Sample records for dalhart basin

  1. 78 FR 77096 - Newspapers Used for Publication of Legal Notices in the Southwestern Region, Which Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... notices will identify: the decision or project, by title or subject matter; the name and title of the... in:--``The Dalhart Texan'', Dalhart, Texas. Black Kettle National Grassland in Roger Mills County, Oklahoma notices published in:--``Cheyenne Star'', Cheyenne, Oklahoma. Black Kettle National Grassland in...

  2. Measurement of soil moisture trends with airborne scatterometers. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Jones, C. L.; Mcfarland, M. J.; Rosethal, W. D.; Theis, S. W. (Principal Investigator)

    1982-01-01

    In an effort to investigate aircraft multisensor responses to soil moisture and vegetation in agricultural fields, an intensive ground sampling program was conducted in Guymon, Oklahoma and Dalhart, Texas in conjunction with aircraft data collected for visible/infrared and passive and active microwave systems. Field selections, sampling techniques, data processing, and the aircraft schedule are discussed for both sites. Field notes are included along with final (normalized and corrected) data sets.

  3. M-X Environmental Technical Report. Alternative Potential Operating Base Locations Dalhart.

    DTIC Science & Technology

    1980-12-22

    CONTENTS PAGE 1.0 Dalhart and Vicinity Community Environment I 1.1 Human Environment I 1.1.1 Economic Activity 1 1.1.2 Public Finance 9 1.1.3 Population 9...county area. 1.1 HUMAN ENVIRONMENT ECONOMIC ACTIVITY (1.1.1) Employment Tables 1.1.1-1 and 1.1.1-2 highlight detailed employment characteristics of Dallam...clearinghouse responsible for planning in the subject region. The local planning activities are implemented under the authority of "Regional Planning Commissions

  4. Multispectral determination of soil moisture-2. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Simonett, D. S. (Principal Investigator); Hajic, E. J.; Hilton, B. M.; Lees, R. D.

    1982-01-01

    Soil moisture data obtained using scatterometers, modular multispectral scanners and passive microwave radiometers were revised and grouped into four field cover types for statistical anaysis. Guymon data are grouped as alfalfa, bare, milo with rows perpendicular to the field view, and milo viewed parallel to the field of view. Dalhart data are grouped as bare combo, stubble, disked stubble, and corn field. Summary graphs combine selected analyses to compare the effects of field cover. The analysis for each of the cover types is presented in tables and graphs. Other tables show elementary statistics, correlation matrices, and single variable regressions. Selected eigenvectors and factor analyses are included and the highest correlating sensor typs for each location are summarized.

  5. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms. [Guyton, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) are considered in an effort to estimate biomass at Guymon, Oklahoma Dalhart, Texas. Both grounds truth and aerial data were used. Results indicate that inclusion of C, L, and P band active microwave data, from look angles greater than 35 deg from nadir, with visible and infrared data improve crop discrimination and biomass estimates compared to results using only visible and infrared data. The microwave frequencies were sensitive to different biomass levels. The K and C band were sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels. Two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass. It is implied that inclusion of active microwave sensors with visible and infrared sensors on future satellites could aid in crop discrimination and biomass estimation.

  6. First report of tomato spotted wilt virus causing potato tuber necrosis in Texas

    USDA-ARS?s Scientific Manuscript database

    In the summer of 2008, potato tubers (cv FL1867, FL2053, and FL1922) from commercial fields near Dalhart, Texas were observed with distinct external erumpent rings and severe internal discolorations including blotches, spots, and dry, cork-like tissue. The presence of rings suggested the possible i...

  7. Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.

  8. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  9. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms, volume 2. [Oklahoma and Texas

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) were developed and tested and biomass was estimated by including microwave with visible and infrared data. The study was conducted at Guymon, Oklahoma and Dalhart, Texas utilizing aircraft multispectral data and ground truth soil moisture and biomass information. Results indicate that inclusion of C, L, and P band active microwave data from look angles greater than 35 deg from nadir with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels. In addition, two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass.

  10. Microwave remote sensing of soil moisture, volume 1. [Guymon, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J. (Principal Investigator); Theis, S. W.; Rosenthal, W. D.; Jones, C. L.

    1982-01-01

    Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone.

  11. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site

    DOE PAGES

    Zhao, P.; Tinnacher, R. M.; Zavarin, M.; ...

    2014-11-01

    A high sensitivity analytical method for 237Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived 239Np as a yield tracer and HR magnetic sector ICP-MS. The 237Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from <4 × 10 -4 to 2.6 mBq/L (6 × 10 -17–4.2 × 10 -13 mol/L). All measured 237Np concentrations are well below the drinking water maximum contaminant level for alpha emitters identified by the U.S. EPA (560 mBq/L). Nevertheless, 237Np remains an important indicator for radionuclidemore » transport rates at the NNSS. Retardation factor ratios were used to compare the mobility of 237Np to that of other radionuclides. The results suggest that 237Np is less mobile than tritium and other non-sorbing radionuclides ( 14C, 36Cl, 99Tc and 129I) as expected. Surprisingly, 237Np and plutonium ( 239,240Pu) retardation factors are very similar. It is possible that Np(IV) exists under mildly reducing groundwater conditions and exhibits a retardation behavior that is comparable to Pu(IV). Independent of the underlying process, 237Np is migrating downgradient from NNSS underground nuclear tests at very low but measureable concentrations.« less

  12. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site.

    PubMed

    Zhao, P; Tinnacher, R M; Zavarin, M; Kersting, A B

    2014-11-01

    A high sensitivity analytical method for (237)Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived (239)Np as a yield tracer and HR magnetic sector ICP-MS. The (237)Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from <4 × 10(-4) to 2.6 mBq/L (6 × 10(-17)-4.2 × 10(-13) mol/L). All measured (237)Np concentrations are well below the drinking water maximum contaminant level for alpha emitters identified by the U.S. EPA (560 mBq/L). Nevertheless, (237)Np remains an important indicator for radionuclide transport rates at the NNSS. Retardation factor ratios were used to compare the mobility of (237)Np to that of other radionuclides. The results suggest that (237)Np is less mobile than tritium and other non-sorbing radionuclides ((14)C, (36)Cl, (99)Tc and (129)I) as expected. Surprisingly, (237)Np and plutonium ((239,240)Pu) retardation factors are very similar. It is possible that Np(IV) exists under mildly reducing groundwater conditions and exhibits a retardation behavior that is comparable to Pu(IV). Independent of the underlying process, (237)Np is migrating downgradient from NNSS underground nuclear tests at very low but measureable concentrations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Scramble in the South China Sea: Regional Conflict and U.S. Strategy

    DTIC Science & Technology

    2013-02-14

    Basin Phu Kanh Basin Cuu Long Basin Nam Con Son Basin South China Sea Platform Baram Delta Basin Palawan Shelf Basin Greater Sarawak Basin...Basin 183 10,599 Greater Sarawak Basin 618 34,083 Phu Kanh Basin 116 10,679 Baram Delta Basin 4,056 12,546 Cuu Long Basin 1,599 487 Palawan Shelf

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J.A.; Klemme, H.D.

    The main onshore basins of northwestern Africa are (1) basins in the Atlas folded geosynclinal belt adjacent to the Mediterranean Sea, (2) the Tindouf, Bechar, and Reggane basins of western Algeria and southern Morocco, and (3) the Taoudeni basin of Mauritania and Mali. Coastal basins are (1) the Essaouria basin of southwestern Morocco, (2) the Tarfaya basin of Western Sahara, (3) the Senegal basin of Senegal and western Mauritania, (4) the Sierra Leone-Liberia basin, and (5) the Ivory Coast basin. The petroleum geology and resource potential of these basins is detailed.

  15. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  16. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Junyuan; Ben-Avraham, Zvi; Kelty, Tom; Yu, Ho-Shing

    2014-03-01

    Geometry of basins can indicate their tectonic origin whether they are small or large. The basins of Bohai Gulf, South China Sea, East China Sea, Japan Sea, Andaman Sea, Okhotsk Sea and Bering Sea have typical geometry of dextral pull-apart. The Java, Makassar, Celebes and Sulu Seas basins together with grabens in Borneo also comprise a local dextral, transform-margin type basin system similar to the central and southern parts of the Shanxi Basin in geometry. The overall configuration of the Philippine Sea resembles a typical sinistral transpressional "pop-up" structure. These marginal basins except the Philippine Sea basin generally have similar (or compatible) rift history in the Cenozoic, but there do be some differences in the rifting history between major basins or their sub-basins due to local differences in tectonic settings. Rifting kinematics of each of these marginal basins can be explained by dextral pull-apart or transtension. These marginal basins except the Philippine Sea basin constitute a gigantic linked, dextral pull-apart basin system.

  17. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  18. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, Douglas A.

    1995-01-01

    The effects of selected agricultural land-management practices on water quality were assessed in a comparative study of four small basins in the Piedmont province of North Carolina. Agricultural practices, such as tillage and applications of fertilizer and pesticides, are major sources of sediment, nutrients, and pesticides in surface water, and of nutrients and pesticides in ground water. The four study basins included two adjacent row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields (7.4 acres) was farmed by using conservation land-management (CLM) practices, which included strip cropping, contour plowing, field borders, and grassed waterways. The other row-crop field (4.8 acres) was farmed by using standard land-management (SLM) practices, which included continuous cropping, straight-row plowing without regard to land topography, and poorly maintained waterways. The mixed land-use basin (665 acres) was monitored to compare water quality in surface water as SLM practices were converted to CLM practices during the project. The forested basin (44 acres) provided background surface-water hydrologic and chemical-quality conditions. Surface-water flow was reduced by 18 percent by CLM practices compared to surface-water flow from the SLM practices basin. The thickness of the unsaturated zone in the row-crop basins ranged from a few feet to 25 feet. Areas with thick unsaturated zones have a greater capacity to intercept and store nutrients and pesticides than do areas with thinner zones. Sediment concentrations and yields for the SLM practices basin were considerably higher than those for the other basins. The median sediment concentration in surface water for the SLM basin was 3.4 times that of the CLM basin, 8.2 times that of the mixed land-use basin, and 38.4 times that of the forested basin. The total sediment yield for the SLM basin was 2.3 times that observed for the CLM basin, 14.1 times that observed for the mixed land-use basin, and 19.5 times the yield observed for the forested basin. Nutrient concentrations in surface water from the row-crop and mixed land-use basins were higher than those measured in the forested basin and in precipitation collected near the row-crop basins. The SLM basin generally had the highest concentrations of total nitrogen, nitrite plus nitrate, total phosphorus (equivalent to the mixed land-use basin), and potassium. Nutrient concentrations in soil water and ground water were less than concentrations in surface water for the row-crop basins. Nutrient concentrations generally were at least slightly below the root zone (3-foot depth) and in ground water. Differences in nutrient yields among basins had patterns similar to those observed for nutrient concentrations. The total nitrogen yield for the SLM basin was 1.2 times the yield for the CLM basin, 1.9 times the yield for the mixed land-use basin, and 4.2 times the yield for the forested basin. The total phosphorus yield for the SLM basin was 1.7 times the yield for the CLM basin, 3.3 times the yield for the mixed land-use basin, and 7.8 times the yield for the forested basin. No significant differences in pesticide concentrations in surface water were identified between those measured in the SLM basin and those measured in the CLM basin. Significantly higher pesticide concentrations were observed at the row-crop basins compared with those observed at the mixed land-use basin probably because sampling sites for the row-crop basins were closer to the pesticide sources. No pesticides were detected in the forested basin. Comparisons of pesticide concentrations in soil from the two row-crop basins indicated some differences. Concentrations of the soil pesticides isopropalin and flumetralin were higher in the SLM basin than in the CLM basin. The surface-water quality of the mixed land-use basin generally was less affected by agricultural nonpoint sources than that of the smaller row-crop b

  19. Geometry, structure, and concealed lithology of the San Rafael Basin, southeastern Arizona

    USGS Publications Warehouse

    Bultman, Mark W.

    1999-01-01

    The contiguous United States has been well explored for exposed conventional mineral deposits. Therefore, it is likely that many economically viable and strategically significant conventional undiscovered mineral deposits will be found in bedrock concealed beneath basin sediments. Mineral resource assessments must incorporate an understanding of the geometry, structure, and concealed lithology of basins in order to be accurate. This report presents an analysis of the basin geometry and structure of the San Rafael basin in southeastern Arizona. In addition, a new methodology for inferring concealed lithology is presented and applied in the San Rafael basin. Gravity data is used to model the geometry of the basin using recent models of sediment density vs. depth developed in the region. This modeling indicates that the basin has a maximum depth of approximately 1.05 km plus or minus 0.10 km. In the southern portion, the basin can be modeled as an asymmetric graben faulted on the western margin. The northern portion of the basin is structurally more complex and may have high angle faults on the western, northern, and eastern margin. Near-ground closely spaced Earth’s total intensity magnetic field data is used to locate concealed faults within the basin. This data is also used to infer lithology concealed by shallow basin sediments. Airborne Earth’s total intensity magnetic field data is used to help infer concealed lithology in deep portions of the basin. The product of integrating all data and interpretations is a map which presents the geometry of the basin, faults and contacts concealed by basin sediments, and an estimate of the bedrock lithology concealed by basin sediment. Based on basin geometry and concealed lithology, the San Rafael basin has a high potential for concealed mineral deposits on its western and northern margin. In particular, a newly discovered magnetic anomaly in the northern portion of the basin can be modeled as a granitic intrusion with highly altered margins and may represent a potential mineral resource target. Based on the permeability and porosity of upper basin fill found in nearby basins, the San Rafael basin may contain an aquifer up to 300 meters thick over a substantial area of the basin.

  20. Using the analytical hierarchy process to assess the environmental vulnerabilities of basins in Taiwan.

    PubMed

    Chang, Chia-Ling; Chao, Yu-Chi

    2012-05-01

    Every year, Taiwan endures typhoons and earthquakes; these natural hazards often induce landslides and debris flows. Therefore, watershed management strategies must consider the environmental vulnerabilities of local basins. Because many factors affect basin ecosystems, this study applied multiple criteria analysis and the analytical hierarchy process (AHP) to evaluate seven criteria in three phases (geographic phase, hydrologic phase, and societal phase). This study focused on five major basins in Taiwan: the Tan-Shui River Basin, the Ta-Chia River Basin, the Cho-Shui River Basin, the Tseng-Wen River Basin, and the Kao-Ping River Basin. The objectives were a comprehensive examination of the environmental characteristics of these basins and a comprehensive assessment of their environmental vulnerabilities. The results of a survey and AHP analysis showed that landslide area is the most important factor for basin environmental vulnerability. Of all these basins, the Cho-Shui River Basin in central Taiwan has the greatest environmental vulnerability.

  1. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  2. Chapter 44: Geology and petroleum potential of the Lincoln Sea Basin, offshore North Greenland

    USGS Publications Warehouse

    Sorensen, K.; Gautier, D.; Pitman, Janet K.; Ruth, Jackson H.; Dahl-Jensen, T.

    2011-01-01

    A seismic refraction line crossing the Lincoln Sea was acquired in 2006. It proves the existence of a deep sedimentary basin underlying the Lincoln Sea. This basin appears to be comparable in width and depth to the Sverdrup Basin of the Canadian Arctic Islands. The stratigraphy of the Lincoln Sea Basin is modelled in analogy to the Sverdrup Basin and the Central Spitsbergen Basin, two basins between which the Lincoln Sea intervened before the onset of seafloor spreading in the Eurasian Basin. The refraction data indicates that the Lincoln Sea Basin is capped by a kilometre-thick, low-velocity layer, which is taken to indicate an uplift history similar to, or even more favourable than, the fairway part of the Sverdrup Basin. Tectonic activity in the Palaeogene is likely to constitute the major basin scale risk. We conclude that the Lincoln Sea Basin is likely to be petroliferous and contains risked resources on the order of 1 ?? 109 barrels of oil, to which comes an equivalent amount of (associated and nonassociated) gas. ?? 2011 The Geological Society of London.

  3. Model swapping: A comparative performance signature for the prediction of flow duration curves in ungauged basins

    NASA Astrophysics Data System (ADS)

    Qamar, Muhammad Uzair; Azmat, Muhammad; Cheema, Muhammad Jehanzeb Masud; Shahid, Muhammad Adnan; Khushnood, Rao Arsalan; Ahmad, Sajjad

    2016-10-01

    The issue of lack of donor basins for prediction of flow duration curves (FDCs) in ungauged basins (PUB) is an important area of research that is not resolved in the literature. We present a distance based approach to predict FDCs at ungauged basins by quantifying the dissimilarity between FDCs and characteristics data of basins. This enables us to bracket hydrologically similar basins and thus allowing us to estimate FDCs at ungauged basins. Generally, a single regression model is selected to make hydrological estimates at an ungauged basin. Based on established laws and theories of hydrology, we work to devise a method to improve the output of selected model for an ungauged basin by swapping it with another model in case the latter gives better coverage and statistical estimates of the nearest neighbors of an ungauged basin. We report two examples to demonstrate the effectiveness of model swapping. Out of 124 basins used in analysis, 34 basins in example 1 and 41 basins in example 2 fulfill the set criteria of model swapping and subsequently their estimates are improved significantly.

  4. Midplate seismicity exterior to former rift-basins

    USGS Publications Warehouse

    Dewey, J.W.

    1988-01-01

    Midplate seismicity associated with some former rift-zones is distributed diffusely near, but exterior to, the rift basins. This "basin-exterior' seismicity cannot be attributed to reactivation of major basin-border faults on which uppercrustal extension was concentrated at the time of rifting, because the border faults dip beneath the basins. The seismicity may nonetheless represent reactivation of minor faults that were active at the time of rifting but that were located outside of the principal zones of upper-crustal extension; the occurrence of basin-exterior seismicity in some present-day rift-zones supports the existence of such minor basin-exterior faults. Other hypotheses for seismicity exterior to former rift-basins are that the seismicity reflects lobes of high stress due to lithospheric-bending that is centered on the axis of the rift, that the seismicity is localized on the exteriors of rift-basins by basin-interiors that are less deformable in the current epoch than the basin exteriors, and that seismicity is localized on the basin-exteriors by the concentration of tectonic stress in the highly elastic basin-exterior upper-crust. -from Author

  5. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data

    USGS Publications Warehouse

    McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.

    2014-01-01

    The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.

  6. Orientale Impact Basin: Topographic Characterization from Lunar Orbiter Laser Altimeter (LOLA) Data and Implications for Models of Basin Formation and Filling

    NASA Astrophysics Data System (ADS)

    Head, James; Smith, David; Zuber, Maria; Neumann, Gregory; Fassett, Caleb; Whitten, Jennifer; Garrick-Bethell, Ian

    2010-05-01

    The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the 630 km diameter Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau. These data aid in the understanding of the transition from peak-ring to multi-ringed basins and permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); also observed are depressions interpreted to be due to local drainage, and cracks related to cooling and solidification. This configuration supports the interpretation that the MF consists of different facies of impact melt. The location of vents, the altimetric distribution, and the slopes of mare basalts of different ages permit an assessment of basin controls on mare basalt emplacement. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. LOLA data for the Orientale basin thus provide new insight into models of multi-ring basin formation, important information on their early thermal evolution, and new data on the initial stages of mare basalt flooding of multi-ringed basins.

  7. Stretching factors in Cenozoic multi-rift basins, western Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Kaewkor, Chanida; Watkinson, Ian

    2017-04-01

    The Gulf of Thailand (GoT) is the biggest petroleum producing province in Thailand. It is separated by the north-south trending Ko Kra Ridge into two main parts: the Western Area and Basinal Area. A series of horsts and grabens formed by north-south oriented extensional faults subdivides the GoT into a number of basins. The two major basins, Pattani and North Malay, are located in the Basinal Area that contains the main oil and gas fields. The Western Area comprises several smaller and shallower basins but has nonetheless resulted in commercial successes, including oil fields such as Nang Nuan (Chumphon Basin), Bualuang (Western Basin) and Songkhla (Songkhla Basin). The GoT is one of several unusual Cenozoic basins within Sundaland, the continental core of SE Asia. These basins have previously been characterized by multiple distinct phases of extension and inversion, rapid post-rift subsidence, association with low-angle normal faults; and are set within hot, thin crust similar to the Basin and Range province, but surrounded by active plate boundaries. The extensional faults systems play a major role in petroleum accumulation during syn-rift and post-rift phases in this area. This paper utilises well data and 3D seismic data from the Songkhla and Western basins of the western GoT. Structural balancing and restoration techniques are used to investigate the rate of extension and the effect on tectonostratigraphy. The basins are younger to the north, the Western basin was opened in Upper Oligocene to Lower Miocene. Stretching factors of the Western basin is approximately 1.1-1.2. Songkhla basin is the oldest basin that initial rift started in Eocene. The basin is dominated by major structures; western border fault, compressional structures related reactivated inversion fault, and inter-basinal faults. There are two main phases of tectonic activity; 1) Rifting phase which can be divided into three sub-extensional phase; Eocene, Oligocene, Lower Miocene. 2) Post-rift and subsidence from Middle Miocene to Recent. Stretching factors of Songkhla basin is approximately 1.2-1.4.

  8. Sedimentation and tectonics in the southern Bida Basin, Nigeria: depositional response to varying tectonic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braide, S.P.

    1990-05-01

    The Upper Cretaceous Bida basin of central Nigeria is sandwiched between the Precambrian schist belts of the Northern Nigerian massif and the West African craton. Of interest is the southern part of the basin, which developed in continental settings, because the facies architecture of the sedimentary fill suggests a close relation between sedimentation dynamics and basin margin tectonics. This relationship is significant to an understanding of the basin's origin, which has been controversial. A simple sag and rift origin has been suggested, and consequently dominated the negative thinking on the hydrocarbon prospects of the basin which were considered poor. Thismore » detailed study of the facies indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to lacustrine facies. Paleogeographic reconstruction suggests lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin's axis and close to the margins. This suggests the depocenter must have migrated during the basin's depositional history and subsided rapidly to accommodate the 3.5-km-thick sedimentary fill. Although distinguishing pull-apart basins from rift basins, based solely on sedimentologic grounds, may be difficult, the temporal migration of the depocenter, as well as the basin architecture of upward coarsening cyclicity, show a strong tectonic and structural overprint that suggests a tectonic framework for the Southern Bida basin similar in origin to a pull-apart basin.« less

  9. Deep inflow into the Mozambique Basin

    NASA Astrophysics Data System (ADS)

    Read, J. F.; Pollard, R. T.

    1999-02-01

    More than 200 conductivity-temperature-depth (CTD) stations were worked around the Southwest Indian Ridge and Del Caño Rise as part of the World Ocean Circulation Experiment. A selection of these data provides information about the inflow of bottom water into the Mozambique Basin. The basin is closed below 3000 m, yet the inflow is significantly large, of order 1 Sv (1 Sv = 106 m3 s-1). Estimates of the basin-scale upwelling at 4000 m suggest that the vertical velocity is also large, 10 × 10-5 cm s-1 or more, an order of magnitude greater than global ocean estimates. Examination of the characteristics of the bottom water in the Mozambique and Agulhas Basins and the Prince Edward Fracture Zone shows that bottom water enters the Mozambique Basin from the Agulhas Basin and also directly from the Enderby Basin. Most of the transport enters the Mozambique Basin via the Agulhas Basin, where two regions of northward flow below 4000 m are found. The major flow, on the eastern flank of the Mozambique Ridge, is through and above the deep, extending (5900 m) trench that connects the Agulhas and Mozambique Basins. The second, weaker flow enters the Transkei Basin along the deep eastern flank of the Agulhas Plateau, then turning east into the Mozambique Basin. The only source of bottom water to the Agulhas Basin is the Enderby Basin, but a more direct route between the Enderby and Mozambique Basins exists via the Prince Edward fracture, which extends deeper than 4000 m throughout its length and links the two basins directly across the Southwest Indian Ridge. Full depth CTD stations trace the changing characteristics of the deep and bottom water in the fracture, and moored current meter data show the strength and persistence of the throughflow. Strong mixing with the overlying deep water elevates the salt content of the bottom water by comparison with the other water in the Mozambique Basin. Thus two distinct bottom waters of the Mozambique Basin originate in the same place (the Enderby Basin), and their different characteristics are solely a function of the routes they have taken and the processes encountered along the different pathways.

  10. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.

    PubMed

    Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C

    2018-01-01

    The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.

  11. New Classification of Impact Basins and Its Implications for Basin Evolution on the Moon

    NASA Astrophysics Data System (ADS)

    Ji, J.; Liu, J.; Guo, D.

    2016-12-01

    Large impact basins, the comprehensive results of internal and external dynamic geological processes, are the principal topographic features on the Moon. Study on evolution of those large impact basins provides important clues for understanding early history of the Moon. However, to classify the impact basins before anyone can link their characteristics to basin evolution, discrepancies occur among different classification systems, of which some did not to consider the effect of filled basalt [1] or some did not to consider the category of non-mascon basins [2, 3]. In order to clarify the ambiguous basin types caused by different classifications, we re-examined impact basins ≥ 200 km in diameter (66 in total; excluding SPA basin) using the GRAIL geophysical data, LRO DEM data and LP geochemical data from NASA Planetary Data System. We chose two major category labels: mascon or not [1, 2, 3] and the basin floor is covered by basalt/basaltic materials or not [4, 5]; plus, we considered topographic signatures as the clue of timescale. As a result, the 66 impact basins were classified into four categories: Type I (20), mascon basins with basalt or basaltic materials and most of them show well-preserved topography signature; Type II (28), mascon basins without basalt or basaltic materials, most of them are located on the farside with preserved topography signature; Type III (11), non-mascon basins with basalt or basaltic materials, most basins of this type are dated as Pre-Nectarian except for Van de Graaff basin and showing severely degraded topography; Type IV (6), non-mascon basins without basalt or basaltic materials, all basins of this type are dated as Pre-Nectarian with severely degraded topography. This new classification scheme can be easily applied to various lunar basins and help us to locate important information about early environment or thermal state of the Moon by comparison study of regional geological evolution of different basin types. References [1] N. Noriyuki N et al., 2009, Science 323(5916) . [2] P. S. Mohit and R. J. Phillips, 2006, J. Geophys. Res. 111(E12001). [3] A. J. Dombard et al., 2013, Geophys. Res. Lett. 40(1).[4] J. Arkani-Hamed, 1998, J. Geophys. Res. 103(E2).[5] G. A. Neumann et al., 1996, J. Geophys. Res 101(E7).

  12. Drainage areas of the Twelvepole Creek basin, West Virginia; Big Sandy River basin, West Virginia; Tug Fork basin, Virginia, Kentucky, West Virginia

    USGS Publications Warehouse

    Wilson, M.W.

    1979-01-01

    Drainage areas were determined for 61 basins in the Twelvepole Creek basin, West Virginia; 11 basins of the Big Sandy River Basin, West Virginia; and 210 basins in the Tug Fork basin of Virginia, Kentucky, and West Virginia. Most basins with areas greater than 5 square miles were included. Drainage areas were measured with electronic digitizing equipment, and supplementary measurements were made with a hand planimeter. Stream mileages were determined by measuring, with a graduated plastic strip, distances from the mouth of each stream to the measuring point on that stream. Mileages were reported to the nearest one-hundredth of a mile in all cases. The latitude and longitude of each measuring point was determined with electronic digitizing equipment and is reported to the nearest second. The information is listed in tabular form in downstream order. Measuring points for the basins are located in the tables by intersecting tributaries, by counties, by map quadrangles, or by latitude and longitude. (Woodard-USGS)

  13. Contrasting basin architecture and rifting style of the Vøring Basin, offshore mid-Norway and the Faroe-Shetland Basin, offshore United Kingdom

    NASA Astrophysics Data System (ADS)

    Schöpfer, Kateřina; Hinsch, Ralph

    2017-04-01

    The Vøring and the Faroe-Shetland basins are offshore deep sedimentary basins which are situated on the outer continental margin of the northeast Atlantic Ocean. Both basins are underlain by thinned continental crust whose structure is still debated. In particular the nature of the lower continental crust and the origin of high velocity bodies located at the base of the lower crust are a subject of discussion in recent literature. Regional interpretation of 2D and 3D seismic reflection data, combined with well data, suggest that both basins share several common features: (i) Pre-Cretaceous faults that are distributed across the entire basin width. (ii) Geometries of pre-Jurassic strata reflecting at least two extensional phases. (iii) Three common rift phases, Late Jurassic, Campanian-Maastrichtian and Palaeocene. (iv) Large pre-Cretaceous fault blocks that are buried by several kilometres of Cretaceous and Cenozoic strata. (iii). (v) Latest Cretaceous/Palaeocene inversion. (vi) Occurrence of partial mantle serpentinization during Early Cretaceous times, as proposed by other studies, seems improbable. The detailed analysis of the data, however, revealed significant differences between the two basins: (i) The Faroe-Shetland Basin was a fault-controlled basin during the Late Jurassic but also the Late Cretaceous extensional phase. In contrast, the Vøring Basin is dominated by the late Jurassic rifting and subsequent thermal subsidence. It exhibits only minor Late Cretaceous faults that are localised above intra-basinal and marginal highs. In addition, the Cretaceous strata in the Vøring Basin are folded. (ii) In the Vøring Basin, the locus of Late Cretaceous rifting shifted westwards, affecting mainly the western basin margin, whereas in the Faroe-Shetland Basin Late Cretaceous rifting was localised in the same area as the Late Jurassic phase, hence masking the original Jurassic geometries. (iii) Devono-Carboniferous and Aptian/Albian to Cenomanian rift phases are present in the Faroe-Shetland Basin, but are not recognisable in the Vøring Basin. (iv) Based on seismic data only, a Permian/Triassic rift phase can be suggested for the Vøring Basin, but the evidence for an equivalent rift phase in the Faroe-Shetland Basin is inconclusive. The present study demonstrates that basins developing above a complex mosaic of basement terrains accreted during orogenic phases can exhibit significant differences in their architecture. The origin of these differences may be considered to be a result of inherited pre-existing large-scale structures (e.g. pre-existing fault blocks) and/or a non-uniform crustal thickness prior to rifting.

  14. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution. The isolated carbonate platform (as a basin paleo-high) and related syndepositional fault system, together with the unconformity-related facies succession, may have controlled the migration pathway of ore-forming basinal fluids and subsequently determined the location of SMG deposits in the Youjiang basin. Unlike Carlin-type gold deposits, SMG mineralization in the Youjiang basin may represent an integral aspect of the dynamic evolution of extensional basins along divergent continental margins.

  15. Latest Cretaceous-Paleogene basin development and resultant sedimentation patterns in the thrust belt and broken foreland of central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.; Franczyk, K.J.; Pitman, J.K.

    1990-05-01

    Latest Cretaceous tectonism in central and east-central Utah formed several intermontane basins both atop thrust sheets and between the thrust front and basement-involved uplifts in the former foreland basin. The upper Campanian Castlegate Sandstone and its inferred western equivalents were the last strata deposited prior to segmentation of the foreland basin. Thereafter, eastward transport of the thrust allochthon uplifted the most proximal part of the Castlegate depositional wedge. West of the thrust front, small intermontane basins formed on the allochthon. Sediment was transported into these basins from both eastern and western sources. In each basin, facies grade from basin-margin conglomeraticmore » alluvial fan deposits to basin-interior flood-plain and lacustrine deposits within a few kilometers. These intermontane basins existed from latest Campanian through the late Paleocene, and may have been transported a short distance eastward as they formed. East of the thrust front in the latest Campanian and contemporaneous with basin formation on the allochthon, a northward-northeastward-flowing big river system transported sediment into the foreland basin from feldspar-rich source areas southwest of the study area. Subsequently, major movement of the San Rafael uplift in the very late Campanian or early Maastrichtian gave rise to an intermontane basin between the thrust front and the San Rafael uplift. Northwestward-flowing, pebble-bearing braided rivers deposited the oldest sediments in this basin prior to an influx from the south and southwest of sediment that formed a thick Maastrichtian clastic sequence. In contrast to deposition in basins on the allochthon, deposition east of the thrust front in the Paleocene was intermittent and restricted to rapidly shifting centers of basin subsidence.« less

  16. Spatial analysis from remotely sensed observations of Congo basin of East African high Land to drain water using gravity for sustainable management of low laying Chad basin of Central Africa

    NASA Astrophysics Data System (ADS)

    Modu, B.; Herbert, B.

    2014-11-01

    The Chad basin which covers an area of about 2.4 million kilometer square is one of the largest drainage basins in Africa in the centre of Lake Chad .This basin was formed as a result of rifting and drifting episode, as such it has no outlet to the oceans or seas. It contains large area of desert from the north to the west. The basin covers in part seven countries such as Chad, Nigeria, Central African Republic, Cameroun, Niger, Sudan and Algeria. It is named Chad basin because 43.9% falls in Chad republic. Since its formation, the basin continues to experienced water shortage due to the activities of Dams combination, increase in irrigations and general reduction in rainfall. Chad basin needs an external water source for it to be function at sustainable level, hence needs for exploitation of higher east African river basin called Congo basin; which covers an area of 3.7 million square km lies in an astride the equator in west-central Africa-world second largest river basin after Amazon. The Congo River almost pans around republic of Congo, the democratic republic of Congo, the Central African Republic, western Zambia, northern Angola, part of Cameroun, and Tanzania. The remotely sensed imagery analysis and observation revealed that Congo basin is on the elevation of 275 to 460 meters and the Chad basin is on elevation of 240 meters. This implies that water can be drained from Congo basin via headrace down to the Chad basin for the water sustainability.

  17. Large Impact Basins on Mercury: Global Distribution, Characteristics, and Modification History from MESSENGER Orbital Data

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Zuber, Maria T.; Neumann, Gregory A.; Solomon, Sean C.; Klimczak, Christian; Strom, Robert G.; Chapman, Clark R.; Prockter, Louise M.; hide

    2012-01-01

    The formation of large impact basins (diameter D greater than or equal to 300 km) was an important process in the early evolution of Mercury and influenced the planet's topography, stratigraphy, and crustal structure. We catalog and characterize this basin population on Mercury from global observations by the MESSENGER spacecraft, and we use the new data to evaluate basins suggested on the basis of the Mariner 10 flybys. Forty-two certain or probable impact basins are recognized a few additional basins that may have been degraded to the point of ambiguity are plausible on the basis of new data but are classified as uncertain. The spatial density of large basins (D greater than or equal to 500 km) on Mercury is lower than that on the Moon. Morphological characteristics of basins on Mercury suggest that on average they are more degraded than lunar basins. These observations are consistent with more efficient modification, degradation, and obliteration of the largest basins on Mercury than on the Moon. This distinction may be a result of differences in the basin formation process (producing fewer rings), greater relaxation of topography after basin formation (subduing relief), and/or higher rates of volcanism during the period of heavy bombardment on Mercury compared to the Moon (burying basin rings and interiors).

  18. Coalbed-methane production in the Appalachian basin: Chapter G.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the northern, central, and southern Appalachian basin coal regions, which extend almost continuously from Pennsylvania southward to Alabama. Most commercial CBM production in the Appalachian basin is from three structural subbasins: (1) the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; (2) the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and (3) part of the Black Warrior basin in Alabama. The cumulative CBM production in the Dunkard basin through 2005 was 17 billion cubic feet (BCF), the production in the Pocahontas basin through 2006 was 754 BCF, and the production in the part of the Black Warrior basin in Alabama through 2007 was 2.008 TCF. CBM development may be regarded as mature in Alabama, where annual production from 1998 through 2007 was relatively constant and ranged from 112 to 121 BCF. An opportunity still exists for additional growth in the Pocahontas basin. In 2005, annual CBM production in the Pocahontas basin in Virginia and West Virginia was 85 BCF. In addition, opportunities are emerging for producing the large, diffuse CBM resources in the Dunkard basin as additional wells are drilled and technology improves.

  19. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset also stores the topology rules (the "BasinsFD_Topology") that constrain the relations within and among component feature classes. The feature dataset also forces any feature classes inside it to have a consistent projection system, which is, in this case, an Albers-Equal-Area projection system. 3. BasinsFD_Topology: This topology contains four persistent topology rules that constrain the spatial relations within the "BasinLines" feature class and between the "BasinLines" feature class and the "BasinPolys" feature classes. 4. Sites: This point feature class contains the digital representations of the site locations for which Colorado Water Science Center basin boundaries have been delineated. This feature class includes point locations for Colorado Water Science Center active (as of September 30, 2009) gages and for other sites. 5. BasinLines: This line feature class contains the perimeters of basins delineated for features in the "Sites" feature class, and it also contains information regarding the sources of lines used for the basin boundaries. 6. BasinPolys: This polygon feature class contains the polygonal basin areas delineated for features in the "Sites" feature class, and it is used to derive the numeric drainage areas published by the Colorado Water Science Center.

  20. Orientale Impact Basin and Vicinity: Topographic Characterization from Lunar Orbiter Laser Altimeter (LOLA) Data

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Fassett, C.; Mazarico, E.; Torrence, M. H.; Dickson, J.

    2009-12-01

    The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau and these data permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); this topographic configuration supports the interpretation that the MF consists of different facies of impact melt. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and the mare is deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. The depth of the 55 km diameter post-Orientale Maunder crater, located at the edge of the inner depression, is in excess of 3 km; this depth permits the quantitative assessment of the nature of the deeper sub-Orientale material sampled by the crater. New LOLA data show that the pre-Orientale Mendel-Rydberg basin just to the south may be larger, younger, fresher, and more comparable in size to Orientale than previously suspected.

  1. Evolution of the Rembrandt impact basin on Mercury.

    PubMed

    Watters, Thomas R; Head, James W; Solomon, Sean C; Robinson, Mark S; Chapman, Clark R; Denevi, Brett W; Fassett, Caleb I; Murchie, Scott L; Strom, Robert G

    2009-05-01

    MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.

  2. Isotopic composition and elemental concentrations in groundwater in the Kuiseb Basin and the Cuvelai-Etosha Basin, Namibia

    NASA Astrophysics Data System (ADS)

    Kgabi, Nnenesi A.; Atekwana, Eliot; Ithindi, Johanna; Uugwanga, Martha; Knoeller, Kay; Motsei, Lebogang; Mathuthu, Manny; Kalumbu, Gideon; Amwele, Hilma R.; Uusizi, Rian

    2018-05-01

    We assessed environmental tracers in groundwater in two contrasting basins in Namibia; the Kuiseb Basin, which is a predominantly dry area and the Cuvelai-Etosha Basin, which is prone to alternating floods and droughts. We aimed to determine why the quality of groundwater was different in these two basins which occur in an arid environment. We analysed groundwater and surface water for the stable isotope ratios of hydrogen (δ2H) and oxygen (δ18O) by cavity ring-down spectroscopy and metals by inductively coupled plasma mass spectrometry. The δ2H and δ18O of surface water in the Cuvelai-Etosha Basin plot on an evaporation trend below the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The δ2H and δ18O of some groundwater samples in the Cuvelai-Etosha Basin also plot on the evaporation trend, indicating recharge by evaporated rain or evaporated surface water. In contrast, the δ2H and δ18O of groundwater samples in the Kuiseb Basin plot mostly along the GMWL and the LMWL, indicating direct recharge from unevaporated rain or unevaporated surface water. Fifty percent of groundwater samples in the Cuvelai-Etosha Basin was potable (salinity < 1 ppt) compared to 79 % in the Kuiseb Basin. The high salinity in the groundwater of the Cuvelai-Etosha Basin does not appear to be caused by evaporation of water (evapo-concentration) on surface prior to groundwater recharge, but rather by the weathering of the Kalahari sediments. The low salinity in the Kuiseb Basin derives from rapid recharge of groundwater by unevaporated rain and limited weathering of the crystalline rocks. The order of abundance of cations in the Kuiseb Basin is Na > K > Ca > Mg vs. Na > Mg > Ca > K for the Cuvelai-Etosha Basin. For metals in the Kuiseb Basin the order of abundance is Fe > Al > V > As > Zn vs. Al > Fe > V> As > Zn for the Cuvelai-Etosha Basin. The relative abundance of cations and metals are attributed to the differences in geology of the basins and the extent of water-rock interaction. Our results show that the quality of groundwater in Cuvelai-Etosha Basin and Kuiseb Basin which vary in the extent of aridity, is controlled by the extent of water-rock interaction at the surface and in the groundwater aquifer.

  3. Walled Sedimentary Basins of China: Perpetrators or Victims of Plateau Growth?

    NASA Astrophysics Data System (ADS)

    Carroll, A. R.; Graham, S. A.; Smith, M. E.

    2004-12-01

    Western China and adjacent areas of central Asia are characterized by low relief, internally drained sedimentary basins that are divided by actively uplifting mountain ranges. The margins of these basins often show evidence for extensive contractional deformation, yet their interiors are surprisingly stable. Basins such as the Tarim and Junggar also exhibit long and apparently continuous histories of closed drainage in the same approximate location (over 250 my in the case of Junggar). In contrast to traditional foreland basins, these basins are not uniquely associated with a specific thrust belt, nor do they show evidence for underlying decollements. We therefore propose the new term "walled basin", in recognition of the essential role of peripheral orogenic walls in creating and maintaining closed drainage and impounding sediments. Walled basins in Asia currently are restricted to areas that receive less than 40 cm/yr precipitation, suggesting that aridity plays a role in preventing fluvial breach of the basin walls (cf., Sobel et al., 2003). Entrapment of sediment within the closed Qaidam basin in the northeast Tibetan plateau has been implicated as a potential mechanism of plateau growth, based on the observations that the basin retains mass within the orogen and creates level topography. However, we propose that the Qaidam instead represents a walled basin that has been elevated due to underplating of the plateau, and is fated to eventual destruction as deformation continues. Several lines of reasoning support this conclusion. First, DEM analysis shows that modern drainage divides for the Qaidam and other walled basins never rise more than 1-2 km above the basin floors, limiting the amount of possible topgraphic infill. Second, the Tarim and Junggar basins presently remain well below 2000 m and probably have never been higher, despite receiving large influxes of detritus from adjacent ranges. Third, the Qaidam basin, like the Tarim and Junggar basins, has an older history of nonmarine fill that dates back at least to the Jurassic, and therefore its existence predates the Himalayan orogeny. Fourth, mid-Tertiary and older fill of the Qaidam basin has already been deformed, indicating an ongoing history of structural shortening. Finally, closed geomorphic basins within the southern Tibetan plateau are all much smaller than the Qaidam. This suggests that brittle deformation associated with progressive south to north underplating has disrupted preexisting sedimentary basins that were originally more prominent than they are now.

  4. Small-Scale Trials Suggest Increasing Applications of Natular™ XRT and Natular™ T30 Larvicide Tablets May Not Improve Mosquito Reduction in Some Catch Basins

    PubMed Central

    Harbison, Justin E.; Henry, Marlon; Corcoran, Peter C.; Zazra, Dave; Xamplas, Christopher

    2016-01-01

    Stormwater catch basins are commonly treated with larvicides by mosquito control agencies to reduce local populations of mosquito species capable of transmitting West Nile virus. Recent evidence suggests that extended-release larvicides formulated to last up to 180 days in catch basins may not be effective in some basins due to chronic flushing, rapid dissolution, or burying of treatment in sump debris. To investigate if increasing the number of applications could improve effectiveness, a small study was performed over 13 weeks in 2015 to evaluate two extended-release larvicides (Natular™ XRT 180-day tablets and Natular™ T30 30-day tablets) and a larvicide oil (CocoBear™). Over the course of 13 weeks, three groups of eight basins were monitored for mosquitoes, each group receiving Natular™ XRT, Natular™ T30, or CocoBear™ larvicides. All basins received a single application at the beginning of the study period. Once mosquitoes in a basin surpassed the treatment threshold during weekly monitoring, an additional application of the associated larvicide was given to that basin. The number of applications during the study period ranged from 1 to 10 for CocoBear™ basins, 1 to 7 for T30 basins, and 2 to 8 for XRT basins. Overall, the average number of applications and the cost of larvicide per basin were 4.4 applications at $0.66 per Coco-Bear™ basin, 4.4 applications at $6.26 per T30 basin, and 4 applications at $16.56 per XRT basin. Basins treated with XRT and T30 needed reapplications more often than expected, yet were no more effective than CocoBear™, suggesting that increasing the frequency of application of these larvicide formulations may not provide increased mosquito reduction in some basins. PMID:26792998

  5. Reconnaissance Borehole Geophysical, Geological, and Hydrological Data from the Proposed Hydrodynamic Compartments of the Culpeper Basin in Loudoun, Prince William, Culpeper, Orange, and Fairfax Counties, Virginia (Version 1.0)

    USGS Publications Warehouse

    Ryan, Michael P.; Pierce, Herbert A.; Johnson, Carole D.; Sutphin, David M.; Daniels, David L.; Smoot, Joseph P.; Costain, John K.; Coruh, Cahit; Harlow, George E.

    2006-01-01

    The Culpeper basin is part of a much larger system of ancient depressions or troughs, that lie inboard of the Atlantic Coastal Plain, and largely within the Applachian Piedmont Geologic Province of eastern North America, and the transition region with the neighboring Blue Ridge Geologic Province. This basin system formed during an abortive attempt to make a great ocean basin during the Late Triassic and Early Jurassic, and the eroded remnants of the basins record major episodes of sedimentation, igneous intrusion and eruption, and pervasive contact metamorphism. Altogether, some twenty nine basins formed between what is now Nova Scotia and Georgia. Many of these basins are discontinuous along their strike, and have therefore recorded isolated environments for fluvial and lacustrine sedimentation. Several basins (including the Culpeper, Gettysburg, and Newark basins) are fault-bounded on the west, and Mesozoic crustal stretching has produced assymetrical patterns of basin subsidence resulting in a progressive basin deepening to the west, and a virtual onlap relationship with the pre-basin Proterozoic rocks to the east. A result of such a pattern of basin deepening is the development of sequences of sandstones and siltstones that systemmatically increase in dip towards the accomodating western border faults. A second major structural theme in several of the major Mesozoic basins (including the Culpeper) concerns the geometry of igneous intrusion, as discussed below. Froelich (1982, 1985) and Lee and Froelich (1989) discuss the general geology of the Culpeper basin, and Smoot (1989) discusses the sedimentation environments and sedimentary facies of the Mesozoic with respect to fluvial and shallow lacustrine deposition in the Culpeper basin. Ryan and others, 2007a, b, discuss the role of diabase-induced compartmentalization in the Culpeper basin (and other Mesozoic basins), and illustrate (using alteration mineral suites within the diabase and adjacent hornfels, among other evidence) how this process has played a role in organizing the paleo- and contemporary-flow of crustal fluids at local and regional scales. Within this report, the Newark Supergroup nomenclature of Weems and Olsen (1997) is adopted.

  6. Carboniferous Proto-type Basin Evolution of Junggar Basin in Northwest China: Implications for the Growth Models of Central Asia Orogenic Belt

    NASA Astrophysics Data System (ADS)

    He, D.

    2016-12-01

    The Junggar Basin locates in the central part of Paleo-Asian Ocean tectonic domain, and records the dynamic processes of the Central Asian Orogenic Belt from subduction-accretion-collision to later intracontinental deformations. Carboniferous is the key period from subduction to closure in the tectonic evolution of Paleo-Asian Ocean. Based on the borehole, outcrop, seismic and gravity and magnetic anomaly data, the paper made analysis of the Carboniferous basin evolution.Geo-chronological results for the borehole volcanic rocks suggest that the Junggar Basin and adjacent area had five periods of volcanic activities, including two periods in the Early Carboniferous (359-347Ma 347-331Ma and 331-324Ma) and three periods in the Late Carboniferous (323-307Ma and 307-300Ma). Regional unconformities divided the Carboniferous into two tectono-stratigraphic sequences: Lower Carboniferous and Upper Carboniferous. The former is characterized by compressional structures and involves massive calc-alkaline basalts, andesites, dacites and rhyolites, whereas the later is mainly controlled by extensional faults and dominated by intermediate-mafic volcanic rocks, with bimodal volcanic rocks in parts. The paper determined four Carboniferous arc-basin belts in the Junggar Basin and adjacent area from north to south: the Saur-Fuhai-Dulate, Heshituoluogai-Wulungu-Yemaquan, Darbut-Luliang-Karamaili, and Zhongguai-Mosuowan-Baijiahai-Qitai, and identified multi-type basins, such as fore-arc basin, retro-arc basin, intra-arc rift basin, foreland basin and passive continental margin basin,etc.. The Carboniferous proto-type basin evolution of the Junggar Basin can be divided into three phases such as, the early to middle Early Carboniferous subduction-related compressional phase, the late Early Carboniferous to middle Late Carboniferous subduction-related extensional phase and the late Late Carboniferous intra-continental fault-sag phase. The study discloses that the Junggar Basin is likely underlain by juvenile continental crust rather than unified Precambrian basement, and also implies that the Junggar Basin and adjacent area, even the entire CAOB, were built by successively northward amalgamation of multiple linear arc-basin systems characterized by southward accretion.

  7. The Formation of Lunar Impact Basins: Observational Constraints from LRO Datasets and Comparisons with Models

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Head, J. W., III

    2016-12-01

    Impact basins provide windows into the subsurface and through time on a planetary body. However, meaningful geologic interpretations rely on a detailed understanding of their formation and the origin of basin materials. Data from the Lunar Reconnaissance Orbiter (LRO) have been critical to advancing our understanding of the formation of impact basins. We present a number of recent observations, including measurements of basin morphometry, mineralogy, and gravity anomalies, which provide a framework for constraining current formation models. Image data from the LRO Wide Angle Camera (WAC) and altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) were used to refine the recognition of both fresh and degraded impact basins, including their ring structures. Analyses of gravity anomalies from the GRAIL mission show that mantle uplifts confined within the inner basin rings are characteristics that basins acquire from the onset. We used LOLA data to also make new measurements of basin morphometry. Small basins possessing two concentric rings ("peak-ring basins") have unique topographic signatures, consisting of inner depressions bounded by a peak ring and a higher annulus that grades to steeper wall material. LRO Narrow Angle Camera (NAC) images and Diviner rock abundance maps were used to identify boulder-rich outcrops in basin rings, which focused mineralogical analyses using Moon Mineralogy Mapper hyperspectral data. Crystalline plagioclase and candidate shock plagioclase outcrops were found to be abundant within basins of all sizes. These observations combined with crater scaling laws and lunar crustal thickness constrain the depth of origin of basin peak rings to be near the maximum depth of excavation. Comparisons between iSALE numerical models and observations show important consistencies and inconsistencies that can help to refine current models. In particular, improvements in the match between observed and modeled morphometry of craters transitional between complex craters with central peaks and peak-ring basins are needed. Models of the predicted gravity signature for a range of basin sizes could also benefit from additional comparisons with those observed. This work also provides a framework for understanding the degraded impact-basin record on Earth, including the Chicxulub basin.

  8. Data-based discharge extrapolation: estimating annual discharge for a partially gauged large river basin from its small sub-basins

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2013-12-01

    Large-scale hydrological models and land surface models are by far the only tools for accessing future water resources in climate change impact studies. Those models estimate discharge with large uncertainties, due to the complex interaction between climate and hydrology, the limited quality and availability of data, as well as model uncertainties. A new purely data-based scale-extrapolation method is proposed, to estimate water resources for a large basin solely from selected small sub-basins, which are typically two-orders-of-magnitude smaller than the large basin. Those small sub-basins contain sufficient information, not only on climate and land surface, but also on hydrological characteristics for the large basin In the Baltic Sea drainage basin, best discharge estimation for the gauged area was achieved with sub-basins that cover 2-4% of the gauged area. There exist multiple sets of sub-basins that resemble the climate and hydrology of the basin equally well. Those multiple sets estimate annual discharge for gauged area consistently well with 5% average error. The scale-extrapolation method is completely data-based; therefore it does not force any modelling error into the prediction. The multiple predictions are expected to bracket the inherent variations and uncertainties of the climate and hydrology of the basin. The method can be applied in both un-gauged basins and un-gauged periods with uncertainty estimation.

  9. Inventory of Multiring Basins on the Moon After the Clementine Mission

    NASA Astrophysics Data System (ADS)

    Spudis, P. D.

    1995-09-01

    Multi-ring basins (impact craters greater than 300 km in diameter, regardless of presently expressed morphology; [1, 2]) are of primary importance in the excavation and redistribution of crustal materials and serve as the loci for the accumulation of extruded lavas on the Moon. Understanding their distribution and configuration is important in order to reconstruct the basin-forming impact [2]. The Clementine mission has made the first global maps of the Moon, including altimetry from a laser ranging experiment [3, 4]. This map permits the characterization of long-wavelength topographic features of the lunar crust, including the most prominent and important features, multi-ring basins. We have now surveyed the entire Moon with laser altimetry data from Clementine and have inventoried the global basin population. Many of the most obscure and degraded basins are strikingly expressed in the topographic data. Basins such as Mendel-Rydberg, a nearly obliterated ancient basin (600 km diameter, 5 km deep) south of Orientale, displays nearly as much relief as the "pristine" Orientale basin (900 km diameter; 7 km depth) [5]. The Fecunditatis basin, an obscure quasi-circular feature south of Mare Crisium [3], displays considerable topographic prominence, including an average relief of about 5 km. However, not all of the ancient basins are so deep: the Mutus-Vlacq basin [3], south of Nectaris, is clearly visible in the altimetry [5], but is only 1 to 1.5 km deep. Other basins that appear very ill-defined in the altimetry, yet clearly are present as regional depressions include the Australe, Tranquillitatis, and Margims basins [3]. That both relatively deep and shallow basins exist on the Moon is not surprising; what is remarkable is that there is no correlation between basin depth and geologic age. Apparently, basin morphology is more dependent on local conditions (e.g., crustal thickness, lithospheric conditions at the time of impact) than age. Another unusual expression of topography for a basin is that of the degraded Lomonosov-Fleming basin [3,6]. This feature appears as a quasi-circular, smooth plateau of nearly constant elevation about 500 km across. Such an expression is likely caused by infilling of the basin with ancient mare basalts, covered by highland plains and reexposed as the ejecta of dark halo impact craters [7,8]. This interpretation is supported by the mafic signature of the plains in this region in the Clementine global color image [9] and the presense of elevated amounts of iron in the highland crust here [10]. The altimetry data also show many depressions that are likely to be previously unrecognized basins. For example, depressions near the crater Darwin (20 degrees S, 70 degrees W; basin about 300 km diameter), eastern Mare Frigoris (55 degrees N, 30 degrees W; basin about 700 km across), and east of Mare Humboldtianum (60 degrees N, 130 degrees E; basin about 400 km diameter) are probably degraded impact basins. To date, over 45 basins and their rings have been mapped on the Moon and the relief and volumes of the basins have been measured. Work continues on the analysis of this numerical data, which should give insight into the processes of basin formation and planetary evolution. References: [1] Wilhelms D. E. (1987) USGS Prof. Pap. 1348, 302 pp. [2] Spudis P. D. (1993) Geology of Multi-Ring Impact Basins, Cambridge Univ., 263 pp. [3] Nozette S. et al. (1994) Science, 266, 1835. [4] Zuber M. T. et al. (1994) Science, 266, 1839. [5] Spudis P. D. et al. (1994) Science, 266, 1848. [6] Wilhelms D. and El-Baz F. (1977) USGS Map I-948. [7] Schultz P. H. and Spudis P. D. (1979) Proc. LPSC 10th, 2899. [8] Schultz P. H. and Spudis P. D. (1982) Nature, 302, 233. [9] Lucey P. G. et al. (1994) Science, 266, 1855. [10] Lucey P. G. et al. (1995) Science, 268, 1150.

  10. Effectiveness of catch basins equipped with hoods in retaining gross solids and hydrocarbons in highway runoff, Southeast Expressway, Boston, Massachusetts, 2008-09

    USGS Publications Warehouse

    Smith, Kirk P.

    2011-01-01

    Stormwater mobilizes litter and other debris along the roadway where it is transported to the highway drainage systems. Initial treatment for stormwater runoff typically is provided by catch basins in highway settings. Modification of catch basins to include hoods that cover the catch-basin outlet is intended to enhance catch-basin performance by retaining floatable debris and various hydrophobic organic compounds that tend to float on the water surface within the sump of the catch basin. The effectiveness of six deep-sump off-line catch basins equipped with hoods in reducing the mass of gross solids greater than 0.25 inches in diameter and concentrations of oil and grease (OG) and total petroleum hydrocarbons (TPH) was examined along the Southeast Expressway, in Boston, Massachusetts. Two deep-sump catch basins were equipped with cast-iron hoods. Three were equipped with molded plastic hoods, known as an Eliminator, and a single catch basin was equipped with a fiberglass anti-siphoning hood, known as a Snout. Samples of gross solids greater than 0.25 inches in diameter, excluding gravel and metallic materials, were routinely collected for a 6-month period from a collection structure mounted at the end of each catch-basin outlet pipe. After about 6 months, all floatable, saturated low-density and high-density solids were removed from each catch basin. In addition to the collection of samples of gross solids, samples of sump water from five catch basins and flow-weighted composite samples of stormwater from the outlet of one catch basin were collected and analyzed for concentrations of OG and TPH. A mass balance approach was used to assess the effectiveness of each catch basin equipped with a hood in retaining gross solids. The effectiveness of the deep-sump catch basins fitted with one of three types of hoods in retaining gross solids ranged from 27 to 52 percent. From 45 to 90 percent of the gross solids collected from the catch-basin sumps were composed of materials made of high-density plastics that did not float in water, and as a result, the effect that the catch-basin hoods had on these materials likely was marginal. The effectiveness for the deep-sump hooded catch basins, excluding the mass of high-density materials identified in the solids collected from the outlet pipe and the sump of the catch basins, ranged from 13 to 38 percent. The effectiveness for each catch basin, based solely on the material that remained floating at the end of the monitoring period, was less than 11 percent; however, these values likely underestimate the effectiveness of the hooded catch basins because much of the low-density material collected from the sumps may have been retained as floatable material before it was saturated and settled during non-storm conditions. The effectiveness of the catch basins equipped with hoods in reducing gross solids was not greatly different among the three types of hoods tested in this study. Concentrations of OG and TPH collected from the water surface of the catch-basins varied from catch basin to catch basin and were similar to concentrations of flow-weighted composite samples collected during storms. Comparisons indicate concentrations of OG and TPH in flow-weighted composite samples collected at the outlet of a catch basin equipped with an Eliminator hood were not substantially different from concentrations of the respective constituents in flow-weighted composite samples collected during a previous study from catch basins containing cast-iron hoods in the same study area. The similarity between these flow-weighted concentrations and the concentrations of the respective constituents in a vertical profile sample collected from the catch-basin sump indicates that OG and TPH are emulsified in the sump of each catch basin during storms and circumvent the hoods.

  11. Integrated Analysis on Gravity and Magnetic Fields of the Hailar Basin, NE China: Implications for Basement Structure and Deep Tectonics

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Wang, Liangshu; Dong, Ping; Wu, YongJing; Li, Changbo; Hu, Bo; Wang, Chong

    2012-11-01

    The Hailar Basin is one of the typical basins among the NE China Basin Groups, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of magnetic, gravity, petrophysical, geothermal and seismological data, we separate the Gravity and Magnetic Anomalies (GMA) into four orders using Wavelet Multi-scale Decomposition (WMD). The apparent depths of causative sources were then assessed by Power Spectrum Analysis (PSA) of each order. Low-order wavelet detail anomalies were used to study the basin's basement structure such as major faults, the basement lithology, uplifts and depressions. High-order ones were used for the inversion of Moho and Curie discontinuities using the Parker method. The results show that the Moho uplifting area of the Hailar Basin is located at the NE part of the basin, the Curie uplifting area is at the NW part, and neither of them is consistent with the basin's sedimentary center. This indicates that the Hailar Basin may differ in basin building pattern from other middle and eastern basins of the basin groups, and the Hailar Basin might be of a passive type. When the Pacific Plate was subducting to NE China, the frontier of the plate lying on the mantle transition zone didn't pass through the Great Khingan Mountains region, so there is not an obvious magma upwelling or lithospheric extension in the Hailar Basin area. Finally, based on the seismological data and results of WMD, a probable 2D crust model is derived from an across-basin profile using the 2D forward modeling of the Bouguer gravity anomaly. The results agree with those from seismic inversion, suggesting WMD is suitable for identifying major crustal density interfaces.

  12. Appraisal of operating efficiency of recharge basins on Long Island, New York, in 1969

    USGS Publications Warehouse

    Aronson, D.A.; Seaburn, G.E.

    1974-01-01

    Recharge basins on Long Island are unlined pits of various shapes and sizes excavated in surficial deposits of mainly glacial origin. Of the 2,124 recharge basins on Long Island in 1969, approximately 9 percent (194) contain water 5 or more days after a 1-inch rainfall. Basins on Long Island contain water because (1) they intersect the regional water table or a perched water table, (2) they are excavated in material of low hydraulic conductivity, (3) layers of sediment and debris of low hydraulic conductivity accumulate on the basin floor, or (4) a combination of these factors exists. Data obtained as part of this study show that (1) 22 basins contain water because they intersect the regional water table, (2) a larger percentage of the basins excavated in the Harbor Hill and the Ronkonkoma morainal deposits contain water than basins excavated in the outwash deposits, (3) a larger percentage of the basins that drain industrial and commercial areas contain water than basins that drain highways and residential areas, (4) storm runoff from commercial and industrial areas and highway: generally contains high concentrations of asphalt, grease, oil, tar, and rubber particles, whereas runoff from residential areas mainly contains leaves, grass cuttings, and other plant material, and (5) differences in composition of the soils within the drainage areas of the basins on Long Island apparently are not major factors in causing water retention. Water-containing basins dispose of an undetermined amount of storm runoff primarily by the slow infiltration of water through the bottoms and the sides of the basins. The low average specific conductance of water in most such basins suggests that evaporation does not significantly concentrate the chemical constituents and, therefore, that evaporation is not a major mechanism of water disposal from these basins.

  13. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  14. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  15. The structure and evolution of ancient impact basins on Mars

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Schultz, R. A.; Rogers, J.

    1982-01-01

    It is pointed out that characteristic styles of degradation and modification of obvious Martian basins make it possible to recognize more subtle expressions. This approach is seen as providing not only additional basins to the existing inventory but also fundamental clues for initial impact basin structure and stratigraphy. It also reveals the long-lasting influence of basin formation on the crust of Mars in spite of extensive erosion and resurfacing. Consideration is given to five clear examples of modified impact basins, and regions around each that have undergone similar processes (fracturing, collapse, channeling) are delineated. These processes among the different basins are then compared, and similar zones of modification are correlated with concentric basin rings. Consideration is then given to the implications of these observations for current models of basin formation and to the role of impact basins in controlling regional tectonics. The results indicate that large multiring impact scars leave a major but sometimes subtle imprint on the geologic structure of stable crustal regions on Mars.

  16. Archean foreland basin tectonics in the Witwatersrand, South Africa

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1986-01-01

    The Witwatersrand Basin of South Africa is the best-known of Archean sedimentary basins and contains some of the largest gold reserves in the world. Sediments in the basin include a lower flysch-type sequence and an upper molassic facies, both of which contain abundant silicic volcanic detritus. The strata are thicker and more proximal on the northwestern side of the basin which is, at least locally, bound by thrust faults. These features indicate that the Witwatersrand strata may have been deposited in a foreland basin and a regional geologic synthesis suggests that this basin developed initially on the cratonward side of an Andean-type arc. Remarkably similar Phanerozoic basins may be found in the southern Andes above zones of shallow subduction. It is suggested that the continental collision between the Kaapvaal and Zimbabwe Cratons at about 2.7 Ga caused further subsidence and deposition in the Witwatersrand Basin. Regional uplift during this later phase of development placed the basin on the cratonward edge of a collision-related plateau, now represented by the Limpopo Province. Similarities are seen between this phase of Witwatersrand Basin evolution and that of active basins north of the Tibetan Plateau. The geologic evidence does not agree with earlier suggestions that the Witwatersrand strata were deposited in a rift or half-graben.

  17. Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.; hide

    2012-01-01

    The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.

  18. Ground-Water Occurrence and Movement, 2006, and Water-Level Changes in the Detrital, Hualapai, and Sacramento Valley Basins, Mohave County, Arizona

    USGS Publications Warehouse

    Anning, David W.; Truini, Margot; Flynn, Marilyn E.; Remick, William H.

    2007-01-01

    Ground-water levels for water year 2006 and their change over time in Detrital, Hualapai, and Sacramento Valley Basins of northwestern Arizona were investigated to improve the understanding of current and past ground-water conditions in these basins. The potentiometric surface for ground water in the Basin-Fill aquifer of each basin is generally parallel to topography. Consequently, ground-water movement is generally from the mountain front toward the basin center and then along the basin axis toward the Colorado River or Lake Mead. Observed water levels in Detrital, Hualapai, and Sacramento Valley Basins have fluctuated during the period of historic water-level records (1943 through 2006). In Detrital Valley Basin, water levels in monitored areas have either remained the same, or have steadily increased as much as 3.5 feet since the 1980s. Similar steady conditions or water-level rises were observed for much of the northern and central parts of Hualapai Valley Basin. During the period of historic record, steady water-level declines as large as 60 feet were found in wells penetrating the Basin-Fill aquifer in areas near Kingman, northwest of Hackberry, and northeast of Dolan Springs within the Hualapai Valley Basin. Within the Sacramento Valley Basin, during the period of historic record, water-level declines as large as 55 feet were observed in wells penetrating the Basin-Fill aquifer in the Kingman and Golden Valley areas; whereas small, steady rises were observed in Yucca and in the Dutch Flat area.

  19. Rain Basin Design Implications for Soil Microbial Activity and N-mineralization in a Semi-arid Environment

    NASA Astrophysics Data System (ADS)

    Stern, C.; Pavao-Zuckerman, M.

    2014-12-01

    Rain basins have been an increasingly popular Green Infrastructure (GI) solution to the redistribution of water flow caused by urbanization. This study was conducted to examine how different approaches to basin design, specifically mulching (gravel vs. compost and gravel), influence the water availability of rain basins and the effects this has on the soil microbial activity of the basins. Soil microbes are a driving force of biogeochemical process and may impact the carbon and nitrogen dynamics of rain basin GI. In this study we sampled 12 different residential-scale rain basins, differing in design established at Biosphere 2, Arizona in 2013. Soil samples and measurements were collected before and after the onset of the monsoon season in 2014 to determine how the design of basins mediates the transition from dry to wet conditions. Soil abiotic factors were measured, such as moisture content, soil organic matter (SOM) content, texture and pH, and were related to the microbial biomass size within the basins. Field and lab potential N-mineralization and soil respiration were measured to determine how basin design influences microbial activity and N dynamics. We found that pre-monsoon basins with compost had higher moisture contents and that there was a positive correlation between the moisture content and the soil microbial biomass size of the basins. Pre-monsoon data also suggests that N-mineralization rates for basins with compost were higher than those with only gravel. These design influences on basin-scale biogeochemical dynamics and nitrogen retention may have important implications for urban biogeochemistry at neighborhood and watershed scales.

  20. Estuarine Channel Evolution in Response to Closure of Secondary Basins: An Observational and Morphodynamic Modeling Study of the Western Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Nnafie, A.; Van Oyen, T.; De Maerschalck, B.; van der Vegt, M.; Wegen, M. van der

    2018-01-01

    The fringes of estuaries are often characterized by the presence of side embayments (secondary basins), with dimensions in the order of hundreds of meters to tens of kilometers. The presence of secondary basins significantly alters the hydrodynamic and sediment characteristics in the main estuary, implying that loss of secondary basin area due to human interventions might affect the estuarine morphodynamics. Analysis of historical bathymetric data of the Western Scheldt Estuary (Netherlands) suggests that closure of its secondary basins has triggered the observed lateral displacement of the nearby channels. This analysis motivated investigation of the impact of secondary basins on decadal evolution of estuarine channels, using the numerical model Delft3D. Model results show that channels that form near a secondary basin are located farther away from the bank of the estuary with respect to their positions in the case without a basin. Overall, results in cases with two or three basins are similar to those in case with one single basin. The wider the basin, the farther away the nearby channel forms. Removing a secondary basin causes a lateral displacement of the nearby channel toward the bank, indicating that the observed lateral displacement of channels in the Western Scheldt is triggered by closure of its secondary basins. The physical explanation is that tidal currents in the main estuary are weaker and more rotary near secondary basins, favoring sediment deposition and shoal development at these locations. Model results are particularly relevant for estuaries with moderate to high friction and converging width.

  1. A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

    2006-01-01

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  2. The occurrence and dominant controls on arsenic in the Newark and Gettysburg Basins.

    PubMed

    Blake, Johanna M; Peters, Stephen C

    2015-02-01

    Elevated arsenic (As) concentrations in groundwater and rocks have been found in crystalline and sedimentary aquifers from New England to Pennsylvania, USA. The arsenic geochemistry and water-rock interactions of the Northern Appalachian Mountains and the Newark Basin have been researched at length, however, little is known about arsenic in the Gettysburg Basin. Both the Newark and Gettysburg Basins were formed during the breakup of Pangea, sediment deposition occurred during the Triassic and lithologies are of similar depositional environment. We compile and review the work done in the Newark Basin and collect new samples in the Gettysburg Basin for comparison. The Gettysburg Basin has 18%-39% of rock samples with arsenic concentrations greater than the crustal average of 2 mg/kg, while the Newark Basin has 73% to 95% of rock samples above the crustal average. The strongest controls on arsenic in rocks of the Gettysburg Basin are the relationship between arsenic and iron and silicon concentrations while the strongest controls in the Newark Basin are the relationship between arsenic and iron and organic carbon concentrations. The groundwater arsenic concentrations follow similarly with 8-39% of water samples from the Gettysburg Basin above 10 μg/L and 24-54% of water samples from the Newark Basin above 10 μg/L. The strongest controls on arsenic in water of the Gettysburg Basin are pH, alkalinity and silicon, while the strongest controls in the Newark Basin are pH and alkalinity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Caribbean basin framework, 3: Southern Central America and Colombian basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolarsky, R.A.; Mann, P.

    1991-03-01

    The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas ofmore » Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.« less

  4. Influence of recharge basins on the hydrology of Nassau and Suffolk Counties, Long Island, New York

    USGS Publications Warehouse

    Seaburn, G.E.; Aronson, D.A.

    1974-01-01

    An investigation of recharge basins on Long Island was made by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, Nassau County Department of Public Works, Suffolk County Department of Environmental Control, and Suffolk County Water Authority. The major objectives of the study were to (1) catalog basic physical data on the recharge basins in use on Long Island, (2) measure quality and quantity of precipitation and inflow, (3) measure infiltration rates at selected recharge basins, and (4) evaluate regional effects of recharge basins on the hydrologic system of Long Island. The area of study consists of Nassau and Suffolk Counties -- about 1,370 square miles -- in eastern Long Island, N.Y. Recharge basins, numbering more than 2,100 on Long Island in 1969, are open pits in moderately to highly permeable sand and gravel deposits. These pits are used to dispose of storm runoff from residential, industrial, and commercial areas, and from highways, by infiltration of the water through the bottom and sides of the basins. The hydrology of three recharge basins on Long Island -- Westbury, Syosset, and Deer Park basins -- was studied. The precipitation-inflow relation showed that the average percentages of precipitation flowing into each basin were roughly equivalent to the average percentages of impervious areas in the total drainage areas of the basins. Average percentages of precipitation flowing into the basins as direct runoff were 12 percent at the Westbury basin, 10 percent at the Syosset basin, and 7 percent at the Deer Park basin. Numerous open-bottomed storm-water catch basins at Syosset and Deer Park reduced the proportion of inflow to those basins, as compared with the Westbury basin, which has only a few open-bottomed catch basins. Inflow hydrographs for each basin typify the usual urban runoff hydrograph -- steeply rising and falling limbs, sharp peaks, and short time bases. Unit hydrographs for the Westbury and the Syosset basins are not expected to change; however, the unit hydrograph for the Deer Park basin is expected to broaden somewhat as a result of additional future house construction within the drainage area. Infiltration rates averaged 0.9 fph (feet per hour) for 63 storms between July 1967 and May 1970 at the Westbury recharge basin, 0.8 fph for 22 storms from July 1969 to September 1970 at the Syosset recharge basin, and 0.2 fph for 24 storms from March to September 1970 at the Deer Park recharge basin. Low infiltration rates at Deer Park resulted mainly from (1) a high percentage of eroded silt, clay, and organic debris washed in from construction sites in the drainage area, which partly filled the interstices of the natural deposits, and (2) a lack of a well-developed plant-root system on the floor of the younger basin, which would have kept the soil zone more permeable. The apparent rate of movement of storm water through the unsaturated zone below each basin averaged 5.5 fph at Westbury, 3.7 fph at Syosset, and 3.1 fph at Deer Park. The rates of movement for storms during the warm months (April through October) were slightly higher than average, probably because the recharging water was warmer than it was during the rest of the year, and therefore, was slightly less viscous. On the average, a 1-inch rainfall resulted in a peak rise of the water table directly below each basin of 0.5 foot; a 2-inch rainfall resulted in a peak rise of about 2 feet. The mound commonly dissipated within 1 to 4 days at Westbury, 7 days to more than 15 days at Syosset, and 1 to 3 days at Deer Park, depending on the magnitude of the peak buildup. Average annual ground-water recharge was estimated to be 6.4 acre-feet at the Westbury recharge basin, 10.3 acre-feet at the Syosset recharge basin, and 29.6 acre-feet at the Deer Park recharge basin. Chemical composition of precipitation at Westbury, Syosset, and Deer Park drainage areas was similar:

  5. Thermal state of the Arkoma Basin and the Anadarko Basin, Oklahoma

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin

    1999-12-01

    One of the most fundamental physical processes that affects virtually all geologic phenomena in sedimentary basins is the flow of heat from the Earth's interiors. The Arkoma Basin and the Anadarko Basin, Oklahoma, are a prolific producer of both oil and natural gas. Both basins also have important geologic phenomena. Understanding the thermal state of the these basins is crucial to understanding the timing and extent of hydrocarbon generation, the genesis of Mississippi Valley-type ore deposits, and the origin of overpressures in the Anadarko Basin. In chapter one, heat flow and heat production in the Arkoma basin and Oklahoma Platform are discussed. Results of this study are not generally supportive of theories which invoke topographically driven regional groundwater flow from the Arkoma Basin in Late Pennsylvanian-Early Permian time (˜290 Ma) to explain the genesis of geologic phenomena. In chapter 2, different types of thermal conductivity temperature corrections that are commonly applied in terrestrial heat flow studies are evaluated. The invariance of the relative rankings with respect to rock porosity suggests the rankings may be valid with respect to in situ conditions. Chapter three addresses heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform. We found no evidence for heat flow to increase significantly from the Anadarko Basin in the south to the Oklahoma Platform to the north. In chapter four, overpressures in the Anadarko Basin, southwestern Oklahoma are discussed. Using scale analyses and a simple numerical model, we evaluated two endmember hypotheses (compaction disequilibrium and hydrocarbon generation) as possible causes of overpressuring. Geopressure models which invoke compaction disequilibrium do not appear to apply to the Anadarko Basin. The Anadarko Basin belongs to a group of cratonic basins which are tectonically quiescent and are characterized by the association of abnormal pressures with natural gas. (Abstract shortened by UMI.)

  6. Hydrogeology of the Socorro and La Jencia basins, Socorro County, New Mexico

    USGS Publications Warehouse

    Anderholm, Scott K.

    1987-01-01

    The Socorro and La Jencia Basins are located in central Socorro County, New Mexico. The principal aquifer system in the Socorro and La Jencia Basins consists of, in descending order, the shallow aquifer, the Popotosa confining bed, and the Popotosa aquifer. The minor aquifer systems, which are dominant along the basin margins, are the Socorro volcanics aquifer system and the Mesozoic-Paleozoic aquifer system. On the east side of the Socorro Basin, water enters the principal aquifer system from the Mesozoic-Paleozoic aquifer system. On the west side of the Socorro Basin, groundwater flows from the principal aquifer system in La Jencia Basin eastward to the principal aquifer system in the Socorro Basin. The volume of this flow is limited by the permeability of the minor aquifer systems and the Popotosa confining bed. A water budget indicates that if no change in groundwater storage occurs in the Socorro Basin, groundwater inflow to the basin is about 53,000 acre-feet per year greater than groundwater outflow. Dissolution of gypsum, calcite, and dolomite seems to control water quality in the Mesozoic-Paleozoic aquifer. Water with a chloride concentration of as much as 1,000 milligrams per liter and a specific conductance of as much as 6,700 microsiemens per centimeter at 25 C is present in the northern and southern parts of the Socorro Basin. These large chloride concentrations may indicate upward movement of water from deeper in the basin in these areas. The water with the large chloride concentration in the southern part of the basin also may be caused by leakage of geothermal waters along the Capitan Lineament. In the central part of the Socorro Basin, infiltration of excess irrigation water and inflow of groundwater from the basin margins control water quality. In this area, specific conductance generally is less than 1,000 microsiemens per centimeter. Water in La Jencia Basin generally is of the calcium sodium bicarbonate type with specific conductance less than 500 microsiemens per centimeter. (USGS)

  7. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    NASA Astrophysics Data System (ADS)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  8. Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)

    NASA Astrophysics Data System (ADS)

    Uroda, Joanna

    2015-04-01

    The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.

  9. Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.; Hanson, A.D.; Buck, B.J.; Zybala, J.G.; Rudin, M.J.

    2005-01-01

    Turbidites, which have accumulated in Lake Mead since completion of the Hoover Dam in 1935, have been mapped using high-resolution seismic and coring techniques. This lake is an exceptional natural laboratory for studying fine-grained turbidite systems in complex topographic settings. The lake comprises four relatively broad basins separated by narrow canyons, and turbidity currents run the full length of the lake. The mean grain size of turbidites is mostly coarse silt, and the sand content decreases from 11-30% in beds in the easternmost basin nearest the source to 3-14% in the central basins to 1-2% in the most distal basin. Regionally, the seismic amplitude mimics the core results and decreases away from the source. The facies and morphology of the sediment surface varies between basins and suggests a regional progression from higher-energy and possibly channelized flows in the easternmost basin to unchannelized flows in the central two basins to unchannelized flows that are ponded by the Hoover Dam in the westernmost basin. At the local scale, turbidites are nearly flat-lying in the central two basins, but here the morphology of the basin walls strongly affects the distribution of facies. One of the two basins is relatively narrow, and in sinuous sections reflection amplitude increases toward the outsides of meanders. Where a narrow canyon debouches into a broad basin, reflection amplitude decreases radially away from the canyon mouth and forms a fan-like deposit. The fine-grained nature of the turbidites in the most distal basin and the fact that reflections drape the underlying pre-impoundment surface suggest ponding here. The progression from ponding in the most distal basin to possibly channelized flows in the most proximal basin shows in plan view a progression similar to the stratigraphic progression documented in several minibasins in the Gulf of Mexico. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  10. Tulare Lake Basin Hydrology and Hydrography: A Summary of the Movement of Water and Aquatic Species

    EPA Pesticide Factsheets

    Summary of the historic and current hydrology of the Tulare Lake Basin (Basin) describing past, present and potential future movement of water out of the Basin, and potential movement of bioiogical organisms and toxicants within and outside of the Basin.

  11. Morphologic classes of impact basins on Venus

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Tam, Wesley

    1993-01-01

    An independent survey of 60% of Venus has resulted in the detection of 35 impact basins and associated transitional rings. Contrary to previous studies central peak basins have been identified, as well as peak ring basins. But no unambiguous multi-ring basins have been detected. A new class of crateriform - expanded peak structure - has been noticed, which is transitional in diameter, but apparently not in structure, between central peak and peak ring basins.

  12. Overview of the potential and identified petroleum source rocks of the Appalachian basin, eastern United States: Chapter G.13 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Coleman, James L.; Ryder, Robert T.; Milici, Robert C.; Brown, Stephen; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin is the oldest and longest producing commercially viable petroleum-producing basin in the United States. Source rocks for reservoirs within the basin are located throughout the entire stratigraphic succession and extend geographically over much of the foreland basin and fold-and-thrust belt that make up the Appalachian basin. Major source rock intervals occur in Ordovician, Devonian, and Pennsylvanian strata with minor source rock intervals present in Cambrian, Silurian, and Mississippian strata.

  13. Hydrologic and chemical-quality data from four rural basins in Guilford County, North Carolina, 1985-88

    USGS Publications Warehouse

    Hill, C.L.

    1989-01-01

    An investigation was begun in 1984 in Guilford County, North Carolina, to monitor water quality and soil erosion in basins with various land-management practices. Hydrologic and chemical-quality data were collected from four rural drainage basins, including two agricultural basins (7.4 and 4.8 acres) cultivated in tobacco and small grains, a mixed rural land-use basin (665 acres) currently under standard land-management practices, and a forested control basin (44 acres) characterizing background conditions. Mean concentrations of total nitrite plus nitrate were 1.0 milligrams per liter from the agricultural basin under standard land-management practices. This was nearly 10 times greater than concentrations from the forested basin. Records of streamflow discharge, chemical quality, ground-water levels, precipitation, and farming activities collected from October 1984 through September 1988 at one or more of the basins are also presented in this report.

  14. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  15. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frex, H.

    1977-01-01

    The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  16. Pollen and spores date origin of rift basins from Texas to nova scotia as early late triassic.

    PubMed

    Traverse, A

    1987-06-12

    Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.

  17. Large Sanjiang basin groups outside of the Songliao Basin Meso-Senozoic Tectonic-sediment evolution and hydrocarbon accumulation

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.

    2015-12-01

    The basis geological problem is still the bottleneck of the exploration work of the lager Sanjiang basin groups. In general terms, the problems are including the prototype basins and basin forming mechanism of two aspects. In this paper, using the field geological survey and investigation, logging data analysis, seismic data interpretation technical means large Sanjiang basin groups and basin forming mechanism of the prototype are discussed. Main draw the following conclusions: 1. Sanjiang region group-level formation can be completely contrasted. 2. Tension faults, compressive faults, shear structure composition and structure combination of four kinds of compound fracture are mainly developed In the study area. The direction of their distribution can be divided into SN, EW, NNE, NEE, NNW, NWW to other groups of fracture. 3. Large Sanjiang basin has the SN and the EW two main directions of tectonic evolution. Cenozoic basins in Sanjiang region in group formation located the two tectonic domains of ancient Paleo-Asian Ocean and the Pacific Interchange. 4. Large Sanjiang basin has experienced in the late Mesozoic tectonic evolution of two-stage and nine times. The first stage, developmental stage basement, they are ① Since the Mesozoic era and before the Jurassic; ② Early Jurassic period; The second stage, cap stage of development, they are ③ Late Jurassic depression developmental stages of compression; ④ Early Cretaceous rifting stage; ⑤ depression in mid-Early Cretaceous period; ⑥ tensile Early Cretaceous rifting stage; ⑦ inversion of Late Cretaceous tectonic compression stage; ⑧ Paleogene - Neogene; ⑨ After recently Ji Baoquan Sedimentary Ridge. 5. Large Sanjiang basin group is actually a residual basin structure, and Can be divided into left - superimposed (Founder, Tangyuan depression, Hulin Basin), residual - inherited type (Sanjiang basin), residual - reformed (Jixi, Boli, Hegang basin). there are two developed depression and the mechanism of rifting. 6. Sanjiang Basin Suibin Depression, Tangyuan depression, Jixi Cretaceous Tangyuan and Fangzheng rift is the key for further exploration. Yishu graben is a large core of Sanjiang region to find oil, and Paleogene basin is the focus of the external layer system exploration.

  18. Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G.; Abera, R.

    2017-11-01

    We present a model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal elastic models of deformation, field observations, and fault theory, and is generally applicable to basin-scale features, but predicts some intra-basin structural features. Geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step-over, which results from the forming phase of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement, and the fault tips propagate beyond the rift basin, increasing the distance between the fault tips and pull-apart basin center. Because uplift is concentrated near the fault tips, the sediment source areas may rejuvenate and migrate over time. Rift flank uplift results from compression along the flank of the basin. With increasing strike-slip movement the basins deepen and lengthen. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because basin-bounding strike-slip systems tend to straighten and connect as they evolve. The models show that larger length-to-width ratios with overlapping faults are least likely to form basin-crossing faults, and pull-apart basins with this geometry are thus most likely to progress to continental rupture. In the Gulf of California, larger length-to-width ratios are found in the southern Gulf, which is the region where continental breakup occurred rapidly. The initial geometry in the northern Gulf of California and Salton Trough at 6 Ma may have been one of widely-spaced master strike-slip faults (lower length-to-width ratios), which our models suggest inhibits continental breakup and favors straightening of the strike-slip system by formation of basin-crossing faults within the step-over, as began 1.2 Ma when the San Jacinto and Elsinore - Cerro Prieto fault systems formed.

  19. Strong ground motion in the Taipei basin from the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Fletcher, Joe B.; Wen, K.-L.

    2005-01-01

    The Taipei basin, located in northwest Taiwan about 160 km from the epicenter of the Chi-Chi earthquake, is a shallow, triangular-shaped basin filled with low-velocity fluvial deposits. There is a strong velocity contrast across the basement interface of about 600 m/sec at a depth of about 600-700 m in the deeper section of the basin, suggesting that ground motion should be amplified at sites in the basin. In this article, the ground-motion recordings are analyzed to determine the effect of the basin both in terms of amplifications expected from a 1D model of the sediments in the basin and in terms of the 3D structure of the basin. Residuals determined for peak acceleration from attenuation curves are more positive (amplified) in the basin (average of 5.3 cm/ sec2 compared to - 24.2 cm/sec2 for those stations outside the basin and between 75 and 110 km from the surface projection of the faulted area, a 40% increase in peak ground acceleration). Residuals for peak velocity are also significantly more positive at stations in the basin (31.8 cm/sec compared to 20.0 cm/sec out). The correlation of peak motion with depth to basement, while minor in peak acceleration, is stronger in the peak velocities. Record sections of ground motion from stations in and around the Taipei basin show that the largest long-period arrival, which is coherent across the region, is strongest on the vertical component and has a period of about 10-12 sec. This phase appears to be a Rayleigh wave, probably associated with rupture at the north end of the Chelungpu fault. Records of strong motion from stations in and near the basin have an additional, higher frequency signal: nearest the deepest point in the basin, the signal is characterized by frequencies of about 0.3 - 0.4 Hz. These frequencies are close to simple predictions using horizontal layers and the velocity structure of the basin. Polarizations of the S wave are mostly coherent across the array, although there are significant differences along the northwest edge that may indicate large strains across that edge of the basin. The length of each record after the main S wave are all longer at basin stations compared to those outside. This increase in duration of ground shaking is probably caused by amplification of ground motion at basin stations, although coda Q (0.67 - 1.30 Hz) is slightly larger inside the basin compared to those at local stations outside the basin. Durations correlate with depth to basement. These motions are in the range that can induce damage in buildings and may have contributed to the structural collapse of multistory buildings in the Taipei basin.

  20. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions (including turbiditic successions). In the Late Cisuralian (stage 4), important differences in sedimentation patterns are registered for the western arc-related basins and eastern intraplate basins. The former were locally dominated by volcaniclastic sediments or marine deposits, and the intraplate basins are characterized by shallow marine conditions punctuated by several episodes of deltaic progradation. Finally, in the Late Permian (stage 5), volcanism and volcaniclastic sedimentation dominated in basins located along the western South American margin. The intraplate basins in turn were characterized by T-R cycles composed of shallow marine, deltaic, and fluvial siliciclastic deposits.

  1. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the basis of the stratigraphy of Northwind Ridge and sea-floor magnetic anomalies in the Canada basin accounts in a general way for the major crustal elements of the Americasia basin, including the highstanding ridges of the Chukchi borderland, and supports S.W. Carye's hypothesis that the Amerasia basin is the product of anticlockwise rotational rifting of Arctic Alaska from North America.

  2. Volcanic facies architecture of an intra-arc strike-slip basin, Santa Rita Mountains, Southern Arizona

    NASA Astrophysics Data System (ADS)

    Busby, Cathy J.; Bassett, Kari N.

    2007-09-01

    The three-dimensional arrangement of volcanic deposits in strike-slip basins is not only the product of volcanic processes, but also of tectonic processes. We use a strike-slip basin within the Jurassic arc of southern Arizona (Santa Rita Glance Conglomerate) to construct a facies model for a strike-slip basin dominated by volcanism. This model is applicable to releasing-bend strike-slip basins, bounded on one side by a curved and dipping strike-slip fault, and on the other by curved normal faults. Numerous, very deep unconformities are formed during localized uplift in the basin as it passes through smaller restraining bends along the strike-slip fault. In our facies model, the basin fill thins and volcanism decreases markedly away from the master strike-slip fault (“deep” end), where subsidence is greatest, toward the basin-bounding normal faults (“shallow” end). Talus cone-alluvial fan deposits are largely restricted to the master fault-proximal (deep) end of the basin. Volcanic centers are sited along the master fault and along splays of it within the master fault-proximal (deep) end of the basin. To a lesser degree, volcanic centers also form along the curved faults that form structural highs between sub-basins and those that bound the distal ends of the basin. Abundant volcanism along the master fault and its splays kept the deep (master fault-proximal) end of the basin overfilled, so that it could not provide accommodation for reworked tuffs and extrabasinally-sourced ignimbrites that dominate the shallow (underfilled) end of the basin. This pattern of basin fill contrasts markedly with that of nonvolcanic strike-slip basins on transform margins, where clastic sedimentation commonly cannot keep pace with subsidence in the master fault-proximal end. Volcanic and subvolcanic rocks in the strike-slip basin largely record polygenetic (explosive and effusive) small-volume eruptions from many vents in the complexly faulted basin, referred to here as multi-vent complexes. Multi-vent complexes like these reflect proximity to a continuously active fault zone, where numerous strands of the fault frequently plumb small batches of magma to the surface. Releasing-bend extension promotes small, multivent styles of volcanism in preference to caldera collapse, which is more likely to form at releasing step-overs along a strike-slip fault.

  3. Hydrogeologic Framework of the Salt Basin, New Mexico and Texas

    NASA Astrophysics Data System (ADS)

    Ritchie, A. B.; Phillips, F. M.

    2010-12-01

    The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.

  4. A new model for the initiation, crustal architecture, and extinction of pull-apart basins

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Abera, R.

    2015-12-01

    We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.

  5. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.

  6. The Hack's law applied to young volcanic basin: the Tahiti case

    NASA Astrophysics Data System (ADS)

    Ye, F.; Sichoix, L.; Barriot, J.; Serafini, J.

    2010-12-01

    We study the channel morphology over the Tahiti island from the Hack’s law perspective. The Hack’s law is an empirical power relationship between basin drainage area and the length of its main channel. It had also been shown that drainage area becomes more elongate with increasing basin size. For typical continental basins, the exponent value lies between 0.47 for basins larger than 260,000 km2 and 0.7 for those spanning less than 20,720 km2 (Muller, 1973). In Tahiti, we extracted 27 principal basins ranging from 7 km2 to 90 km2 from a Digital Terrain Model of the island with a 5 m-resolution. We demonstrate that the Hack’s law still apply for such small basins (correlation coefficient R2=0.7) with an exponent value being approximately 0.5. It appears that the exponent value is influenced by the local geomorphic condition, and does not follow the previous study results (the exponent value decreases with increasing drainage area.) Our exponent value matches the result found w.r.t. debris-flow basins of China for drainage areas less than 100 km2 (Li et al., 2008). Otherwise, the young volcanic basins of Tahiti do not become longer and narrower with increasing basin size (R2=0.1). Besides, there is no correlation between the basin area and the basin convexity (R2=0). This means that there is no statistical change in basin shape with basin size. We present also the drainage area-slope relationship with respect to sediment or transport-limited processes. Key words: Hack’s law, channel morphology, DTM

  7. Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range

    USGS Publications Warehouse

    Sueker, J.K.; Turk, J.T.; Michel, R.L.

    1999-01-01

    High-elevation basins in Colorado are a major source of water for the central and western United States; however, acidic deposition may affect the quality of this water. Water that is retained in a basin for a longer period of time may be less impacted by acidic deposition. Sulfur-35 (35S), a short-lived isotope of sulfur (t( 1/2 ) = 87 days), is useful for studying short-time scale hydrologic processes in basins where biological influences and water/rock interactions are minimal. When sulfate response in a basin is conservative, the age of water may be assumed to be that of the dissolved sulfate in it. Three alpine-subalpine basins on granitic terrain in Colorado were investigated to determine the influence of basin morphology on the residence time of water in the basins. Fern and Spruce Creek basins are glaciated and accumulate deep snowpacks during the winter. These basins have hydrologic and chemical characteristics typical of systems with rapid hydrologic response times. The age of sulfate leaving these basins, determined from the activity of 35S, averages around 200 days. In contrast, Boulder Brook basin has broad, gentle slopes and an extensive cover of surficial debris. Its area above treeline, about one-half of the basin, is blown free of snow during the winter. Variations in flow and solute concentrations in Boulder Brook are quite small compared to Fern and Spruce Creeks. After peak snowmelt, sulfate in Boulder Brook is about 200 days older than sulfate in Fern and Spruce Creeks. This indicates a substantial source of older sulfate (lacking 35S) that is probably provided from water stored in pore spaces of surficial debris in Boulder Brook basin.

  8. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  9. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi

    2018-02-01

    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  10. A Comparison of Runoff Quantity and Quality from Two Small Basins Undergoing Implementation of Conventional and Low-Impact-Development (LID) Strategies: Cross Plains, Wisconsin, Water Years 1999-2005

    USGS Publications Warehouse

    Selbig, William R.; Bannerman, Roger T.

    2008-01-01

    Environmental managers are often faced with the task of designing strategies to accommodate development while minimizing adverse environmental impacts. Low-impact development (LID) is one such strategy that attempts to mitigate environmental degradation commonly associated with impervious surfaces. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, studied two residential basins in Cross Plains, Wis., during water years 1999?2005. A paired-basin study design was used to compare runoff quantity and quality from the two basins, one of which was developed in a conventional way and the other was developed with LID. The conventional-developed basin (herein called ?conventional basin?) consisted of curb and gutter, 40-foot street widths, and a fully connected stormwater-conveyance system. The LID basin consisted of grassed swales, reduced impervious area (32-foot street widths), street inlets draining to grass swales, a detention pond, and an infiltration basin. Data collected in the LID basin represented predevelopment through near-complete build-out conditions. Smaller, more frequent precipitation events that produced stormwater discharge from the conventional basin were retained in the LID basin. Only six events with precipitation depths less than or equal to 0.4 inch produced measurable discharge from the LID basin. Of these six events, five occurred during winter months when underlying soils are commonly frozen, and one was likely a result of saturated soil from a preceding storm. In the conventional basin, the number of discharge events, using the same threshold of precipitation depth, was 180, with nearly one-half of those resulting from precipitation depths less than 0.2 inch. Precipitation events capable of producing appreciable discharge in the LID basin were typically those of high intensity or precipitation depth or those that occurred after soils were already saturated. Total annual discharge volume measured from the conventional basin ranged from 1.3 to 9.2 times that from the LID basin. Development of the LID basin did not appreciably alter the hydrologic response to precipitation characterized during predevelopment conditions. Ninety-five percent or more of precipitation in the LID basin was retained during each year of construction from predevelopment through near-complete build-out, surpassing the 90-percent benchmark established for new development by the Wisconsin Department of Natural Resources. The amount of precipitation retained in the conventional basin did not exceed 94 percent and fell below the 90-percent standard 2 of the 6 years monitored. Much of the runoff in the LID basin was retained by an infiltration basin, the largest control structure used to mitigate storm-runoff quantity and quality. The infiltration basin also was the last best-management practice (BMP) used to treat runoff before it left the LID basin as discharge. From May 25, 2002, to September 30, 2005, only 24 of 155 precipitation events exceeded the retention/ infiltrative capacity of the infiltration basin. The overall reduction in runoff volume from these few events was 51 percent. The effectiveness of the infiltration basin decreased as precipitation intensities exceeded 0.5 inch per hour. Annual loads were estimated to characterize the overall effectiveness of low-impact design practices for mitigating delivery of total solids, total suspended solids, and total phosphorus. Annual loads of these three constituents were greater in the LID basin than in the conventional basin in 2000 and 2004. Seventy percent or more of all constituent annual loads were associated with two discharge events in 2000, and a single discharge event produced 50 percent or more of constituent annual loads in 2004. Each of these discharge events was associated with considerable precipitation depths and (or) intensities, ranging from 4.89 to 6.21 inches and from 1.13 to 1.2 inches per hour, respectively

  11. Vulnerability of supply basins to demand from multiple cities

    NASA Astrophysics Data System (ADS)

    Padowski, J. C.; Gorelick, S.

    2013-12-01

    Humans have appropriated more than half of the world's available water resources, and continued population growth and climate change threaten to put increasing pressure on remaining supplies. Many cities have constructed infrastructure to collect, transport from and store water at distant locations. Supply basins can become vulnerable if there are multiple users depending on the same supply system or network. Basin vulnerability assessments often only report the impacts of local demands on system health, but rarely account future stress from multi-urban demands. This study presents a global assessment of urban impacts on supply basins. Specifically, hydrologic and regulatory information are used to quantify the level of supply basin stress created by demand from multiple cities. The aim is to identify at-risk basins. This study focuses on large urban areas (generally over 1 million people) that use surface water (n=412). The stress on supply water basins by urban demand was based on three parameters: 1) the number of cities using a basin for water supply, 2) the number of alternative urban sources (e.g. lakes, reservoirs, rivers) within the supply basin, and 3) the percent of available surface water in each basin that is required to meet the total of urban and environmental demands. The degree of management within each basin is assessed using information on federal water policies and local basin management plans.

  12. Seafloor terrain analysis and geomorphology of the greater Los Angeles Margin and San Pedro Basin, Southern California

    USGS Publications Warehouse

    Dartnell, P.; Gardner, J.V.

    2009-01-01

    The seafloor off greater Los Angeles, California, has been extensively studied for the past century. Terrain analysis of recently compiled multibeam bathymetry reveals the detailed seafloor morphology along the Los Angeles Margin and San Pedro Basin. The terrain analysis uses the multibeam bathymetry to calculate two seafloor indices, a seafloor slope, and a Topographic Position Index. The derived grids along with depth are analyzed in a hierarchical, decision-tree classification to delineate six seafloor provinces-high-relief shelf, low-relief shelf, steep-basin slope, gentle-basin slope, gullies and canyons, and basins. Rock outcrops protrude in places above the generally smooth continental shelf. Gullies incise the steep-basin slopes, and some submarine canyons extend from the coastline to the basin floor. San Pedro Basin is separated from the Santa Monica Basin to the north by a ridge consisting of the Redondo Knoll and the Redondo Submarine Canyon delta. An 865-m-deep sill separates the two basins. Water depths of San Pedro Basin are ??100 m deeper than those in the San Diego Trough to the south, and three passes breach a ridge that separates the San Pedro Basin from the San Diego Trough. Information gained from this study can be used as base maps for such future studies as tectonic reconstructions, identifying sedimentary processes, tracking pollution transport, and defining benthic habitats. ?? 2009 The Geological Society of America.

  13. Chemical quality of bottom sediments in selected streams, Jefferson County, Kentucky, April-July 1992

    USGS Publications Warehouse

    Moore, B.L.; Evaldi, R.D.

    1995-01-01

    Bottom sediments from 25 stream sites in Jefferson County, Ky., were analyzed for percent volatile solids and concentrations of nutrients, major metals, trace elements, miscellaneous inorganic compounds, and selected organic compounds. Statistical high outliers of the constituent concentrations analyzed for in the bottom sediments were defined as a measure of possible elevated concentrations. Statistical high outliers were determined for at least 1 constituent at each of 12 sampling sites in Jefferson County. Of the 10 stream basins sampled in Jefferson County, the Middle Fork Beargrass Basin, Cedar Creek Basin, and Harrods Creek Basin were the only three basins where a statistical high outlier was not found for any of the measured constituents. In the Pennsylvania Run Basin, total volatile solids, nitrate plus nitrite, and endrin constituents were statistical high outliers. Pond Creek was the only basin where five constituents were statistical high outliers-barium, beryllium, cadmium, chromium, and silver. Nitrate plus nitrite and copper constituents were the only statistical high outliers found in the Mill Creek Basin. In the Floyds Fork Basin, nitrate plus nitrite, phosphorus, mercury, and silver constituents were the only statistical high outliers. Ammonia was the only statistical high outlier found in the South Fork Beargrass Basin. In the Goose Creek Basin, mercury and silver constituents were the only statistical high outliers. Cyanide was the only statistical high outlier in the Muddy Fork Basin.

  14. Geohydrology, geochemistry, and groundwater simulation (1992-2011) and analysis of potential water-supply management options, 2010-60, of the Langford Basin, California

    USGS Publications Warehouse

    Voronin, Lois M.; Densmore, Jill N.; Martin, Peter; Brush, Charles F.; Carlson, Carl S.; Miller, David M.

    2013-01-01

    Groundwater withdrawals began in 1992 from the Langford Basin within the Fort Irwin National Training Center (NTC), California. From April 1992 to December 2010, approximately 12,300 acre-feet of water (averaging about 650 acre-feet per year) has been withdrawn from the basin and transported to the adjacent Irwin Basin. Since withdrawals began, water levels in the basin have declined by as much as 40 feet, and the quality of the groundwater withdrawn from the basin has deteriorated. The U.S. Geological Survey collected geohydrologic data from Langford Basin during 1992–2011 to determine the quantity and quality of groundwater available in the basin. Geophysical surveys, including gravity, seismic refraction, and time-domain electromagnetic induction surveys, were conducted to determine the depth and shape of the basin, to delineate depths to the Quaternary-Tertiary interface, and to map the depth to the water table and changes in water quality. Data were collected from existing wells and test holes, as well as 11 monitor wells that were installed at 5 sites as part of this study. Water-quality samples collected from wells in the basin were used to determine the groundwater chemistry within the basin and to delineate potential sources of poor-quality groundwater. Analysis of stable isotopes of oxygen and hydrogen in groundwater indicates that present-day precipitation is not a major source of recharge to the basin. Tritium and carbon-14 data indicate that most of the basin was recharged prior to 1952, and the groundwater in the basin has an apparent age of 12,500 to 30,000 years. Recharge to the basin, estimated to be less than 50 acre-feet per year, has not been sufficient to replenish the water that is being withdrawn from the basin. A numerical groundwater-flow model was developed for the Langford Basin to better understand the aquifer system used by the Fort Irwin NTC as part of its water supply, and to provide a tool to help manage groundwater resources at the NTC. Measured groundwater-level declines since the initiation of withdrawals (1992–2011) were used to calibrate the groundwater-flow model. The simulated recharge was about 46 acre-feet per year, including approximately 6 acre-feet per year of natural recharge derived from precipitation runoff and as much as 40 acre-feet per year of underflow from the Irwin Basin. Between April 1992 and December 2010, an average of about 650 acre-feet per year of water was withdrawn from the Langford Basin. Groundwater withdrawals in excess of natural recharge resulted in a net loss of 11,670 acre-feet of groundwater storage within the basin for the simulation period. The Fort Irwin NTC is considering various groundwater-management options to address the limited water resources in the Langford Basin. The calibrated Langford Basin groundwater-flow model was used to evaluate the hydrologic effects of four groundwater-withdrawal scenarios being considered by the Fort Irwin NTC over the next 50 years (January 2011 through December 2060). Continuation of the 2010 withdrawal rate in the three existing production wells will result in 70 feet of additional drawdown in the central part of the basin. Redistributing the 2010 withdrawal rate equally to the three existing wells and two proposed new wells in the northern and southern parts of the basin would result in about 10 feet less drawdown in the central part of the basin but about 100 feet of additional drawdown in the new well in the northern part of the basin and about 50 feet of additional drawdown in the new well in the southern part of the basin. Reducing the withdrawals from the three existing production wells in the central part of the basin from about 45,000 acre-feet to about 32,720 acre-feet would result in about 40 feet of additional drawdown in the central basin near the pumping wells, about 25 feet less than if withdrawals were not reduced. The combination of reducing and redistributing the cumulative withdrawals to the three existing and two proposed new wells results in about 40 feet of additional drawdown in the central and southern parts of the basin and about 70 feet in the northern part of the basin. These results show that reducing and redistributing the groundwater withdrawals would maintain the upper aquifer at greater than 50 percent of its predevelopment saturated thickness throughout the groundwater basin. The scenarios simulated for this study demonstrate how the calibrated model can be utilized to evaluate the hydrologic effects of different water-management strategies.

  15. Great Basin Experimental Range: Annotated bibliography

    Treesearch

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  16. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will... Basin National Grassland Prairie Dog Amendment. The Open House/ Presentation meetings will be held on...

  17. Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins

    NASA Technical Reports Server (NTRS)

    Lang, H. R. (Editor)

    1985-01-01

    The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.

  18. The central and northern Appalachian Basin-a frontier region for coalbed methane development

    USGS Publications Warehouse

    Lyons, P.C.

    1998-01-01

    The Appalachian basin is the world's second largest coalbed-methane (CBM) producing basin. It has nearly 4000 wells with 1996 annual production at 147.8 billion cubic feet (Bcf). Cumulative CBM production is close to 0.9 trillion cubic feet (Tcf). The Black Warrior Basin of Alabama in the southern Appalachian basin (including a very minor amount from the Cahaba coal field) accounts for about 75% of this annual production and about 75% of the wells, and the remainder comes from the central and northern Appalachian basin. The Southwest Virginia coal field accounts for about 95% of the production from the central and northern parts of the Appalachian basin. Production data and trends imply that several of the Appalachian basin states, except for Alabama and Virginia, are in their infancy with respect to CBM development. Total in-place CBM resources in the central and northern Appalachian basin have been variously estimated at 66 to 76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (~ 20%) is technically recoverable according to a 1995 U.S. Geological Survey assessment. For comparison in the Black Warrior basin of the 20 Tcf in-place CBM resources, 2.30 Tcf (~ 12%) is technically recoverable. Because close to 0.9 Tcf of CBM has already been produced from the Black Warrior basin and the proved reserves are about 0.8 Tcf for 1996 [Energy Information Administration (EIA), 1997]. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 1996 Annual Report. U.S. Department of Energy DOE/EIA-0216(96), 145 pp.], these data imply that the central and northern Appalachian basin could become increasingly important in the Appalachian basin CBM picture as CBM resources are depleted in the southern Appalachian basin (Black Warrior Basin and Cahaba Coal Field). CBM development in the Appalachian states could decrease the eastern U.S.A.'s dependence on coal for electricity. CBM is expected to provide over the next few decades a virtually untapped source of unconventional fossil fuel in the Appalachian states, where the CBM resources are large and the demand for cleaner fossil-fuel energy is high.The central and northern Appalachian basin could become increasingly important in the Appalachian basin coalbed methane (CBM) picture as CBM resources are depleted in the southern Appalachian basin. Total in-place CBM resources in the central and the northern Appalachian basin have been estimated at 66 to 76 Tcf, of which 14.55 Tcf is technically recoverable.

  19. Breaching of strike-slip faults and flooding of pull-apart basins to form the southern Gulf of California seaway from 8 to 6 Ma

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.; Skinner, L. A.; Oskin, M. E.; Dorsey, R. J.; Bennett, S. E. K.; Darin, M. H.

    2017-12-01

    Studies from multiple disciplines delineate the development of the oblique-divergent Pacific - North America plate boundary in the southern Gulf of California. Integration of onshore data from the Loreto - Santa Rosalia margin with offshore data from the Pescadero, Farallon, and Guaymas basins provides a detailed geologic history. Our GIS-based paleotectonic maps of the plate boundary from 9 to 6 Ma show that evolution of pull-apart basins led to the episodic northwestward encroachment of the Gulf of California seaway. Because adjacent pull-apart basins commonly have highlands between them, juxtaposition of adjacent basin lows during translation and pull apart lengthening played a critical role in seaway flooding. Microfossils and volcanic units date the earliest marine deposits at 9(?) - 8 Ma at the mouth of the Gulf. By ca. 8 Ma, the seaway had flooded north to the Pescadero basin, while the Loreto fault and the related fault-termination basin was proposed to have formed along strike at the plate margin. East of Loreto basin, a short topographic barrier between the Pescadero and Farallon pull-apart basins suggests that the Farallon basin was either a terrestrial basin, or if breaching occurred, it may contain 8 Ma salt or marine deposits. This early southern seaway formed along a series of pull-apart basins within a narrow belt of transtension structurally similar to the modern Walker Lane in NV and CA. At ca. 7 Ma, a series of marine incursions breached a 75-100 km long transtensional fault barrier between the Farallon and Guaymas basins offshore Bahía Concepción. Repeated breaching events and the isolation of the Guaymas basin in a subtropical setting formed a 2 km-thick salt deposit imaged in offshore seismic data, and thin evaporite deposits in the onshore Santa Rosalia basin. Lengthening of the Guaymas, Yaqui, and Tiburon basins caused breaches of the intervening Guaymas and Tiburón transforms by 6.5-6.3 Ma, forming a permanent 1500 km-long marine seaway up to the Salton Trough. By 6 Ma, the Guaymas basin had uniquely evolved to oceanic seafloor spreading, while the marine seaway to the south remained a series of pull-apart and transtensional basins with seafloor spreading delayed until 3 - 2 Ma. There is evidence of rift flank uplift near the Loreto fault/basin in this 6 - 3 Ma transitional period.

  20. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine-grained clastic deposits; evaporite deposits in the northern Detrital subbasin include halite. The northern Detrital subbasin is estimated to be 600 m deep and the middle Detrital subbasin is estimated to be 700 m deep. The southern Detrital subbasin, which is estimated to be 1,500 m deep, is characterized by a mixture of fine- to coarse-grained basin fill deposits. Groundwater storage to 400 m bls in the Detrital Valley basin is estimated to be 9.8 km3. The basin geometry model for the Sacramento Valley basin consists of three subbasins: the Chloride, Golden Valley, and Dutch Flat subbasins. The Chloride subbasin, which is estimated to be 900 m deep, is characterized by fine- to coarse-grained basin fill deposits. In the Golden Valley subbasin, which is elongated north-south, and is estimated to be 1,300 m deep, basin fill includes fine-grained sedimentary deposits overlain by coarse-grained sedimentary deposits in much of the subbasin. The Dutch Flat subbasin is estimated to be 2,600 m deep, and well-log lithologic data suggest that the basin fill consists of interlayers of gravel, sand, and clay. Groundwater storage to 400 m bls in the Sacramento Valley basin is estimated to be 35.1 km3.

  1. Tectono-sedimentary evolution of the Neuquén basin (Argentina) between 39°S and 41°S during the Neogene

    NASA Astrophysics Data System (ADS)

    Huyghe, D.; Bonnel, C.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.

    2012-04-01

    Sedimentary rocks deposited in foreland basins are of primary interest, because they record the interactions between the growth of the orogenic wedge, the isostatic readjustment of the lithosphere, the variations of base-level and earth surface process. The Neuquén basin (32°S - 41°S) is a triangular shape foreland basin located on the eastern flank of the Andes. Its filling began during the late Triassic, first as back arc basin context and as compressive foreland basin since the upper Cretaceous. The structural inheritance is thus important and old basement structures, like the Huincul Ridge, generate significant variations of both deformation and shortening. Its Mesozoic history is well constrained due to its hydrocarbon potential. In comparison, its Cenozoic history remains poorly documented. The modern configuration of this basin results from several successive compressive tectonic phases. The last one is dated from the Miocene (Quechua phase) and has conditioned the segmentation of the foreland basin in several intra-mountainous sub-basins, whose sedimentary filling could reach several hundred meters. In this work, we document the relative chronology of the geological events and the sedimentary processes that have governed the Cenozoic history of the southern part of the Neuquen basin, to discriminate the relative rules of climatic and structural controlling factors on the evolution of the depocentres. Several NNW-SSE oriented intra-mountainous basins exist in this part of the Andes (Collon Cura basin and Catan Lil basin). On the contrary the associated foreland basin (Picun Leufu basin) is relatively underformed and is bounded to the North by the Huincul ridge and the North Patagonian massif to the South. Fifteen sedimentary sections have been studied along the Rio Limay River in the southern border of the basin, from the range to the external part of the foreland. The sedimentation is discontinuous in time and important retrogradations of the depocentres are observed from the outer part of the foreland to the intra-mountainous basins. Tertiary sedimentation begins at the end of the Oligocene until the end of the middle Miocene in the Picun Leufu basin. During the paroxysm of the Quechua tectonic phase, (middle Miocene to Pliocene) the Picun Leufu basin is characterised by a sedimentary hiatus of ~10 Ma that illustrates the closure of the Collon Cura basin and a migration to the internal zone of the range of the depocentres. The filling of the Collon Cura basin is characterised by a continental fining upward sequence of a thickness of several hundred meters. This sedimentation begins with lacustrine and alluvial plain paleoenvironments with some syn-eruptive events (ignimbrites) and ends with continental conglomerates and paleosoils. A first reconnexion with the foreland basin occurs at the beginning of the Pliocene, with the deposition of an alluvial fan. Since the end of the Pliocene another anticline grew in the Picun Leufu basin and controlled the deposition of more recent alluvial fans with the arrival of coarse conglomerates (Pampa Curaco and Bayo Messa Formations). The modern drainage network is established during the Pleistocene in the Collon Cura and Picun Leufu basins, which are since only characterised by the construction of erosional surfaces (terraces) and the apparition of the Rio Limay system on the Miocene and Cretaceous deposits.

  2. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.

  3. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-03-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3° C km-1 with a mean of 27.7 ± 5.3° C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW/m2 with a mean of 64.7 ± 8.9 mW/m2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westward and northward. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  4. Present-day geothermal characteristics of the Ordos Basin, western North China Craton: new findings from deep borehole steady-state temperature measurements

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Qiu, Qianfeng; Jiang, Guangzheng; Zhang, Chao; Hu, Shengbiao; Lei, Yuhong; Wang, Xiangzeng

    2018-07-01

    Heat flow and associated thermal regimes are related to the tectonic evolution and geophysical properties of the lithosphere. The Ordos Basin is located in a tectonic transitional zone: areas to the east of the basin are characterized as tectonically active, while regions to the west of the basin are characterized as tectonically stable. It is of general interest to learn the geothermal characteristics of the basin in such tectonic conditions. To clarify the spatial variability of the present-day geothermal field across the basin and its implications, we report 13 terrestrial heat flow points based on the first systematic steady-state deep borehole temperature measurements in the basin. The new data together with existing data show that the geothermal gradients in the basin range from 12.6 to 42.3 °C km-1 with a mean of 27.7 ± 5.3 °C km-1; the terrestrial heat flow values range from 43.3 to 88.7 mW m-2 with a mean of 64.7 ± 8.9 mW m-2. Such values are higher than those of typical cratonic basins and lower than those of tectonically active areas. By using all these data in the basin and adjacent areas, we plot geothermal gradient and heat flow distribution maps. The maps reveal that the basin is cooling westwards and northwards. The distribution pattern of the geothermal field is consistent with the lithospheric thickness variation in the basin. This similarity suggests that the geothermal spatial variability of the Ordos Basin is mainly influenced by heat from the deep mantle. In the southeastern basin, we locate a positive geothermal anomaly caused by the convergence of heat flow in basement highs and the high radiogenic heat production. In addition, the high heat flow in the eastern basin is related to the intense uplift during the Cenozoic Era.

  5. Morphology and Distribution of Volcanic Vents in the Orientale Basin from Chandrayaan-1 Moon Mineralogy Mapper (M3) Data

    NASA Technical Reports Server (NTRS)

    Head, James; Pieters, C.; Staid, M.; Mustard, J.; Taylor, L.; McCord, T.; Isaacson, P.; Klima, R.; Petro, N.; Clark, R.; hide

    2010-01-01

    One of the most fundamental questions in the geological and thermal evolution of the Moon is the nature and history of mantle melting and its relationship to the formation and evolution of lunar multi-ringed basins. Mare volcanic deposits provide evidence for the nature, magnitude and composition of mantle melting as a function of space and time [1]. Many argue that mantle partial melts are derived from depths well below the influence of multiringed basin impact events [1], while others postulate that the formation of these basins can cause mantle perturbations that are more directly linked to the generation ascent and eruption of mare basalts [2,3]. In any case, longer-term basin evolution will considerably influence the state and orientation of stress in the lithosphere, and the location of mare volcanic vents in basins as a function of time [4]. Thus, the location, nature and ages of volcanic vents and deposits in relation to multi-ringed impact basins provides evidence for the role that these basins played in the generation of volcanism or in the influence of the basins on surface volcanic eruption and deposit concentration. Unfortunately, most lunar multi-ringed impact basins have been eroded by impacts or filled with lunar mare deposits [5-8], with estimates of the thickness of mare fill extending up to more than six km in the central part of some basins [9-11]. The interior of most basins (e.g., Crisium, Serenitatis, Imbrium, Humorum) are almost completely covered and obscured. Although much is known about the lava filling of multi-ringed basins, and particularly the most recent deposits [5-8], little is known about initial stages of mare volcanism and its relationship to the impact event. One multi-ringed basin, Orientale, offers substantial clues to the relationships of basin interiors and mare basalt volcanism.

  6. Coal and coalbed-methane resources in the Appalachian and Black Warrior basins: maps showing the distribution of coal fields, coal beds, and coalbed-methane fields: Chapter D.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Milici, Robert C.; Kinney, Scott A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The study area for most reports in this volume is the Appalachian basin. The term “Appalachian basin study area” (shortened from “Appalachian basin geologic framework study area”) includes all of the Appalachian Basin Province (Province 67) and part of the neighboring Black Warrior Basin Province (Province 65) of Dolton and others (1995). The boundaries for these two provinces and the study area are shown on figure 1.

  7. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    NASA Astrophysics Data System (ADS)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  8. Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos

    2017-10-01

    The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.

  9. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  10. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  11. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  12. On the use of statistical methods to interpret electrical resistivity data from the Eumsung basin (Cretaceous), Korea

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun

    2001-12-01

    Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.

  13. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    NASA Astrophysics Data System (ADS)

    Kováč, Michal; Plašienka, Dušan; Soták, Ján; Vojtko, Rastislav; Oszczypko, Nestor; Less, György; Ćosović, Vlasta; Fügenschuh, Bernhard; Králiková, Silvia

    2016-05-01

    The data about the Paleogene basin evolution, palaeogeography, and geodynamics of the Western Carpathian and Northern Pannonian domains are summarized, re-evaluated, supplemented, and newly interpreted. The presented concept is illustrated by a series of palinspastic and palaeotopographic maps. The Paleogene development of external Carpathian zones reflects gradual subduction of several oceanic realms (Vahic, Iňačovce-Kričevo, Szolnok, Magura, and Silesian-Krosno) and growth of the orogenic accretionary wedge (Pieniny Klippen Belt, Iňačovce-Kričevo Unit, Szolnok Belt, and Outer Carpathian Flysch Belt). Evolution of the Central Western Carpathians is characterized by the Paleocene-Early Eocene opening of several wedge-top basins at the accretionary wedge tip, controlled by changing compressional, strike-slip, and extensional tectonic regimes. During the Lutetian, the diverging translations of the northward moving Eastern Alpine and north-east to eastward shifted Western Carpathian segment generated crustal stretching at the Alpine-Carpathian junction with foundation of relatively deep basins. These basins enabled a marine connection between the Magura oceanic realm and the Northern Pannonian domain, and later also with the Dinaridic foredeep. Afterwards, the Late Eocene compression brought about uplift and exhumation of the basement complexes at the Alpine-Carpathian junction. Simultaneously, the eastern margin of the stretched Central Western Carpathians underwent disintegration, followed by opening of a fore-arc basin - the Central Carpathian Paleogene Basin. In the Northern Hungarian Paleogene retro-arc basin, turbidites covered a carbonate platform in the same time. During the Early Oligocene, the rock uplift of the Alpine-Carpathian junction area continued and the Mesozoic sequences of the Danube Basin basement were removed, along with a large part of the Eocene Hungarian Paleogene Basin fill, while the retro-arc basin depocentres migrated toward the east. The Rupelian basins gained a character of semi-closed sea spreading from the Magura Basin across the Central Western Carpathians up to the Hungarian Paleogene Basin. In the Late Oligocene, the Magura Basin connection with the Northern Hungarian Paleogene Basin remained open, probably along the northern edge of the Tisza microplate, and anoxic facies were substituted by open marine environments.

  14. Sedimentologic and Geometric Characterization of Turbidites of Brazos-Trinity Basin IV in the Gulf of Mexico: Preliminary Results of IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Gutierrez-Pastor, J.; Pirmez, C.; Flemings, P. B.; Behrmann, J. H.; John, C. M.

    2005-12-01

    Brazos Trinity Basin IV is located about 200 km offshore Texas, and belongs to a linked system of four intra slope mini basins. Basin IV provides a type section to characterize turbidites in salt withdrawal mini-basins of the Gulf of Mexico. IODP Expedition 308 has cored and logged complete pre-fan and fan sequences that are clearly distinguished with high-resolution seismic profiles at Brazos Trinity Basin IV at Sites U1319, U1320 and U1321. Seismically imaged pre-fan and fan units also can be distinguished and correlated with the sedimentological and logging data. Turbidite facies display distinct properties in terms of grain size, bed thickness, color, organic matter content, vertical organization of beds and lateral distribution in all the units of the fan through the basin. The pre-fan sequence is composed of terrigenous laminated clay with color banding and it is interpreted to result from deposition from fluvial plumes and/or muddy turbidity currents overspilling from basins upstream of Basin IV. The lower fan is characterized by laminated and bioturbated muds with thin beds of silt and sand, and represent the initial infill of the basin by mostly muddy turbidity currents, although an exceptionally sand-rich unit occurs at the base of the lower fan. The middle and upper fan represent the main pulses of turbidity current influx into Basin IV, and contain fine to medium sand turbidite beds organized in packets ranging in thickness from 5 to 25 m. The middle fan displays an overall upward increase in sand content at Site U1320, suggesting increased flow by-pass from the updip basins through time. Key examples of turbidites from each fan unit are analysed in detail to infer the depositional processes and infilling history of Brazos-Trinity Basin IV. The study of turbidites in a calibrated basin such as Basin IV provides ground truth for the sedimentological processes and resultant seismic facies, which can be used to interpret the infill history of other intraslope basins with similar seismic facies in the Gulf of Mexico where well calibration is not available.

  15. Seismic Characterization of the Jakarta Basin

    NASA Astrophysics Data System (ADS)

    Cipta, A.; Saygin, E.; Cummins, P. R.; Masturyono, M.; Rudyanto, A.; Irsyam, M.

    2015-12-01

    Jakarta, Indonesia, is home to more than 10 million people. Many of these people live in seismically non-resilient structures in an area that historical records suggest is prone to earthquake shaking. The city lies in a sedimentary basin composed of Quaternary alluvium that experiences rapid subsidence (26 cm/year) due to groundwater extraction. Forecasts of how much subsidence may occur in the future are dependent on the thickness of the basin. However, basin geometry and sediment thickness are poorly known. In term of seismic hazard, thick loose sediment can lead to high amplification of seismic waves, of the kind that led to widespread damage in Mexico city during the Michoacan Earthquake of 1985. In order to characterize basin structure, a temporary seismograph deployment was undertaken in Jakarta in Oct 2013- Jan 2014. A total of 96 seismic instrument were deployed throughout Jakarta were deployed throughout Jakarta at 3-5 km spacing. Ambient noise tomography was applied to obtain models of the subsurface velocity structure. Important key, low velocity anomalies at short period (<8s) correspond to the main sedimentary sub-basins thought to be present based on geological interpretations of shallow stratigraphy in the Jakarta Basin. The result shows that at a depth of 300 m, shear-wave velocity in the northern part (600 m/s) of the basin is lower than that in the southern part. The most prominent low velocity structure appears in the northwest of the basin, down to a depth of 800 m, with velocity as low as 1200 m/s. This very low velocity indicates the thickness of sediment and the variability of basin geometry. Waveform computation using SPECFEM2D shows that amplification due to basin geometry occurs at the basin edge and the thick sediment leads to amplification at the basin center. Computation also shows the longer shaking duration occurrs at the basin edge and center of the basin. The nest step will be validating the basin model using earthquake events recorded by the Jakarta array. The Bohol 2013 earthquake is one good candidate event for model validation. This will require using a source model for the Bohol earthquake and a plane wave input to SPECFEM3D.

  16. A survey of valleys and basins of the western United States for the capacity to produce winter ozone.

    PubMed

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multiple-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western United States for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors just listed are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins where emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multiple-day thermal inversions, and snow cover, and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the western United States and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected, and can be used by planners and regulators to foresee the development of winter ozone problems.

  17. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  18. Transition from marine deep slope deposits to evaporitic facies of an isolated foreland basin: case study of the Sivas Basin (Turkey)

    NASA Astrophysics Data System (ADS)

    Pichat, Alexandre; Hoareau, Guilhem; Legeay, Etienne; Lopez, Michel; Bonnel, Cédric; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2017-04-01

    The Sivas Basin, located in the central part of the Anatolian Plateau in Turkey, formed after the closure of the northern Neotethys from Paleocene to Pliocene times. It developed over an ophiolitic basement obducted from the north during the Late Cretaceous. During Paleocene to Eocene times, the onset of the Tauride compression led to the development of a foreland basin affected by north-directed thrusts. The associate general deepening of the basin favored the accumulation of a thick marine turbiditic succession in the foredeep area, followed by a fast shallowing of the basin and thick evaporitic sequence deposition during the late Eocene. We present here the detailed sedimentological architecture of this flysch to evaporite transition. In the northern part of the basin, volcanoclastic turbidites gradually evolved into basinal to prodelta deposits regularly fed by siliciclastic material during flood events. Locally (to the NE), thick-channelized sandstones are attributed to the progradation of delta front distributary channels. The basin became increasingly sediment-starved and evolved toward azoic carbonates and shaly facies, interlayered with organic-rich shales before the first evaporitic deposits. In the southern part of the basin, in the central foredeep, the basinal turbidites become increasingly gypsum-rich and record a massive mega-slump enclosing olistoliths of gypsum and of ophiolitic rocks. Such reworked evaporites were fed by the gravitational collapsing of shallow water evaporites that had previously precipitated in silled piggy-back basins along the southern fold-and-thrust-belt of the Sivas Basin. Tectonic activity that led to the dismantlement of such evaporites probably also contributed to the closure of the basin from the marine domain. From the north to the south, subsequent deposits consist in about 70 meters of secondary massive to fine-grained gypsiferous beds interpreted as recording high to low density gypsum turbidites. Such facies were probably fed from shallow water evaporitic platforms developing contemporaneously along the borders of the halite-? and gypsum-saturated basin. Finally, the reworked evaporites are sealed by a thick (> 100 m) chaotic and coarse crystalline gypsum mass, carrying folded rafts and boudins of carbonate and gypsum beds. Such unit is interpreted as a gypsiferous caprock resulting from the leaching of significant amount of halite deposits. Gypsum crystals are secondary and grew from the hydration of anhydrite grains left as a residual phase after the leaching of halite. The halite probably formed in a perennial shallow hypersaline basin fed in solute by marine seepages. This former halite sequence is interpreted to have triggered mini-basin salt tectonics during the Oligo-Miocene. The described facies and proposed scenario of the Tuzhisar Formation in the central part of the Sivas Basin may find analogies with other Central Anatolian Basins (e.g. the Ulukisla Basin) or with other basin-wide salt accumulations in the world (e.g. in the Carpathian Foredeep).

  19. Quantitative challenges to our understanding of the tectonostratigraphic evolution of rift basin systems

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.

    2012-12-01

    Pervasive orbitally-paced lake level cycles combined with magnetic polarity stratigraphy in central Pangean early Mesozoic rift basins provide a thus far unique and very large-scale quantitative basis for observing patterns of basin fill and comparisons with other basins. The 32 Myr accumulation rate history of the Newark basin is segmented into intervals lasting millions of years with virtually no change in the long-term accumulation rate (at the 400-kyr-scale), and the transitions between segments are abrupt and apparently basin-wide. This is startling, because the basin geometry was, and is, a half graben - triangular in cross section and dish-shaped in along-strike section. The long periods of time with virtually no change is challenging given a simple model of basin growth (1), suggesting some kind of compensation in sediment input for the increasing surface of the area of the basin through time. Perhaps even more challenging are observations based on magnetic polarity stratigraphy and the cyclicity, that basins distributed over a huge area of central Pangea (~700,000 km2) show parallel and correlative quantitative changes in accumulation rate with those of the Newark basin. The synchronous changes in the accumulation rate in these basins suggests a very large-scale linkage, the only plausible mechanism for which would seem to be at the plate-tectonic scale, perhaps involving extension rates. Together, we can speculate that some kind of balance between extension rates, basin accommodation space and perhaps regional drainage basin size might have been in operation The most dramatic accumulation rate change in the basins' histories occurred close to, and perhaps causally related to, the Triassic-Jurassic boundary and end-Triassic extinction. The Newark basin, for example exhibits a 4-to-5-fold increase in accumulation rate during the emplacement of the brief (<1 Myr) and aerially massive Central Atlantic Magmatic Province (CAMP) beginning at 201.5 Ma, the only igneous event known during this long rifting episode. Parallel and correlative accumulation rate changes are seen in several of the other northern basins within central Pangea. Surprisingly, the rate of accommodation growth apparently increased dramatically during this time, because not only did the accumulation rate dramatically increase, the lakes apparently deepened during the same time as a huge volume of CAMP igneous material entered the basins. At the same time, the more southern basins in the southeastern US, apparently ceased to subside (2). Our ability to measure time in these rift basins using the orbitally-paced cycles, coupled with the ability to correlate between the basins using magnetic polarity stratigraphy, challenges us to form new mechanistic explanations and quantitative models to test against this rich library of observations. References: 1) Schlische RW & Olsen PE, 1990, Jour. Geol. 98:135. 2) Schlische et al., 2003, in Hames WE et al. (eds), Geophys. Monogr. 136:61.

  20. Prediction method of sediment discharge from forested basin

    Treesearch

    Kazutoki Abe; Ushio Kurokawa; Robert R. Ziemer

    2000-01-01

    An estimation model for sediment discharge from a forested basin using Universal Soil Loss Equation and delivery ratio was developed. Study basins are North fork and South fork in Caspar Creek, north California, where Forest Service, USDA has been using water and sediment discharge from both basins since 1962. The whole basin is covered with the forest, mainly...

  1. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  2. Thermal regimes of Malaysian sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdul Halim, M.F.

    1994-07-01

    Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulationmore » time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.« less

  3. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.

  4. Estimating tectonic history through basin simulation-enhanced seismic inversion: Geoinformatics for sedimentary basins

    USGS Publications Warehouse

    Tandon, K.; Tuncay, K.; Hubbard, K.; Comer, J.; Ortoleva, P.

    2004-01-01

    A data assimilation approach is demonstrated whereby seismic inversion is both automated and enhanced using a comprehensive numerical sedimentary basin simulator to study the physics and chemistry of sedimentary basin processes in response to geothermal gradient in much greater detail than previously attempted. The approach not only reduces costs by integrating the basin analysis and seismic inversion activities to understand the sedimentary basin evolution with respect to geodynamic parameters-but the technique also has the potential for serving as a geoinfomatics platform for understanding various physical and chemical processes operating at different scales within a sedimentary basin. Tectonic history has a first-order effect on the physical and chemical processes that govern the evolution of sedimentary basins. We demonstrate how such tectonic parameters may be estimated by minimizing the difference between observed seismic reflection data and synthetic ones constructed from the output of a reaction, transport, mechanical (RTM) basin model. We demonstrate the method by reconstructing the geothermal gradient. As thermal history strongly affects the rate of RTM processes operating in a sedimentary basin, variations in geothermal gradient history alter the present-day fluid pressure, effective stress, porosity, fracture statistics and hydrocarbon distribution. All these properties, in turn, affect the mechanical wave velocity and sediment density profiles for a sedimentary basin. The present-day state of the sedimentary basin is imaged by reflection seismology data to a high degree of resolution, but it does not give any indication of the processes that contributed to the evolution of the basin or causes for heterogeneities within the basin that are being imaged. Using texture and fluid properties predicted by our Basin RTM simulator, we generate synthetic seismograms. Linear correlation using power spectra as an error measure and an efficient quadratic optimization technique are found to be most effective in determining the optimal value of the tectonic parameters. Preliminary 1-D studies indicate that one can determine the geothermal gradient even in the presence of observation and numerical uncertainties. The algorithm succeeds even when the synthetic data has detailed information only in a limited depth interval and has a different dominant frequency in the synthetic and observed seismograms. The methodology presented here even works when the basin input data contains only 75 per cent of the stratigraphic layering information compared with the actual basin in a limited depth interval.

  5. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control [[Page 25878

  6. Characteristic mega-basin water storage behavior using GRACE.

    PubMed

    Reager, J T; Famiglietti, James S

    2013-06-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤  E f  ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.

  7. Oil and gas fields in East Coast and Arctic basins of Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneley, R.A.

    1984-09-01

    The East Coast and Arctic basins of Canada have been under serious hydrocarbon exploration for over 20 years. Although the density of drilling is low, extensive seismic control has outlined a high proportion of the structures in these basins and the stratigraphic framework of the basins is known. From west to east, the basins include the Beaufort basin, the Sverdrup basin of the high Arctic and the adjacent Parry Island foldbelt, the rift basins of Baffin Bay, and the continental-margin basins offshore Labrador, the Grand Banks and the Scotian Shelf. Each of these basins contains oil and gas fields thatmore » typify, to some degree, the pools that may be anticipated in undrilled structures. Surprises, both good and bad, await the explorer. The physical environment of these Canadian basins ranges from severe to almost impossible. As exploration has proceeded, great strides have been made in coping with the physical environment; however, the costs are becoming increasingly onerous, and the appreciation is growing regarding the cost, risk and time that will be involved in developing production from those resources. Even from a national sense of supply security, the vast reserves of oil in the tar sands and in-situ recovery deposits of heavy oil in western Canada will provide a competitive ceiling that will limit future development of frontier basins to those where production costs are not significantly higher than those of the tar sands.« less

  8. Characteristic mega-basin water storage behavior using GRACE

    PubMed Central

    Reager, J T; Famiglietti, James S

    2013-01-01

    [1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km2), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world’s largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤ Ef ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation. PMID:24563556

  9. Cold-Air-Pool Structure and Evolution in a Mountain Basin: Peter Sinks, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Craig B.; Whiteman, Charles D.; Horel, John D.

    2003-06-01

    The evolution of potential temperature and wind structure during the buildup of nocturnal cold-air pools was investigated during clear, dry, September nights in Utah's Peter Sinks basin, a 1-km-diameter limestone sinkhole that holds the Utah minimum temperature record of -56 C. The evolution of cold-pool characteristics depended on the strength of prevailing flows above the basin. On an undisturbed day, a 30 C diurnal temperature range and a strong nocturnal potential temperature inversion (22 K in 100 m) were observed in the basin. Initially, downslope flows formed on the basin sidewalls. As a very strong potential temperature jump (17 K)more » developed at the top of the cold pool, however, the winds died within the basin and over the sidewalls. A persistent turbulent sublayer formed below the jump. Turbulent sensible heat flux on the basin floor became negligible shortly after sunset while the basin atmosphere continued to cool. Temperatures over the slopes, except for a 1 to 2-m-deep layer, became warmer than over the basin center at the same altitude. Cooling rates for the entire basin near sunset were comparable to the 90 W m-2 rate of loss of net longwave radiation at the basin floor, but these rates decreased to only a few watts per square meter by sunrise. This paper compares the observed cold-pool buildup in basins with inversion buildup in valleys.« less

  10. Statistical Comparisons of watershed scale response to climate change in selected basins across the United States

    USGS Publications Warehouse

    Risley, John; Moradkhani, Hamid; Hay, Lauren E.; Markstrom, Steve

    2011-01-01

    In an earlier global climate-change study, air temperature and precipitation data for the entire twenty-first century simulated from five general circulation models were used as input to precalibrated watershed models for 14 selected basins across the United States. Simulated daily streamflow and energy output from the watershed models were used to compute a range of statistics. With a side-by-side comparison of the statistical analyses for the 14 basins, regional climatic and hydrologic trends over the twenty-first century could be qualitatively identified. Low-flow statistics (95% exceedance, 7-day mean annual minimum, and summer mean monthly streamflow) decreased for almost all basins. Annual maximum daily streamflow also decreased in all the basins, except for all four basins in California and the Pacific Northwest. An analysis of the supply of available energy and water for the basins indicated that ratios of evaporation to precipitation and potential evapotranspiration to precipitation for most of the basins will increase. Probability density functions (PDFs) were developed to assess the uncertainty and multimodality in the impact of climate change on mean annual streamflow variability. Kolmogorov?Smirnov tests showed significant differences between the beginning and ending twenty-first-century PDFs for most of the basins, with the exception of four basins that are located in the western United States. Almost none of the basin PDFs were normally distributed, and two basins in the upper Midwest had PDFs that were extremely dispersed and skewed.

  11. Origin of Meter-Size Granite Basins in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Gorden, Mary A.; Robinson, Joel E.; Moring, Barry C.

    2008-01-01

    Meter-size granite basins are found in a 180-km belt extending south from the South Fork of the Kings River to Lake Isabella on the west slope of the southern Sierra Nevada, California. Their origin has long been debated. A total of 1,033 basins have been inventoried at 221 sites. The basins occur on bedrock granitic outcrops at a median elevation of 1,950 m. Median basin diameter among 30 of the basin sites varies from 89 to 170 cm, median depth is 12 to 63 cm. Eighty percent of the basin sites also contain smaller bedrock mortars (~1-2 liters in capacity) of the type used by Native Americans (American Indians) to grind acorns. Features that suggest a manmade origin for the basins are: restricted size, shape, and elevation range; common association with Indian middens and grinding mortars; a south- and west-facing aspect; presence of differing shapes in distinct localities; and location in a food-rich belt with pleasant summer weather. Volcanic ash (erupted A.D. 1240+-60) in the bottom of several of the basins indicates that they were used shortly before ~760 years ago but not thereafter. Experiments suggest that campfires built on the granite will weaken the bedrock and expedite excavation of the basins. The primary use of the basins was apparently in preparing food, including acorns and pine nuts. The basins are among the largest and most permanent artifacts remaining from the California Indian civilization.

  12. A Project for Developing an Original Methodology Intended for Determination of the River Basin/Sub-Basin Boundaries and Codes in Western Mediterranean Basin in Turkey with Perspective of European Union Directives

    NASA Astrophysics Data System (ADS)

    Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal

    2016-04-01

    From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task must be accomplished by the end of the negotiation process with the EU. For these reasons this subject is chosen as primary and important goal in this project issue and it is aimed to develop an original methodology for determining the boundaries and codes of the drainage basins/sub-basins at required accuracy and precision for the fulfilment of obligations described in the WFD. In Turkey, existing highest accuracy and reliable elevation and hydrography data will be used for the first time, in this project. Along with the widely known and used flow accumulation threshold approaches, the approach developed by Gökgöz et al. (2006) will be used as well. The practicability and suitability of the encoding method developed by the General Directorate of State Hydraulic Works and the Infrastructure for Spatial Information in Europe will be verified respectively. The resulting drainage network, basin/sub-basin boundaries and codes will be compared to CCM2 (Catchment Characterisation and Modelling), ECRINS1.5 (European Catchments and Rivers Network System) and Catchments and Rivers Network System of General Directorates of State Hydraulic Works. This project is being supported by The Scientific and Technological Research Council of Turkey, under the project number TUBITAK-115Y411.

  13. Geologic framework of the offshore region adjacent to Delaware

    USGS Publications Warehouse

    Benson, R.N.; Roberts, J.H.

    1989-01-01

    Several multichannel, common depth point (CDP) seismic reflection profiles concentrated in the area of the entrance to Delaware Bay provide a tie between the known onshore geology of the Coastal Plain of Delaware and the offshore geology of the Baltimore Canyon Trough. The data provide a basis for understanding the geologic framework and petroleum resource potential of the area immediately offshore Delaware. Our research has focused on buried early Mesozoic rift basins and their geologic history. Assuming that the buried basins are analogous to the exposed Newark Supergroup basins of Late Triassic-Early Jurassic age, the most likely possibility for occurrence of hydrocarbon source beds in the area of the landward margin of the Baltimore Canyon Trough is presumed to be lacustrine, organic-rich shales probably present in the basins. Although buried basins mapped offshore Delaware are within reach of drilling, no holes have been drilled to date; therefore, direct knowledge of source, reservoir, and sealing beds is absent. Buried rift basins offshore Delaware show axial trends ranging from NW-SE to NNE-SSW. Seismic reflection profiles are too widely spaced to delineate basin boundaries accurately. Isopleths of two-way travel time representing basin fill suggest that, structurally, the basins are grabens and half-grabens. As shown on seismic reflection profiles, bounding faults of the basins intersect or merge with low-angle fault surfaces that cut the pre-Mesozoic basement. The rift basins appear to have formed by Mesozoic extension that resulted in reverse motion on reactivated basement thrust faults that originated from compressional tectonics during the Paleozoic. Computer-plotted structure contour maps derived from analysis of seismic reflection profiles provide information on the burial history of the rift basins. The postrift unconformity bevels the rift basins and, in the offshore area mapped, ranges from 2000 to 12,000 m below present sea level. The oldest postrift sediments that cover the more deeply buried rift basins are estimated to be of Middle Jurassic age (Bajocian-Bathonian), the probable time of opening of the Atlantic Ocean basin and onset of continental drift about 175-180 m.y. ago. By late Oxfordian-early Kimmeridgian time, the less deeply buried basins nearshore Delaware had been covered. A time-temperature index of maturity plot of one of the basins indicates that only dry gas would be present in reservoirs in synrift rocks buried by more than 6000 m of postrift sediments and in the oldest (Bathonian?-Callovian?) postrift rocks. Less deeply buried synrift rocks landward of the basin modeled might still be within the oil generation window. ?? 1989.

  14. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.

  15. Mining the earth's heat in the basin and range

    USGS Publications Warehouse

    Sass, John H.

    1995-01-01

    The Geothermal Program of the U.S. Geological Survey (USGS) is revisiting the Basin and Range Province after a hiatus of over a decade. The Basin and Range is a region of Neogene extension and generally high, but regionally and locally variable heat flow. The northern Basin and Range (Great Basin) has higher mean elevation and more intense Quaternary extension than does the southern Basin and Range, and a somewhat higher average heat flow. Present geothermal electric power generation (500+ MW) is entirely from hydrothermal systems of the Great Basin. The USGS is seeking industrial partners to investigate the potential for new hydrothermal reservoirs and to develop the technology to enhance the productivity of existing reservoirs.

  16. The large impact process inferred from the geology of lunar multiring basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1992-01-01

    The nature of the impact process has been inferred through the study of the geology of a wide variety of impact crater types and sizes. Some of the largest craters known are the multiring basins found in ancient terrains of the terrestrial planets. Of these features, those found on the Moon possess the most extensive and diverse data coverage, including morphological, geochemical, geophysical, and sample data. The study of the geology of lunar basins over the past 10 years has given us a rudimentary understanding of how these large structures have formed and evolved. The topics covered include basin morphology, basin ejecta, basin excavation, and basin ring formation.

  17. Assessment of undiscovered conventional oil and gas resources of Bonaparte Basin, Browse Basin, Northwest Shelf, and Gippsland Basin Provinces, Australia, 2011

    USGS Publications Warehouse

    Pollastro, Richard M.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Kirschbaum, Mark A.; Pitman, Janet K.; Schenk, Christopher J.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 4.7 billion barrels of undiscovered oil and 227 trillion cubic feet of undiscovered natural gas in three major offshore petroleum basins of northwest Australia and in the Gippsland Basin of southeast Australia.

  18. Effects of basin size on low-flow stream chemistry and subsurface contact time in the neversink river watershed, New York

    USGS Publications Warehouse

    Wolock, D.M.; Fan, J.; Lawrence, G.B.

    1997-01-01

    The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0.2 to 166.3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0.2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0.2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. ?? 1997 by John Wiley & Sons, Ltd.

  19. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taha, M.A.

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recentmore » well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.« less

  20. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  1. Reconnaissance stratigraphic studies in the Susitna basin, Alaska, during the 2014 field season

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth P.; Tsigonis, Rebekah

    2015-01-01

    The Susitna basin is a poorly-understood Cenozoic successor basin immediately north of Cook Inlet in south-central Alaska (Kirschner, 1994). The basin is bounded by the Castle Mountain fault and Cook Inlet basin on the south, the Talkeetna Mountains on the east, the Alaska Range on the north, and the Alaska–Aleutian Range on the west (fig. 2-1). The Cenozoic fill of the basin includes coal-bearing nonmarine rocks that are partly correlative with Paleogene strata in the Matanuska Valley and Paleogene and Neogene formations in Cook Inlet (Stanley and others, 2013, 2014). Mesozoic sedimentary rocks are present in widely-scattered uplifts in and around the margins of the basin; these rocks differ significantly from Mesozoic rocks in the forearc basin to the south. Mesozoic strata in the Susitna region were likely part of a remnant ocean basin that preceded the nonmarine Cenozoic basin (Trop and Ridgway, 2007). The presence of coal-bearing strata similar to units that are proven source rocks for microbial gas in Cook Inlet (Claypool and others, 1980) suggests the possibility of a similar system in the Susitna basin (Decker and others, 2012). In 2011 the Alaska Division of Geological & Geophysical Surveys (DGGS) and Alaska Division of Oil and Gas, in collaboration with the U.S. Geological Survey, initiated a study of the gas potential of the Susitna basin (Gillis and others, 2013). This report presents a preliminary summary of the results from 14 days of helicopter-supported field work completed in the basin in August 2014. The goals of this work were to continue the reconnaissance stratigraphic work begun in 2011 aimed at understanding reservoir and seal potential of Tertiary strata, characterize the gas source potential of coals, and examine Mesozoic strata for source and reservoir potential

  2. Active transtensional intracontinental basins: Walker Lane in the western Great Basin

    USGS Publications Warehouse

    Jayko, Angela S.; Bursik, Marcus

    2012-01-01

    The geometry and dimensions of sedimentary basins within the Walker Lane are a result of Plio-Pleistocene transtensive deformation and partial detachment of the Sierra Nevada crustal block from the North American plate. Distinct morpho-tectonic domains lie within this active transtensive zone. The northeast end of the Walker Lane is partly buried by active volcanism of the southern Cascades, and adjacent basins are filled or poorly developed. To the south, the basin sizes are moderate, 25–45km × 15–10 km, with narrow 8-12km wide mountain ranges mainly oriented N-S to NNE. These basins form subparallel arrays in discrete zones trending about 300° and have documented clockwise rotation. This is succeeded to the south by a releasing stepover domain ∼85-100km wide, where the basins are elongated E-W to ENE, small (∼15-30km long, 5-15km wide), and locally occupied by active volcanic centers. The southernmost part of the Walker Lane is structurally integrated, with high to extreme relief. Adjacent basins are elongate, 50-200km long and ∼5 -20km wide. Variations in transtensive basin orientations in the Walker Lane are largely attributable to variations in strain partitioning. Large basins in the Walker Lane have 2-6km displacement across basin bounding faults with up to 3 km of clastic accumulation based on gravity and drill hole data. The sedimentary deposits of the basins may include interbedded volcanic deposits with bimodal basaltic and rhyolitic associations. The basins may include lacustrine deposits that record a wide range of water chemistry from cold fresh water conditions to saline-evaporative

  3. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  4. Tectonic controls on rift basin morphology: Evolution of the northern Malawi (Nyasa) rift

    NASA Technical Reports Server (NTRS)

    Ebinger, C. J.; Deino, A. L.; Tesha, A. L.; Becker, T.; Ring, U.

    1993-01-01

    Radiometric (K-Ar and Ar-40/Ar-39) age determinations of volcanic and volcaniclastic rocks, combined with structural, gravity, and seismic reflection data, are used to constrain the age of sedimentary strata contained within the seismically and volcanically active northern Malawi (Nyasa) rift and to characterize changes in basin and flank morphologies with time. Faulting and volcanism within the Tukuyu-Karonga basin began at approximately 8.6 Ma, when sediments were deposited in abroad, initially asymmetric lake basin bounded on its northeastern side by a border fault system with minor topographic relief. Extensions, primarily by a slip along the border fault, and subsequent regional isostatic compensation led to the development of a 5-km-deep basin bounded by broad uplifted flanks. Along the low-relief basin margin opposite border fault, younger stratigraphic sequences commonly onlap older wedge-shaped sequences, although their internal geometry is often progradational. Intrabasinal faulting, flankuplift, and basaltic and felsic volcanism from centers at the northern end of the basin became more important at about 2.5 Ma when cross-rift transfer faults developed to link the Tukuyu-Karonga basin to the Rukwa basin. Local uplift and volcanic construction at the northern end of the basin led to a southeastward shift in the basin's depocenter. Sequence boundaries are commonly erosional along this low-relief (hanging wall) margin and conformable in the deep lake basin. The geometry of stratigraphic sequences and the distribution of the erosion indicate that horizontal and vertical crustal movements both across and along the length of the rift basin led to changes in levels of the lake, irrespective of paleoclimatic fluctuations.

  5. The evolution of a Late Cretaceous-Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Sliwa, Renate; Esterle, Joan; Rosenbaum, Gideon

    2017-12-01

    The Duaringa Basin in eastern Australia is a Late Cretaceous?-early Cenozoic sedimentary basin that developed simultaneously with the opening of the Tasman and Coral Seas. The basin occurs on the top of an earlier (Permian-Triassic) fold-thrust belt, but the negative inversion of this fold-thrust belt, and its contribution to the development of the Duaringa Basin, are not well understood. Here, we present geophysical datasets, including recently surveyed 2D seismic reflection lines, aeromagnetic and Bouguer gravity data. These data provide new insights into the structural style in the Duaringa Basin, showing that the NNW-striking, NE-dipping, deep-seated Duaringa Fault is the main boundary fault that controlled sedimentation in the Duaringa Basin. The major activity of the Duaringa Fault is observed in the southern part of the basin, where it has undergone the highest amount of displacement, resulting in the deepest and oldest depocentre. The results reveal that the Duaringa Basin developed in response to the partial negative inversion of the pre-existing Permian-Triassic fold-thrust belt, which has similar orientation to the extensional faults. The Duaringa Fault is the negative inverted part of a single Triassic thrust, known as the Banana Thrust. Furthermore, small syn-depositional normal faults at the base of the basin likely developed due to the reactivation of pre-existing foliations, accommodation faults, and joints associated with Permian-Triassic folds. In contrast to equivalent offshore basins, the Duaringa Basin lacks a complex structural style and thick syn-rift sediments, possibly because of the weakening of extensional stresses away from the developing Tasman Sea.

  6. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  7. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    NASA Astrophysics Data System (ADS)

    Fyhn, Michael B. W.; Boldreel, Lars O.; Nielsen, Lars H.

    2010-03-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin. The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated with SE Asian extrusion tectonism. The fault zone outlines a deep rift that widens to the south and connects with the main Malay Basin. In the central northern part of the basin, a series of intra-basinal left-lateral fracture zones are interconnected by NW to WNW-trending extensional faults and worked to distribute sinistral shearing across the width of the basin. Extensive thermal sagging throughout the Neogene has led to the accommodation of a very thick sedimentary succession. Moderate rifting resumed during the Early Miocene following older structural fabric. The intensity of rifting increases towards the west and was probably related to coeval extension in the western part of the Gulf of Thailand. Neogene extension culminated before the Pliocene, although faults in places remains active. Late Neogene basin inversion has been attributed to c. 70 km of right-lateral movement across major c. N-S-trending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion.

  8. Thermal evolution of sedimentary basins in Alaska

    USGS Publications Warehouse

    Johnsson, Mark J.; Howell, D.G.

    1996-01-01

    The complex tectonic collage of Alaska is reflected in the conjunction of rocks of widely varying thermal maturity. Indicators of the level of thermal maturity of rocks exposed at the surface, such as vitrinite reflectance and conodont color alteration index, can help constrain the tectonic evolution of such complex regions and, when combined with petrographic, modern heat flow, thermogeochronologic, and isotopic data, allow for the detailed evaluation of a region?s burial and uplift history. We have collected and assembled nearly 10,000 vitrinite-reflectance and conodont-color-alteration index values from the literature, previous U.S. Geological Survey investigations, and our own studies in Alaska. This database allows for the first synthesis of thermal maturity on a broadly regional scale. Post-accretionary sedimentary basins in Alaska show wide variability in terms of thermal maturity. The Tertiary interior basins, as well as some of the forearc and backarc basins associated with the Aleutian Arc, are presently at their greatest depth of burial, with immature rocks exposed at the surface. Other basins, such as some backarc basins on the Alaska Peninsula, show higher thermal maturities, indicating modest uplift, perhaps in conjunction with higher geothermal gradients related to the arc itself. Cretaceous ?flysch? basins, such as the Yukon-Koyukuk basin, are at much higher thermal maturity, reflecting great amounts of uplift perhaps associated with compressional regimes generated through terrane accretion. Many sedimentary basins in Alaska, such as the Yukon-Koyukuk and Colville basins, show higher thermal maturity at basin margins, perhaps reflecting greater uplift of the margins in response to isostatic unloading, owing to erosion of the hinterland adjacent to the basin or to compressional stresses adjacent to basin margins.

  9. One-side riddled basin below and beyond the blowout bifurcation

    NASA Astrophysics Data System (ADS)

    Yang, H. L.

    2000-10-01

    In this Rapid Comunication we report a phenomenon of a one-side riddled basin where one side of the basin of attraction of an attractor on an invariant subspace (ISS) is globally riddled, while the other side is only locally riddled. This kind of basin appears due to the symmetry breaking with respect to the ISS. This one-side riddled basin can even persist beyond the blowout bifurcation, contrary to the previously reported riddled basins which exist only below the blowout transition. An experimental situation where this phenomenon can be expected is proposed.

  10. Coal-bed gas resources of the Rocky Mountain region

    USGS Publications Warehouse

    Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.

    2001-01-01

    The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.

  11. Oil Shale in the Piceance Basin: An Analysis of Land Use Issues,

    DTIC Science & Technology

    1983-07-01

    basins -the Piceance, Uinta , Green River, and Washakie. The locations of these basins are shown on the map of the Green River Formation in Fig. 3...commercial interest. Deposits of low grade shale in the other basins are thin and scattered. Only the rich (30 gpt) deposits in the Uinta Basin are of...r n~p I S 806 OIL SHALE, IN lilE PICCANCE BASIN : AN ANALYSIS of LAND USE ISSUESIUI RAND CORP SANtA MONICA CA lJN IASIFID 0 RUBENSON El AL. JUL 83

  12. Hand-Hewn Granite Basins at Native American Saltworks, Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Diggles, Michael F.

    2009-01-01

    This site in the northern Sierra Nevada contains about 369 circular basins carved in fresh, glaciated granodioritic bedrock, with 325 basins crowded together in an area of 2,700 m2 on the main terrace. These terrace basins have a median average diameter of 125 cm (80 percent between 100 and 160 cm) and a median depth of 75-80 cm. They show a strong congruity to similar granitic basins in the southern Sierra Nevada apparently of Native American origin that are generally shallower. The basins are not of natural origin, as indicated by uniformity in size and nonoverlapping character of the basins; their common arrangement in lineaments; details of the shape of the basins; features in common with granite basins in the Southern Sierra Nevada; and, most compelling, the clustering of all the basins adjacent to (within 20 m of) two saline streams fed from a nearby salt spring. Native Americans apparently excavated them for the purpose of collecting saline water to evaporate and make salt for their use, and also as an animal attractant and a trade commodity. The flow of the salty streams delivers about 2.9 metric tons of salt per summer season to the basin area, and evaporation rates and the holding capacity of the basins indicate that about 2.5 tons of salt could be produced per season. This correspondence shows that the Indians made enough basins to exploit the resource. The site is the most impressive prehistoric saltworks yet discovered in North America and represents a unique departure from traditional hunter-gatherer activities to that of manufacturing. The actual grinding of so many basins in granite could not have been done without the labor of a concentrated population. It is believed that the work was accomplished over a long time by many people and with the use of fire to help disaggregate the bedrock.

  13. Drainage reorganization and divide migration induced by the excavation of the Ebro basin (NE Spain)

    NASA Astrophysics Data System (ADS)

    Vacherat, Arnaud; Bonnet, Stéphane; Mouthereau, Frédéric

    2018-05-01

    Intracontinental endorheic basins are key elements of source-to-sink systems as they preserve sediments eroded from the surrounding catchments. Drainage reorganization in such a basin in response to changing boundary conditions has strong implications on the sediment routing system and on landscape evolution. The Ebro and Duero basins represent two foreland basins, which developed in response to the growth of surrounding compressional orogens, the Pyrenees and the Cantabrian mountains to the north, the Iberian Ranges to the south, and the Catalan Coastal Range to the east. They were once connected as endorheic basins in the early Oligocene. By the end of the Miocene, new post-orogenic conditions led to the current setting in which the Ebro and Duero basins are flowing in opposite directions, towards the Mediterranean Sea and the Atlantic Ocean. Although these two hydrographic basins recorded a similar history, they are characterized by very different morphologic features. The Ebro basin is highly excavated, whereas relicts of the endorheic stage are very well preserved in the Duero basin. The contrasting morphological preservation of the endorheic stage represents an ideal natural laboratory to study the drivers (internal and/or external) of post-orogenic drainage divide mobility, drainage network, and landscape evolution. To that aim, we use field and map observations and we apply the χ analysis of river profiles along the divide between the Ebro and Duero drainage basins. We show here that the contrasting excavation of the Ebro and Duero basins drives a reorganization of their drainage network through a series of captures, which resulted in the southwestward migration of their main drainage divide. Fluvial captures have a strong impact on drainage areas, fluxes, and their respective incision capacity. We conclude that drainage reorganization driven by the capture of the Duero basin rivers by the Ebro drainage system explains the first-order preservation of endorheic stage remnants in the Duero basin, due to drainage area loss, independently from tectonics and climate.

  14. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  15. Hydrogeological framework and geometry modeling via joint gravity and borehole parameters, the Nadhour-Sisseb-El Alem basin (central-eastern Tunisia)

    NASA Astrophysics Data System (ADS)

    Souei, Ali; Atawa, Mohamed; Zouaghi, Taher

    2018-03-01

    The Nadhour-Sisseb-El Alem basin, in the central-eastern part of Tunisia, is characterized by the scarcity of surface and subsurface water resources. Although the aquifer systems of this basin are not well understood, the scarce water resources are subject to a high rate of exploitation leading to a significant drop in the level of the water table. This work presents correlation of gravity data with hydrogeological data in order to improve the knowledge of the deep structures and aquifer systems. Various geophysical filtering techniques (e.g., residual anomaly, upward continuation, horizontal gradient, and Euler deconvolution) applied to the complete Bouguer anomaly, deduce the deep structures and geometry of the basin and highlight gravity lineaments that correspond to the tectonic features. The structural framework of the Nadhour-Sisseb-El Alem hydrogeological basin shows N-S to NNE-SSW and E-W oriented structures that should be related to tectonic deformations. In addition to the faults, previously recognized, new lineaments are highlighted by the present work. They correspond to NE-, NW-, E- and N- trending faults that have controlled structuring and geometry of the basin. 2D gravity forward modeling, based on the interpretation of geophysical, geological and hydrogeological data, led to a better understanding of the basin geometry and spatial distribution of the Campanian-Maastrichtian and Cenozoic potential aquifers. Three hydrogeological sub-basins identified include the Nadhour sub-basin in the north, the El Alem sub-Basin in the South and the Etrabelsia sub-Basin in the East. These sub-basins are marked by a thickening of deposits, are separated by the Sisseb-Fadeloun raised structure of Neogene and Quaternary thinned series. The results allow the determination of limit conditions for the basin hydrodynamic evolution and explain some anomalies on the quantity and quality of the groundwater. They provide a management guide for water resources prospection in Atlassic basins in North Africa.

  16. Ground-water hydrology and water quality of Irwin Basin at Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.; Londquist, Clark J.

    1997-01-01

    Geohydrologic data were collected from Irwin Basin at Fort Irwin National Training Center in the Mojave Desert of southern California by the U.S. Geological Survey during 199296 to deter mine the quantity and quality of ground water available in this basin. In addition to data collected from existing wells and test holes, 17 monitoring sites were constructed in Irwin Basin to provide data on subsurface geology, ground-water levels, and ground-water quality. Eleven of these sites were multiple-well monitoring sites that were constructed to provide depth-dependent geohydrologic data in the aquifer system. The aquifer system of Irwin Basin, defined on the basis of hydrologic data collected from wells in Irwin Basin, consists of an upper and a lower aquifer. A 1994 water-table contour map shows that a cone of depression beneath Irwin Basin well field has developed as a result of ground-water development. Water-quality samples collected from Irwin Basin wells to determine potential sources of ground-water degradation indicate that water in three areas in the basin contains high nitrate and dissolved-solids concentrations. The stable isotopes of oxygen and hydrogen indicate that present-day precipitation is not a major source of recharge in this basin. Tritium and carbon-14 data indicate that most of the basin was recharged before 1953 and that this water may be more than 14,000 years old.

  17. Aspects of Hydrological Modelling In The Punjab Himalayan and Karakoram Ranges, Pakistan

    NASA Astrophysics Data System (ADS)

    Loukas, A.; Khan, M. I.; Quick, M. C.

    Various aspects of hydrologic modelling of high mountainous basins in the Punjab Hi- malayan and Karakoram ranges of Northern Pakistan were studied. The runoff from three basins in this region was simulated using the U.B.C. watershed model, which re- quires limited meteorological data of minimum and maximum daily temperature and precipitation. The structure of the model is based on the concept that the hydrolog- ical behavior is a function of elevation and thus, a watershed is conceptualized as a number of elevational zones. A simplified energy budget approach, which is based on daily maximum and minimum temperature and can account for forested and open areas, and aspect and latitude, is used in the U.B.C. model for the estimation of the snowmelt and glacier melt. The studied basins have different hydrological responses and limited data. The runoff from the first basin, the Astore basin, is mainly gener- ated by snowmelt. In the second basin, the Kunhar basin, the runoff is generated by snowmelt but significant redistribution of snow, caused by snow avalanches, affect the runoff generation. The third basin, the Hunza basin, is a highly glacierized basin and its runoff is mainly generated by glacier melt. The application of the U.B.C. watershed model to these three basins showed that the model could estimate reasonably well the runoff generated by the different components.

  18. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at themore » universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.« less

  19. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Liu, Shu-gen; Li, Zhi-wu; Jansa, Luba F.; Liu, Shun; Wang, Guo-zhi; Sun, Wei

    2013-04-01

    New apatite fission-track (AFT) ages from Mesozoic sediments in the Sichuan basin, combined with previous fission-track data, demonstrate differential uplift and exhumation across the basin. Particularly significant change in exhumation (at least ~ 2000 m) was found across the Huaying Mts. Modeled temperature-time histories and the Boomerang plot of AFT dataset across the basin suggest rapid cooling and exhumation events during 120-80 Ma and at 20-10 Ma. They reflect the start of the basin-scale differential uplift and exhumation which effected the eastern growth of Tibetan Plateau. In particular, nested old-age center separated by Huaying Mts. was found in the center-to-northwest part of the Sichuan basin. A simplified one-dimensional, steady-state solution model was developed to calculate the mean exhumation rate, which is 0.05-0.2 mm/yr in most parts of the basin. It suggests a slow exhumation across much of the basin. The regional pattern of AFT age, length and erosion rate supports a progressive change from the nested old-age center towards the southwest. This pattern supports the idea of a prolonged, steady-state uplift and exhumation process across the basin, controlled by cratonic basin structure. The eastern growth of the Tibetan Plateau has exerted a significant effect on the rapid exhumation of the southwestern part of the Sichuan basin, but not on all of the basin during the Late Cenozoic.

  20. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  1. Water resources of Soledad, Poway, and Moosa basins, San Diego County, California

    USGS Publications Warehouse

    Evenson, K.D.

    1989-01-01

    Reclaimed water is being considered as as supplemental water supply in the Soledad, Poway, and Moosa basins, San Diego County. This report describes the geology, soils, hydrology, and cultural factors in each of the basins as they relate to use of reclaimed water. Imported water is currently the major water-supply source in the basins. Groundwater supplies are used to a limited extent for both agricultural and domestic needs. Surface water flows are intermittent and, therefore, have not been developed for use in the basins. All three of the basins have the potential for use of reclaimed water, but only the Moosa basin is currently implementing a plan for such use. Concentrations of dissolved solids, chloride, and sulfate in both ground and surface water commonly exceed local basin objectives. As of 1985, plans for use of reclaimed water are oriented toward improving the quality of the groundwater. (USGS)

  2. Discovery of multi-ring basins - Gestalt perception in planetary science

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1981-01-01

    Early selenographers resolved individual structural components of multi-ring basin systems but missed the underlying large-scale multi-ring basin patterns. The recognition of multi-ring basins as a general class of planetary features can be divided into five steps. Gilbert (1893) took a first step in recognizing radial 'sculpture' around the Imbrium basin system. Several writers through the 1940's rediscovered the radial sculpture and extended this concept by describing concentric rings around several circular maria. Some reminiscences are given about the fourth step - discovery of the Orientale basin and other basin systems by rectified lunar photography at the University of Arizona in 1961-62. Multi-ring basins remained a lunar phenomenon until the fifth step - discovery of similar systems of features on other planets, such as Mars (1972), Mercury (1974), and possibly Callisto and Ganymede (1979). This sequence is an example of gestalt recognition whose implications for scientific research are discussed.

  3. The national hydrologic bench-mark network

    USGS Publications Warehouse

    Cobb, Ernest D.; Biesecker, J.E.

    1971-01-01

    The United States is undergoing a dramatic growth of population and demands on its natural resources. The effects are widespread and often produce significant alterations of the environment. The hydrologic bench-mark network was established to provide data on stream basins which are little affected by these changes. The network is made up of selected stream basins which are not expected to be significantly altered by man. Data obtained from these basins can be used to document natural changes in hydrologic characteristics with time, to provide a better understanding of the hydrologic structure of natural basins, and to provide a comparative base for studying the effects of man on the hydrologic environment. There are 57 bench-mark basins in 37 States. These basins are in areas having a wide variety of climate and topography. The bench-mark basins and the types of data collected in the basins are described.

  4. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  5. Implications of new ^{40}Ar/^{39}Ar age of Mallapur Intrusives on the chronology and evolution of the Kaladgi Basin, Dharwar Craton, India

    NASA Astrophysics Data System (ADS)

    Pillai, Shilpa Patil; Pande, Kanchan; Kale, Vivek S.

    2018-04-01

    The Kaladgi Basin on the northern edge of the Dharwar craton has characters diverse from the other epicratonic Purana basins of Peninsular India. Sedimentological studies in the basin have established the presence of three cycles of flooding separated by an event of intra-basinal deformation accompanied by low grade incipient metamorphism. The overall structural configuration of the basin indicates its development by supracrustal extension accompanied by shearing in a trans-tensional regime during the Mesoproterozoic. This was followed by sagging that yielded Neoproterozoic sedimentation in a successor nested basin. ^{40}Ar/^{39}Ar dating of an intrusive mafic dyke along the axial plane of a fold has yielded a plateau age of 1154{± }4 Ma. This helps constraint the age of the various events during the evolution of this basin.

  6. Use of BasinTemp to model summer stream temperatures in the south fork of Ten Mile River, CA

    Treesearch

    Rafael Real de Asua; Ethan Bell; Bruce Orr; Peter Baker; Kevin Faucher

    2012-01-01

    We used BasinTemp to predict summer stream temperatures in South Fork Ten Mile River (SFTMR), Mendocino County. BasinTemp is a temperature model that attempts to quantify the basin-wide effects of high summer stream temperatures in basins where the data inputs are scarce. It assumes that direct solar radiation is the chief...

  7. Characterizing post-drainage succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI data

    USGS Publications Warehouse

    Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey

    2012-01-01

    Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  8. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    USGS Publications Warehouse

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio Conchos watershed and much of the Chihuahuan Desert, inducing broad regional landscape incision and exhumation.

  9. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  10. Relation of urban land-use and land-surface characteristics to quantity and quality of storm runoff in two basins in California

    USGS Publications Warehouse

    Sylvester, Marc A.; Brown, William M.

    1978-01-01

    Two basins (Castro Valley Creek, in Alameda County, and Strong Ranch Slough, in Sacramento County) in the San Francisco Bay and Sacramento-San Joaquin Delta region (Bay-Delta region) were sampled intensively (3-15 minute intervals) during three storms between October 1974 and April 1975. Both basins are primarily residential, but the Strong Ranch Slough basin is almost entirely urbanized and nearly flat, while the Castro Valley Creek basin possesses some rural areas and slopes greater than 70 percent in the headwaters. Water discharge and concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, nitrite and nitrate, total Kjeldahl nitrogen, total orthophosphorus, and settleable matter were usually greater at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Concentrations of these constituents and water discharge changed more rapidly at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Of the four subbasins sampled (two in each basin), constituent concentrations in runoff from a residential subbasin were usually greatest. Quantity and quality of runoff were related to environmental characteristics such as slope, perviousness, residential development and maintenance, and channel conditions. Greater water discharge and concentrations of constituents in the Castro Valley Creek basin seem to be partly due to steeper slopes, less perviousness, and smaller residential lot sizes than are in the Strong Ranch Slough basin. Erosion of steep slopes disturbed by grazing and residential development, poorly maintained dwellings and lots, and a mostly earthen drainage channel in the Castro Valley Creek basin are probably responsible for the greater concentrations of suspended solids and settleable matter in runoff from this basin. In both basins, the highest observed concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, settleable matter, total Kjeldahl nitrogen, and total orthophosphorus were observed at or near peak water discharges. Flow-weighted and arithmetic-mean concentrations of suspended solids in Castro Valley Creek exceed the arithmetic-mean concentration of suspended solids in medium-strength untreated sewage. These results indicate that control of urban storm runoff in the Bay-Delta region may be desirable to protect receiving water.

  11. Groundwater quality in the Lake Champlain and Susquehanna River basins, New York, 2014

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2016-11-04

    In a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, groundwater samples were collected from 6 production wells and 7 domestic wells in the Lake Champlain Basin and from 11 production wells and 9 domestic wells in the Susquehanna River Basin in New York. All samples were collected from June through December 2014 to characterize groundwater quality in these basins. The samples were collected and processed using standard procedures of the U.S. Geological Survey and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.The Lake Champlain Basin study area covers the 3,050 square miles of the basin in northeastern New York; the remaining part of the basin is in Vermont and Canada. Of the 13 wells sampled in the Lake Champlain Basin, 6 are completed in sand and gravel, and 7 are completed in bedrock. Groundwater in the Lake Champlain Basin was generally of good quality, although properties and concentrations of some constituents— fluoride, iron, manganese, dissolved solids, sodium, radon-222, total coliform bacteria, fecal coliform bacteria, and Escherichia coli bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (5 of 13 samples) was radon-222.The Susquehanna River Basin study area covers the entire 4,522 square miles of the basin in south-central New York; the remaining part of the basin is in Pennsylvania. Of the 20 wells sampled in the Susquehanna River Basin, 11 are completed in sand and gravel, and 9 are completed in bedrock. Groundwater in the Susquehanna River Basin was generally of good quality, although properties and concentrations of some constituents—pH, chloride, sodium, dissolved solids, iron, manganese, aluminum, arsenic, barium, gross-alpha radioactivity, radon-222, methane, total coliform bacteria, and fecal coliform bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. As in the Lake Champlain Basin, the constituent most frequently detected in concentrations exceeding drinking-water standards (13 of 20 samples) was radon-222.

  12. Structural Framework and Architecture of the Paleoproterozoic Bryah and Padbury Basins from Integrated Potential Field and Geological Datasets: Towards an Understanding of the Basin Evolution

    NASA Astrophysics Data System (ADS)

    Nigro R A Ramos, L.; Aitken, A.; Occhipinti, S.; Lindsay, M.

    2017-12-01

    The Bryah and Padbury Basins were developed along the northern margin of the Yilgarn Craton, in the southern portion of the Capricorn Orogen, which represents a Proterozoic tectonic zone that bounds the Yilgarn and Pilbara Cratons in Western Australia. These basins have been previously interpreted as developing in a rift, back-arc, and retro-arc foreland basins. Recent studies suggest that the Bryah Basin was deposited in a rift setting, while the overlying Padbury Basin evolved in a pro-foreland basin during the collision of the Yilgarn Craton and the Pilboyne block (formed by the Pilbara Craton and the Glenburgh Terrane), occurring in the Glenburgh Orogeny (2005-1960 Ma). This study focuses on characterizing the architecture and structural framework of the Bryah and Padbury Basins through analysis of geophysical and geological datasets, in order to better understand the different stages of the basins evolution. Gravity and magnetic data were used to define the main tectonic units and lithological boundaries, and to delineate major discontinuities in the upper and lower crust, as well as anomalies through a combination of map view interpretation and forward modelling. Geological mapping and drill core observations were linked with the geophysical interpretations. Fourteen magnetic domains are distinguished within the basins, while four main domains based on the Bouguer Anomaly are recognized. The highest gravity amplitude is related with an anomaly trending EW/NE-SW, which is coincident with the voluminous mafic rocks of the Bryah Basin, and may indicate the presence of an approximately 5km thick package of higher density mafic rocks. Magnetic depth estimations also indicate deep magnetic sources up to approximately 4,45km. These results can help to elucidate processes that occurred during the precursor rift of the early stages of the Bryah Basin, add information in relation to the basement control on sedimentation, allow the characterization of the varying thickness of the units from the Bryah and Padbury basins, and permit a synthesis describing basin evolution.

  13. Tectonic evolution and hydrocarbon accumulation in the Yabulai Basin, western China

    NASA Astrophysics Data System (ADS)

    Zheng, Min; Wu, Xiaozhi

    2014-05-01

    The Yabulai petroliferous basin is located at the north of Hexi Corridor, western China, striking NEE and covering an area of 1.5×104 km2. It is bounded on the south by Beidashan Mountain to the Chaoshui Basin, on the east by Bayanwulashan Mountain to the Bayanhaote Basin, and on the northwest by Yabulai Mountain to the Yingen-Ejinaqi Basin. It is a Meso-cenozoic compressive depression residual basin. In view of regional geotectonics, the Yabulai basin sits in the middle-southern transition belt of Arershan massif in North China Craton. Driven by Indosinian movement at the late Triassic, two near EW normal faults were developed under the regional extensional stress along the northern fringe of Beidashan Mountain and the southern fringe of Yabulai Mountain front in the Arershan massif, forming the embryonic form of the Yabulai rift lake basin. Since Yanshan period, the Yabulai basin evolved in two major stages: Jurassic rift lake basin and Cretaceous rift lake basin. During early Yanshan period, EW striking Yabulai tensional rift was formed. Its major controlling fault was Beidashan normal fault, and the depocenter was at the south of this basin. During middle Yanshan period, collision orogenesis led to sharp uplift at the north of this basin where the middle-lower Jurassic formations were intensely eroded. During late Yanshan period, the Alashan massif and its northern area covered in an extensional tectonic environment, and EW striking normal faults were generated at the Yabulai Mountain front. Such faults moved violently and subsided quickly to form a new EW striking extensional rift basin with the depocenter at the south of Yabulai Mountain. During Himalayan period, the Alashan massif remained at a SN horizontal compressional tectonic environment; under the compressional and strike slip actions, a NW striking and south dipping thrusting nappe structure was formed in the south of the Yabulai basin, which broke the Beidashan normal fault to provide the echelon fault system and finally present the current structural framework of "east uplift and west depression, south faulted and north overlapping". The Yabulai basin presented as a strike-slip pull-apart basin in Mesozoic and a compressional thrusting depression basin in Cenozoic. Particularly, the Mesozoic tectonic units were distributed at a big included angle with the long axis of the basin, while the Cenozoic tectonic units were developed in a basically consistent direction with the long axis. The sags are segmented. Major subsiding sags are located in the south, where Mesozoic Jurassic-Cretaceous systems are developed, with the thickest sedimentary rocks up to 5300m. Jurassic is the best developed system in this basin. Middle Jurassic provides the principal hydrocarbon-bearing assemblage in this basin, with Xinhe Fm. and Qingtujing Fm. dark mudstone and coal as the source rocks, Xinhe Fm. and Qingtujing Fm. sandstones as the reservoir formation, and Xinhe Fm. mudstones as the cap rocks. However, the early burial and late uplifting damaged the structural framework of the basin, thus leading to the early violent compaction and tightness of Jurassic sandstone reservoir and late hydrocarbon maturity. So, tectonic development period was unmatched to hydrocarbon expulsion period of source rocks. The hydrocarbons generated were mainly accumulated near the source rocks and entrapped in reservoir. Tight oil should be the major exploration target, which has been proved by recent practices.

  14. U.S. Geological Survey middle Rio Grande basin study; proceedings of the third annual workshop, Albuquerque, New Mexico, February 24-25, 1999

    USGS Publications Warehouse

    Bartolino, James R.

    1999-01-01

    Approximately 40 percent (about 600,000 people) of the total population of New Mexico lives within the Middle Rio Grande Basin, which includes the City of Albuquerque. Ongoing analyses of the central portion of the Middle Rio Grande Basin by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque and other agencies have shown that ground water in the basin is not as readily accessible as earlier studies indicated. A more complete characterization of the ground-water resources of the entire Middle Rio Grande Basin is hampered by a scarcity of data in the northern and southern areas of the basin. The USGS Middle Rio Grande Basin study is a 5-year effort by the USGS and other agencies to improve the understanding of the hydrology, geology, and land-surface characteristics of the Middle Rio Grande Basin. The primary objective of this study is to improve the understanding of the water resources of the basin. Of particular interest is to determine the extent of hydrologic connection between the Rio Grande and the Santa Fe Group aquifer. Additionally, ground-water quality affects the availability of water supplies in the basin. Improving the existing USGS-constructed ground-water flow model of the Middle Rio Grande Basin will integrate all the various tasks that improve our knowledge of the various components of the Middle Rio Grande water budget. Part of this improvement will be accompanied by extended knowledge of the aquifer system beyond the Albuquerque area into the northern and southern reaches of the basin. Other improvements will be based on understanding gained through process-oriented research and improved geologic characterization of the deposits. The USGS and cooperating agencies will study the hydrology, geology, and land-surface characteristics of the basin to provide the scientific information needed for water-resources management and for managers to plan for water supplies needed for a growing population. To facilitate exchange of information among the scientists working on the Middle Rio Grande Basin study, yearly technical meetings have been held for each of the first 3 years of the anticipated 5-year study. These meetings provide an opportunity to present research results and plan new field efforts. This report documents the results of research presented at the third annual technical workshop held in Albuquerque, New Mexico, February 24-25, 1999. The report is organized into this introduction and five chapters that focus on Middle Rio Grande Basin study investigations in progress in the Middle Rio Grande Basin. The first chapter describes geographic data and analysis efforts in the basin. The second chapter details work being done on the hydrogeologic and geologic framework of the basin. The third chapter describes studies on ground-water recharge in the basin. The fourth chapter provides details on the research on the ground-water flow system in the basin, including modeling efforts. The fifth chapter is devoted to an overview of New Mexico District Cooperative Program studies in the basin. The information in this report presents preliminary results of an evolving study. As the study progresses and individual projects publish their results in more detail, the USGS hopes to expand the scientific basis needed for management decisions regarding the Middle Rio Grande Basin.

  15. Evaluating temporal changes in stream condition in three New Jersey rive basins by using an index of biotic integrity

    USGS Publications Warehouse

    Chang, Ming; Kennen, Jonathan G.; Del Corso, Ellyn

    2000-01-01

    An index of biotic integrity (!B!) modified for New Jersey streams was used to compare changes in stream condition from the 1970s to the 1990s in Delaware, Passaic, and Raritan River Basins. Stream condition was assessed at 88 sampling locations. Mean IBI scores for all basins increased from the 1970s to the 1990s, but the stream-condition category improved (from fair to good) only for the Delaware River Basin. The number of benthic insectivores and the proportion of insectivorous cyprinds increased in all three basins; however, the number of white suckers decreased significantly only in the Delaware River Basin. Results of linear-regression analysis indicate a significant correlation between the percentage of altered land in the basin and change in IBI score (1970s to 1990s) for Delaware River sites. Results of analysis of variance of the rank-transformed IBI scores for the 1970s and 1990s indicate that the three basins was equal in the 1970s. Results of a multiple-comparison test demonstrated that the 1990s IBI values for the Delaware River Basin differed significantly from those for the Passaic and Raritan River Basins. Many factors, such as the imposition of the more stringent standards on water-water and industrial discharges during the 1980s and changes in land-use practices, likely contributed to the change in the Delaware River Basin. A general increase in IBI values for the Passaic, Raritan, and Delaware River Basins over the past 25 years appears to reflect overall improvements in water quality.

  16. Petroleum prospects for offshore sedimentary basins in the eastern Papua New Guinea and Solomon Islands regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruns, T.R.; Vedder, J.G.

    Intra-arc basins in the Buka-Bougainville region of Papua New Guinea and in the Solomon Islands contain thick sedimentary sequences that may be prospective for petroleum. The Queen Emma basin, between Bougainville and New Ireland, contains as much as 8 km of deformed Oligocene and younger strata. The Central Solomons Trough, which underlies New Georgia Sound, is a composite intra-arc basin that contains late Oligocene and younger strata as much as 7 km thick. Farther east, beneath Indispensable Strait, the down-faulted Indispensable basin locally contains as much as 5.4 km of Miocene( ) and younger strata, and the offshore part ofmore » Mbokokimbo basin off eastern Guadalcanal includes 6 km or more of late Miocene and younger strata. All of these basins have some of the attributes necessary to generate and trap petroleum. Structural and stratigraphic traps are common, including faulted anticlines, sedimentary wedges, and carbonate reefs and reef-derived deposits on submarine ridges and along the basin margins. The thickness of the basin deposits ensures that some strata are buried deeply enough to be within the thermal regime required for hydrocarbon generation. However, little source or reservoir rock information is available because of the lack of detailed surface and subsurface stratigraphy. Moreover, much of the basin sediment is likely to consist of volcaniclastic material, derived from uplifted volcanogenic rocks surrounding the basins, and may be poor in source and reservoir rocks. Until additional stratigraphic information is available, analysis of the petroleum potential of these basins is a matter of conjecture.« less

  17. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy

    USGS Publications Warehouse

    Moore, T.C.; Klitgord, Kim D.; Golmshtok, A.J.; Weber, E.

    1997-01-01

    Comparison of sedimentation patterns, basement subsidence, and faulting histories in the north and central basins of Lake Baikal aids in developing an interbasinal seismic stratigraphy that reveals the early synrift evolution of the central portion of the Baikal rift, a major continental rift system. Although there is evidence that the central and northern rift basins evolved at approximately the same time, their sedimentation histories are markedly different. Primary sediment sources for the initial rift phase were from the east flank of the rift; two major deltas developed adjacent to the central basin: the Selenga delta at the south end and the Barguzin delta at the north end. The Barguzin River system, located at the accommodation zone between the central and north basins, also fed into the southern part of the north basin and facilitated the stratigraphic linkage of the two basins. A shift in the regional tectonic environment in the mid Pliocene(?) created a second rift phase distinguished by more rapid subsidence and sediment accumulation in the north basin and by increased subsidence and extensive faulting in the central basin. The Barguzin delta ceased formation and parts of the old delta system were isolated within the north basin and on Academic Ridge. These isolated deltaic deposits provide a model for the development of hydrocarbon plays within ancient rift systems. In this second tectonic phase, the dominant sediment fill in the deeper and more rapidly subsiding north basin shifted from the flexural (eastern) margin to axial transport from the Upper Angara River at the north end of the basin.

  18. Evaluating Satellite-based Rainfall Estimates for Basin-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Yilmaz, K. K.; Hogue, T. S.; Hsu, K.; Gupta, H. V.; Mahani, S. E.; Sorooshian, S.

    2003-12-01

    The reliability of any hydrologic simulation and basin outflow prediction effort depends primarily on the rainfall estimates. The problem of estimating rainfall becomes more obvious in basins with scarce or no rain gauges. We present an evaluation of satellite-based rainfall estimates for basin-scale hydrologic modeling with particular interest in ungauged basins. The initial phase of this study focuses on comparison of mean areal rainfall estimates from ground-based rain gauge network, NEXRAD radar Stage-III, and satellite-based PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and their influence on hydrologic model simulations over several basins in the U.S. Six-hourly accumulations of the above competing mean areal rainfall estimates are used as input to the Sacramento Soil Moisture Accounting Model. Preliminary experiments for the Leaf River Basin in Mississippi, for the period of March 2000 - June 2002, reveals that seasonality plays an important role in the comparison. There is an overestimation during the summer and underestimation during the winter in satellite-based rainfall with respect to the competing rainfall estimates. The consequence of this result on the hydrologic model is that simulated discharge underestimates the major observed peak discharges during early spring for the basin under study. Future research will entail developing correction procedures, which depend on different factors such as seasonality, geographic location and basin size, for satellite-based rainfall estimates over basins with dense rain gauge network and/or radar coverage. Extension of these correction procedures to satellite-based rainfall estimates over ungauged basins with similar characteristics has the potential for reducing the input uncertainty in ungauged basin modeling efforts.

  19. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.

    2015-12-01

    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern exposures of the Morelos platform to the west. The eastward extension of this system limits the northern Acatlan Complex exposures. Accordingly, eastern TMVB has been subjected to extension and associated faults are being activated at present. The basins act as independent crustal blocks. The Puebla-Tlaxcala and the Tehuacan basins merge to the east.

  20. Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) revisited

    NASA Astrophysics Data System (ADS)

    López-Gamundí, O. R.; Rossello, E. A.

    As integral parts of du Toit's (1927) ``Samfrau Geosyncline'', the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) share similar paleoclimatic, paleogeographic, and paleotectonic aspects related to the Late Paleozoic tectono-magmatic activity along the Panthalassan continental margin of Gondwanaland. Late Carboniferou-earliest Permian glacial deposits were deposited in the Sauce Grande (Sauce Grande Formation) and Karoo (Dwyka Formation) basins and Falkland-Malvinas Islands (Lafonia Formation) during an initial (sag) phase of extension. The pre-breakup position of the Falkland (Malvinas) Islands on the easternmost part of the Karoo basin (immediately east of the coast of South Africa) is supported by recent paleomagnetic data, lithofacies associations, paleoice flow directions and age similarities between the Dwyka and the Lafonia glacial sequences. The desintegration of the Gondwanan Ice Sheet (GIS) triggered widespread transgressions, reflected in the stratigraphic record by the presence of inter-basinally correlatable, open marine, fine-grained deposits (Piedra Azul Formation in the Sauce Grande basin, Prince Albert Formation in the Karoo basin and Port Sussex Formation in the Falkland Islands) capping glacial marine sediments. These early postglacial transgressive deposits, characterised by fossils of the Eurydesma fauna and Glossopteris flora, represent the maximum flooding of the basins. Cratonward foreland subsidence was triggered by the San Rafael orogeny (ca. 270 Ma) in Argentina and propogated along the Gondwanan margin. This subsidence phase generated sufficient space to accommodate thick synorogenic sequences derived from the orogenic flanks of the Sauce Grande and Karoo basins. Compositionally, the initial extensional phase of these basins was characterized by quartz-rich, craton-derived detritus and was followed by a compressional (foreland) phase characterized by a paleocurrent reversal and dominance of arc/foldbelt-derived material. In the Sauce Grande basin, tuffs are interbedded in the upper half of the synorogenic, foldbelt-derived Tunas Formation (Early-early Late? Permian). Likewise, the first widespread appearance of tuffs in the Karoo basin is in the Whitehill Formation, of late Early Permian (260 Ma) age. Silicic volcanism along the Andes and Patagonia (Choiyoi magmatic province) peaked between the late Early Permian and Late Permian. A link between these volcanics and the consanguineous airborne tuffs present in the Sauce Grande and Karoo basins is suggested on the basis of their similar compositions and ages.

  1. Use of environmental isotope tracer and GIS techniques to estimate basin recharge

    NASA Astrophysics Data System (ADS)

    Odunmbaku, Abdulganiu A. A.

    The extensive use of ground water only began with the advances in pumping technology at the early portion of 20th Century. Groundwater provides the majority of fresh water supply for municipal, agricultural and industrial uses, primarily because of little to no treatment it requires. Estimating the volume of groundwater available in a basin is a daunting task, and no accurate measurements can be made. Usually water budgets and simulation models are primarily used to estimate the volume of water in a basin. Precipitation, land surface cover and subsurface geology are factors that affect recharge; these factors affect percolation which invariably affects groundwater recharge. Depending on precipitation, soil chemistry, groundwater chemical composition, gradient and depth, the age and rate of recharge can be estimated. This present research proposes to estimate the recharge in Mimbres, Tularosa and Diablo Basin using the chloride environmental isotope; chloride mass-balance approach and GIS. It also proposes to determine the effect of elevation on recharge rate. Mimbres and Tularosa Basin are located in southern New Mexico State, and extend southward into Mexico. Diablo Basin is located in Texas in extends southward. This research utilizes the chloride mass balance approach to estimate the recharge rate through collection of groundwater data from wells, and precipitation. The data were analysed statistically to eliminate duplication, outliers, and incomplete data. Cluster analysis, piper diagram and statistical significance were performed on the parameters of the groundwater; the infiltration rate was determined using chloride mass balance technique. The data was then analysed spatially using ArcGIS10. Regions of active recharge were identified in Mimbres and Diablo Basin, but this could not be clearly identified in Tularosa Basin. CMB recharge for Tularosa Basin yields 0.04037mm/yr (0.0016in/yr), Diablo Basin was 0.047mm/yr (0.0016 in/yr), and 0.2153mm/yr (0.00848in/yr) for Mimbres Basin. The elevation where active recharge occurs was determined to be 1,500m for Mimbres and Tularosa Basin and 1,200m for Diablo Basin. The results obtained in this study were consistent with result obtained by other researchers working in basins with similar semiarid mountainous conditions, thereby validating the applicability of CMB in the three basins. Keywords: Recharge, chloride mass balance, elevation, Mimbres, Tularosa, Diablo, Basin, GIS, chloride, elevation.

  2. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers.

    PubMed

    Hibbs, Barry J; Darling, Bruce K

    2005-01-01

    Intermontane basins in the Trans-Pecos region of westernmost Texas and northern Chihuahua, Mexico, are target areas for disposal of interstate municipal sludge and have been identified as possible disposal sites for low-level radioactive waste. Understanding ground water movement within and between these basins is needed to assess potential contaminant fate and movement. Four associated basin aquifers are evaluated and classified; the Red Light Draw Aquifer, the Northwest Eagle Flat Aquifer, the Southeast Eagle Flat Aquifer, and the El Cuervo Aquifer. Encompassed on all but one side by mountains and local divides, the Red Light Draw Aquifer has the Rio Grande as an outlet for both surface drainage and ground water discharge. The river juxtaposed against its southern edge, the basin is classified as a topographically open, through-flowing basin. The Northwest Eagle Flat Aquifer is classified as a topographically closed and drained basin because surface drainage is to the interior of the basin and ground water discharge occurs by interbasin ground water flow. Mountains and ground water divides encompass this basin aquifer on all sides; yet, depth to ground water in the interior of the basin is commonly >500 feet. Negligible ground water discharge within the basin indicates that ground water discharges from the basin by vertical flow and underflow to a surrounding basin or basins. The most likely mode of discharge is by vertical, cross-formational flow to underlying Permian rocks that are more porous and permeable and subsequent flow along regional flowpaths beneath local ground water divides. The Southeast Eagle Flat Aquifer is classified as a topographically open and drained basin because surface drainage and ground water discharge are to the adjacent Wildhorse Flat area. Opposite the Eagle Flat and Red Light Draw aquifers is the El Cuervo Aquifer of northern Chihuahua, Mexico. The El Cuervo Aquifer has interior drainage to Laguna El Cuervo, which is a phreatic playa that also serves as a focal point of ground water discharge. Our evidence suggests that El Cuervo Aquifer may lose a smaller portion of its discharge by interbasin ground water flow to Indian Hot Springs, near the Rio Grande. Thus, El Cuervo Aquifer is a topographically closed basin that is either partially drained if a component of its ground water discharge reaches Indian Hot Springs or undrained if all its natural ground water discharge is to Laguna El Cuervo.

  3. Lunar impact basins: New data for the nearside northern high latitudes and eastern limb from the second Galileo flyby

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Fischer, E.; Sunshine, J.; Klaasen, K.; Mcewen, A.; Becker, T.; Neukum, G.

    1993-01-01

    During the December 1992 Galileo Earth/Moon encounter the northern half of the nearside, the eastern limb, and parts of the western farside of the Moon were illuminated and in view, a geometry that was complementary to the first lunar encounter in December, 1990, which obtained images of the western limb and eastern farside. The Galileo Solid State Imaging System (SSI) obtained multispectral images for these regions during the second encounter and color ratio composite images were compiled using combinations of band ratios chosen on the basis of telescopic spectra and laboratory spectra of lunar samples. Ratios of images taken at 0.41 and 0.76 micron are sensitive to changes in the slope in the visible portion of the spectrum, and ratios of 0.99 and 0.76 micron relate to the strength of near-infrared absorptions due to iron-rich mafic minerals (0.76/0.99 ratio) such as olivine and pyroxene. Results of the analyses of the compositional diversity of the crust, maria, and Copernican craters are presented elsewhere. Primary objectives for lunar basin analysis for the second encounter include analysis of: the north polar region and the Humboldtianum basin; the characteristics of the Imbrium basin along its northern border and the symmetry of associated deposits; the origin of light plains north of Mare Frigoris and associated with several other basins; the nature and significance of pre-basin substrate; the utilization of the stereo capability to assess subtle basis structure; the identification of previously unrecognized ancient basins; basin deposits and structure for limb and farside basins; and assessment of evidence for proposed ancient basins. These data and results will be applied to addressing general problems of evaluation of the nature and origin of basin deposits, investigation of mode of ejecta emplacement and ejecta mixing, analysis of the origin of light plains deposits, analysis of basin deposit symmetry/asymmetry, investigation of basin depth of excavation and crustal stratigraphy, and assessment of models for basin formation and evolution. Here we discuss some preliminary results concerning lunar impact basins, their deposits, and prebasin substrates, using the same approaches that we employed for the Orientale and South Pole-Aitken basins using the data from the first encounter.

  4. Effects of Jefferson Road stormwater-detention basin on loads and concentrations of selected chemical constituents in East Branch of Allen Creek at Pittsford, Monroe County, New York

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Discharge and water-quality data collection at East Branch Allen Creek from 1990 through 2000 provide a basis for estimating the effect of the Jefferson Road detention basin on loads and concentrations of chemical constituents downstream from the basin. Mean monthly flow for the 5 years prior to construction of the detention basin (8.71 ft3/s) was slightly lower than after (9.08 ft3/s). The slightly higher mean monthly flow after basin construction may have been influenced by the peak flow for the period of record that occurred in July 1998 or variations in flow diverted from the canal. No statistically significant difference in average monthly mean flow before and after basin installation was indicated.Total phosphorus was the only constituent to show no months with significant differences in load after basin construction. Several constituents showed months with significantly smaller loads after basin construction than before, whereas some constituents showed certain months with smaller and some months with greater loads, after basin construction. Statistical analysis of the "mean monthly load" for all months before and all months after construction of the detention basin showed only one constituent (ammonia + organic nitrogen) with a significantly lower load after construction and none with higher loads.Median concentrations of ammonia + organic nitrogen showed a statistically significant decrease (from 0.78 mg/L to 0.60 mg/L) after basin installation, as did nitrite + nitrate (from 1.50 mg/L to 0.96 mg/L); in contrast, the median concentration of dissolved chloride increased from 95.5 mg/L before basin installation to 109 mg/L thereafter. A trend analysis of constituent concentrations before and after installation of the detention basin showed that total phosphorus had a downward trend after installation.Analysis of the data collected at East Branch Allen Creek indicates that the Jefferson Road detention basin, in some cases, provides an improvement (reduction) in loads of some constituents. These results are uncertain, however, because hydrologic conditions before basin installation differed from those in the 5 years that followed, and because inflow from the Erie-Barge canal may alter the water quality in the 1-mi reach between the basin outflow and the gaging station.

  5. Regional hydrogeology and hydrochemistry of deep formation waters in the Williston Basin (Canada-USA): implications for fluid migration in the basin

    NASA Astrophysics Data System (ADS)

    Rostron, B. J.

    2010-12-01

    The regional groundwater flow-system in the Williston Basin (Canada-USA) is one of the best examples of a mega-scale confined aquifer-system in the world. With its well-defined recharge and discharge areas separated by approximately 1000 km horizontal and 1 km vertical distance, the basin is an ideal natural laboratory to study regional groundwater flow and hydrochemistry. Springs and shallow water wells in the recharge and discharge areas, along with deeper oil and gas wells, allow for detailed mapping of formation-pressures. Further, these wells provide access for sampling and geochemical analyses of formation waters along flow paths. Basin-scale hydrogeological and hydrochemical mapping combined with newly obtained geochemical and isotopic data from more than 2000 wells across the basin provide new insights into the present and paleohydrogeology of the basin. Results indicate: 1) the hydrogeology and hydrochemistry of the basin must be mapped on hydrogeological (not political) boundaries; 2) many aquifers have similar water chemistries, yet unique isotopic fingerprints; 3) stable isotope distributions provide insight(s) into regional fluid flow patterns; 4) analysis of bromine concentrations and stable isotopic compositions provide evidence that at least some of the brine in the basin owes its origin to evaporated seawater and not just dissolved evaporites as previously thought; 5) regional patterns of stable isotopes and halogens can be used to trace different flow "events" in the basin's history; 6) calcium-rich brines in the center of the basin may be associated with relict calcium-rich seawaters; 7) hydrocarbon migration pathways have been variably impacted by evolving hydrodynamic conditions; and 8) there is strong evidence of past glacially-driven recharge in the current discharge area of the basin. These observations show that the hydrogeology and hydrochemistry of the basin is more complex than previously thought. Portions of the basin appear to respond rapidly to changes in boundary conditions including: the recharge areas; midline areas that have experienced extensive salt dissolution; and present discharge areas that appear to show evidence of glacially-driven recharge. Other portions of the basin appear to have had little to no fluid-flow despite being continuous and highly-permeable. Mixing, and not depth, appears to control water compositions. Insights gained from regional hydrogeology and hydrochemical provide an improved understanding the present and past mega-scale fluid migration in the Williston Basin.

  6. Structure of the Espanola Basin, Rio Grande Rift, New Mexico, from SAGE seismic and gravity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J.F.; Baldridge, W.S.; Braile, L.W.

    1995-04-01

    Seismic and gravity data, acquired by the SAGE program over the past twelve years, are used to define the geometry of the Espanola basin and the extent of pre-Tertiary sedimentary rocks. The Paleozoic and Mesozoic units have been thinned and removed during Laramide uplift in an area now obscured by the younger rift basin. The Espanola basin is generally a shallow, asymmetric transitional structure between deeper, better developed basins to the northeast and southwest. The gravity data indicate the presence of three narrow, but deep, structural lows arrayed along the Embudo/Pajarito fault system. These sub-basins seem to be younger thanmore » the faults on the basin margins. This apparent focussing of deformation in the later history of the basin may be a response to changes in regional stress or more local accommodation of the rift extension. Future work is planned to develop seismic data over one of these sub-basins, the Velarde graben, and to better define the gravity map in order to facilitate three-dimensional modeling.« less

  7. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  8. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  9. Effects of deep basins on structural collapse during large subduction earthquakes

    USGS Publications Warehouse

    Marafi, Nasser A.; Eberhard, Marc O.; Berman, Jeffrey W.; Wirth, Erin A.; Frankel, Arthur

    2017-01-01

    Deep sedimentary basins are known to increase the intensity of ground motions, but this effect is implicitly considered in seismic hazard maps used in U.S. building codes. The basin amplification of ground motions from subduction earthquakes is particularly important in the Pacific Northwest, where the hazard at long periods is dominated by such earthquakes. This paper evaluates the effects of basins on spectral accelerations, ground-motion duration, spectral shape, and structural collapse using subduction earthquake recordings from basins in Japan that have similar depths as the Puget Lowland basin. For three of the Japanese basins and the Puget Lowland basin, the spectral accelerations were amplified by a factor of 2 to 4 for periods above 2.0 s. The long-duration subduction earthquakes and the effects of basins on spectral shape combined, lower the spectral accelerations at collapse for a set of building archetypes relative to other ground motions. For the hypothetical case in which these motions represent the entire hazard, the archetypes would need to increase up to 3.3 times its strength to compensate for these effects.

  10. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de

  11. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    USGS Publications Warehouse

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute. Although hydraulic connection between the sandstone bedrock and the sands and gravels in valleys is likely, it has not been assessed in the Tuscarawas River Basin. In 2001, the major land uses in the basin were approximately 40 percent forested, 39 percent agricultural, and 17 percent urban/residential. Between 1992 and 2001, forested land use decreased by 2 percent with correspondingly small increases in agricultural and urban land uses, but from 1980 to 2005, the 13-county area that encompasses the basin experienced a 7.1-percent increase in population. Higher population density and percentages of urban land use were typical of the northern, headwaters parts of the basin in and around the cities of Akron, Canton, and New Philadelphia; the southern area was rural. The basin receives approximately 38 inches of precipitation per year that exits the basin through evapotranspiration, streamflow, and groundwater withdrawals. Recharge to groundwater is estimated to range from 6 to 10 inches per year across the basin. In 2000, approximately 89 percent of the 116 million gallons per day of water used in the basin came from groundwater sources, whereas 11 percent came from surface-water sources. To examine directions of groundwater flow in the basin, a new dataset of water-level contours was developed by the Ohio Department of Natural Resources. The contours were compiled on a map that shows that groundwater flows from the uplands towards the valleys and that the water-level surface mimics surface topography; however, there are areas where data were too sparse to adequately map the water-level surface. Additionally, little is known about deep groundwater that may be flowing into the basin from outside the basin and groundwater interactions with surface-water bodies. Many previous reports as well as new data collected as part of this study show that water quality in the streams and aquifers in the Tuscarawas River Basin has been degraded by urban, suburban, and rural

  12. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  13. Low-flow characteristics of streams in the lower Wisconsin River basin

    USGS Publications Warehouse

    Gebert, W.A.

    1978-01-01

    Low-flow characteristics estimated for the lower Wisconsin River basin have a high degree of reliability when compared with other basins in Wisconsin, Reliable estimates appear to be related to the relatively uniform geologic features in the basin.

  14. SURVEY OF CROSS-BASIN BOAT TRAFFIC, ATCHAFALAYA BASIN, LOUISIANA

    EPA Science Inventory

    For flood control and for the preservation and enhancement of environmental quality of overflow swamp habitats, introduction of sediment from the Atchafalaya Basin Main Channel into backwater areas of the Atchafalaya Basin Floodway should be minimized. This introduction occurs ma...

  15. Crater Lake, Oregon: a restricted basin with base-of-slope aprons of nonchannelized turbidites.

    USGS Publications Warehouse

    Nelson, C.H.; Meyer, A.W.; Thor, D.; Larsen, M.

    1986-01-01

    Base-of-slope aprons at the basin margin evolve to turbidites of mainly thin, fine-grained, basin-plain type, characterized by numerous flat and weak seismic reflectors in the central basin floor.-from Authors

  16. Georgia Basin-Puget Sound Airshed Characterization Report 2014

    EPA Science Inventory

    The Georgia Basin - Puget Sound Airshed Characterization Report, 2012 was undertaken to characterize the air quality within the Georgia Basin/Puget Sound region,a vibrant, rapidly growing, urbanized area of the Pacific Northwest. The Georgia Basin - Puget Sound Airshed Characteri...

  17. Status of Utah Bats

    DTIC Science & Technology

    2009-01-27

    objectives and scales. Survey effort was lowest in Utah’s West Desert, the Uinta Basin , and extreme southeastern Utah. The Colorado Plateau ecoregion had... Basin shrub steppe, Mojave desert, Wasatch and Uinta montane forest, and Wyoming Basin shrub steppe) as did the physiographic province ( Basin and...shrublands, accounting for 48% of all data, Wasatch and Uinta montane forests 31%, the Great Basin shrub steppe 19%, the Mojave Desert 1.6%, and the

  18. An assessment of ecosystem components in the interior Columbia basin and portions of the Klamath and Great Basins: volume 1.

    Treesearch

    Thomas M. Quigley; Sylvia J. Arbelbide

    1997-01-01

    The Assessment of Ecosystem Components in the Interior Columbia Basin and Portions of the Klamath and Great Basins provides detailed information about current conditions and trends for the biophysical and social systems within the Basin. This information can be used by land managers to develop broad land management goals and priorities and provides the context for...

  19. Efficacy of methoprene for mosquito control in storm water catch basins

    USGS Publications Warehouse

    Butler, M.; LeBrun, R.A.; Ginsberg, H.S.; Gettman, A.D.

    2006-01-01

    This study evaluated the efficacy of methoprene, a widely used juvenile hormone mimic, formulated as 30-day slow release Altosid? pellets, at controlling mosquitoes in underground storm water drainage catch basins. Data from applications to ?-sized cement catch basins in the laboratory, field observations from treated and untreated basins, and an experiment that confined mosquito larvae in floating emergence jars in catch basins showed that methoprene effectively controlled mosquitoes for a month under field conditions and substantially longer under laboratory conditions when applied at a dose of 3.5 g pellets per average-sized catch basin.

  20. Automated basin delineation from digital terrain data

    NASA Technical Reports Server (NTRS)

    Marks, D.; Dozier, J.; Frew, J.

    1983-01-01

    While digital terrain grids are now in wide use, accurate delineation of drainage basins from these data is difficult to efficiently automate. A recursive order N solution to this problem is presented. The algorithm is fast because no point in the basin is checked more than once, and no points outside the basin are considered. Two applications for terrain analysis and one for remote sensing are given to illustrate the method, on a basin with high relief in the Sierra Nevada. This technique for automated basin delineation will enhance the utility of digital terrain analysis for hydrologic modeling and remote sensing.

  1. Hydrology of Jumper Creek Canal basin, Sumter County, Florida

    USGS Publications Warehouse

    Anderson, Warren

    1980-01-01

    Jumper Creek Canal basin in Sumter County, Florida, was investigated to evaluate the overall hydrology and effects of proposed flood-control works on the hydrologic regiment of the canal. Average annual rainfall in the 83-square mile basin is about 53 inches of which about 10 inches runs off in the canal. Average annual evapotranspiration is estimated at about 37 inches. Pumping from limestone mines has lowered the potentiometeric surface in the upper part of the basin, but it has not significantly altered the basin yield. Channel excavation to reduce flooding is proposed with seven control structures located to prevent overdrainage. The investigation indicates that implementation of the proposed plan will result in a rise in the potentiometric surface n the upper basin, a reduction is surface outflow, an increase in subsurface outflow, an increase in the gradient of the potentiometeric surface of the Floridan aquifer, an increase in leakage from the canal to the aquifer in the upper basin, and an increase in the magnitude of flood flows from the basin. Ground water in Jumper Creek basin is a bicarbonate type. Very high concentrations of dissolved iron were found in shallow wells and in some deep wells. Sulfate and strontium were relatively high in wells in the lower basin. (Kosco-USGS)

  2. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  3. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.; Childers, V.A.

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  4. Substantial inorganic carbon sink in closed drainage basins globally

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Chengqi; Wang, Naiang; Han, Qin; Zhang, Xinzhong; Liu, Yuan; Xu, Lingmei; Ye, Wangting

    2017-07-01

    Arid and semi-arid ecosystems are increasingly recognized as important carbon storage sites. In these regions, extensive sequestration of dissolved inorganic carbon can occur in the terminal lakes of endorheic basins--basins that do not drain to external bodies of water. However, the global magnitude of this dissolved inorganic carbon sink is uncertain. Here we present isotopic, radiocarbon, and chemical analyses of groundwater, river water, and sediments from the terminal region of the endorheic Shiyang River drainage basin, in arid northwest China. We estimate that 0.13 Pg of dissolved inorganic carbon was stored in the basin during the mid-Holocene. Pollen-based reconstructions of basin-scale productivity suggest that the mid-Holocene dissolved inorganic carbon sink was two orders of magnitude smaller than terrestrial productivity in the basin. We use estimates of dissolved inorganic carbon storage based on sedimentary data from 11 terminal lakes of endorheic basins around the world as the basis for a global extrapolation of the sequestration of dissolved organic carbon in endorheic basins. We estimate that 0.152 Pg of dissolved inorganic carbon is buried per year today, compared to about 0.211 Pg C yr-1 during the mid-Holocene. We conclude that endorheic basins represent an important carbon sink on the global scale, with a magnitude similar to deep ocean carbon burial.

  5. Constraining the physical properties of Titan's empty lake basins using nadir and off-nadir Cassini RADAR backscatter

    NASA Astrophysics Data System (ADS)

    Michaelides, R. J.; Hayes, A. G.; Mastrogiuseppe, M.; Zebker, H. A.; Farr, T. G.; Malaska, M. J.; Poggiali, V.; Mullen, J. P.

    2016-05-01

    We use repeat synthetic aperture radar (SAR) observations and complementary altimetry passes acquired by the Cassini spacecraft to study the scattering properties of Titan's empty lake basins. The best-fit coefficients from fitting SAR data to a quasi-specular plus diffuse backscatter model suggest that the bright basin floors have a higher dielectric constant, but similar facet-scale rms surface facet slopes, to surrounding terrain. Waveform analysis of altimetry returns reveals that nadir backscatter returns from basin floors are greater than nadir backscatter returns from basin surroundings and have narrower pulse widths. This suggests that floor deposits are structurally distinct from their surroundings, consistent with the interpretation that some of these basins may be filled with evaporitic and/or sedimentary deposits. Basin floor deposits also express a larger diffuse component to their backscatter, which is likely due to variations in subsurface structure or an increase in roughness at the wavelength scale (Hayes, A.G. et al. [2008]. Geophys. Res. Lett. 35, 9). We generate a high-resolution altimetry radargram of the T30 altimetry pass over an empty lake basin, with which we place geometric constraints on the basin's slopes, rim heights, and depth. Finally, the importance of these backscatter observations and geometric measurements for basin formation mechanisms is briefly discussed.

  6. The Pre-Messinian Total Petroleum System of the Provence Basin, Western Mediterranean Sea

    USGS Publications Warehouse

    Pawlewicz, Mark

    2004-01-01

    The Provence Basin is in that portion of the western Mediterranean Sea that is deeper than 2 kilometers. The basin lies essentially beyond the outer continental shelf, between the countries of France, Italy, and Algeria, the Balearic Islands, and the islands of Sardinia and Corsica. It encompasses nearly 300,000 square kilometers and includes the Rhone River submarine fan on the continental slope of southern France. It is province 4068 in the World Energy study. A single, hypothetical, total petroleum system (TPS), the Pre-Messinian TPS (406801), was described for the Provence Basin. The designation hypothetical is used because there is no hydrocarbon production from the basin. The Provence Basin is a deep-water Tertiary rift basin in which the geothermal gradients vary regionally. The Red Sea Basin shares a similar geologic and thermal history with the rifted western Mediterranean Sea and was used as an analog to better understand the genesis of the Provence Basin and as a guide to estimating possible undiscovered amounts of hydrocarbons. For this assessment the basin was given a potential, at the mean, for undiscovered resources of 51 trillion cubic feet (1.4 trillion cubic meters) gas, 0.42 billion barrels oil, and 2.23 million barrels natural gas liquids.

  7. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  8. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    NASA Technical Reports Server (NTRS)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  9. Oil shale resources of the Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  10. Rainfall forecast in the Upper Mahaweli basin in Sri Lanka using RegCM model

    NASA Astrophysics Data System (ADS)

    Muhammadh, K. M.; Mafas, M. M. M.; Weerakoon, S. B.

    2017-04-01

    The Upper Mahaweli basin is the upper most sub basin of 788 km2 in size above Polgolla barrage in the Mahaweli River, the longest river in Sri Lanka which starts from the central hills of the island and drains to the sea at the North-east coast. Rainfall forecast in the Upper Mahaweli basin is important for issuing flood warning in the river downstream of the reservoirs, landslide warning in the settlements in hilly areas. Anticipatory water management in the basin including reservoir operations, barrage gate operation for releasing water for irrigation and flood control also require reliable rainfall and runoff prediction in the sub basin. In this study, the Regional Climate Model (RegCM V4.4.5.11) is calibrated for the basin to dynamically downscale reanalysis weather data of Global Climate Model (GCM) to forecast the rainfall in the basin. Observed rainfalls at gauging stations within the basin were used for model calibration and validation. The observed rainfall data was analysed using ARC GIS and the output of RegCM was analysed using GrADS tool. The output of the model and the observed precipitation were obtained on grids of size 0.1 degrees and the accuracy of the predictions were analysed using RMSE and Mean Model Absolute Error percentage (MAME %). The predictions by the calibrated RegCM model for the basin is shown to be satisfactory. The model is a useful tool for rainfall forecast in the Upper Mahaweli River basin.

  11. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  12. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  13. Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming

    USGS Publications Warehouse

    Pierce, B.S.

    1996-01-01

    Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.

  14. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, K.D.; Watney, W.L.; Hatch, J.R.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. Whenmore » estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.« less

  15. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  16. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkin, Joshuah S.; Troia, Matthew J.; Shaw, Dustin C. R.

    Stream fish distributions are commonly linked to environmental disturbances affecting terrestrial landscapes. In Great Plains prairie streams, the independent and interactive effects of watershed impoundments and land cover changes remain poorly understood despite their prevalence and assumed contribution to declining stream fish diversity. We used structural equation models and fish community samples from third-order streams in the Kansas River and Arkansas River basins of Kansas, USA to test the simultaneous effects of geographic location, terrestrial landscape alteration, watershed impoundments and local habitat on species richness for stream-associated and impoundment-associated habitat guilds. Watershed impoundment density increased from west to east inmore » both basins, while per cent altered terrestrial landscape (urbanisation + row-crop agriculture) averaged ~50% in the west, declined throughout the Flint Hills ecoregion and increased (Kansas River basin ~80%) or decreased (Arkansas River basin ~30%) to the east. Geographic location had the strongest effect on richness for both guilds across basins, supporting known zoogeography patterns. In addition to location, impoundment species richness was positively correlated with local habitat in both basins; whereas stream-species richness was negatively correlated with landscape alterations (Kansas River basin) or landscape alterations and watershed impoundments (Arkansas River basin). These findings suggest that convergences in the relative proportions of impoundment and stream species (i.e., community structure) in the eastern extent of both basins are related to positive effects of increased habitat opportunities for impoundment species and negative effects caused by landscape alterations (Kansas River basin) or landscape alterations plus watershed impoundments (Arkansas River basin) for stream species.« less

  18. Studying Basin Water Balance Variations at Inter- and Intra-annual Time Scales Based On the Budyko Hypothesis and GRACE Gravimetry Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shen, H.

    2017-12-01

    Increasing intensity in global warming and anthropogenic activities has triggered significant changes over regional climates and landscapes, which, in turn, drive the basin water cycle and hydrological balance into a complex and unstable state. Budyko hypothesis is a powerful tool to characterize basin water balance and hydrological variations at long-term average scale. However, due to the absence of basin water storage change, applications of Budyko theory to the inter-annual and intra-annual time scales has been prohibited. The launch of GRACE gavimetry satellites provides a great opportunity to quantify terrestrial water storage change, which can be further introduced into the Budyko hypothesis to reveal the inter- and intra-annual response of basin water components under impacts of climate variability and/or human activities. This research targeted Hai River Basin (in China) and Murray-Darling Basin (in Australia), which have been identified with a continuous groundwater depletion trend as well as impacts by extreme climates in the past decade. This can help us to explore how annual or seasonal precipitation were redistributed to evapotranspiration and runoff via changing basin water storage. Moreover, the impacts of vegetation on annual basin water balance will be re-examined. Our results are expected to provide deep insights about the water cycle and hydrological behaviors for the targeted basins, as well as a proof for a consideration of basin water storage change into the Budyko model at inter- or intra-annual time steps.

  19. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.

  20. 48 CFR 25.405 - Caribbean Basin Trade Initiative.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Caribbean Basin Trade... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.405 Caribbean Basin Trade Initiative. Under the Caribbean Basin Trade Initiative, the United States Trade Representative has determined that, for...

  1. 48 CFR 25.405 - Caribbean Basin Trade Initiative.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Caribbean Basin Trade... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.405 Caribbean Basin Trade Initiative. Under the Caribbean Basin Trade Initiative, the United States Trade Representative has determined that, for...

  2. 48 CFR 25.405 - Caribbean Basin Trade Initiative.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Caribbean Basin Trade... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.405 Caribbean Basin Trade Initiative. Under the Caribbean Basin Trade Initiative, the United States Trade Representative has determined that, for...

  3. 48 CFR 25.405 - Caribbean Basin Trade Initiative.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Caribbean Basin Trade... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.405 Caribbean Basin Trade Initiative. Under the Caribbean Basin Trade Initiative, the United States Trade Representative has determined that, for...

  4. IMPROVEMENTS IN PUMP INTAKE BASIN DESIGN

    EPA Science Inventory

    Pump intake basins (or wet wells or pump sumps) designed in accordance with accepted criteria often pose many operation and maintenance problems. The report summarizes field surveys of three trench-type pump intake basins representative of 29 such basins that have been in satisfa...

  5. Viscous relaxation of the Moho under large lunar basins

    NASA Technical Reports Server (NTRS)

    Brown, C. David; Grimm, Robert E.

    1993-01-01

    Viscously relaxed topography on the Moon is evidence of a period in lunar history of higher internal temperatures and greater surface activity. Previous work has demonstrated the viscous relaxation of the Tranquilitatis basin surface. Profiles of the lunar Moho under nine basins were constructed from an inversion of lunar gravity data. These profiles show a pattern of increasingly subdued relief with age, for which two explanations have been proposed. First, ancient basins may have initially had extreme Moho relief like that of younger basins like Orientale, but, due to higher internal temperatures in early lunar history, this relief viscously relaxed to that observed today. Second, ductile flow in the crust immediately after basin formation resulted in an initially shallow basin and subdued mantle uplift. The intent is to test the first hypothesis.

  6. Project SUMATRA: The Fore-arc Basin System of Sumatra

    NASA Astrophysics Data System (ADS)

    Neben, S.; Franke, D.; Gaedicke, C.; Ladage, S.; Berglar, K.; Damm, V.; Ehrhardt, A.; Heyde, I.; Schnabel, M.; Schreckenberger, B.

    2006-12-01

    The main scientific objective of the project SUMATRA is to determine or estimate the geological setting and evolution of the Sumatra fore-arc region. RV SONNE cruise SO189 Leg 1 was designed to investigate the architecture, sedimentary thickness, sedimentary evolution and subsidence history of the fore-arc basins Siberut, Nias and Simeulue off Sumatra. During the cruise a total of 4375km of multichannel seismic (MCS), magnetics (M) and gravity (G) data were acquired and additional 990km with M and G alone. Along two lines with a total length of 390km refraction/wide-angle seismic experiments were carried out. 41 MCS lines cover as close grids the three fore- arc basins. Five lines extend nearly orthogonal to the subduction front covering the whole subduction system from the adjacent oceanic plate, the trench and accretionary prism over the Outer Arc High to the fore-arc basins. In the Simeulue Basin it was possible to connect the seismic lines to three industry wells and to correlate the seismic horizons to the results from the wells. The Simeulue Basin is divided into a northern and southern sub- basin. The maximum thickness was determined to be 6s TWT. In the southern sub-basin carbonate build-ups (which were already identified during the SEACAUSE project), bright spots and Bottom Simulating Reflectors (BSRs) are wide spread. The narrowest basin surveyed was the Nias Basin. As the Simeulue Basin the Nias Basin is divided into two sub-basins which are separated by a structural high. Although the basin has a maximum width of only 55km the maximum sediment thickness exceeds 5s TWT. The largest investigated fore-arc basin is the Siberut Basin. It extends over 550km and has a maximum width of 140km between Siberut and Sumatra. The maximum sediment thickness in this basin is 4.8s TWT. The basin geometry is uniform along its axis. At the basins termination on the western side to the Outer Arc High the Mentawai Fault Zone could be traced. In the Siberut Basin BSRs are very wide spread and very good recognizable over the Mentawai Fault Zone. Along the Mentawai Fault and along the eastern rim of the basin the seismic data show strong indications for active venting. As offshore northern Sumatra, both landward and seaward verging folds are developed at the deformation front off Nias and Siberut. For the first time landward verging folds have now been imaged in this domain of the Sunda subduction zone. Two refraction lines were acquired parallel to the subduction front at 2.5N and 1.5S approximately 40-50km seaward of Simeulue and Siberut Island, respectively. The lines were designed to identify the segment boundaries in the subduction system as well as to detect and decipher the subducted aseismic Investigator Ridge. The gravity data set is consists now of over 38,000km (combining the GINCO, SEACAUSE I and II and the SUMATRA data). With this it was possible to compile a map of the free-air gravity from the northern tip of Sumatra (6.5N/95E) to Mid Java (8.5S/110E). Gravity modelling in parallel with refraction seismic data interpretation was carried out along two lines during the cruise. The preliminary results show that the incoming oceanic crust is at 5-6 km unusual thin, both in the south off Nias (5km) and in the north off Simeulue (6km).

  7. Tectonic constraints on the development and individualization of the intermontane Ronda basin (external Betics, southern Spain): a structural and geomorphologic approach.

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel; Barcos, Leticia

    2014-05-01

    As a result of progressive shortening and orogenic wedge thickening, marine foreland basins tend to emerge and divide. We have analyzed possible recent tectonic activity within the late evolution stage of the Ronda basin, an intermontane basin located in the external wedge of the Gibraltar Arc, formerly connected with the Betic foreland basin and infilled by marine Upper-Miocene sediments. We analyze (1) the structures responsible for the basinward relief drop along the arc strike and the different topography of their boundaries; (2) qualitative and quantitative geomorphologic indices to asses which structures could present recent activity; and 3) the structures causing the division of the former Betic foreland basin and the isolation of the Ronda basin. Within the deformational history of the Ronda basin, late structures that control high topographic gradients and generate remarkable fault scarps group into three main types: (a) Extensional structures represented by NW-SE striking normal faults, clustered close to the current SW and NE boundaries of the basin. They usually dip towards the basin and their vertical displacement is maximum up to 1,5 km. These structures partially affect the basal unconformity of the Upper Miocene basin infill and are scarcely developed inside the basin infill. (b) Shortening structures developed both in the basin infill and in the outcropping basement near the Northeastern and Southwestern basin boundaries. They are represented by NE-SW directed plurikilometric box-folds and reverse faults, responsible for the alternation of sierras (altitudes 1000-1500 m) and valleys. (c) Strike-slip dominated structural associations where WSW-ENE lateral faults combined with folds and normal and reverse faults defined a NE-SW directed deformation band constituting the NW basin boundary. This band includes some sierras up to 1.100 m. Regarding the relief of the Ronda basin area, the abrupt slopes of the outcropping basement (heights between 500-1500 m) contrast with the relief inside the basin, a relative low-lying relief varying between 400 and 700 m. The drainage network is dendritic, although some 2nd-3rd order streams show a significant deviation to NW-SE , probably controlled by normal faults. The calculated geomorphologic indices (SLk, Vf, Smf) show anomaly zones in the footwall of normal faults, reaching their highest values in the Northeastern basin boundary (SlK > 6, Vf = 0-0.5, Smf = 1-1.15), where, additionally, the hypsometric curves display convex trajectories with HI > 0.5. Anomalous values of geomorphologic indices (SlK > 10, Vf 0-0.75, Smf 1-1.25) together with convex hypsometric curves with HI > 0.5 have also been obtained for shortening structures, such as hanging wall of reverse faults and folds. Structural criteria show that extensional and shortening structures in the Ronda basin are coetaneous and active since the Upper Miocene. Geomorphologic analyses suggest that some of these structures could continue active up to the Quaternary with low-to-medium deformation rates. Our results, together with previous sedimentological data suggest that, from the Messinian on, the Ronda basin became disconnected from the Betic foreland basin as the result of the tectonic uplift of its NW boundary.

  8. U.S. Geological Survey Middle Rio Grande Basin Study; Proceedings of the first annual workshop, Denver, Colorado, November 12-14, 1996

    USGS Publications Warehouse

    Bartolino, James R.

    1997-01-01

    Approximately 40 percent (about 600,000 people) of the total population of New Mexico lives within the Middle Rio Grande Basin, which includes the City of Albuquerque. Ongoing analyses of the central portion of the Middle Rio Grande Basin by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque and other cooperators have shown that ground water in the basin is not as readily accessible as earlier studies indicated. A more complete characterization of the ground-water resources of the entire Middle Rio Grande Basin is hampered by a scarcity of data in the northern and southern areas of the basin. The USGS Middle Rio Grande Basin Study is a 5-year effort by the USGS and other agencies to improve the understanding of the hydrology, geology, and land-surface characteristics of the Middle Rio Grande Basin. The primary objective of this study is to improve the understanding of the water resources of the basin. Of particular interest is to determine the extent of hydrologic connection between the Rio Grande and the Santa Fe Group aquifer. Additionally, ground-water quality affects the availability of water supplies in the basin. Improving the existing USGS- constructed ground-water flow model of the Middle Rio Grande Basin will integrate all the various tasks that improve our knowledge of the various components of the Middle Rio Grande water budget. Part of this improvement will be accompanied by extended knowledge of the aquifer system beyond the Albuquerque area into the northern and southern reaches of the basin. Other improvements will be based on understanding gained through process-oriented research and improved geologic characterization of the deposits. The USGS will study the hydrology, geology, and land-surface characteristics of the basin to provide the scientific information needed for water- resources management and for managers to plan for water supplies needed for a growing population. To facilitate exchange of information among the many USGS scientists working in the Middle Rio Grande Basin, yearly technical meetings are planned for the anticipated 5-year study. These meetings provide an opportunity to present research results and plan new field efforts. This report documents the results of research presented at the first technical workshop held in Denver, Colorado, in November 1996. The report is organized into this introduction, five chapters that focus on USGS investigations in progress in the Middle Rio Grande Basin, and three appendixes with supplemental information. The first chapter provides an overview of the USGS program in the basin. The second chapter describes geographic data and analysis efforts in the basin. The third chapter details work being done on the hydrogeologic framework of the basin. The fourth chapter describes studies on ground-water availability in the basin and is divided into three areas of research: ground-water/surface-water interaction, ground-water flow and aquifer properties, and recharge. The fifth chapter is devoted to an overview of New Mexico District Cooperative Program studies in the basin. Finally, the appendixes list publications and presentations made during the first year of the study and 1996 workshop attendees. The report concludes with a list of selected references relevant to the study. The information in this report presents preliminary results of an evolving study. As the study progresses and individual projects publish their results in more detail, the USGS hopes to expand the scientific basis needed for management decisions regarding the Middle Rio Grande Basin.

  9. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride, nitrate, and iron were largest in subbasins with predominately residential land use. Median instantaneous loads reflected drainage-basin size. However, loads normalized by drainage area (median instantaneous yields) also were largest in residential areas where point and non-point sources are likely, and in areas of poorly drained soils. Significant trends in water-quality constituents from 1982 to 1995 in the Scituate Reservoir Basin indicate that the quality of the water resources in the basin may be slowly changing. Scituate Reservoir subbasins with large amounts of residential land use showed increasing trends in alkalinity and chloride. In contrast, subbasins distributed throughout the drainage basin showed increasing trends in pH, color, nitrate, and iron concentrations, indicating that these characteristics and constituents may be affected more by atmospheric deposition. Although changing, water-quality constituent concentrations in the Scituate Reservoir Basin only occasionally exceeded Rhode Island and USEPA water-quality guidelines and standards. Result of correlation analysis between pH, color, turbidity, and concentrations total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese and land use, geology, wetlands, slope, soil drainability, and roads indicated that the percentage of wetlands, roads, and slope appear have the greatest effect on water-quality in the Scituate Reservoir Basin. The percentage of urban, residential, and commercial land use also are important, but to a lesser degree than wetlands, roads, and slope. Finally, geology appears to have the least effect on water quality compared to other drainage-basin characteristics investigated.

  10. Integrating facies and structural analyses with subsidence history in a Jurassic-Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide Southern Tethyan margin (NW Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Basilone, Luca; Sulli, Attilio; Gasparo Morticelli, Maurizio

    2016-06-01

    We illustrate the tectono-sedimentary evolution of a Jurassic-Cretaceous intraplatform basin in a fold and thrust belt present setting (Cala Rossa basin). Detailed stratigraphy and facies analysis of Upper Triassic-Eocene successions outcropping in the Palermo Mts (NW Sicily), integrated with structural analysis, restoration and basin analysis, led to recognize and describe into the intraplatform basin the proximal and distal depositional areas respect to the bordered carbonate platform sectors. Carbonate platform was characterized by a rimmed reef growing with progradational trends towards the basin, as suggested by the several reworked shallow-water materials interlayered into the deep-water succession. More, the occurrence of thick resedimented breccia levels into the deep-water succession suggests the time and the characters of synsedimentary tectonics occurred during the Late Jurassic. The study sections, involved in the building processes of the Sicilian fold and thrust belt, were restored in order to obtain the original width of the Cala Rossa basin, useful to reconstruct the original geometries and opening mechanisms of the basin. Basin analysis allowed reconstructing the subsidence history of three sectors with different paleobathymetry, evidencing the role exerted by tectonics in the evolution of the narrow Cala Rossa basin. In our interpretation, a transtensional dextral Lower Jurassic fault system, WNW-ESE (present-day) oriented, has activated a wedge shaped pull-apart basin. In the frame of the geodynamic evolution of the Southern Tethyan rifted continental margin, the Cala Rossa basin could have been affected by Jurassic transtensional faults related to the lateral westward motion of Africa relative to Europe.

  11. Stratigraphic Signatures of Forearc Basin Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Mannu, U.; Ueda, K.; Gerya, T.; Willett, S.; Strasser, M.

    2014-12-01

    Forearc basins are loci of active sedimentation above the landward portion of accretionary prisms. Although these basins typically remain separated from the frontal prism by a forearc high, their evolution has a significant impact on the structure and deformation of the entire wedge. Formation of forearc basins has been proposed as a consequence of changes in wedge stability due to an increase of slab dip in subduction zones. Another hypothesis attributes this to higher hinterland sedimentation, which causes the rear of the wedge to stabilize and eventually develop a forearc basin. Basin stratigraphic architecture, revealed by high-resolution reflection seismic data and borehole data allows interpretation of structural development of the accretionary prism and associated basins with the goal of determining the underlying driving mechanism(s) of basin formation. In this study we supplement data interpretation with thermo-mechanical numerical models including high-resolution isochronal surface tracking to visualize the developing stratigraphy of basins that develop in subduction zone and wedge dynamic models. We use a dynamic 2D thermo mechanical model incorporating surface processes, strain weakening and sediment subduction. The model is a modification of I2VIS model, which is based on conservative, fully staggered finite differences and a non-diffusive marker- in-cell technique capable of modelling mantle convection. In the model different driving mechanisms for basin formation can be explored. Stratigraphic simulations obtained by isochronal surface tracking are compared to reflection pattern and stratigraphy of seismic and borehole data, respectively. Initial results from a model roughly representing the Nankai Trough Subduction Zone offshore Japan are compared to available seismic and Integrated Ocean Drilling (IODP) data. A calibrated model predicting forearc basin stratigraphy will be used to discern the underlying process of basins formation and wedge dynamics.

  12. Classification of Prairie basins by their hysteretic connected functions

    NASA Astrophysics Data System (ADS)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  13. The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ritzwoller, M. H.

    2017-12-01

    Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.

  14. Hot, deep origin of petroleum: deep basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  15. Debris-flow generation from recently burned watersheds

    USGS Publications Warehouse

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  16. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    USGS Publications Warehouse

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  17. Option contracts for allocating water in inter-basin transfers: the case of the Tagus-Segura Transfer in Spain

    NASA Astrophysics Data System (ADS)

    Rey, Dolores; Garrido, Alberto; Calatraba, Javier

    2014-05-01

    Users in the Mediterranean region face significant water supply risks. Water markets mechanisms can provide flexibility to water systems run in tight situations. The largest water infrastructure in the Iberian Peninsula connects the Segura and Tagus Basins. Stakeholders and politicians in the Tagus Basin have asked that water transfers between the two basins be eventually phased out. The need to increase the statutory minimum environmental flow in the middle Tagus and to meet new urban demands is going to result in a redefinition of the Transfer's management rules, leading to a reduction in the transferable volumes. To minimise the consequences of such restrictions to irrigators in the Segura Basin who depend on the transferred volumes, we propose the establishment of water option contracts between both basins that represents an institutional innovation with respect to previous inter-basin spot market experiences. Based on the draft of the new Tagus Basin Plan, we propose both a modification of the Transfer's management rule and an innovative inter-basin option contract. The main goal of the paper is to define this contract and evaluate it with respect to non-market scenarios. We also assess the resulting impact on environmental flows in the Tagus River and water availability for users in the Segura Basin, together with the economic impacts of such contract on both basins. Our results show that the proposed option contract would reduce the impact of a change in the transfer's management rule, and reduce the supply risks of the recipient area. Keywords: environmental flow, inter-basin transfer, option contracts, Tagus-Segura, water markets, water supply reliability.

  18. Contrasting styles of seafloor spreading in the Woodlark Basin: Indications of rift-induced secondary mantle convection

    NASA Astrophysics Data System (ADS)

    MartíNez, Fernando; Taylor, Brian; Goodliffe, Andrew M.

    1999-06-01

    The Woodlark Basin in the southwest Pacific is a young ocean basin which began forming by ˜6 Ma following the rifting of continental and arc lithosphere. The N-S striking Moresby Transform divides the oceanic basin into eastern and western parts which have contrasting characteristics. Seafloor spreading west of Moresby Transform began after ˜2 Ma, and although spreading rates decrease to the west, the western basin has faster spreading characteristics than the eastern basin. These include (1) ˜500 m shallower seafloor; (2) Bouguer gravity anomalies that are >30 mGals lower; (3) magnetic anomaly and modeled seafloor magnetization amplitudes that are higher; (4) a spreading center with an axial high in contrast to the axial valleys of the eastern basin; (5) smoother seafloor fabric; and (6) exclusively nontransform spreading center offsets in contrast to the eastern basin, which has transform faults and fracture zones that extend across most of the basin. Overall depth contrasts and Bouguer anomalies can be matched by end-member models of thicker crust (˜2 km) or thinner lithosphere (<1/3) in the western basin. Correlated with these contrasts, the surrounding rifted margins abruptly thicken westward of the longitude of Moresby Transform. We examine alternative explanations for these contrasts and propose that rift-induced secondary mantle convection driven by thicker western margin lithosphere is most consistent with the observations. Although rift-induced convection has been cited as a cause for the voluminous excess magmatism at some rifted margins, the observations in the Woodlark Basin suggest that this mechanism may significantly affect the morphology, structure, and geophysical characteristics of young ocean basins in alternate ways which resemble increased spreading rate.

  19. Year 1 Field Work Report: Utah Bat Monitoring Protocol

    DTIC Science & Technology

    2010-01-28

    Plateau shrublands, Great Basin shrub steppe, Wasatch and Uinta montane forests, Mojave Desert and Wyoming Basin shrub steppe. A total 65, 20 x 20 km... Basin shrub steppe, Wasatch and Uinta montane forests) each harbored 20 sampling cells, while the limited size of the Mojave Desert and Wyoming Basin ...Wasatch and Uinta montane forest and Wyoming Basin shrub steppe). Site # A unique identifier between 1 and 20 within each ecoregion. UTM The

  20. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    USGS Publications Warehouse

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic nitrogen plus ammonia ranged from 1.27 to 2.96 mg/L at the 16 tributaries during 2004–2008. Mean concentrations were highest at Fisheating Creek at Lake Placid (a non-priority site), and lowest at Wolff Creek, Taylor Creek near Grassy Island, and Otter Creek (three priority basin sites), and at Arbuckle Creek (a non-priority basin site). Mean concentrations of nitrite plus nitrate ranged from 0.01 to 0.55 mg/L at the 16 tributaries during 2004–2008. Mean concentrations measured in priority basins were significantly higher than those measured in non-priority basins. Nutrient concentrations were substantially lower in the non-priority basins; however, total loads were substantially higher due to discharge that was 5 to 6 times greater than from the priority basins. Total phosphorus, organic nitrogen plus ammonia, and nitrite plus nitrate loads from the non-priority basins were 1.5, 4.5, and 3.5 times greater, respectively, than were loads from the priority basins. In the non-priority basins, total phosphorus loads ranged from 35 metric tons (MT) in 2007 to 247 MT in 2005. In the priority basins, the loads ranged from 18 MT in 2007 to 136 MT in 2005. In the non-priority basins, organic nitrogen plus ammonia loads ranged from 337 MT in 2007 to 2,817 MT in 2005. In the priority basins, organic nitrogen plus ammonia loads ranged from 85 MT in 2007 to 503 MT in 2005. In the non-priority basins, nitrite plus nitrate loads ranged from 34 MT in 2007 to 143 MT in 2005. In the priority basins, nitrite plus nitrate loads ranged from 4 MT in 2007 to 27 MT in 2005.

  1. Coalbed methane potential in the Appalachian states of Pennsylvania, West Virginia, Maryland, Ohio, Virginia, Kentucky, and Tennessee; an overview

    USGS Publications Warehouse

    Lyons, Paul C.

    1996-01-01

    This report focuses on the coalbed methane (CBM) potential of the central Appalachian basin (Virginia, eastern Kentucky, southern West Virginia, and Tennessee) and the northern Appalachian basin (Pennsylvania, northern West Virginia, Maryland, and Ohio). As of April 1996, there were about 800 wells producing CBM in the central and northern Appalachian basin. For the Appalchian basin as a whole (including the Cahaba coal field, Alabama, and excluding the Black Warrior Basin, Alabama), the total CBM production for 1992, 1993, 1994, and 1995, is here estimated at 7.77, 21.51, 29.99, and 32 billion cubic feet (Bcf), respectively. These production data compare with 91.38, 104.70, 110.70, and 112.11 Bcf, respectively, for the same years for the Black Warrior Basin, which is the second largest CBM producing basin in the United States. For 1992-1995, 92-95% of central and northern Appalachian CBM production came from southwestern Virginia, which has by far the largest CBM production the Appalachian states, exclusive of Alabama. For 1994, the average daily production of CBM wells in Virginia was 119.6 Mcf/day, which is about two to four times the average daily production rates for many of the CBM wells in the northern Appalachian basin. For 1992-1995, there is a clear increase in the percentage of CBM being produced in the central and northern Appalachian basin as compared with the Black Warrior Basin. In 1992, this percentage was 8% of the combined central and northern Appalachian and Black Warrior Basin CBM production as compared with 22% in 1995. These trends imply that the Appalachian states, except for Alabama and Virginia, are in their infancy with respect to CBM production. Total in place CBM resources in the central and northern Appalachian basin have been variously estimated at 66-76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (3.07 Tcf for central Appalachian basin and 11.48 Tcf for northern Appalachian basin) is technically recoverable according to Ricei s (1995) report. This compares with 20 Tcf in place and 2.30 Tcf as technically recoverable CBM for the Black Warrior Basin. These estimates should be considered preliminary because of unknown CBM potential in Ohio, Maryland, Tennessee, and eastern Kentucky. The largest potential for CBM development in the central Appalachian basin is in the Pocahontas coal beds, which have total gas values as much as 700 cf/ton, and in the New River coal beds. In the northern Appalachian basin, the greatest CBM potential is in the Middle Pennsylvanian Allegheny coal beds, which have total gas values as much as 252 cf/ton. Rice (1995) estimated a mean estimated ultimate recovery per well of 521 MMcfg for the central Appalachian basin and means of 121 and 216 MMcfg for the anticlinal and synclinal areas, respectively, of the northern Applachian basin. There is potential for CBM development in the Valley coal fields and Richmond basin of Virginia, the bituminous region of southeastern Kentucky, eastern Ohio, northern Tennessee, and the Georges Creek coal field of western Maryland and adjacent parts of Pennsylvania. Moreover, the Anthracite region of eastern Pennsylvania, which has the second highest known total gas content for a single coal bed (687 cf/ton) in the central and northern Appalachian basin, should be considered to have a fair to good potential for CBM development where structure, bed continuity, and permeability are favorable. CBM is mainly an undeveloped unconventional fossil-fuel resource in the central and northern Appalachian basin states, except in Virginia, and will probably contribute an increasing part of total Appalachian gas production into the next century as development in Pennsylvania, West Virginia, Ohio, and other Appalachian states continue. The central and northern Appalachian basins are frontier or emerging regions for CBM exploration and development, which will probably extend well into the next century. On the basis of CBM production

  2. Distribution and abundance of burrowing mayflies (Hexagenia spp.) in Lake Erie, 1997-2005

    USGS Publications Warehouse

    Krieger, K.A.; Bur, M.T.; Ciborowski, J.J.H.; Barton, D.R.; Schloesser, D.W.

    2007-01-01

    Burrowing mayflies (Hexagenia limbata and H. rigida) recolonized sediments of the western basin of Lake Erie in the 1990s following decades of pollution abatement. We predicted that Hexageniawould also disperse eastward or expand from existing localized populations and colonize large regions of the other basins. We sampled zoobenthos in parts of the western and central basins yearly from 1997–2005, along the north shore of the eastern basin in 2001–2002, and throughout the lake in 2004. In the island area of the western basin, Hexagenia was present at densities ≤1,278 nymphs/m2and exhibited higher densities in odd years than even years. By contrast, Hexagenia became more widespread in the central basin from 1997–2000 at densities ≤48 nymphs/m2 but was mostly absent from 2001–2005. Nymphs were found along an eastern basin transect at densities ≤382/m2 in 2001 and 2002. During the 2004 lake-wide survey, Hexagenia was found at 63 of 89 stations situated throughout the western basin (≤1,636 nymphs/m2, mean = 195 nymphs/m2, SE = 32, N = 89) but at only 7 of 112 central basin stations, all near the western edge of the basin (≤708 nymphs/m2), and was not found in the eastern basin. Hexagenia was found at 2 of 62 stations (≤91 nymphs/m2) in harbors, marinas, and tributaries along the south shore of the central basin in 2005. Oxygen depletion at the sediment-water interface and cool temperatures in the hypolimnion are probably the primary factors preventing successful establishment throughout much of the central basin. Hexagenia can be a useful indicator of lake quality where its distribution and abundance are limited by anthropogenic causes.

  3. Linkages Between Cretaceous Forearc and Retroarc Basin Development in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Orme, D. A.; Laskowski, A. K.

    2015-12-01

    Integrated provenance and subsidence analysis of forearc and retroarc foreland basin strata were used to reconstruct the evolution of the southern margin of Eurasia during the Early to Late Cretaceous. The Cretaceous-Eocene Xigaze forearc basin, preserved along ~600 km of the southern Lhasa terrane, formed between the Gangdese magmatic arc and accretionary complex as subduction of Neo-Tethyan oceanic lithosphere accommodated the northward motion and subsequent collision of the Indian plate. Petrographic similarities between Xigaze forearc basin strata and Cretaceous-Eocene sedimentary rocks of the northern Lhasa terrane, interpreted as a retroarc foreland basin, were previously interpreted to record N-S trending river systems connecting the retro- and forearc regions during Cretaceous time. New sandstone petrographic and U-Pb detrital zircon provenance analysis of Xigaze forearc basin strata support this hypothesis. Qualitative and statistical provenance analysis using cumulative distribution functions and Kolmogorov-Smirnov (K-S) tests show that the forearc basin was derived from either the same source region as or recycled from the foreland basin. Quartz-rich sandstones with abundant carbonate sedimentary lithic grains and rounded, cobble limestone clasts suggests a more distal source than the proximal Gangdese arc. Therefore, we interpret that the northern Lhasa terrane was a significant source of Xigaze forearc detritus and track spatial and temporal variability in the connection between the retro- and forearc basin systems during the Late Cretaceous. A tectonic subsidence curve for the Xigaze forearc basin shows a steep and "kinked" shape similar to other ancient and active forearc basins. Initial subsidence was likely driven by thermal relaxation of the forearc ophiolite after emplacement while additional periods of rapid subsidence likely result from periods of high flux magmatism in the Gangdese arc and changes in plate convergence rate. Comparison of the subsidence history of the Xigaze forearc basin with the Cretaceous-Eocene retroarc foreland basin reveals coeval periods of rapid subsidence, specifically during the Aptian-Turonian, suggesting that the upper-plate was in an overall state of extension.

  4. Structural framework and hydrocarbon potential of Ross Sea, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, A.K.; Davey, F.J.

    The 400 to 1100-m deep continental shelf of the Ross Sea is underlain by three major sedimentary basins (Eastern basin, Central trough, and Victoria Land basin), which contain 5 to 6 km of sedimentary rock of Late Cretaceous(.) and younger age. An addition 6 to 7 km of older sedimentary and volcanic rocks lie within the Victoria Land basin. Eroded basement ridges of early Paleozoic(.) and older rocks similar to those of onshore Victoria Land separate the basins. The three basins formed initially in late Mesozoic time during an early period of rifting between East and West Antarctica. The Easternmore » basin is a 300-km wide, asymmetric basement trough that structurally opens into the Southern Ocean. A seaward-prograding sequence of late Oligocene and younger glacial deposits covers a deeper, layered sequence of Paleogene(.) and older age. The Central trough, a 100-km wide depression, is bounded by basement block faults and is filled with a nearly flat-lying sedimentary section. A prominent positive gravity anomaly, possibly caused by rift-related basement rocks, lies along the axis of the basin. The Victoria Land basin, unlike the other two basins, additionally contains a Paleogene(.) to Holocene rift zone, the Terror Rift. Rocks in the rift, near the axis of the 150-km wide basement half-graben, show extensive shallow faulting and magmatic intrusion of the sedimentary section. The active Terror rift and older basin structures extend at least 300 km along the base of the Transantarctic Mountains. Petroleum hydrocarbons have not been reported in the Ross Sea region, with possible exception of ethane gas found in Deep Sea Drilling Project cores from the Eastern basin. Model studies indicate that hydrocarbons could be generated at depths of 3.5 to 6 km within the sedimentary section. The best structures for hydrocarbon entrapment occur in the Victoria Land basin and associated Terror Rift.« less

  5. The Middle Pleistocene evolution of the Molise intermontane basins: revision of the chrono-stratigraphic framework and new results inferred from a deep core of the Isernia - Le Piane basin

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Patrizio Ciro Aucelli, Pietro; Cesarano, Massimo; Rosskopf, Carmen Maria

    2014-05-01

    The Molise sector of the Apennine chain includes several Quaternary intermontane basins of tectonic origin (Venafro, Isernia-Le Piane, Carpino, Sessano, Boiano and Sepino basins). Since the Middle Pleistocene, the palaeoenvironmental evolution of these basins has been strongly conditioned by extensional tectonics, dominated by fault systems with a general NW-SE trend. This tectonics has produced important vertical displacements which are testified by the elevated thickness of basin fillings and the presence of several generations of palaeosurfaces, gentle erosion glacis and hanging valleys, the latter being generally located along the borders of the basins. Our research has focused, in the last years, on clarifying the infilling nature and the Quaternary evolution of the Boiano and Sessano basins and, more recently, of the Venafro and Isernia basins, the latter being investigated also by a new deep drilling. The present paper aims at presenting the results of the detailed, integrated analysis of the palaeoenvironmental and geomorphological evolution of these basins, that allowed for constraining the chronology of the basin infillings and for clarifying the significance and age of the ancient gentle surfaces, now hanging up to hundreds of meters above the basins floors. Furthermore, the main palaeoenvironmental changes and the tectonic phases are highlighted. The dating of several tephra layers interbedded within the investigated fluvial-marshy and lacustrine-palustrine successions, allowed to correlate different basin successions, and to refer the main sedimentary facies and some of the palaeosurface generations to the Middle Pleistocene. The obtained results confirm that the Middle Pleistocene evolution of the Molise Apennine was controlled by a polyphasic extensional tectonics, with periods of relative landscape stability alternating with periods of major landscape fragmentation, due to the variable interplay of tectonic and climate. They allow, furthermore, to better decipher the Middle Pleistocene tectonic evolution providing new data on the number of phases and their differences in length, intensity and related accommodation rates.

  6. Refined modeling of Seattle basin amplification

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Wirth, E. A.; Frankel, A. D.; Baker, B.; Thompson, M.; Han, J.; Nasser, M.; Stephenson, W. J.

    2016-12-01

    The Seattle Basin has long been recognized to modulate shaking in western Washington earthquakes (e.g., Frankel, 2007 USGS OFR). The amplification of shaking in such deep sedimentary basins is a challenge to estimate and incorporate into mitigation plans. This project aims to (1) study the influence of basin edges on trapping and amplifying seismic waves, and (2) using the latest earthquake data to refine our models of basin structure. To interrogate the influence of basin edges on ground motion, we use the numerical codes SpecFEM3D and Disfd (finite-difference code from Pengcheng Liu), and an update of the basin model of Stephenson et al. (2007), to calculate synthetic ground motions at frequencies up to 1 Hz. The figure below, for example, shows the amplification relative to a simple 1/r amplitude decay for four sources around of the Seattle Basin (red dots), with an EW-striking 45°-dipping thrust mechanism at 10 km depth. We test the difficulty of simulating motions in the presence of slow materials near the basin edge. Running SpecFEM3D with attenuation is about a third as fast as the finite difference code, and cannot represent sub-element structure (e.g., slow surficial materials) in comparable detail to the finer FD grid, but has the advantages of being able to incorporate topography and water. Modeling 1 Hz energy in the presence of shear wave velocities with a floor of 600 m/s, factor of 2 to 3 velocity contrasts, and sharp basin edges is fraught, both in calculating synthetics and estimating real structure. We plan to incorporate interpretations of local recordings including basin-bottom S-to-P conversions, noise-correlation waveforms, and teleseismic-P-wave reverberations to refine the basin model. Our long-term goal is to reassess with greater accuracy and resolution the spatial pattern of hazard across the Seattle Basin, which includes several quite vulnerable neighborhoods.

  7. Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments.

    PubMed

    Shore, M; Jordan, P; Mellander, P-E; Kelly-Quinn, M; Wall, D P; Murphy, P N C; Melland, A R

    2014-08-15

    Using data collected from six basins located across two hydrologically contrasting agricultural catchments, this study investigated whether transport metrics alone provide better estimates of storm phosphorus (P) loss from basins than critical source area (CSA) metrics which combine source factors as well. Concentrations and loads of P in quickflow (QF) were measured at basin outlets during four storm events and were compared with dynamic (QF magnitude) and static (extent of highly-connected, poorly-drained soils) transport metrics and a CSA metric (extent of highly-connected, poorly-drained soils with excess plant-available P). Pairwise comparisons between basins with similar CSA risks but contrasting QF magnitudes showed that QF flow-weighted mean TRP (total molybdate-reactive P) concentrations and loads were frequently (at least 11 of 14 comparisons) more than 40% higher in basins with the highest QF magnitudes. Furthermore, static transport metrics reliably discerned relative QF magnitudes between these basins. However, particulate P (PP) concentrations were often (6 of 14 comparisons) higher in basins with the lowest QF magnitudes, most likely due to soil-management activities (e.g. ploughing), in these predominantly arable basins at these times. Pairwise comparisons between basins with contrasting CSA risks and similar QF magnitudes showed that TRP and PP concentrations and loads did not reflect trends in CSA risk or QF magnitude. Static transport metrics did not discern relative QF magnitudes between these basins. In basins with contrasting transport risks, storm TRP concentrations and loads were well differentiated by dynamic or static transport metrics alone, regardless of differences in soil P. In basins with similar transport risks, dynamic transport metrics and P source information additional to soil P may be required to predict relative storm TRP concentrations and loads. Regardless of differences in transport risk, information on land use and management, may be required to predict relative differences in storm PP concentrations between these agricultural basins. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Isopach and isoresource maps for oil shale deposits in the Eocene Green River Formation for the combined Uinta and Piceance Basins, Utah and Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.

    2012-01-01

    The in-place oil shale resources in the Eocene Green River Formation of the Piceance Basin of western Colorado and the Uinta Basin of western Colorado and eastern Utah are estimated at 1.53 trillion barrels and 1.32 trillion barrels, respectively. The oil shale strata were deposited in a single large saline lake, Lake Uinta, that covered both basins and the intervening Douglas Creek arch, an area of comparatively low rates of subsidence throughout the history of Lake Uinta. Although the Green River Formation is largely eroded for about a 20-mile area along the crest of the arch, the oil shale interval is similar in both basins, and 17 out of 18 of the assessed oil shale zones are common to both basins. Assessment maps for these 17 zones are combined so that the overall distribution of oil shale over the entire extent of Lake Uinta can be studied. The combined maps show that throughout most of the history of Lake Uinta, the richest oil shale was deposited in the depocenter in the north-central part of the Piceance Basin and in the northeast corner of the Uinta Basin where it is closest to the Piceance Basin, which is the only area of the Uinta Basin where all of the rich and lean oil shale zones, originally defined in the Piceance Basin, can be identified. Both the oil shale and saline mineral depocenter in the Piceance Basin and the richest oil shale area in the Uinta Basin were in areas with comparatively low rates of subsidence during Lake Uinta time, but both areas had low rates of clastic influx. Limiting clastic influx rather than maximizing subsidence appears to have been the most important factor in producing rich oil shale.

  9. The Anatomy of High Levels of Wintertime Photochemical Ozone Production in the Uintah Basin, Utah, 2013

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Oltmans, S. J.; Johnson, B.; Petron, G.; Neely, R. R.

    2013-12-01

    The Uintah Basin, Utah is ~ 5,000 km2 in size with lower elevations of ~1400 m msl ringed by mountains rising to ~3,000 m. Within this basin are 6,000 gas wells that produced 10 billion m3 of natural gas and 4,000 oil wells that produced ~22 million barrels of oil in 2012. In winter, the confined geography in the basin traps effluents from these fossil fuel extraction activities into a shallow layer (a few 100 meters deep) beneath strong temperature inversions, especially when ample snow cover is present throughout the basin. The temperature inversions isolate the basin from upper level winds that allow for stagnant conditions that may last for a week or more before a frontal system may flush the basin out. The highly reflective snow provides for enhanced photolysis rates that in February are comparable to those in June. In 2013 December snowfall in the Uintah Basin persisted until early March with exceptionally elevated ozone production occurring in four distinct, 10-day periods separated by 2-3 days of near background values following frontal induced washouts of the basins. In one well studied ozone event, background ozone levels of 55 ppb in the basin were measured from the surface to the lower troposphere on January 30, 2013. By February 1, ozone concentrations from the surface to the top of the 180 m deep temperature inversion averaged 100 ppb. By February 6 ozone concentrations were 165 ppb throughout the same layer. From aircraft measurements these ozone concentrations were observed to be fairly well mixed throughout the basin although there were some notable hotspots. Clean-out of ozone and ozone precursors in the Uintah Basin was observed to occur within 4 hours or less as basin air was replaced with air coming in from the west coast and mixing to the surface.

  10. Increasing influence of exotic terranes as sources of shales from the Sevier and Taconic Foreland basins : Evidence from Nd isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, S.D.; Andersen, C.B.

    1994-03-01

    The influence of outboard tectonostratigraphic terranes as a source of sediment to Ordovician foreland basins is unknown. To determine if there were changes in provenance, or changes in the importance of a given source region, the authors have analyzed shales from two foreland basins, the Tactonic Foreland basin of central New York and the Sevier Foreland basin of Tennessee, for their Nd isotopic compositions. Shales from the Taconic basin include those from the lower portion of Utica shale, Corynoides americanus graptolite Zone, and the uppermost portion of the Utica shale, including the Geniculograptus pygmaeus graptolite Zone. Initial [epsilon][sub Nd] valuesmore » for the oldest Taconic basin shales are [minus]12. Initial [epsilon][sub Nd] values for the younger Taconic basin shales range from [minus]9.7 to [minus]8.4. This increase in [epsilon][sub Nd] may reflect an increased influence of terranes outboard of the Laurentian margin. Samples from the Sevier basin include those from the Blockhouse and Tellico Formations. A sample of the lower Blockhouse Fm. has an initial [epsilon][sub Nd] of [minus]9.4, while mid-formation levels have [epsilon][sub Nd] = [minus]8.8. Initial [epsilon][sub Nd] ranges from [minus]8.0 to [minus]7.2 from Tellico Formation shales. Thus a trend towards increasing [epsilon][sub Nd] with decreasing age is also seen in the Sevier basin. This again suggests the possibility of an increasing influence from nearby terranes. The fact that the [epsilon][sub Nd] values are higher in the Sevier basin than in the Taconic basin indicates that the Sevier shales received detritus with a less evolved isotopic composition. This may reflect fundamentally different sources, such as a more juvenile terrane as an important source of Sevier basin shales.« less

  11. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... Basin Salinity Control Advisory Council (Council) will meet as detailed below. The meeting of the... INFORMATION: The Colorado River Basin Salinity Control Advisory Council was established by the Colorado River...

  12. 78 FR 9883 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice; Solicitation of nominees to the Lake Tahoe Basin Federal Advisory Committee. SUMMARY: In accordance with the...) announces solicitation of nominees to fill vacancies on the Lake Tahoe Basin Federal Advisory Committee...

  13. Estimating flood hydrographs for urban basins in North Carolina

    USGS Publications Warehouse

    Mason, R.R.; Bales, J.D.

    1996-01-01

    A dimensionless hydrograph for North Carolina was developed from data collected in 29 urban and urbanizing basins in the State. The dimen- sionless hydrograph can be used with an estimate of peak flow and basin lagtime to synthesize a design flood hydrograph for urban basins in North Carolina. Peak flows can be estimated from a number of avail- able techniques; a procedure for estimating basin lagtime from main channel length, stream slope, and percentage of impervious area was developed from data collected at 50 sites and is presented in this report. The North Carolina dimensionless hydrograph provides satis- factory predictions of flood hydrographs in all regions of the State except for basins in or near Asheville where the method overestimated 11 of 12 measured hydrographs. A previously developed dimensionless hydrograph for urban basins in the Piedmont and upper Coastal Plain of South Carolina provides better flood-hydrograph predictions for the Asheville basins and has a standard error of 21 percent as compared to 41 percent for the North Carolina dimensionless hydrograph.

  14. Assessment of continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    USGS Publications Warehouse

    Gaswirth, Stephanie B.

    2017-03-06

    The U.S. Geological Survey completed a geology-based assessment of undiscovered, technically recoverable continuous petroleum resources in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province of west Texas. This is the first U.S. Geological Survey evaluation of continuous resources in the Wolfcamp shale in the Midland Basin. Since the 1980s, the Wolfcamp shale in the Midland Basin has been part of the “Wolfberry” play. This play has traditionally been developed using vertical wells that are completed and stimulated in multiple productive stratigraphic intervals that include the Wolfcamp shale and overlying Spraberry Formation. Since the shift to horizontal wells targeting the organic-rich shale of the Wolfcamp, more than 3,000 horizontal wells have been drilled and completed in the Midland Basin Wolfcamp section. The U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of associated gas in the Wolfcamp shale in the Midland Basin.

  15. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  16. Estimation of sediments in urban drainage areas and relation analysis between sediments and inundation risk using GIS.

    PubMed

    Moojong, Park; Hwandon, Jun; Minchul, Shin

    2008-01-01

    Sediments entering the sewer in urban areas reduce the conveyance in sewer pipes, which increases inundation risk. To estimate sediment yields, individual landuse areas in each sub-basin should be obtained. However, because of the complex nature of an urban area, this is almost impossible to obtain manually. Thus, a methodology to obtain individual landuse areas for each sub-basin has been suggested for estimating sediment yields. Using GIS, an urban area is divided into sub-basins with respect to the sewer layout, with the area of individual landuse estimated for each sub-basin. The sediment yield per unit area for each sub-basin is then calculated. The suggested method was applied to the GunJa basin in Seoul. For a relation analysis between sediments and inundation risk, sub-basins were ordered by the sediment yields per unit area and compared with historical inundation areas. From this analysis, sub-basins with higher order were found to match the historical inundation areas. Copyright IWA Publishing 2008.

  17. Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J.

    1994-12-01

    Analysis of laser altimetry data from Clementine has confirmed and extended our knowledge of nearly obliterated multiring basins on the moon. These basins were formed during the early bombardment phase of lunar history, have been filled to varying degrees by mare lavas and regional ejecta blankets, and have been degraded by the superposition of large impact craters. The Mendel-Rydberg Basin, a degraded three-ring feature over 600 kilometers in diameter on the lunar western limb, is about 6 kilometers deep from rim to floor, only slightly less deep than the nearby younger and much better preserved Orientale Basin (8 kilometers deep). The South Pole-Aitken Basin, the oldest discernible impact feature on the moon, is revealed as a basin 2500 kilometers in diameter with an average depth of more than 13 kilometers, rim crest to floor. This feature is the largest, deepest impact crater yet discovered in the solar system. Several additional depressions seen in the data may represent previously unmapped ancient impact basins.

  18. Intra- and inter-basin mercury comparisons: Importance of basin scale and time-weighted methylmercury estimates

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Bringham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Riva-Murray, Karen

    2013-01-01

    To assess inter-comparability of fluvial mercury (Hg) observations at substantially different scales, Hg concentrations, yields, and bivariate-relations were evaluated at nested-basin locations in the Edisto River, South Carolina and Hudson River, New York. Differences between scales were observed for filtered methylmercury (FMeHg) in the Edisto (attributed to wetland coverage differences) but not in the Hudson. Total mercury (THg) concentrations and bivariate-relationships did not vary substantially with scale in either basin. Combining results of this and a previously published multi-basin study, fish Hg correlated strongly with sampled water FMeHg concentration (p = 0.78; p = 0.003) and annual FMeHg basin yield (p = 0.66; p = 0.026). Improved correlation (p = 0.88; p < 0.0001) was achieved with time-weighted mean annual FMeHg concentrations estimated from basin-specific LOADEST models and daily streamflow. Results suggest reasonable scalability and inter-comparability for different basin sizes if wetland area or related MeHg-source-area metrics are considered.

  19. National water-quality assessment of the Lake Erie-Lake St. Clair Basin, Michigan, Indiana, Ohio, Pennsylvania, and New York; environmental and hydrologic setting

    USGS Publications Warehouse

    Casey, G.D.; Myers, Donna N.; Finnegan, D.P.; ,

    1998-01-01

    The Lake Erie-Lake St. Clair Basin covers approximately 22,300 mi ?(square miles) in parts of Indiana, Michigan, Ohio, Pennsylvania, and New York. Situated in two major physiographic provinces, the Appalachian Plateaus and the Central Lowland, the basin includes varied topographic and geomorphic features that affect the hydrology. As of 1990, the basin was inhabited by approximately 10.4 million people. Lake effect has a large influence on the temperature and precipitation of the basin, especially along the leeward southeast shore of Lake Erie. Mean annual precipitation generally increases from west to east, ranging from 31.8 inches at Detroit, Mich., to 43.8 inches at Erie, Pa. The rocks that underlie the Lake Erie-Lake St. Clair Basin range in age from Cambrian through Pennsylvanian, but only Silurian through Pennsylvanian rocks are part of the shallow ground-water flow system. The position of the basin on the edge of the Michigan and Appalachian Basins is responsible for the large range in geologic time of the exposed rocks. Rock types range from shales, siltstones, and mudstones to coarse-grained sandstones and conglomerates. Carbonate rocks consisting of limestones, dolomites, and calcareous shales also underlie the basin. All the basin is overlain by Pleistocene deposits- till, fine-grained stratified sediments, and coarse-grained stratified sediments-most of Wisconsinan age. A system of buried river valleys filled with various lacustrine, alluvial, and coarse glacial deposits is present in the basin. The soils of the Lake Erie-Lake St. Clair Basin consist of two dominant soil orders: Alfisols and Inceptisols. Four other soil orders in the basin (Mollisols, Histisols, Entisols, and Spodosols) are of minor significance, making up less than 8 percent of the total area. The estimated water use for the Lake Erie-Lake St. Clair Basin for 1990 was 10,649 Mgal/d (million gallons per day). Power generation accounted for about 77 percent of total water withdrawals for the basin, whereas agriculture accounted for the least water-use withdrawals, at an estimated 38 Mgal/d. About 98 percent of the total water used in the basin was drawn from surface water; the remaining 2 percent was from ground water. Agricultural and urban land are the predominant land covers in the basin. Agriculture makes up approximately 74.7 percent of the total basin area; urban land use accounts for 11.2 percent; forested areas constitute 10.5 percent; and water, wetlands, rangeland, and barren land constitute less than 4.0 percent. The eight principal streams in the basin are the Clinton, Huron, and Raisin Rivers in Michigan, the Maumee, Sandusky, Cuyahoga, and Grand Rivers in Ohio, and Cattaraugus Creek in New York. The Maumee River, the largest stream in the basin, drains 6,609 mi? and discharges just under 24 percent of the streamflow from the basin into Lake Erie. Combined, the eight principal streams discharge approximately 54 percent of the surface water from the basin to the Lake Erie system per year. Average runoff increases from west to east in the basin. The glacial and recent deposits comprise the unconsolidated aquifers and confining units within the basin. Yields of wells completed in tills range from 0 to 20 gal/min (gallon per minute), but yields generally are near the lower part of this range. Fine-grained stratified deposits can be expected to yield from 0 to 3 gal/ min, and coarse-grained stratified deposits can yield 0.3 to 2,050 gal/min. Pennsylvanian sandstones can yield more than 25 gal/min, but they generally yield 10 to 25 gal/min. Mississippian sandstones in the basin generally yield 2 to 100 gal/min. The Mississippian and Devonian shales are considered to be confining units; in places, they produce small quantities of water from fractures at or near the bedrock surface. Wells completed in the Devonian and Silurian carbonates yield 25 to 500 gal/min, but higher yields have been reported in several zones.

  20. A framework model for water-sharing among co-basin states of a river basin

    NASA Astrophysics Data System (ADS)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where there is conflict about water-sharing among co-basin states.

  1. Implications for the formation of the Hollywood Basin from gravity interpretations of the northern Los Angeles Basin, California

    USGS Publications Warehouse

    Hildenbrand, Thomas G.; Davidson, Jeffrey G.; Ponti, Daniel J.; Langenheim, V.E.

    2001-01-01

    Gravity data provide insights on the complex tectonic history and structural development of the northern Los Angeles Basin region. The Hollywood basin appears to be a long (> 12 km), narrow (up to 2 km wide) trough lying between the Santa Monica Mountains and the Wilshire arch. In the deepest parts of the Hollywood basin, the modeled average thickness ranges from roughly 250 m if filled with only Quaternary sediments to approximately 600 m if Pliocene sediments are also present. Interpretations of conflicting drill hole data force us to consider both these scenarios. Because of the marked density contrast between the dense Santa Monica Mountains and the low-density sediments in the Los Angeles Basin, the gravity method is particularly useful in mapping the maximum displacement along the Santa Monica-Hollywood-Raymond fault zone. The gravity-defined Santa Monica–Hollywood fault zone deviates, in places, from the mapped active fault and fold scarps located with boreholes and trenching and by geomorphological mapping by Dolan and others (1997). Our models suggest that the Santa Monica–Hollywood fault zone dips northward approximately 63°. Three structural models are considered for the origin of the Hollywood basin: pull-apart basin, flexural basin, and a basin related to a back limb of a major fold. Although our preferred structural model involves flexure, the available geologic and geophysical data do not preclude contributions to the deepening of the basin from one or both of the other two models. Of particular interest is that the distribution of red-tagged buildings and structures damaged by the Northridge earthquake has a strong spatial correlation with the axis of the Hollywood basin defined by the gravity data. Several explanations for this correlation are explored, but two preferred geologic factors for the amplification of ground motion besides local site effects are (1) focussing of energy by a fault along the axis of the Hollywood basin and (2) focussing effects related to differential refraction of seismic rays across the basin.

  2. Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays

    NASA Astrophysics Data System (ADS)

    D'Elia, Leandro; Bilmes, Andrés; Franzese, Juan R.; Veiga, Gonzalo D.; Hernández, Mariano; Muravchik, Martín

    2015-12-01

    Long-lived rift basins are characterized by a complex structural and tectonic evolution. They present significant lateral and vertical stratigraphic variations that determine diverse basin-patterns at different timing, scale and location. These issues cause difficulties to establish facies models, correlations and stratal stacking patterns of the fault-related stratigraphy, specially when exploration of hydrocarbon plays proceeds on the subsurface of a basin. The present case study corresponds to the rift-successions of the Neuquén Basin. This basin formed in response to continental extension that took place at the western margin of Gondwana during the Late Triassic-Early Jurassic. A tectono-stratigraphic analysis of the initial successions of the southern part of the Neuquén Basin was carried out. Three syn-rift sequences were determined. These syn-rift sequences were located in different extensional depocentres during the rifting phases. The specific periods of rifting show distinctly different structural and stratigraphic styles: from non-volcanic to volcanic successions and/or from continental to marine sedimentation. The results were compared with surface and subsurface interpretations performed for other depocentres of the basin, devising an integrated rifting scheme for the whole basin. The more accepted tectono-stratigraphic scheme that assumes the deposits of the first marine transgression (Cuyo Cycle) as indicative of the onset of a post-rift phase is reconsidered. In the southern part of the basin, the marine deposits (lower Cuyo Cycle) were integrated into the syn-rift phase, implying the existence of different tectonic signatures for Cuyo Cycle along the basin. The rift climax becomes younger from north to south along the basin. The post-rift initiation followed the diachronic ending of the main syn-rift phase throughout the Neuquén Basin. Thus, initiation of the post-rift stage started in the north and proceeded towards the south, constituting a diachronous post-rift event. This arrangement implies that the lower part of Cuyo Cycle, traditionally related to regional thermal subsidence, may be deposited during either mechanical subsidence or thermal subsidence according to its position within the basin.

  3. Evolution of a Miocene sag basin in the Alboran Sea

    NASA Astrophysics Data System (ADS)

    Do Couto, D.; Gorini, C.; Jolivet, L.; Letouzey, J.; Smit, J.; d'Acremont, E.; Auxietre, J. L.; Le Pourhiet, L.; Estrada, F.; Elabassi, M.; Ammar, A.; Jabour, H.; Vendeville, B.

    2012-04-01

    The Alboran domain represents the westernmost termination of the peri-Mediterranean Alpine orogen. Its arcuate shape, delimited to the North by the Betic range and to the South by the Rif range, is the result of subduction, collision and slab migration processes. During the Neogene, several sedimentary basins formed on the Betics metamorphic basement, mainly due to the extensional collapse of the previously thickened crust of the Betic-Rif belt. The major sedimentary depocentre, the Western Alboran Basin (WAB), is surrounded by the Gibraltar arc, the volcanic Djibouti mounts and the Alboran ridge, and is partly affected by shale tectonics and associated mud volcanism. High-quality 2-D seismic profiles acquired along the Moroccan margin during the last decade reveal a complete history of the basin. Our study deals with the analysis of seismic profiles oriented parallel and orthogonal to the Mediterranean Moroccan margin. The stratigraphy was calibrated using well data from offshore Spain and Morocco. Our study focuses particularly on the tectono-stratigraphic reconstruction of the basin. The formation of the WAB began in the Early Miocene (Aquitanian - Burdigalian). A massive unit of Early Miocene to Lower Langhian shales and olistostromes forms a thick mobile décollement layer that controls and accommodates deformation of the basin fill. From the Upper Langhian to the Upper Tortonian, the basin is filled by a thick sequence of siliciclastic deposits. Stratigraphic geometries identified on seismic data clearly indicate that deformation of the basin fill started during deposition of Upper Langhian to the Upper Tortonian clastics. Shale tectonic deformation was re-activated recently, during the Messinian desiccation of the Mediterranean Sea (and the following catastrophic Pliocene reflooding) or during the Quaternary contourite deposition The sedimentary layers gently dip towards the basin centre and "onlaps" onto the basin margin, especially onto the basement high that bounds the basin toward the East. The contacts observed between the sediment and the basement reflectors are purely stratigraphic. These observations confirm that the geometry is essentially that of a sag basin. We discuss all these stratigraphic observations in the scope of the geodynamic evolution of the eastern and western Alboran basin and the extension recorded onshore during the basin development time interval.

  4. Holocene vertical tectonic movements of the Taipei Basin, northern Taiwan and its implications

    NASA Astrophysics Data System (ADS)

    Chen, B.; Hsieh, M.; Lai, T.; Liew, P.

    2007-12-01

    Many geological data of the Taipei Basin, although, have been published by various studies in past decades, however, vertical tectonic movement rate of the Basin was not well understood so far. This study, therefore, used radiocarbon dates, obtained from fifteen boreholes in the Basin, to calculate the Holocene vertical tectonic movement rate. In addition to the derived tectonic movement rate, this study also discussed the causes of the tectonic patterns of the Taipei Basin. The Taipei Basin, located in the northern Taiwan, was a half graben subsided and extended along the western boundary, the Shangiao Normal Fault, of the Basin. The Holocene vertical tectonic movement rate of the Basin were calculated based on 94 radiocarbon dates in fifteen boreholes, the elevations of the radiocarbon dating samples, and the eustatic sea-level curve of the past 15 ka. The results showed the rate in the western part of the Basin, was -2.2 -- -0.9 mm/yr (negative value indicates subsiding, and positive value indicates uplifting). In the central part of the Basin, the rate was ca. -1 -- 1 mm/yr while in the eastern part of the Basin, the rate was 0.1 -- 1.6 mm/yr. Along the Shiangiao Fault, the rate of the hanging-wall was ca. -1.6 -- -0.4 mm/yr and the rate of the footwall was ca. 0 mm/yr. According to the results of this study, the present territory of the Taipei Basin was not actually consistent with the tectonic subsiding region. The vertical tectonic movement pattern demonstrated subsidence in the western part and uplift in the eastern part of the Taipei Basin. The subsidence of the western part was controlled by the extension of the Shangiao Faul. The uplift of the eastern part might be ascribed to the roll-over of the Fault. Another possibility is that the uplift of the east was controlled by the same behavior as the Western Foothills.Consequently, the deposition of the eastern part of the Basin, wass mainly related to the accommodations due to sea-level rise but not tectonic subsidence.

  5. N(50) Crater Retention Ages for an Expanded Inventory of Lunar Basins: Evidence for an Early Heavy Bombardment and a Late Heavy Bombardment?

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Burgess, Emily

    2012-01-01

    LOLA topography and LOLA-derived crustal thickness data provide evidence for a population of impact basins on the Moon that is likely a factor 2 larger than the classical lists based on photogeology. Frey (2012) determined N(50) crater retention ages (CRAs) for 83 candidate basins > 300 km in diameter by counting LOLA-identified craters superimposed over the whole area of the basins. For some basins identified in topography or model crustal thickness it is not possible to unambiguously identify the crater rim as is traditionally done. Also, Quasi-Circular Depressions (QCDs) > 50 km in diameter are recognizable in the mare-filled centers of many basins. Even though these are not apparent in image data, they likely represent buried impact craters superimposed on the basin floor prior to mare infilling and so should be counted in determining the age of the basin. Including these as well as the entire area of the basins improves the statistics, though the error bars are still large when using only craters > 50 km in diameter. The distribution of N(50) CRAs had two distinct peaks which did not depend on whether the basins were named (based on photogeology) or recognized first in topography or crustal thickness data. It also did not depend on basin diameters (both larger and smaller basins made up both peaks) and both peaks persisted even when weaker candidates were excluded. Burgess (2012, unpublished data) redid the counts for 85 basins but improved on the earlier effort by adjusting the counting area where basins overlap. The two peak distribution of N(50) ages was confirmed, with a younger peak at N(50) 40-50 and an older peak at N(50) 80-90 (craters > 50 km diameter per million square km). We suggest this could represent two distinct populations of impactors on the Moon: one producing an Early Heavy Bombardment (EHB) that predates Nectaris and the second responsible for the more widely recognized Late Heavy Bombardment (LHB).

  6. Correlation of lunar far-side magnetized regions with ringed impact basins

    USGS Publications Warehouse

    Anderson, K.A.; Wilhelms, D.E.

    1979-01-01

    By the method of electron reflection, we have identified seven well-defined magnetized regions in the equatorial belt of the lunar far side sampled by the Apollo 16 Particles and Fields subsatellite. Most of these surface magnetic fields lie within one basin radius from the rim of a ringed impact basin, where thick deposits of basin ejecta are observed or inferred. The strongest of the seven magnetic features is linear, at least 250 km long, and radial to the Freundlich-Sharonov basin. The apparent correlation with basin ejecta suggests some form of impact origin for the observed permanently magnetized regions. ?? 1979.

  7. Structural evolution and petroleum productivity of the Baltic basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmishek, G.F.

    The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of amore » thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.« less

  8. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    PubMed

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  9. Chapter 48: Geology and petroleum potential of the Eurasia Basin

    USGS Publications Warehouse

    Moore, Thomas E.; Pitman, Janet K.

    2011-01-01

    The Eurasia Basin petroleum province comprises the younger, eastern half of the Arctic Ocean, including the Cenozoic Eurasia Basin and the outboard part of the continental margin of northern Europe. For the USGS petroleum assessment (CARA), it was divided into four assessment units (AUs): the Lena Prodelta AU, consisting of the deep-marine part of the Lena Delta; the Nansen Basin Margin AU, comprising the passive margin sequence of the Eurasian plate; and the Amundsen Basin and Nansen Basin AUs which encompass the abyssal plains north and south of the Gakkel Ridge spreading centre, respectively. The primary petroleum system thought to be present is sourced in c. 50–44 Ma (Early to Middle Eocene) condensed pelagic deposits that could be widespread in the province. Mean estimates of undiscovered, technically recoverable petroleum resources include <1 billion barrels of oil (BBO) and about 1.4 trillion cubic feet (TCF) of nonassociated gas in Lena Prodelta AU, and <0.4 BBO and 3.4 TCF nonassociated gas in the Nansen Basin Margin AU. The Nansen Basin and Amundsen Basin AUs were not quantitatively assessed because they have less than 10% probability of containing at least one accumulation of 50 MMBOE (million barrels of oil equivalent).

  10. Physical subdivision and description of the water-bearing sediments of the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Jachens, Robert C.; Williams, Robert A.; Tinsley, John C.; Hanson, Randall T.

    2015-01-01

    Maps and cross sections show the elevations of cycle boundaries and the underlying bedrock surface, the varying thicknesses of the cycles and of their fine tops and coarse bottoms, and the aggregate thickness of coarse layers in those bottom intervals. Coarse sediment is more abundant toward some parts of the basin margin and in the southern part of the basin. Cycle boundary surfaces are relatively smooth, and their shapes are consistent with having been intercycle topographic surfaces. The underlying bedrock surface has a relief of more than 1,200 feet and deepens toward the center of the basin and the west edge of the fault-bounded Evergreen Basin, which is concealed beneath the east side of the Quaternary basin. The absence of consistent abrupt changes in thicknesses or boundary elevations across the basin or in cross section indicates that the interior of the basin is largely unfaulted, with the Silver Creek strand of the San Andreas system at the west edge of the Evergreen Basin being the sole exception. The east and west margins of the Santa Clara Basin, in contrast, are marked by reverse and thrust fault systems.

  11. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  12. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J.B.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.« less

  13. The visual and radiological inspection of a pipeline using a teleoperated pipe crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogle, R.F.; Kuelske, K.; Kellner, R.

    1995-01-01

    In the 1950s, the Savannah River Site built an open, unlined retention basin to temporarily store potentially radionuclide contaminated cooling water from a chemical separations process and storm water drainage from a nearby waste management facility that stored large quantities of nuclear fission byproducts in carbon steel tanks. The retention basin was retired from service in 1972 when a new, lined basin was completed. In 1978, the old retention basin was excavated, backfilled with uncontaminated dirt, and covered with grass. At the same time, much of the underground process pipeline leading to the basin was abandoned. Since the closure ofmore » the retention basin, new environmental regulations require that the basin undergo further assessment to determine whether additional remediation is required. A visual and radiological inspection of the pipeline was necessary to aid in the remediation decision making process for the retention basin system. A teleoperated pipe crawler inspection system was developed to survey the abandoned sections of underground pipelines leading to the retired retention basin. This paper will describe the background to this project, the scope of the investigation, the equipment requirements, and the results of the pipeline inspection.« less

  14. The inspection of a radiologically contaminated pipeline using a teleoperated pipe crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogle, R.F.; Kuelske, K.; Kellner, R.A.

    1995-08-01

    In the 1950s, the Savannah River Site built an open, unlined retention basin to temporarily store potentially radionuclide contaminated cooling water from a chemical separations process and storm water drainage from a nearby waste management facility that stored large quantities of nuclear fission byproducts in carbon steel tanks. The retention basin was retired from service in 1972 when a new, lined basin was completed. In 1978, the old retention basin was excavated, backfilled with uncontaminated dirt, and covered with grass. At the same time, much of the underground process pipeline leading to the basin was abandoned. Since the closure ofmore » the retention basin, new environmental regulations require that the basin undergo further assessment to determine whether additional remediation is required. A visual and radiological inspection of the pipeline was necessary to aid in the remediation decision making process for the retention basin system. A teleoperated pipe crawler inspection system was developed to survey the abandoned sections of underground pipelines leading to the retired retention basin. This paper will describe the background to this project, the scope of the investigation, the equipment requirements, and the results of the pipeline inspection.« less

  15. Natural fracture systems studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Warpinski, N.R.

    The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing amore » structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.« less

  16. The Minorca Basin: a buffer zone between the Valencia and Liguro-Provençal Basins (NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pellen, Romain; Aslanian, Daniel; Rabineau, Marina; Leroux, Estelle; Gorini, Christian; Silenziario, Carmine; Blanpied, Christian; Rubino, Jean-Loup

    2017-04-01

    The present-day compartmented Mediterranean physiography is inherited from the last 250 Ma kinematic plate evolution (Eurasian, Africa, Iberic and Nubia plates) which implied the formation of orogenic chains, polyphased basins, and morphological - geodynamic thresholds. The interactions between these entities are strongly debated in the North-Western Mediterranean area. Several Neogene reconstructions have been proposed for the Valencia basin depending of the basin segmentation where each model imply a different subsidence, sedimentary, and palaeo-environmental evolution. Our study propose a new kinematic model for the Valencia Basin (VB) that encompasses the sedimentary infill, vertical movement and basin segmentation. Detailed analyses of seismic profiles and boreholes in the VB reveal a differentiated basin, the Minorca Basin (MB), lying between the old Mesozoic Valencia Basin sensu strico (VBss) and the young Oligocene Liguro-Provencal Basin (LPB) (Pellen et al., 2016). The relationship between these basins is shown through the correlation of four Miocene-to-present-day megasequences. The Central and North Balearic Fracture Zones (CFZ and NBFZ) that border the MB represent two morphological and geodynamical thresholds that created an accommodation in steps between the three domains. Little to no horizontal Neogene movements have been found for the Ibiza and Majorca Islands and imply a vertical "sag" subsidence. In contrast, the counterclockwise movement of the Corso-Sardinian blocks induced a counterclockwise movement of the Minorca block towards the SE along the CFZ and NBFZ, during the exhumation of lower continental crust in the LPB. The South-Eastward Minorca block translation stops when the first atypical oceanic crust occurs. The influence of the Neogene Betic compressional phase is thus limited to the VBss on the basis of a different MB origin. This new understanding places the AlKaPeCa blocks northeastward of the present-day Alboran Area. Both NW-SE and NE-SW Neogene blocks rotation proposed in earlier studies are therefore questioned (Pellen et al., 2016). A better kinematic understanding of the NW Mediterranean area is possible through the study of the South Balearic margin and Algerian basins. Pellen, R., Aslanian, D., Rabineau, M., Leroux, E., Gorini, C., Silenzario, C., Blanpied, C., Rubino J-L., 2016. The Minorca Basin: a buffer zone between Valencia and Provençal Basins, Terra Nova. doi: 10.1111/ter.12215

  17. Three depositional states and sedimentary processes of the western Taiwan foreland basin system

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Jung; Wu, Pei-Jen; Yu, Ho-Shing

    2010-05-01

    The western Taiwan foreland basin formed during the Early Pliocene as the flexural response to the loading of Taiwan orogen on the Eurasian plate. What makes Taiwan interesting is the oblique collision, which allows the foreland basin to be seen at different stages in its evolution at the present day. Due to oblique arc-continent collision from north to south, the western Taiwan foreland basin has evolved into three distinct subbasins: an over-filled basin proximal to the Taiwan orogen, mainly distributed in the Western Foothills and Coastal Plain provinces, a filled basin occupying the shallow Taiwan Strait continental shelf west of the Taiwan orogen and an under-filled basin distal to the Taiwan orogen in the deep marine Kaoping Slope offshore southwest Taiwan, respectively. The over-filled depositional phase is dominated by fluvial environments across the structurally controlled piggy-back basins. The filled depositional state in the Taiwan Strait is characterized by shallow marine environments and is filled by Pliocene-Quaternary sediments up to 4,000 m thick derived from the Taiwan orogen with an asymmetrical and wedge-shaped cross section. The under-filled depositional state is characteristic of deep marine environments in the wedge-top basins accompanied by active structures of thrust faults and mud diapers. Sediments derived from the Taiwan orogen have progressively filled the western Taiwan foreland basin across and along the orogen. Sediment dispersal model suggests that orogenic sediments derived from oblique dischronous collisional highlands are transported in two different ways. Transport of fluvial and shallow marine sediments is perpendicular to hill-slope and across-strike in the fluvial and shallow marine environments proximal to the orogen. Fine-grained sediments mainly longitudinally transported into the deep marine environments distal to the orogen. The present sedimentary processes in the over-filled basin on land are dominated by fluvial processes of small mountainous rivers. Tidal currents are prevalent in the filled basin in Taiwan Strait, transporting shelf sands and forming sand ridges. The deep marine under-filled basin are dominated by down-slope mass wasting processes, eroding slope strata and transporting sediments to the basin floor. In addition, many submarine canyons on the continental slope offshore southwest Taiwan serve as major sediment pathways, delivering shallow marine sediments to the basin floor.

  18. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less

  19. Climate change impacts analysis on hydrological processes in the Weyib River basin in Ethiopia

    NASA Astrophysics Data System (ADS)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-12-01

    The study aims to examine the variation of hydrological processes (in terms of mean annual, seasonal, and monthly) under changing climate within the Weyib River basin in Ethiopia at both basin and sub-basin level using ArcSWAT hydrologic model. The climate change impacts on temperature and precipitation characteristics within the basin have been studied using GFDL-ESM2M, CanESM2, and GFDL-ESM2G models for RCP8.5, RCP4.5, and RCP2.6 scenarios from coupled model inter-comparison project 5 (CMIP5) which have been downscaled by SDSM. The results revealed that the mean annual temperature and precipitation reveal a statistically significant (at 5% significant level) increasing trend in the nine ESM-RCP scenarios for all the future time slices. The mean annual actual evapotranspiration, baseflow, soil water content, percolation, and water availability in the stream exhibit a rise for all the ESMs-RCP scenarios in the entire basin and in all the sub-basins. However, surface runoff and potential evapotranspiration show a decreasing trend. The mean annual water availability increases between 9.18 and 27.97% (RCP8.5), 3.98 and 19.61% (RCP4.5), and 11.82 and 17.06% (RCP2.6) in the entire basin. The sub-basin level analysis reveals that the annual, seasonal, and monthly variations of hydrological processes in all the sub-basins are similar regarding direction but different in magnitude as compared to that of the entire basin analysis. In addition, it is observed that there is a larger monthly and seasonal variation in hydrological processes as compared to the variation in annual scale. The net water availability tends to decline in the dry season; this might cause water shortage in the lowland region and greater increases in an intermediate and rainy seasons; this might cause flooding to some flood prone region of the basin. Since the variation of water availability among the sub-basins in upcoming period is high, there is a scope of meeting agriculture water demand through water transfer from sub-basin having more available water in small area to the sub-basin having less available water in a larger agricultural area.

  20. Climatic controls on arid continental basin margin systems

    NASA Astrophysics Data System (ADS)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed models suggest that the deposits of the Brockram alluvial fans have the potential to contain numerous preferential flow zones. Where these flow zones are adjacent to the unique deposits of the zone of interaction it affects basin-scale fluid flow by: 1) interconnecting decent reservoirs in the distal extent of the basin; 2) creating flow pathways away from these reservoirs; 3) introducing secondary baffles into the system; and, 4) creating a bypass to charge these distal reservoirs.

  1. Laramide basin CSI: Comprehensive stratigraphic investigations of Paleogene sediments in the Colorado Headwaters Basin, north-central Colorado

    USGS Publications Warehouse

    Dechesne, Marieke; Cole, James Channing; Trexler, James H.; Cashman, Patricia; Peterson, Christopher D

    2013-01-01

    The Paleogene sedimentary deposits of the Colorado Headwaters Basin provide a detailed proxy record of regional deformation and basin subsidence during the Laramide orogeny in north-central Colorado and southern Wyoming. This field trip presents extensive evidence from sedimentology, stratigraphy, structure, palynology, and isotope geochronology that shows a complex history that is markedly different from other Laramide synorogenic basins in the vicinity.We show that the basin area was deformed by faulting and folding before, during, and after deposition of the Paleogene rocks. Internal unconformities have been identified that further reflect the interaction of deformation, subsidence, and sedimentation. Uplift of Proterozoic basement blocks that make up the surrounding mountain ranges today occurred late in basin history. Evidence is given to reinterpret the Independence Mountain uplift as the result of significant normal faulting (not thrusting), probably in middle Tertiary time.While the Denver and Cheyenne Basins to the east were subsiding and accumulating sediment during Late Cretaceous time, the Colorado Headwaters Basin region was experiencing vertical uplift and erosion. At least 1200 m of the upper part of the marine Upper Cretaceous Pierre Shale was regionally removed, along with Fox Hills Sandstone shoreline deposits of the receding Interior Seaway as well as any Laramie Formation–type continental deposits. Subsidence did not begin in the Colorado Headwaters Basin until after 60.5 Ma, when coarse, chaotic, debris-flow deposits of the Paleocene Windy Gap Volcanic Member of the Middle Park Formation began to accumulate along the southern basin margin. These volcaniclastic conglomerate deposits were derived from local, mafic-alkalic volcanic sources (and transitory deposits in the drainage basin), and were rapidly transported into a deep lake system by sediment gravity currents. The southern part of the basin subsided rapidly (roughly 750–1000 m/m.y.) and the drainage system delivered increasing proportions of arkosic debris from uplifted Proterozoic basement and more intermediate-composition volcanic-porphyry materials from central Colorado sources.Other margins of the Colorado Headwaters Basin subsided at slightly different times. Subsidence was preceded by variable amounts of gentle tilting and localized block-fault uplifts. The north-central part of the basin that was least-eroded in early Paleocene time was structurally inverted and became the locus of greatest subsidence during later Paleocene-Eocene time. Middle Paleocene coal-mires formed in the topographically lowest eastern part of the basin, but the basin center migrated to the western side by Eocene time when coal was deposited in the Coalmont district. In between, persistent lakes of variable depths characterized the central basin area, as evidenced by well-preserved deltaic facies.Fault-fold deformation within the Colorado Headwaters Basin strongly affected the Paleocene fluvial-lacustrine deposits, as reflected in the steep limbs of anticline-syncline pairs within the McCallum fold belt and the steep margins of the Breccia Spoon syncline. Slivers of Proterozoic basement rock were also elevated on steep reverse faults in late Paleocene time along the Delaney Butte–Sheep Mountain–Boettcher Ridge structure. Eocene deposits, by and large, are only gently folded within the Colorado Headwaters Basin and thus reflect a change in deformation history.The Paleogene deposits of the Colorado Headwaters Basin today represent only a fragment of the original extent of the depositional basin. Basal, coarse conglomerate deposits that suggest proximity to an active basin margin are relatively rare and are limited to the southern and northwestern margins of the relict basin. The northeastern margin of the preserved Paleogene section is conspicuously fine-grained, which indicates that any contemporaneous marginal uplift was far removed from the current extent of preserved fluvial-lacustrine sediments. The conspicuous basement uplifts of Proterozoic rock that flank the current relict Paleogene basin deposits are largely post-middle Eocene in age and are not associated with any Laramide synuplift fluvial deposits.The east-west–trending Independence Mountain fault system that truncates the Colorado Headwaters Basin on the north with an uplifted Proterozoic basement block is reinterpreted in this report. Numerous prior analyses had concluded that the fault was a low-angle, south-directed Laramide thrust that overlapped the northern margin of the basin. We conclude instead that the fault is more likely a Neogene normal fault that truncates all prior structure and belongs to a family of sub-parallel west-northwest–trending normal faults that offset upper Oligocene-Miocene fluvial deposits of the Browns Park–North Park Formations.

  2. Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine

    USGS Publications Warehouse

    Law, B.E.; Ulmishek, G.F.; Clayton, J.L.; Kabyshev, B.P.; Pashova, N.T.; Krivosheya, V.A.

    1998-01-01

    An evaluation of thermal maturity, pore pressures, source rocks, reservoir quality, present-day temperatures, and fluid recovery data indicates the presence of a large basin-centered gas accumulation in the Dnieper-Donets basin (DDB) and Donbas foldbelt (DF) of eastern Ukraine (Fig. 1).

  3. Notice of release of 'Trailhead II' basin wildrye

    USDA-ARS?s Scientific Manuscript database

    'Trailhead II' basin wildrye [Leymus cinereus (Scribn. & Merr.) A. Love] is a tetraploid basin wildrye release for use in re-vegetation efforts on rangelands of western North America. Trailhead II is the result of two cycles of recurrent selection within the basin wildrye cultivar 'Trailhead' for r...

  4. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ...] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L.93-320) (Act) to...

  5. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  6. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  7. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Public Law 93-320) (Act) to receive reports and advise Federal agencies on...

  8. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  9. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal agencies on...

  10. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory...: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub. L. 93-320) (Act) to receive reports and advise Federal...

  11. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow pathways are confined above the permafrost aquitard. In contrast, lower elevation zones supply runoff via deeper subsurface flow pathways with increased levels of dissolved solutes. With regards to DOC, sub-basins dominated by permafrost supply the bulk of DOC to the stream because of near-surface pathways. Results highlight the importance of vegetation, the soil profile and frozen ground status in controlling hydrological and hydrochemical fluxes. Future changes in vegetation, which are occurring rapidly in the subarctic, are expected to have a large impact on the hydrology and biogeochemistry of these systems.

  12. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the fitted regression lines ranged from 0.95 to 1.01 (correlation coefficient > 0.96) for the basins studied. Values for the residence time of waters within the basins and average relative contributions of the within-year and long-term reservoirs to outflow were obtained. Values for river basin residence times ranged from 2 years for the Kissimmee River basin to 20 years for the Potomac River basin. The residence times indicate the time scale in which the basin responds to anthropogenic inputs. The modeled tritium concentrations for the basins also furnish input data for urban and agricultural settings where these river waters are used. ?? 1992.

  13. Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China

    NASA Astrophysics Data System (ADS)

    Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu

    2008-01-01

    We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5-0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window ( R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.

  14. The First 75 Years: History of Hydraulics Engineering at the Waterways Experiment Station

    DTIC Science & Technology

    2004-01-01

    Report, 10-12. Gilsonite is a variety of asphalt that occurs in the Uinta Basin of northeastern Utah. Haydite is an expanded shale or clay...River Fish Mitigation: Gas Abatement." 76. John George i11terview. 77. "SCT Completes Mainstem Project Ranking," Columbia Basin Bulletin: Weekly...view of the Mississippi Basin Model looking toward the Gulf of Mexico. (Ohio River Basin in lower right foreground; Atchafalaya Basin in extreme

  15. Assessment of Anthropogenic Impacts in La Plata River Basin

    NASA Astrophysics Data System (ADS)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  16. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  17. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements

    PubMed Central

    Neumann, Gregory A.; Zuber, Maria T.; Wieczorek, Mark A.; Head, James W.; Baker, David M. H.; Solomon, Sean C.; Smith, David E.; Lemoine, Frank G.; Mazarico, Erwan; Sabaka, Terence J.; Goossens, Sander J.; Melosh, H. Jay; Phillips, Roger J.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Sori, Michael M.; Soderblom, Jason M.; Miljković, Katarina; Andrews-Hanna, Jeffrey C.; Nimmo, Francis; Kiefer, Walter S.

    2015-01-01

    Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population. PMID:26601317

  18. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.

    PubMed

    Neumann, Gregory A; Zuber, Maria T; Wieczorek, Mark A; Head, James W; Baker, David M H; Solomon, Sean C; Smith, David E; Lemoine, Frank G; Mazarico, Erwan; Sabaka, Terence J; Goossens, Sander J; Melosh, H Jay; Phillips, Roger J; Asmar, Sami W; Konopliv, Alexander S; Williams, James G; Sori, Michael M; Soderblom, Jason M; Miljković, Katarina; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Kiefer, Walter S

    2015-10-01

    Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population.

  19. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    NASA Astrophysics Data System (ADS)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  20. Central Basin and Range Ecoregion: Chapter 20 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Soulard, Christopher E.

    2012-01-01

    This chapter has been modified from original material published in Soulard (2006), entitled “Land-cover trends of the Central Basin and Range Ecoregion” (U.S. Geological Survey Scientific Investigations Report 2006–5288). The Central Basin and Range Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997) encompasses approximately 343,169 km² (132,498 mi2) of land bordered on the west by the Sierra Nevada Ecoregion, on the east by the Wasatch and Uinta Mountains Ecoregion, on the north by the Northern Basin and Range and the Snake River Basin Ecoregions, and on the south by the Mojave Basin and Range and the Colorado Plateaus Ecoregions (fig. 1). Most of the Central Basin and Range Ecoregion is located in Nevada (65.4 percent) and Utah (25.1 percent), but small segments are also located in Idaho (5.6 percent), California (3.7 percent), and Oregon (0.2 percent). Basin-and-range topography characterizes the Central Basin and Range Ecoregion: wide desert valleys are bordered by parallel mountain ranges generally oriented northsouth. There are more than 33 peaks within the Central Basin and Range Ecoregion that have summits higher than 3,000 m (10,000 ft), but valleys in the ecoregion are also high, most having elevations above 1,200 m (4,000 ft) (Grayson, 1993).

  1. Pulling Marbles from a Bag: Deducing the Regional Impact History of the SPA Basin from Impact-Melt Rocks

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Coker, Robert F.

    2010-01-01

    The South Pole Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. A feasible near-term approach to this problem is to robotically collect a sample from near the center of the basin, where vertical and lateral mixing provided by post-basin impacts ensures that such a sample will be composed of small rock fragments from SPA itself, from local impact craters, and from faraway giant basins. The range of ages, intermediate spikes in the age distribution, and the oldest ages are all part of the definition of the absolute age and impact history recorded within the SPA basin.

  2. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    USGS Publications Warehouse

    Bonn, Bernadine A.

    1999-01-01

    This report describes the results of a reconnaissance survey of elements and organic compounds found in bed sediment and fish tissue in streams of the Tualatin River Basin. The basin is in northwestern Oregon to the west of the Portland metropolitan area (fig. 1). The Tualatin River flows for about 80 miles, draining an area of about 712 square miles, before it enters the Willamette River. Land use in the basin changes from mostly forested in the headwaters, to mixed forest and agriculture, to predominately urban. The basin supports a growing population of more than 350,000 people, most of whom live in lower parts of the basin. Water quality in the Tualatin River and its tributaries is expected to be affected by the increasing urbanization of the basin.

  3. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  4. Guatemala accelerates efforts to attract foreign E and D capital

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Guatemalan government, headed by recently elected President Alvaro Arzu, has embarked on an ambitious program of petroleum exploration and development with the goal of producing 40,000 b/d by 2000. Production averaged 16,000 b/d last fall and was to be raised to 25,000 b/d by year end 1996. Oil and gas exploration began in Guatemala in the 1920s, but production is currently limited to two regions in the Peten basin in northeastern Guatemala. Officials at the Ministry of Energy and Mines aim to encourage comprehensive evaluation of the Peten basin as well as exploration of the Amatique basin in southeasternmore » Guatemala and the Pacific basin on the country`s Pacific coast. The paper describes the Peten basin, the Amatique basin, the Pacific basin, bidding, and contract rules.« less

  5. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  6. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  7. Total petroleum systems of the Grand Erg/Ahnet Province, Algeria and Morocco; the Tanezzuft-Timimoun, Tanezzuft-Ahnet, Tanezzuft-Sbaa, Tanezzuft Mouydir, Tanezzuft-Benoud, and Tanezzuft-Bechar/Abadla

    USGS Publications Warehouse

    Klett, T.R.

    2000-01-01

    Undiscovered, conventional oil and gas resources were assessed within total petroleum systems of the Grand Erg/Ahnet Province (2058) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The majority of the Grand Erg/ Ahnet Province is in western Algeria; a very small portion extends into Morocco. The province includes the Timimoun Basin, Ahnet Basin, Sbaa Basin, Mouydir Basin, Benoud Trough, Bechar/Abadla Basin(s), and part of the Oued Mya Basin. Although several petroleum systems may exist within each of these basins, only seven ?composite? total petroleum systems were identified. Each total petroleum system occurs in a separate basin, and each comprises a single assessment unit. The main source rocks are the Silurian Tanezzuft Formation (or lateral equivalents) and Middle to Upper Devonian mudstone. Maturation history and the major migration pathways from source to reservoir are unique to each basin. The total petroleum systems were named after the oldest major source rock and the basin in which it resides. The estimated means of the undiscovered conventional petroleum volumes in total petroleum systems of the Grand Erg/ Ahnet Province are as follows: [MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids] Total Petroleum System MMBO BCFG MMBNGL Tanezzuft-Timimoun 31 1,128 56 Tanezzuft-Ahnet 34 2,973 149 Tanezzuft-Sbaa 162 645 11 Tanezzuft-Mouydir 12 292 14 Tanezzuft-Benoud 72 2,541 125 Tanezzuft-Bechar/Abadla 16 441 22

  8. India-Asia convergence: Insights from burial and exhumation of the Xigaze fore-arc basin, south Tibet

    NASA Astrophysics Data System (ADS)

    Li, Guangwei; Kohn, Barry; Sandiford, Mike; Xu, Zhiqin

    2017-05-01

    The composite fore-arc/syncollisional Xigaze basin in south Tibet preserves a key record of India-Asia collision. New apatite fission track and zircon (U-Th)/He data from an N-S transect across the preserved fore-arc basin sequence near Xigaze show a consistent northward Late Cretaceous to middle Miocene younging trend, while coexisting apatite (U-Th-Sm)/He ages are all Miocene. Corresponding detrital zircon U-Pb data are also reported for constraining the Cretaceous depositional ages of the Xigaze basin sequence in the region. Thermal history modeling indicates that the basin experienced northward propagating episodic exhumation, along with a northward migration of the depocenter and a pre-existing Cenozoic syncollisional basin sequence which had been removed. In the southern part, fore-arc exhumation commenced in the Late Cretaceous ( 89 ± 2 Ma). Following transition to a syncollisional basin in the Paleocene, sedimentation in the central and northern Xigaze basin continued until the latest Eocene ( 34 ± 4 Ma). Ongoing folding and thrusting (e.g., Great Counter Thrusts) caused by progressive plate convergence during late Oligocene-early Miocene time resulted in regional uplift and considerable basin denudation, which fed two fluvial basins along its northern and southern flanks and exposed the basement ophiolite. Subsequent incision of the Yarlung River resulted in Miocene cooling in the region. Different episodes in the exhumation history of the Xigaze basin, caused by thrusting of an accretionary wedge and ophiolitic basement, can be linked to changes in India-Asia convergence rates and the changing subduction pattern of the Indian and Neo-Tethyan slabs.

  9. Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data

    USGS Publications Warehouse

    Anderson, M.; Matti, J.; Jachens, R.

    2004-01-01

    The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation. Copyright 2004 by the American Geophysical Union.

  10. Road Salt Accumulation and Wash-out in Stormwater Detention Basins: Patterns and Implications for Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; Walter, M. T.

    2014-12-01

    There is increasing evidence that salt application to roads and parking lots in winter is driving a rise in chloride concentrations in streams in the northeastern United States. Our research focuses specifically on salt dynamics in stormwater detention basins, which receive runoff directly from parking lots and detain it before it reaches the stream. The four study basins are located on the Cornell University campus in Ithaca, NY USA. Between summer 2012 and 2014, soil electrical conductivity was continuously monitored inside and outside the basins using Decagon 5TE sensors and dataloggers. In two basins which drain stormwater quickly, conductivity levels changed minimally over the year. However, in the other two basins which drain much slower and often are saturated, conductivity increased through the winter, peaking at 8-10 mS/cm, and then took several months to decrease to baseline levels; thus the basins served as a source of salt to outflowing water even into the summer. This annual variation in soil salinity has implications for plant and microbial communities living in these basins. Research by colleagues has indicated that changing salinity can alter microbial communities and impact biogeochemical processes that play a role in water quality remediation. Thus we are also investigating the impact of salinity on denitrification rates in these basins. All of this information will help us understand what role stormwater detention basins are playing in controlling fluxes of road salt in watersheds, as well as how changing salinity influences the ecosystem services provided by these basins.

  11. Growth and elemental content of two tree species growing on abandoned coal fly ash basins. [Liquidambar styraciflua L. ; Platanus occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, C.L.; Adriano, D.C.

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among themore » ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate.« less

  12. Are big basins just the sum of small catchments?

    USGS Publications Warehouse

    Shaman, J.; Stieglitz, M.; Burns, D.

    2004-01-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.

  13. Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic, and seismicity data

    NASA Astrophysics Data System (ADS)

    Anderson, Megan; Matti, Jonathan; Jachens, Robert

    2004-04-01

    The San Bernardino basin is an area of Quaternary extension between the San Jacinto and San Andreas Fault zones in southern California. New gravity data are combined with aeromagnetic data to produce two- and three-dimensional models of the basin floor. These models are used to identify specific faults that have normal displacements. In addition, aeromagnetic maps of the basin constrain strike-slip offset on many faults. Relocated seismicity, focal mechanisms, and a seismic reflection profile for the basin area support interpretations of the gravity and magnetic anomalies. The shape of the basin revealed by our interpretations is different from past interpretations, broadening its areal extent while confining the deepest parts to an area along the modern San Jacinto fault, west of the city of San Bernardino. Through these geophysical observations and related geologic information, we propose a model for the development of the basin. The San Jacinto fault-related strike-slip displacements started on fault strands in the basin having a stepping geometry thus forming a pull-apart graben, and finally cut through the graben in a simpler, bending geometry. In this model, the San Bernardino strand of the San Andreas Fault has little influence on the formation of the basin. The deep, central part of the basin resembles classic pull-apart structures and our model describes a high level of detail for this structure that can be compared to other pull-apart structures as well as analog and numerical models in order to better understand timing and kinematics of pull-apart basin formation.

  14. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Treesearch

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  15. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... on the structure and implementation of the Yakima River Basin Water Conservation Program. The basin... water conservation measures in the Yakima River basin. Improvements in the efficiency of water delivery and use will result in improved streamflows for fish and wildlife and improve the reliability of water...

  16. 5. Basin assessment and watershed analysis

    Treesearch

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  17. 78 FR 70012 - Lake Tahoe Basin Management Unit, California, Land Management Plan Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Land Management Plan Revision AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA. ACTION: Notice of... for the Lake Tahoe Basin Management Unit (LTBMU) Land Management Plan Revision available for the 60...

  18. Slab roll-back and trench retreat as controlling factor for basin subsidence in southern Central America

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Winsemann, Jutta

    2015-04-01

    Slab roll-back and trench retreat are important factors for basin subsidence, magma generation and volcanism in arc-trench systems. Based on the sedimentary and tectonic record of the southern Central American island-arc we conclude that repeated phases of slab roll-back and trench retreats occurred the arc-trench system since the Late Cretaceous. These trench retreats were most probably related to the subduction of oceanic plateaus and seamounts and effected both the fore-arc and back-arc evolution. We used numerical basin modelling techniques to analyse the burial history of fore-arc and back-arc basins in Central America and combined the results with field data of the sedimentological evolution of the basin-fills. From the basin models, geohistory curves were extracted for the fore-arc and back-arc basins to derive the subsidence evolution. The Sandino Fore-arc Basin is characterized by low subsidence during the first 40 Myr. Since the Late Cretaceous the basin has a linear moderate subsidence with a phase of accelerated subsidence in the Oligocene. In the North and South Limón Back-arc Basin, subsidence started at approximately the same time as in the Sandino Fore-arc Basin. The North and South Limón Basins show a linear subsidence trend in the Paleocene and Eocene. Evidence for trench retreats is given by pulses of uplift in the outer-arc area, followed by subsidence in both the fore-arc and back-arc basins. The first slab roll-back probably occurred during the Early Paleocene. This is indicated by the collapse of carbonate platforms, and the re-deposition of large carbonate blocks into deep-water turbidites. A new pulse of uplift or decreased subsidence, respectively during the Late Eocene is attributed to subduction of rough crust. A subsequent slab detachment and the establishment of a new subduction zone further westward was described by Walther et al. (2000). Strong uplift affected the entire fore-arc area, which led to the deposition of very coarse-grained deepwater channel-levee complexes in the Sandino Fore-arc Basin. The channel-fills are rich in reworked shallow-water carbonates that points to strong uplift of the inner fore-arc. A subsequent trench retreat is indicated by an increased subsidence during the Early Oligocene in the Sandino Fore-arc Basin and the collapse of the Barra Honda carbonate platform in North Costa Rica. Another trench retreat might have occurred in Miocene times (Cailleau and Oncken, 2008). A phase of higher subsidence from 18 to 13 Ma is documented in the geohistory curve of the North Limon Back-arc Basin. After a short pulse of uplift the subsidence increased to approx. 300 m/myr (Brandes et al., 2008). References: Brandes C., Astorga A., Littke R. and Winsemann J. (2008) Basin modelling of the Limón Back-arc Basin (Costa Rica): burial history and temperature evolution of an island-arc related basin system. Basin Research 20, 1, 119-142. Cailleau, B. and Oncken, O. (2008) Past forearc deformation in Nicaragua and coupling at the megathrust interface: Evidence for subduction retreat. Geochemistry, Geophysics, Geosystems 9, Q07S24, doi:10.1029/2007GC001754. Walther, C.H.E., Flueh, E.R., Ranero, C.R., von Huene, R. and Strauch, W. (2000) Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolithic basement and a shallow mantle sliver. Geophysical Journal International 141, 759-777.

  19. Environmental Assessment for Changes to Reveille Airspace at Nevada Test and Training Range Nellis Air Force Base, Nevada

    DTIC Science & Technology

    2002-03-01

    basin and range characteristics associated with the Great Basin . The base elevation of the area is 5000 feet above Mean Sea Level (MSL) to 6000 MSL...REVEILLE AIRSPACE AT NEVADA TEST AND TRAINING RANGE The area is located within the Great Basin , a physiographic region with no external drainage...characterized by “ basin and range” topography, in which hydrographically isolated basins or valleys are separated by north-south trending low mountain

  20. Hydrologic and land-cover features of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    LaRose, Henry R.; McPherson, Benjamin F.

    1980-01-01

    The freshwater part of the Caloosahatchee River basin, Fla., from Franklin Lock to Lake Okeechobee, is shown at a scale of 1 inch equals 1 mile on an aerial photomosaic, dated January 1979. The basin is divided into 16 subbasins, and the land cover and land use in each subbasin are given. The basin is predominantly rangeland and agricultural land. Surface-water flow in the basin is largely controlled. Some selected data on water quality are given. (USGS)

  1. Low-angle faulting in strike-slip dominated settings: Seismic evidence from the Maritimes Basin, Canada

    NASA Astrophysics Data System (ADS)

    Pinet, Nicolas; Dietrich, Jim; Duchesne, Mathieu J.; Hinds, Steve J.; Brake, Virginia

    2018-07-01

    The Maritimes Basin is an upper Paleozoic sedimentary basin centered in the Gulf of St. Lawrence (Canada). Early phases of basin formation included the development of partly connected sub-basins bounded by high-angle faults, in an overall strike-slip setting. Interpretation of reprocessed seismic reflection data indicates that a low-angle detachment contributed to the formation of a highly asymmetric sub-basin. This detachment was rotated toward a lower angle and succeeded by high-angle faults that sole into the detachment or cut it. This model bears similarities to other highly extended terranes and appears to be applicable to strike-slip and/or transtensional settings.

  2. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    USGS Publications Warehouse

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.

  3. Assessment of undiscovered oil and gas resources of the Amu Darya Basin and Afghan-Tajik Basin Provinces, Afghanistan, Iran, Tajikistan, Turkmenistan, and Uzbekistan, 2011

    USGS Publications Warehouse

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.; Cook, Troy A.; Tennyson, Marilyn E.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Amu Darya Basin and Afghan–Tajik Basin Provinces of Afghanistan, Iran, Tajikistan, Turkmenistan, and Uzbekistan. The mean volumes were estimated at 962 million barrels of crude oil, 52 trillion cubic feet of natural gas, and 582 million barrels of natural gas liquids for the Amu Darya Basin Province and at 946 million barrels of crude oil, 7 trillion cubic feet of natural gas, and 85 million barrels of natural gas liquids for the Afghan–Tajik Basin Province.

  4. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  5. Natural communities in catch basins in southern Rhode Island

    USGS Publications Warehouse

    Butler, M.; Ginsberg, H.S.; LeBrun, R.A.; Gettman, A.D.; Pollnak, F.

    2007-01-01

    Storm-water drainage catch basins are manmade structures that often contain water and organic matter, making them suitable environments for various organisms. We censused organisms inhabiting catch basins in southern Rhode Island in 2002 in an effort to begin to describe these communities. Catch-basin inhabitants were mostly detritivores, including annelids, arthropods, and mollusks that could withstand low oxygen levels and droughts. Our results suggest that catch-basin inhabitants were mostly washed in with rainwater, and populations increased over the summer season as biotic activity resulted in increased nutrient levels later in the summer. In contrast, mosquitoes and other Diptera larvae were abundant earlier in the summer because the adults actively sought catch basins for oviposition sites. Mosquito larvae were likely to be abundant in catch basins with shallow, stagnant water that had relatively low dissolved oxygen and pH, and relatively high total suspended solids, carbon, and nitrogen.

  6. California Groundwater Units

    USGS Publications Warehouse

    Johnson, Tyler D.; Belitz, Kenneth

    2014-01-01

    The California Groundwater Units dataset classifies and delineates areas within the State of California into one of three groundwater-based polygon units: (1) those areas previously defined as alluvial groundwater basins or subbasins, (2) highland areas that are adjacent to and topographically upgradient of groundwater basins, and (3) highland areas not associated with a groundwater basin, only a hydrogeologic province. In total, 938 Groundwater Units are represented. The Groundwater Units dataset relates existing groundwater basins with their newly delineated highland areas which can be used in subsequent hydrologic studies. The methods used to delineate groundwater-basin-associated highland areas are similar to those used to delineate a contributing area (such as for a lake or water body); the difference is that highland areas are constrained to the immediately surrounding upslope (upstream) area. Upslope basins have their own delineated highland. A geoprocessing tool was created to facilitate delineation of highland areas for groundwater basins and subbasins and is available for download.

  7. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  8. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  9. Chicxulub impact basin: Gravity characteristics and implications for basin morphology and deep structure

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Burke, Kevin; Hall, Stuart A.; Lee, Scott; Marin, Luis E.; Suarez, Gerardo; Quezada-Muneton, Juan Manuel; Urrutia-Fucugauchi, Jaime

    1993-01-01

    The K-T-aged Chicxulub Impact Structure is buried beneath the Tertiary carbonate rocks of the Northern Yucatan Platform. Consequently its morphology and structure are poorly understood. Reprocessed Bouguer (onshore) and Free Air (offshore) gravity data over Northern Yucatan reveal that Chicxulub may be a 200-km-diameter multi-ring impact basin with at least three concentric basin rings. The positions of these rings follow the square root of 2 spacing rule derived empirically from analysis of multi-ring basins on other planets indicating that these rings probably correspond to now-buried topographic basin rings. A forward model of the gravity data along a radial transect from the southwest margin of the structure indicates that the Chicxulub gravity signature is compatible with this interpretation. We estimate the basin rim diameter to be 204 +/- 16 km and the central peak ring diameter (D) is 104 +/- 6 km.

  10. Environmental settings of the South Fork Iowa River basin, Iowa, and the Bogue Phalia basin, Mississippi, 2006-10

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Rose, Claire E.; Kalkhoff, Stephen J.

    2012-01-01

    Studies of the transport and fate of agricultural chemicals in different environmental settings were conducted by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's Agricultural Chemicals Team (ACT) at seven sites across the Nation, including the South Fork Iowa River basin in central Iowa and the Bogue Phalia basin in northwestern Mississippi. The South Fork Iowa River basin is representative of midwestern agriculture, where corn and soybeans are the predominant crops and a large percentage of the cultivated land is underlain by artificial drainage. The Bogue Phalia basin is representative of corn, soybean, cotton, and rice cropping in the humid, subtropical southeastern United States. Details of the environmental settings of these basins and the data-collection activities conducted by the USGS ACT over the 2006-10 study period are described in this report.

  11. Biological science in the Great Basin

    USGS Publications Warehouse

    ,

    2005-01-01

    The Great Basin is an expanse of desert and high moun-tains situated between the Rocky Mountains and the Sierra Nevada of the western United States. The most explicit description of the Great Basin is that area in the West where surface waters drain inland. In other words, the Great Basin is comprised of many separate drainage areas - each with no outlet. What at first glance may appear as only a barren landscape, the Great Basin upon closer inspection reveals island mountains, sagebrush seas, and intermittent aquatic habitats, all teeming with an incredible number and variety of plants and animals. Biologists at the USGS are studying many different species and ecosystems in the Great Basin in order to provide information about this landscape for policy and land-management decision-making. The following stories represent a few of the many projects the USGS is conducting in the Great Basin.

  12. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  13. 75 FR 1408 - Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project Use Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... of Proposed Pick-Sloan Missouri Basin Program, Eastern and Western Divisions, Project Use Power Rate...) for Project Use Power for the Pick-Sloan Missouri Basin Program (P-SMBP), Eastern and Western... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and...

  14. 75 FR 22423 - Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project Use Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...: Reopening of comment period for review of the Pick-Sloan Missouri Basin Program, Eastern and Western... reopening the comment period for the Pick-Sloan Missouri Basin Program, Eastern and Western Division... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and...

  15. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  16. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  17. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  18. Assessment of undiscovered oil and gas resources in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas, 2017

    USGS Publications Warehouse

    Marra, Kristen R.; Gaswirth, Stephanie B.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Mercier, Tracey J.; Le, Phuong A.; Tennyson, Marilyn E.; Finn, Thomas M.; Hawkins, Sarah J.; Brownfield, Michael E.

    2017-05-15

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean resources of 4.2 billion barrels of oil and 3.1 trillion cubic feet of gas in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas.

  19. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  20. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER...

  1. 76 FR 75876 - Record of Decision for the Modification of the Groton Generation Station Interconnection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ...) received a request from Basin Electric Power Cooperative (Basin Electric) to modify its Large Generator Interconnection Agreement (LGIA) with Basin Electric for the Groton Generation Station to eliminate current... considered the environmental impacts and has decided to modify its LGIA with Basin Electric for the Groton...

  2. Petroleum potential of the Reggane Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjema, A.; Hamel, M.; Mohamedi, A.

    1990-05-01

    The intracratonic Reggane basin is located on the Saharan platform, southwest of Algeria. The basin covers an area of approximately 140,000 km{sup 2}, extending between the Eglab shield in the south and the Ougarta ranges in the north. Although exploration started in the early 1950s, only a few wells were drilled in this basin. Gas was discovered with a number of oil shows. The sedimentary fill, mainly Paleozoic shales and sandstones, has a thickness exceeding 5,000 m in the central part of the basin. The reservoirs are Cambrian-Ordovician, Siegenian, Emsian, Tournaisian, and Visean sandstones with prospective petrophysical characteristics. Silurian Uppermore » Devonian and, to a lesser extent Carboniferous shales are the main source rocks. An integrated study was done to assess the hydrocarbon potential of this basin. Tectonic evolution source rocks and reservoirs distribution maturation analyses followed by kinetic modeling, and hydrogeological conditions were studied. Results indicate that gas accumulations could be expected in the central and deeper part of the basin, and oil reservoirs could be discovered on the basin edge.« less

  3. Closure of the R Reactor Disassembly Basin at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W.E.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.« less

  4. Evaluation of nontarget effects of methoprene applied to catch basins for mosquito control

    USGS Publications Warehouse

    Butler, Mari; Ginsberg, Howard S.; LeBrun, Roger A.; Gettman, Alan

    2010-01-01

    The mosquito larvicide methoprene is a juvenile growth hormone mimic that is widely used to control mosquito larvae in stormwater catch basins. This study addresses two concerns pertaining to methoprene's use for mosquito control. First, measurements of methoprene concentrations were made from water in catch basins that had been treated with methoprene and from an adjoining salt pond near where the treated catch basins emptied. The concentrations of methoprene in catch basins and at drainage outlets after application at the rates currently used for mosquito control in southern Rhode Island were 0.5 ppb and lower, orders of magnitude below what has been determined as detrimental to organisms other than mosquitoes. Second, the effects of methoprene on the communities that live in catch basins were evaluated both in simulated catch basins in the laboratory and in actual catch basins in the field. We found no evidence of declines in abundances of any taxa attributable to the application. Furthermore, we found no consistent changes in community-level parameters (e.g., taxonomic richness, and dominance-diversity relationships) related to methoprene application in either field or laboratory trials.

  5. Geology and Assessment of Undiscovered Oil and Gas Resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province, 2008

    USGS Publications Warehouse

    Klett, Timothy R.; Moore, Thomas E.; Gautier, D.L.

    2017-11-15

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered petroleum resources of the East Barents Basins Province and the Novaya Zemlya Basins and Admiralty Arch Province as part of its Circum-Arctic Resource Appraisal. These two provinces are situated northeast of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins Province for this study: the Kolguyev Terrace AU, the South Barents and Ludlov Saddle AU, and the North Barents Basin AU. A fourth AU, defined as the Novaya Zemlya Basins and Admiralty Arch AU, coincides with the Novaya Zemlya Basins and Admiralty Arch Province. These four AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources, resulting in total estimated mean volumes of ~7.4 billion barrels of crude oil, 318 trillion cubic feet (TCF) of natural gas, and 1.4 billion barrels of natural-gas liquids.

  6. Chapter 19: Geology and petroleum potential of the east Barents Sea Basins and Admiralty Arch

    USGS Publications Warehouse

    Klett, T.R.; Pitman, Janet K.

    2011-01-01

    The US Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the East Barents Basins and Novaya Zemlya Basins and Admiralty Arch Provinces as part of the USGS Circum-Arctic Resource Appraisal. These two provinces are located NE of Scandinavia and the northwestern Russian Federation, on the Barents Sea Shelf between Novaya Zemlya to the east and the Barents Platform to the west. Three assessment units (AUs) were defined in the East Barents Basins for this study - Kolguyev Terrace Assessment Unit (AU), South Barents Basin and Ludlov Saddle AU, and North Barents Basin AU. A fourth, defined as Novaya Zemlya Basins and Admiralty Arch AU, is coincident with the Novaya Zemlya basins and Admiralty Arch Province. These AUs, all lying north of the Arctic Circle, were assessed for undiscovered, technically recoverable resources resulting in total estimated mean volumes of approximately 7.4 billion barrels of crude oil, 318 trillion cubic feet of natural gas and 1.4 billion barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  7. A new interpretation of seismic tomography in the southern Dead Sea basin using neural network clustering techniques

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Bauer, Klaus

    2015-11-01

    The Dead Sea is a prime location to study the structure and development of pull-apart basins. We analyzed tomographic models of Vp, Vs, and Vp/Vs using self-organizing map clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The Dead Sea basin shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, we identified a distinct, well-defined body under the eastern part of the basin down to 18 km depth. Considering its geometry and petrophysical signature, this unit is interpreted as a buried counterpart of the shallow prebasin sediments encountered outside of the basin and not as crystalline basement. The seismicity distribution supports our results, where events are concentrated along boundaries of the basin and the deep prebasin sedimentary body. Our results suggest that the Dead Sea basin is about 4 km deeper than assumed from previous studies.

  8. Hydrologic aspects of the 1998-99 drought in the Delaware River basin

    USGS Publications Warehouse

    Paulachok, Gary N.; Krejmas, Bruce E.; Soden, Heidi L.

    2000-01-01

    A notable drought in the Delaware River Basin during late 1998 and most of 1999 had a major effect on surface and subsurface components of the hydrologic system. The drought conditions resulted from anomalous patterns in the general atmospheric circulation that diverted Gulf and subtropical Atlantic moisture away from the basin. From September 1998 to August 1999, the accumulated precipitation deficiency was greater than 12 inches in the part of the basin above Trenton, N.J. Flows in some streams, mainly in the middle and lower parts of the basin, decreased to levels near or less than those measured during the drought of the 1960's, the most severe drought of record in the basin. On several dates in August 1999, combined storage in three New York City water-supply reservoirs in the upper Delaware River Basin decreased by more than 2 billion gallons per day. The drought had a pronounced effect on ground-water levels, as the combination of below-normal recharge and elevated rates of evapotranspiration produced abnormal water-level declines and record low water levels in much of the basin. The drought was broken in mid-September 1999 when the remnants of Tropical Storm Floyd delivered drenching rains throughout the basin.

  9. Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin

    NASA Astrophysics Data System (ADS)

    Wang, Xuelu; Liang, Tiangang; Xie, Hongjie; Huang, Xiaodong; Lin, Huilong

    2016-07-01

    Qinghai Lake basin and the lake have undergone significant changes in recent decades. We examine MODIS-derived grassland vegetation and snow cover of the Qinghai Lake basin and their relations with climate parameters during 2001 to 2010. Results show: (1) temperature and precipitation of the Qinghai Lake basin increased while evaporation decreased; (2) most of the grassland areas improved due to increased temperature and growing season precipitation; (3) weak relations between snow cover and precipitation/vegetation; (4) a significantly negative correlation between lake area and temperature (r=-0.9, p<0.05) and (5) a positive relation between lake level (lake-level difference) and temperature (precipitation). Compared with Namco Lake (located in the inner Tibetan Plateau) where the primary water source of lake level increases was the accelerated melt of glacier/perennial snow cover in the lake basin, for the Qinghai Lake, however, it was the increased precipitation. Increased precipitation explained the improvement of vegetation cover in the Qinghai Lake basin, while accelerated melt of glacier/perennial snow cover was responsible for the degradation of vegetation cover in Namco Lake basin. These results suggest different responses to the similar warming climate: improved (degraded) ecological condition and productive capacity of the Qinghai Lake basin (Namco Lake basin).

  10. Joint Interpretation of Magnetotelluric and Gravimetric Data from the South American Paraná Basin

    NASA Astrophysics Data System (ADS)

    Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.

    2013-05-01

    The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.

  11. An Overview of Geologic Carbon Sequestration Potential in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide mapsmore » showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.« less

  12. The effects of urbanization on the hydrochemistry of base flow within the Chattahoochee River Basin (Georgia, USA)

    NASA Astrophysics Data System (ADS)

    Rose, Seth

    2007-07-01

    SummaryA comprehensive network of stream data ( n = 50) was used to assess the effects of urbanization upon the hydrochemical variation within base flow in the Chattahoochee River Basin (CRB), Georgia (USA). Base flow solute concentrations (particularly sulfate, chloride, bicarbonate alkalinity, and sodium) increase with the degree of urbanization and any degree of urbanization within the Atlanta Metropolitan Region (AMR) results in elevated base flow solute concentrations. This suggests that there are pervasive low-level non-point sources of contamination such as septic tanks systems and leaky sewer lines affecting the chemistry of shallow groundwater throughout much of the AMR and CRB. Six groups or subsets representing the "rural-to-urban gradient" were defined, characterized by the following order of increasing solute concentrations: rural basins < Chattahoochee River. semi-urbanized basins < urbanized basins < urban basins with main sewer trunk lines < urbanized basins directly receiving treated effluent and combined sewer overflow (CSO) basins. There is a strong and unusual basin-wide correlation ( r2 values >0.79) between Na-K-Cl within the CRB that likely reflects the widespread input of electrolytes present in human wastes and wastewater. The most likely source and pathway for contaminant input involves the mobilization of salts, originally present in waste water, within the riparian or hypoheric zone.

  13. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J.B.

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environm ental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.« less

  14. Geometry and Dynamics of the Mesopotamian Foreland Basin

    NASA Astrophysics Data System (ADS)

    Pirouz, M.; Avouac, J. P.; Gualandi, A.; Hassanzadeh, J.; Sternai, P.

    2016-12-01

    We have constrained the geometry of the Zagros foreland basin along the entire northern edge of the Arabian plate using subsurface data from Iran, Iraq and Syria. We use the Oligo-Miocene marine Asmari Formation and its equivalents in the region to reconstruct high resolution foreland basin geometry. This extensive carbonate platform limestone unit separates pre-collisional passive margin marine sediments from the Cenozoic foreland deposits dominated by continental sources; and therefore it can be used as a measure of post-collisional deflection. The 3D reconstructed Asmari Formation shows along-strike thickness variations of the foreland basin deposits from 1 to 6 km. The deepest part of the foreland basin coincides with the Dezful embayment in Iran, and its depth decreases on both sides. In principle the basin geometry should reflect the loading resulted from overthrusting in the Zagros fold-thrust belt, the sediment fill and dynamic stresses due to lithospheric and upper mantle deformation. To estimate these various sources of loads we analyze the basin geometry in combination with gravity, free air anomaly, and Moho depths determined from seismological observations. Our analysis suggests in particular that redistribution of surface load by surface processes is a primary controlling factor of the basin geometry. The wavelength of a foreland basin may bear little information on the elastic flexural rigidity of the lithosphere.

  15. Evaluation of nutrient retention in vegetated filter strips using the SWAT model.

    PubMed

    Elçi, Alper

    2017-11-01

    Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost-benefit perspective.

  16. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    USGS Publications Warehouse

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  17. Lower crustal flow and the role of shear in basin subsidence: An example from the Dead Sea basin

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2002-01-01

    We interpret large-scale subsidence (5–6 km depth) with little attendant brittle deformation in the southern Dead Sea basin, a large pull-apart basin along the Dead Sea transform plate boundary, to indicate lower crustal thinning due to lower crustal flow. Along-axis flow within the lower crust could be induced by the reduction of overburden pressure in the central Dead Sea basin, where brittle extensional deformation is observed. Using a channel flow approximation, we estimate that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is ≤7×1019–1×1021 Pa s, a value compatible with the normal heat flow in the region. Lower crustal viscosity due to the strain rate associated with basin extension is estimated to be similar to or smaller than the viscosity required for a channel flow. However, the viscosity under the basin may be reduced to 5×1017–5×1019 Pa s by the enhanced strain rate due to lateral shear along the transform plate boundary. Thus, lower crustal flow facilitated by shear may be a viable mechanism to enlarge basins and modify other topographic features even in the absence of underlying thermal anomalies.

  18. Patterns of Distribution of the Helminth Parasites of Freshwater Fishes of Mexico

    PubMed Central

    Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo

    2013-01-01

    In order to draw patterns in helminth parasite composition and species richness in Mexican freshwater fishes we analyse a presence-absence matrix representing every species of adult helminth parasites of freshwater fishes from 23 Mexican hydrological basins. We examine the distributional patterns of the helminth parasites with regard to the main hydrological basins of the country, and in doing so we identify areas of high diversity and point out the biotic similarities and differences among drainage basins. Our dataset allows us to evaluate the relationships among drainage basins in terms of helminth diversity. This paper shows that the helminth fauna of freshwater fishes of Mexico can characterise hydrological basins the same way as fish families do, and that the basins of south-eastern Mexico are home to a rich, predominantly Neotropical, helminth fauna whereas the basins of the Mexican Highland Plateau and the Nearctic area of Mexico harbour a less diverse Nearctic fauna, following the same pattern of distribution of their fish host families. The composition of the helminth fauna of each particular basin depends on the structure of the fish community rather than on the limnological characteristics and geographical position of the basin itself. This work shows distance decay of similarity and a clear linkage between host and parasite distributions. PMID:23359347

  19. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  20. Patterns of distribution of the helminth parasites of freshwater fishes of Mexico.

    PubMed

    Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo

    2013-01-01

    In order to draw patterns in helminth parasite composition and species richness in Mexican freshwater fishes we analyse a presence-absence matrix representing every species of adult helminth parasites of freshwater fishes from 23 Mexican hydrological basins. We examine the distributional patterns of the helminth parasites with regard to the main hydrological basins of the country, and in doing so we identify areas of high diversity and point out the biotic similarities and differences among drainage basins. Our dataset allows us to evaluate the relationships among drainage basins in terms of helminth diversity. This paper shows that the helminth fauna of freshwater fishes of Mexico can characterise hydrological basins the same way as fish families do, and that the basins of south-eastern Mexico are home to a rich, predominantly Neotropical, helminth fauna whereas the basins of the Mexican Highland Plateau and the Nearctic area of Mexico harbour a less diverse Nearctic fauna, following the same pattern of distribution of their fish host families. The composition of the helminth fauna of each particular basin depends on the structure of the fish community rather than on the limnological characteristics and geographical position of the basin itself. This work shows distance decay of similarity and a clear linkage between host and parasite distributions.

  1. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  2. Tectono-sedimentary analysis using the anisotropy of magnetic susceptibility: a study of the terrestrial and freshwater Neogene of the Orava Basin

    NASA Astrophysics Data System (ADS)

    Łoziński, Maciej; Ziółkowski, Piotr; Wysocka, Anna

    2017-10-01

    The Orava Basin is an intramontane depression filled with presumably fine-grained sediments deposited in river, floodplain, swamp and lake settings. The basin infilling constitutes a crucial record of the neoalpine evolution of the Inner/Outer Carpathian boundary area since the Neogene, when the Jurassic-Paleogene basement became consolidated, uplifted and eroded. The combination of sedimentological and structural studies with anisotropy of magnetic susceptibility (AMS) measurements provided an effective tool for recognition of terrestrial environments and deformations of the basin infilling. The lithofacies-oriented sampling and statistical approach to the large dataset of AMS specimens were utilized to define 12 AMS facies based on anisotropy degree (P) and shape (T). The AMS facies allowed a distinction of sedimentary facies ambiguous for classical methods, especially floodplain and lacustrine sediments, as well as revealing their various vulnerabilities to tectonic modification of AMS. A spatial analysis of facies showed that tuffites along with lacustrine and swamp deposits were generally restricted to marginal and southern parts of the basin. Significant deformations were noticed at basin margins and within two intrabasinal tectonic zones, which indicated the tectonic activity of the Pieniny Klippen Belt after the Middle Miocene. The large southern area of the basin recorded consistent N-NE trending compression during basin inversion. This regional tectonic rearrangement resulted in a partial removal of the southernmost basin deposits and shaped the basin's present-day extent.

  3. Hydroclimatology of the Missouri River basin

    USGS Publications Warehouse

    Wise, Erika K.; Woodhouse, Connie A.; McCabe, Gregory; Pederson, Gregory T.; St. Jacques, Jeannine-Marie

    2018-01-01

    Despite the importance of the Missouri River for navigation, recreation, habitat, hydroelectric power, and agriculture, relatively little is known about the basic hydroclimatology of the Missouri River basin (MRB). This is of particular concern given the droughts and floods that have occurred over the past several decades and the potential future exacerbation of these extremes by climate change. Here, observed and modeled hydroclimatic data and estimated natural flow records in the MRB are used to 1) assess the major source regions of MRB flow, 2) describe the climatic controls on streamflow in the upper and lower basins , and 3) investigate trends over the instrumental period. Analyses indicate that 72% of MRB runoff is generated by the headwaters in the upper basin and by the lowest portion of the basin near the mouth. Spring precipitation and temperature and winter precipitation impacted by changes in zonal versus meridional flow from the Pacific Ocean play key roles in surface water supply variability in the upper basin. Lower basin flow is significantly correlated with precipitation in late spring and early summer, indicative of Atlantic-influenced circulation variability affecting the flow of moisture from the Gulf of Mexico. Although increases in precipitation in the lower basin are currently overriding the effects of warming temperatures on total MRB flow, the upper basin’s long-term trend toward decreasing flows, reduction in snow versus rain fraction, and warming spring temperatures suggest that the upper basin may less often provide important flow supplements to the lower basin in the future.

  4. Hydrocarbon seeps in petroliferous basins in China: A first inventory

    NASA Astrophysics Data System (ADS)

    Zheng, Guodong; Xu, Wang; Etiope, Giuseppe; Ma, Xiangxian; Liang, Shouyun; Fan, Qiaohui; Sajjad, Wasim; Li, Yang

    2018-01-01

    Natural hydrocarbon seepage is a widespread phenomenon in sedimentary basins, with important implications in petroleum exploration and emission of greenhouse gases to the atmosphere. China has vast petroleum (oil and gas) bearing sedimentary basins, but hydrocarbon seepage has rarely been the object of systematic studies and measurements. Based on the available Chinese literature, we report a first inventory of 932 hydrocarbon seeps or seepage zones (710 onshore seeps and 222 offshore seeps), including 81 mud volcanoes, 449 oil seeps, 215 gas seeps, and 187 solid seeps (bitumen outcrops). The seeps are located within the main 20 Mesozoic-Cenozoic petroliferous sedimentary basins, especially along the marginal, regional and local faults. The type of manifestations (oil, gas or mud volcano) reflects the type and maturity of the subsurface petroleum system and the sedimentary conditions of the basin. Oil seeps are particularly abundant in the Junggar Basin. Gas seeps mostly developed in the Lunpola Basin, in smaller basins of the eastern Guizhou and Yunnan provinces, onshore Taiwan and in the offshore Yinggehai Basin. Mud volcanoes developed in basins (Junggar, Qaidam, Qiangtang, onshore and offshore Taiwan) that experienced rapid sedimentation, which induced gravitative instability of shales and diapirism. In comparison to available global onshore seep data-bases, China results to be the country with the highest number of seeps in the world. The massive gas seepage in China could represent a considerable natural source of methane to the atmosphere, and a key process that may drive future hydrocarbon exploration.

  5. Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events

    NASA Astrophysics Data System (ADS)

    Suriano, Z. J.; Leathers, D. J.

    2017-12-01

    In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.

  6. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    NASA Astrophysics Data System (ADS)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoak, T.E.; Decker, A.D.

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basinmore » analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.« less

  8. Exploring the causes of Colorado River streamflow declines

    NASA Astrophysics Data System (ADS)

    Xiao, M.; Lettenmaier, D. P.; Udall, B. H.

    2016-12-01

    As the major river of the Southwestern U.S., the Colorado River (CR) is central to the region's water resources. Over the period 1916-2014, the river's naturalized Apr-Sep flow at Lee's Ferry declined by 18.4%, a number that is closely matched (19.8%) by reconstructions for the same period using the Variable Infiltration Capacity (VIC) hydrology model. However, basin-average annual precipitation over that period declined by only 4.4%. In order to examine the causes of the runoff declines, we performed experiments with the VIC model in which we detrended the model's temperature forcings (about 1.6°C over the 100-year record) for each of 24 sub-basins that make up the basin. We find that decreases in winter precipitation (the season that controls annual runoff) mostly occured in the northeast part of the basin while summer precipitation decreases (which have much less effect on annual runoff) occurred over much of the lower basin. Our model simulations suggest that about 2/3 of observed runoff declines are attributable to decreases in winter precipitation (most importantly, in the upper basin, where most of the basin's runoff is generated). The remaining 1/3 is attributable to warming temperatures. We also examine what appear to be changing characteristics of droughts in the basin. Compared with a prolonged drought in the 1960s, which was characterized by abnormally low precipitation and cool temperatures, temperatures during the ongoing millennial drought have been much warmer, but winter precipitation anomalies have been only slightly negative. During the 2000s drought, the basin-wide runoff anomaly has been about -3.8 km3/yr, with four sub-basins in the northeastern part of the basin accounting for about 2/3 of the annual runoff anomaly.

  9. Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)

    NASA Technical Reports Server (NTRS)

    Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.

    2006-01-01

    Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.

  10. Formation and tectonic evolution of the Pattani Basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustin, R.M.; Chonchawalit, A.

    The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and postrift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Olikgocene alluvial-fan,more » braided-river, and floodplain deposits; (2) Upper oligocene to Lowe Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) and Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase. The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor ({beta}) varies form 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor ({delta}) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. 31 refs., 13 figs., 4 tabs.« less

  11. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico

    USGS Publications Warehouse

    Cannon, S.H.; Reneau, Steven L.

    2000-01-01

    Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire-related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder-sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris-flow producing and flood-producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris-flow responses were produced without the presence of water-repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris-flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley and Sons, Ltd.

  12. Predicting gully rejuvenation after wildfire using remotely sensed burn severity data

    NASA Astrophysics Data System (ADS)

    Hyde, Kevin; Woods, Scott W.; Donahue, Jack

    2007-05-01

    The loss of surface vegetation and reduced infiltration caused by wildfires can trigger gully rejuvenation, resulting in damage to downstream aquatic resources and risk to human life and property. We developed a spatially explicit metric of burn severity — the Burn Severity Distribution Index (BSDI) — and tested its ability to predict post-fire gully rejuvenation in 1st and 2nd order basins burned in the 2000 Valley Complex fires in the Sapphire Mountains of western Montana. The BSDI was derived from burn severity data interpreted from Landsat 7 satellite imagery using the Normalized Burn Ratio (NBR) method, and ranged from 0.0 for completely unburned basins to 4.0 for basins burned entirely at high severity. In July 2001 rainstorms with peak 30-minute intensities of up to 17 mm h - 1 triggered gully rejuvenation in 66 of the 171 basins examined. The frequency of gully rejuvenation was higher in basins with higher BSDI values, increasing from zero for basins with a BSDI less than 1.3 to 67% for basins with a BSDI greater than 3.0. Binary logistic regression indicated that BSDI was a more significant predictor of gully rejuvenation than basin morphometric variables. The absence of gully rejuvenation in several basins with a high BSDI was attributed to low gradient, dense riparian vegetation, or concentration of high burn severity at lower elevations in the basin. The presence of gully rejuvenation in several basins with a low BSDI was associated with false negative NBR classification errors in northwest aspects, and concentration of severe burn impacts in the drainage headslopes. BSDI is a useful metric for predicting gully rejuvenation after wildfire. The use of the BSDI in Burned Area Emergency Response team assessments could improve the planning, implementation, and monitoring of burned area recovery treatments.

  13. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    NASA Astrophysics Data System (ADS)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keese, G.O.

    Nearly half of the total area of the Republic of Ghana is covered by sedimentary rocks. These rocks are found mainly in four different parts of the country: Tano basin, Keta basin, Voltaian basin, and the continental shelf. Because oil seeps in saturated superficial sands were found in the Tano basin, efforts to find oil in Ghana started as far back as 1896 in this basin, which is located at the extreme southwestern part of Ghana and has an area of 1165 km/sup 2/ (450 mi/sup 2/). The Keta basin, located at the extreme southeastern part of Ghana, has anmore » area of 2200 km/sup 2/ (850 mi/sup 2/). The continental shelf of Ghana is at the southern part of the country and has an area of 27,562 km/sup 2/ (10,640 mi/sup 2/). The possibility of finding oil and/or gas at the extreme western part of the continental shelf cannot be overemphasized. The expansive Voltaian sedimentary basin, located in the central part of Ghana, covers an area of about 103,600 km/sup 2/ (40,000 mi/sup 2/). Although no trace of hydrocarbon was found in the only well that has been drilled so far in this basin, the presence of traces of bitumen in some parts of the basin indicates that, despite of its age, the basin might prove to be an oil province. The recent discovery of oil in the Ivory Coast means that it is possible to find oil or gas in Ghana, inasmuch as Ghana's petroleum potential is closely associated with that of the Ivory Coast basin, which extends for 560 km (300 mi) along the entire Ivory Coast and persists eastward into Ghana for an additional 320 km (200 mi), terminating in the area directly west of Accra.« less

  15. An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey

    NASA Astrophysics Data System (ADS)

    Yusufoğlu, H.

    2013-04-01

    The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.

  16. Architecture and tectono-stratigraphic evolution of the intramontane Baza Basin (Bétics, SE-Spain): Constraints from seismic imaging

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.

    2017-07-01

    The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.

  17. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  18. Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs

    NASA Astrophysics Data System (ADS)

    Samson-Do, Myriam; St-Hilaire, André

    2015-04-01

    Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.

  19. Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dien, P.T.

    1994-07-01

    The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less

  20. Impact of stormwater infiltration basins on groundwater quality, Perth metropolitan region, Western Australia

    NASA Astrophysics Data System (ADS)

    Appleyard, S. J.

    1993-08-01

    Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.

  1. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  2. The effects of drainage basin geomorphometry on minimum low flow discharge: the study of small watershed in Kelang River Valley in Peninsular Malaysia.

    PubMed

    Yunus, Ahmad Jailani Muhamed; Nakagoshi, Nobukazu; Salleh, Khairulmaini Osman

    2003-03-01

    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.

  3. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  4. Controls and variability of solute and sedimentary fluxes in Arctic and sub-Arctic Environments

    NASA Astrophysics Data System (ADS)

    Dixon, John

    2015-04-01

    Six major factors consistently emerge as controls on the spatial and temporal variability in sediment and solute fluxes in cold climates. They are climatic, geologic, physiographic or relief, biologic, hydrologic, and regolith factors. The impact of these factors on sediment and solute mass transfer in Arctic and sub-Arctic environments is examined. Comparison of non-glacierized Arctic vs. subarctic drainage basins reveals the effects of these controls. All drainage basins exhibit considerable variability in rates of sediment and solute fluxes. For the non-glacierized drainage basins there is a consistent increase in sediment mass transfer by slope processes and fluvial processes as relief increases. Similarly, a consistent increase in sediment mass transfer by slope and fluvial processes is observed as total precipitation increases. Similar patterns are also observed with respect to solute transport and relief and precipitation. Lithologic factors are most strongly observed in the contrast between volcanic vs. plutonic igneous bedrock substrates. Basins underlain by volcanic rocks display greater mass transfers than those underlain by plutonic rocks. Biologic influences are most strongly expressed by variations in extent of vegetation cover and the degree of human interference, with human impacted basins generating greater fluxes. For glacierized basins the fundamental difference to non-glacierized basins is an overall increase in mean annual mass transfers of sediment and a generally smaller magnitude solute transfer. The principal role of geology is observed with respect to lithology. Catchments underlain by limestone demonstrate substantially greater solute mass transfers than sediment transfer. The influence of relief is seen in the contrast in mass transfers between upland and lowland drainage basins with upland basins generating greater sediment and solute transfers than lowland basins. For glacierized basins the effects of biology and regolith appear to be largely overridden by the hydrologic impacts of glacierization.

  5. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  6. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Simulation of Water Sources and Precipitation Recycling for the MacKenzie, Mississippi and Amazon River Basins

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chern, Jiun-Dar

    2005-01-01

    An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.

  8. Two distinct phylogenetic clades of infectious hematopoietic necrosis virus overlap within the Columbia River basin

    USGS Publications Warehouse

    Garver, K.A.; Troyer, R.M.; Kurath, G.

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV), an aquatic rhabdovirus, causes a highly lethal disease of salmonid fish in North America. To evaluate the genetic diversity of IHNV from throughout the Columbia River basin, excluding the Hagerman Valley, Idaho, the sequences of a 303 nt region of the glycoprotein gene (mid-G) of 120 virus isolates were determined. Sequence comparisons revealed 30 different sequence types, with a maximum nucleotide diversity of 7.3% (22 mismatches) and an intrapopulational nucleotide diversity of 0.018. This indicates that the genetic diversity of IHNV within the Columbia River basin is 3-fold higher than in Alaska, but 2-fold lower than in the Hagerman Valley, Idaho. Phylogenetic analyses separated the Columbia River basin IHNV isolates into 2 major clades, designated U and M. The 2 clades geographically overlapped within the lower Columbia River basin and in the lower Snake River and tributaries, while the upper Columbia River basin had only U clade and the upper Snake River basin had only M clade virus types. These results suggest that there are co-circulating lineages of IHNV present within specific areas of the Columbia River basin. The epidemiological significance of these findings provided insight into viral traffic patterns exhibited by IHNV in the Columbia River basin, with specific relevance to how the Columbia River basin IHNV types were related to those in the Hagerman Valley. These analyses indicate that there have likely been 2 historical events in which Hagerman Valley IHNV types were introduced and became established in the lower Columbia River basin. However, the data also clearly indicates that the Hagerman Valley is not a continuous source of waterborne virus infecting salmonid stocks downstream.

  9. Structural styles of the paradox basin: Something to consider in a basin dominated by stratigraphic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, G.M.

    1993-08-01

    The Paradox basin has produced a considerable amount of oil and gas from Pennsylvanian and Mississippian reservoirs. Most of the production has been from stratigraphic traps associated with subtle rejuvenated basement structures. Only the Blanding sub-basin and west flank of the salt anticlines (Lisbon Valley to Salt Wash fields) have been explored in sufficient quantity to classify as the mature parts of the basin, and even in these areas, new fields are currently being discovered. The majority of the basin still remains an exploration frontier. Certainly, structural and stratigraphic conditions analogous to those in the proven areas exist in muchmore » of these underexplored parts of the Paradox basin, but the potential for new and different types of hydrocarbon traps should not be overlooked. Structural styles present in the Paradox basin range from high-angle reverse, to normal, to inverted, which records different periods of crustal shortening and extension. To provide a full appreciation of the variety and complexities of structural styles in the Paradox basin and their influence on the orientation and distribution of different stratigraphic mechanisms, comparisons are made in the following areas: the Uncompahgre frontal fault zone, salt anticlines, Cane Creek anticline, Nequoia arch, Blanding basin, and Hogback monocline. To demonstrate the episodic nature of tectonism throughout the entire Phanerozoic Era, potential and proven hydrocarbon trapping styles are illustrated in strata ranging from Devonian to Late Pennsylvanian age. In particular, the Pennsylvanian Paradox evaporites and equivalent shelf carbonates and siliciclastics provide an excellent example of chronostratigraphic and glacioeustatic relationships. Due to the proven prolific nature of these Pennsylvanian reservoirs, the interrelationships of structure to stratigraphy in the Blanding basin and along the Cane Creek anticline will be emphasized.« less

  10. Potential for deep basin-centered gas accumulation in Hanna Basin, Wyoming

    USGS Publications Warehouse

    Wilson, Michael S.; Dyman, Thaddeus S.; Nuccio, Vito F.

    2001-01-01

    The potential for a continuous-type basin-centered gas accumulation in the Hanna Basin in Carbon County, Wyoming, is evaluated using geologic and production data including mud-weight, hydrocarbon-show, formation-test, bottom-hole-temperature, and vitrinite reflectance data from 29 exploratory wells. This limited data set supports the presence of a hypothetical basin-centered gas play in the Hanna Basin. Two generalized structural cross sections illustrate our interpretations of possible abnormally pressured compartments. Data indicate that a gas-charged, overpressured interval may occur within the Cretaceous Mowry, Frontier, and Niobrara Formations at depths below 10,000 ft along the southern and western margins of the basin. Overpressuring may also occur near the basin center within the Steele Shale and lower Mesaverde Group section at depths below 18,000 to 20,000 ft. However, the deepest wells drilled to date (12,000 to 15,300 ft) have not encountered over-pressure in the basin center. This overpressured zone is likely to be relatively small (probably 20 to 25 miles in diameter) and is probably depleted of gas near major basement reverse faults and outcrops where gas may have escaped. Water may have invaded reservoirs through outcrops and fracture zones along the basin margins, creating an extensive normally pressured zone. A zone of subnormal pressure also may exist below the water-saturated, normal-pressure zone and above the central zone of overpressure. Subnormal pressures have been interpreted in the center of the Hanna Basin at depths ranging from 10,000 to 25,000 ft based on indirect evidence including lost-circulation zones. Three wells on the south side of the basin, where the top of the subnormally pressured zone is interpreted to cut across stratigraphic boundaries, tested the Niobrara Formation and recovered gas and oil shows with very low shut-in pressures.

  11. Basin analysis of tertiary strata in the Pattani Basin, Gulf of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chonchawalit, A.; Bustin, R.M.

    The stratigraphic and structural evolution of the Pattani basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonics of continental southeast Asia. East-west extension, a product of the northward collision of India with Eurasia since the early Tertiary resulted in the formation of a series of north-south-trending sedimentary basins including the Pattani basin. Subsidence and thermal histories of the basin can generally be accounted for by nonuniform lithospheric stretching. The validity of nonuniform lithospheric stretching as a mechanic for the formation of the Pattani basin is confirmed by a reasonably good agreement between modeled and observed vitrinite reflectancemore » at various depths and locations. The amount of stretching and surface heat flow generally increases from the basin margin to the basin center. Crustal stretching factor ([beta]) ranges from 1.3 at the basin margin to 2.8 in the center. Subcrustal stretching factor ([sigma]) ranges from 1.3 at the margin to more than 3.0 in the center. The stretching of the lithosphere may have extended basement rocks as much as 45 to 90 km and may have caused the upwelling of asthenosphere, resulting in high heat flow. The sedimentary succession in the Pattani basin is divisible into synrift and postrift sequences. The synrift sequences comprise (1) late Eocene ( ) to early Oligocene alluvial fan, braided river, and flood-plain deposits; (2) late Oligocene to early Miocene floodplain and channel deposits; and (3) an early Miocene regressive package of marine to nonmarine sediments. Deposition of synrift sequences corresponded to rifting and extension, which included episodic block faulting and rapid subsidence. Postrift succession comprises (1) an early to middle Miocene regressive package of shallow marine to nonmarine sediments, (2) a late early Miocene transgressive package; and (3) a late Miocene to Pleistocene transgression succession.« less

  12. The development of the continental margin of eastern North America-conjugate continental margin to West Africa

    USGS Publications Warehouse

    Dillon, William P.; Schlee, J.S.; Klitgord, Kim D.

    1988-01-01

    The continental margin of eastern North America was initiated when West Africa and North America were rifted apart in Triassic-Early Jurassic time. Cooling of the crust and its thinning by rifting and extension caused subsidence. Variation in amounts of subsidence led to formation of five basins. These are listed from south to north. (1) The Blake Plateau Basin, the southernmost, is the widest basin and the one in which the rift-stage basement took longest to form. Carbonate platform deposition was active and persisted until the end of Early Cretaceous. In Late Cretaceous, deposition slowed while subsidence persisted, so a deep water platform was formed. Since the Paleocene the region has undergone erosion. (2) The Carolina Trough is narrow and has relatively thin basement, on the basis of gravity modeling. The two basins with thin basement, the Carolina Trough and Scotian Basin, also show many salt diapirs indicating considerable deposition of salt during their early evolution. In the Carolina Trough, subsidence of a large block of strata above the flowing salt has resulted in a major, active normal fault on the landward side of the basin. (3) The Baltimore Canyon Trough has an extremely thick sedimentary section; synrift and postrift sediments exceed 18 km in thickness. A Jurassic reef is well developed on the basin's seaward side, but post-Jurassic deposition was mainly non-carbonate. In general the conversion from carbonate to terrigenous deposition, characteristics of North American Basins, occurred progressively earlier toward the north. (4) The Georges Bank Basin has a complicated deep structure of sub-basins filled with thick synrift deposits. This may have resulted from some shearing that occurred at this offset of the continental margin. Postrift sediments apparently are thin compared to other basins-only about 8 km. (5) The Scotian Basin, off Canada, contains Jurassic carbonate rocks, sandstone, shale and coal covered by deltaic deposits and Upper Cretaceous deeper water chalk and shale. ?? 1988.

  13. Water resources of Bannock Creek basin, southeastern Idaho

    USGS Publications Warehouse

    Spinazola, Joseph M.; Higgs, B.D.

    1997-01-01

    The potential for development of water resources in the Bannock Creek Basin is limited by water supply. Bannock Creek Basin covers 475 square miles in southeastern Idaho. Shoshone-Bannock tribal lands on the Fort Hall Indian Reservation occupy the northern part of the basin; the remainder of the basin is privately owned. Only a small amount of information on the hydrologic and water-quality characteristics of Bannock Creek Basin is available, and two previous estimates of water yield from the basin ranged widely from 45,000 to 132,500 acre-feet per year. The Shoshone-Bannock Tribes need an accurate determination of water yield and baseline water-quality characteristics to plan and implement a sustainable level of water use in the basin. Geologic setting, quantities of precipitation, evapotranspiration, surface-water runoff, recharge, and ground-water underflow were used to determine water yield in the basin. Water yield is the annual amount of surface and ground water available in excess of evapotranspiration by crops and native vegetation. Water yield from Bannock Creek Basin was affected by completion of irrigation projects in 1964. Average 1965-89 water yield from five subbasins in Bannock Creek Basin determined from water budgets was 60,600 acre-feet per year. Water yield from the Fort Hall Indian Reservation part of Bannock Creek Basin was estimated to be 37,700 acre-feet per year. Water from wells, springs, and streams is a calcium bicarbonate type. Concentrations of dissolved nitrite plus nitrate as nitrogen and fluoride were less than Maximum Contaminant Levels for public drinking-water supplies established by the U.S. Environmental Protection Agency. Large concentrations of chloride and nitrogen in water from several wells, springs, and streams likely are due to waste from septic tanks or stock animals. Estimated suspended-sediment load near the mouth of Bannock Creek was 13,300 tons from December 1988 through July 1989. Suspended-sediment discharge was greatest during periods of high streamflow.

  14. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins

    NASA Astrophysics Data System (ADS)

    Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.

    2016-10-01

    The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin development.

  15. Artificial recharge experiments on the Ship Creek alluvial fan, Anchorage, Alaska

    USGS Publications Warehouse

    Anderson, Gary S.

    1977-01-01

    During the summers of 1973 and 1974, water from Ship Creek was diverted at an average rate of approximately 6 cubic feet per second to an 11-acre recharge basin. Maximum sustained unit recharge for the basin was approximately 1.4 feet per day. Dur-ing 1975 a second basin of 8 acres was also used for recharge, and the total diversion rate was increased to as much as 30 cubic feet per second. The second basin was never completely filled, but the unit recharge rate was estimated to be at least four times as great as that in the first basin.During 1973 and 1974, when only one recharge basin was in operation, a maximum rise of 18 feet was observed in the ground-water table near the basin. In 1975, when both basins were being used, the maximum rise was 30 feet in the same area. During 1973 and 1974, the water-level rise was 12 and 8 feet in the unconfined and confined systems, respectively, at a point 4.400 feet downgradient from the basins; in 1975 the rise at the same point was 31 and 16 feet, respectively.It was originally believed that because of the location of the recharge ponds within the natural recharge zone of the area's confined aquifer system, the source of the major portion of Anchorage's public water supply, most of the artificially recharged water would enter that system. However, water-level data and changes in saturation conditions interpreted from borehole geophysical logs indicate that most of the recharged water remained in the unconfined aquifer. In addition, the potentiometric rise that was achieved in the confined aquifer during summer operation of the recharge basins was quickly dissipated when diversion stopped and the basins drained. Thus the benefits of recharge would not persist into late winter, the critical period of water availability in Anchorage, unless diversion to the basins could be continued until January or February.

  16. Impact of structural and autocyclic basin-floor topography on the depositional evolution of the deep-water Valparaiso forearc basin, central Chile

    USGS Publications Warehouse

    Laursen, J.; Normark, W.R.

    2003-01-01

    The Valparaiso Basin constitutes a unique and prominent deep-water forearc basin underlying a 40-km by 60-km mid-slope terrace at 2.5-km water depth on the central Chile margin. Seismic-reflection data, collected as part of the CONDOR investigation, image a 3-3.5-km thick sediment succession that fills a smoothly sagged, margin-parallel, elongated trough at the base of the upper slope. In response to underthrusting of the Juan Ferna??ndez Ridge on the Nazca plate, the basin fill is increasingly deformed in the seaward direction above seaward-vergent outer forearc compressional highs. Syn-depositional growth of a large, margin-parallel monoclinal high in conjunction with sagging of the inner trough of the basin created stratal geometries similar to those observed in forearc basins bordered by large accretionary prisms. Margin-parallel compressional ridges diverted turbidity currents along the basin axis and exerted a direct control on sediment depositional processes. As structural depressions became buried, transverse input from point sources on the adjacent upper slope formed complex fan systems with sediment waves characterising the overbank environment, common on many Pleistocene turbidite systems. Mass failure as a result of local topographic inversion formed a prominent mass-flow deposit, and ultimately resulted in canyon formation and hence a new focused point source feeding the basin. The Valparaiso Basin is presently filled to the spill point of the outer forearc highs, causing headward erosion of incipient canyons into the basin fill and allowing bypass of sediment to the Chile Trench. Age estimates that are constrained by subduction-related syn-depositional deformation of the upper 700-800m of the basin fill suggest that glacio-eustatic sea-level lowstands, in conjunction with accelerated denudation rates, within the past 350 ka may have contributed to the increase in simultaneously active point sources along the upper slope as well as an increased complexity of proximal depositional facies.

  17. Effect of basin physical characteristics on solute fluxes in nine alpine/subalpine basins, Colorado, USA

    USGS Publications Warehouse

    Sueker, J.K.; Clow, D.W.; Ryan, J.N.; Jarrett, R.D.

    2001-01-01

    Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes (??? 30??), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year -1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris-probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley and Sons, Ltd.

  18. Effect of basin physical characteristics on solute fluxes in nine alpine/subalpine basins, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Sueker, Julie K.; Clow, David W.; Ryan, Joseph N.; Jarrett, Robert D.

    2001-10-01

    Alpine/subalpine basins may exhibit substantial variability in solute fluxes despite many apparent similarities in basin characteristics. An evaluation of controls on spatial patterns in solute fluxes may allow development of predictive tools for assessing basin sensitivity to outside perturbations such as climate change or deposition of atmospheric pollutants. Relationships between basin physical characteristics, determined from geographical information system (GIS) tools, and solute fluxes and mineral weathering rates were explored for nine alpine/subalpine basins in Rocky Mountain National Park, Colorado, using correlation analyses for 1993 and 1994 data. Stream-water nitrate fluxes were correlated positively with basin characteristics associated with the talus environment; i.e., the fractional amounts of steep slopes ( 30°), unvegetated terrain and young debris (primarily Holocene till) in the basins, and were correlated negatively with fractional amounts of subalpine meadow terrain. Correlations with nitrate indicate the importance of the talus environment in promoting nitrate flux and the mitigating effect of areas with established vegetation, such as subalpine meadows. Total mineral weathering rates for the basins ranged from about 300 to 600 mol ha-1 year-1. Oligoclase weathering accounted for 30 to 73% of the total mineral weathering flux, and was positively correlated with the amount of old debris (primarily Pleistocene glacial till) in the basins. Although calcite is found in trace amounts in bedrock, calcite weathering accounted for up to 44% of the total mineral weathering flux. Calcite was strongly correlated with steep slope, unvegetated terrain, and young debris - probably because physical weathering in steep-gradient areas exposes fresh mineral surfaces that contain calcite for chemical weathering. Oligoclase and calcite weathering are the dominant sources of alkalinity in the basins. However, atmospherically deposited acids consume much of the alkalinity generated by weathering of calcite and other minerals in the talus environment. Published in 2001 by John Wiley & Sons, Ltd.

  19. Hydrological Responses to Changes in the Rainfall Regime are Less Pronounced in Forested Basins: an Analysis of Southern Brazil, 1975-2010

    NASA Astrophysics Data System (ADS)

    Chagas, V. B. P.; Chaffe, P. L. B.

    2017-12-01

    It is unknown to what extent the hydrological responses to changes in the rainfall regime vary across forested and non-forested landscapes. Southern Brazil is approximately 570000 km² and was naturally covered mostly by tropical and subtropical forests. In the last century, a large proportion of forests were replaced by agricultural activities. The rainfall regime has also changed substantially in the last decades. The annual rainfall, number and magnitude of extreme events, and number of non-rainy days have increased in most of the area. In this study, we investigated the changes in the regime of 142 streamflow gauges and 674 rainfall gauges in Southern Brazil, from 1975 to 2010. The changes in the regime were analyzed for forested basins (i.e., with more than 50% forest coverage) and non-forested basins (i.e., with less than 20% forest coverage). The area of the river basins ranged from 100 to 60000 km². We analyzed a total of six signatures that represent the regime, including annual averages, seasonality, floods, and droughts. The statistical trends of the signatures were calculated using the Mann-Kendall test and the Sen's slope. The results showed that the majority of basins with opposing signal trends for mean annual streamflow and rainfall are non-forested basins (i.e., basins with higher anthropogenic impacts). Forested basins had a lower correlation between trends in the streamflow and rainfall trends for the seasonality and the average duration of drought events. There was a lower variability in the annual maximum 1-day streamflow trends in the forested basins. Additionally, despite a decrease in the 31-day rainfall minima and an increase in the seasonality, in forested basins the 7-day streamflow minima increases were substantially larger than in non-forested basins. In summary, the forested basins were less responsive to the changes in the precipitation 1-day maxima, seasonality, number of dry days, and 31-day minima.

  20. Permo-Carboniferous sedimentary basins related to the distribution of planetary cryptoblemes

    USGS Publications Warehouse

    Windolph, J.F.

    1997-01-01

    Massive/high velocity solar, galactic, and cosmic debris impacting the Earths surface may account for the enormous energy required for the formation of Permo-Carboniferous sedimentary basins and related mountain building orogenies. Analysis of satellite immagry, sea floor sonar, geophysical data, and geotectonic fabrics show a strong correlation throughout geologic time between sedimentary basin origin and planetary cryptoblemes. Cryptoblemes are subtile, multi-ringed, radial centric impact shock signatures covering the entire terrestrial surface and ocean floors, having a geometry and distribution strikingly similar to the surfaces of the lunar planetary bodies in the solar system. Investigations of Permo-Carboniferous basins show an intensely overprinted pattern of cryptoblemes coinciding with partial obliteration and elliptical compression of pre-existing basins and accompanying shock patterns. Large distorted cryptoblemes may incorporate thin skin deformation, localized sediment diagenesis, regional metamorphism, and juxtaposed exotic terrains. These data, related to basin morphogenic symmetry, suggest that large episodic impact events are the primary cause of tectonogenic features, geologic boundary formation and mass extinction episodes on the planet Earth. Plate tectonics may be only a slow moving, low energy secondary effect defined and set in motion by megacosmic accretion events. Permo-Carboniferous sediments of note are preserved or accumulated in relatively small rectangular to arcuate rift valleys and synclinal down warps, such as the Narraganset basin of Massachusetts, USA, and Paganzo basin in Argentina, S.A. These deposits and depocenters may originate from dynamic reinforcement/cancellation impact effects, as can be seen in the Basin Range of Nevada and Utah, USA. Large circular to oval sedimentary basins commonly include internal ring structures indicating post depositional subsidence and rebound adjustments with growth faulting, notable in the Illinois basin USA and Ordos basin in China. Recent impact events on the planet Jupiter, July 1994, lend increasing support towards an impact orogenic geologic paradigm on the planet Earth.

  1. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    NASA Astrophysics Data System (ADS)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.

  2. Cordilleran Intermontane thermotectonic history and implications for neotectonic structure and petroleum systems, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek; Osadetz, Kirk

    2008-04-01

    Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ˜30 mK/m and ˜90 mW/m2 compared to ˜32 mK/m and 70 -80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ˜20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ˜7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north-south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ˜40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ˜10-20 mW/m2 since ˜40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ˜36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.

  3. Pore Water Chemistry as Sensitive Indicators for Fluid Flow in Brazos-Trinity Basin #4 and Ursa Basin, Northeast Gulf of Mexico (IODP Expedition 308)

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Gilhooly, W.; Takano, Y.; Flemings, P.; Behrmann, J.; John, C.

    2005-12-01

    Rapid sediment loading drives overpressure in marine sedimentary basins around the world. During IODP Expedition 308, two basins (Brazos-Trinity Basin #4 and Ursa Basin) with large different sedimentary loading of turbidite and hemipelagic sediments in the northeast Gulf of Mexico, were investigated to characterize in-situ spatial variations in temperature, pressure, and rock and fluid physical properties and chemistry. Pore water chemical compositions including alkalinity, salinity, pH, anions (Cl, SO4, PO4, H4SiO4), cations (Na, K, Ca, Mg), trace metals (Li, B, Sr, Ba, Fe, Mn), were analyzed in four drill holes at sites U1319, U1320, U1322, and U1324, in the Brazos-Trinity Basin #4 and Ursa Basin. At all sites, pore water chemistry shows great variability at shallow depths with maximam or miminum values corresponding well to seismic reflectors and lithostratigraphic units. The sulfate profile shows a dramatic decrease in SO4 content with a sulfate-methane interface (SMI) of 15 mbsf at Site 1319 and 22 mbsf at Site 1320 in the Brazos-Trinity Basin #4 Basin. In contrast, the sulfate- methane interfaces (SMI) are much deeper in Ursa Basin, i.e., 74 mbsf at Site 1322, and 94 mbsf at Site 2324. The deep SMI in Ursa Basin suggest relatively slow anaerobic degradation of organic matter considering the location of drilling site though we do not determine sulfate reducing rate with organic matter or methane as substrate at this leg. The downhole consumption of sulfate coincides with a concomitant increase in alkalinity and a decrease of Mn, Ca, Mg, Sr, and Li. Furthermore, initial pore water chemistry results appear to be influence by hydrogeologic fluid flow in both basins. Coincidence between pore water profile concentration maxima and parallel seismic reflectors may suggest that these seismic surfaces occur along specific stratigraphic units, which serve as channels for lateral fluid flow. Overall, the downhole variations in interstitial water chemistry may reflect a combination of processes, including anaerobic degradation of organic matter, diagenetic carbonate precipitation/dissolution, and fluid flow pathways.

  4. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  5. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.

  6. Synthesizing diverse stakeholder needs for a drought early warning information system in the Apalachicola-Chattahoochee-Flint River Basin

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Mcnutt, C. A.; Ingram, K.; Knox, P.; Martinez, C. J.; Zierden, D.; Pulwarty, R. S.; Verdin, J. P.

    2011-12-01

    From fall 2009 to fall 2010 the National Integrated Drought Information System (NIDIS) Program Office coordinated several stakeholder meetings in the Apalachicola-Chattahoochee-Flint (ACF) River Basin, which extends from Georgia into Alabama and Florida. The purpose of the meetings was to ascertain which products and services are needed by basin stakeholders for drought early warning. Drought vulnerabilities across the basin are quite diverse - from changes in salinity that harm oyster bed productivity in Apalachicola Bay, to the health of crops in the agricultural fields of the Flint River basin, to municipal water supply issues for the city of Atlanta and smaller communities along the tributaries. These, and many other vulnerabilities, exist against a backdrop of decades-long water allocation litigation among the three states. The benefits of these stakeholder meetings went beyond information gathering by serving as opportunities for communication across state lines among people with differing needs and perspectives regarding water management decisions in the basin. The meetings also provided a good opportunity for stakeholders from all three states to share lessons learned from various management perspectives during the drought that affected the basin from 2006 to 2009. Common issues and needs identified from all regions of the basin include: (1) Education and Communication - People across the basin agree that education and communication regarding drought needs improvement (e.g., definition of drought, sector-specific impacts); (2) Improved interactions with the US Army Corps of Engineers (e.g., increased data sharing and opportunities for communication between the Corps and other stakeholders); (3) Data - easier access to real-time calibrated and quality-controlled data; (4) ACF Basin-wide webinars and climate outlooks; (5) Drought Index - Can a basin-wide drought index be established?; (6) Resolve perceived discrepancies regarding groundwater (How much groundwater is withdrawn, how frequently should withdrawals be recorded, can we improve groundwater modeling?); (7) Presentation of Information - Basin-scale graphics available from one web site with historical context; Updates on current NIDIS activities, along with proposed future plans for the drought early warning information system for the ACF Basin, will be presented.

  7. Geophysical Investigations of the Smoke Creek Desert and their Geologic Implications, Northwest Nevada and Northeast California

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Tilden, Janet E.

    2006-01-01

    The Smoke Creek Desert is a large basin about 100 km (60 mi) north of Reno near the California-Nevada border, situated along the northernmost parts of the Walker Lane Belt, a physiographic region defined by diverse topographic expression consisting of northweststriking topographic features and strike-slip faulting. Because geologic and geophysical framework studies play an important role in understanding the hydrogeology of the Smoke Creek Desert, a geophysical effort was undertaken to help determine basin geometry, infer structural features, and estimate depth to basement. In the northernmost parts of the Smoke Creek Desert basin, along Squaw Creek Valley, geophysical data indicate that the basin is shallow and that granitic rocks are buried at shallow depths throughout the valley. These granitic rocks are faulted and fractured and presumably permeable, and thus may influence ground-water resources in this area. The Smoke Creek Desert basin itself is composed of three large oval sub-basins, all of which reach depths to basement of up to about 2 km (1.2 mi). In the central and southern parts of the Smoke Creek Desert basin, magnetic anomalies form three separate and narrow EW-striking features. These features consist of high-amplitude short-wavelength magnetic anomalies and probably reflect Tertiary basalt buried at shallow depth. In the central part of the Smoke Creek Desert basin a prominent EW-striking gravity and magnetic prominence extends from the western margin of the basin to the central part of the basin. Along this ridge, probably composed of Tertiary basalt, overlying unconsolidated basin-fill deposits are relatively thin (< 400 m). The central part of the Smoke Creek Desert basin is also characterized by the Mid-valley fault, a continuous geologic and geophysical feature striking NS and at least 18-km long, possibly connecting with faults mapped in the Terraced Hills and continuing southward to Pyramid Lake. The Mid-valley fault may represent a lateral (east-west) barrier to ground-water flow. In addition, the Mid-valley fault may also be a conduit for along-strike (north-south) ground-water flow, channeling flow to the southernmost parts of the basin and the discharge areas north of Sand Pass.

  8. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    USGS Publications Warehouse

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in that it includes a measure of burn severity and an estimate of modeling errors. The application of this model, in conjunction with models for the probability of debris flows, will enable more complete and rapid assessments of debris flow hazards following wildfire.

  9. Vitrinite reflectance data for the Permian Basin, west Texas and southeast New Mexico

    USGS Publications Warehouse

    Pawlewicz, Mark; Barker, Charles E.; McDonald, Sargent

    2005-01-01

    This report presents a compilation of vitrinite reflectance (Ro) data based on analyses of samples of drill cuttings collected from 74 boreholes spread throughout the Permian Basin of west Texas and southeast New Mexico (fig. 1). The resulting data consist of 3 to 24 individual Ro analyses representing progressively deeper stratigraphic units in each of the boreholes (table 1). The samples, Cambrian-Ordovician to Cretaceous in age, were collected at depths ranging from 200 ft to more than 22,100 ft.The R0 data were plotted on maps that depict three different maturation levels for organic matter in the sedimentary rocks of the Permian Basin (figs. 2-4). These maps show depths at the various borehole locations where the R0 values were calculated to be 0.6 (fig. 2), 1.3 (fig. 3), and 2.0 (fig. 4) percent, which correspond, generally, to the onset of oil generation, the onset of oil cracking, and the limit of oil preservation, respectively.The four major geologic structural features within the Permian Basin–Midland Basin, Delaware Basin, Central Basin Platform, and Northwest Shelf (fig. 1) differ in overall depth, thermal history and tectonic style. In the western Delaware Basin, for example, higher maturation is observed at relatively shallow depths, resulting from uplift and eastward basin tilting that began in the Mississippian and ultimately exposed older, thermally mature rocks. Maturity was further enhanced in this basin by the emplacement of early and mid-Tertiary intrusives. Volcanic activity also appears to have been a controlling factor for maturation of organic matter in the southern part of the otherwise tectonically stable Northwest Shelf (Barker and Pawlewicz, 1987). Depths to the three different Ro values are greatest in the eastern Delaware Basin and southern Midland Basin. This appears to be a function of tectonic activity related to the Marathon-Ouachita orogeny, during the Late-Middle Pennsylvanian, whose affects were widespread across the Permian Basin. The Central Basin Platform has been a positive feature since the mid to-late Paleozoic, during which time sedimentation occurred along its flanks. This nonsubsidence, along with the lack of supplemental heating (volcanism), implies lower maturation levels.

  10. Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack basin, northeastern Pennsylvania

    USGS Publications Warehouse

    Sams, James I.; Day, Rick L.; Stiteler, John M.

    1999-01-01

    The recreational value of Lake Wallenpaupack, along with its proximity to the New York and New Jersey metropolitan areas, has resulted in residential development in parts of the watershed. Some of these developments encroach on existing ponds, lakes, and wetlands and result in the conversion of forest land to residential areas. Sediment and nutrients in runoff from these residential areas, and inputs from agricultural areas, sewage treatment plants, and atmospheric deposition, have had a significant effect on water quality in Lake Wallenpaupack.Water-quality data collected in the Lake Wallenpaupack watershed from 1991 through 1994 indicate the influence of land use on water resources. Water samples collected from a forested undeveloped basin contained lower concentrations of suspended sediment, nitrogen, and total phosphorus than samples collected from the basins of Ariel Creek and Purdy Creek that drain areas having mixed land use with residential developments. Sediment yields were three to four times higher in the developed basins of Purdy and Ariel Creeks compared to the forested undeveloped basin. Annual yields for total nitrogen for Ariel Creek and Purdy Creek were between three to five times greater than yields from the forested basin. For the 1993 water year, the annual yield for dissolved nitrate plus nitrite (as nitrogen) from Ariel Creek Basin was 1,410 pounds per square mile, or about 60 times greater than the 24 pounds per square mile from the undeveloped basin. The total-phosphorus yield from the Ariel Creek Basin was 216 pounds per square mile for the 1994 water year. This was about three times greater than the 74 pounds per square mile from the forested basin. The total-phosphorus yield for the Purdy Creek Basin was 188 pounds per square mile for the 1994 water year, or 2.5 times greater than the yield from the undeveloped forested basin. Only slight differences were observed in dissolved orthophosphate phosphorus loadings between the basins. All three basins displayed seasonal differences in water quality. Most of the annual yield occurred during early spring as a result of snowmelt runoff.Data collected from the Stevens Creek sites showed that an open-water wetland was very effective in removing sediment and total phosphorus but was not as effective in removing dissolved orthophosphate phosphorus and nitrogen. The wetland removed more than 96 percent of the sediment.

  11. Combined Detrital U/Pb Zircon and 40Ar/39Ar Mica Geoochronology to Test Structural Models for a Devonian Orogenic Collapse Basin in the Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Templeton, J.; Anders, M.; Fossen, H.

    2014-12-01

    The Hornelen basin is the largest of the Devonian 'Old Red' sandstone basins in Norway, comprising 25 km of alluvial-fluvial deposits which are organized into basin-wide, coarsening-upward megacycles. Hornelen sits with several smaller basins in the hanging wall a major extensional shear zone along which the ultra-high pressure metamorphic core of subducted Baltican crust was rapidly exhumed during the extensional collapse of the Caledonian orogeny. The timing of orogenic collapse corresponds closely to the timing of the basins, which are loosely constrained by sparse trace-fossil assemblages to a mid-Devonian age. Further, the basins are now in brittle fault contact with the underlying mylonitic shear zone and the metamorphic core, implying that they are the upper-crustal expression of large-scale extension and deep-crustal exhumation. Two distinct structural models have been proposed for Hornelen to account for these observations. The strike-slip model juxtaposes different source terranes across the basin-controlling fault and predicts spatially changing provenance within chronostratigraphic units. The supradetachment model links the filling of the basin directly to unroofing of the metamorphic core on a low-angle detachment fault, and predicts basin-wide changes in provenance through time with progressive exhumation of the metamorphic hinterland. We present an extensive new provenance dataset, spanning the Hornelen basin strata through space and time. Detrital zircon U/Pb ages from 18 new samples comprise three distinct populations (1.6, 1.0, and 0.43 Ga) with the Caledonian-aged zircons (ca 0.43 Ga) present mainly along the northern margin of the basin, representing an Upper Allochthon source not found on the southern or eastern margins of the basin. Juxtaposition of different source terranes across the basin supports the strike-slip model. 40Ar/39Ar detrital white mica from the same sample set documents a younging of the dominant age peak from 432 Ma in the oldest sediments to 401 Ma in the youngest units, but does not document any difference between northern and southern mica sources. This trend supports the supradetachment model, but may also be explained by passive, isostatically-driven erosional unroofing of the overthickened orogenic crust.

  12. Using 10Be to quantify rates of landscape change in 'dead' orogens - millennial scale rates of bedrock and basin-scale erosion in the southern and central Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Bierman, P. R.; Reusser, L.; Portenga, E.

    2011-12-01

    The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion rates are similar implying long-term steady erosion consistent with dynamic steady state as advocated by Hack. However, in the Susquehanna drainage, basin scale erosion rates are significantly higher than those measured from outcrops suggesting that over time, relief is increasing. The Susquehanna River basin appears to be responding to a transient perturbation, ala Davis.

  13. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater resources are likely to be limited. Groundwater use in the villages of the basin is generally supplied by hand-pumped wells, whereas agricultural needs are met by surface-water flows. New or increased water uses in the basin, or activities that may affect water quality, should be carefully evaluated to avoid affecting existing uses.

  14. Latitudinal and Longitudinal Basin-scale Surface Salinity Contrasts and Freshwater Transport by Ocean Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2003-12-01

    The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.

  15. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    USGS Publications Warehouse

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux into a slowly extending continental crust can cause rapid basin subsidence that may be erroneously interpreted as an increased rate of tectonic activity. Copyright 2012 by the American Geophysical Union.

  16. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns appear to correlate with variations in the distribution of aftershocks from the 2009 and 2014 Karonga earthquakes and in background seismicity beneath the lake, providing new constraints on length-displacement scaling for predictive models and earthquake hazards.

  17. Evidence for Strong Controls from Preexisting Structures on Border Fault Development and Basin Evolution in the Malawi Rift from 3D Lacustrine Refraction Data

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Shillington, D. J.; Gaherty, J. B.; Scholz, C. A.; Ebinger, C.; Nyblade, A.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand-Wambura, R.

    2017-12-01

    A long-standing debate surrounds controls on the development and ultimately abandonment of basin bounding border faults. The Malawi Rift in the the Western Branch of the East African Rift System presents an ideal location to investigate normal fault development. The rift is composed of a series of half graben basins bound by large border faults, which cross several terranes and pre-existing features. To delineate rift basin structure, we undertook 3D first arrival tomography across the North and Central basins of the Malawi Rift based on seismic refraction data acquired in Lake Malawi. The resulting 3D velocity model allows for the first-ever mapping of 3D basin structure in the Western Branch of the EAR. We estimate fault displacement profiles along the two border faults and find that each accommodated 7.2 km of throw. Previous modeling studies suggest that given the significant lengths (>140 km) and throws of these faults, they may be nearing their maximum dimensions or may have already been abandoned. While both faults accommodate similar throws, their lengths differ by 40 km, likely due to the influence of both preexisting basement fabric and large-scale preexisting structures crossing the rift. Over 4 km of sediment exists where the border faults overlap in the accommodation zone indicating that these faults likely established their lengths early. Portions of both basins contain packages of sediment with anomalously fast velocities (> 4 km/s), which we interpret to represent sediment packages from prior rifting episodes. In the Central Basin, this preexisting sediment traces along the inferred offshore continuation of the Karoo-aged Ruhuhu Basin that intersects Lake Malawi at the junction between the North and Central basins. This feature may have influenced the length of the border fault bounding the Central Basin. In the North Basin, the preexisting sediment is thicker ( 4 km) and likely represents the offshore continuation of a series of preexisting rift basins that extend from the Malawi Rift north to the Rukwa Rift. The presence of this offshore basin confirms that the corridor between the Rukwa and Malawi Rifts has experienced prolonged periods of extension, likely thinning the lithosphere there, and thus providing a mechanism for focusing of long-lived magmatism at the Rungwe Volcanic Center.

  18. Adapting to a Changing Colorado River: Making Future Water Deliveries More Reliable Through Robust Management Strategies

    NASA Astrophysics Data System (ADS)

    Groves, D.; Bloom, E.; Fischbach, J. R.; Knopman, D.

    2013-12-01

    The U.S. Bureau of Reclamation and water management agencies representing the seven Colorado River Basin States initiated the Colorado River Basin Study in January 2010 to evaluate the resiliency of the Colorado River system over the next 50 years and compare different options for ensuring successful management of the river's resources. RAND was asked to join this Basin Study Team in January 2012 to help develop an analytic approach to identify key vulnerabilities in managing the Colorado River basin over the coming decades and to evaluate different options that could reduce this vulnerability. Using a quantitative approach for planning under uncertainty called Robust Decision Making (RDM), the RAND team assisted the Basin Study by: identifying future vulnerable conditions that could lead to imbalances that could cause the basin to be unable to meet its water delivery objectives; developing a computer-based tool to define 'portfolios' of management options reflecting different strategies for reducing basin imbalances; evaluating these portfolios across thousands of future scenarios to determine how much they could improve basin outcomes; and analyzing the results from the system simulations to identify key tradeoffs among the portfolios. This talk will describe RAND's contribution to the Basin Study, focusing on the methodologies used to to identify vulnerabilities for Upper Basin and Lower Basin water supply reliability and to compare portfolios of options. Several key findings emerged from the study. Future Streamflow and Climate Conditions Are Key: - Vulnerable conditions arise in a majority of scenarios where streamflows are lower than historical averages and where drought conditions persist for eight years or more. - Depending where the shortages occur, problems will arise for delivery obligations for the upper river basin and the lower river basin. The lower river basin is vulnerable to a broader range of plausible future conditions. Additional Investments in Infrastructure and Efficiency Could Improve Performance and Reduce Risk: - Different portfolios of water-supply and demand-reduction options offer performance trade-offs. - Different types of options in the portfolios, such as conservation, desalination, or water banking, would affect future outcomes and costs of implementation. - Analysis of all the portfolios identified important near-term, high-priority options that should be implemented in the near future, including municipal, industrial, and agricultural conservation. Other Solutions May Be Required: - If future hydrologic conditions develop in a manner consistent with the more pessimistic projections, the Basin is increasingly likely to face vulnerable conditions. The region may need to consider additional management options.

  19. Did the Bering Sea Form as a Cenozoic Backarc Basin?

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Barth, G. A.; Scheirer, D. S.; Scholl, D. W.

    2012-12-01

    Understanding the origins of Bering Sea marginal basins (Aleutian, Bowers, and Komandorsky basins; AB, BB, KB) is key for reconstructing N. Pacific tectonic and magmatic evolution. New acquisitions and recompilations of MCS, OBS, and potential field data (Barth et al. poster. this session) for USGS Extended Continental Shelf project and selection of Aleutians as GeoPrisms Subduction Cycles and Deformation focus site stimulate reconsideration of BB, KB, and especially AB origins. AB has long been regarded as N. Pacific crust trapped when the Aleutian subduction began ~45-50 Ma. BB and KB probably formed together as Miocene backarc basins. Presence of Oligo-Miocene arc volcanics on Bowers and Shirshov ridges suggests that these are remnant arcs, orphaned by AB and KB opening. Seven lines of evidence suggest that AB formed as a Paleogene backarc basin: 1) AB heatflow suggests an age of about 44 Ma (Langseth et al 1980 JGR). 2) Formation of NNW-trending rift basins on Bering shelf (Navarin, Pribilof, and St. George basins) in Paleogene time indicate extension at this time. 3) The early Paleogene "red unconformity" of the Beringian margin could indicate uplift, erosion, and subsidence associated with AB opening. 4) ~N-S magnetic anomalies in AB contrasts with E-W Kula anomalies on N. Pacific, indicating that the two tracts of oceanic crust formed at different spreading ridges. 5) Thicker sediment in AB (2-4 km) vs. BB and KB (< 2km) indicates AB is older and is consistent with episodic and short-lived (~20 m.y. duration) opening expected for backarc basins. 6) Aleutian arc magmatic activity began ~50 Ma, about the same time that the Beringian arc shut down. This could also be reconciled by rifting of the Beringian arc to form the AB as backarc basin, accompanied by the displacement of arc magmatic activity to near the present Aleutian arc. 7) Formation of the Aleutian arc as ~3900 km long, nearly perfect small circle is easiest to reconcile with an easily deformed backarc region, as might result from backarc basin opening. If the Aleutian arc formed by rifting of the Beringian margin then it is likely to contain some pre-50 Ma crust. The possibility that AB is a Paleogene backarc basin requires testing via IODP drilling through AB sediments and into oceanic crust.ectonic scenario for formation of Aleutian Arc and Bering Sea basins. Green = present land; yellow = shelf; AB = Aleutian Basin; KB = Komandorsky Basin; BB = Bowers Basin; SR = Shirshov Ridge, BR = Bowers Ridge; Red = active volcanism and spreading ; Blue = extinct volcanism and spreading

  20. The Bowser and Sustut Basins, Northern British Columbia, Canada: Insights From Analysis of Magnetic Anomaly Data.

    NASA Astrophysics Data System (ADS)

    Baker, J.; Lowe, C.

    2005-12-01

    The Bowser and Sustut basins occupy an area of more than 60,000 km2 in northern British Columbia, Canada. They comprise three, dominantly sedimentary, stratigraphic successions, in part overlapping in age: the Bowser Lake Group, the Skeena Group, and the Sustut Group. These three successions overlie arc volcanic and volcaniclastic strata of Stikinia, an allochtonous island arc terrane that accreted to the western margin of North America in the Early Jurassic to early Middle Jurassic. All three basin successions and underlying Stikinia were deformed during development of a thin-skinned fold and thrust belt (the Skeena Fold and Thrust Belt) in Cretaceous and possibly into earliest Tertiary time. Recently, the basins have been the focus of intense geological studies which have resulted in major revisions to the stratigraphic and structural framework of the basins and demonstrated that they have significantly higher petroleum potential than had been previously recognized. To advance these new findings further requires better imaging of the three-dimensional geometry and architecture of the basins. In this study we harness existing magnetic anomaly data to provide the first quantitative estimates of sedimentary thickness across the entire extents of both basins. Our results, which are in general in accord with geological interpretations, indicate that basin-fill is relatively thin and fairly uniform in the Sustut Basin (2.5-3 km), but highly variable in the Bowser Basin, ranging from less than 2 km to more than 6 km. Overall, sedimentary fill is thicker in the northern half of Bowser Basin compared to the south and is typically less than 2 km near the basins northern, western and southern margins. In addition, we demonstrate how a large, buried intrusion beneath the northeast part of Bowser Basin can account for an observed magnetic anomaly and explain the high coalification gradients and localized high maturation levels of the overlying sedimentary rocks. Neither of the latter can be adequately explained by the estimated burial depths. We delineate at least one regionally extensive fault that is more than 150 km long and that cuts basement of Bowser Basin. The fault may have facilitated migration of hydrocarbons sourced in the basement into Bowser Basin. We show how magnetic data can be used to refine isotopically-determined ages of the late Tertiary Maitland Volcanics that overlap the sedimentary fill and to demonstrate that the volcanism must have been episodic and not the result of a single eruptive event. Collectively, these findings provide new insights into the crustal architecture of northern British Columbia and important constraints for geodynamic models of the basins evolution and their resource potential.

  1. Mechanics of Formation of Forearc Basins of Indonesia and Alaska

    NASA Astrophysics Data System (ADS)

    Cassola, T.; Willett, S.; Kopp, H.

    2010-12-01

    In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between the wedge deformation and forearc basin formation. The aim of this work is to gain insight into the dynamics of the formation of the forearc basin on top of a deforming accretionary wedge, including the mechanism of formation of accommodation space and preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle, thermally-activated viscosity and strain softening. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy in the basin is simulated, because, as noted in earlier studies, underfilled conditions incourage tectonic deformation in the inner wedge. We compare the numerical model to basins along the Sunda-Java Trench and the Alaskan margin. The Sunda-Java Trench shows a variety of structural and basin styles including underfilled and overfilled basins and different wedge geometries along the same trench. We interprete and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available by the IFM-GEOMAR group in Kiel and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR) in Hannover. On the Alaska margin we focus on the Kenai Peninsula, Kodiak Island plateau. This segment of the margin has one of the largest accretionary wedge - forearc basin systems in the world. It also exhibits a double forearc basin system with an interior basin (Cook inlet) and an outer basin, outboard of Kodiak Island, which is a prime candidate for a negative-alpha basin, as described by Fuller et al., (Geology, 2006). A number of studies of the Alaska margin were conducted in the 1990s based out of GEOMAR. One important aspect of these margins is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stability field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.

  2. Heat flow and thermal history of the Anadarko basin, Oklahoma

    USGS Publications Warehouse

    Carter, L.S.; Kelley, S.A.; Blackwell, D.D.; Naeser, N.D.

    1998-01-01

    New heat-flow values for seven sites in the Anadarko basin, Oklahoma, were determined using high-precision temperature logs and thermal conductivity measurements from nearly 300 core plugs. Three of the sites are on the northern shelf, three sites are in the deep basin, and one site is in the frontal fault zone of the northern Wichita Mountains. The heat flow decreased from 55 to 64 mW/m2 in the north, and from 39 to 54 mW/m2 in the south, due to a decrease in heat generation in the underlying basement rock toward the south. Lateral lithologic changes in the basin, combined with the change in heat flow across the basin, resulted in an unusual pattern of thermal maturity. The vitrinite reflectance values of the Upper Devonian-Lower Mississippian Woodford formation are highest 30-40 km north-northwest of the deepest part of the basin. The offset in highest reflectance values is due to the contrast in thermal conductivity between the Pennsylvanian "granite wash" section adjacent to the Wichita uplift and the Pennsylvanian shale section to the north. The geothermal gradient in the low-conductivity shale section is elevated relative to the geothermal gradient in the high-conductivity "granite wash" section, thus displacing the highest temperatures to the north of the deepest part of the basin. Apatite fission-track, vitrinite reflectance, and heat-flow data were used to constrain regional aspects of the burial history of the Anadarko basin. By combining these data sets, we infer that at least 1.5 km of denudation has occurred at two sites in the deep Anadarko basin since the early to middle Cenozoic (40 ?? 10 m.y.). The timing of the onset of denudation in the southern Anadarko basin coincides with the period of late Eocene erosion observed in the southern Rocky Mountains and in the northern Great Plains. Burial history models for two wells from the deep Anadarko basin predict that shales of the Woodford formation passed through the hydrocarbon maturity window by the end of the Permian section in the deep basin moved into the hydrocarbon maturity window during Mesozoic burial of the region. Presently, the depth interval of the main zone of oil maturation (% Ro = 0.7-0.9) is approximately 2800-3800 m in the eastern deep basin basin and 2200-3000 m in the western deep basin. The greater depth to the top of the oil maturity zone and larger depth range of the zone in the eastern part of the deep basin are due to the lower heat flow associated with more mafic basement toward the east. The burial history model for the northern shelf indicates that the Woodford formation has been in the early oil maturity zone since the Early Permian.

  3. Basin Analysis and Petroleum System Characterisation of Western Bredasdorp Basin, Southern Offshore of South Africa: Insights from a 3d Crust-Scale Basin Model - (Phase 1)

    NASA Astrophysics Data System (ADS)

    Sonibare, W. A.; Scheck-Wenderoth, M.; Sippel, J.; Mikeš, D.

    2012-04-01

    In recent years, construction of 3D geological models and their subsequent upscaling for reservoir simulation has become an important tool within the oil industry for managing hydrocarbon reservoirs and increasing recovery rate. Incorporating petroleum system elements (i.e. source, reservoir and trap) into these models is a relatively new concept that seems very promising to play/prospect risk assessment and reservoir characterisation alike. However, yet to be fully integrated into this multi-disciplinary modelling approach are the qualitative and quantitative impacts of crust-scale basin dynamics on the observed basin-fill architecture and geometries. The focus of this study i.e. Western Bredasdorp Basin constitutes the extreme western section of the larger Bredasdorp sub-basin, which is the westernmost depocentre of the four southern Africa offshore sub-basins (others being Pletmos, Gamtoos and Algoa). These basins, which appear to be initiated by volcanically influenced continental rifting and break-up related to passive margin evolution (during the Mid-Late Jurassic to latest Valanginian), remain previously unstudied for crust-scale basin margin evolution, and particularly in terms of relating deep crustal processes to depo-system reconstruction and petroleum system evolution. Seismic interpretation of 42 2D seismic-reflection profiles forms the basis for maps of 6 stratigraphic horizons which record the syn-rift to post-rift (i.e. early drift and late drift to present-day seafloor) successions. In addition to this established seismic markers, high quality seismic profiles have shown evidence for a pre-rift sequence (i.e. older than Late Jurassic >130 Ma). The first goal of this study is the construction of a 3D gravity-constrained, crust-scale basin model from integration of seismics, well data and cores. This basin model is constructed using GMS (in-house GFZ Geo-Modelling Software) while testing its consistency with the gravity field is performed using IGMAS+ (Interactive Gravity and Magnetic Assistant System; Götze et al., 2010 and Schmidt et al., 2011). The ensuing model will be applied to predict the present-day deep crustal configuration and thermal field characteristics of the basin. Thereafter, 3D volumetric backstripping analysis will be performed to predict basin subsidence mechanisms (i.e. tectonic, thermal and sediment load) through time as well as to estimate paleo-water depths for paleogeographic reconstruction. The information gathered from crust-scale basin dynamics will be subsequently used at the petroleum system modelling stage to holistically assess the hydrocarbon potential of the basin in terms of source rock maturity and hydrocarbon generation, migration, timing and accumulation.

  4. Genetic features of petroleum systems in rift basins of eastern China

    USGS Publications Warehouse

    Qiang, J.; McCabe, P.J.

    1998-01-01

    Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes nevessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the soil source centre.Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes necessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the oil source centre.

  5. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Mook; Kim, Yoon-Mi

    2016-04-01

    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a consequence of localized extension and extra crustal thinning at the time of basin formation. Alternative explanation is that they are the result of a small post-rift underplating at the base of the crust. Two important processes appear to have shaped the Ulleung Basin following its formation: post-rifting magmatism which occurred in the north, especially in the northeast sections of the Ulleung Basin, and the deflection of crust in response to preferential sediment loading towards the south. The median high in the basin may be a consequence of the flexural bending. Based on our evidence for almost-uniformly-thick crust, we argue that, unlike many other rift-dominated basins which exhibit large variations in crustal thickness, decompressional melting that took place during basin extension resulted in a widespread magmatic emplacement that not only smoothed but also enhanced the crustal thickness.

  6. Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico

    USGS Publications Warehouse

    Anderholm, Scott K.

    2000-01-01

    Mountain-front recharge, which generally occurs along the margins of alluvial basins, can be a large part of total recharge to the aquifer system in such basins. Mountain-front recharge occurs as the result of infiltration of flow from streams that have headwaters in the mountainous areas adjacent to alluvial basins and ground- water flow from the aquifers in the mountainous areas to the aquifer in the alluvial basin. This report presents estimates of mountain-front recharge to the basin-fill aquifer along the eastern side of the Middle Rio Grande Basin in central New Mexico. The basin is a structural feature that contains a large thickness of basin-fill deposits, which compose the main aquifer in the basin. The basin is bounded along the eastern side by mountains composed of crystalline rocks of Precambrian age and sedimentary rocks of Paleozoic age. Precipitation is much larger in the mountains than in the basin; many stream channels debouch from the mountainous area to the basin. Chloride-balance and water-yield regression methods were used to estimate mountain-front recharge. The chloride-balance method was used to calculate a chloride balance in watersheds in the mountainous areas along the eastern side of the basin (subareas). The source of chloride to these watersheds is bulk precipitation (wet and dry deposition). Chloride leaves these watersheds as mountain-front recharge. The water-yield regression method was used to determine the streamflow from the mountainous watersheds at the mountain front. This streamflow was assumed to be equal to mountain-front recharge because most of this streamflow infiltrates and recharges the basin-fill aquifer. Total mountain-front recharge along the eastern side of the Middle Rio Grande Basin was estimated to be about 11,000 acre- feet per year using the chloride-balance method and about 36,000 and 38,000 acre-feet per year using two water-yield regression equations. There was a large range in the recharge estimates in a particular subarea using the different methods. Mountain-front recharge ranged from 0.7 to 15 percent of total annual precipitation in the subareas (percent recharge). Some of the smallest values of percent recharge were in the subareas in the southern part of the basin, which generally have low altitudes. The larger percent-recharge values were from subareas with higher altitudes. With existing information, determining which of the mountain- front recharge estimates is most accurate and the reasons for discrepancies among the different estimates is not possible. The chloride-balance method underestimates recharge if the chloride concentration used in the calculations for precipitation is too small or the chloride concentration in recharge is too large. Water-yield regression methods overestimate recharge if the amount of evapotranspiration of water that infiltrates into the channel bed of arroyos during runoff from summer thunderstorms is large.

  7. Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho

    USGS Publications Warehouse

    Skinner, Kenneth D.

    2013-01-01

    A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.

  8. Environmental setting and water-quality issues of the Mobile River Basin, Alabama, Georgia, Mississippi, and Tennessee

    USGS Publications Warehouse

    Johnson, Gregory C.; Kidd, Robert E.; Journey, Celeste A.; Zappia, Humbert; Atkins, J. Brian

    2002-01-01

    The Mobile River Basin is one of over 50 river basins and aquifer systems being investigated as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. This basin is the sixth largest river basin in the United States, and fourth largest in terms of streamflow, encompassing parts of Alabama, Georgia, Mississippi, and Tennessee. Almost two-thirds of the 44,000-square-mile basin is located in Alabama. Extensive water resources of the Mobile River Basin are influenced by an array of natural and cultural factors. These factors impart unique and variable qualities to the streams, rivers, and aquifers providing abundant habitat to sustain the diverse aquatic life in the basin. Data from Federal, State, and local agencies provide a description of the environmental setting of the Mobile River Basin. Environmental data include natural factors such as physiography, geology, soils, climate, hydrology, ecoregions, and aquatic ecology, and human factors such as reservoirs, land use and population change, water use, and water-quality issues. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the Mobile River Basin and the possible implications of that environmental setting for water quality. The Mobile River Basin encompasses parts of five physiographic provinces. Fifty-six percent of the basin lies within the East Gulf section of the Coastal Plain Physiographic Province. The remaining northeastern part of the basin lies, from west to east, within the Cumberland Plateau section of the Appalachian Plateaus Physiographic Province, the Valley and Ridge Physiographic Province, the Piedmont Physiographic Province, and the Blue Ridge Physiographic Province. Based on the 1991 land-use data, about 70 percent of the basin is forested, while agriculture, including livestock (poultry, cattle, and swine), row crops (cotton, corn, soybeans, sorghum, and wheat), and pasture land accounts for about 26 percent of the study unit. Agricultural land use is concentrated along the Black Prairie Belt district of the Coastal Plain. Urban areas account for only 3 percent of the total land use; however, the areal extent of the metropolitan statistical areas (MSA) may indicate more urban influences. The MSAs include urban areas outside of the city boundaries and can include adjacent counties. Seven MSAs are delineated in the Mobile River Basin, including Montgomery, Mobile, Tuscaloosa, Birmingham, Gadsden, Anniston, and Atlanta. The total population for the Mobile River Basin was about 3,673,100 in 1990. State water-quality agencies have identified numerous causes and sources of water-body impairment in the Mobile River Basin. In 1996, organic enrichment, dissolved oxygen depletion, elevated nutrient concentrations, and siltation were the most frequently cited causes of impairment, affecting the greatest number of river miles. Bacteria, acidic pH, and elevated metal concentrations also were identified as causes of impairment. The sources for impairment varied among river basins, were largely a function of land use, and were attributed primarily to municipal and industrial sources, mining, and agricultural activities.

  9. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic diffusivity are derived from estimates of the streamflow recession index and drainage density for 75 drainage basins; values range from 3,300 to 130,000 ft^2/d (feet squared per day). Basin-specific and site-specific estimates of transmissivity are computed from estimates of hydraulic diffusivity and specific-capacity test data, respectively. Basin-specific, or areal, estimates of transmissivity range from 22 to 1,300 ft^2/d, with a mean of 240 ft^2/d In general, areal transmissivity is highest for basins underlain by the Cumberland Plateau aquifer (mean value 480 ft^2/d) and lowest for basins underlain by the Central Basin aquifer (mean value 79 ft^2/d). Mean transmissivity values for the Highland Rim, Valley and Ridge, and Blue Ridge aquifer are 320,140, and 120 ft^2/d respectively. Site-specific estimates of transmissivity, computed from specific-capacity data from 118 test wells in Middle and East Tennessee range from 2 to 93,000 ft^2/d with a mean of 2,600 ft^2/d Mean transmissivity values for the Cumberland Plateau, Highland Rim, Central Basin, Valley and Ridge, and Blue Ridge aquifers are 2,800,1,200, 7,800, 390, and 65Oft Id, respectively.

  10. Hydraulic characteristics and nutrient transport and transformation beneath a rapid infiltration basin, Reedy Creek Improvement District, Orange County, Florida

    USGS Publications Warehouse

    Sumner, D.M.; Bradner, L.A.

    1996-01-01

    The Reedy Creek Improvement District disposes of about 7.5 million gallons per day (1992) of reclaimed water through 85 1-acre rapid infiltration basins within a 1,000-acre area of sandy soils in Orange County, Florida. The U.S. Geological Survey conducted field experiments in 1992 at an individual basin to examine and better understand the hydraulic characteristics and nutrient transport and transformation of reclaimed water beneath a rapid infiltration basin. At the time, concentrations of total nitrogen and total phosphorus in reclaimed water were about 3 and 0.25 milligrams per liter, respectively. A two-dimensional, radial, unsaturated/saturated numerical flow model was applied to describe the flow system beneath a rapid infiltration basin under current and hypothetical basin loading scenarios and to estimate the hydraulic properties of the soil and sediment beneath a basin. The thicknesses of the unsaturated and saturated parts of the surficial aquifer system at the basin investigated were about 37 and 52 feet, respectively. The model successfully replicated the field-monitored infiltration rate (about 5.5 feet per day during the daily flooding periods of about 17 hours) and ground-water mounding response during basin operation. Horizontal and vertical hydraulic conductivity of the saturated part of the surficial aquifer system were estimated to be 150 and 45 feet per day, respectively. The field-saturated vertical hydraulic conductivity of the shallow soil, estimated to be about 5.1 feet per day, was considered to have been less than the full- saturation value because of the effects of air entrapment. Specific yield of the surficial aquifer was estimated to be 0.41. The upper 20 feet of the basin subsurface profile probably served as a system control on infiltration because of the relatively low field-saturated, vertical hydraulic conductivity of the sediments within this layer. The flow model indicates that, in the vicinity of the basin, flow in the deeper, saturated zone was relatively slow compared to the more vigorous flow in the shallow saturated zone. The large radial component of flow below the water table in the vicinity of the basin implies that reclaimed water moves preferentially in the shallow part of the saturated zone upon reaching the water table. Therefore, there may be some vertical stratification in the saturated zone, with recently infiltrated water overlying ambient water. The infiltration capacity at the basin would be unaffected by a small (less than 10 feet) increase in background water-table altitude, because the water table would remain below the system control on infiltration. However, water-table rises of 15 and 20 feet were estimated to reduce the infiltration capacity of the basin by 8 and 25 percent, respectively. Model simulations indicate that increasing ponded depth within the basin from 4 to 12 inches and from 4 to 24 inches would increase basin infiltration capacity by less than 6 and 11 percent, respectively. A loading strategy at the basin that relies on long, uninterrupted flooding was shown to offer the possibility of inducing a more anaerobic environment conducive to denitrification while maintaining reclaimed-water disposal capacity. Field measurements indicated that transient, elevated concentrations or "spikes" of nitrate (as high as 33 milligrams per liter as nitrogen) occurred at the leading edge of the infiltrating water and in the shallow saturated zone following a prolonged basin rest period. This phenomenon probably is the result of mineralization and nitrification of organic nitrogen retained with the subsurface during earlier basin loading events. The organic nitrogen was retained in the shallow soil (due to adsorption/straining) and the shallow saturated zone following a prolonged basin rest period. This phenomenon probably is the result of mineralization and nitrification of organic nitrogen retained within the subsurface during earlier basin loading event

  11. Uplifting of the Jiamusi Block in the eastern Central Asian Orogenic Belt, NE China: evidence from basin provenance and geochronology

    NASA Astrophysics Data System (ADS)

    Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei

    2010-05-01

    The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of the Paleo-Asian Ocean the Jiamusi Block underwent a very rapid exhumation in the late Permian. In the early Mesozoic the area went into a basin developing stage and formed a large basin as a whole during the Early Cretaceous. In the Late Cretaceous the Jiamusi Block started uplifting and the basin was broken into isolate small basins. References: Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House, 1993.578-581. Cao Chengrun, Zheng Qingdao. Structural evolution feature and its significance of hydrocarbon exploration in relict basin formation, Eastern Heilongjiang province. Journal of Jilin university (Earth Science Edition), 2003, 33(2):167-172. Lang Xiansheng. Biologic Assemblage features of Coal-bearing Strata in Shuangyashan-Jixian coal-field. Coal geology of China, 2002, 14(2):7-12. Piao Taiyuan , Cai Huawei , Jiang Baoyu. On the Cretaceous coal-bearing Strata in Eastern Heilongjiang. Journal Of Stratigraphy, 2005, 29:489-496. Wang Jie , He Zhonghua , Liu Zhaojun , Du Jiangfeng , Wang Weitao. Geochemical characteristics of Cretaceous detrital rocks and their constraint on provenance in Jixi Basin. Global Geology,2006, 25(4):341-348. DickinsonW R and Christopher A. Suczek. Plate Tectonics and Sandstone Composition. AAPG B. 1979,63(12 ):2164-2182. DickinsonW R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull Geo-Soc Amer, 1983, 94: 222-235. Maruyama S, Seno T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 1986,127(3-4):305-329. Maruyama S, Isozaki Y, Kimura Gand Terabayashi M C.Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. Island Arc, 1997,6:121-142.

  12. Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.

  13. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.

  14. Impact of different detachment topographies on pull-apart basin evolution - analog modelling and computer visualisation

    NASA Astrophysics Data System (ADS)

    Hoprich, M.; Decker, K.; Grasemann, B.; Sokoutis, D.; Willingshofer, E.

    2009-04-01

    Former analog modeling on pull-apart basins dealt with different sidestep geometries, the symmetry and ratio between velocities of moving blocks, the ratio between ductile base and model thickness, the ratio between fault stepover and model thickness and their influence on basin evolution. In all these models the pull-apart basin is deformed over an even detachment. The Vienna basin, however, is considered a classical thin-skinned pull-apart with a rather peculiar basement structure. Deformation and basin evolution are believed to be limited to the brittle upper crust above the Alpine-Carpathian floor thrust. The latter is not a planar detachment surface, but has a ramp-shaped topography draping the underlying former passive continental margin. In order to estimate the effects of this special geometry, nine experiments were accomplished and the resulting structures were compared with the Vienna basin. The key parameters for the models (fault and basin geometry, detachment depth and topography) were inferred from a 3D GoCad model of the natural Vienna basin, which was compiled from seismic, wells and geological cross sections. The experiments were scaled 1:100.000 ("Ramberg-scaling" for brittle rheology) and built of quartz sand (300 µm grain size). An average depth of 6 km (6 cm) was calculated for the basal detachment, distances between the bounding strike-slip faults of 40 km (40 cm) and a finite length of the natural basin of 200 km were estimated (initial model length: 100 cm). The following parameters were changed through the experimental process: (1) syntectonic sedimentation; (2) the stepover angle between bounding strike slip faults and basal velocity discontinuity; (3) moving of one or both fault blocks (producing an asymmetrical or symmetrical basin); (4) inclination of the basal detachment surface by 5°; (6) installation of 2 and 3 ramp systems at the detachment; (7) simulation of a ductile detachment through a 0.4 cm thick PDMS layer at the basin floor. The surface of the model was photographed after each deformation increment through the experiment. Pictures of serial cross sections cut through the models in their final state every 4 cm were also taken and interpreted. The formation of en-echelon normal faults with relay ramps is observed in all models. These faults are arranged in an acute angle to the basin borders, according to a Riedel-geometry. In the case of an asymmetric basin they emerge within the non-moving fault block. Substantial differences between the models are the number, the distance and the angle of these Riedel faults, the length of the bounding strike-slip faults and the cross basin symmetry. A flat detachment produces straight fault traces, whereas inclined detachments (or inclined ramps) lead to "bending" of the normal faults, rollover and growth strata thickening towards the faults. Positions and the sizes of depocenters also vary, with depocenters preferably developing above ramp-flat-transitions. Depocenter thicknesses increase with ramp heights. A similar relation apparently exists in the natural Vienna basin, which shows ramp-like structures in the detachment just underneath large faults like the Steinberg normal fault and the associated depocenters. The 3-ramp-model also reveals segmentation of the basin above the lowermost ramp. The evolving structure is comparable to the Wiener Neustadt sub-basin in the southern part of the Vienna basin, which is underlain by a topographical high of the detachment. Cross sections through the ductile model show a strong disintergration into a horst-and-graben basin. The thin silicon putty base influences the overlying strata in a way that the basin - unlike the "dry" sand models - becomes very flat and shallow. The top view shows an irregular basin shape and no rhombohedral geometry, which characterises the Vienna basin. The ductile base also leads to a symmetrical distribution of deformation on both fault blocks, even though only one fault block is moved. The stepover angle, the influence of gravitation in a ramp or inclined system and the strain accomodation by a viscous silicone layer can be summarized as factors controlling the characteristics of the models.

  15. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    USGS Publications Warehouse

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water. Trihalomethanes (THMs) were detected less frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples. The THMs that were detected in the Mojave River Basin were detected more frequently in the floodplain aquifer than in the regional aquifer and sewered subset. Solvents were detected more frequently in the Mojave River samples than in the Antelope Valley samples. In the Mojave River Basin samples, solvents were detected less frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Benzene, toluene, ethylbenzene and xylene (BTEX) were not detected in either study area. Methyl tert-butyl ether (MTBE) was detected in one sample from both the Mojave River and Antelope Valley Basins. The most frequently detected compound (detected in more than 10 percent of the wells) in the Mojave River Basin was chloroform. The two most frequently detected compounds in the Antelope Valley Basin were chloroform and tetrachloroethylene (PCE). In the Mojave River Basin, aquifer type and land use within 1,640 ft (500 m) of the well head were not statistically correlated with the number of VOCs detected, although VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Depth to the top of the perforations was an explanatory factor for the number of VOCs detected in the Mojave River Basin; the detection frequency was greater for shallow wells than for deep wells. In the Antelope Valley Basin, neither aquifer type, depth to the top of the perforations, nor land use within 1,640 ft of the well head were explanatory factors for the number of VOCs detected. Although aquifer type and depth to top of the perforations did explain the presence of tritium in the Mojave River Basin, land use within 1,640 ft of the well head was not a statistically significant explanatory factor for the presence of tritium in this basin. Aquifer type, depth to the top of the perfora

  16. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under average conditions, ground-water withdrawals are equal to 48 to 70 percent of simulated base-flow reductions; under drought conditions, ground-water withdrawals are equal to 35 to 73 percent of simulated base-flow reductions. The hydraulic effects of pumping largely depend on well location. In the Little Lehigh basin, surface-water and ground-water divides do not coincide, and ground-water development, especially near surface-water divides, can cause ground-water divides to shift and induce ground-water underflow from adjacent basins. Large-scale ground-water pumping in a basin may not produce expected reductions of base flow in that basin because of shifts in the ground-water divide; however, such shifts can reduce base flow in adjacent surface-water basins. 

  17. Rio Grande/Rio Bravo Basin Coalition

    Treesearch

    Sarah Kotchian

    1999-01-01

    In June 1994, one hundred people gathered for the first Uniting the Basin Conference in El Paso to discuss the state of their basin and to explore ways to improve its sustainability for future generations. One of the recommendations of that conference was the formation of an international non-governmental coalition of groups throughout the Basin to share information...

  18. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  19. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  20. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  1. Assessment of undiscovered continuous oil resources in the Wolfcamp shale of the Midland Basin, Permian Basin Province, Texas, 2016

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.; Lillis, Paul G.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.; Klett, Timothy R.; Le, Phuong A.; Tennyson, Marilyn E.; Hawkins, Sarah J.; Brownfield, Michael E.; Pitman, Janet K.; Finn, Thomas M.

    2016-11-15

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of gas in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province, Texas.

  2. Characterization and assessment of economic systems in the interior Columbia basin: fisheries.

    Treesearch

    David L. Fluharty

    2000-01-01

    Economic value of commercial, recreational, and tribal fishing is one measure of the importance of fisheries in the interior Columbia River basin (the basin) but only part of the values associated with fish of that region. The basin historically has provided substantial intraregional anadromous stock fisheries and contributes to interregional fisheries along the entire...

  3. Outdoor recreation opportunities and land use change in Vermont's Lake Champlain Basin

    Treesearch

    John J. Lindsay

    1995-01-01

    Outdoor recreation resources are eroding in Vermont's Lake Champlain Basin due to urban expansion. This study measured urban growth in the Basin and identified critical areas for open space protection. The study's hypothesis, that there was no difference between the Champlain Basin and other parts of urbanizing New England that have lost outdoor recreation...

  4. Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin.

    PubMed

    Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon; Henrique-Silva, Flávio

    2016-12-22

    The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin. Copyright © 2016 Toyama et al.

  5. Overview of geology, hydrology, geomorphology, and sediment budget of the Deschutes River Basin, Oregon.

    Treesearch

    Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska

    2003-01-01

    Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...

  6. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  7. 33 CFR 165.556 - Regulated Navigation Area; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...

  8. Wetlands systems in southern Thailand: The essential resources for sustainable regional development

    Treesearch

    Rotchanatch Darnsawasdi; Prassert Chitpong

    2000-01-01

    Parts of Southern Thailand are inundated by water for months annually resulting in various wetlands including, among others, Tapi River Basin, Pak Panang River Basin, Songkhla Lake Basin, Pangnga Bay, Pattani River Basin, and Narathiwas Peat Swamp. Most wetlands perform functions such as flood retention, water filtration, bird and wildlife habitat,and tree growth....

  9. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  10. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  11. 33 CFR 334.155 - Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. 334.155 Section 334.155 Navigation and... RESTRICTED AREA REGULATIONS § 334.155 Severn River, Naval Station Annapolis, Small Boat Basin, Annapolis, MD; naval restricted area. (a) The area. The waters within the Naval Station Annapolis small boat basin and...

  12. 76 FR 43898 - Approval and Promulgation of State Implementation Plan Revisions; Infrastructure Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...: The commenter supported EPA's efforts to require ozone monitoring in Utah's Uinta Basin. However, the... air quality in the basin is not in compliance with the ozone standard,'' to designate the Uinta Basin... commenter refers to. For a discussion of other monitoring data in the Uinta Basin, see the response to...

  13. Field guide to Laramide basin evolution and drilling activity in North Park and Middle Park, Colorado

    USGS Publications Warehouse

    Dechesne, Marieke; Cole, James Channing; Martin, Christopher B.

    2016-01-01

    Overview of the geologic history of the North Park–Middle Park area and its past and recent drilling activity. Field trip stops highlight basin formation and the consequences of geologic configuration on oil and gas plays and development. The starting point is the west flank of the Denver Basin to compare and contrast the latest Cretaceous through Eocene basin fill on both flanks of the Front Range, before exploring sediments of the same age in the North Park – Middle Park intermontane basin.

  14. Discharge forecasts in mountain basins based on satellite snow cover mapping. [Dinwoody Creek Basin, Wyoming and the Dischma Basin, Switzerland

    NASA Technical Reports Server (NTRS)

    Martinec, J.; Rango, A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff.

  15. JACK CREEK BASIN, MONTANA.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Van Noy, Ronald M.

    1984-01-01

    A mineral survey of the Jack Creek basin area in Montana revealed that phosphate rock underlies the basin. The phosphate rock is in thin beds that dip steeply and are broken and offset by faults. These features plus the rugged topography of the region would make mining difficult; however, this study finds the area to have a probable mineral-resource potential for phosphate. Sedimentary rock formations favorable for oil and gas also underlie the basin. No oil or gas has been produced from the basin or from nearby areas in southwestern Montana, but oil and gas have been produced from the same favorable formations elsewhere in Montana. The possibility of oil and gas being produced from the basin is slight but it cannot be ignored.

  16. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    NASA Astrophysics Data System (ADS)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  17. What does nature have to do with it? Reconsidering distinctions in international disaster response frameworks in the Danube basin

    NASA Astrophysics Data System (ADS)

    McClain, Shanna N.; Secchi, Silvia; Bruch, Carl; Remo, Jonathan W. F.

    2017-12-01

    This article examines the international policy and institutional frameworks for response to natural and man-made disasters occurring in the Danube basin and the Tisza sub-basin, two transnational basins. Monitoring and response to these types of incidents have historically been managed separately. We discuss whether the policy distinctions in response to natural and man-made disasters remain functional given recent international trends toward holistic response to both kinds of disasters. We suggest that these distinctions are counterproductive, outdated, and ultimately flawed, illustrate some of the specific gaps in the Danube and the Tisza, and conclude by proposing an integrated framework for disaster response in the Danube basin and Tisza sub-basin.

  18. Regional elemental abundances within South Pole-Aitken basin as measured with lunar prospector gamma-ray spectrometer data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David J.; Pieters, Carlé M.; Elphic, R. C.

    2003-01-01

    South Pole-Aitken (SPA) basin has been a target of intense study since it is one of the largest impact basins in the solar system. It is thought that SPA basin excavated deep into the lunar crust and possibly even the mantle. Such conclusions have been supported by the observed mafic and thorium composition anomalies seen across the entire basin. One of the major goals of lunar and planetary science has been to measure and understand the composition of the non-mare materials within SPA basin. It is expected that this information will help to increase our understanding of the formation andmore » differentiation processes that occurred early on the Moon.« less

  19. Impact basins in Southern Daedalia, Mars: Evidence for clustered impactors?

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Roark, James H.

    1994-01-01

    The distribution of ancient massifs and old cratered terrain in the southern Daedalia region indicate the presence of at least two and probably three impact basins of large size. One of these is located near where Craddock et al. placed their center for the Daedalia Basin, but it has very different ring diameters. These basins have rings exceeding 1000 km diameter and overlap significantly with centers separated by 500 to 600 km at nearly identical latitudes of -26 to -29 deg. The smaller westernmost basin appears slightly better preserved, but there is little evidence for obvious superposition that might imply a temporal sequence. Recognizing the improbability of random impacts producing aligned, nearly contemporaneous features, we suggest these basins may have resulted from clustered impactors.

  20. Coal Markets

    EIA Publications

    2017-01-01

    Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States.

  1. Metacommunity ecology meets biogeography: effects of geographical region, spatial dynamics and environmental filtering on community structure in aquatic organisms.

    PubMed

    Heino, Jani; Soininen, Janne; Alahuhta, Janne; Lappalainen, Jyrki; Virtanen, Risto

    2017-01-01

    Metacommunity patterns and underlying processes in aquatic organisms have typically been studied within a drainage basin. We examined variation in the composition of six freshwater organismal groups across various drainage basins in Finland. We first modelled spatial structures within each drainage basin using Moran eigenvector maps. Second, we partitioned variation in community structure among three groups of predictors using constrained ordination: (1) local environmental variables, (2) spatial variables, and (3) dummy variable drainage basin identity. Third, we examined turnover and nestedness components of multiple-site beta diversity, and tested the best fit patterns of our datasets using the "elements of metacommunity structure" analysis. Our results showed that basin identity and local environmental variables were significant predictors of community structure, whereas within-basin spatial effects were typically negligible. In half of the organismal groups (diatoms, bryophytes, zooplankton), basin identity was a slightly better predictor of community structure than local environmental variables, whereas the opposite was true for the remaining three organismal groups (insects, macrophytes, fish). Both pure basin and local environmental fractions were, however, significant after accounting for the effects of the other predictor variable sets. All organismal groups exhibited high levels of beta diversity, which was mostly attributable to the turnover component. Our results showed consistent Clementsian-type metacommunity structures, suggesting that subgroups of species responded similarly to environmental factors or drainage basin limits. We conclude that aquatic communities across large scales are mostly determined by environmental and basin effects, which leads to high beta diversity and prevalence of Clementsian community types.

  2. Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2017-12-01

    Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.

  3. Is repetitive intraoperative splash basin use a source of bacterial contamination in total joint replacement?

    PubMed

    Glait, Sergio A; Schwarzkopf, Ran; Gould, Steven; Bosco, Joseph; Slover, James

    2011-09-09

    Splash basins are used in arthroplasty cases to wash instruments. Several studies in the literature have shown these basins being a potential source of bacterial infection. This study assesses the risk of contamination of intraoperative splash basins used to wash and store instruments. A total of 46 random clean primary arthroplasty cases (32 hips, 13 knees, and 1 unicondylar knee) were studied by taking cultures of sterile splash basins as soon as they are opened (controls) and again at wound closure after instruments and debris have come into contact with the sterile water. All cultures were taken with sterile culture swabs and sent to the laboratory for aerobic, anaerobic, and fungal culture. Outcome measured was any positive culture. A total of 92 cultures from 46 cases were tested. Only 1 (2.17%) control culture, which grew Streptococcus viridans, was positive for bacterial growth. One of 46 samples (2.17%) taken at wound closure was positive for coagulase-negative Staphylococcus. Mean time between basin opening and wound closure was 180±45 minutes. For the 1 infected sample taken at the conclusion of the case, it was 240 minutes. Previous studies show contamination rates as high as 74% for splash basins used intraoperatively. Our study contradicts the belief that splash basins are a high source of infection, with only 2.17% of basins showing contamination. Splash basins can be a potential source of contamination, but the risk is not as high as previously cited in the orthopedic literature. Copyright 2011, SLACK Incorporated.

  4. New insights on the offshore extension of the Great Sumatran fault, NW Sumatra, from marine geophysical studies

    NASA Astrophysics Data System (ADS)

    Ghosal, D.; Singh, S. C.; Chauhan, A. P. S.; Hananto, N. D.

    2012-11-01

    Over the last 20 years, the Great Sumatran Fault (GSF) has been studied on land, but we have very little information about its offshore extension NW of Sumatra and its link with the West Andaman Fault to the north. The problem is further complicated by its vicinity to the volcanic arc. Here we present detailed analyses of the offshore extension of the GSF based on recently acquired high-resolution bathymetry, multichannel seismic reflection data and some old single channel seismic reflection data. Our findings demonstrate that the branches of the GSF near Banda Aceh proceed further northwestward producing two 15-20 km wide adjacent basins. The southwestern transpressional Breueh basin is 1-2 km deep and has a flower structure with a push-up ridge in the center, suggesting the presence of an active strike-slip fault. The presence of strike-slip earthquakes beneath this basin further suggests that one active branch of the GSF passes through this basin. The northeastern transtensional Weh basin is up to 3.4 km deep and the absence of recent sediments on the basin floor suggests that the basin is very young. The presence of a chain of volcanoes in the center of the basin suggests that the Sumatran volcanic arc passes through this basin. The anomalous depth of the Weh basin might be a site of early back-arc spreading or may have resulted from pull-apart extension. We examine all these new observations in the light of plate motion, local deformation and possible seismic risk.

  5. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  6. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  7. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  8. Mesozoic basin development beneath the southeastern US coastal plain: evidence from new COCORP profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, J.H.; Nelson, K.D.; Arnow, J.A.

    1985-01-01

    New COCORP profiling on the Georgia coastal plain indicates that the Triassic/Early Jurassic South Georgia basin is a composite feature, which includes several large half-grabens separated by intervening regions where the Triassic/Early Jurassic section is much thinner. Two half-grabens imaged on the profiles have apparent widths of 125 and 40 km, and at their deepest points contain about 5 km of basin fill. Both basins are bounded on their south flanks by major normal faults that dip moderately steeply toward the north, and are disrupted internally by subsidiary normal faults within the basin fill sequences. The orientation of the mainmore » basin-bounding faults suggests that they might have reactivated Paleozoic south-vergent structures formed on the south side of the Alleghenian suture. Evolution of the South Georgia basin appears to follow a model of initial, rapid rifting followed by flexural subsidence. The major episode of normal faulting, and hence extension, within the South Georgia basin occurred prior to extrusion of an areally extensive sequence of Early Jurassic basalt flows. This sequence is traceable across most of the width of the South Georgia basin in western Georgia, and may extend as far east as offshore South Carolina. Jurassic strata above the basalt horizon are notably less faulted and accumulated within a broadly subsiding basin that thins both to the north and south. The occurrence of the basalt relatively late in the rift sequence supports the hypothesis that the southeastern US may have been a major area of incipient spreading after Pangea had begun to separate.« less

  9. R-Area Reactor 1993 annual groundwater monitoring report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the following locations in R Area: Well cluster P20 east of R Area (one well each in the water table and the McBean formation), the R-Area Acid/Caustic Basin (the four water-table wells of the RAC series), the R-Area Ash Basin/Coal Pile (one well of the RCP series in the Congaree formation and one in the water table), the R-Area Disassembly Basin (the three water-table wells of the RDB series), the R-Area Burning/Rubble Pits (the four water-table wells of the RRP series), and the R-Area Seepage Basins (numerous water-table wells inmore » the RSA, RSB, RSC, RSD, RSE, and RSF series). Lead was the only constituent detected above its 50{mu}g/L standard in any but the seepage basin wells; it exceeded that level in one B well and in 23 of the seepage basin wells. Cadmium exceeded its drinking water standard (DWS) in 30 of the seepage basin wells, as did mercury in 10. Nitrate-nitrite was above DWS once each in two seepage basin wells. Tritium was above DWS in six seepage basin wells, as was gross alpha activity in 22. Nonvolatile beta exceeded its screening standard in 29 wells. Extensive radionuclide analyses were requested during 1993 for the RCP series and most of the seepage basin wells. Strontium-90 in eight wells was the only specific radionuclide other than tritium detected above DWS; it appeared about one-half of the nonvolatile beta activity in those wells.« less

  10. Taxonomic distinctness and richness of helminth parasite assemblages of freshwater fishes in Mexican hydrological basins.

    PubMed

    Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo

    2013-01-01

    In this paper, we analyse the distributional patterns of adult helminth parasites of freshwater fishes with respect to the main hydrological basins of Mexico. We use the taxonomic distinctness and the variation in taxonomic distinctness to explore patterns of parasite diversity and how these patterns change between zoogeographical regions. We address questions about the factors that determine the variation of observed diversity of helminths between basins. We also investigate patterns of richness, taxonomic distinctness and distance decay of similarity amongst basins. Our analyses suggest that the evolution of the fauna of helminth parasites in Mexico is mostly dominated by independent host colonization events and that intra--host speciation could be a minor factor explaining the origin of this diversity. This paper points out a clear separation between the helminth faunas of northern--nearctic and southern--neotropical components in Mexican continental waters, suggesting the availability of two distinct taxonomic pools of parasites in Mexican drainage basins. Data identifies Mexican drainage basins as unities inhabited by freshwater fishes, hosting a mixture of neotropical and nearctic species, in addition, data confirms neotropical and neartic basins/helminth faunas. The neotropical basins of Mexico are host to a richest and more diversified helminth fauna, including more families, genera and species, compared to the less rich and less diverse helminth fauna in the nearctic basins. The present analysis confirms distance--decay as one of the important factors contributing to the patterns of diversity observed. The hypothesis that helminth diversity could be explained by the ichthyological diversity of the basin received no support from present analysis.

  11. Complex history of the Rembrandt basin and scarp system, Mercury

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Massironi, M.; Klimczak, C.; Byrne, P. K.; Cremonese, G.; Solomon, S. C.

    2012-09-01

    During its second and third flybys, the MESSENGER spacecraft [1] imaged the wellpreserved Rembrandt basin in Mercury's southern hemisphere. With a diameter of 715 km, Rembrandt is the second largest impact structure recognized on Mercury after the 1550-km-diameter Caloris basin. Rembrandt is also one of the youngest major basins [2] and formed near the end of the Late Heavy Bombardment (~3.8 Ga). Much of the basin interior has been resurfaced by smooth, high-reflectance units interpreted to be of volcanic origin [3]. These units host sets of contractional and extensional landforms generally oriented in directions radial or concentric to the basin, similar to those observed within the Caloris basin [4-6]; these structures are probably products of multiple episodes of deformation [2,7,8]. Of particular note in the Rembrandt area is a 1,000-km-long reverse fault system [9] that cuts the basin at its western rim and bends eastward toward the north, tapering into the impact material. On the basis of its shape, the structure has previously been characterized as a lobate scarp. Its formation and localization have been attributed to the global contraction of Mercury [2]. From MESSENGER flyby and orbital images, we have identified previously unrecognized kinematic indicators of strike-slip motion along the Rembrandt scarp, together with evidence of interaction between the scarp orientation and the concentric basin-related structural pattern described above. Here we show through cross-cutting relationships and scarp morphology that the development of the Rembrandt scarp was strongly influenced by tectonics related to basin formation and evolution.

  12. Taxonomic Distinctness and Richness of Helminth Parasite Assemblages of Freshwater Fishes in Mexican Hydrological Basins

    PubMed Central

    Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo

    2013-01-01

    In this paper, we analyse the distributional patterns of adult helminth parasites of freshwater fishes with respect to the main hydrological basins of Mexico. We use the taxonomic distinctness and the variation in taxonomic distinctness to explore patterns of parasite diversity and how these patterns change between zoogeographical regions. We address questions about the factors that determine the variation of observed diversity of helminths between basins. We also investigate patterns of richness, taxonomic distinctness and distance decay of similarity amongst basins. Our analyses suggest that the evolution of the fauna of helminth parasites in Mexico is mostly dominated by independent host colonization events and that intra - host speciation could be a minor factor explaining the origin of this diversity. This paper points out a clear separation between the helminth faunas of northern - nearctic and southern - neotropical components in Mexican continental waters, suggesting the availability of two distinct taxonomic pools of parasites in Mexican drainage basins. Data identifies Mexican drainage basins as unities inhabited by freshwater fishes, hosting a mixture of neotropical and nearctic species, in addition, data confirms neotropical and neartic basins/helminth faunas. The neotropical basins of Mexico are host to a richest and more diversified helminth fauna, including more families, genera and species, compared to the less rich and less diverse helminth fauna in the nearctic basins. The present analysis confirms distance - decay as one of the important factors contributing to the patterns of diversity observed. The hypothesis that helminth diversity could be explained by the ichthyological diversity of the basin received no support from present analysis. PMID:24086342

  13. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  14. Naturally fractured tight gas reservoir detection optimization. Quarterly report, April--June 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    Geologic assessment of the basin during the third quarter possessed several major objectives. The first task was to test the validity of the gas-centered basin model for the Piceance Basin. The second objective was to define the location and variability of gas-saturated zones within the Williams Fork and Iles Formation reservoir horizons. A third objective was to prepare an updated structure map of the Piceance Basin on the top of the Iles Formation (Rollins Sandstone) to take advantage of new data provided by ten years of drilling activity throughout the basin. The first two objectives formed the core of themore » ARI poster session presented at the AAPG annual meeting in Denver. The delineation of the gas and water-saturated zone geometries for the Williams Fork and Iles Formations in the basin was presented in the form of a poster session at the AAPG Annual meeting held in Denver in mid-June. The poster session outlined the nature of the gas-centered basin geometry and demonstrated the gas and water-saturated conditions for the Williams Fork, Cozzette and Corcoran reservoir horizons throughout the basin. Initial and cumulative production data indicate that these reservoir horizons are gas-saturated in most of the south-central and eastern basin. The attached report summarizes the data and conclusions of the poster session.« less

  15. Delimiting Evolutionarily Significant Units of the Fish, Piaractus brachypomus (Characiformes: Serrasalmidae), from the Orinoco and Amazon River Basins with Insight on Routes of Historical Connectivity.

    PubMed

    Escobar, Maria Doris; Andrade-López, Juana; Farias, Izeni P; Hrbek, Tomas

    2015-01-01

    The freshwater fish Piaractus brachypomus is an economically important for human consumption both in commercial fisheries and aquaculture in all South American countries where it occurs. In recent years the species has decreased in abundance due to heavy fishing pressure. The species occurs in the Amazon and Orinoco basins, but lack of meristic differences between fishes from the 2 basins, and extensive migration associated with reproduction, have resulted in P. brachypomus being considered a single panmictic species. Analysis of 7 nuclear microsatellites, mitochondrial DNA sequences (D-loop and COI), and body shape variables demonstrated that each river basin is populated by a distinct evolutionarily significant unit (ESU); the 2 groups had an average COI divergence of 3.5% and differed in body depth and relative head length. Historical connection between the 2 basins most probably occurred via the Rupununi portal rather than via the Casiquiare canal. The 2 ESUs will require independent fishery management, and translocation of fisheries stocks between basins should be avoided to prevent loss of local adaptations or extinction associated with outbreeding depression. Introductions of fishes from the Orinoco basin into the Putumayo River basin, an Amazon basin drainage, and evidence of hybridization between the 2 ESUs have already been detected. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Structure of the Tucson Basin, Arizona from gravity and aeromagnetic data

    USGS Publications Warehouse

    Rystrom, Victoria Louise

    2003-01-01

    Interpretation of gravity and high-resolution aeromagnetic data reveal the three-dimensional geometry of the Tuscson Basin, Arizona and the lithology of its basement. Limited drill hole and seismic data indicate that the maximum depth to the crystalline basement is approximately 3600 meters and that the sedimentary sequences in the upper ~2000 m of the basin were deposited during the most recent extensional episode that commenced about 13 Ma. The negative density contrasts between these upper Neogene and Quaternary sedimentary sequences and the adjacent country rock produce a Bouguer residual gravity low, whose steep gradients clearly define the lateral extent of the upper ~2000m of the basin. The aeromagnetic maps show large positive anomalies associated with deeply buried, late Cretaceous-early Tertiary and mid-Tertiary igneous rocks at and below the surface of the basin. These magnetic anomalies provide insight into the older (>13 Ma) and deeper structures of the basin. Simultaneous 2.5-dimensional modeling of both gravity and magnetic anomalies constrained by geologic and seismic data delineates the thickness of the basin and the dips of the buried faults that bound the basin. This geologic-based forward modeling approach to using geophysical data is shown to result in more information about the geologic and tectonic history of the basin as well as more accurate depth to basement determinations than using generalized geophysical inversion techniques.

  17. Abnormal pressure study in the Malay and Penyu Basins: A regional understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kader, M.S.; Leslie, W.

    1994-07-01

    A majority of wells drilled in the Malay and Penyu basins were terminated due to abnormal pressure. Blowouts and the subsequent loss of technical data have always been a concern during drilling operations. This study employs data from 94 exploratory wells spread throughout the Malay and Penyu basins. The postdrill abnormal pressure predictive method used is pressure vs. depth plots of data obtained from Repeat Formation tester (RFT) readings. The study results indicate that abnormal pressure occurs in a progressively older stratigraphic unit toward the basin margins. The margins of the Malay and the entire Penyu basins tend to bemore » normally pressured. The onset of abnormal pressure appears to be abrupt in the northern portion and more gradual in the southern part of the Malay Basin. Abnormal pressure in the Malay Basin is found to be neither depth dependent nor age related. Many factors can cause the abnormal formation pressures. In some areas, a combination of factors prevails. Rapid deposition of the middle to late Miocene siliciclastic sediments appears to be a dominant cause particularly in the center of the Malay Basin. A low sand:shale ratio coupled with a high geothermal gradient is also found to be a local cause near the axis of the basin. This phenomenon is crucial to the understanding of hydrocarbon migration and will enable the planning of safe and efficient drilling campaigns.« less

  18. Tectonic evolution of the Black Sea orogene belt and the history of opening of the Black Sea basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uesuemezsoy, S.

    1988-08-01

    The Black Sea basin is surrounded by successive orogenic belts of Hercynian, Cimmerian, and Alpine ages. The Rhodope, Thracian, western Pontian, and Transcaucasian (RTPT) blocks of Precambrian age were involved by the circum-Black Sea orogene belts. The Hercynian orogene was documented in the Balkanide, Great Caucasian, Kriastide, southern Pontian, and Transcaucasian belts. The Cimmerian orogene extended north and south of the Black Sea. The southern Cimmerian orogene was represented by the circum-Rhodope and East Thracian-Strandja-Kuere belts. The northern Cimmerian orogene belt extended along the Dobruca-Crimean and southern slope belts. Following the demise of the Black Sea Cimmerian basin, the northernmostmore » oceanic branch extending from Nish-Trajan through the present Black Sea to the intra-Transcaucasian basin, was opened within the Hercynian and Cimmerian consolidated terrain in the Late Jurassic. The other oceanic branch, extending from Izmir-Ankara through circum Kirsehir to various basins, was opened within the Paleotethyan collision belt, considered to be eastern extension of the Pindus basin. The Nish-Trajan sector of the northernmost basin was closed in the middle Cretaceous, and the Moesian platform re-fused to the Getic-Serbo-Macedonian-Rhodope belt. The easternmost extension of the intra-Transcaucasian basin disappeared in the Late Cretaceous. Consequently, the northernmost oceanic branch was reduced to the present Black Sea basin.« less

  19. Observing mass exchange with the Lofoten Basin using surface drifters

    NASA Astrophysics Data System (ADS)

    Dugstad, Johannes S.; LaCasce, Joe; Koszalka, Inga M.; Fer, Ilker

    2017-04-01

    The Lofoten Basin in the Nordic Seas plays a central role in the global overturning circulation, acting as a reservoir for northward-flowing Atlantic water. Substantial heat loss occurs here, permitting the waters to become denser and eventually sink nearer the Arctic. Idealized modeling studies and theoretical arguments suggest the warm water enters the Lofoten Basin via eddy transport from the boundary current over the adjacent continental slope. But there is no observational evidence that this is the major contribution to mass exchange between the warm Atlantic Current and the Basin. How the basin waters exit also remains a mystery. Surface drifters offer an unique possibility to study the pathways of the boundary-basin exchange of mass and heat. We thereby examine trajectories of surface drifters released in the Nordic Seas in the POLEWARD and PROVOLO experiments, and supplemented by historical data from the Global Drifter Array. Contrary to the idea that the boundary current eddies are the main source, the results suggest that fluid is entering the Lofoten Basin from all sides. However, the drifters exit preferentially in the northeast corner of the basin. This asymmetry likely contributes to the extended residence times of the warm Atlantic waters in the Lofoten Basin. We consider various measures to quantify the effect, and test whether this is captured in a high resolution numerical model.

  20. Basin centered gas systems of the U.S.

    USGS Publications Warehouse

    Popov, Marin A.; Nuccio, Vito F.; Dyman, Thaddeus S.; Gognat, Timothy A.; Johnson, Ronald C.; Schmoker, James W.; Wilson, Michael S.; Bartberger, Charles E.

    2001-01-01

    Basin-center accumulations, a type of continuous accumulation, have spatial dimensions equal to or exceeding those of conventional oil and gas accumulations, but unlike conventional fields, cannot be represented in terms of discrete, countable units delineated by downdip hydrocarbon-water contacts. Common geologic and production characteristics of continuous accumulations include their occurrence downdip from water-saturated rocks, lack of traditional trap or seal, relatively low matrix permeability, abnormal pressures (high or low), local interbedded source rocks, large in-place hydrocarbon volumes, and low recovery factors. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia, is currently re-evaluating the resource potential of basin-center gas accumulations in the U.S. in light of changing geologic perceptions about these accumulations (such as the role of subtle structures to produce sweet spots), and the availability of new data. Better geologic understanding of basin-center gas accumulations could result in new plays or revised plays relative to those of the U.S. Geological Survey 1995 National Assessment (Gautier and others, 1995). For this study, 33 potential basin-center gas accumulations throughout the U.S. were identified and characterized based on data from the published literature and from well and reservoir databases (Figure 1). However, well-known or established basin-center accumulations such as the Green River Basin, the Uinta Basin, and the Piceance Basin are not addressed in this study.

  1. Heavy Oil and Natural Bitumen Resources in Geological Basins of the World

    USGS Publications Warehouse

    Meyer, Richard F.; Attanasi, E.D.; Freeman, P.A.

    2007-01-01

    Heavy oil and natural bitumen are oils set apart by their high viscosity (resistance to flow) and high density (low API gravity). These attributes reflect the invariable presence of up to 50 weight percent asphaltenes, very high molecular weight hydrocarbon molecules incorporating many heteroatoms in their lattices. Almost all heavy oil and natural bitumen are alteration products of conventional oil. Total resources of heavy oil in known accumulations are 3,396 billion barrels of original oil in place, of which 30 billion barrels are included as prospective additional oil. The total natural bitumen resource in known accumulations amounts to 5,505 billion barrels of oil originally in place, which includes 993 billion barrels as prospective additional oil. This resource is distributed in 192 basins containing heavy oil and 89 basins with natural bitumen. Of the nine basic Klemme basin types, some with subdivisions, the most prolific by far for known heavy oil and natural bitumen volumes are continental multicyclic basins, either basins on the craton margin or closed basins along convergent plate margins. The former includes 47 percent of the natural bitumen, the latter 47 percent of the heavy oil and 46 percent of the natural bitumen. Little if any heavy oil occurs in fore-arc basins, and natural bitumen does not occur in either fore-arc or delta basins.

  2. [Vegetation change of Yamzho Yumco Basin in southern Tibet based on SPOT-VGT NDVI].

    PubMed

    Yu, Shu-Mei; Liu, Jing-Shi; Yuan, Jin-Guo

    2010-06-01

    The area we studied is Lake Yamzho Yumco Basin (28 degrees 27'-29 degrees 12'N, 90 degrees 08'-91 degrees 45'E), the largest inland lake basin in southern Tibetan Plateau, China. Using the SPOT-VGT NDVI vegetation index from 1998 to 2007 in the basin, the temporal and spatial variation characteristics of NDVI and its correlation with the major climatic factors (air temperature, precipitation) were analyzed. The results show that the average NDVI of the lake basin ranges from 0.12 to 0.31 and its seasonal change is obvious; the NDVI begins to rise rapidly in May and reaches the maximum value in early September. The average NDVI of the basin shows the slow increasing trend during 1998 to 2007, and it indicates that the eco-environment of the basin is recovering. The high value of NDVI has close relationships with water supply, altitude and vegetation types, so NDVI is relatively high near water sources and is the highest in meadow grassland. The summer air temperature and precipitation are the important climate elements that influence the vegetation in the basin, and the linear correlation coefficients between NDVI and air temperature and precipitation are 0.7 and 0.71, respectively. In recent years, warm and humid trend of the local climate is prevailing to improve the ecological environment in Yamzho Yumco Basin.

  3. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Rai, Praveen Kumar; Chandel, Rajeev Singh; Mishra, Varun Narayan; Singh, Prafull

    2018-03-01

    Satellite based remote sensing technology has proven to be an effectual tool in analysis of drainage networks, study of surface morphological features and their correlation with groundwater management prospect at basin level. The present study highlights the effectiveness and advantage of remote sensing and GIS-based analysis for quantitative and qualitative assessment of flood plain region of lower Kosi river basin based on morphometric analysis. In this study, ASTER DEM is used to extract the vital hydrological parameters of lower Kosi river basin in ARC GIS software. Morphometric parameters, e.g., stream order, stream length, bifurcation ratio, drainage density, drainage frequency, drainage texture, form factor, circularity ratio, elongation ratio, etc., have been calculated for the Kosi basin and their hydrological inferences were discussed. Most of the morphometric parameters such as bifurcation ratio, drainage density, drainage frequency, drainage texture concluded that basin has good prospect for water management program for various purposes and also generated data base that can provide scientific information for site selection of water-harvesting structures and flood management activities in the basin. Land use land cover (LULC) of the basin were also prepared from Landsat data of 2005, 2010 and 2015 to assess the change in dynamic of the basin and these layers are very noteworthy for further watershed prioritization.

  4. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.

  5. Thermal history determined by fission-track dating for three sedimentary basins in California and Wyoming

    USGS Publications Warehouse

    Naeser, Nancy D.

    1984-01-01

    The use of fission-tracks is demonstrated in studies of time-temperature relationships in three sedimentary basins in the western United States; in the Tejon Oil Field area of the southern San Joaquin Valley, California; in the northeastern Green River basin, Wyoming, and in drill holes in the southern Powder River Basin, Wyoming.

  6. Scenery assessment: scenic beauty at the ecoregion scale.

    Treesearch

    Steven J. Galliano; Gary M. Loeffler

    2000-01-01

    Scenic quality is an important amenity on public lands in the interior Columbia basin (hereafter referred to as the basin). People’s interests in and expectations about ecosystems can help establish desired aesthetic conditions for the varied landscapes found in the basin. This paper, a portion of the social science assessment for the Interior Columbia Basin Ecosystem...

  7. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  8. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  9. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  10. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  11. Status of natural resources in Redwood Creek basin, Redwood National Park

    Treesearch

    Milton Kolipinski; Ed Helley; Luna Leopold; Steve Viers; Gerard Witucki; Robert Ziemer

    1975-01-01

    Redwood Creek drains a 280 square mile basin which is located in a region of high winter rainfall and high natural rates of erosion. Forests of commercial quality formerly covered about 238 square miles of the basin. Parklands, including a portion of Redwood National Park, occupy approximately 10% of the lower basin and include, amount other values, several of the...

  12. Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Brandt

    Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.

  13. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 1. Process Analysis.

    DTIC Science & Technology

    1984-09-01

    Uinta Basin .......................too.... 11 b . Asphalt Ridge ........................ 13 c.* Tar Sand Triangle ..... to .. .. . .. .. . 15 e...Estimated ............**..* 7 3 CHARACTERISTICS OF UTAH’S MAJOR TAR SANDS ....... 12 4 UINTA BASIN DEPOSITS ................... *........ 13 *.5 UINTA ...7 UINTA BASIN , UTAH PROPERTIES -SUNNYSIDE ........ 20 8 UINTA BASIN , UTAH PROPERTIES -P. R. SPRINGS . 22 r9 ESTIMATED CALIFORNIA TAR SAND DISTRIBUTION

  14. Status of the interior Columbia Basin: summary of scientific findings.

    Treesearch

    Forest Service. U.S. Department of Agriculture

    1996-01-01

    The Status of the Interior Columbia Basin is a summary of the scientific findings from the Interior Columbia Basin Ecosystem Management Project. The Interior Columbia Basin includes some 145 million acres within the northwestern United Stales. Over 75 million acres of this area are managed by the USDA Forest Service or the USDI Bureau of Land Management. A framework...

  15. Dissolved solids in basin-fill aquifers and streams in the southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.

    2007-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.

  16. Comparison of Thaumarchaeotal populations from four deep sea basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Techtman, Stephen M.; Mahmoudi, Nagissa; Whitt, Kendall T.

    The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. Wemore » demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. In conclusion, these findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes.« less

  17. Remote sensing research on fragile ecological environment in continental river basin

    NASA Astrophysics Data System (ADS)

    Wang, Ranghui; Peng, Ruyan; Zhang, Huizhi

    2003-07-01

    Based on some remote sensing data and software platform of image processing and analysis, the standard image for ecological thematic mapping is decided. Moreover, the vegetation type maps and land sandy desertification type maps are made. Relaying on differences of natural resources and ecological environment in Tarim River Basin, the assessment indicator system and ecological fragility index (EFI) of ecological environment are built up. The assessment results are very severely. That is, EFI is only 0.08 in Akesu River Basin, it belongs to slight fragility area. EFI of Yarkant River Basin and upper reaches of Tarim River Basin are 0.23 and 0.25 respectively, both of them belong to general fragility areas. Meanwhile, EFI of Hotan River Basin and middle reaches of Tarim River Basin are 0.32 and 0.49 respectively; they all belong to middle fragility areas. However, the fragility of the lower reaches of Tarim River Basin belongs to severe fragility area that the EFI is 0.87.The maladjustment among water with hot and land as well as salt are hindrance of energy transfer and material circulation and information transmission. It is also the main reason that caused ecological environment fragility.

  18. Basin characteristics, history of stream gaging, and statistical summary of selected streamflow records for the Rapid Creek basin, western South Dakota

    USGS Publications Warehouse

    Driscoll, Daniel G.; Zogorski, John S.

    1990-01-01

    The report presents a summary of basin characteristics affecting streamflow, a history of the U.S. Geological Survey 's stream-gaging program, and a compilation of discharge records and statistical summaries for selected sites within the Rapid Creek basin. It is the first in a series which will investigate surface-water/groundwater relations along Rapid Creek. The summary of basin characteristics includes descriptions of the geology and hydrogeology, physiography and climate, land use and vegetation, reservoirs, and water use within the basin. A recounting of the U.S. Geological Survey 's stream-gaging program and a tabulation of historic stream-gaging stations within the basin are furnished. A compilation of monthly and annual mean discharge values for nine currently operated, long-term, continuous-record, streamflow-gaging stations on Rapid Creek is presented. The statistical summary for each site includes summary statistics on monthly and annual mean values, correlation matrix for monthly values, serial correlation for 1 year lag for monthly values, percentile rankings for monthly and annual mean values, low and high value tables, duration curves, and peak-discharge tables. Records of monthend contents for two reservoirs within the basin also are presented. (USGS)

  19. Summary of 2012 reconnaissance field studies related to the petroleum geology of the Nenana Basin, interior Alaska

    USGS Publications Warehouse

    Wartes, Marwan A.; Gillis, Robert J.; Herriott, Trystan M.; Stanley, Richard G.; Helmold, Kenneth P.; Peterson, C. Shaun; Benowitz, Jeffrey A.

    2013-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) recently initiated a multi-year review of the hydrocarbon potential of frontier sedimentary basins in Alaska (Swenson and others, 2012). In collaboration with the Alaska Division of Oil & Gas and the U.S. Geological Survey we conducted reconnaissance field studies in two basins with recognized natural gas potential—the Susitna basin and the Nenana basin (LePain and others, 2012). This paper summarizes our initial work on the Nenana basin; a brief summary of our work in the Susitna basin can be found in Gillis and others (in press). During early May 2012, we conducted ten days of helicopter-supported fieldwork and reconnaissance sampling along the northern Alaska Range foothills and Yukon–Tanana upland near Fairbanks (fig. 1). The goal of this work was to improve our understanding of the geologic development of the Nenana basin and to collect a suite of samples to better evaluate hydrocarbon potential. Most laboratory analyses have not yet been completed, so this preliminary report serves as a summary of field data and sets the framework for future, more comprehensive analysis to be presented in later publications.

  20. Water resources of the Bighorn basin, northwestern Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Lowham, H.W.; Lines, Gregory C.

    1976-01-01

    This 2-sheet map report includes the part of the Bighorn Basin and adjacent mountains in northwestern Wyoming. Water-bearing properties of the geologic units are summarized. The hydrogeologic map illustrates the distribution of wells in the different units and gives basic data on the yields of wells, depth of wells, depth to water, and dissolved solids and conductance of the water. Aquifers capable of yielding more than 1,000 gpm (gallons per minute) underlie the area everywhere, except in the mountains on the periphery of the basin. In 1970, approximately 29,500 of the 40,475 people living in the Bighorn Basin were served by municipal water supplies. The municipal supply for about 6,300 of these people was from ground water. The natural flows of streams in the Bighorn Basin differ greatly due to a wide range in the meteorologic, topographic, and geologic conditions of the basin. The station locations and the average discharge per square mile are shown on the map and give an indication of the geographic variation of basin yields. The maximum instantaneous discharge that has occurred at each station during its period of record is shown. Most of the runoff in the basin is from snowmelt in the mountains. (Woodard-USGS)

Top