throughout the United States. Records in the U.S. Geological Survey (USGS) National Water Storage and Retrieval System (WATSTORE) data base for active and discontinued streamflow gaging stations through water year 1988 (that is, through September 30, 1988) were reviewed jointly with data specialists in each USGS District office. The resulting collection of stations, each with its respective period of record satisfying the qualifying criteria, is called the Hydro-Climatic Data Network, or HCDN. The HCDN consists of 1,659 sites throughout the United States and its territories, totaling 73,231 water years of daily mean discharge values. For each station in the HCDN, information necessary for its identification, along with any qualifying comments about the available record and a set of descriptive watershed characteristics are provided in tabular format in this report, both on paper and on computer disk (enclosed). For each station in the HCDN, the appropriate daily mean discharge values were compiled, and statistical characteristics, including monthly mean discharges and annual mean, minimum and maximum discharges, were derived. The discharge data values are provided in a companion report.
Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin
Reynolds, Lindsay V.; Shafroth, Patrick B.
2016-01-20
Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.
Hydrometeorological model for streamflow prediction
Tangborn, Wendell V.
1979-01-01
The hydrometeorological model described in this manual was developed to predict seasonal streamflow from water in storage in a basin using streamflow and precipitation data. The model, as described, applies specifically to the Skokomish, Nisqually, and Cowlitz Rivers, in Washington State, and more generally to streams in other regions that derive seasonal runoff from melting snow. Thus the techniques demonstrated for these three drainage basins can be used as a guide for applying this method to other streams. Input to the computer program consists of daily averages of gaged runoff of these streams, and daily values of precipitation collected at Longmire, Kid Valley, and Cushman Dam. Predictions are based on estimates of the absolute storage of water, predominately as snow: storage is approximately equal to basin precipitation less observed runoff. A pre-forecast test season is used to revise the storage estimate and improve the prediction accuracy. To obtain maximum prediction accuracy for operational applications with this model , a systematic evaluation of several hydrologic and meteorologic variables is first necessary. Six input options to the computer program that control prediction accuracy are developed and demonstrated. Predictions of streamflow can be made at any time and for any length of season, although accuracy is usually poor for early-season predictions (before December 1) or for short seasons (less than 15 days). The coefficient of prediction (CP), the chief measure of accuracy used in this manual, approaches zero during the late autumn and early winter seasons and reaches a maximum of about 0.85 during the spring snowmelt season. (Kosco-USGS)
Eggleston, Jack R.
2004-01-01
The upper Charles River basin, located 30 miles southwest of Boston, Massachusetts, is experiencing water shortages during the summer. Towns in the basin have instituted water-conservation programs and water-use bans to reduce summertime water use. During July through October, streamflow in the Charles River and its tributaries regularly falls below 0.50 cubic foot per second per square mile, the minimum streamflow used by the U.S. Fish and Wildlife Service as its Aquatic Base Flow standard for maintaining healthy freshwater ecosystems. To examine how human water use could be changed to mitigate these water shortages, a numerical ground-water flow model was modified and used in conjunction with response coefficients and optimization techniques. Streamflows at 10 locations on the Charles River and its tributaries were determined under various water-use scenarios and climatic conditions. A variety of engineered solutions to the water shortages were examined for their ability to increase water supplies and summertime streamflows. Results indicate that although human water use contributes to the problem of low summertime streamflows, human water use is not the only, or even the primary, cause of low flows in the basin. The lowest summertime streamflows increase by 12 percent but remain below the Aquatic Base Flow standard when all public water-supply pumpage and wastewater flows in the basin are eliminated in a simulation under average climatic conditions. Under dry climatic conditions, the same measures increase the lowest average monthly streamflow by 95 percent but do not increase it above the Aquatic Base Flow standard. The most promising water-management strategies to increase streamflows and water supplies, based on the study results, include wastewater recharge to the aquifer, altered management of pumping well schedules, regional water-supply sharing, and water conservation. In a scenario that simulated towns sharing water supplies, streamflow in the Charles River as it exits the basin increased by 18 percent during July through September and an excess water-supply capacity of 13.4 cubic feet per second, above and beyond average use, would be available to all towns in the basin. These study results could help water suppliers and regulators evaluate strategies for balancing ground-water development and streamflow reductions in the basin.
Historical perspective of statewide streamflows during the 2002 and 1977 droughts in Colorado
Kuhn, Gerhard
2005-01-01
Since 1890, Colorado has experienced a number of widespread drought periods; the most recent statewide drought began during 1999 and includes 2002, a year characterized by precipitation, snowpack accumulation, and streamflows that were much lower than normal. Because the drought of 2002 had a substantial effect on streamflows in Colorado, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2004 to analyze statewide streamflows during 2002 and develop a historical perspective of those streamflows. The purpose of this report is to describe an analysis of streamflows recorded throughout Colorado during the drought of 2002, as well as other drought years such as 1977, and to provide some historical perspective of drought-diminished streamflows in Colorado. Because most streamflows in Colorado are derived from melting of mountain snowpacks during April through July, streamflows primarily were analyzed for the snowmelt (high-flow) period, but streamflows also were analyzed for the winter (low-flow) period. The snowmelt period is defined as April 1 through September 30 and the winter period is defined as October 1 through March 31. Historical daily average streamflows were analyzed on the basis of 7, 30, 90, and 180 consecutive-day periods (N-day) for 154 selected stations in Colorado. Methods used for analysis of the N-day snowmelt and winter streamflows include evaluation of trends in the historical streamflow records, computation of the rank of each annual N-day streamflow value for each station, analysis for years other than 2002 and 1977 with drought-diminished streamflows, and frequency analysis (on the basis of nonexceedance probability) of the 180-day streamflows. Ranking analyses for the N-day snowmelt streamflows indicated that streamflows during 2002 were ranked as the lowest or second lowest historical values at 114-123 stations, or about 74-80 percent of the stations; by comparison, the N-day snowmelt streamflows during 1977 were ranked as the lowest or second lowest historical values at 69-87 stations, or about 47-59 percent of the stations. Many of the stations in the mountainous headwaters where snowmelt streamflows were ranked lowest during 2002 were ranked second lowest during 1977. These results indicate that snowmelt streamflows during 2002 were considerably more diminished than those during 1977. The 180-day snowmelt streamflows were ranked among the five lowest historical values at about 90 percent of the stations during 2002 and were ranked among the five lowest historical values at about 77 percent of the stations during 1977. Other years during which the 180-day snowmelt streamflows were ranked among the five lowest values at a substantial percentage of stations include 1934, 1954, 1963, and 1981, but the percentages of stations with 180-day snowmelt streamflows ranked among the five lowest values were smaller during those years than during 2002 and 1977. Frequency analysis of snowmelt streamflows indicated that recurrence intervals for the 180-day snowmelt streamflows during 2002 were greater than 50 years for about 57 percent of the stations and were more than 100 years for about 14 percent of the stations. By comparison, recurrence intervals for the 180-day snowmelt streamflows during 1977 were greater than 50 years only for about 15 percent of the stations and were more than 100 years only for about 1 percent of the stations. Generally, snowmelt streamflows during 2002 were more diminished and have higher recurrence intervals than snowmelt streamflows during 1977. The N-day winter streamflows during 2002 and 1977 were not ranked among the five lowest historical values at about 86-103 stations, or about 58-70 percent of the stations, compared to about 10-27 percent of the stations for the N-day snowmelt streamflows. These results indicate that winter streamflows during the 2002 and 1977 droughts were diminished to a lesser extent than t
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.; Markstrom, S. L.
2016-12-01
The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.
June and August median streamflows estimated for ungaged streams in southern Maine
Lombard, Pamela J.
2010-01-01
Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.
HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis
Sloto, Ronald A.; Crouse, Michele Y.
1996-01-01
HYSEP is a computer program that can be used to separate a streamflow hydrograph into base-flow and surface-runoff components. The base-flow component has traditionally been associated with ground-water discharge and the surface-runoff component with precipitation that enters the stream as overland runoff. HYSEP includes three methods of hydrograph separation that are referred to in the literature as the fixed interval, sliding-interval, and local-minimum methods. The program also describes the frequency and duration of measured streamflow and computed base flow and surface runoff. Daily mean stream discharge is used as input to the program in either an American Standard Code for Information Interchange (ASCII) or binary format. Output from the program includes table,s graphs, and data files. Graphical output may be plotted on the computer screen or output to a printer, plotter, or metafile.
Assessing the skill of seasonal precipitation and streamflow forecasts in sixteen French catchments
NASA Astrophysics Data System (ADS)
Crochemore, Louise; Ramos, Maria-Helena; Pappenberger, Florian
2015-04-01
Meteorological centres make sustained efforts to provide seasonal forecasts that are increasingly skilful. Streamflow forecasting is one of the many applications than can benefit from these efforts. Seasonal flow forecasts generated using seasonal ensemble precipitation forecasts as input to a hydrological model can help to take anticipatory measures for water supply reservoir operation or drought risk management. The objective of the study is to assess the skill of seasonal precipitation and streamflow forecasts in France. First, we evaluated the skill of ECMWF SYS4 seasonal precipitation forecasts for streamflow forecasting in sixteen French catchments. Daily flow forecasts were produced using raw seasonal precipitation forecasts as input to the GR6J hydrological model. Ensemble forecasts are issued every month with 15 or 51 members according to the month of the year and evaluated for up to 90 days ahead. In a second step, we applied eight variants of bias correction approaches to the precipitation forecasts prior to generating the flow forecasts. The approaches were based on the linear scaling and the distribution mapping methods. The skill of the ensemble forecasts was assessed in accuracy (MAE), reliability (PIT Diagram) and overall performance (CRPS). The results show that, in most catchments, raw seasonal precipitation and streamflow forecasts are more skilful in terms of accuracy and overall performance than a reference prediction based on historic observed precipitation and watershed initial conditions at the time of forecast. Reliability is the only attribute that is not significantly improved. The skill of the forecasts is, in general, improved when applying bias correction. Two bias correction methods showed the best performance for the studied catchments: the simple linear scaling of monthly values and the empirical distribution mapping of daily values. L. Crochemore is funded by the Interreg IVB DROP Project (Benefit of governance in DROught adaPtation).
NASA Astrophysics Data System (ADS)
Leta, O. T.; El-Kadi, A. I.; Dulaiova, H.
2016-12-01
Extreme events, such as flooding and drought, are expected to occur at increased frequencies worldwide due to climate change influencing the water cycle. This is particularly critical for tropical islands where the local freshwater resources are very sensitive to climate. This study examined the impact of climate change on extreme streamflow, reservoir water volume and outflow for the Nuuanu watershed, using the Soil and Water Assessment Tool (SWAT) model. Based on the sensitive parameters screened by the Latin Hypercube-One-factor-At-a-Time (LH-OAT) method, SWAT was calibrated and validated to daily streamflow using the SWAT Calibration and Uncertainty Program (SWAT-CUP) at three streamflow gauging stations. Results showed that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. This was verified with Nash-Sutcliffe Efficiency that resulted in acceptable values of 0.58 to 0.88, whereby more than 90% of observations were bracketed within 95% model prediction uncertainty interval for both calibration and validation periods, signifying the potential applicability of SWAT for future prediction. The climate change impact on extreme flows, reservoir water volume and outflow was assessed under the Representative Concentration Pathways of 4.5 and 8.5 scenarios. We found wide changes in extreme peak and low flows ranging from -44% to 20% and -50% to -2%, respectively, compared to baseline. Consequently, the amount of water stored in Nuuanu reservoir will be decreased up to 27% while the corresponding outflow rates are expected to decrease up to 37% relative to the baseline. In addition, the stored water and extreme flows are highly sensitive to rainfall change when compared to temperature and solar radiation changes. It is concluded that the decrease in extreme low and peak flows can have serious consequences, such as flooding, drought, with detrimental effects on riparian ecological functioning. This study's results are expected to aid in reservoir operation as well as in identifying appropriate climate change adaptation strategies.
NASA Astrophysics Data System (ADS)
Naz, Bibi S.; Kao, Shih-Chieh; Ashfaq, Moetasim; Gao, Huilin; Rastogi, Deeksha; Gangrade, Sudershan
2018-01-01
The magnitude and frequency of hydrometeorological extremes are expected to increase in the conterminous United States (CONUS) over the rest of this century, and their increase will significantly impact water resource management. In this study, we evaluated the large-scale climate change effects on extreme hydrological events and their implications for reservoir inflows in 138 headwater subbasins located upstream of reservoirs across CONUS using the Variable Infiltration Capacity (VIC) hydrologic model. The VIC model was forced with a 10-member ensemble of global circulation models under the Representative Concentration Pathway 8.5 that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° grid cell resolution. Four commonly used indices, including mean annual flow, annual center timing, 100-year daily high streamflow, and 10-year 7-day average low streamflow were used for evaluation. The results projected an increase in the high streamflow by 44% for a majority of subbasins upstream of flood control reservoirs in the central United States (US) and a decrease in the low streamflow by 11% for subbasins upstream of hydropower reservoirs across the western US. In the eastern US, frequencies of both high and low streamflow were projected to increase in the majority of subbasins upstream of both hydropower and flood control reservoirs. Increased frequencies of both high and low streamflow events can potentially make reservoirs across CONUS more vulnerable to future climate conditions. This study estimates reservoir inflow changes over the next several decades, which can be used to optimize water supply management downstream.
Associations of stream health to altered flow and water temperature in the Sierra Nevada, California
Carlisle, Daren M.; S. Mark Nelson,; May, Jason
2016-01-01
Alteration of streamflow and thermal conditions may adversely affect lotic invertebrate communities, but few studies have assessed these phenomena using indicators that control for the potentially confounding influence of natural variability. We designed a study to assess how flow and thermal alteration influence stream health – as indicated by the condition of invertebrate communities. We studied thirty streams in the Sierra Nevada, California, that span a wide range of hydrologic modification due to storage reservoirs and hydroelectric diversions. Daily water temperature and streamflows were monitored, and basic chemistry and habitat conditions were characterized when invertebrate communities were sampled. Streamflow alteration, thermal alteration, and invertebrate condition were quantified by predicting site-specific natural expectations using statistical models developed using data from regional reference sites. Monthly flows were typically depleted (relative to natural expectations) during fall, winter, and spring. Most hydrologically altered sites experienced cooled thermal conditions in summer, with mean daily temperatures as much 12 °C below natural expectations. The most influential predictor of invertebrate community condition was the degree of alteration of March flows, which suggests that there are key interactions between hydrological and biological processes during this month in Sierra Nevada streams. Thermal alteration was also an important predictor – particularly at sites with the most severe hydrological alteration.
Jordan recurrent neural network versus IHACRES in modelling daily streamflows
NASA Astrophysics Data System (ADS)
Carcano, Elena Carla; Bartolini, Paolo; Muselli, Marco; Piroddi, Luigi
2008-12-01
SummaryA study of possible scenarios for modelling streamflow data from daily time series, using artificial neural networks (ANNs), is presented. Particular emphasis is devoted to the reconstruction of drought periods where water resource management and control are most critical. This paper considers two connectionist models: a feedforward multilayer perceptron (MLP) and a Jordan recurrent neural network (JNN), comparing network performance on real world data from two small catchments (192 and 69 km 2 in size) with irregular and torrential regimes. Several network configurations are tested to ensure a good combination of input features (rainfall and previous streamflow data) that capture the variability of the physical processes at work. Tapped delayed line (TDL) and memory effect techniques are introduced to recognize and reproduce temporal dependence. Results show a poor agreement when using TDL only, but a remarkable improvement can be obtained with JNN and its memory effect procedures, which are able to reproduce the system memory over a catchment in a more effective way. Furthermore, the IHACRES conceptual model, which relies on both rainfall and temperature input data, is introduced for comparative study. The results suggest that when good input data is unavailable, metric models perform better than conceptual ones and, in general, it is difficult to justify substantial conceptualization of complex processes.
Kuhn, Gerhard; Nickless, R.C.
1994-01-01
Part of the storage space of Pueblo Reservoir consists of a 65,950 acre-foot joint-use pool (JUP) that can be used to provide additional conservation capacity from November 1 to April 14; however, the JUP must be evacuated by April 15 and used only for flood-control capacity until November 1. A study was completed to determine if the JUP possibly could be used for conservation storage for any number of days from April 15 through May 14 under certain hydrologic conditions. The methods of the study were: (1) Frequency analysis of recorded daily mean discharge data for streamflow-gaging stations upstream and downstream from Pueblo Reservoir, and (2) Implementation of the extended streamflow prediction (ESP) procedure for the Arkansas River basin upstream from the reservoir. The frequency analyses enabled estimation of daily discharges at selected exceedance probabilities (EP's), including the 0.01 EP that was used in design of the flood- storage capacity of Pueblo Reservoir. The ESP procedure enabled probabilistic forecasts of inflow volume to the reservoir for April 15 through May 14. Daily discharges derived from the frequency analyses were routed through Pueblo Reservoir to estimate evacuation dates of the JUP for different reservoir inflow volumes; the estimates indicated a relation between the inflow volume and the JUP evacuation date. To apply the study results, only a ESP forecast of the April 15-May 14 reservoir inflow volume is needed. Study results indicate the JUP possibly could be used as late as May 5 depending on the forecast inflow volume.
Hostetler, S.W.; Giorgi, F.
1993-01-01
In this paper we investigate the feasibility of coupling regional climate models (RCMs) with landscape-scale hydrologic models (LSHMs) for studies of the effects of climate on hydrologic systems. The RCM used is the National Center for Atmospheric Research/Pennsylvania State University mesoscale model (MM4). Output from two year-round simulations (1983 and 1988) over the western United States is used to drive a lake model for Pyramid Lake in Nevada and a streamfiow model for Steamboat Creek in Oregon. Comparisons with observed data indicate that MM4 is able to produce meteorologic data sets that can be used to drive hydrologic models. Results from the lake model simulations indicate that the use of MM4 output produces reasonably good predictions of surface temperature and evaporation. Results from the streamflow simulations indicate that the use of MM4 output results in good simulations of the seasonal cycle of streamflow, but deficiencies in simulated wintertime precipitation resulted in underestimates of streamflow and soil moisture. Further work with climate (multiyear) simulations is necessary to achieve a complete analysis, but the results from this study indicate that coupling of LSHMs and RCMs may be a useful approach for evaluating the effects of climate change on hydrologic systems.
NASA Astrophysics Data System (ADS)
Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.
2017-12-01
With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967 cusecs to 1294 cusecs for Ganges, from 5695 cusecs to 2115 cusecs for Brahmaputra and from 689 cusecs to 321 cusecs for Meghna. Using this approach, simulations of hydrologic variables other than streamflow can also be improved given that a decent amount of observed data for that variable is available.
NASA Astrophysics Data System (ADS)
Singh, Shailesh Kumar; Zammit, Christian; Hreinsson, Einar; Woods, Ross; Clark, Martyn; Hamlet, Alan
2013-04-01
Increased access to water is a key pillar of the New Zealand government plan for economic growths. Variable climatic conditions coupled with market drivers and increased demand on water resource result in critical decision made by water managers based on climate and streamflow forecast. Because many of these decisions have serious economic implications, accurate forecast of climate and streamflow are of paramount importance (eg irrigated agriculture and electricity generation). New Zealand currently does not have a centralized, comprehensive, and state-of-the-art system in place for providing operational seasonal to interannual streamflow forecasts to guide water resources management decisions. As a pilot effort, we implement and evaluate an experimental ensemble streamflow forecasting system for the Waitaki and Rangitata River basins on New Zealand's South Island using a hydrologic simulation model (TopNet) and the familiar ensemble streamflow prediction (ESP) paradigm for estimating forecast uncertainty. To provide a comprehensive database for evaluation of the forecasting system, first a set of retrospective model states simulated by the hydrologic model on the first day of each month were archived from 1972-2009. Then, using the hydrologic simulation model, each of these historical model states was paired with the retrospective temperature and precipitation time series from each historical water year to create a database of retrospective hindcasts. Using the resulting database, the relative importance of initial state variables (such as soil moisture and snowpack) as fundamental drivers of uncertainties in forecasts were evaluated for different seasons and lead times. The analysis indicate that the sensitivity of flow forecast to initial condition uncertainty is depend on the hydrological regime and season of forecast. However initial conditions do not have a large impact on seasonal flow uncertainties for snow dominated catchments. Further analysis indicates that this result is valid when the hindcast database is conditioned by ENSO classification. As a result hydrological forecasts based on ESP technique, where present initial conditions with histological forcing data are used may be plausible for New Zealand catchments.
Carlisle, Daren M.; Wolock, David M.; Howard, Jeannette K.; Grantham, Theodore E.; Fesenmyer, Kurt; Wieczorek, Michael
2016-12-12
Because natural patterns of streamflow are a fundamental property of the health of streams, there is a critical need to quantify the degree to which human activities have modified natural streamflows. A requirement for assessing streamflow modification in a given stream is a reliable estimate of flows expected in the absence of human influences. Although there are many techniques to predict streamflows in specific river basins, there is a lack of approaches for making predictions of natural conditions across large regions and over many decades. In this study conducted by the U.S. Geological Survey, in cooperation with The Nature Conservancy and Trout Unlimited, the primary objective was to develop empirical models that predict natural (that is, unaffected by land use or water management) monthly streamflows from 1950 to 2012 for all stream segments in California. Models were developed using measured streamflow data from the existing network of streams where daily flow monitoring occurs, but where the drainage basins have minimal human influences. Widely available data on monthly weather conditions and the physical attributes of river basins were used as predictor variables. Performance of regional-scale models was comparable to that of published mechanistic models for specific river basins, indicating the models can be reliably used to estimate natural monthly flows in most California streams. A second objective was to develop a model that predicts the likelihood that streams experience modified hydrology. New models were developed to predict modified streamflows at 558 streamflow monitoring sites in California where human activities affect the hydrology, using basin-scale geospatial indicators of land use and water management. Performance of these models was less reliable than that for the natural-flow models, but results indicate the models could be used to provide a simple screening tool for identifying, across the State of California, which streams may be experiencing anthropogenic flow modification.
Statistical procedures for evaluating daily and monthly hydrologic model predictions
Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W.
2004-01-01
The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the R r2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one.
NASA Astrophysics Data System (ADS)
Ma, Yingzhao; Yang, Yuan; Han, Zhongying; Tang, Guoqiang; Maguire, Lane; Chu, Zhigang; Hong, Yang
2018-01-01
The objective of this study is to comprehensively evaluate the new Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme (EMSPD-DBMA) at daily and 0.25° scales from 2001 to 2015 over the Tibetan Plateau (TP). Error analysis against gauge observations revealed that EMSPD-DBMA captured the spatiotemporal pattern of daily precipitation with an acceptable Correlation Coefficient (CC) of 0.53 and a Relative Bias (RB) of -8.28%. Moreover, EMSPD-DBMA outperformed IMERG and GSMaP-MVK in almost all metrics in the summers of 2014 and 2015, with the lowest RB and Root Mean Square Error (RMSE) values of -2.88% and 8.01 mm/d, respectively. It also better reproduced the Probability Density Function (PDF) in terms of daily rainfall amount and estimated moderate and heavy rainfall better than both IMERG and GSMaP-MVK. Further, hydrological evaluation with the Coupled Routing and Excess STorage (CREST) model in the Upper Yangtze River region indicated that the EMSPD-DBMA forced simulation showed satisfying hydrological performance in terms of streamflow prediction, with Nash-Sutcliffe coefficient of Efficiency (NSE) values of 0.82 and 0.58, compared to gauge forced simulation (0.88 and 0.60) at the calibration and validation periods, respectively. EMSPD-DBMA also performed a greater fitness for peak flow simulation than a new Multi-Source Weighted-Ensemble Precipitation Version 2 (MSWEP V2) product, indicating a promising prospect of hydrological utility for the ensemble satellite precipitation data. This study belongs to early comprehensive evaluation of the blended multi-satellite precipitation data across the TP, which would be significant for improving the DBMA algorithm in regions with complex terrain.
USDA-ARS?s Scientific Manuscript database
Widespread decreases in annualized streamflow have been observed across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years, however in some watersheds, observed streamflow has increased. To deconvolve the combined effects of climate and vegetation on long-term ...
Use of medium-range numerical weather prediction model output to produce forecasts of streamflow
Clark, M.P.; Hay, L.E.
2004-01-01
This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.
Coupe, R.H.
2007-01-01
The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.
2004-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.
2002-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.
Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.
2001-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.
Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998
Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.
1999-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.
Risser, D.W.
1987-01-01
In 1980 Santa Rosa Dam began impounding water on the Pecos River about 7 miles north of Santa Rosa, New Mexico, to provide flood control, sediment control, and storage for irrigation. Santa Rosa Lake has caused changes in the groundwater flow system, which may cause changes in the streamflow of the Pecos River that cannot be detected at the present streamflow gaging stations. Data collected at these stations are used to measure the amount of water available for downstream users. A three-dimensional groundwater flow model for a 950 sq mi area between Anton Chico and Puerto de Luna was used to simulate the effects of Santa Rosa Lake on groundwater flow to a gaining reach of the Pecos River for lake levels of 4,675, 4,715, 4,725, 4,750, 4,776, and 4,797 feet above sea level and durations of impoundment of 30, 90, 182, and 365 days for all levels except 4 ,797 feet. These simulations indicated that streamflow in the Pecos River could increase by as much as 2 cu ft/sec between the dam and Puerto de Luna if the lake level were maintained at 4 ,797 feet for 90 days or 4,776 feet for 1 year. About 90% of this increased streamflow would occur < 0.5 mi downstream from the dam, some of which would be measured at the streamflow gaging station located 0.2 mile downstream from the dam. Simulations also indicated that the lake will affect groundwater flow such that inflow to the study area may be decreased by as much as 1.9 cu ft/sec. This water may leave the Pecos River drainage basin or be diverted back to the Pecos River downstream from the gaging station near Puerto de Luna. In either case, this quantity represents a net loss of water upstream from Puerto de Luna. Most simulations indicated that the decrease in groundwater flow into the study area would be of about the same quantity as the simulated increase in streamflow downstream from the dam. Therefore, the net effect of the lake on the flow of the Pecos River in the study area appears to be negligible. Model simulations indicated that effect of lake levels below 4 ,750 feet on water levels in observation wells completed in the San Andres Limestone could not be distinguished from the effects of other hydrologic stresses. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Fang, G. H.; Yang, J.; Chen, Y. N.; Zammit, C.
2015-06-01
Water resources are essential to the ecosystem and social economy in the desert and oasis of the arid Tarim River basin, northwestern China, and expected to be vulnerable to climate change. It has been demonstrated that regional climate models (RCMs) provide more reliable results for a regional impact study of climate change (e.g., on water resources) than general circulation models (GCMs). However, due to their considerable bias it is still necessary to apply bias correction before they are used for water resources research. In this paper, after a sensitivity analysis on input meteorological variables based on the Sobol' method, we compared five precipitation correction methods and three temperature correction methods in downscaling RCM simulations applied over the Kaidu River basin, one of the headwaters of the Tarim River basin. Precipitation correction methods applied include linear scaling (LS), local intensity scaling (LOCI), power transformation (PT), distribution mapping (DM) and quantile mapping (QM), while temperature correction methods are LS, variance scaling (VARI) and DM. The corrected precipitation and temperature were compared to the observed meteorological data, prior to being used as meteorological inputs of a distributed hydrologic model to study their impacts on streamflow. The results show (1) streamflows are sensitive to precipitation, temperature and solar radiation but not to relative humidity and wind speed; (2) raw RCM simulations are heavily biased from observed meteorological data, and its use for streamflow simulations results in large biases from observed streamflow, and all bias correction methods effectively improved these simulations; (3) for precipitation, PT and QM methods performed equally best in correcting the frequency-based indices (e.g., standard deviation, percentile values) while the LOCI method performed best in terms of the time-series-based indices (e.g., Nash-Sutcliffe coefficient, R2); (4) for temperature, all correction methods performed equally well in correcting raw temperature; and (5) for simulated streamflow, precipitation correction methods have more significant influence than temperature correction methods and the performances of streamflow simulations are consistent with those of corrected precipitation; i.e., the PT and QM methods performed equally best in correcting flow duration curve and peak flow while the LOCI method performed best in terms of the time-series-based indices. The case study is for an arid area in China based on a specific RCM and hydrologic model, but the methodology and some results can be applied to other areas and models.
Regional flow duration curves: Geostatistical techniques versus multivariate regression
Pugliese, Alessio; Farmer, William H.; Castellarin, Attilio; Archfield, Stacey A.; Vogel, Richard M.
2016-01-01
A period-of-record flow duration curve (FDC) represents the relationship between the magnitude and frequency of daily streamflows. Prediction of FDCs is of great importance for locations characterized by sparse or missing streamflow observations. We present a detailed comparison of two methods which are capable of predicting an FDC at ungauged basins: (1) an adaptation of the geostatistical method, Top-kriging, employing a linear weighted average of dimensionless empirical FDCs, standardised with a reference streamflow value; and (2) regional multiple linear regression of streamflow quantiles, perhaps the most common method for the prediction of FDCs at ungauged sites. In particular, Top-kriging relies on a metric for expressing the similarity between catchments computed as the negative deviation of the FDC from a reference streamflow value, which we termed total negative deviation (TND). Comparisons of these two methods are made in 182 largely unregulated river catchments in the southeastern U.S. using a three-fold cross-validation algorithm. Our results reveal that the two methods perform similarly throughout flow-regimes, with average Nash-Sutcliffe Efficiencies 0.566 and 0.662, (0.883 and 0.829 on log-transformed quantiles) for the geostatistical and the linear regression models, respectively. The differences between the reproduction of FDC's occurred mostly for low flows with exceedance probability (i.e. duration) above 0.98.
The contribution of glacier melt to streamflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaner, Neil; Voisin, Nathalie; Nijssen, Bart
2012-09-13
Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier meltmore » contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.« less
NASA Astrophysics Data System (ADS)
Piniewski, Mikołaj
2016-05-01
The objective of this study was to apply a previously developed large-scale and high-resolution SWAT model of the Vistula and the Odra basins, calibrated with the focus of natural flow simulation, in order to assess the impact of three different dam reservoirs on streamflow using the Indicators of Hydrologic Alteration (IHA). A tailored spatial calibration approach was designed, in which calibration was focused on a large set of relatively small non-nested sub-catchments with semi-natural flow regime. These were classified into calibration clusters based on the flow statistics similarity. After performing calibration and validation that gave overall positive results, the calibrated parameter values were transferred to the remaining part of the basins using an approach based on hydrological similarity of donor and target catchments. The calibrated model was applied in three case studies with the purpose of assessing the effect of dam reservoirs (Włocławek, Siemianówka and Czorsztyn Reservoirs) on streamflow alteration. Both the assessment based on gauged streamflow (Before-After design) and the one based on simulated natural streamflow showed large alterations in selected flow statistics related to magnitude, duration, high and low flow pulses and rate of change. Some benefits of using a large-scale and high-resolution hydrological model for the assessment of streamflow alteration include: (1) providing an alternative or complementary approach to the classical Before-After designs, (2) isolating the climate variability effect from the dam (or any other source of alteration) effect, (3) providing a practical tool that can be applied at a range of spatial scales over large area such as a country, in a uniform way. Thus, presented approach can be applied for designing more natural flow regimes, which is crucial for river and floodplain ecosystem restoration in the context of the European Union's policy on environmental flows.
Ryberg, Karen R.; Vecchia, Aldo V.
2006-01-01
This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, the Devils Lake Basin Joint Water Resource Board, and the Red River Joint Water Resource District, to analyze historical water-quality trends in three dissolved major ions, three nutrients, and one dissolved trace element for eight stations in the Devils Lake Basin in North Dakota and to develop an efficient sampling design to monitor the future trends. A multiple-regression model was used to detect and remove streamflow-related variability in constituent concentrations. To separate the natural variability in concentration as a result of variability in streamflow from the variability in concentration as a result of other factors, the base-10 logarithm of daily streamflow was divided into four components-a 5-year streamflow anomaly, an annual streamflow anomaly, a seasonal streamflow anomaly, and a daily streamflow anomaly. The constituent concentrations then were adjusted for streamflow-related variability by removing the 5-year, annual, seasonal, and daily variability. Constituents used for the water-quality trend analysis were evaluated for a step trend to examine the effect of Channel A on water quality in the basin and a linear trend to detect gradual changes with time from January 1980 through September 2003. The fitted upward linear trends for dissolved calcium concentrations during 1980-2003 for two stations were significant. The fitted step trends for dissolved sulfate concentrations for three stations were positive and similar in magnitude. Of the three upward trends, one was significant. The fitted step trends for dissolved chloride concentrations were positive but insignificant. The fitted linear trends for the upstream stations were small and insignificant, but three of the downward trends that occurred during 1980-2003 for the remaining stations were significant. The fitted upward linear trends for dissolved nitrite plus nitrate as nitrogen concentrations during 1987-2003 for two stations were significant. However, concentrations during recent years appear to be lower than those for the 1970s and early 1980s but higher than those for the late 1980s and early 1990s. The fitted downward linear trend for dissolved ammonia concentrations for one station was significant. The fitted linear trends for total phosphorus concentrations for two stations were significant. Upward trends for total phosphorus concentrations occurred from the late 1980s to 2003 for most stations, but a small and insignificant downward trend occurred for one station. Continued monitoring will be needed to determine if the recent trend toward higher dissolved nitrite plus nitrate as nitrogen and total phosphorus concentrations continues in the future. For continued monitoring of water-quality trends in the upper Devils Lake Basin, an efficient sampling design consists of five major-ion, nutrient, and trace-element samples per year at three existing stream stations and at three existing lake stations. This sampling design requires the collection of 15 stream samples and 15 lake samples per year rather than 16 stream samples and 20 lake samples per year as in the 1992-2003 program. Thus, the design would result in a program that is less costly and more efficient than the 1992-2003 program but that still would provide the data needed to monitor water-quality trends in the Devils Lake Basin.
NASA Astrophysics Data System (ADS)
Jamaludin, Suhaila
2017-05-01
Extreme rainfall events such as floods and prolonged dry spells have become common phenomena in tropical countries like Malaysia. Floods are regular natural disasters in Malaysia, and happen nearly every year during the monsoon season. Recently, the magnitude of streamflow seems to have altered frequently, both spatially and temporally. Therefore, in order to have effective planning and an efficient water management system, it is advisable that streamflow data are analysed continuously over a period of time. If the data are treated as a set of functions rather than as a set of discrete values, then this ensures that they are not restricted by physical time. In addition, the derivatives of the functions may themselves be treated as functional data, which provides new information. The objective of this study is to develop a functional framework for hydrological applications using streamflow as the functional data. The daily flow series from the Kelantan River Basin were used as the main input in this study. Seven streamflow stations were employed in the analysis. Classification between the stations was done using the functional principal component, which was based on the results of the factor scores. The results indicated that two stations, namely the Kelantan River (Guillemard Bridge) and the Galas River, have a different flow pattern from the other streamflow stations. The flow curves of these two rivers are considered as the extreme curves because of their different magnitude and shape.
Conrads, Paul; Erbland, John W.
2009-01-01
A three-dimensional model of Bass and Cinder Creeks on Kiawah Island, South Carolina, was developed to evaluate methodologies for determining fecal coliform total maximum daily loads for shellfish waters. To calibrate the model, two index-velocity sites on the creeks were instrumented with continuous acoustic velocity meters and water-level sensors to compute a 21-day continuous record of tidal streamflows. In addition to monitoring tidal cycles, streamflow measurements were made at the index-velocity sites, and tidal-cycle streamflow measurements were made at the mouth of Bass Creek and on the Stono River to characterize the streamflow dynamics near the ocean boundary of the three-dimensional model at the beginning, September 6, 2007, and end, September 26, 2007, of the index-velocity meter deployment. The maximum floodtide and ebbtide measured on the Stono River by the mouth of Bass Creek for the two measurements were -155,000 and 170,000 cubic feet per second (ft3/s). At the mouth of Bass Creek, the maximum floodtide and ebbtide measurements during the 2 measurement days were +/-10,200 ft3/s. Tidal streamflows for the 21-day deployment on Bass Creek ranged from -2,510 ft3/s for an incoming tide to 4,360 ft3/s for an outgoing tide. On Cinder Creek, the incoming and outgoing tide varied from -2,180 to 2,400 ft3/s during the same period.
NASA Astrophysics Data System (ADS)
Koskela, J. J.; Croke, B. W. F.; Koivusalo, H.; Jakeman, A. J.; Kokkonen, T.
2012-11-01
Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.
Senior, Lisa A.; Koerkle, Edward H.
2003-01-01
The Christina River Basin drains 565 square miles (mi2) in Pennsylvania and Delaware and includes the major subbasins of Red Clay Creek, White Clay Creek, Brandywine Creek, and Christina River. The Red Clay Creek is the smallest of the subbasins and drains an area of 54 mi2. Streams in the Christina River Basin are used for recreation, drinking-water supply, and to support aquatic life. Water quality in some parts of the Christina River Basin is impaired and does not support designated uses of the stream. A multi-agency, waterquality management strategy included a modeling component to evaluate the effects of point and nonpointsource contributions of nutrients and suspended sediment on stream water quality. To assist in nonpointsource evaluation, four independent models, one for each of the four main subbasins of the Christina River Basin, were developed and calibrated using the model code Hydrological Simulation Program?Fortran (HSPF). Water-quality data for model calibration were collected in each of the four main subbasins and in smaller subbasins predominantly covered by one land use following a nonpoint-source monitoring plan. Under this plan, stormflow and base-flow samples were collected during 1998 at 1 site in the Red Clay Creek subbasin and at 10 sites elsewhere in the Christina River Basin.The HSPF model for the Red Clay Creek subbasin simulates streamflow, suspended sediment, and the nutrients, nitrogen and phosphorus. In addition, the model simulates water temperature, dissolved oxygen, biochemical oxygen demand, and plankton as secondary objectives needed to support the sediment and nutrient simulations. For the model, the basin was subdivided into nine reaches draining areas that ranged from 1.7 to 10 mi2. One of the reaches contains a regulated reservoir. Ten different pervious land uses and two impervious land uses were selected for simulation. Land-use areas were determined from 1995 land-use data. The predominant land uses in the Red Clay Creek subbasin are agricultural, forested, residential, and urban.The hydrologic component of the model was run at an hourly time step and calibrated using streamflow data from three U.S. Geological Survey (USGS) streamflow-measurement stations for the period of October 1, 1994, through October 29, 1998. Daily precipitation data from one National Oceanic and Atmospheric Administration (NOAA) gage and hourly data from one NOAA gage were used for model input. The difference between observed and simulated stream- flow volume ranged from -0.8 to 2.1 percent for the 4-year period at the three calibration sites. Annual differences between observed and simulated streamflow generally were greater than the overall error for the 4-year period. For example, at a site near Stanton, Del., near the bottom of the basin (drainage area of 50.2 mi2), annual differences between observed and simulated streamflow ranged from -5.8 to 6.0 percent and the overall error for the 4-year period was -0.8 percent. Calibration errors for 36 storm periods at the three calibration sites for total volume, low-flow-recession rate, 50-percent lowest flows, 10-percent highest flows, and storm peaks were 20 percent or less. Much of the error in simulating storm events on an hourly time step can be attributed to uncertainty in the rainfall data.The water-quality component of the model was calibrated using nonpoint-source monitoring data collected in 1998 at one USGS streamflowmeasurement station and other water-quality monitoring data collected at three USGS streamflowmeasurement stations. The period of record for waterquality monitoring was variable at the stations, with an end date of October 1998 but the start date ranging from October 1994 to January 1998. Because of availability, monitoring data for suspended-solids concentrations were used as surrogates for suspendedsediment concentrations, although suspended solids may underestimate suspended sediment and affect apparent accuracy of the suspended-sediment simulation. Comparison of observed to simulated loads for five storms in 1998 at the one nonpoint-source monitoring site at Wooddale, Del., indicates that simulation error commonly is as large as an order of magnitude for suspended sediment and nutrients. The simulation error tends to be smaller for dissolved utrients than particulate nutrients. Errors of 40 percent or less for monthly or annual values indicate a fair to good water-quality calibration according to recommended criteria, with much larger errors possible for individual storm events. Assessment of the accuracy of the water-quality calibration under stormflow conditions is limited by the sparsity of available water-quality data in the basin.Users of the Red Clay Creek HSPF model should be aware of model limitations and consider the following when predictive scenarios are desired: streamflow-duration curves indicate the model simulates stream-flow reasonably well when evaluated over a broad range of conditions and time, although streamflow and the corresponding water quality for individual storm events may not be well simulated; streamflow-duration curves for the simulation period compare well with duration curves for the 57.5-year period ending in 2001 at Wooddale, Del., and include all but the extreme high-flow and low-flow events; calibration for water quality was based on sparse data, with the result of increasing uncertainty in the water-quality simulation.
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut; Abdella, Yisak S.; Kolberg, Sjur
2015-03-01
Identification of proper parameterizations of spatial heterogeneity is required for precipitation-runoff models. However, relevant studies with a specific aim at hourly runoff simulation in boreal mountainous catchments are not common. We conducted calibration and evaluation of hourly runoff simulation in a boreal mountainous watershed based on six different parameterizations of the spatial heterogeneity of subsurface storage capacity for a semi-distributed (subcatchments hereafter called elements) and distributed (1 × 1 km2 grid) setup. We evaluated representation of element-to-element, grid-to-grid, and probabilistic subcatchment/subbasin, subelement and subgrid heterogeneities. The parameterization cases satisfactorily reproduced the streamflow hydrographs with Nash-Sutcliffe efficiency values for the calibration and validation periods up to 0.84 and 0.86 respectively, and similarly for the log-transformed streamflow up to 0.85 and 0.90. The parameterizations reproduced the flow duration curves, but predictive reliability in terms of quantile-quantile (Q-Q) plots indicated marked over and under predictions. The simple and parsimonious parameterizations with no subelement or no subgrid heterogeneities provided equivalent simulation performance compared to the more complex cases. The results indicated that (i) identification of parameterizations require measurements from denser precipitation stations than what is required for acceptable calibration of the precipitation-streamflow relationships, (ii) there is challenges in the identification of parameterizations based on only calibration to catchment integrated streamflow observations and (iii) a potential preference for the simple and parsimonious parameterizations for operational forecast contingent on their equivalent simulation performance for the available input data. In addition, the effects of non-identifiability of parameters (interactions and equifinality) can contribute to the non-identifiability of the parameterizations.
Devendra M. Amatya; Carl C. Trettin
2010-01-01
Information about streamflow characteristics e.g. runoff-rainfall (R/O) ratio, rate and timing of flow, surface and subsurface drainage (SSD), and response time to rainfall events is necessary to accurately simulate fluxes and for designing best management practices (BMPs). Unfortunately, those data are scarce in the southeastern Atlantic coastal plain, a highly...
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Busto, J.; Howard, K.; Mickey, J.; Deems, J. S.; Painter, T. H.; Richardson, M.; Dugger, A. L.; Karsten, L. R.; Tang, L.
2015-12-01
Scarcity of spatially- and temporally-continuous observations of precipitation and snowpack conditions in remote mountain watersheds results in fundamental limitations in water supply forecasting. These limitationsin observational capabilities can result in strong biases in total snowmelt-driven runoff amount, the elevational distribution of runoff, river basin tributary contributions to total basin runoff and, equally important for water management, the timing of runoff. The Upper Rio Grande River basin in Colorado and New Mexico is one basin where observational deficiencies are hypothesized to have significant adverse impacts on estimates of snowpack melt-out rates and on water supply forecasts. We present findings from a coordinated observational-modeling study within Upper Rio Grande River basin whose aim was to quanitfy the impact enhanced precipitation, meteorological and snowpack measurements on the simulation and prediction of snowmelt driven streamflow. The Rio Grande SNOwpack and streamFLOW (RIO-SNO-FLOW) Prediction Project conducted enhanced observing activities during the 2014-2015 water year. Measurements from a gap-filling, polarimetric radar (NOXP) and in-situ meteorological and snowpack measurement stations were assimilated into the WRF-Hydro modeling framework to provide continuous analyses of snowpack and streamflow conditions. Airborne lidar estimates of snowpack conditions from the NASA Airborne Snow Observatory during mid-April and mid-May were used as additional independent validations against the various model simulations and forecasts of snowpack conditions during the melt-out season. Uncalibrated WRF-Hydro model performance from simulations and forecasts driven by enhanced observational analyses were compared against results driven by currently operational data inputs. Precipitation estimates from the NOXP research radar validate significantly better against independent in situ observations of precipitation and snow-pack increases. Correcting the operational NLDAS2 forcing data with the experimental observations led to significant improvements in the seasonal accumulation and ablation of mountain snowpack and ultimately led to marked improvement in model simulated streamflow as compared with streamflow observations.
Granato, Gregory E.; Barlow, Paul M.
2005-01-01
Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant annual instream-flow criterion of 0.5 cubic foot per second per square mile (ft3/s/mi2) at the four streamflow-constraint locations. An average withdrawal rate of 10 Mgal/d can meet estimates of future (2020) water-supply needs of surrounding communities in Rhode Island. This withdrawal rate represents about 13 percent of the average 2002 daily withdrawal from the Scituate Reservoir (76 Mgal/d), the State?s largest water supply. Average annual withdrawal rates of 6 to 7 Mgal/d are possible for more stringent instream-flow criteria that might be used during dry-period hydrologic conditions. Two example scenarios of dry-period instream-flow constraints were evaluated: first, a minimum instream flow of 0.1 cubic foot per second at any of the four constraint locations; and second, a minimum instream flow of 10 percent of the minimum monthly streamflow estimate for each streamflow-constraint location during the period 1961?2000. The State of Rhode Island is currently (2004) considering methods for establishing instream-flow criteria for streams within the State. Twelve alternative annual, seasonal, or monthly instream-flow criteria that have been or are being considered for application in southeastern New England were used as hypothetical constraints on maximum ground-water-withdrawal rates in management-model calculations. Maximum ground-water-withdrawal rates ranged from 5 to 16 Mgal/d under five alternative annual instream-flow criteria. Maximum ground-water-withdrawal rates ranged from 0 to 13.6 Mgal/d under seven alternative seasonal or monthly instream-flow criteria. The effect of ground-water withdrawals on seasonal variations in monthly average streamflows under each criterion also were compared. Evaluation of management-model results indicates that a single annual instream-flowcriterion may be sufficient to preserve seasonal variations in monthly average streamflows and meet water-supply demands in the Big River Area, because withdrawals from wells in the Big
Estimated flow-duration curves for selected ungaged sites in Kansas
Studley, S.E.
2001-01-01
Flow-duration curves for 1968-98 were estimated for 32 ungaged sites in the Missouri, Smoky Hill-Saline, Solomon, Marais des Cygnes, Walnut, Verdigris, and Neosho River Basins in Kansas. Also included from a previous report are estimated flow-duration curves for 16 ungaged sites in the Cimarron and lower Arkansas River Basins in Kansas. The method of estimation used six unique factors of flow duration: (1) mean streamflow and percentage duration of mean streamflow, (2) ratio of 1-percent-duration streamflow to mean streamflow, (3) ratio of 0.1-percent-duration streamflow to 1-percent-duration streamflow, (4) ratio of 50-percent-duration streamflow to mean streamflow, (5) percentage duration of appreciable streamflow (0.10 cubic foot per second), and (6) average slope of the flow-duration curve. These factors were previously developed from a regionalized study of flow-duration curves using streamflow data for 1921-76 from streamflow-gaging stations with drainage areas of 100 to 3,000 square miles. The method was tested on a currently (2001) measured, continuous-record streamflow-gaging station on Salt Creek near Lyndon, Kansas, with a drainage area of 111 square miles and was found to adequately estimate the computed flow-duration curve for the station. The method also was tested on a currently (2001) measured, continuous-record, streamflow-gaging station on Soldier Creek near Circleville, Kansas, with a drainage area of 49.3 square miles. The results of the test on Soldier Creek near Circleville indicated that the method could adequately estimate flow-duration curves for sites with drainage areas of less than 100 square miles. The low-flow parts of the estimated flow-duration curves were verified or revised using 137 base-flow discharge measurements made during 1999-2000 at the 32 ungaged sites that were correlated with base-flow measurements and flow-duration analyses performed at nearby, long-term, continuous-record, streamflow-gaging stations (index stations). The method did not adequately estimate the flow-duration curves for two sites in the western one-third of the State because of substantial changes in farming practices (terracing and intensive ground-water withdrawal) that were not accounted for in the two previous studies (Furness, 1959; Jordan, 1983). For these two sites, there was enough historic, continuous-streamflow record available to perform record-extension techniques correlated to their respective index stations for the development of the estimated flow-duration curves. The estimated flow-duration curves at the ungaged sites can be used for projecting future flow frequencies for assessment of total maximum daily loads (TMDLs) or other water-quality constituents, water-availability studies, and for basin-characteristic studies.
NASA Astrophysics Data System (ADS)
Nagelkirk, R. L.; Kendall, A. D.; Basso, B.; Hyndman, D. W.
2012-12-01
Climate change will likely have considerable effects on agriculture in the Midwestern United States. Under current climate projections, end-of-century temperatures rise by approximately 4 C, while precipitation stays relatively unchanged despite a potential increase in heavy rainfall events. These trends have already been observed over the last century: rising temperatures have extended the growing season two days per decade and heavy rainfall events have become twice as common. In an effort to understand the likely effects of climate change on agriculture, maize and soybean yields in the Maumee River Watershed were simulated using the Systems Approach to Land Use Sustainability (SALUS) crop model. SALUS calculates daily crop growth in response to changing climate, soil, and management conditions. We test the hypotheses that 1) despite any positive effects of CO2 fertilization and allowing for higher yielding varieties, longer and warmer growing seasons will lead to excessive water- and heat-stress, lowering yields under current management practices, and 2) that double-cropping maize and soybeans successively in the same season to offset these losses may become feasible if sufficient late-season soil moisture is made available. Outputs of daily Leaf Area Index (LAI) and root mass from a range of SALUS models are then distributed spatially to drive regional hydrologic simulations using the Integrated Landscape Hydrology Model (ILHM). These coupled simulations demonstrate the response of streamflow and groundwater levels to different management strategies.
NASA Astrophysics Data System (ADS)
Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo
2017-11-01
In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.
Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA
NASA Astrophysics Data System (ADS)
Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.
2007-12-01
Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.
NASA Astrophysics Data System (ADS)
Hakala, Kirsti; Addor, Nans; Seibert, Jan
2017-04-01
Streamflow stemming from Switzerland's mountainous landscape will be influenced by climate change, which will pose significant challenges to the water management and policy sector. In climate change impact research, the determination of future streamflow is impeded by different sources of uncertainty, which propagate through the model chain. In this research, we explicitly considered the following sources of uncertainty: (1) climate models, (2) downscaling of the climate projections to the catchment scale, (3) bias correction method and (4) parameterization of the hydrological model. We utilize climate projections at the 0.11 degree 12.5 km resolution from the EURO-CORDEX project, which are the most recent climate projections for the European domain. EURO-CORDEX is comprised of regional climate model (RCM) simulations, which have been downscaled from global climate models (GCMs) from the CMIP5 archive, using both dynamical and statistical techniques. Uncertainties are explored by applying a modeling chain involving 14 GCM-RCMs to ten Swiss catchments. We utilize the rainfall-runoff model HBV Light, which has been widely used in operational hydrological forecasting. The Lindström measure, a combination of model efficiency and volume error, was used as an objective function to calibrate HBV Light. Ten best sets of parameters are then achieved by calibrating using the genetic algorithm and Powell optimization (GAP) method. The GAP optimization method is based on the evolution of parameter sets, which works by selecting and recombining high performing parameter sets with each other. Once HBV is calibrated, we then perform a quantitative comparison of the influence of biases inherited from climate model simulations to the biases stemming from the hydrological model. The evaluation is conducted over two time periods: i) 1980-2009 to characterize the simulation realism under the current climate and ii) 2070-2099 to identify the magnitude of the projected change of streamflow under the climate scenarios RCP4.5 and RCP8.5. We utilize two techniques for correcting biases in the climate model output: quantile mapping and a new method, frequency bias correction. The FBC method matches the frequencies between observed and GCM-RCM data. In this way, it can be used to correct for all time scales, which is a known limitation of quantile mapping. A novel approach for the evaluation of the climate simulations and bias correction methods was then applied. Streamflow can be thought of as the "great integrator" of uncertainties. The ability, or the lack thereof, to correctly simulate streamflow is a way to assess the realism of the bias-corrected climate simulations. Long-term monthly mean as well as high and low flow metrics are used to evaluate the realism of the simulations under current climate and to gauge the impacts of climate change on streamflow. Preliminary results show that under present climate, calibration of the hydrological model comprises of a much smaller band of uncertainty in the modeling chain as compared to the bias correction of the GCM-RCMs. Therefore, for future time periods, we expect the bias correction of climate model data to have a greater influence on projected changes in streamflow than the calibration of the hydrological model.
Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin
NASA Astrophysics Data System (ADS)
Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.
2014-12-01
Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.
NASA Astrophysics Data System (ADS)
Trudel, Mélanie; Leconte, Robert; Paniconi, Claudio
2014-06-01
Data assimilation techniques not only enhance model simulations and forecast, they also provide the opportunity to obtain a diagnostic of both the model and observations used in the assimilation process. In this research, an ensemble Kalman filter was used to assimilate streamflow observations at a basin outlet and at interior locations, as well as soil moisture at two different depths (15 and 45 cm). The simulation model is the distributed physically-based hydrological model CATHY (CATchment HYdrology) and the study site is the Des Anglais watershed, a 690 km2 river basin located in southern Quebec, Canada. Use of Latin hypercube sampling instead of a conventional Monte Carlo method to generate the ensemble reduced the size of the ensemble, and therefore the calculation time. Different post-assimilation diagnostics, based on innovations (observation minus background), analysis residuals (observation minus analysis), and analysis increments (analysis minus background), were used to evaluate assimilation optimality. An important issue in data assimilation is the estimation of error covariance matrices. These diagnostics were also used in a calibration exercise to determine the standard deviation of model parameters, forcing data, and observations that led to optimal assimilations. The analysis of innovations showed a lag between the model forecast and the observation during rainfall events. Assimilation of streamflow observations corrected this discrepancy. Assimilation of outlet streamflow observations improved the Nash-Sutcliffe efficiencies (NSE) between the model forecast (one day) and the observation at both outlet and interior point locations, owing to the structure of the state vector used. However, assimilation of streamflow observations systematically increased the simulated soil moisture values.
Skilful seasonal forecasts of streamflow over Europe?
NASA Astrophysics Data System (ADS)
Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian
2018-04-01
This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate-model-based seasonal streamflow forecasting.
Tague, Christina L.; Moritz, Max A.
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada. PMID:27575592
Bart, Ryan R; Tague, Christina L; Moritz, Max A
2016-01-01
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.
Barlow, Paul M.; Leake, Stanley A.
2012-11-02
Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.
NASA Astrophysics Data System (ADS)
Davids, Jeffrey; Rutten, Martine; van de Giesen, Nick; Mehl, Steffen; Norris, James
2016-04-01
Traditional approaches to hydrologic data collection rely on permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and the cost is high. Moreover, achieving adequate maintenance of the sophisticated equipment often exceeds local technical and resource capacity, and experience has shown that permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of citizen science, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is highly repeatable and scalable. The tradeoff for increased spatial resolution, however, is reduced observation frequency. As a first step towards evaluating the tradeoffs between the traditional continuous monitoring approach and emerging citizen science methods, 50 U.S. Geological Survey (USGS) streamflow gages were randomly selected from the population of roughly 350 USGS gages operated in California. Gaging station metadata and historical 15 minute flow data for the period from 01/10/2007 through 31/12/2014 were compiled for each of the selected gages. Historical 15 minute flow data were then used to develop daily, monthly, and yearly determinations of average, minimum, maximum streamflow, cumulative runoff, and streamflow distribution. These statistics were then compared to similar statistics developed from randomly selected daily and weekly spot measurements of streamflow. Cumulative runoff calculated from daily and weekly observations were within 10 percent of actual runoff calculated from 15 minute data for 75 percent and 46 percent of sites respectively. As anticipated, larger watersheds with less dynamic temporal variability compared more favorably for all statistics evaluated than smaller watersheds. Based on the results of these analyses it appears that, in certain circumstances, citizen science based observations of hydrologic data can provide sufficiently reliable information for both real-time management and water resources planning purposes. To further evaluate the merits of citizen science methodologies, S4W is launching field pilot projects in Nepal.
Zhang, Y.-K.; Schilling, K.
2005-01-01
The patterns of temporal variations of precipitation (P), streamflow (SF) and baseflow (BF) as well as their nitrate-nitrogen (nitrate) concentrations (C) and loads (L) from a long-term record (28 years) in the Raccoon River, Iowa, were analyzed using variogram and spectral analyses. The daily P is random but scaling may exist in the daily SF and BF with a possible break point in the scaling at about 18 days and 45 days, respectively. The nitrate concentrations and loads are shown to have a half-year cycle while daily P, SF, and BF have a one-year cycle. Furthermore, there may be a low-frequency cycle of 6-8 years in C. The power spectra of C and L in both SF and BF exhibit fractal 1/f scaling with two characteristic frequencies of half-year and one-year, and are fitted well with the spectrum of the gamma distribution. The nitrate input to SF and BF at the Raccoon watershed seems likely to be a white noise process superimposed on another process with a half-year and one-year cycle. ?? 2005 Elsevier Ltd. All rights reserved.
Technical Manual for the Geospatial Stream Flow Model (GeoSFM)
Asante, Kwabena O.; Artan, Guleid A.; Pervez, Md Shahriar; Bandaragoda, Christina; Verdin, James P.
2008-01-01
The monitoring of wide-area hydrologic events requires the use of geospatial and time series data available in near-real time. These data sets must be manipulated into information products that speak to the location and magnitude of the event. Scientists at the U.S. Geological Survey Earth Resources Observation and Science (USGS EROS) Center have implemented a hydrologic modeling system which consists of an operational data processing system and the Geospatial Stream Flow Model (GeoSFM). The data processing system generates daily forcing evapotranspiration and precipitation data from various remotely sensed and ground-based data sources. To allow for rapid implementation in data scarce environments, widely available terrain, soil, and land cover data sets are used for model setup and initial parameter estimation. GeoSFM performs geospatial preprocessing and postprocessing tasks as well as hydrologic modeling tasks within an ArcView GIS environment. The integration of GIS routines and time series processing routines is achieved seamlessly through the use of dynamically linked libraries (DLLs) embedded within Avenue scripts. GeoSFM is run operationally to identify and map wide-area streamflow anomalies. Daily model results including daily streamflow and soil water maps are disseminated through Internet map servers, flood hazard bulletins and other media.
NASA Astrophysics Data System (ADS)
Teutschbein, Claudia; Grabs, Thomas; Laudon, Hjalmar; Karlsen, Reinert H.; Bishop, Kevin
2018-06-01
In this paper we explored how landscape characteristics such as topography, geology, soils and land cover influence the way catchments respond to changing climate conditions. Based on an ensemble of 15 regional climate models bias-corrected with a distribution-mapping approach, present and future streamflow in 14 neighboring and rather similar catchments in Northern Sweden was simulated with the HBV model. We established functional relationships between a range of landscape characteristics and projected changes in streamflow signatures. These were then used to analyze hydrological consequences of physical perturbations in a hypothetically ungauged basin in a climate change context. Our analysis showed a strong connection between the forest cover extent and the sensitivity of different components of a catchment's hydrological regime to changing climate conditions. This emphasizes the need to redefine forestry goals and practices in advance of climate change-related risks and uncertainties.
NASA Astrophysics Data System (ADS)
Zhu, Honglei; Li, Ying; Huang, Yanwei; Li, Yingchen; Hou, Cuicui; Shi, Xiaoliang
2018-07-01
Satellite-based precipitation estimates with high spatial and temporal resolution and large areal coverage have provided hydrologists a potential alternative source for hydrological applications since the last few years, especially for ungauged regions. This study evaluates five satellite-based precipitation datasets, namely, Fengyun, TRMM 3B42, TRMM 3B42RT, CMORPH_BLD and CMORPH_RAW, against gauge observations for streamflow simulation with a distributed hydrological model (SWAT) over the Huifa river basin, Northeast China. Results show that, by comparing the statistical indices (MA, M5P, STDE, ME, BIAS and CC) and inter-annual precipitation, it is demonstrated that Fengyun TRMM 3B42 and CMORPH_BLD show better agreement with gauge precipitation data than CMORPH_RAW and TRMM 3B42RT. When the SWAT model for each dataset calibrated and validated individually, satisfactory model performances (defined as: NS > 0.5) are achieved at daily scale for Fengyun, TRMM 3B42 and gauge-driven model, and very good performances (defined as: NS > 0.75) are achieved at monthly scale for Fengyun and gauge-driven model, respectively. The CMORPH_BLD forced daily simulations also yield higher values of NS and R2 than CMORPH_RAW and TRMM 3B42RT at daily and monthly step. From the uncertainty results, variations of P-factor values and frequency distribution curves of NS suggest that the simulation uncertainty increase when operating the Fengyun, 3B42RT, CMORPH_BLD and CMORPH_RAW-driven model with best fitted parameters for rain gauge SWAT model. The results also indicate that the influence of parameter uncertainty on model simulation results may be greater than the effect of input data accuracy. It is noted that uncertainty analysis is necessary to evaluate the hydrological applications of satellite-based precipitation datasets.
NASA Astrophysics Data System (ADS)
Kibler, K. M.; Alipour, M.
2017-12-01
Diversion hydropower has been shown to significantly alter river flow regimes by dewatering diversion bypass reaches. Data scarcity is one of the foremost challenges to establishing environmental flow regimes below diversion hydropower dams, especially in regions of sparse hydro-meteorological observation. Herein, we test two prediction strategies for generating daily flows in rivers developed with diversion hydropower: a catchment similarity model, and a rainfall-runoff model selected by multi-objective optimization based on soft data. While both methods are designed for ungauged rivers embedded within large regions of sparse hydrologic observation, one is more complex and computationally-intensive. The objective of this study is to assess the benefit of using complex modeling tools in data-sparse landscapes to support design of environmental flow regimes. Models were tested in gauged catchments and then used to simulate a 28-year record of daily flows in 32 ungauged rivers. After perturbing flows with the hydropower diversion, we detect alteration using Indicators of Hydrologic Alteration (IHA) metrics and compare outcomes of the two modeling approaches. The catchment similarity model simulates low flows well (Nash-Sutcliff efficiency (NSE) = 0.91), but poorly represents moderate to high flows (overall NSE = 0.25). The multi-objective rainfall-runoff model performs well overall (NSE = 0.72). Both models agree that flow magnitudes and variability consistently decrease following diversion as temporally-dynamic flows are replaced by static minimal flows. Mean duration of events sustained below the pre-diversion Q75 and mean hydrograph rise and fall rates increase. While we see broad areas of agreement, significant effects and thresholds vary between models, particularly in the representation of moderate flows. Thus, use of simplified streamflow models may bias detected alterations or inadequately characterize pre-regulation flow regimes, providing inaccurate information as a basis for flow regime design. As an alternative, the multi-objective framework can be applied globally, and is robust to common challenges of flow prediction in ungauged rivers, such as equifinality and hydrologic dissimilarity of reference catchments.
Precipitation-runoff and streamflow-routing models for the Willamette River basin, Oregon
Laenen, Antonius; Risley, John C.
1997-01-01
With an input of current streamflow, precipitation, and air temperature data the combined runoff and routing models can provide current estimates of streamflow at almost 500 locations on the main stem and major tributaries of the Willamette River with a high degree of accuracy. Relative contributions of surface runoff, subsurface flow, and ground-water flow can be assessed for 1 to 10 HRU classes in each of 253 subbasins identified for precipitation-runoff modeling. Model outputs were used with a water-quality model to simulate the movement of dye in the Pudding River as an example
NASA Astrophysics Data System (ADS)
Curry, Charles L.; Zwiers, Francis W.
2018-04-01
The Fraser River Basin (FRB) of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May-July. Nevertheless, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation - ENSO) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of
Documentation of a dissolved-solids model of the Tongue River, southeastern Montana
Woods, Paul F.
1981-01-01
A model has been developed for assessing potential increases in dissolved solids of the Tongue River as a result of leaching of overburden materials used to backfill pits in surface coal-mining operations. The model allows spatial and temporal simulation of streamflow and dissolved-solids loads and concentrations under user-defined scenarios of surface coal mining and agricultural development. The model routes an input quantity of streamflow and dissolved solids from the upstream end to the downstream end of a stream reach while algebraically accounting for gains and losses of streamflow and dissolved solids within the stream reach. Input data needed to operate the model include the following: simulation number, designation of hydrologic conditions for each simulated month, either user-defined or regression-defined concentrations of dissolved solids input by the Tongue River Reservoir, number of irrigated acres, number of mined acres, dissolved-solids concentration of mine leachates and quantity of other water losses. A listing of the Fortran computer program, definitions of all variables in the model, and an example output permit use of the model by interested persons. (USGS)
NASA Astrophysics Data System (ADS)
Jimeno-Saez, Patricia; Pulido-Velazquez, David; Pegalajar-Cuellar, Manuel; Collados-Lara, Antonio-Juan; Pardo-Iguzquiza, Eulogio
2017-04-01
Precipitation (P) measurements show important biases due to under-catch, especially in windy conditions. Gauges modify the wind fields, producing important under-catch in solid P. In this work we intent to perform a global assessment of the under-catch phenomenon in some alpine catchments of Sierra Nevada Mountain Range (Spain) by using different conceptual hydrological models. They are based on the available information about daily natural streamflow and daily fields of P and temperature (T) in each catchment. We want to analyse long time periods (more than 20 years at daily scale) in order to obtain conclusions taking into account the stochastic behaviour of the natural streamflow and P and T variables. The natural streamflowin each basin has been obtained from the streamflow measurements in the gauges by making some simple mathematical operations to eliminate the anthropic influences. The daily climatic fieldswere estimated with spatial resolution of 1kmx1km by applying geostatistic techniques using data coming from 119climatic gauges existing in the area.We have considered to model options: Monthly and yearly variogram to characterize the spatial data correlation. The Elevation has been considered as secondary variable for the estimation. The analysis of the experimental data showed a linear relationhip between mean T and elevation. Therefore, we decided to apply a kriging with linear external drift to estimate the P and T fields. The mean daily P data show a quadratic relationship with the elevation. Different hypothesis have been considered to approach these P fields by applying kriging with linear drift, with quadratic drift, and regression kriging. A cross-validation analysis showed that the best approximation to the data is obtained with the kriging with linear drift. The P and T fields obtained with this technique were employed to feed different hydrological models in which different conceptual approaches of the hydrological processes related with the snow are considered. Correction factors of the solid & liquid P fields have been included in the formulation. We intend to perform an automatic calibration of the parameters of these models. A detailed analysis of global optimization techniques has been performed in order to identify the best possible optimization algorithm (Classic Informed Local Search, Simulated Annealing, Genetic Algorithm and Memetic algorithm) which is important due to the high computational cost of our optimization problems with many parameters and noisy inputs and outputs. Finally with the best calibration algorithm we have performed different optimization experiments (20 realizations). It allows us to obtain a distribution function of the correction factor for the solid and liquid P for each catchment, which can be useful as a preliminary assessment of the global under-catch in the basins. We have also analysed the sensitivity of the results to the spatio-temporal scale (grid with cells of 1x1 kms or 12.5x12.5 Kms; daily or monthly approaches) employed to approach different hydrological processes. We are also working in the analysis of these issues considering multi-objective evolutionary optimization approaches for calibration using multiple target criteria in which the transient calibration try to minimize differences with both, stream flow and snow cover area observations. This research has been partially supported by the CGL2013-48424-C2-2-R (MINECO) and the PMAFI/06/14 (UCAM) projects.
USDA-ARS?s Scientific Manuscript database
AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components under the Object Modeling System Version 3 (OMS3). The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the ad...
A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu
2011-01-01
Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...
R. S. Ahl; S. W. Woods
2006-01-01
Changes in the extent, composition, and configuration of forest cover over time due to succession or disturbance processes can result in measurable changes in streamflow and water yield. Removal of forest cover generally increases streamflow due to reduced canopy interception and evapotranspiration. In watersheds where snow is the dominant source of water, yield...
Streamflow response to climate and landuse changes in a coastal watershed in North Carolina
S. Qi; G. Sun; Y. Wang; S.G. McNulty; J.A. Moore Myers
2009-01-01
It is essential to examine the sensitivity of hydrologic responses to climate and landuse change across different physiographic regions in order to formulate sound water management policies for local response to projected global change. This study used the a simulation model to examine the potential impacts of climate and landuse changes on streamflow of the...
Puente, Celso
1976-01-01
Water-level, springflow, and streamflow data were used to develop simple and multiple linear-regression equations for use in estimating water levels in wells and the flow of three major springs in the Edwards aquifer in the eastern San Antonio area. The equations provide daily, monthly, and annual estimates that compare very favorably with observed data. Analyses of geologic and hydrologic data indicate that the water discharged by the major springs is supplied primarily by regional underflow from the west and southwest and by local recharge in the infiltration area in northern Bexar, Comal, and Hays Counties.
Heimann, David C.; Krempa, Heather M.
2011-01-01
The effects of proposed impoundments and resulting streamflow regulation on riparian wetlands in the Marmaton River Basin, Missouri, USA were determined using measurements and numerical simulations of wetland water budgets. Calibrated and validated Soil-Plant-Air-Water (SPAW) models were used to simulate daily water depths of four riparian wetlands for Current (model scenario of existing impoundments) and Proposed (model scenario of existing and proposed impoundments) impoundment conditions. The simulated frequency of flooding decreased 19–65% at the wetlands following the additions of proposed impoundments. The reduced flooding resulted in decreases in wetland water depths at all sites during the 10 simulated growing seasons under Proposed conditions with an average duration of continuous water-depth declines of 289 days at the upstream (most regulated) site. Downstream wetlands within the zone of least regulation had an average duration of water level decreases of about 20 days. Decreased water levels under Proposed conditions resulted in a range of 65–365 additional dry days at the study wetlands during the simulated 10-year period of Proposed conditions. The areas of the four wetlands meeting the hydrologic criteria of a formal jurisdictional wetland definition decreased ranging from zero to 31% under Proposed impoundment conditions.
Valentin, Melissa M.; Viger, Roland J.; Van Beusekom, Ashley E.; Hay, Lauren E.; Hogue, Terri S.; Foks, Nathan Leon
2018-01-01
The U.S. Geological Survey monthly water balance model (MWBM) was enhanced with the capability to simulate glaciers in order to make it more suitable for simulating cold region hydrology. The new model, MWBMglacier, is demonstrated in the heavily glacierized and ecologically important Copper River watershed in Southcentral Alaska. Simulated water budget components compared well to satellite‐based observations and ground measurements of streamflow, evapotranspiration, snow extent, and total water storage, with differences ranging from 0.2% to 7% of the precipitation flux. Nash Sutcliffe efficiency for simulated and observed streamflow was greater than 0.8 for six of eight stream gages. Snow extent matched satellite‐based observations with Nash Sutcliffe efficiency values of greater than 0.89 in the four Copper River ecoregions represented. During the simulation period 1949 to 2009, glacier ice melt contributed 25% of total runoff, ranging from 12% to 45% in different tributaries, and glacierized area was reduced by 6%. Statistically significant (p < 0.05) decreasing and increasing trends in annual glacier mass balance occurred during the multidecade cool and warm phases of the Pacific Decadal Oscillation, respectively, reinforcing the link between climate perturbations and glacier mass balance change. The simulations of glaciers and total runoff for a large, remote region of Alaska provide useful data to evaluate hydrologic, cryospheric, ecologic, and climatic trends. MWBM glacier is a valuable tool to understand when, and to what extent, streamflow may increase or decrease as glaciers respond to a changing climate.
Nystrom, Elizabeth A.; Burns, Douglas A.
2011-01-01
TOPMODEL uses a topographic wetness index computed from surface-elevation data to simulate streamflow and subsurface-saturation state, represented by the saturation deficit. Depth to water table was computed from simulated saturation-deficit values using computed soil properties. In the Fishing Brook Watershed, TOPMODEL was calibrated to the natural logarithm of streamflow at the study area outlet and depth to water table at Sixmile Wetland using a combined multiple-objective function. Runoff and depth to water table responded differently to some of the model parameters, and the combined multiple-objective function balanced the goodness-of-fit of the model realizations with respect to these parameters. Results show that TOPMODEL reasonably simulated runoff and depth to water table during the study period. The simulated runoff had a Nash-Sutcliffe efficiency of 0.738, but the model underpredicted total runoff by 14 percent. Depth to water table computed from simulated saturation-deficit values matched observed water-table depth moderately well; the root mean squared error of absolute depth to water table was 91 millimeters (mm), compared to the mean observed depth to water table of 205 mm. The correlation coefficient for temporal depth-to-water-table fluctuations was 0.624. The variability of the TOPMODEL simulations was assessed using prediction intervals grouped using the combined multiple-objective function. The calibrated TOPMODEL results for the entire study area were applied to several subwatersheds within the study area using computed hydrogeomorphic properties of the subwatersheds.
Web services in the U.S. geological survey streamstats web application
Guthrie, J.D.; Dartiguenave, C.; Ries, Kernell G.
2009-01-01
StreamStats is a U.S. Geological Survey Web-based GIS application developed as a tool for waterresources planning and management, engineering design, and other applications. StreamStats' primary functionality allows users to obtain drainage-basin boundaries, basin characteristics, and streamflow statistics for gaged and ungaged sites. Recently, Web services have been developed that provide the capability to remote users and applications to access comprehensive GIS tools that are available in StreamStats, including delineating drainage-basin boundaries, computing basin characteristics, estimating streamflow statistics for user-selected locations, and determining point features that coincide with a National Hydrography Dataset (NHD) reach address. For the state of Kentucky, a web service also has been developed that provides users the ability to estimate daily time series of drainage-basin average values of daily precipitation and temperature. The use of web services allows the user to take full advantage of the datasets and processes behind the Stream Stats application without having to develop and maintain them. ?? 2009 IEEE.
NASA Technical Reports Server (NTRS)
Schumann, H. H. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Preliminary analysis of DCS data from the USGS Verde River stream flow measuring site indicates the DCS system is furnishing high quality data more frequently than had been expected. During the 43-day period between Nov. 3, and Dec. 15, 1972, 552 DCS transmissions were received during 193 data passes. The amount of data received far exceeded the single high quality transmission per 12-hour period expected from the DCS system. The digital-parallel ERTS-1 data has furnished sufficient to accurately compute mean daily gage heights. These in turn, are used to compute average daily streamflow rates during periods of stable or slowly changing flow conditions. The digital-parallel data has also furnished useful information during peak flow periods. However, the serial-digital DCS capability, currently under development for transmitting streamflow data, should provide data of greater utility for determining times of flood peaks.
NASA Astrophysics Data System (ADS)
Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L. J.; George, B.
2016-04-01
Calibration of spatially distributed hydrologic models is frequently limited by the availability of ground observations. Remotely sensed (RS) hydrologic information provides an alternative source of observations to inform models and extend modelling capability beyond the limits of ground observations. This study examines the capability of RS evapotranspiration (ET) and soil moisture (SM) in calibrating a hydrologic model and its efficacy to improve streamflow predictions. SM retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and daily ET estimates from the CSIRO MODIS ReScaled potential ET (CMRSET) are used to calibrate a simplified Australian Water Resource Assessment - Landscape model (AWRA-L) for a selection of parameters. The Shuffled Complex Evolution Uncertainty Algorithm (SCE-UA) is employed for parameter estimation at eleven catchments in eastern Australia. A subset of parameters for calibration is selected based on the variance-based Sobol' sensitivity analysis. The efficacy of 15 objective functions for calibration is assessed based on streamflow predictions relative to control cases, and relative merits of each are discussed. Synthetic experiments were conducted to examine the effect of bias in RS ET observations on calibration. The objective function containing the root mean square deviation (RMSD) of ET result in best streamflow predictions and the efficacy is superior for catchments with medium to high average runoff. Synthetic experiments revealed that accurate ET product can improve the streamflow predictions in catchments with low average runoff.
Wavelet-linear genetic programming: A new approach for modeling monthly streamflow
NASA Astrophysics Data System (ADS)
Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur
2017-06-01
The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.
NASA Astrophysics Data System (ADS)
Lacombe, Guillaume; Ribolzi, Olivier; de Rouw, Anneke; Pierret, Alain; Latsachak, Keoudone; Silvera, Norbert; Pham Dinh, Rinh; Orange, Didier; Janeau, Jean-Louis; Soulileuth, Bounsamai; Robain, Henri; Taccoen, Adrien; Sengphaathith, Phouthamaly; Mouche, Emmanuel; Sengtaheuanghoung, Oloth; Tran Duc, Toan; Valentin, Christian
2016-07-01
The humid tropics are exposed to an unprecedented modernisation of agriculture involving rapid and mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability which controls habitats, water resources, and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydrometeorological variables has been operating in several headwater catchments in tropical southeast Asia since 2000. The GR2M water balance model, repeatedly calibrated over successive 1-year periods and used in simulation mode with the same year of rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses, and trend detection tests allowed causality between land-use changes and changes in seasonal streamflow to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow led to intricate streamflow patterns: pluri-annual streamflow cycles induced by the shifting system, on top of a gradual streamflow increase over years caused by the spread of the plantations. In Vietnam, the abandonment of continuously cropped areas combined with patches of mix-trees plantations led to the natural re-growth of forest communities followed by a gradual drop in streamflow. Soil infiltrability controlled by surface crusting is the predominant process explaining why two modes of afforestation (natural regeneration vs. planting) led to opposite changes in streamflow regime. Given that commercial tree plantations will continue to expand in the humid tropics, careful consideration is needed before attributing to them positive effects on water and soil conservation.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Hay, L.E.; McCabe, G.J.; Clark, M.P.; Risley, J.C.
2009-01-01
The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700-hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt-dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980-2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995-2004 and the remaining three used WYs defined as high-, medium-, and low-PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high-PIG years (low-flow years). ?? 2009 American Water Resources Association.
NASA Astrophysics Data System (ADS)
Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.
2018-01-01
Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain may improve its representation, particularly for basins whose orientations (e.g., windward-facing) are favored for orographic precipitation enhancement.
NASA Astrophysics Data System (ADS)
Yoon, Y.; Beighley, E.
2015-12-01
The Amazon River basin is the largest watershed in the world containing thousands of tributaries. Although the mainstream and its larger tributaries have been the focus on much research, there has been few studies focused on the hydrodynamics of smaller rivers in the foothills of the Andes Mountains. These smaller rivers are of particular importance for the fishery industry because fish migrate up these headwater rivers to spawn. During the rainy season, fish wait for storm event to increase water depths to a sufficient level for their passage. Understanding how streamflow dynamics will change in response to future conditions is vital for the sustainable management of the fishery industry. In this paper, we focus on improving the accuracy of river discharge estimates on relatively small-scale sub-catchments (100 ~ 40,000 km2) in the headwaters of the Amazon River basin. The Hillslope River Routing (HRR) hydrologic model and remotely sensed datasets are used. We provide annual runoff, seasonal patterns, and daily discharge characteristics for 81 known migration reaches. The model is calibrated for the period 2000-2014 and climate forecasts for the period 2070-2100 are used to assess future changes in streamflow dynamics. The forecasts for the 2070 to 2100 period were obtained by selecting 5 climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their ability to represent the main aspects of recent (1970 to 2000) Amazon climate. The river network for the HRR model is developing using surface topography based on the SRTM digital elevation model. Key model forcings include precipitation (TRMM 3B42) and evapotranspiration (MODIS ET, MOD16). Model parameters for soil depth, hydraulic conductivity, runoff coefficients and lateral routing were initially approximated based on literature values and adjusted during calibration. Measurements from stream gauges located near the reaches of interest were used for calibration. Model calibration results and simulated changes in future streamflow dynamics for the 81 river reaches are presented.
August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine
Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.
2003-01-01
Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.
Perkins, S.P.; Sophocleous, M.
1999-01-01
We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary flow is the dominant component of stream yield and that reduction of irrigation water use produces a corresponding increase in base flow and stream yield. However, the increase in stream yield resulting from reduced water use does not appear to be of sufficient magnitude to restore minimum desirable streamflows.
Farmer, William H.; Archfield, Stacey A.; Over, Thomas M.; Hay, Lauren E.; LaFontaine, Jacob H.; Kiang, Julie E.
2015-01-01
Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water. Streamgages cannot be installed at every location where streamflow information is needed. As part of its National Water Census, the U.S. Geological Survey is planning to provide streamflow predictions for ungaged locations. In order to predict streamflow at a useful spatial and temporal resolution throughout the Nation, efficient methods need to be selected. This report examines several methods used for streamflow prediction in ungaged basins to determine the best methods for regional and national implementation. A pilot area in the southeastern United States was selected to apply 19 different streamflow prediction methods and evaluate each method by a wide set of performance metrics. Through these comparisons, two methods emerged as the most generally accurate streamflow prediction methods: the nearest-neighbor implementations of nonlinear spatial interpolation using flow duration curves (NN-QPPQ) and standardizing logarithms of streamflow by monthly means and standard deviations (NN-SMS12L). It was nearly impossible to distinguish between these two methods in terms of performance. Furthermore, neither of these methods requires significantly more parameterization in order to be applied: NN-SMS12L requires 24 regional regressions—12 for monthly means and 12 for monthly standard deviations. NN-QPPQ, in the application described in this study, required 27 regressions of particular quantiles along the flow duration curve. Despite this finding, the results suggest that an optimal streamflow prediction method depends on the intended application. Some methods are stronger overall, while some methods may be better at predicting particular statistics. The methods of analysis presented here reflect a possible framework for continued analysis and comprehensive multiple comparisons of methods of prediction in ungaged basins (PUB). Additional metrics of comparison can easily be incorporated into this type of analysis. By considering such a multifaceted approach, the top-performing models can easily be identified and considered for further research. The top-performing models can then provide a basis for future applications and explorations by scientists, engineers, managers, and practitioners to suit their own needs.
Brown, Christopher R.
2014-01-01
In 2013, the U.S. Geological Survey (USGS), in cooperation with the U. S. Department of the Army, compiled available precipitation and streamflow data for the years of 2008–2012 from the Fort Carson Military Reservation (Fort Carson) near Colorado Springs, Colo., and precipitation, streamflow, and suspended-sediment loads from the Piñon Canyon Maneuver Site (PCMS) near Trinidad, Colo. Graphical representations of the data presented herein are a continuation of work completed by the USGS in 2008 to gain a better understanding of spatial and temporal trends within the hydrologic data. Precipitation stations at Fort Carson and the PCMS were divided into groups based on their land-surface altitude (LSA) to determine if there is a spatial difference in precipitation amounts based on LSA for either military facility. Two-sample t-tests and Wilcoxon rank-sum tests indicated statistically significant differences exist between precipitation values at different groups for Fort Carson but not for the PCMS. All five precipitation stations at Fort Carson exhibit a decrease in median daily total precipitation from years 2002–2007 to 2008–2012. For the PCMS, median precipitation values decreased from the first study period to the second for the 13 stations monitored year-round except for Burson and Big Hills. Mean streamflow for 2008–2012 is less than mean streamflow for 1983–2007 for all stream-gaging stations at Fort Carson and at the PCMS. During the study period, each of the stream-gaging stations within the tributary channels at the PCMS accounted for less than three percent of the total streamflow at the Purgatoire River at Rock Crossing gage. Peak streamflow for 2008–2012 is less than peak streamflow for 2002–2007 at both Fort Carson and the PCMS. At the PCMS, mean suspended-sediment yield for 2008–2012 increased by 54 percent in comparison to the mean yield for 2002–2007. This increase is likely related to the destruction of groundcover by a series of wildfires within the PCMS in 2008 and 2011.
Kim, Jinsoo; Choi, Jisun; Choi, Chuluong; Park, Soyoung
2013-05-01
This study examined the separate and combined impacts of future changes in climate and land use/land cover (LULC) on streamflow in the Hoeya River Basin, South Korea, using the representative concentration pathway (RCP) 4.5 and 8.5 scenarios of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). First, a LULC change model was developed using RCP 4.5 and RCP 8.5 storylines and logistic regression. Three scenarios (climate change only, LULC change only, and climate and LULC change combined) were established, and the streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool (SWAT) model. Each scenario showed distinct seasonal variations in streamflow. Under climate change only, streamflow increased in spring and winter but decreased in summer and autumn, whereas LULC change increased high flow during wet periods but decreased low flow in dry periods. Although the LULC change had less effect than climate change on the changes in streamflow, the effect of LULC change on streamflow was significant. The result for the combined scenario was similar to that of the climate change only scenario, but with larger seasonal changes in streamflow. Although the effects of LULC change were smaller than those caused by climate change, LULC changes may heighten the problems of increased seasonal variability in streamflow caused by climate change. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Henriquez Dole, L. E.; Gironas, J. A.; Vicuna, S.
2015-12-01
Given the critical role of the streamflow regime for ecosystem sustainability, modeling long term effects of climate change and land use change on streamflow is important to predict possible impacts in stream ecosystems. Because flow duration curves are largely used to characterize the streamflow regime and define indices of ecosystem health, they were used to represent and analyze in this study the stream regime in the Maipo River Basin in Central Chile. Water and Environmental Assessment and Planning (WEAP) model and the Plant Growth Model (PGM) were used to simulate water distribution, consumption in rural areas and stream flows on a weekly basis. Historical data (1990-2014), future land use scenarios (2030/2050) and climate change scenarios were included in the process. Historical data show a declining trend in flows mainly by unprecedented climatic conditions, increasing interest among users on future streamflow scenarios. In the future, under an expected decline in water availability coupled with changes in crop water demand, water users will be forced to adapt by changing water allocation rules. Such adaptation actions would in turns affect the streamflow regime. Future scenarios for streamflow regime show dramatic changes in water availability and temporal distribution. Annual weekly mean flows can reduce in 19% in the worst scenario and increase in 3.3% in the best of them, and variability in streamflow increases nearly 90% in all scenarios under evaluation. The occurrence of maximum and minimum monthly flows changes, as June instead of July becomes the driest month, and December instead of January becomes the month with maximum flows. Overall, results show that under future scenarios streamflow is affected and altered by water allocation rules to satisfy water demands, and thus decisions will need to consider the streamflow regime (and habitat) in order to be sustainable.
Long-Term Interactions of Streamflow Generation and River Basin Morphology
NASA Astrophysics Data System (ADS)
Huang, X.; Niemann, J.
2005-12-01
It is well known that the spatial patterns and dynamics of streamflow generation processes depend on river basin topography, but the impact of streamflow generation processes on the long-term evolution of river basins has not drawn as much attention. Fluvial erosion processes are driven by streamflow, which can be produced by Horton runoff, Dunne runoff, and groundwater discharge. In this analysis, we hypothesize that the dominant streamflow generation process in a basin affects the spatial patterns of fluvial erosion and that the nature of these patterns changes for storm events with differing return periods. Furthermore, we hypothesize that differences in the erosion patterns modify the topography over the long term in a way that promotes and/or inhibits the other streamflow generation mechanisms. In order to test these hypotheses, a detailed hydrologic model is imbedded into an existing landscape evolution model. Precipitation events are simulated with a Poisson process and have random intensities and durations. The precipitation is partitioned between Horton runoff and infiltration to groundwater using a specified infiltration capacity. Groundwater flow is described by a two-dimensional Dupuit equation for a homogeneous, isotropic, unconfined aquifer with an irregular underlying impervious layer. Dunne runoff occurs when precipitation falls on locations where the water table reaches the land surface. The combined hydrologic/geomorphic model is applied to the WE-38 basin, an experimental watershed in Pennsylvania that has substantial available hydrologic data. First, the hydrologic model is calibrated to reproduce the observed streamflow for 1990 using the observed rainfall as the input. Then, the relative roles of Horton runoff, Dunne runoff, and groundwater discharge are controlled by varying the infiltration capacity of the soil. For each infiltration capacity, the hydrologic and geomorphic behavior of the current topography is analyzed and the long-term evolution of the basin is simulated. The results indicate that the topography can be divided into three types of locations (unsaturated, saturated, and intermittently saturated) which control the patterns of streamflow generation for events with different return periods. The results also indicate that the streamflow generation processes can produce different geomorphic effective events at upstream and downstream locations. The model also suggests that a topography dominated by groundwater discharge evolves over a long period of time to a shape that tends to inhibit the development of saturated areas and Dunne runoff.
Brigode, Pierre; Brissette, Francois; Nicault, Antoine; ...
2016-09-06
Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less
Impact of Deforestation and Recovery on Streamflow Recession Statistics
NASA Astrophysics Data System (ADS)
Krapu, C.; Kumar, M.
2016-12-01
Deforestation is known to influence streamflow and baseflow in particular in sub-humid environments. Baseflow contributions to the recession limb of a flood hydrograph convey information about subsurface stores from which trees also draw water. Recent works based on the assumptions outlined by Brutsaert and Nieber (1977) have proposed analyzing streamflow recession curves on a per-event basis. In this framework, each event's recession curve is governed by a power law relation with per-event scale and shape coefficients. As streamflow recession depends in part upon evapotranspiration demand from trees, these coefficients are hypothesized to contain useful information about catchment vegetation. Analysis was conducted of 13 small experimental catchments in the eastern United States with known forest treatment histories to determine whether or not streamflow recession behavior as observed from daily discharge records could serve as an indicator of deforestation in the drainage basin. Power-law scale coefficients were calculated for each major stormflow event at each test site and a statistical comparison of distribution of fitted coefficients was made between pre-treatment and post-treatment events as well as between pre-treatment and post-recovery events. A second method using these fitted coefficients in conjunction with Gaussian process regression was employed to track the change in the scale coefficient in the 13 catchments described previously as well as two medium-sized catchments in the North Carolina portion of the American Piedmont which did not have extensive records of forest cover. A linear trend analysis of precipitation was performed to determine whether nonstationarity in rainfall could be a confounding cause of changes in event scale coefficients. These results show a statistically significant difference in scale coefficient values in 5/8 treatment catchments and 0/5 control catchments. This suggests that lesser alterations to forest cover may not be detectable but that this method is robust against changes in precipitation. Additionally, we found clear evidence that forest regrowth in the Piedmont sites continued from 1940-1970. As a proof-of-concept, this work suggests that major alterations to forest cover can be inferred from daily data of stream discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigode, Pierre; Brissette, Francois; Nicault, Antoine
Over the last decades, different methods have been used by hydrologists to extend observed hydro-climatic time series, based on other data sources, such as tree rings or sedimentological datasets. For example, tree ring multi-proxies have been studied for the Caniapiscau Reservoir in northern Québec (Canada), leading to the reconstruction of flow time series for the last 150 years. In this paper, we applied a new hydro-climatic reconstruction method on the Caniapiscau Reservoir and compare the obtained streamflow time series against time series derived from dendrohydrology by other authors on the same catchment and study the natural streamflow variability over themore » 1881–2011 period in that region. This new reconstruction is based not on natural proxies but on a historical reanalysis of global geopotential height fields, and aims firstly to produce daily climatic time series, which are then used as inputs to a rainfall–runoff model in order to obtain daily streamflow time series. The performances of the hydro-climatic reconstruction were quantified over the observed period, and showed good performances, in terms of both monthly regimes and interannual variability. The streamflow reconstructions were then compared to two different reconstructions performed on the same catchment by using tree ring data series, one being focused on mean annual flows and the other on spring floods. In terms of mean annual flows, the interannual variability in the reconstructed flows was similar (except for the 1930–1940 decade), with noteworthy changes seen in wetter and drier years. For spring floods, the reconstructed interannual variabilities were quite similar for the 1955–2011 period, but strongly different between 1880 and 1940. Here, the results emphasize the need to apply different reconstruction methods on the same catchments. Indeed, comparisons such as those above highlight potential differences between available reconstructions and, finally, allow a retrospective analysis of the proposed reconstructions of past hydro-climatological variabilities.« less
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
Variance analysis of forecasted streamflow maxima in a wet temperate climate
NASA Astrophysics Data System (ADS)
Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.
2018-05-01
Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.
Hydrological regime modifications induced by climate change in Mediterranean area
NASA Astrophysics Data System (ADS)
Pumo, Dario; Caracciolo, Domenico; Viola, Francesco; Valerio Noto, Leonardo
2015-04-01
The knowledge of river flow regimes has a capital importance for a variety of practical applications, in water resource management, including optimal and sustainable use. Hydrological regime is highly dependent on climatic factors, among which the most important is surely the precipitation, in terms of frequency, seasonal distribution and intensity of rainfall events. The streamflow frequency regime of river basins are often summarized by flow duration curves (FDCs), that offer a simple and comprehensive graphical view of the overall historical variability associated with streamflow, and characterize the ability of the basin to provide flows of various magnitudes. Climate change is likely to lead shifts in the hydrological regime, and, consequently, in the FDCs. Staring from this premise, the primary objective of the present study is to explore the effects of potential climate changes on the hydrological regime of some small Mediterranean basins. To this aim it is here used a recent hydrological model, the ModABa model (MODel for Annual flow duration curves assessment in ephemeral small BAsins), for the probabilistic characterization of the daily streamflows in small catchments. The model has been calibrated and successively validated in a unique small catchment, where it has shown a satisfactory accuracy in reproducing the empirical FDC starting from easily derivable parameters arising from basic ecohydrological knowledge of the basin and commonly available climatic data such as daily precipitation and temperatures. Thus, this work also represents a first attempt to apply the ModABa to basins different from that used for its preliminary design in order to testing its generality. Different case studies are selected within the Sicily region; the model is first calibrated at the sites and then forced by future climatic scenarios, highlighting the principal differences emerging from the current scenario and future FDCs. The future climate scenarios are generated using a stochastic downscaling technique based on the weather generator, AWE-GEN. This methodology allows for the downscaling of an ensemble of climate model outputs deriving the frequency distribution functions of factors of change for several statistics of temperature and precipitation from outputs of General Circulation Models (GCMs). The stochastic downscaling is carried out using simulations of GCMs adopted in the IPCC 5AR, for the future periods of 2046-2065 and 2081-2100.
NASA Astrophysics Data System (ADS)
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
Strauch, Kellan R.; Linard, Joshua I.
2009-01-01
The U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, used the Soil and Water Assessment Tool to simulate streamflow and estimate percolation in north-central Nebraska to aid development of long-term strategies for management of hydrologically connected ground and surface water. Although groundwater models adequately simulate subsurface hydrologic processes, they often are not designed to simulate the hydrologically complex processes occurring at or near the land surface. The use of watershed models such as the Soil and Water Assessment Tool, which are designed specifically to simulate surface and near-subsurface processes, can provide helpful insight into the effects of surface-water hydrology on the groundwater system. The Soil and Water Assessment Tool was calibrated for five stream basins in the Elkhorn-Loup Groundwater Model study area in north-central Nebraska to obtain spatially variable estimates of percolation. Six watershed models were calibrated to recorded streamflow in each subbasin by modifying the adjustment parameters. The calibrated parameter sets were then used to simulate a validation period; the validation period was half of the total streamflow period of record with a minimum requirement of 10 years. If the statistical and water-balance results for the validation period were similar to those for the calibration period, a model was considered satisfactory. Statistical measures of each watershed model's performance were variable. These objective measures included the Nash-Sutcliffe measure of efficiency, the ratio of the root-mean-square error to the standard deviation of the measured data, and an estimate of bias. The model met performance criteria for the bias statistic, but failed to meet statistical adequacy criteria for the other two performance measures when evaluated at a monthly time step. A primary cause of the poor model validation results was the inability of the model to reproduce the sustained base flow and streamflow response to precipitation that was observed in the Sand Hills region. The watershed models also were evaluated based on how well they conformed to the annual mass balance (precipitation equals the sum of evapotranspiration, streamflow/runoff, and deep percolation). The model was able to adequately simulate annual values of evapotranspiration, runoff, and precipitation in comparison to reported values, which indicates the model may provide reasonable estimates of annual percolation. Mean annual percolation estimated by the model as basin averages varied within the study area from a maximum of 12.9 inches in the Loup River Basin to a minimum of 1.5 inches in the Shell Creek Basin. Percolation also varied within the studied basins; basin headwaters tended to have greater percolation rates than downstream areas. This variance in percolation rates was mainly was because of the predominance of sandy, highly permeable soils in the upstream areas of the modeled basins.
Drewes, P.A.; Conrads, P.A.
1995-01-01
The assimilative capacities of selected reaches of the Waccamaw River and the Atlantic Intracoastal Waterway near Myrtle Beach, South Carolina, were determined using results from water-quality simulations by the Branched Lagrangian Transport Model. The study area included tidally influenced sections of the Waccamaw River, the Pee Dee River, Bull Creek, and the Atlantic Intracoastal Waterway. Hydrodynamic data for the Branched Lagrangian Transport Model were simulated using the U.S. Geological Survey BRANCH one-dimensional unsteady- flow model. Assimilative capacities were determined for four locations using low-, medium-, and high- flow conditions and the average dissolved-oxygen concentration for a 7-day period. Results indicated that for the Waccamaw River near Conway, the ultimate oxygen demand is 370 to 6,740 pounds per day for 7-day average streamflows of 17 to 1,500 cubic feet per second. For the Waccamaw River at Bucksport, the ultimate oxygen demand is 580 to 7,300 pounds per day for 7-day average streamflows of 62 to 1,180 cubic feet per second. For the Atlantic Intracoastal Waterway near North Myrtle Beach, simulations indicate ultimate oxygen demand is 5,100 to 10,000 pounds per day for 7-day average streamflows of 110 to 465 cubic feet per second. The ultimate oxygen demand for the Waccamaw River near Murrells Inlet is 11,000 to 230,000 pounds per day for 7-day average streamflows of 2,240 to 13,700 cubic feet per second.
Effects of past and future groundwater development on the hydrologic system of Verde Valley, Arizona
Garner, Bradley D.; Pool, D.R.
2013-01-01
Communities in central Arizona’s Verde Valley must manage limited water supplies in the face of rapidly growing populations. Developing groundwater resources to meet human needs has raised questions about the effects of groundwater withdrawals by pumping on the area’s rivers and streams, particularly the Verde River. U.S. Geological Survey hydrologists used a regional groundwater flow model to simulate the effects of groundwater pumping on streamflow in the Verde River. The study found that streamflow in the Verde River between 1910 and 2005 had been reduced as the result of streamflow depletion by groundwater pumping, also known as capture. Additionally, using three hypothetical scenarios for a period from 2005 to 2110, the study’s findings suggest that streamflow reductions will continue and may increase in the future.
A study of application of remote sensing to river forecasting. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.
Armstrong, David S.; Richards, Todd A.; Parker, Gene W.
2001-01-01
The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and ponded conditions). In comparison to a nearby river (Lamprey River, N.H.), and a reference fish community developed for inland New England streams, the Ipswich fish community would be expected to have appreciably higher percentages of fluvial-dependent and fluvial-specialist species were streamflows restored.Four riffle sites on the mainstem of the Ipswich River were identified as critical habitat areas because they are among the first sites to exhibit fish-passage problems or to dry during low flows. A watershed-scale precipitation-runoff model previously developed for the Ipswich River was used to simulate streamflows at these four sites for the period 1961-95 under no withdrawals (for water supply) and 1991 land use to evaluate habitat suitability under conditions that approximate the natural flow conditions. These simulated flows were used to calculate streamflow requirements by the Tennant and New England Aquatic-Base-Flow methods. Stream channels were surveyed at the critical riffle sites, and Water Surface Profile models were used to simulate streamflows and hydraulic characteristics needed for determining streamflow requirements by use of the Wetted-Perimeter and R2Cross methods. Normalized by drainage area to units of cubic feet per second per square mile, these methods yielded the following streamflow requirements: 0.50 cubic feet per second per square mile for the Tennant 30-percent QMA method, 0.42 cubic feet per second per square mile for the wetted-perimeter value necessary to maintain wetted perimeter at three altered riffle sites, 0.42 cubic feet per second per square mile for the R2Cross value required to maintain R2Cross hydraulic criteria at a natural riffle site, and 0.34 cubic feet per second per square mile for the aquatic-base-flow median of monthly mean flows for August for the simulated 1961-95 period under no withdrawals and 1991 land use. The mean streamflow requirement determined from these four methods is 0.42 cubic feet per second per square
Clarke, John S.; Painter, Jaime A.
2014-01-01
Septic systems were identified at 241,733 locations in a 2,539-square-mile (mi2) study area that includes all or parts of 12 counties in the Metropolitan Atlanta, Georgia, area. Septic system percolation may locally be an important component of streamflow in small drainage basins where it augments natural groundwater recharge, especially during extreme low-flow conditions. The amount of groundwater reaching streams depends on how much is intercepted by plants or infiltrates to deeper parts of the groundwater system that flows beyond a basin divide and does not discharge into streams within a basin. The potential maximum percolation from septic systems in the study area is 62 cubic feet per second (ft3/s), of which 52 ft3/s is in the Chattahoochee River Basin and 10 ft3/s is in the Flint River Basin. These maximum percolation rates represent 0.4 to 5.7 percent of daily mean streamflow during the 2011–12 period at the farthest downstream gaging site (station 02338000) on the Chattahoochee River, and 0.5 to 179 percent of daily mean streamflow at the farthest downstream gaging site on the Flint River (02344350). To determine the difference in base flow between basins having different septic system densities, hydrograph separation analysis was completed using daily mean streamflow data at streamgaging stations at Level Creek (site 02334578), with a drainage basin having relatively high septic system density of 101 systems per square mile, and Woodall Creek (site 02336313), with a drainage basin having relatively low septic system density of 18 systems per square mile. Results indicated that base-flow yield during 2011–12 was higher at the Level Creek site, with a median of 0.47 cubic feet per second per square mile ([ft3/s]/mi2), compared to a median of 0.16 (ft3/s)/mi2, at the Woodall Creek site. At the less urbanized Level Creek site, there are 515 septic systems with a daily maximum percolation rate of 0.14 ft3/s, accounting for 11 percent of the base flow in September 2012. At the more urban Woodall Creek site, there are 50 septic systems with an average daily maximum percolation rate of 0.0097 ft3/s, accounting for 5 percent of base flow in September 2012. Streamflow measurements at 133 small drainage basins (less than 5 mi2 in area) during September 2012 indicated no statistically significant difference in streamflow or specific conductance between basins having high and low density of septic systems (HDS and LDS, respectively). The median base-flow yield was 0.04 (f3/s)/mi2 for HDS sites, ranging from 0 to 0.52 (ft3/s)/mi2, and 0.10 (ft3/s)/mi2 for LDS sites, ranging from 0 to 0.49 (ft3/s)/mi2. A Wilcoxon rank-sum test indicated the median base-flow yields for HDS and LDS sites were not statistically different, with a p-value of 0.345. Because of the large size of the study area and associated variations in basin characteristics, data collected in September 2012 were also evaluated on the basis of the basins physical characteristics in an attempt to reduce or eliminate other basin characteristics that might affect base flow. Basins were evaluated based on geologic area, four geographic subareas, and 45-meter (147.6 ft) buffer zone; there were no statistically significant differences between median base-flow yield for HDS and LDS basins. It is probable that detection of the contribution from septic system percolation in base flow at many of the sites visited in September 2012 was obscured by a combination of the limitations of measurement accuracy and evapotranspiration. Detection of septic system percolation may also have been complicated by leaky water and sewer mains, which may have resulted in higher streamflows in LDS basins relative to HDS basins.
Human water consumption intensifies hydrological drought worldwide
NASA Astrophysics Data System (ADS)
Wada, Y.; Van Beek, L. P.; Wanders, N.; Bierkens, M. F.
2012-12-01
Over the past decades, human water consumption has more than doubled, and reduced streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological droughts, i.e. the occurrence of anomalously low streamflow. Here, we quantify over the period 1960-2010 the impact of human water consumption on the intensity and frequency of hydrological droughts worldwide. We simulated streamflow by the global hydrological and water resources model PCR-GLOBWB at a 0.5 degree spatial resolution, and reduced the amount of streamflow with different levels of human water consumption over the period 1960-2010. We applied the commonly used variable threshold level method to identify below-normal water availability as the onset of hydrological droughts. We then standardized the deficit volume dividing relative to the threshold level to express the intensity of drought conditions to normal streamflow conditions. The results show that human water consumption substantially reduced local and downstream streamflow in many regions of the world. This subsequently intensified hydrological droughts regionally by 10-500%. Irrigation is responsible for the intensification of hydrological droughts over western and central U.S., southern Europe, Asia, and southeastern Australia, whereas the impact of industrial and households' consumption on the intensification is considerably larger over eastern U.S., and western and central Europe. The results also show that drought frequency increased by more than 27% compared to pristine or natural condition as a result of human water consumption. The intensification of drought frequency is most severe over Asia, but also substantial over North America and Europe. Importantly, global population under severe hydrological droughts considerably increased from 0.7 billion in 1960 to 2.2 billion in 2010 due to rapid population growth. As a limited validation exercise, we compared simulated deficit volumes to those derived from observed river discharges for some important basins of the world. The comparison shows generally good agreement, but large discrepancies occurred when simulated river discharge failed to reproduce well the peak discharge and the mean amplitude in seasonal discharges, regardless of high correlation obtained from comparison of monthly discharges.
NASA Astrophysics Data System (ADS)
Lee, Hak Su; Seo, Dong-Jun; Liu, Yuqiong; McKee, Paul; Corby, Robert
2010-05-01
State updating of distributed hydrologic models via assimilation of streamflow data is subject to "overfitting" because large dimensionality of the state space of the model may render the assimilation problem seriously underdetermined. To examine the issue in the context of operational hydrology, we carried out a set of real-world experiments in which we assimilate streamflow data at interior and/or outlet locations into gridded SAC and kinematic-wave routing models of the U.S. National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM). We used for the experiments nine basins in the southern plains of the U.S. The experiments consist of selectively assimilating streamflow at different gauge locations, outlet and/or interior, and carrying out both dependent and independent validation. To assess the sensitivity of the quality of assimilation-aided streamflow simulation to the reduced dimensionality of the state space, we carried out data assimilation at spatially semi-distributed or lumped scale and by adjusting biases in precipitation and potential evaporation at a 6-hourly or larger scale. In this talk, we present the results and findings.
Driscoll, Daniel G.; Norton, Parker A.
2009-01-01
The U.S. Geological Survey cooperated with South Dakota Game, Fish and Parks to characterize hydrologic information relevant to management of water resources associated with Sheridan Lake, which is formed by a dam on Spring Creek. This effort consisted primarily of characterization of hydrologic data for a base period of 1962 through 2006, development of a hydrologic budget for Sheridan Lake for this timeframe, and development of an associated model for simulation of storage deficits and drawdown in Sheridan Lake for hypothetical release scenarios from the lake. Historically, the dam has been operated primarily as a 'pass-through' system, in which unregulated outflows pass over the spillway; however, the dam recently was retrofitted with an improved control valve system that would allow controlled releases of about 7 cubic feet per second (ft3/s) or less from a fixed depth of about 60 feet (ft). Development of a hydrologic budget for Sheridan Lake involved compilation, estimation, and characterization of data sets for streamflow, precipitation, and evaporation. The most critical data need was for extrapolation of available short-term streamflow records for Spring Creek to be used as the long-term inflow to Sheridan Lake. Available short-term records for water years (WY) 1991-2004 for a gaging station upstream from Sheridan Lake were extrapolated to WY 1962-2006 on the basis of correlations with streamflow records for a downstream station and for stations located along two adjacent streams. Comparisons of data for the two streamflow-gaging stations along Spring Creek indicated that tributary inflow is approximately proportional to the intervening drainage area, which was used as a means of estimating tributary inflow for the hydrologic budget. Analysis of evaporation data shows that sustained daily rates may exceed maximum monthly rates by a factor of about two. A long-term (1962-2006) hydrologic budget was developed for computation of reservoir outflow from Sheridan Lake for the historical pass-through operating system. Two inflow components (stream inflow and precipitation) and one outflow component (evaporation) were considered. The hydrologic budget uses monthly time steps within a computational year that includes two 6-month periods - May through October, for which evaporation is accounted for, and November through April, when evaporation is considered negligible. Results indicate that monthly evaporation rates can substantially exceed inflow during low-flow periods, and potential exists for outflows to begin approaching zero-flow conditions substantially prior to the onset of zero-inflow conditions, especially when daily inflow and evaporation are considered. Results also indicate that September may be the month for greatest potential benefit for enhancing fish habitat and other ecosystem values in downstream reaches of Spring Creek with managed releases of cool water. Computed monthly outflows from Sheridan Lake for September are less than 1.0 ft3/s for 8 of the 44 years (18 percent) and are less than 2.0 ft3/s for 14 of the 44 years (32 percent). Conversely, none of the computed outflows for May are less than 2.0 ft3/s. A short-term (July through September 2007) data set was used to calculate daily evaporation from Sheridan Lake and to evaluate the applicability of published pan coefficients. Computed values of pan coefficients of approximately 1.0 and 1.1 for two low-flow periods are larger than the mean annual pan coefficient of 0.74 for the area that is reported in the literature; however, the computed values are consistent with pan coefficients reported elsewhere for similar late summer and early fall periods. Thus, these results supported the use of variable monthly pan coefficients for the long-term hydrologic budget. A hydrologic model was developed using the primary components of the hydrologic budget and was used to simulate monthly storage deficits and drawdown for Sheridan Lake using hypothetical
Trends in snowmelt-related streamflow timing in the conterminous United States
NASA Astrophysics Data System (ADS)
Dudley, R. W.; Hodgkins, G. A.; McHale, M. R.; Kolian, M. J.; Renard, B.
2017-04-01
Changes in snowmelt-related streamflow timing have implications for water availability and use as well as ecologically relevant shifts in streamflow. Historical trends in snowmelt-related streamflow timing (winter-spring center volume date, WSCVD) were computed for minimally disturbed river basins in the conterminous United States. WSCVD was computed by summing daily streamflow for a seasonal window then calculating the day that half of the seasonal volume had flowed past the gage. We used basins where at least 30 percent of annual precipitation was received as snow, and streamflow data were restricted to regionally based winter-spring periods to focus the analyses on snowmelt-related streamflow. Trends over time in WSCVD at gages in the eastern U.S. were relatively homogenous in magnitude and direction and statistically significant; median WSCVD was earlier by 8.2 days (1.1 days/decade) and 8.6 days (1.6 days/decade) for 1940-2014 and 1960-2014 periods respectively. Fewer trends in the West were significant though most trends indicated earlier WSCVD over time. Trends at low-to-mid elevation (<1600 m) basins in the West, predominantly located in the Northwest, had median earlier WSCVD by 6.8 days (1940-2014, 0.9 days/decade) and 3.4 days (1960-2014, 0.6 days/decade). Streamflow timing at high-elevation (⩾1600 m) basins in the West had median earlier WSCVD by 4.0 days (1940-2014, 0.5 days/decade) and 5.2 days (1960-2014, 0.9 days/decade). Trends toward earlier WSCVD in the Northwest were not statistically significant, differing from previous studies that observed many large and (or) significant trends in this region. Much of this difference is likely due to the sensitivity of trend tests to the time period being tested, as well as differences in the streamflow timing metrics used among the studies. Mean February-May air temperature was significantly correlated with WSCVD at 100 percent of the study gages (field significant, p < 0.0001), demonstrating the sensitivity of WSCVD to air temperature across snowmelt dominated basins in the U.S. WSCVD in high elevation basins in the West, however, was related to both air temperature and precipitation yielding earlier snowmelt-related streamflow timing under warmer and drier conditions.
A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley
2016-04-01
An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between observed and simulated streamflows as a result of more realistic sub-daily meteorological forcing.
Zarriello, Phillip J.; Parker, Gene W.; Armstrong, David S.; Carlson, Carl S.
2010-01-01
Water withdrawals from surface-water reservoirs and groundwater have affected streamflow in the Sudbury and Assabet River Basins. These effects are particularly evident in the upper Sudbury River Basin, which prompted the need to improve the understanding of water resources and aquatic habitat in these basins. In 2004, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation, developed a precipitation-runoff model that uses Hydrologic Simulation Program-FORTRAN (HSPF) to evaluate the effects of water use and projected future water-use and land-use change on streamflow. As part of this study, the aquatic habitat in the basins and the effects of streamflow alteration also were evaluated. Chapter 1 of the report covers the development of the HSPF model that focuses on the upper Sudbury River Basin (106 square miles) but covers the entire Sudbury and Assabet River Basins (339 square miles). The model was calibrated to an 11-year period (1993-2003) using observed or estimated streamflow at four streamgages. The model was then used to simulate long-term (1960-2004) streamflows to evaluate the effects of average 1993-2003 water use and projected 2030 water-use and land-use change over long-term climatic conditions. Simulations indicate that the average 1993-2003 withdrawals most altered streamflow relative to no withdrawals in small headwater subbasins where the ratios of mean annual withdrawals to mean annual streamflow are the highest. The effects of withdrawals are also appreciable in other parts of the upper Sudbury River Basin as a result of the perpetuation of the effects of large withdrawals in upstream reaches or in subbasins that also have a high ratio of withdrawal to streamflow. The simulated effects of potential 2030 water-use and land-use change indicate small decreases in flows as a result of increased water demands, but these flow alterations were offset as a result of decreased evapotranspiration associated with the loss of deep-rooted vegetation. Simulations of reactivating production wells near the north end of Lake Cochituate indicate pumping could substantially affect lake levels and flows at the lake outlet or in nearby reaches in the Sudbury River during periods of low flow, but the effects vary depending on the source of the water to the wells, which is largely unknown. Chapter 2 of the report covers the fish-community assessment and comparison of streamflow-setting standards for protecting aquatic habitat. The fish-community assessment indicates the main stems of the Sudbury and Assabet Rivers are dominated by macrohabitat generalists. Water temperatures recorded in seven free-flowing reaches in the upper Sudbury River Basin at three sites unaffected by withdrawals or impoundments are generally suitable for cold-water fish; however, summer temperatures often rose to a level considered critical to long-term survival of brook trout. At four sites downstream from withdrawals or reservoirs, or both, summer water temperatures were often in the upper critical range for brook trout survival. Physically and statistically based methods for determining streamflows for protecting aquatic habitat were applied at 10 selected riffle sites in the Sudbury and Assabet River Basins. Physically based methods, R2Cross and Wetted-Perimeter, use site-specific physical and hydraulic information and a one-dimensional hydraulics model, HEC-RAS, to determine flows that meet the criteria set forth by the method. The median flow that meets 2-of-3 of the R2Cross hydraulic criteria (percentage of bankfull wetted perimeter, average velocity, and mean depth) ranged from about 0.07 to 0.72 cubic feet per second per square mile (ft3/s/mi2) with an overall median of about 0.24 ft3/s/mi2; the median Wetted-Perimeter target flow ranged from about 0.10 to 0.51 ft3/s/mi2 with an overall median of about 0.25 ft3/s/mi2. Statistically based methods?Tennant, New England Aquatic Base Flow (ABF)
NASA Astrophysics Data System (ADS)
Pradhanang, S. M.; Hasan, M. A.; Booth, P.; Fallatah, O.
2016-12-01
The monsoon and snow driven regime in the Himalayan region has received increasing attention in the recent decade regarding the effects of climate change on hydrologic regimes. Modeling streamflow in such spatially varied catchment requires proper calibration and validation in hydrologic modeling. While calibration and validation are time consuming and computationally intensive, an effective regionalized approach with multi-site information is crucial for flow estimation, especially in daily scale. In this study, we adopted a multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Karnali river catchment, which is characterized as being the most vulnerable catchment to climate change in the Himalayan region. APHRODITE's (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) daily gridded precipitation data, one of the accurate and reliable weather date over this region were utilized in this study. The model evaluation of the entire catchment divided into four sub-catchments, utilizing discharge records from 1963 to 2010. In previous studies, multi-site calibration used only a single set of calibration parameters for all sub-catchment of a large watershed. In this study, we introduced a technique that can incorporate different sets of calibration parameters for each sub-basin, which eventually ameliorate the flow of the whole watershed. Results show that the calibrated model with new method can capture almost identical pattern of flow over the region. The predicted daily streamflow matched the observed values, with a Nash-Sutcliffe coefficient of 0.73 during calibration and 0.71 during validation period. The method perfumed better than existing multi-site calibration methods. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using precipitation and temperature changes for two Representative Concentration Pathways (RCPs) scenarios, RCP 4.5 and 8.5. Climate simulation for RCP scenarios were conducted from 1981-2100, where 1981-2005 was considered as baseline and 2006-2100 was considered as the future projection. The result shows that probability of flooding will eventually increase in future years due to increased flow in both scenarios.
Hunt, Randall J.; Walker, John F.; Selbig, William R.; Westenbroek, Stephen M.; Regan, R. Steve
2013-01-01
Although groundwater and surface water are considered a single resource, historically hydrologic simulations have not accounted for feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system. Simulations that iteratively couple the surface-water and groundwater systems, however, are characterized by long run times and calibration challenges. In this study, calibrated, uncoupled transient surface-water and steady-state groundwater models were used to construct one coupled transient groundwater/surface-water model for the Trout Lake Watershed in north-central Wisconsin, USA. The computer code GSFLOW (Ground-water/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil-zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, stream, and lake budgets. The coupled GSFLOW model was calibrated by using heads, streamflows, lake levels, actual evapotranspiration rates, solar radiation, and snowpack measurements collected during water years 1998–2007; calibration was performed by using advanced features present in the PEST parameter estimation software suite. Simulated streamflows from the calibrated GSFLOW model and other basin characteristics were used as input to the one-dimensional SNTEMP (Stream-Network TEMPerature) model to simulate daily stream temperature in selected tributaries in the watershed. The temperature model was calibrated to high-resolution stream temperature time-series data measured in 2002. The calibrated GSFLOW and SNTEMP models were then used to simulate effects of potential climate change for the period extending to the year 2100. An ensemble of climate models and emission scenarios was evaluated. Downscaled climate drivers for the period 2010–2100 showed increases in maximum and minimum temperature over the scenario period. Scenarios of future precipitation did not show a monotonic trend like temperature. Uncertainty in the climate drivers increased over time for both temperature and precipitation. Separate calibration of the uncoupled groundwater and surface-water models did not provide a representative initial parameter set for coupled model calibration. A sequentially linked calibration, in which the uncoupled models were linked by means of utility software, provided a starting parameter set suitable for coupled model calibration. Even with sequentially linked calibration, however, transmissivity of the lower part of the aquifer required further adjustment during coupled model calibration to attain reasonable parameter values for evaporation rates off a small seepage lake (a lake with no appreciable surface-water outlets) with a long history of study. The resulting coupled model was well calibrated to most types of observed time-series data used for calibration. Daily stream temperatures measured during 2002 were successfully simulated with SNTEMP; the model fit was acceptable for a range of groundwater inflow rates into the streams. Forecasts of potential climate change scenarios showed growing season length increasing by weeks, and both potential and actual evapotranspiration rates increasing appreciably, in response to increasing air temperature. Simulated actual evapotranspiration rates increased less than simulated potential evapotranspiration rates as a result of water limitation in the root zone during the summer high-evapotranspiration period. The hydrologic-system response to climate change was characterized by a reduction in the importance of the snow-melt pulse and an increase in the importance of fall and winter groundwater recharge. The less dynamic hydrologic regime is likely to result in drier soil conditions in rainfed wetlands and uplands, in contrast to less drying in groundwater-fed systems. Seepage lakes showed larger forecast stage declines related to climate change than did drainage lakes (lakes with outlet streams). Seepage lakes higher in the watershed (nearer to groundwater divides) had less groundwater inflow and thus had larger forecast declines in lake stage; however, ground-water inflow to seepage lakes in general tended to increase as a fraction of the lake budgets with lake-stage decline because inward hydraulic gradients increased. Drainage lakes were characterized by less simulated stage decline as reductions in outlet streamflow of set losses to other water flows. Net groundwater inflow tended to decrease in drainage lakes over the scenario period. Simulated stream temperatures increased appreciably with climate change. The estimated increase in annual average temperature ranged from approximately 1 to 2 degrees Celsius by 2100 in the stream characterized by a high groundwater inflow rate and 2 to 3 degrees Celsius in the stream with a lower rate. The climate drivers used for the climate-change scenarios had appreciable variation between the General Circulation Model and emission scenario selected; this uncertainty was reflected in hydrologic flow and temperature model results. Thus, as with all forecasts of this type, the results are best considered to approximate potential outcomes of climate change.
NASA Technical Reports Server (NTRS)
Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.
2013-01-01
The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.
NASA Astrophysics Data System (ADS)
Bonfils, C.; Santer, B.; Pierce, D.; Hidalgo, H.; Bala, G.; Dash, T.; Barnett, T.; Cayan, D.; Doutriaux, C.; Wood, A.; Mirin, A.; Nosawa, T.
2008-12-01
Large changes in the hydrology of the western United States have been observed since the mid-20th century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and mid-elevations, and a shift towards earlier arrival of both snowmelt and the center of mass of streamflows. In order to project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these long-term changes. A regional warming is often posited as the cause of these changes, without formal testing of different competitive explanations for the warming. In this study, we perform a rigorous detection and attribution analysis to determine the causes of the late winter/early spring changes in hydrologically-relevant temperature variables over mountain ranges of the western U.S. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). The observations are however consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. We also address the benefits of conducting multivariate versus univariate detection and attribution analysis, with, for instance, a focus on changes in snowmelt, streamflow peaks and minimum temperature. With models of climate change unanimously projecting an acceleration of warming in the western United States, serious implications for water infrastructures and water supply sustainability can be expected, increasing already the necessity of developing adaptation measures in water resources management.
Thomas, Blakemore E.; Pool, Don R.
2006-01-01
This study was done to improve the understanding of trends in streamflow of the San Pedro River in southeastern Arizona. Annual streamflow of the river at Charleston, Arizona, has decreased by more than 50 percent during the 20th century. The San Pedro River is one of the few remaining free-flowing perennial streams in the arid Southwestern United States, and the riparian forest along the river supports several endangered species and is an important habitat for migratory birds. Trends in seasonal and annual precipitation and streamflow were evaluated for surrounding areas in southeastern Arizona and southwestern New Mexico to provide a regional perspective for the trends of the San Pedro River. Seasonal and annual streamflow trends and the relation between precipitation and streamflow in the San Pedro River Basin were evaluated to improve the understanding of the causes of trends. There were few significant trends in seasonal and annual precipitation or streamflow for the regional study area. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002; no significant trends were found in 92 percent of the trend tests for precipitation, and no significant trends were found in 79 percent of the trend tests for streamflow. For the trends in precipitation that were significant, 90 percent were positive and most of those positive trends were in records of winter, spring, or annual precipitation that started during the mid-century drought in 1945-60. For the trends in streamflow that were significant, about half were positive and half were negative. Trends in precipitation in the San Pedro River Basin were similar to regional precipitation trends for spring and fall values and were different for summer and annual values. The largest difference was in annual precipitation, for which no trend tests were significant in the San Pedro River Basin, and 23 percent of the trend tests were significantly positive in the rest of the study area. Streamflow trends for the San Pedro River were different from regional streamflow trends. All seasonal flows for the San Pedro River, except winter flows, had significant decreasing trends, and seasonal flows for most streams in the rest of the study area had either no trend or a significant increasing trend. Two streams adjacent to the San Pedro River Basin (Whitewater Draw and Santa Cruz River), however, had significant decreasing trends in summer streamflow. Factors that caused the decreasing trends in streamflow of the San Pedro River at Charleston were investigated. Possible factors were fluctuations in precipitation and air temperature, changes in watershed characteristics, human activities, or changes in seasonal distribution of bank storage. This study statistically removed or accounted for the variation in streamflow caused by fluctuations in precipitation. Thus, the remaining variation or trend in streamflow was caused by factors other than precipitation. Two methods were used to partition the variation in streamflow and to determine trends in the partitioned variation: (1) regression analysis between precipitation and streamflow using all years in the record and evaluation of time trends in regression residuals, and (2) development of regression equations between precipitation and streamflow for three time periods (early, middle, and late parts of the record) and testing to determine if the three regression equations were significantly different. The methods were applied to monthly values of total flow (average flow) and storm runoff (maximum daily mean flow) for 1913-2002, and to monthly values of low flow (3-day low flow) for 1931-2002. Statistical tests provide strong evidence that factors other than precipitation caused a decrease in streamflow of the San Pedro River. Factors other than precipitation caused significant decreasing trends in streamflows for late spring through early winter and did not cause significant trends f
Potential effects of landscape change on water supplies in the presence of reservoir storage
NASA Astrophysics Data System (ADS)
Guswa, Andrew J.; Hamel, Perrine; Dennedy-Frank, P. James
2017-04-01
This work presents a set of methods to evaluate the potential effects of landscape changes on water supplies. Potential impacts are a function of the seasonality of precipitation, losses of water to evapotranspiration and deep recharge, the flow-regulating ability of watersheds, and the availability of reservoir storage. For a given reservoir capacity, simple reservoir simulations with daily precipitation and streamflow enable the determination of the maximum steady supply of water for both the existing watershed and a hypothetical counter-factual that has neither flow-regulating benefits nor any losses. These two supply values, representing land use end-members, create an envelope that defines the water-supply service and bounds the effect of landscape change on water supply. These bounds can be used to discriminate between water supplies that may be vulnerable to landscape change and those that are unlikely to be affected. Two indices of the water-supply service exhibit substantial variability across 593 watersheds in the continental United States. Rcross, the reservoir capacity at which landscape change is unlikely to have any detrimental effect on water supply has an interquartile range of 0.14-4% of mean-annual-streamflow. Steep, forested watersheds with seasonal climates tend to have greater service values, and the indices of water-supply service are positively correlated with runoff ratios during the months with lowest flows.
Global Maps of Temporal Streamflow Characteristics Based on Observations from Many Small Catchments
NASA Astrophysics Data System (ADS)
Beck, H.; van Dijk, A.; de Roo, A.
2014-12-01
Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. We used observed Q from approximately 7500 small catchments (<10,000 km2) around the globe to train neural network ensembles to estimate temporal Q distribution characteristics from climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Training coefficients of determination for the estimation of the Q characteristics ranged from 0.56 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were the least important, perhaps due to data quality. The trained neural network ensembles were subsequently applied spatially over the ice-free land surface including ungauged regions, resulting in global maps of the Q characteristics (0.125° spatial resolution). These maps possess several unique features: 1) they represent purely observation-driven estimates; 2) are based on an unprecedentedly large set of catchments; and 3) have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of five macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available for download.