River turbidity and sediment loads during dam removal
Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.
2012-01-01
Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.
Removing Dams: Project-Level Policy and Scientific Research Needs (Invited)
NASA Astrophysics Data System (ADS)
Graber, B.
2010-12-01
More than 800 dams have been removed around the country, mostly “small” dams, under 25 feet in height. The total number of removals, however, is small relative to the number of deteriorating dams and the ecological impacts those structures continue to have on native riverine species and natural river function. The number of dam removal projects is increasing as aging dams continue to deteriorate and riverine species continue to decline. Practitioners and regulators need to find cost-effective project approaches that minimize short-term environmental impacts and maximize long-term benefits while keeping project costs manageable. Dam removals can be a regulatory challenge because they inherently have short-term impacts in order to achieve larger, self-sustaining, long-term benefits. These short-term impacts include sediment movement, construction access roads, and habitat conversion from lacustrine to riverine. Environmental regulations are designed to prevent degradation and have presented challenges for projects designed to benefit the environment. For example, a short-term release of sediment may exceed water quality standards for some period of time, but lead to a long-term beneficial project. Other regulatory challenges include permitting the loss of wetland area for increased native river function, or allowing the release of some level of contaminated sediment when the downstream sediment is similarly contaminated. Dam removal projects raise a range of engineering and scientific questions on effective implementation techniques such as appropriate sediment management approaches, construction equipment access approaches, invasive species management, channel/floodplain reconstruction, and active versus passive habitat rehabilitation. While practitioners have learned and refined implementation approaches over the last decade, more input is needed from researchers to help assess the effectiveness of those techniques, and to provide more effective techniques. Applied research is needed to provide management tools for practitioners on questions such as: How do we determine the quantity of sediment that is acceptable to release downstream without causing long-term harm to habitat? How can we estimate how much sediment rivers naturally carry in places where there are no sediment gauges? Will the release of coarse-grain sediment help build habitat structure downstream or will it smother habitat? What is the trajectory of habitat quality in an impoundment wetland and is it justifiable to use self-sustainability as an argument to allow a reduction in wetland area for native river habitat? Will having construction equipment working in the flowing river channel do less harm than dewatering a river channel for a longer period of time? American Rivers staff have collectively had an active involvement in more than one hundred dam removal projects. In this presentation, an American Rivers geomorphologist will pose the questions that need to be answered to reduce project-level policy challenges and allow the implementation of cost-effective dam removal projects.
Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.
Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA
Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.
2015-01-01
The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.
Elwha River dam removal-Rebirth of a river
Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.
Duda, Jeffrey J.; Freilich, Jerry; Schreiner, Edward G.
2008-01-01
The planned removal of two dams that have been in place for over 95 years on the Elwha River provides a unique opportunity to study dam removal effects. Among the largest dams ever considered for removal, this project is compelling because 83% of the watershed lies undisturbed in Olympic National Park. Eighteen million cubic meters of sediment have accumulated in and will be released from the reservoirs, and there is potential for rehabilitating depressed Pacific salmon runs. Researchers from academia, non-profit organizations, federal and state governments, and the Lower Elwha Klallam Tribe are currently assessing baseline ecological conditions of the Elwha River as part of dam removal studies. We introduce dam removal topics, provide a brief history of the dams, and summarize the ecology of the Elwha River basin as an introduction to a special issue devoted to research in the watershed.
Duda, Jeffrey J.; Wieferich, Daniel J.; Bristol, R. Sky; Bellmore, J. Ryan; Hutchison, Vivian B.; Vittum, Katherine M.; Craig, Laura; Warrick, Jonathan A.
2016-08-18
The removal of dams has recently increased over historical levels due to aging infrastructure, changing societal needs, and modern safety standards rendering some dams obsolete. Where possibilities for river restoration, or improved safety, exceed the benefits of retaining a dam, removal is more often being considered as a viable option. Yet, as this is a relatively new development in the history of river management, science is just beginning to guide our understanding of the physical and ecological implications of dam removal. Ultimately, the “lessons learned” from previous scientific studies on the outcomes dam removal could inform future scientific understanding of ecosystem outcomes, as well as aid in decision-making by stakeholders. We created a database visualization tool, the Dam Removal Information Portal (DRIP), to display map-based, interactive information about the scientific studies associated with dam removals. Serving both as a bibliographic source as well as a link to other existing databases like the National Hydrography Dataset, the derived National Dam Removal Science Database serves as the foundation for a Web-based application that synthesizes the existing scientific studies associated with dam removals. Thus, using the DRIP application, users can explore information about completed dam removal projects (for example, their location, height, and date removed), as well as discover sources and details of associated of scientific studies. As such, DRIP is intended to be a dynamic collection of scientific information related to dams that have been removed in the United States and elsewhere. This report describes the architecture and concepts of this “metaknowledge” database and the DRIP visualization tool.
Duda, Jeffrey J.; Beirne, Matt M.; Warrick, Jonathan A.; Magirl, Christopher S.
2018-04-16
After nearly a century of producing power, two large hydroelectric dams on the Elwha River in Washington State were removed during 2011 to 2014 to restore the river ecosystem and recover imperiled salmon populations. Roughly two-thirds of the 21 million cubic meters of sediment—enough to fill nearly 2 million dump trucks—contained behind the dams was released downstream, which restored natural processes and initiated important changes to the river, estuarine, and marine ecosystems. A multidisciplinary team of scientists from the Lower Elwha Klallam Tribe, academia, non-governmental organizations, Federal and state agencies, and the U.S. Geological Survey collected key data before, during, and after dam removal to understand the outcomes of this historic project on the Elwha River ecosystem.
Rapid water quality change in the Elwha River estuary complex during dam removal
Foley, Melissa M.; Duda, Jeffrey J.; Beirne, Matthew M.; Paradis, Rebecca; Ritchie, Andrew; Warrick, Jonathan A.
2015-01-01
Dam removal in the United States is increasing as a result of structural concerns, sedimentation of reservoirs, and declining riverine ecosystem conditions. The removal of the 32 m Elwha and 64 m Glines Canyon dams from the Elwha River in Washington, U.S.A., was the largest dam removal project in North American history. During the 3 yr of dam removal—from September 2011 to August 2014—more than ten million cubic meters of sediment was eroded from the former reservoirs, transported downstream, and deposited throughout the lower river, river delta, and nearshore waters of the Strait of Juan de Fuca. Water quality data collected in the estuary complex at the mouth of the Elwha River document how conditions in the estuary changed as a result of sediment deposition over the 3 yr the dams were removed. Rapid and large-scale changes in estuary conditions—including salinity, depth, and turbidity—occurred 1 yr into the dam removal process. Tidal propagation into the estuary ceased following a large sediment deposition event that began in October 2013, resulting in decreased salinity, and increased depth and turbidity in the estuary complex. These changes have persisted in the system through dam removal, significantly altering the structure and functioning of the Elwha River estuary ecosystem.
Assessing Changes in Contaminant Fluxes Following Dam Removal in an Urbanized River
Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USEPA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water...
Monitoring Organic Contaminant Fluxes Following Dam Removal Utilizing Passive Sampler Technology
Restoration of riverine habitats and their associated ecosystems is a growing priority for government agencies (e.g., USEPA, NOAA, USDA), as well as non-profit conservation organizations (e.g., American Rivers). Dam removal is a major component of many restoration projects credi...
Monitoring Changes in Contaminant Fluxes Resulting from Dam Removal in an Urbanized River.
Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USEPA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water...
Zydlewski, Joseph D.; Coghlan, Stephen M.; Gardner, C.; Saunders, R.
2011-01-01
Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the focus of a restoration effort that includes the removal of two low-head dams. In this study, we quantified fish assemblage metrics along a longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre-removal baseline conditions and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system associated with dam removal. Over 2 years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the reference stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream-to-downstream pattern along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site. No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long-term assessment of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects.
Geomorphic and habitat response to a large-dam removal in a Mediterranean river
NASA Astrophysics Data System (ADS)
Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.
2017-12-01
The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.
How stakeholders frame dam removal: The role of current and anticipated future ecosystem service use
NASA Astrophysics Data System (ADS)
Reilly, Kate; Adamowski, Jan
2016-04-01
Many river restoration projects, including dam removal, are controversial and can trigger conflicts between stakeholders who are for and against the proposed project. The study of environmental conflicts suggests that differences in how stakeholders 'frame', or make sense of a situation based on their prior knowledge and experiences, can perpetuate conflicts. Understanding different stakeholders' frames, particularly how they converge, can form the basis of successful conflict resolution. In the case of dam removals, it is often assumed that emphasising increased provision of ecosystem services can be a point of convergence between those advocating for ecological restoration and those opposed to removal because of negative human impacts. However, how exactly stakeholders frame a contentious proposed dam removal and how those frames relate to ecosystem services has been little studied. Here we used the case of a potential dam removal in New Brunswick to investigate how people frame the issue and how that relates to their current and anticipated future use of ecosystem services. Based on in-depth interviews with 30 stakeholders in the area, including both people for and against dam removal, we found that both groups currently used ecosystem services and were in favour of ecosystem protection. However, they differed in how they framed the issue of the potential dam removal. The group against dam removal framed the issue as one of loss and risk - they thought that any potential benefits to the ecosystem would be outweighed by the high risk of negative social impacts caused by a loss of access to ecosystem services, such as recreation and aesthetic enjoyment. By contrast, the group in favour of the dam framed the issue as one of opportunity and justice. They thought that following a short transition period, all stakeholders would benefit from the restored river, particularly from a restored salmon fishery, improved aesthetic appeal and the long-term sustainability of an undammed river. Ultimately, we argue that increased provision of ecosystem services does not always represent a point of convergence between stakeholder groups, because both groups support ecosystem protection but differ in how they expect the benefits they derive from ecosystem services to change. Conflict resolution strategies may be better addressed by measures to mitigate the perceived loss of ecosystem services in the group against dam removal.
Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USDA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water ...
NASA Astrophysics Data System (ADS)
Slawson, Deborah; Manière, Louis; Marchandeau, Florent
2014-05-01
IRSTEA, in partnership with the French Office national de l'eau et des milieux aquatiques (ONEMA), has begun a study of channel geomorphology in small streams where dams have been removed or breached between two and 200 years ago, without any subsequent restoration of the channel in the legacy sediments. A preliminary analysis of two sites in the Morvan, Burgundy, will be presented; a dam breached at the beginning of the 20th century and another in the last decade. Using ergodic reasoning, historical and recent upstream and downstream channel geometry is being used to predict the future temporal and spatial scales of channel physical habitat restoration. With the implementation of the European Water Framework Directive (WFD), dam removal has become a more frequently used method for restoring stream ecological continuity. In France, these obstacles are ubiquitous in medium and small streams and considerably reduce lateral and longitudinal connectivity. Improvement in the hydromorphologically controlled, physical habitat, particularly flow and sediment transport regimes, is often essential to improvement in stream biology. However, dam removal may cause long-term disturbances in flow and sediment transport regimes. In the absence of channel restoration measures in addition to dam removal, these disturbances may result in long-term negative impacts on fish, macroinvertebrate, and riparian plant physical habitat. These negative impacts may include channel incision and lowering of the water table, disconnection from floodplains, increased stream power and bed scouring, and increased sediment load from headcutting and bank erosion. Over time, these negative impacts may resolve themselves. However, the time frame necessary for reestablishing adequate physical habitat is not well-known. Some studies have indicated that many decades or longer may be required, depending on a variety of factors. Under the WFD, the REstoring rivers FOR effective catchment Management (REFORM) project is stressing the use of reference condition benchmarks when identifying objectives for and designing stream restoration projects. To identify appropriate reference condition benchmarks, it is important to understand over what temporal and spatial scales physical habitat improvement may take place after dam removal, including: 1. defining the spatial and temporal objectives for physical habitat restoration as a result of dam removal and 2. determining if dam removal alone will be sufficient to achieve those objectives or if additional channel restoration measures might be required.
Coastal habitat and biological community response to dam removal on the Elwha River
Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.
2017-01-01
Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.
Bed Sediment Monitoring of Multiple Contiguous Small Dam Removals
NASA Astrophysics Data System (ADS)
Galster, J. C.; Wyrick, J. R.
2010-12-01
Dam removal is crucial for reconnecting river habitats, restoring passage of fish and other aquatic organisms, and restoring the free flow of water and sediment. However, removal of obsolete dams is often resisted due to concerns of releasing sediment and initiating channel instability. Two dams on the Musconetcong River in northern New Jersey have been removed as part of a watershed-wide effort to remove or breach all major obstructions to restore the river to its original free-flowing state. The two dams were consecutively situated 1 kilometer apart and their removals provided an opportunity to study the geomorphic response in the form of bed elevation changes and sediment size through pre- and post-removal monitoring. Initial geomorphic surveys of the riverbed in the vicinity of and between the two dams have shown areas of erosion and deposition. These surveys have established a set of control points along the river channel between the two dams, and confirm the downstream movement of a sediment plume and localized areas of erosion. At the upstream dam, comparisons pre- and post-dam removal surveys show greater than 100 cubic meters of sediment being both eroded and deposited within the site. Most but not all of the erosion occurred around the newly exposed sediment bar upstream of the former dam, where the thalweg has reestablished itself following the dam’s removal. Areas that were excavated during removal have experienced deposition. Most of the deposition occurred downstream and on the left-hand bank. Due to the two low flow culverts in the former dam, a mid-channel sediment bar formed but has subsequently eroded. At the downstream dam site, erosion has removed up to 1.1 m of sediment from the bed in places while depositing up to 0.5 m sediment in others. As sediment from the former impoundment migrated through the project site, areas excavated during the removal became areas of deposition following the removal, and; alternately, areas in the channel margins where sediments were placed experienced gradual erosion. Grain size analysis shows a coarsening of the riverbed over the first nine months since removal. Grain size analyses were done upstream and downstream of the dam sites as well as at two locations between the sites. Pebble counts were completed using the random walk method at each of the six sites. The largest change in grain sizes at the four sites occurred upstream of the downstream dam site, where there was a significant coarsening of the sediment from October 2008 to June 2009. This has most likely occurred from the increase in energy upstream of the dam post-removal, which has transported many of the fine-grained sediments downstream. Downstream of this dam site sediment size has not significantly changed, suggesting that the fine sediments have been transported downstream far enough to leave the site. Surveys of the channel thalweg above and below both dams also show a pulse of sediment migrating slowing from the uppermost impoundment areas. Long-term monitoring of the channel thalweg may reveal reach-level changes in channel slope.
Hydro-geomorphology of the middle Elwha River, Washington, following dam removal
NASA Astrophysics Data System (ADS)
Morgan, J. A.; Nelson, P. A.; Brogan, D. J.
2017-12-01
Dam removal is an increasingly common river restoration practice, which can produce dramatic increases in sediment supply to downstream reaches. There remains, however, considerable uncertainty in how mesoscale morphological units (e.g., riffles and pools) respond to the flow and sediment supply changes associated with dam removal. The recent removal of Glines Canyon Dam on the Elwha River in Washington State provides a natural setting to explore how increased sediment supply due to dam removal may affect downstream reaches. Here, we present observations and surveys documenting how a 1 km reach, located approximately 5 km downstream of the former dam site, has evolved following dam removal. Annual topographic/bathymetric surveys were conducted in 2014-2016 using RTK-GNSS methods, and these surveys were coupled with airborne lidar to create continuous surface maps of the valley bottom. Differencing the elevation models reveals channel widening and migration due to lateral bank retreat and bar aggradation. Analysis of aerial imagery dating back to 1939 suggests that rates of both widening and meander migration have increased following dam removal. We also used results from depth-averaged hydrodynamic modeling with a fuzzy c-means clustering approach to delineate riffle and pool units; this analysis suggests that both riffles and pools stayed relatively consistent from 2014-2015, while both areas decreased from 2015 to 2016. Without any considerable changes to the hydrologic regime these higher rates of change are implied to be the result of the increased sediment supply. Our results, which indicate an increased dynamism due directly to the amplified sediment supply, have the potential to further inform river managers and restoration specialists who oversee projects related to changing sediment regimes.
NASA Astrophysics Data System (ADS)
Hao Weng, Chung; Yeh, Chao Hsien
2017-04-01
The rivers in Taiwan have the characteristic of large slope gradient and fast flow velocity caused by rugged terrain. And Taiwan often aces many typhoons which will bring large rainfall in the summer. In early Taiwan, river management was more focus on flood control, flood protection and disaster reduction. In recent years, the rise of ecological conservation awareness for the precious fish species brings spotlight on the Taiwan salmon (Oncorhynchus masou formosanus) which lives in the river section of this study. In order to make sure ecological corridor continuing, dam removal is the frequently discussed measure in recent years and its impact on environmental is also highly concerned. Since the dam removal may causes severe changes to the river channel, the action of dam removal needs careful evaluation. As one of the endangered species, Taiwan salmon is considered a national treasure of Taiwan and it was originally an offshore migration of the Pacific salmon. After the ice age and geographical isolation, it becomes as an unique subspecies of Taiwan and evolved into landlocked salmon. Now the Taiwan salmon habitats only exists in few upstream creeks and the total number of wild Taiwan salmon in 2015 was about 4,300. In order to expand the connectivity of the fish habitats in Chi-Jia-Wan creek basin, several dam removal projects had completed with good results. Therefore, this paper focuses on the dam removal of Yu-Sheng creek dam. In this paper, a digital elevation model (DEM) of about 1 kilometer channel of the Yu-Sheng creek dam is obtained by unmanned aerial vehicle (UAV). Using CCHE2D model, the simulation of dam removal will reveal the impact on channel morphology. After model parameter identification and verification, this study simulated the scenarios of three historical typhoon events with recurrence interval of two years, fifteen years, and three decades under four different patterns of dam removal to identify the the head erosion, flow pattern, and siltation and erosion of channel. With simulations by River2D under mean flow and ecological reference flow for the channels before and after dam removal, the habitat suitability curves of adult, two-aged juvenile, and one-aged juvenile salmons were applied to estimate the weighted usable areas. With results of two models on channel changes, infrastructure protection, and habitats improvement the best way for dam removal is then suggested.
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities
Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan A.; McHenry, Michael L.; Stevens, Andrew W.; Eidam, Emily F.; Ogston, Andrea S.; Gelfenbaum, Guy; Pedersen, Rob
2017-01-01
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities. PMID:29220368
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.
Rubin, Stephen P; Miller, Ian M; Foley, Melissa M; Berry, Helen D; Duda, Jeffrey J; Hudson, Benjamin; Elder, Nancy E; Beirne, Matthew M; Warrick, Jonathan A; McHenry, Michael L; Stevens, Andrew W; Eidam, Emily F; Ogston, Andrea S; Gelfenbaum, Guy; Pedersen, Rob
2017-01-01
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities
Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob
2017-01-01
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.
60. INTERIOR VIEW OF LOCKKEEPER'S HOUSE I (REMOVED FROM ESPLANADE), ...
60. INTERIOR VIEW OF LOCKKEEPER'S HOUSE I (REMOVED FROM ESPLANADE), SHOWING FIRST FLOOR LIVING ROOM, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 3, Red Wing, Goodhue County, MN
61. INTERIOR VIEW OF LOCKKEEPER'S HOUSE I (REMOVED FROM ESPLANADE), ...
61. INTERIOR VIEW OF LOCKKEEPER'S HOUSE I (REMOVED FROM ESPLANADE), SHOWING FIRST FLOOR DINING ROOM, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 3, Red Wing, Goodhue County, MN
Examining the economic impacts of hydropower dams on property values using GIS.
Bohlen, Curtis; Lewis, Lynne Y
2009-07-01
While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water function as real estate amenities and boost local property values. Results with respect to the effect of proximity to hydropower generating plants are equivocal. Homeowners pay a small premium for houses close to hydropower dams in our region, but the statistical significance of that result depends on the specific model form used to estimate the effect. Consideration of the social and economic impacts of dam removal-based river restoration can complement studies of the ecological impacts of the practice. Such studies help us understand the extent to which human society's subjective perception of value of aquatic ecosystems relates to objective measures of ecosystem health. The paper also illustrates how geographic information systems (GIS) can help inform these analyses.
Brenkman, S.J.; Duda, J.J.; Torgersen, C.E.; Welty, E.; Pess, G.R.; Peters, R.; McHenry, M.L.
2012-01-01
Dam removal has been increasingly proposed as a river restoration technique. In 2011, two large hydroelectric dams will be removed from Washington State’s Elwha River. Ten anadromous fish populations are expected to recolonise historical habitats after dam removal. A key to understanding watershed recolonisation is the collection of spatially continuous information on fish and aquatic habitats. A riverscape approach with an emphasis on biological data has rarely been applied in mid-sized, wilderness rivers, particularly in consecutive years prior to dam removal. Concurrent snorkel and habitat surveys were conducted from the headwaters to the mouth (rkm 65–0) of the Elwha River in 2007 and 2008. This riverscape approach characterised the spatial extent, assemblage structure and patterns of relative density of Pacific salmonids. The presence of dams influenced the longitudinal patterns of fish assemblages, and species richness was the highest downstream of the dams, where anadromous salmonids still have access. The percent composition of salmonids was similar in both years for rainbow trout, Oncorhynchus mykiss (Walbaum), coastal cutthroat trout, Oncorhynchus clarkii clarkii (Richardson) (89%; 88%), Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (8%; 9%), and bull trout, Salvelinus confluentus (Suckley) (3% in both years). Spatial patterns of abundance for rainbow and cutthroat trout (r = 0.76) and bull trout (r = 0.70) were also consistent between years. Multivariate and univariate methods detected differences in habitat structure along the river profile caused by natural and anthropogenic factors. The riverscape view highlighted species-specific biological hotspots and revealed that 60–69% of federally threatened bull trout occurred near or below the dams. Spatially continuous surveys will be vital in evaluating the effectiveness of upcoming dam removal projects at restoring anadromous salmonids.
Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.
2015-01-01
Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal waters, where slightly less than half of the sediment was deposited in the river-mouth delta. Although most of the measured fluvial and coastal deposition was sand-sized and coarser (> 0.063 mm), significant mud deposition was observed in and around the mainstem river channel and on the seafloor. Woody debris, ranging from millimeter-size particles to old-growth trees and stumps, was also introduced to fluvial and coastal landforms during the dam removals. At the end of our two-year study, Elwha Dam was completely removed, Glines Canyon Dam had been 75% removed (full removal was completed 2014), and ~ 65% of the combined reservoir sediment masses—including ~ 8 Mt of fine-grained and ~ 12 Mt of coarse-grained sediment—remained within the former reservoirs. Reservoir sediment will continue to be released to the Elwha River following our two-year study owing to a ~ 16 m base level drop during the final removal of Glines Canyon Dam and to erosion from floods with larger magnitudes than occurred during our study. Comparisons with a geomorphic synthesis of small dam removals suggest that the rate of sediment erosion as a percent of storage was greater in the Elwha River during the first two years of the project than in the other systems. Comparisons with other Pacific Northwest dam removals suggest that these steep, high-energy rivers have enough stream power to export volumes of sediment deposited over several decades in only months to a few years. These results should assist with predicting and characterizing landscape responses to future dam removals and other perturbations to fluvial and coastal sediment budgets.
Socioeconomic and Institutional Dimensions of Dam Removals: The Wisconsin Experience
Born; Genskow; Filbert; Hernandez-Mora; Keefer; White
1998-05-01
/ There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders
NASA Astrophysics Data System (ADS)
Collins, M. J.; Aponte Clarke, G.; Baeder, C.; McCaw, D.; Royte, J.; Saunders, R.; Sheehan, T.
2012-12-01
The Penobscot River Restoration Project aims to improve aquatic connectivity in New England's second largest watershed ( 22,000 km2) by removing the two lowermost, mainstem dams and bypassing a third dam on a principal tributary upstream. Project objectives include: restoring unobstructed access to the entire historic riverine range for five lower river diadromous species including Atlantic and shortnose sturgeon; significantly improving access to upstream habitat for six upper river diadromous species including Atlantic salmon; reconnecting trophic linkages between headwater areas and the Gulf of Maine; restoring fluvial processes to the former impoundments; improving recreational and Penobscot Nation cultural opportunities; and maintaining basin-wide hydropower output. The project is expected to have landscape-scale benefits and the need for a significant investment in long-term monitoring and evaluation to formally quantify ecosystem response has been recognized. A diverse group of federal, state, tribal, NGO, and academic partners has developed a long-term monitoring and evaluation program composed of nine studies that began in 2009. Including American Recovery and Reinvestment Act (ARRA) funding that leveraged partner contributions, we have invested nearly $2M to date in pre- and post-removal investigations that evaluate geomorphology/bed sediment, water quality, wetlands, and fisheries. Given the number of affected diadromous species and the diversity of their life histories, we have initiated six distinct, but related, fisheries investigations to document these expected changes: Atlantic salmon upstream and downstream passage efficiency using passive integrated transponder (PIT) and acoustic telemetry; fish community structure via an index of biotic integrity (IBI); total diadromous fish biomass through hydroacoustics; shortnose sturgeon spawning and habitat use via active and passive acoustic telemetry; and freshwater-marine food web interactions by examining stable nutrient isotopes in fish tissue. Here we summarize the multidisciplinary studies we are undertaking and present some preliminary results from three years of pre-removal study. We highlight our stream channel geometry and bed sediment grain size investigations that reveal impoundments bedded primarily by coarse materials and storing very little sediment, circumstances that are influenced by the reach's geology and late Quaternary history. The pre-removal data from our nine studies help us characterize the impounded and fragmented ecosystem on the eve of dam removal and help us further develop and refine testable hypotheses for ecosystem response to the project.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... Warner Valley fen and wetland areas; (3) Removal or repair of Dream Lake Dam and restoration of... project planning area. This area includes Dream Lake Dam, built in 1932 by Alex Sifford, which impounds an... built the 10 structures which now form the core of Drakesbad Guest Ranch Historic District (both Dream...
Landscape context and the biophysical response of rivers to dam removal in the United States
Magilligan, Francis J.; Torgersen, Christian E.; Major, Jon J.; Anderson, Chauncey W.; Connolly, Patrick J.; Wieferich, Daniel; Shafroth, Patrick B.; Evans, James E.; Infante, Dana; Craig, Laura S.
2017-01-01
Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities. PMID:28692693
Landscape context and the biophysical response of rivers to dam removal in the United States
Foley, Melissa M.; Magilligan, Francis J.; Torgersen, Christian E.; Major, Jon J.; Anderson, Chauncey; Connolly, Patrick J.; Wieferich, Daniel; Shafroth, Patrick B.; Evans, James E.; Infante, Dana M.; Craig, Laura
2017-01-01
Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities.
M. M. Foley; J. R. Bellmore; J. E. O' Connor; J. J. Duda; A. E. East; G. E. Grant; C. W. Anderson; J. A. Bountry; M. J. Collins; P. J. Connolly; L. S. Craig; J. E. Evans; S. L. Greene; F. J. Magilligan; C. S. Magirl; J. J. Major; G. R. Pess; T. J. Randle; P. B. Shafroth; C. E. Torgersen; D. Tullos; A. C. Wilcox
2017-01-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removalsâparticularly large damsâand associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings....
NASA Astrophysics Data System (ADS)
Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.
2017-07-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.
Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.
2017-01-01
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.
Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA
NASA Astrophysics Data System (ADS)
Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.
Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.
Draut, Amy; Ritchie, Andrew C.
2015-01-01
Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or proposed.
Hansen, Adam G.; Gardner, Jennifer R.; Beauchamp, David A.; Paradis, Rebecca; Quinn, Thomas P.
2016-01-01
Pacific salmon Oncorhynchus spp. are adept at colonizing habitat that has been reopened to anadromous passage. Sockeye Salmon O. nerka are unique in that most populations require lakes to fulfill their life history. Thus, for Sockeye Salmon to colonize a system, projects like dam removals must provide access to lakes. However, if the lakes contain landlocked kokanee (lacustrine Sockeye Salmon), the recovery of Sockeye Salmon could be mediated by interactions between the two life history forms and the processes associated with the resumption of anadromy. Our objective was to evaluate the extent to which estimates of Sockeye Salmon smolt production and recovery are sensitive to the resumption of anadromy by kokanee after dam removal. We informed the analysis based on the abiotic and biotic features of Lake Sutherland, which was recently opened to passage after dam removal on the Elwha River, Washington. We first developed maximum expectations for the smolt-producing capacity of Lake Sutherland by using two predictive models developed from Sockeye Salmon populations in Alaska and British Columbia: one model was based on the mean seasonal biomass of macrozooplankton, and the other was based on the euphotic zone volume of the lake. We then constructed a bioenergetics-based simulation model to evaluate how the capacity of Lake Sutherland to rear yearling smolts could change with varying degrees of anadromy among O. nerka fry. We demonstrated that (1) the smolt-producing capacity of a nursery lake for juvenile Sockeye Salmon changes in nonlinear ways with changes in smolt growth, mortality, and the extent to which kokanee resume anadromy after dam removal; (2) kokanee populations may be robust to changes in abundance after dam removal, particularly if lakes are located higher in the watershed on tributaries separate from where dams were removed; and (3) the productivity of newly establishing Sockeye Salmon can vary considerably depending on whether the population becomes rearing limited or is recruitment limited and depending on how adult escapement is managed.
Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe
2016-01-01
Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Shannon Claeson; B. Coffin
2015-01-01
Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate-sized dams, like Hemlock Dam (7.9m tall and 56m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam...
Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load
Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.
2015-01-01
The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload-surrogate instruments indicated detectable bedload starting just after full removal of the downstream dam. Using comparative studies from other sediment-laden rivers, the total ungauged fraction of < 2-mm bedload was estimated to be on the order of 1.5 Mt.
Status and trends of dam removal research in the United States
Bellmore, James; Duda, Jeff; Craig, Laura; Greene, Samantha L.; Torgersen, Christian E.; Collins, Mathias J.; Vittum, Katherine
2017-01-01
Aging infrastructure coupled with growing interest in river restoration has driven a dramatic increase in the practice of dam removal. With this increase, there has been a proliferation of studies that assess the physical and ecological responses of rivers to these removals. As more dams are considered for removal, scientific information from these dam-removal studies will increasingly be called upon to inform decisions about whether, and how best, to bring down dams. This raises a critical question: what is the current state of dam-removal science in the United States? To explore the status, trends, and characteristics of dam-removal research in the U.S., we searched the scientific literature and extracted basic information from studies on dam removal. Our literature review illustrates that although over 1200 dams have been removed in the U.S., fewer than 10% have been scientifically evaluated, and most of these studies were short in duration ( < 4 years) and had limited (1–2 years) or no pre-removal monitoring. The majority of studies focused on hydrologic and geomorphic responses to removal rather than biological and water-quality responses, and few studies were published on linkages between physical and ecological components. Our review illustrates the need for long-term, multidisciplinary case studies, with robust study designs, in order to anticipate the effects of dam removal and inform future decision making.
Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph D.
2016-01-01
The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.
Watershed restoration: planning and implementing small dam removals to maximize ecosystem services
NASA Astrophysics Data System (ADS)
Tonitto, C.; Riha, S. J.
2016-12-01
River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.
Status and trends of dam removal research in the United States
J. Ryan Bellmore; Jeffrey J. Duda; Laura S. Craig; Samantha L. Greene; Christian E. Torgersen; Mathias J. Collins; Katherine Vittum
2016-01-01
Aging infrastructure coupled with growing interest in river restoration has driven a dramatic increase in the practice of dam removal. With this increase, there has been a proliferation of studies that assess the physical and ecological responses of rivers to these removals. As more dams are considered for removal, scientific information from these dam-removal studies...
Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis
NASA Astrophysics Data System (ADS)
Reynolds, Z. A.
2015-12-01
Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how to remove problematic natural dams that increase flooding risks; they can also investigate possibilities to mimic the ecosystem state generated by natural dams in places where these dams are regularly removed.
Dam removal increases American eel abundance in distant headwater streams
Hitt, Nathaniel P.; Eyler, Sheila; Wofford, John E.B.
2012-01-01
American eel Anguilla rostrata abundances have undergone significant declines over the last 50 years, and migration barriers have been recognized as a contributing cause. We evaluated eel abundances in headwater streams of Shenandoah National Park, Virginia, to compare sites before and after the removal of a large downstream dam in 2004 (Embrey Dam, Rappahannock River). Eel abundances in headwater streams increased significantly after the removal of Embrey Dam. Observed eel abundances after dam removal exceeded predictions derived from autoregressive models parameterized with data prior to dam removal. Mann–Kendall analyses also revealed consistent increases in eel abundances from 2004 to 2010 but inconsistent temporal trends before dam removal. Increasing eel numbers could not be attributed to changes in local physical habitat (i.e., mean stream depth or substrate size) or regional population dynamics (i.e., abundances in Maryland streams or Virginia estuaries). Dam removal was associated with decreasing minimum eel lengths in headwater streams, suggesting that the dam previously impeded migration of many small-bodied individuals (<300 mm TL). We hypothesize that restoring connectivity to headwater streams could increase eel population growth rates by increasing female eel numbers and fecundity. This study demonstrated that dams may influence eel abundances in headwater streams up to 150 river kilometers distant, and that dam removal may provide benefits for eel management and conservation at the landscape scale.
NASA Astrophysics Data System (ADS)
Roy, S. G.; Gold, A.; Uchida, E.; McGreavy, B.; Smith, S. M.; Wilson, K.; Blachly, B.; Newcomb, A.; Hart, D.; Gardner, K.
2017-12-01
Dam removal has become a cornerstone of environmental restoration practice in the United States. One outcome of dam removal that has received positive attention is restored access to historic habitat for sea-run fisheries, providing a crucial gain in ecosystem resilience. But dams also provide stakeholders with valuable services, and uncertain socio-ecological outcomes can arise if there is not careful consideration of the basin scale trade offs caused by dam removal. In addition to fisheries, dam removals can significantly affect landscape nutrient flux, municipal water storage, recreational use of lakes and rivers, property values, hydroelectricity generation, the cultural meaning of dams, and many other river-based ecosystem services. We use a production possibility frontiers approach to explore dam decision scenarios and opportunities for trading between ecosystem services that are positively or negatively affected by dam removal in New England. Scenarios that provide efficient trade off potentials are identified using a multiobjective genetic algorithm. Our results suggest that for many river systems, there is a significant potential to increase the value of fisheries and other ecosystem services with minimal dam removals, and further increases are possible by including decisions related to dam operations and physical modifications. Run-of-river dams located near the head of tide are often found to be optimal for removal due to low hydroelectric capacity and high impact on fisheries. Conversely, dams with large impoundments near a river's headwaters can be less optimal for dam removal because their value as nitrogen sinks often outweighs the potential value for fisheries. Hydropower capacity is negatively impacted by dam removal but there are opportunities to meet or exceed lost capacity by upgrading preserved hydropower dams. Improving fish passage facilities for dams that are critical for safety or water storage can also reduce impacts on fisheries. Our method is helpful for identifying efficient decision scenarios, but finding the optimal decision requires a deep and mutual understanding of stakeholder preferences. We outline how to interpret these preferences, identify overlaps with the efficient decision scenarios, and estimate the monetary budget required to act on these decisions.
Assessing the Ecological and Geomorphic Context of Dam Removals in the United States
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Foley, M.; Torgersen, C. E.; Major, J. J.; Anderson, C.; Connolly, P. J.; Shafroth, P. B.; Evans, J. E.
2016-12-01
Dams have been a fundamental part of our national agenda over the past two hundred years; recently, however, dam removal has emerged as a significant national strategy and more than 1,100 dams have been removed since ca. 1970. A recent national assessment revealed that only 130 of these removals had any ecological or geomorphic assessments, and only 35 included both. To better assess the current state of dam-removal science, we utilized an extensive data set compiled by American Rivers, which contained geospatial attributes of more than 850 dams removed in the U.S. We used this geospatial information in combination with the National Hydrography Dataset (NHDPlus) and other watershed-scale assessment interfaces that provided data on eco-regions, national land cover attributes, and cumulative watershed disturbance to determine the geographic, ecological, and geomorphic context of removed dams. The highest concentration of removed dams is in the Northeast and Upper Midwest. Nationally, they have been removed mainly from 1st order streams, but more than 40% are on 3rd and 4th order streams. Geomorphically, most removals are in lowland settings with 87% at elevations < 450 m and 12% between 450 and 1000 m elevation. Watershed slopes were predominantly <5%. Ecologically, watersheds above removed dams are predominantly forested, mainly in broadleaf deciduous settings of the Ridge and Valley, Northern Piedmont, NE Highland, and NE Coastal Zone EPA Level III eco-region classes. Watershed scale assessments indicate most (37%) removals are in watersheds with the lowest cumulative disturbance scores, showing removals have made high-quality habitat available. Principal component analyses showed a strong correlation of removals based on low slope, low elevation, large watershed area, and low cumulative disturbance. Many of the studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of ecological and geomorphic settings, which limits predictive capacity in other environmental settings.
Geomorphic responses to large check-dam removal on a mountain river in Taiwan
NASA Astrophysics Data System (ADS)
Wang, H.; Stark, C. P.; Cook, K. L.; Kuo, W.
2011-12-01
Dam removal has become an important aspect of river restoration in recent years, but studies documenting the physical and ecological response to dam removal are still lacking - particularly in mountain rivers and following major floods. This presentation documents the recent removal of a large dam on a coarse-grained, steep (an order of magnitude greater than on the Marmot) mountain channel in Taiwan. The Chijiawan river, a tributary of the Tachia River draining a 1236 km2 watershed, is the only habitat in Taiwan of the endangered Formosan landlocked salmon. The habitat of this fish has been cut significantly since the 1960s following construction of check dams designed to prevent reservoir sedimentation downstream. The largest and lowermost barrier on Chijiawan creek is the 15m high, "No. 1 Check Dam" built in 1971. Forty years later, in early 2011, the sediment wedge behind the dam had reached an estimated 0.2 million m3 and the dam toe had been scoured about 4m below its foundation, posing a serious risk of dam failure. For these reasons, the Shei-Pa National Park removed the dam in late May 2011. To monitor the response of the river to dam removal, we installed video cameras, time-lapse cameras, stage recorders, and turbidity sensors, conducted surveys of grain size distributions and longitudinal profiles, and carried out repeat photography. Channel changes were greatest immediately following removal as a result of the high stream power, steep energy slope, and unconsolidated alluvial fill behind the dam. Headcut propagation caused immediate removal of the sand-grade sediment and progressive channel widening. One month after dam removal, a minor flood event excavated a big wedge of sediment from the impoundment. Most of the subsequent downstream deposition occurred within 500m of the dam, with alluviation reaching up to 0.5m in places. Two months after dam removal, erosion had propagated 300m upstream into the impounded sediment along a bed profile of gradient at 1.4% at a headcut with a local gradient of 5.1%. The change in grain size was a fining of the sediment at the two downstream sites and a slight coarsening at the upstream site from April 2010 to July 2011. This is likely due to the increase in energy upstream of the dam post-removal, which has transported the fine-grained sediments downstream. As the river adjusts over coming months and years, we anticipate that observations such as these will help generate an important resource for all those concerned with dam removal and river restoration.
Prioritizing removal of dams for passage of diadromous fishes on a major river system
Kocovsky, P.M.; Ross, R.M.; Dropkin, D.S.
2009-01-01
Native diadromous fishes have been extirpated from much of the Susquehanna River system for nearly a century. Recent restoration efforts have focused on removal of dams, but there are hundreds of dams and presently there is no biologically based system to assist in prioritizing their removal. We present a new method that uses existing habitat suitability index models (HSI) for American shad Alosa sapidissima, alewife A. pseudoharengus, blueback herring A. aestivalis, and American eel Anguilla rostrata to prioritize the removal of non-hydropower dams within the Susquehanna River system. We ranked HSI scores for each of the four species, association between a landscape-scale factor and HSIs, length of river opened by removing a dam, and distance from the mouth at Chesapeake Bay for each dam and then calculated a mean rank prioritization for dam removal by averaging the ranks for the seven criteria. This prioritization method is resistant to outliers, is not strongly affected by somewhat arbitrary decisions on metrics included in the analysis, and provides a biologically based prioritization for dam removal that can be easily amended to include other metrics or adapted to other river systems and that complements other social and economic considerations that must be included in decisions to remove dams.
Multiyear Downstream Response to Dam Removal on the White Salmon River, WA
NASA Astrophysics Data System (ADS)
Wilcox, A. C.; O'Connor, J. E.; Major, J. J.
2017-12-01
The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.
NASA Astrophysics Data System (ADS)
Kondolf, G. M.; Oreilly, C.
2010-12-01
Water-supply reservoirs in the actively eroding California Coast Ranges are vulnerable to sediment filling, thus creating obsolete impounding dams (Minear & Kondolf 2009). Once full of sediment, there is more impetus to remove dams for public safety and fish passage, but managing accumulated sediments becomes a dominant issue in dam removal planning. We analyzed the planning process and sediment management analyses for five dams, all of which have important ecological resources but whose dam removal options are constrained by potential impacts to downstream urban populations. Ringe Dam on Malibu Ck, Matilija Dam on the Ventura River, Searsville Dam on San Francisquito Ck, and Upper York Creek Dam on York Ck cut off important habitat for anadromous steelhead trout (Oncorhynchus mykiss). San Clemente Dam on the Carmel River has a working fish ladder, but only some of the migratory steelhead use it. By virtue of having filled with sediment, all five dams are at greater risk of seismic failure. San Clemente Dam is at greater risk because its foundation is on alluvium (not bedrock), and the poor-quality concrete in Matilija Dam is deteriorating from an akali-aggregate reaction. Simply removing the dams and allowing accumulated sediments to be transported downstream is not an option because all these rivers have extremely expensive houses along downstream banks and floodplains, so that allowing the downstream channel to aggrade with dam-dervied sediments could expose agencies to liability for future flood losses. Analyses of potential sediment transport have been based mostly on application of tractive force models, and have supported management responses ranging from in-situ stabilization (San Clemente and Matilija) to removal of stored sediment (York) to annual dredging to maintain capacity and prevent sediment passing over the dam (proposed for Searsville).
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.
2003-12-01
The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.
NASA Astrophysics Data System (ADS)
Wilcox, A. C.
2012-12-01
Two recent dam removals on tributaries to the Columbia River in the northwestern United States present contrasting examples of how dam removal methods, reservoir contents, and geomorphic settings influence system responses. The 2008 removal of Milltown Dam, from the Clark Fork River (CFR), Montana, and the 2011 removal of Condit Dam from the White Salmon River (WSR), Washington (Table 1), represent two of the largest dam removals to date. The Milltown Dam removal was notable because the dam stored millions of cubic meters of contaminated mine tailings, a portion of which were excavated as part of Superfund remediation but a portion of which flowed downstream after the removal. On the CFR, post-breach high flows in 2008 produced reservoir erosion and downstream deposition in bed interstices, along bars, and on the floodplain, but above-average (3-15 year recurrence interval) floods since then have remobilized this material and have, to a large extent, erased signs of downstream sedimentation. The Condit Dam removal entailed dynamiting of a 4m by 5.5m hole at the base of the dam, which produced rapid and dramatic draining of fine reservoir sediments within hours of the blast. Downstream of Condit Dam, the initial hyperconcentrated flows and sediment pulse draped the WSR with fine sediment, filled pools, and, in an unconfined reach influenced by the Columbia River's backwater, caused meters of aggradation and new bar formation. In the confined, bedrock-dominated reach downstream of the Condit site, pool-riffle structure has started to reemerge as of summer 2012 and the finest bed materials have been evacuated from the main channel, although sediment storage in pools and eddies persists. Whereas post-breach geomorphic responses on the CFR have been largely driven by hydrology, the post-breach evolution of the WSR has been predominantly influenced by antecedent geomorphic conditions (slope, confinement, and Columbia River backwater). On both the CFR and WSR, the pace of post-breach reservoir erosion and of geomorphic recovery from the disturbances produced by dam removal has been rapid, far exceeding pre-breach predictions.Table 1: Comparison of Milltown and Condit Dam removals
Initial Geomorphic Responses to Removal of Milltown Dam, Clark Fork River, Montana, USA
NASA Astrophysics Data System (ADS)
Wilcox, A. C.; Brinkerhoff, D.; Woelfle-Erskine, C.
2008-12-01
The removal of Milltown Dam on the Clark Fork River, Montana, USA, is creating a field-scale experiment on upstream and downstream responses to dam removal and on how gravel-bed rivers respond to sediment pulses. Milltown Dam was removed in 2008, reconnecting the Clark Fork River to its upstream basin in terms of sediment transport and fish passage. This dam removal is especially notable because (1) it is the largest dam removal to date in the United States in terms of the volume of reservoir sediment potentially available for downstream transport (over 3 million m3; 1.7 million m3 are being mechanically removed); and (2) the dam is the downstream end of the largest Superfund site in the United States, the Clark Fork Complex, and reservoir sediments are composed largely of contaminated mine tailings. Data collection on pre- and post-dam removal channel morphology, bed sediment characteristics, and sediment loads are being used to investigate spatial and temporal patterns of sediment transport and deposition associated with this dam removal. In the first several months following breaching of the dam, snowmelt runoff with a 3-year recurrence interval peak caused substantial erosion and downstream transport of metals-laden sediments from Milltown reservoir. Reservoir sediments in the Clark Fork arm of Milltown reservoir eroded at levels far exceeding modeling predictions as a result of both incision to the new base level created by dam removal and bank retreat of over 200 m in reaches upstream of a constructed bypass reach and remediation area. Copper and other metals in these eroded reservoir sediments provide a tracer for identifying whether sediment deposits observed downstream of the dam originated from Milltown reservoir or uncontaminated tributaries and indicate that Milltown sediments have reached over 200 km downstream. Downstream deposition has been greatest along channel margins and in side-channel areas, whereas the transport capacity of the active channel has limited channel changes there.
A ravenous river reclaims its true course: the tale of Marmot Dam''s demise
Noreen Parks; Gordon Grant
2009-01-01
Removing dams that are outdated, unsafe, or pose significant economic or environmental costs has emerged in the last 10 years as a major river restoration strategy. The removal of the 45-foot-high Marmot Dam on the Sandy River in 2007 resulted in the biggest sediment release accompanying any dam removal to date. It also provided an unprecedented opportunity...
NASA Astrophysics Data System (ADS)
Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.
2015-12-01
The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.
NASA Astrophysics Data System (ADS)
Loomis, John
2002-06-01
A travel cost demand model that uses intended trips if dams are removed and the river restored is presented as a tool for evaluating the potential recreation benefits in this counterfactual but increasingly policy relevant analysis of dam removal. The model is applied to the Lower Snake River in Washington using data from mail surveys of households in the Pacific Northwest region. Five years after dam removal, about 1.5 million visitor days are estimated, with this number growing to 2.5 million annually during years 20-100. Using the travel cost method model estimate of the value of river recreation, if the four dams are removed and the 225 km river is restored, the annualized benefits at a 6.875% discount rate would be $310 million. This gain in river recreation exceeds the loss of reservoir recreation but is about $60 million less than the total costs of the dam removal alternative. The analysis suggests this extension of the standard travel cost method may be suitable for evaluating the gain in river recreation associated with restoration of river systems from dam removal or associated with dam relicensing conditions.
DAM_Explorer: A Modeling Framework for Assessing the Physical Response of Streams to Dam Removal
2009-06-01
ERDC TN-EMRRP-SR-65 1 DAM_Explorer: A Modeling Framework for Assessing the Physical Response of Streams to Dam Removal By Jock Conyngham1 and...physical and temporal increments for staged removals) is anticipated. POINTS OF CONTACT For additional information contact Jock N. Conyngham (406-541
Engineering and Ecological Aspects of Dam Removal-An Overview
2006-09-01
indicated. Figure 3. Teton Dam failure, Idaho, 1976 BENEFITS AND COSTS OF DAMS Dams have provided and continue to provide a diverse...ERDC TN-EMRRP-SR-80 1 Engineering and Ecological Aspects of Dam Removal—An Overview September 2006 By Jock Conyngham1, J. Craig Fischenich1...High ______________________________________________________________________ OVERVIEW Decommissioning and removing dams has
Davis, Robert P; Sullivan, S Mažeika P; Stefanik, Kay C
2017-12-01
Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length - a key measure of trophic structure - was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sediment trapping efficiency of adjustable check dam in laboratory and field experiment
NASA Astrophysics Data System (ADS)
Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui
2014-05-01
Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.
Sediment impact assessment of check-dam removal strategies on a mountain river in Taiwan
NASA Astrophysics Data System (ADS)
Kuo, W.; Wang, H.; Stark, C. P.
2011-12-01
Dam removal is important for reconnecting river habitats and restoring the free flow of water and sediment, so managing accumulated sediments is crucial in dam removal planning as the cost and potential impacts of dam removal can vary substantially depending on local conditions. A key uncertainty in dam removal is the fate of reservoir sediment stored upstream of the dam. Release of impounded sediment could raise downstream bed elevations leading to flooding, increase lateral channel mobility leading to bank erosion, and potentially bury downstream ecologically sensitive habitats if the sediment is fine. The ability to predict the sediment impacts of dam removal in highly sediment-filled systems is thus increasingly important as the number of such dam-removal cases is growing. Due to the safety concerns and the need for habitat restoration for the Formosan landlocked salmon, the Shei-Pa National Park in Taiwan removed the 15m high Chijiawan "No. 1 Check Dam" in late May 2011. During the planning process prior to removal, we conducted field surveys, numerical simulations, and flume experiments to determine sediment impacts and to suggest appropriate dam removal strategies. We collected river-bed topography and sediment bulk samples in 2010 to establish the channel geometry and grain-size distribution for modeling input. The scaled flume experiment was designed to provide insights on how and if the position of a notch location and size would affect the rate and amount of reservoir erosion under particular discharges. Observations indicated that choices of notch location can force the river to migrate differently. For long-term prediction, we used the quasi-two-dimensional numerical model NETSTARS (Network of Stream Tube model for Alluvial River Simulation) to simulate the channel responses. These simulations indicated that high suspended sediment concentrations would be the most likely major concern in the first year, while concerns for downstream sediment deposition would be minor. We then compared the experimental and numerical predictions with the response of the river to the actual removal. Comparisons of river bed topography pre- and post-dam removal suggest that the predictions provided solid information but also highlight discrepancies between the model predictions and the field data that have implications for future dam-removal assessments.
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Nislow, K. H.; Kynard, B. E.; Hackman, A. M.
2016-01-01
Dam removal is becoming an increasingly important component of river restoration, with > 1100 dams having been removed nationwide over the past three decades. Despite this recent progression of removals, the lack of pre- to post-removal monitoring and assessment limits our understanding of the magnitude, rate, and sequence of geomorphic and/or ecological recovery to dam removal. Taking advantage of the November 2012 removal of an old ( 190 year-old) 6-m high, run-of-river industrial dam on Amethyst Brook (26 km2) in central Massachusetts, we identify the immediate eco-geomorphic responses to removal. To capture the geomorphic responses to dam removal, we collected baseline data at multiple scales, both upstream ( 300 m) and downstream (> 750 m) of the dam, including monumented cross sections, detailed channel-bed longitudinal profiles, embeddedness surveys, and channel-bed grain size measurements, which were repeated during the summer of 2013. These geomorphic assessments were combined with detailed quantitative electrofishing surveys of stream fish richness and abundance above and below the dam site and throughout the watershed and visual surveys of native anadromous sea lamprey (Petromyzon marinus) nest sites. Post-removal assessments were complicated by two events: (1) upstream knickpoint migration exhumed an older (ca. late eighteenth century) intact wooden crib dam 120 m upstream of the former stone dam, and (2) the occurrence of a 10-20 year RI flood 6 months after removal that caused further upstream incision and downstream aggradation. Now that the downstream reach has been reconnected to upstream sediment supply, the predominant geomorphic response was bed aggradation and associated fining (30-60% reduction). At dam proximal locations, aggradation ranged from 0.3 to > 1 m where a large woody debris jam enhanced aggradation. Although less pronounced, distal locations still showed aggradation with a mean depth of deposition of 0.20 m over the 750-m downstream reach. Post-removal, but pre-flood, bed surveys indicate 2 m of incision had migrated 25 m upstream of the former reservoir before encountering the exhumed dam, which now acts as the new grade control, limiting progressive headcutting. Approximately 1000 m3 of sediment was evacuated in the first year, with 67% of the volume occurring by pre-flood, process-driven (e.g., changes in base level) controls. The combination of changes in channel-bed sedimentology, the occurrence of a large magnitude flood, and the emergence of the new crib dam that is a likely barrier to fish movement was associated with major reductions in abundance and richness in sites downstream and immediately upstream adjacent to the former dam in post-removal sampling. At the same time, we documented the presence of four species of fish, including sea lamprey, which were not present above the dam prior to removal, indicating that upstream passage has been achieved; and we also documented lamprey spawning activity at sites immediately below the dam, which had previously been unsuitable owing to an excessively coarse and armored riverbed. Our results point to the importance of interactions between dam removal and flood disturbance effects, with important implications for short- and long-term monitoring and assessment of dam impacts to river systems.
Raabe, Joshua K.; Hightower, Joseph E.
2014-01-01
Fish, especially migratory species, are assumed to benefit from dam removals that restore connectivity and access to upstream habitat, but few studies have evaluated this assumption. Therefore, we assessed the movement of migratory fishes in the springs of 2008 through 2010 and surveyed available habitat in the Little River, North Carolina, a tributary to the Neuse River, after three complete dam removals and one partial (notched) dam removal. We tagged migratory fishes with PIT tags at a resistance-board weir located at a dam removal site (river kilometer [rkm] 3.7) and followed their movements with an array of PIT antennas. The river-wide distribution of fish following removals varied by species. For example, 24–31% of anadromous American Shad Alosa sapidissima, 45–49% of resident Gizzard Shad Dorosoma cepedianum, and 4–11% of nonnative Flathead CatfishPylodictis olivaris passed the dam removal site at rkm 56 in 2009 and 2010. No preremoval data were available for comparison, but reach connectivity appeared to increase as tagged individuals passed former dam sites and certain individuals moved extensively both upstream and downstream. However, 17–28% did not pass the partially removed dam at rkm 7.9, while 20–39% of those that passed remained downstream for more than a day before migrating upstream. Gizzard Shad required the deepest water to pass this notched structure, followed by American Shad then Flathead Catfish. Fish that passed the notched dam accessed more complex habitat (e.g., available substrate size-classes) in the middle and upper reaches. The results provide strong support for efforts to restore currently inaccessible habitat through complete removal of derelict dams.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... comments filed. k. Description of Application: The licensee proposes to, in part, remove the Cisco Development from the Bond Falls Hydroelectric Project license. The Cisco Dam and its chain of lakes would be...
Influence of dams on river-floodplain dynamics in the Elwha River, Washington
Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.
2008-01-01
The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.
Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
Together, these different scientific perspectives form a basis for understanding the Elwha River ecosystem, an environment that has and will undergo substantial change. A century of change began with the start of dam construction in 1910; additional major change will result from dam removal scheduled to begin in September 2011. This report provides a scientific snapshot of the lower Elwha River, its estuary, and adjacent nearshore ecosystems prior to dam removal that can be used to evaluate the responses and dynamics of various system components following dam removal.
The remains of the dam: what have we learned from 15 years of US dam removals?
Gordon E. Grant; Sarah L. Lewis
2015-01-01
Important goals for studying dam removal are to learn how rivers respond to large and rapid introductions of sediment, and to develop predictive models to guide future dam removals. Achieving these goals requires organizing case histories systematically so that underlying physical mechanisms determining rates and styles of sediment erosion, transport, and deposition...
Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.
2011-01-01
Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.
The Social, Historical, and Institutional Contingencies of Dam Removal
NASA Astrophysics Data System (ADS)
Magilligan, F. J.; Sneddon, C. S.; Fox, C. A.
2017-06-01
Environmental managers in the United States and elsewhere are increasingly perceiving dam removal as a critical tool for river restoration and enhancing watershed resilience. In New England, over 125 dams have been dismantled for ecological and economic rationales. A surprising number of these removals, including many that are ongoing, have generated heated conflicts between restoration proponents and local communities who value their dammed landscapes. Using a comparative case study approach, we examine the environmental conflict around efforts to remove six dams in New England. Each of these removal efforts followed quite different paths and resultant outcomes: successful removal, stalled removal, and failure despite seemingly favorable institutional conditions. Lengthy conflicts often transpired in instances where removals occurred, but these were successfully arbitrated by paying attention to local historical-geographical conditions conducive to removal and by brokering effective compromises between dam owners and the various local actors and stakeholders involved in the removal process. Yet our results across all cases suggest that these are necessary, but not sufficient conditions for restoration through dam removal since a similar set of conditions typified cases where removals are continuously stalled or completely halted. Scholars examining the intersection between ecological restoration and environmental politics should remain vigilant in seeking patterns and generalities across cases of environmental conflict in order to promote important biophysical goals, but must also remain open to the ways in which those goals are thwarted and shaped by conflicts that are deeply contingent on historical-geographical conditions and broader institutional networks of power and influence.
The Social, Historical, and Institutional Contingencies of Dam Removal.
Magilligan, F J; Sneddon, C S; Fox, C A
2017-06-01
Environmental managers in the United States and elsewhere are increasingly perceiving dam removal as a critical tool for river restoration and enhancing watershed resilience. In New England, over 125 dams have been dismantled for ecological and economic rationales. A surprising number of these removals, including many that are ongoing, have generated heated conflicts between restoration proponents and local communities who value their dammed landscapes. Using a comparative case study approach, we examine the environmental conflict around efforts to remove six dams in New England. Each of these removal efforts followed quite different paths and resultant outcomes: successful removal, stalled removal, and failure despite seemingly favorable institutional conditions. Lengthy conflicts often transpired in instances where removals occurred, but these were successfully arbitrated by paying attention to local historical-geographical conditions conducive to removal and by brokering effective compromises between dam owners and the various local actors and stakeholders involved in the removal process. Yet our results across all cases suggest that these are necessary, but not sufficient conditions for restoration through dam removal since a similar set of conditions typified cases where removals are continuously stalled or completely halted. Scholars examining the intersection between ecological restoration and environmental politics should remain vigilant in seeking patterns and generalities across cases of environmental conflict in order to promote important biophysical goals, but must also remain open to the ways in which those goals are thwarted and shaped by conflicts that are deeply contingent on historical-geographical conditions and broader institutional networks of power and influence.
Chaplin, Jeffrey J.; Brightbill, Robin A.; Bilger, Michael D.
2005-01-01
The implications of dam removal on channel characteris-tics, water quality, benthic invertebrates, and fish are not well understood because of the small number of removals that have been studied. Comprehensive studies that document the effects of dam removal are just beginning to be published, but most research has focused on larger dams or on the response of a sin-gle variable (such as benthic invertebrates). This report, pre-pared in cooperation with the Conodoguinet Creek Watershed Association, provides an evaluation of how channel morphol-ogy, bed-particle-size distribution, water quality, benthic inver-tebrates, fish, and aquatic habitat responded after removal of Good Hope Mill Dam (a small 'run of the river' dam) from Conodoguinet Creek in Cumberland County, Pa. Good Hope Mill Dam was a 6-foot high, 220-foot wide concrete structure demolished and removed over a 3-day period beginning with the initial breach on November 2, 2001, at 10:00 a.m. eastern standard time. To isolate the effects of dam removal, data were collected before and after dam removal at five monitoring stations and over selected reaches upstream, within, and downstream of the impoundment. Stations 1, 2, and 5 were at free-flowing control locations 4.9 miles upstream, 2.5 miles upstream, and 5 miles downstream of the dam, respec-tively. Stations 3 and 4 were located where the largest responses were anticipated, 115 feet upstream and 126 feet downstream of the dam, respectively Good Hope Mill Dam was not an effective barrier to sedi-ment transport. Less than 3 inches of sediment in the silt/clay-size range (less than 0.062 millimeters) coated bedrock within the 7,160-foot (1.4-mile) impoundment. The bedrock within the impoundment was not incised during or after dam removal, and the limited sediment supply resulted in no measurable change in the thalweg elevation downstream of the dam. The cross-sec-tional areas at stations 3 and 4, measured 17 days and 23 months after dam removal, were within 3 percent of the area measured before removal. Some of the impounded silt/clay at station 3 and other sed-iment in the work area downstream of the dam were initially entrained over the 3-day removal period and deposited on sub-strate at station 4. Remaining silt/clay at station 3 and deposits at station 4 were transported downstream by the flows mea-sured over the 23 months after removal (daily mean flow ranged from 38 to 5,180 cubic feet per second). The median bed-parti-cle size at station 3 increased by approximately 32 millimeters in the 23-month period after removal. Bed-particle-size distri-bution at station 4 became finer when silt/clay was initially deposited but coarsened as high flows flushed it downstream; median bed-particle size was 77.7 millimeters before removal compared to 31.3 millimeters 17 days after removal and 99 mil-limeters 23 months after removal. Good Hope Mill Dam had either no effect on water-quality characteristics or the effect was so small it was masked by sea-sonal and periodic variability. Measurements of daily mean temperature, dissolved-oxygen concentration, pH, and specific conductance on a short time scale (every 15 minutes) indicate the daily range of temperature was suppressed under impounded conditions and daily extremes of temperature, dis-solved-oxygen concentration, pH, and specific conductance at station 2 were out of phase by approximately 12 hours with station 3. Once the dam was removed, the pattern at station 3 shifted and converged with the pattern at station 2. The offset before removal may be related to a lag time resulting from a decrease in velocity through the impoundment. Total nitrogen and suspended-sediment concentrations increased upon the initial dam breach but were within the range of concentrations measured from March 2001 through April 2002 over varying flow conditions at station 1. Total nitrogen concentration at station 4 was 4.66 milligrams per liter upon the initial breach of the dam,
Geomorphic responses to dam removal in the United States – a two-decade perspective
Major, Jon J.; East, Amy; O'Connor, Jim E.; Grant, Gordon E.; Wilcox, Andrew C.; Magirl, Christopher S.; Collins, Matthias J.; Tullos, Desiree D.; Tsutsumi, Daizo; Laronne, Jonathan B.
2017-01-01
Recent decades have seen a marked increase in the number of dams removed in the United States. Investigations following a number of removals are beginning to inform how, and how fast, rivers and their ecosystems respond to released sediment. Though only a few tens of studies detail physical responses to removals, common findings have begun to emerge. They include: (1) Rivers are resilient and respond quickly to dam removals, especially when removals are sudden rather than prolonged. Rivers can swiftly evacuate large fractions of reservoir sediment (≥50% within one year), especially when sediment is coarse grained (sand and gravel). The channel downstream typically takes months to years—not decades—to achieve a degree of stability within its range of natural variability. (2) Modest streamflows (<2-year return interval flows) can erode and transport large amounts of reservoir sediment. Greater streamflows commonly are needed to access remnant reservoir sediment and transport it downstream. (3) Dam height, sediment volume, and sediment caliber strongly influence downstream response to dam removal. Removals of large dams (≥10 m tall) have had longer-lasting and more widespread downstream effects than more common removals of small dams. (4) Downstream valley morphology and position of a dam within a watershed influence the distribution of released sediment. Valley confinement, downstream channel gradient, locations and depths of channel pools, locations and geometries of extant channel bars, and locations of other reservoirs all influence the downstream fate of released sediment.
Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.
2013-01-01
Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring only included 2 years with below average river discharge during the spawning season; data from years with higher flows may provide a different perspective on the effects of dam removal on the spawning migrations of the two endangered sucker species.
Liberated rivers: lessons from 40 years of dam removal
Marie Oliver; Gordon Grant
2017-01-01
In recent decades, dam removal has emerged as a viable national and international strategy for river restoration. According to American Rivers, a river conservation organization, more than 1,100 dams have been removed in the United States in the past 40 years, and more than half of these were demolished in the past decade. This trend is likely to continue as dams age,...
Particle-bound metal transport after removal of a small dam in ...
The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa
NASA Astrophysics Data System (ADS)
Evans, J. E.
2015-12-01
Over 1,000 U.S. dams have been removed (1975-2015) for reasons including obsolescence, liability concerns, water quality upgrades, fisheries, or ecosystem enhancements. Contaminated sediment can significantly complicate the approval process, cost, and timeline of a dam removal, or stop it entirely. In a dam removal, reservoir sediment changes from a sink to a source of contaminants. Recently, the Sierra Club sued to stop the removal of a large dam in Ohio because of the potential impact of phosphate releases on toxic algal blooms in Lake Erie. Heavy metals, PCBs, PAHs, pesticides, and petroleum hydrocarbons can be present in reservoir sediments. In a non-dam removal scenario, reservoir management tools range from "no action" to dredging, dewatering and removal, or sediment capping. But it is not clear how these reservoir management techniques apply to dam removals. Case studies show typically >80% of the reservoir sediment is eventually eroded, precluding sediment capping as a containment option. However, the released contaminants are diluted by mixing with "clean" sediment and are transported to different physio-chemical environments which may immobilize or biodegrade the contaminants. Poorly understood options include phased drawdown/reseeding the former reservoir to contain sediments, diking contaminant "hot spots," and addressing contaminant stratigraphy (where historical use created "hot layers" in the reservoir sediment). Research and policy development needs include: (1) assessment methods based on synergistic effects of multiple contaminants being present; (2) ways to translate the pre-removal contaminant concentrations to post-removal health risks downstream; (3) evaluation of management practices for contaminant "hot spots" and "hot layers;" (4) tools to forecast the presence of contaminated sediment using easily accessible information; and (5) ways to limit liability risk for organizations participating in dam removals involving contaminated sediment.
Dam removal, connectivity, and aquatic resources in the St. Regis River Watershed, New York
McKenna, James E.; Hanak, Kaitlin; DeVilbiss, Katharine; David, Anthony; Johnson, James H.
2015-10-09
The decommissioning and planned removal of the Hogansburg Dam on the St. Regis River in New York has stimulated interest in the potential effects of that barrier removal on the St. Regis watershed. There will be immediate and systemic effects of the Hogansburg Dam removal, which may include inundation of habitats below the dam or dewatering of habitats above the dam, possibly affecting local fish assemblages and (or) local native mussel assemblages; and expansion of stream network connectivity, which has the potential to open a large area of the watershed to migratory aquatic species. Information was collected about biota, water quality, sediment distribution, riverbed dimensions in the vicinity of the dam, and habitat characteristics of headwater sample sites. Complete fish assemblages were collected, but species of special concern associated with the connectivity changes included, American Eel, Atlantic Salmon, Brook Trout, Eastern Sand Darter, and Lake Sturgeon. Freshwater mussels in the vicinity of the dam also were examined and may be at risk of exposure (without a rescue plan) after dam removal. Reservoir sediment will be transported downstream and will alter aquatic habitat as it moves through the system. The dam removal will open more than 440 kilometers of stream habitat to migratory species, allowing them to more easily complete their life cycles. Fish assemblages above the dam may be altered by migrating fishes, but resident Brook Trout are not expected to be adversely affected.
Geomorphic and Ecological Disturbance and Recovery from Two Small Dams and Their Removal
Tullos, Desirée D.; Finn, Debra S.; Walter, Cara
2014-01-01
Dams are known to impact river channels and ecosystems, both during their lifetime and in their decommissioning. In this study, we applied a before-after-control-impact design associated with two small dam removals to investigate abiotic and biotic recovery trajectories from both the elimination of the press disturbance associated with the presence of dams and the introduction of a pulse disturbance associated with removal of dams. The two case studies represent different geomorphic and ecological conditions that we expected to represent low and high sensitivities to the pulse disturbance of dam removal: the 4 m tall, gravel-filled Brownsville Dam on the wadeable Calapooia River and the 12.5 m tall, sand and gravel-filled Savage Rapids Dam on the largely non-wadeable Rogue River. We evaluated both geomorphic and ecological responses annually for two years post removal, and asked if functional traits of the macroinvertebrate assemblages provided more persistent signals of ecological disturbance than taxonomically defined assemblages over the period of study. Results indicate that: 1) the presence of the dams constituted a strong ecological press disturbance to the near-downstream reaches on both rivers, despite the fact that both rivers passed unregulated flow and sediment during the high flow season; 2) ecological recovery from this press disturbance occurred within the year following the restoration action of dam removal, whereas signals of geomorphic disturbance from the pulse of released sediment persisted two years post-removal, and 3) the strength of the press disturbance and the rapid ecological recovery were detected regardless of whether recovery was assessed by taxonomic or functional assemblages and for both case studies, in spite of their different geomorphic settings. PMID:25233231
NASA Astrophysics Data System (ADS)
Pöppl, Ronald; Coulthard, Tom; Keesstra, Saskia; Keiler, Margreth
2015-04-01
Dams are often considered to have the most significant impact on rivers as dam construction generally reduces downstream sediment fluxes which further involves geomorphic changes in the affected river reaches. Since many dams no longer fulfill their intended purpose (e.g. due to siltation), are dangerous (e.g. catastrophic dam failures) and/or are ecologically damaging (e.g. habitat destruction), within the last two decades several dams have been removed and many more are already proposed for removal. Unfortunately, there is still only little empirical knowledge about the geomorphic consequences of dam removals and the related sediment release which represents a big challenge for river management. Modelling is one way to approach this problem. In the presented study we modelled the impacts of dam removal on geomorphic channel processes, channel morphology and sediment delivery further considering the role of channel engineering measures and reservoir excavation within a river reach impacted by a series of dams using the landscape evolution model CAESAR-Lisflood. The model was run with data from a small catchment located in Lower Austria. Modelled geomorphic channel changes and sediment fluxes were spatio-temporally analyzed, related to real-world data and are discussed in the context of river management issues.
Roberts, Sheila J; Gottgens, Johan F; Spongberg, Alison L; Evans, James E; Levine, Norman S
2007-01-01
This is a study of the scientific component of an effort to restore an urban river by removing a low-head dam. The Secor Dam is owned by a local government entity near Toledo, Ohio. The proposed removal of the last structure impeding flow on the Ottawa River has broad appeal, but the owner is concerned about liability issues, particularly potential changes to the flood regime, the presence of contaminated sediments behind the dam, and possible downstream transport of reservoir sediments. Assessing sediment contamination involved sediment sampling and analysis of trace metals and organic contaminants. Forecasting sediment transport involved field methods to determine the volume and textural properties of reservoir and upstream sediment and calculations to determine the fate of reservoir sediments. Forecasting changes in the flood regime involved HEC-RAS hydrological models to determine before and after dam removal flood scenarios using LiDAR data imported into an ArcGIS database. The resulting assessment found potential sediment contamination to be minor, and modeling showed that the removal of the dam would have minimal impacts on sediment transport and flood hazards. Based on the assessment, the removal of the dam has been approved by its owners.
Synthesis of common management concerns associated with dam removal
Desirée D. Tullos; Mathias J. Collins; J. Ryan Bellmore; Jennifer A. Bountry; Patrick J. Connolly; Patrick B. Shafroth; Andrew C. Wilcox
2016-01-01
Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether these concerns are warranted at a particular site. We used a dam-removal science database supplemented with other information sources to explore...
Research notes : beaver bafflers.
DOT National Transportation Integrated Search
2001-05-01
Historically, highway maintenance forces have had to remove beaver dams from roadside culverts each year. The dams can create significant pools, saturating and weakening the roadway structure. If not removed, the water behind the dam can cover the hi...
Woodward, Andrea; Torgersen, Christian E.; Chenoweth, Joshua; Beirne, Katherine; Acker, Steve
2011-01-01
The National Park Service is planning to start the restoration of the Elwha River ecosystem in Olympic National Park by removing two high head dams beginning in 2011. The potential for dispersal of exotic plants into dewatered reservoirs following dam removal, which would inhibit restoration of native vegetation, is of great concern. We focused on predicting long-distance dispersal of invasive exotic plants rather than diffusive spread because local sources of invasive species have been surveyed. We included the long-distance dispersal vectors: wind, water, birds, beavers, ungulates, and users of roads and trails. Using information about the current distribution of invasive species from two surveys, various geographic information system techniques and models, and statistical methods, we identified high-priority areas for Park staff to treat prior to dam removal, and areas of the dewatered reservoirs at risk after dam removal.
The rapid return of marine-derived nutrients to a freshwater food web following dam removal
Tonra, Christopher M; Sager-Fradkin, Kimberly A.; Morley, Sarah A; Duda, Jeff; Marra, Peter P.
2015-01-01
Dam removal is increasingly being recognized as a viable river restoration action. Although the main beneficiaries of restored connectivity are often migratory fish populations, little is known regarding recovery of other parts of the freshwater food web, particularly terrestrial components. We measured stable isotopes in key components to the freshwater food web: salmon, freshwater macroinvertebrates and a river specialist bird, American dipper (Cinclus mexicanus), before and after removal of the Elwha Dam, WA, USA. Less than a year after dam removal, salmon returned to the system and released marine-derived nutrients (MDN). In that same year we documented an increase in stable-nitrogen and carbon isotope ratios in American dippers. These results indicate that MDN from anadromous fish, an important nutrient subsidy that crosses the aquatic–terrestrial boundary, can return rapidly to food webs after dams are removed which is an important component of ecosystem recovery.
O'Connor, James E.; Duda, Jeff J.; Grant, Gordon E.
2015-01-01
Forty years ago, the demolition of large dams was mostly fiction, notably plotted in Edward Abbey's novel The Monkey Wrench Gang. Its 1975 publication roughly coincided with the end of large-dam construction in the United States. Since then, dams have been taken down in increasing numbers as they have filled with sediment, become unsafe or inefficient, or otherwise outlived their usefulness (1) (see the figure, panel A). Last year's removals of the 64-m-high Glines Canyon Dam and the 32-m-high Elwha Dam in northwestern Washington State were among the largest yet, releasing over 10 million cubic meters of stored sediment. Published studies conducted in conjunction with about 100 U.S. dam removals and at least 26 removals outside the United States are now providing detailed insights into how rivers respond (2, 3).
Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.
Cantwell, Mark G; Perron, Monique M; Sullivan, Julia C; Katz, David R; Burgess, Robert M; King, John
2014-08-01
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the water column prior to and following removal of a small, low-head dam in the Pawtuxet River, an urbanized river located in Cranston, RI, USA. During the study, concentrations of particulate and dissolved PAHs ranged from 21.5 to 103 μg/g and from 68 to 164 ng/L, respectively. Overall, temporal trends of PAHs showed no increases in either dissolved or particulate phases following removal of the dam. Dissolved concentrations of PCBs were very low, remaining below 1.72 ng/L at all sites. Particulate PCB concentrations across sites and time showed slightly greater variability, ranging from 80 to 469 ng/g, but with no indication that dam removal influenced any increases. Particulate PAHs and PCBs were sampled continuously at the site located below the dam and did not show sustained increases in concentration resulting from dam removal. The employment of passive sampling technology and sediment traps was highly effective in monitoring the concentrations and flux of contaminants moving through the river system. Variations in river flow had no effect on the concentration of contaminants in the dissolved or particulate phases, but did influence the flux rate of contaminants exiting the river. Overall, dam removal did not cause measurable sediment disturbance or increase the concentration or fluxes of dissolved or particulate PAHs and PCBs. This is due in large part to low volumes of impounded sediment residing above the dam and highly armored sediments in the river channel, which limited erosion. Results from this study will be used to improve methods and approaches that assess the short- and long-term impacts ecological restoration activities such as dam removal have on the release and transport of sediment-bound contaminants.
Out, out, dam spot! The geomorphic response of rivers to dam removal.
Jonathan Thompson
2005-01-01
About 75,000 irrigation, flood control, and hydropower dams in the United States are aging, deteriorating, or have outlived their useful lives and purposes. Not surprisingly, dam removal is emerging as both a challenge and opportunity for river management and research. Scientists at the PNW Research Station in Corvallis, Oregon, are using scale models and monitoring...
Syed, Atiq U.; Bennett, James P.; Rachol, Cynthia M.
2005-01-01
Four dams on the Kalamazoo River between the cities of Plainwell and Allegan, Mich., are in varying states of disrepair. The Michigan Department of Environmental Quality (MDEQ) and U.S. Environmental Protection Agency (USEPA) are considering removing these dams to restore the river channels to pre-dam conditions. This study was initiated to identify sediment characteristics, monitor sediment transport, and predict sediment resuspension and deposition under varying hydraulic conditions. The mathematical model SEDMOD was used to simulate streamflow and sediment transport using three modeling scenarios: (1) sediment transport simulations for 730 days (Jan. 2001 to Dec. 2002), with existing dam structures, (2) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with existing dam structures, and (3) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with dams removed. Sediment transport simulations based on the 1947 flood hydrograph provide an estimate of sediment transport rates under maximum flow conditions. These scenarios can be used as an assessment of the sediment load that may erode from the study reach at this flow magnitude during a dam failure. The model was calibrated using suspended sediment as a calibration parameter and root mean squared error (RMSE) as an objective function. Analyses of the calibrated model show a slight bias in the model results at flows higher than 75 m3/s; this means that the model-simulated suspended-sediment transport rates are higher than the observed rates; however, the overall calibrated model results show close agreement between simulated and measured values of suspended sediment. Simulation results show that the Kalamazoo River sediment transport mechanism is in a dynamic equilibrium state. Model results during the 730-day simulations indicate significant sediment erosion from the study reach at flow rates higher than 55 m3/s. Similarly, significant sediment deposition occurs during low to average flows (monthly mean flows between 25.49 m3/s and 50.97 m3/s) after a high-flow event. If the flow continues to stay in the low to average range the system shifts towards equilibrium, resulting in a balancing effect between sediment deposition and erosion rates. The 1947 flood-flow simulations show approximately 30,000 m3 more instream sediments erosion for the first 21 days of the dams removed scenario than for the existing-dams scenario, with the same initial conditions for both scenarios. Application of a locally weighted regression smoothing (LOWESS) function to simulation results of the dams removed scenario indicates a steep downtrend with high sediment transport rates during the first 21 days. In comparison, the LOWESS curve for the existing-dams scenario shows a smooth transition of sediment transport rates in response to the change in streamflow. The high erosion rates during the dams-removed scenario are due to the absence of the dams; in contrast, the presence of dams in the existing-dams scenario helps reduce sediment erosion to some extent. The overall results of 60-day simulations for the 1947 flood show no significant difference in total volume of eroded sediment between the two scenarios, because the dams in the study reach have low heads and no control gates. It is important to note that the existing-dams and dams-removed scenarios simulations are run for only 60 days; therefore, the simulations take into account the changes in sediment erosion and deposition rates only during that time period. Over an extended period, more erosion of instream sediments would be expected to occur if the dams are not properly removed than under the existing conditions. On the basis of model simulations, removal of dams would further lower the head in all the channels. This lowering of head could produce higher flow velocities in the study reach, which ultimately would result in accelerated erosion rates.
Risley, John C.; Brewer, Scott J.; Perry, Russell W.
2012-01-01
Computer model simulations were run to determine the effects of dam removal on water temperatures along the Klamath River, located in south-central Oregon and northern California, using flow requirements defined in the 2010 Biological Opinion of the National Marine Fisheries Service. A one-dimensional, daily averaged water temperature model (River Basin Model-10) developed by the U.S. Environmental Protection Agency Region 10, Seattle, Washington, was used in the analysis. This model had earlier been configured and calibrated for the Klamath River by the U.S. Geological Survey for the U.S. Department of the Interior, Klamath Secretarial Determination to simulate the effects of dam removal on water temperatures for current (2011) and future climate change scenarios. The analysis for this report was performed outside of the scope of the Klamath Secretarial Determination process at the request of the Bureau of Reclamation Technical Services Office, Denver, Colorado.For this analysis, two dam scenarios were simulated: “dams in” and “dams out.” In the “dams in” scenario, existing dams in the Klamath River were kept in place. In the “dams out” scenario, the river was modeled as a natural stream, without the J.C. Boyle, Copco1, Copco2, and Iron Gate Dams, for the entire simulation period. Output from the two dam scenario simulations included daily water temperatures simulated at 29 locations for a 50-year period along the Klamath River between river mile 253 (downstream of Link River Dam) and the Pacific Ocean. Both simulations used identical flow requirements, formulated in the 2010 Biological Opinion, and identical climate conditions based on the period 1961–2009.Simulated water temperatures from January through June at almost all locations between J.C. Boyle Reservoir and the Pacific Ocean were higher for the “dams out” scenario than for the “dams in” scenario. The simulated mean monthly water temperature increase was highest [1.7–2.2 degrees Celsius (°C)] in May downstream of Iron Gate Dam. However, from August to December, dam removal generally cooled water temperatures. During these months, water temperatures decreased 1°C or more between Copco Lake and locations 50 miles or more downstream. The greatest mean monthly temperature decrease was 4°C in October just downstream of Iron Gate Dam. Near the ocean, the effects of dam removal were small (less than 0.2°C) for most months. However, the mean November temperature near the ocean was almost 0.5°C cooler with dam removal.
Anadromous sea lampreys recolonize a Maine coastal river tributary after dam removal
Hogg, Robert; Coghlan, Stephen M.; Zydlewski, Joseph D.
2013-01-01
Sedgeunkedunk Stream, a third-order tributary to the Penobscot River, Maine, historically supported several anadromous fishes, including the Atlantic Salmon Salmo salar, AlewifeAlosa pseudoharengus, and Sea Lamprey Petromyzon marinus. However, two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated with removal of the lowermost dam, thus providing access to an additional 4.6 km of lotic habitat. Because Sea Lampreys utilized accessible habitat prior to dam removal, they were chosen as a focal species with which to quantify recolonization. During spawning runs of 2008–2011 (before and after dam removal), individuals were marked with PIT tags and their activity was tracked with daily recapture surveys. Open-population mark–recapture models indicated a fourfold increase in the annual abundance of spawning-phase Sea Lampreys, with estimates rising from 59±4 () before dam removal (2008) to 223±18 and 242±16 after dam removal (2010 and 2011, respectively). Accompanying the marked increase in annual abundance was a greater than fourfold increase in nesting sites: the number of nests increased from 31 in 2008 to 128 and 131 in 2010 and 2011, respectively. During the initial recolonization event (i.e., in 2010), Sea Lampreys took 6 d to move past the former dam site and 9 d to expand into the furthest upstream reaches. Conversely, during the 2011 spawning run, Sea Lampreys took only 3 d to penetrate into the upstream reaches, thus suggesting a potential positive feedback in which larval recruitment into the system may have attracted adult spawners via conspecific pheromone cues. Although more research is needed to verify the migratory pheromone hypothesis, our study clearly demonstrates that small-stream dam removal in coastal river systems has the potential to enhance recovery of declining anadromous fish populations.
Effects of dam removal on brook trout in a Wisconsin stream
Stanley, E.H.; Catalano, M.J.; Mercado-Silva, N.; Orr, C.H.
2007-01-01
Dams create barriers to fish migration and dispersal in drainage basins, and the removal of dams is often viewed as a means of increasing habitat availability and restoring migratory routes of several fish species. However, these barriers can also isolate and protect native taxa from aggressive downstream invaders. We examined fish community composition two years prior to and two years after the removal of a pair of low-head dams from Boulder Creek, Wisconsin, U.S.A. in 2003 to determine if removal of these potential barriers affected the resident population of native brook trout (Salvelinus fontinalis). Despite the presence of other taxa in the downstream reaches, and in other similar streams adjacent to the Boulder Creek (including the brown trout, Salmo trutta), no new species had colonized the Boulder Creek in the two years following dam removal. The adults catch per unit effort (CPUE) was lower and the young-of-the-year catch per unit effort (YOY CPUE) was higher in 2005 than in 2001 in all reaches, but the magnitude of these changes was substantially larger in the two dam-affected sample reaches relative to an upstream reference reach, indicating a localized effect of the removal. Total length of the adults and the YOY and the adult body condition did not vary between years or among reaches. Thus, despite changes in numbers of adults and the YOYs in some sections of the stream, the lack of new fish species invading Boulder Creek and the limited extent of population change in brook trout indicate that dam removal had a minor effect on these native salmonids in the first two years of the post-removal. Copyright ?? 2007 John Wiley & Sons, Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... of Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company, LLC. e. Name of Project: Gibson Dam Hydroelectric...
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... overtopping by wind and wave action. (iii) Dams shall have minimum safety factors as follows: Case Loading... abutments shall be controlled to prevent excessive uplift pressures, internal erosion, sloughing, removal of... before construction begins. (8) All dams shall be removed and the disturbed areas regraded, revegetated...
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... overtopping by wind and wave action. (iii) Dams shall have minimum safety factors as follows: Case Loading... abutments shall be controlled to prevent excessive uplift pressures, internal erosion, sloughing, removal of... before construction begins. (8) All dams shall be removed and the disturbed areas regraded, revegetated...
30 CFR 715.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... overtopping by wind and wave action. (iii) Dams shall have minimum safety factors as follows: Case Loading... abutments shall be controlled to prevent excessive uplift pressures, internal erosion, sloughing, removal of... before construction begins. (8) All dams shall be removed and the disturbed areas regraded, revegetated...
Environmental effects of the Big Rapids dam remnant removal, Big Rapids, Michigan, 2000-02
Healy, Denis F.; Rheaume, Stephen J.; Simpson, J. Alan
2003-01-01
The U.S. Geological Survey (USGS), in cooperation with the city of Big Rapids, investigated the environmental effects of removal of a dam-foundation remnant and downstream cofferdam from the Muskegon River in Big Rapids, Mich. The USGS applied a multidiscipline approach, which determined the water quality, sediment character, and stream habitat before and after dam removal. Continuous water-quality data and discrete water-quality samples were collected, the movement of suspended and bed sediment were measured, changes in stream habitat were assessed, and streambed elevations were surveyed. Analyses of water upstream and downstream from the dam showed that the dam-foundation remnant did not affect water quality. Dissolved-oxygen concentrations downstream from the dam remnant were depressed for a short period (days) during the beginning of the dam removal, in part because of that removal effort. Sediment transport from July 2000 through March 2002 was 13,800 cubic yards more at the downstream site than the upstream site. This increase in sediment represents the remobilized sediment upstream from the dam, bank erosion when the impoundment was lowered, and contributions from small tributaries between the sites. Five habitat reaches were monitored before and after dam-remnant removal. The reaches consisted of a reference reach (A), upstream from the effects of the impoundment; the impoundment (B); and three sites below the impoundment where habitat changes were expected (C, D, and E, in downstream order). Stream-habitat assessment reaches varied in their responses to the dam-remnant removal. Reference reach A was not affected. In impoundment reach B, Great Lakes and Environmental Assessment Section (GLEAS) Procedure 51 ratings went from fair to excellent. For the three downstream reaches, reach C underwent slight habitat degradation, but ratings remained good; reach D underwent slight habitat degradation with ratings changing from excellent to good; and, in an area affected by a 1966 sediment release, reach E habitat rated fair in April 2000 and remained fair in September 2001. The most noticeable habitat change in the three reaches downstream from the dam site was a measurable increase in siltation and embeddedness. Bed-elevation profiles show that bed material upstream from the dam site was remobilized as suspended sediment and bedload, and was redeposited in the reaches below the cofferdam. Deposition was greater in the deep, slow-moving pools than the shallow, fast-moving riffles. For the most part, where deposition took place, deposits were less than 1 foot in thickness. In the year following the removal of the cofferdam, much of the sediment deposited below the dam was moved out of the study reach.
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... at least 3 feet to avoid overtopping by wind and wave action. (iii) Dams shall have minimum safety... pressures, internal erosion, sloughing, removal of material by solution, or erosion of material by loss into... regulatory authority before construction begins. (8) All dams shall be removed and the disturbed areas...
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... at least 3 feet to avoid overtopping by wind and wave action. (iii) Dams shall have minimum safety... pressures, internal erosion, sloughing, removal of material by solution, or erosion of material by loss into... regulatory authority before construction begins. (8) All dams shall be removed and the disturbed areas...
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... at least 3 feet to avoid overtopping by wind and wave action. (iii) Dams shall have minimum safety... pressures, internal erosion, sloughing, removal of material by solution, or erosion of material by loss into... regulatory authority before construction begins. (8) All dams shall be removed and the disturbed areas...
Morley, S.A.; Duda, J.J.; Coe, H.J.; Kloehn, K.K.; McHenry, M.L.
2008-01-01
The impending removal of two dams on the Elwha River in Washington State offers a unique opportunity to study ecosystem restoration at a watershed scale. We examine how periphyton and benthic invertebrate assemblages vary across regulated and unregulated sections of the Elwha River and across different habitat types, and establish baseline data for tracking future changes following dam removal. We collected multiple years of data on physical habitat, water chemistry, periphyton, and benthic invertebrates from 52 sites on the Elwha River and a reference section on the Quinault River, a neighboring basin. We found that substrate in regulated river sections was coarser and less heterogeneous in size than in unregulated sections, and summer water temperature and specific conductivity higher. Periphyton biomass was also consistently higher in regulated than unregulated sections. Benthic invertebrate assemblage structure at sites above both dams was distinct from sites between and below the dams, due in large part to dominance of mayfly taxa compared to higher relative abundance of midges and non-insect taxa at downstream sites. Following dam removal, we anticipate that both periphyton and benthic invertebrate abundance and diversity will temporarily decrease between and below dams as a result of sediment released from behind the reservoirs. Over the long-term, increased floodplain heterogeneity and recolonization by anadromous fish will alter benthic invertebrate and periphyton assemblages via increases in niche diversity and inputs of marine-derived nutrients. The extended timeline predicted for Elwha River recovery and the complexities of forecasting ecological response highlights the need for more long-term assessments of dam removal and river restoration practices.
Fish community response to dam removal in a Maine coastal river tributary
Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory
2016-01-01
Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.
Predicting the thermal effects of dam removal on the Klamath River
Bartholow, J.M.; Campbell, S.G.; Flug, M.
2004-01-01
The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river’s water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river’s seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river’s thermal regime during certain conditions for over 200 km of the mainstem.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 349-173] Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam... the Martin Dam Hydroelectric Project (FERC No. 349), located on the Tallapoosa River in Tallapoosa...
Fish community dynamics following dam removal in a fragmented agricultural stream
Kornis, Matthew; Weidel, Brian C.; Powers, Stephens; Diebel, Matthew W.; Cline, Timpthy; Fox, Justin; Kitchell, James F.
2014-01-01
Habitat fragmentation impedes dispersal of aquatic fauna, and barrier removal is increasingly used to increase stream network connectivity and facilitate fish dispersal. Improved understanding of fish community response to barrier removal is needed, especially in fragmented agricultural streams where numerous antiquated dams are likely destined for removal. We examined post-removal responses in two distinct fish communities formerly separated by a small aging mill dam. The dam was removed midway through the 6 year study, enabling passage for downstream fishes affiliated with a connected reservoir into previously inaccessible habitat, thus creating the potential for taxonomic homogenization between upstream and downstream communities. Both communities changed substantially post-removal. Two previously excluded species (white sucker, yellow perch) established substantial populations upstream of the former dam, contributing to a doubling of total fish biomass. Meanwhile, numerical density of pre-existing upstream fishes declined. Downstream, largemouth bass density was inversely correlated with prey fish density throughout the study, while post-removal declines in bluegill density coincided with cooler water temperature and increased suspended and benthic fine sediment. Upstream and downstream fish communities became more similar post-removal, represented by a shift in Bray-Curtis index from 14 to 41 % similarity. Our findings emphasize that barrier removal in highly fragmented stream networks can facilitate the unintended and possibly undesirable spread of species into headwater streams, including dispersal of species from remaining reservoirs. We suggest that knowledge of dispersal patterns for key piscivore and competitor species in both the target system and neighboring systems may help predict community outcomes following barrier removal.
Interaction of Dams and Landslides--Case Studies and Mitigation
Schuster, Robert L.
2006-01-01
In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.
Facilitating fish passage at ultra low head dams: An alternative to dam removal
Odeh, M.
2004-01-01
Ecosystem sustainability and returning the biological integrity to rivers continue to change the landscape of fish passage technology. Installing a conventional fishways has a limited degree of success in accommodating fish passage needs. Recently, the option of total dam removal has been gaining momentum among resource managers, conservationists, and even engineers. Certain dams, however, cannot be removed, and conventional fishways are either too expensive to build or the real estate is simply not available; yet freedom of passage must be attained. At the Little Falls Dam on the Potomac River a notch in the crest of the dam was installed to accommodate passage of fish. The notch has three labyrinth weirs used for energy dissipation. Water velocities are maintained at less than about 4 m/s anywhere within the passage structure during migratory season of the target species (American shad). Construction of this novel design was recently completed (March 2000) and future biological evaluations are ongoing. Copyright ASCE 2004.
76 FR 13601 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... opportunities for fish passage improvements or dam removal that may fit into existing funding programs directed... uses of dams, anticipated uses of dams, important issues or concerns to dam owners, and owners... dams will also be identified. Affected Public: Business or other for-profit organizations. Frequency...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, T.P.
2009-01-08
The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less
Innovative resettlement schemes planned for the Numata Dam project
NASA Astrophysics Data System (ADS)
Nakayama, Mikiyasu
2003-10-01
The Numata Dam, planned for the Tone River basin of Gunma Prefecture, was the largest dam construction project ever considered in Japan. This dam construction project, however, did not materialize. The proposal for the Numata Dam was first launched in 1959, at a time when the Tokyo Metropolitan area was mushrooming, both in population and industrial activity. The Numata Dam was supposed to be a prioritized dam construction project to alleviate the then anticipated water shortage in the Tokyo Metropolitan area. The Numata Dam plan experienced fierce opposition from those who would have been obliged to resettle, whereas those in Tokyo and the surrounding metropolitan area welcomed the plan. The major concern of the planned Numata Dam was the number of resettlers, which was then estimated to be around 3000 families. The resettlement plan developed for the Numata Dam included some innovative concepts, which may be applicable even today, for dam construction projects in the developing world. The plan included such ideas as (a) having resettlers share existing farmland with the present owners provided improvements were made to increase productivity, (b) paying rent to resettlers, and (c) establishing the Tone River Development Agency. After more than a decade of debate, both at national and local levels, the Numata Dam project was finally discarded through a decision of the Prime Minister in 1972. The resettlement schemes elaborated for the Numata Dam still appear to be innovative. Such schemes may be applied to projects in the developing world, in particular, in nations that are about to take off with economic development. Copyright
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No.: 2183-078] Grand River Dam... Dam Authority. e. Name of Project: Markham Ferry Hydroelectric Project. f. Location: The project is..., Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma 74301-0409, (918) 256-5545 or by e-mail...
Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal
Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J.
2007-01-01
A habitat suitability index (HSI) model was developed for a water quality sensitive fish (Greater Redhorse) and macroinvertebrate (Plecoptera) species to determine the restoration success of the St. John Dam removal for the Sandusky River (Ohio). An ArcGIS?? model was created for pre- and post-dam removal scenarios. Inputs to the HSI model consist of substrate distributions from river surveys, and water level and velocity time series, outputs from a hydrodynamic model. The ArcGIS?? model predicted habitat suitability indices at 45 river cross-sections in the hydrodynamic model. The model was programmed to produce polygon layers, using graphical user interfaces that were displayed in the ArcGIS?? environment. The results of the model clearly show an increase of habitat suitability from pre- to post-dam removal periods and in the former reservoir. The change in suitability of the model is attributed mostly to the change in depth in the river following the dam removal for both the fish and invertebrate species. The results of the invertebrate model followed the same positive trend as species enumerations from the river basin. ?? 2007 Elsevier B.V. All rights reserved.
Duda, Jeffrey J.; Beirne, Matthew M.; Larsen, Kimberly; Barry, Dwight; Stenberg, Karl; McHenry, Michael L.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number of studies in the Elwha River estuary, and focuses on physical and biological aspects of the ecosystem that are expected to change following dam removal. Included are data sets that summarize (1) water chemistry samples collected over a 16 month period; (2) beach seining activities targeted toward describing the fish assemblage of the estuary and migratory patterns of juvenile salmon; (3) descriptions of the aquatic and terrestrial invertebrate communities in the estuary, which represent an important food source for juvenile fish and are important water quality indicators; and (4) the diet and growth patterns of juvenile Chinook salmon in the lower Elwha River and estuary. These data represent baseline conditions of the ecosystem after nearly a century of changes due to the dams and will be useful in monitoring the changes to the river and estuary following dam removal.
A not-so-funny thing happened on the way to relicensing the Edwards Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayer, F.J.; Isaacson, M.
1995-12-31
What started out as a seemingly straightforward and simple exercise, obtaining a new FERC license for the Edwards Dam in Augusta, Maine, turned out to be anything but straightforward and far from simple. This article tells the story of one of the more interesting and possibly precedent setting cases in the {open_quotes}class of 93{close_quotes} and is presented in three sections: (1) the history of the Edwards Dam and the FERC regulatory process through the spring of 1995; (2) Edwards` response to the dam removal campaign; and (3) recommendations for FERC licensees threatened by dam removal during relicensing.
Upper York Creek Dam Removal, Fish Passage, and Ecosystem Restoration
Information about the Upper York Creek Dam Removal, Fish Passage, and Ecosystem Restoration part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No.: 12478-003] Gibson Dam... Commission and is available for public inspection. a. Type of Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company...
Hamilton,; Rondorf, Dennis W.; Hampton,; Quinones,; Simondet,; Smith,
2011-01-01
For decades the long-standing conflict in the Klamath River Basin over water and fish resources has persisted. In an effort to resolve these disputes, PacifiCorp and interested parties negotiated, wrote, and signed the Klamath Hydroelectric Settlement Agreement (KHSA) in 2010, calling for the potential removal of the four lower dams on the Klamath River mainstem. The KHSA established a process known as the Secretarial Determination, which includes 1) conducting new scientific studies and a re-evaluation of existing studies found in the FERC record and from other sources, and 2) evaluating the potential environmental and human effects of such an action pursuant to National Environmental Policy Act, California Environmental Quality Act, and other applicable laws. In March 2012, the Secretary of the Interior will decide whether removal of these dams on the Klamath River: 1) will advance salmonid fisheries, and 2) is in the public interest. In this report, we summarize anticipated effects to fish resources under two management scenarios: 1) current conditions with dams in place and without the programs and actions in the Klamath Basin Restoration Agreement (KBRA), and 2) removal of the lower four dams plus programs and actions called for in the KBRA and KHSA. This information will aid the Secretary of the Interior in determining whether dam removal and implementation of KBRA will advance restoration of salmonid (salmon and trout) fisheries.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-384] Grand River Dam.... Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Project. f. Location: The proposed non... Council, Grand Dam River Authority, P.O. Box 409, Vinita, Oklahoma 74301, (918) 256-5545. i. FERC Contact...
Brenkman, S.J.; Pess, G.R.; Torgersen, C.E.; Kloehn, K.K.; Duda, J.J.; Corbett, S.C.
2008-01-01
The restoration of salmonids in the Elwha River following dam removal will cause interactions between anadromous and potamodromous forms as recolonization occurs in upstream and downstream directions. Anadromous salmonids are expected to recolonize historic habitats, and rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus) isolated above the dams for 90 years are expected to reestablish anadromy. We summarized the distribution and abundance of potamodromous salmonids, determined locations of spawning areas, and mapped natural barriers to fish migration at the watershed scale based on data collected from 1993 to 2006. Rainbow trout were far more abundant than bull trout throughout the watershed and both species were distributed up to river km 71. Spawning locations for bull trout and rainbow trout occurred in areas where we anticipate returning anadromous fish to spawn. Nonnative brook trout were confined to areas between and below the dams, and seasonal velocity barriers are expected to prevent their upstream movements. We hypothesize that the extent of interaction between potamodromous and anadromous salmonids will vary spatially due to natural barriers that will limit upstream-directed recolonization for some species of salmonids. Consequently, most competitive interactions will occur in the main stem and floodplain downstream of river km 25 and in larger tributaries. Understanding future responses of Pacific salmonids after dam removal in the Elwha River depends upon an understanding of existing conditions of the salmonid community upstream of the dams prior to dam removal.
Dam Breach Release of Non-Cohesive Sediments: Channel Response and Recovery Rates
NASA Astrophysics Data System (ADS)
Collins, M. J.; Boardman, G.; Banks, W.; Andrews, M.; Conlon, M.; Dillow, J. J. A.; Gellis, A.; Lowe, S.; McClain, S.; Miller, A. J.; Snyder, N. P.; Wilcock, P. R.
2014-12-01
Dam removals featuring unchecked releases of non-cohesive sediments are excellent opportunities to learn more about stream channel response to abrupt increases in bed material supply that can occur deliberately or by natural processes like landslides and volcanic eruptions. Understanding channel response to sediment pulses, including response rates, is essential because human uses of river channels and floodplains are impacted by these events as are aquatic habitats. We had the opportunity to study a dam removal site at the Simkins Dam in Maryland, USA, that shares many important geophysical attributes of another well-studied dam removal in the humid northeast United States [Merrimack Village Dam, New Hampshire; Pearson et al., 2011]. The watershed sizes are the same order of magnitude (102 km2), and at both sites relatively low head dams were removed (~ 3-4 m) and ~60,000 m3 of dominantly sand-sized sediments discharged to low-gradient reaches immediately downstream. Analyzing four years of repeat morphometry and bed sediment grain size surveys at the Simkins site on the Patapsco River, as well as continuous discharge and suspended sediment gaging data, we clearly document a two-phase response in the upstream reach as described by Pearson et al. [2011] for their New Hampshire site and noted at other dam removals [e.g., Major et al., 2012]. In the early phase, approximately 50% of the impounded sediment mass was eroded rapidly over a period of about three months when flows were very modest (Figure 1). After incision to base level and channel widening in the former impoundment, a second phase began when further erosion depended on floods large enough to access impounded sediments more distant from the newly-formed channel. We also found important differences in the upstream responses at the Maryland and New Hampshire sites that appear to be related to valley type (non-glaciated versus glaciated, respectively). Response variances immediately downstream between the respective sites are potentially related to local gradient and hydraulics.
East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.
2015-01-01
As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.
Is Dam Removal a Benefit for Environment? Input of Sedimentary Archives
NASA Astrophysics Data System (ADS)
Debret, M.; Laberdesque, Y.; Patault, E.; Copard, Y.; Koltalo, F.; Marcotte, S.; Sabatier, P.; Develle, A. L.; Chaumillon, E.; Coulombier, T.; Deloffre, J.; Fournier, M.; Landemaine, V.; Laignel, B.; Desmet, M.
2016-12-01
In October 2015, the scientific news EOS entitled: « Contaminated sediment and dam removal: problem or opportunity? ». This title clearly highlights the problems that societies of every country are facing: many dam are about to exceed their engineered life expectancies and large quantities of contaminated sediments are stored by theses structures. Moreover in Europe, since the 2000s, the European legislative and regulatory framework highlights the consideration of the morphological operation for hydro-systems. The objective of achieving good ecological status of waters by 2015 brings watershed management authorities to consider the removal of dams to restore the free movement of sediment. But until now, the impacts associated with the removal of structures are poorly studied. The Martot dam, chosen in this study is located on the Eure River (Seine river tributary, north of France). It is an ideal case study, because its coming destruction, for ecological continuity restoration, is a "priority" and a large quantity of contaminated sediments is supposed to be stored upstream, related to high industrial concentration since decades. We investigated the evolution of the hydro-sedimentary transfers on the watershed of the Eure River and determined the nature of the contaminants stored in the sediments that are subject to be remobilized after the dam removal. To achieve these goals, we reconstructed the Eure catchment area history by studying seismic profiles, in-situt high frequency monitoring (since 2 years: flow, electrical conductivity, temperrature, turbidity, suspended particulate matter concentration) and sedimentary cores. Then, the nature, origin and timing of pollutants stored in the Eure sediments were determined. The next step will be to evaluate their bio-accessibility and the danger for trophic chain and evaluate if the removal was a benefit or problem for environment.
NASA Astrophysics Data System (ADS)
Lee, A. A.; Crosato, A.; Omer, A. Y. A.; Bregoli, F.
2017-12-01
The need for accurate and robust predictive methods of assessing fluvial ecosystems is highlighted by the accelerating practice of dam removal. Dam removal can be a restorative measure, but the sudden release of impounded sediment and change in flow regime may negatively impact aquatic biota and their habitat. This study assesses the performance of a quasi-three-dimensional morphodynamic numerical model, coupled with habitat suitability indices, to predict short-term impacts to Chinook salmon (Oncorhynchus tshawytscha) spawning habitat from dam removal. The 2007 removal of Marmot Dam on the Sandy River (Oregon, U.S.A.) is used as a case study. Delft3D-FLOW is employed to simulate changes in river channel topography, sediment composition and hydrodynamic conditions for a 20-kilometer reach of the Sandy River. The transport of non-uniform sediment and three-dimensional flow effects are included in the model. Output parameters such as flow depth, velocity and substrate are processed to evaluate habitat quality in the year following the Marmot Dam removal. Impacts are evaluated across four life-stages of Chinook salmon. As a hindcast analysis, the morphodynamic model sufficiently reproduces the evolution of river morphology at the reach-scale while requiring only a low level of calibration. The model performs well in predicting impacts to fish passage, but carries more uncertainty for developing life stages. By coupling flow-sediment-biota interactions, this method shows strong potential for habitat assessment in unsteady and non-uniform environments. Computation time is a primary constraint, as it limits grid-cell resolution, modelling of suspended sediment and capacity to characterize the sediment grain size distribution. Research on the effects of suspended sediment on habitat quality is ongoing, and further research is recommended for modelling reservoir erosion processes numerically.
Channel evolution on the dammed Elwha River, Washington, USA
Draut, A.E.; Logan, J.B.; Mastin, M.C.
2011-01-01
Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.
78 FR 41056 - Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... applications for original licenses for the Red River Lock and Dam No. 5 Hydroelectric Project (FERC Project No. 12758-004), Red River Lock and Dam No. 4 Hydroelectric Project (FERC Project No. 12757- 004), and Red... be located on the Red River in Louisiana. The Lock and Dam No. 5 Project would be located in Bossier...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... feasibility of the Palo Verde Diversion Dam Hydroelectric Project (Palo Verde Diversion Dam Project or project... Southern California Edison transmission line located approximately one mile west of the Palo Verde Dam. An...
Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce
2011-07-01
To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human premolar teeth. Recordings were made from 11 healthy teeth in 9 subjects (aged 16-30 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, the dam significantly decreased the mean blood flow by 80%. Injecting LA and cavity preparation had no significant effect. Removal and replacement of the pulp reduced the mean blood flow by 58%. There was no further change when the pulp was removed. With red light, the dam reduced the signal from intact teeth by 60%. Injecting LA and cavity preparation had no significant effect. The signal fell by 67% after pulp removal and replacement and did not change significantly when the pulp was removed. Opaque rubber dam minimises the contribution of non-pulpal tissues to the laser Doppler signal recorded from premolars. Using dam, the pulp contributed about 60% to the blood flow signal with both red and infrared light. The difference between them in this respect was not significant. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taber, J. S.; Pompeii, B. J.; Nicoletti, C.; Lopez-Morales, C. A.
2010-12-01
The Northeast United States contains more dams than any other region in the country but it lacks structures on the scale of the Hoover or Bonneville dams in the American West. This work addresses why the Northeast lacks such large dams and how the pattern of small dams within the region shaped its social development. During the twentieth century, changing social and economic conditions rendered the initial purposes of many dams in the region moot, but these structures continued to influence hydrologic conditions and the provision of ecosystem services to an expanding population. The continued existence of many of these dams resulted from a worldview unable to conceive of dam removal as it did to the economic or environmental services provided by the structure. Documenting the process by which society developed alternatives to dam building in this region can contextualize the origins and contingent character of ideas about dam removal. The overarching theme in this process is the deindustrialization of the Northeast, which pitted the interests of industrial cities undergoing economic reorganization, emerging suburban communities, and growing service industries in the region. This paper considers changing attitudes toward dams as part of a four step process: (1) although the mill dams of the industrial revolution remained after electrification rendered manufacturers independent of direct water power in the early twentieth century, deindustrialization reshaped the political and legal responses to flooding by stregnthening the political and economic position of service industries and suburban residential interests; (2) the most tangible response to this development was proposed federal investment in dam building in the region between the 1930s and the 1950s; (3) political conflicts between local interests and federal proposals for dam construction slowed down the dam building process and enabled people to consider alternative strategies for flood control and power generation; and (4) these alternatives included conservation measures such as the preservation of wetlands, but they also included the construction of coal and nuclear power plants in place of hydroelectric dams. Documenting the complexities underlying dam building and its alternatives in a deindustrializing region saddled with obsolete dams can contextualize contemporary debates regarding the maintenance or removal of old dams.
54. Downstream face of Agua Fria project's diversion dam showing ...
54. Downstream face of Agua Fria project's diversion dam showing initial masonry construction and poured concrete capping. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
Potential responses of riparian vegetation to dam removal
Shafroth, P.B.; Friedman, J.M.; Auble, G.T.; Scott, M.L.; Braatne, J.H.
2002-01-01
Throughout the world, riparian habitats have been dramatically modified from their natural condition. Dams are one of the principal causes of these changes, because of their alteration of water and sediment regimes (Nilsson and Berggren 2000). Because of the array of ecological goods and services provided by natural riparian ecosystems (Naiman and Decamps 1997), their conservation and restoration have become the focus of many land and water managers. Efforts to restore riparian habitats and other riverine ecosystems have included the management of flow releases downstream of dams to more closely mimic natural flows (Poff et al. 1997), but dam removal has received little attention as a possible approach to riparian restoration.
Influence of groundwater pumping on streamflow restoration following upstream dam removal
Constantz, J.; Essaid, H.
2007-01-01
We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter-watersbed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/ groundwater simulations (using MODFLOW-2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi-arid, and and conditions. As a result of including the impact of groundwater pumping, post-dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi-arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal.
Rachol, Cynthia M.; Fitzpatrick, Faith A.; Rossi, Tiffiny
2005-01-01
In a study to understand the historical effects of the construction and decommissioning of dams on the Kalamazoo River, Plainwell to Otesgo, Michigan, and to simulate channel changes that may result if the dams were removed, early to mid-1800s General Land Office surveys and aerial photographs from 1938, 1981, and 1999 were compared in order to identify historical changes in the river’s planform. This analysis of the 80-mile reach from Morrow Dam to the river mouth at Saugatuck provided insight into how susceptible the river has been to channel migration. The comparison showed that changes in channel width and location were caused mainly by construction of dams and subsequent water-level adjustments in the impounded reaches upstream from the dams. Braiding also occurred downstream from one of the dams. Minor changes in channel form that were not caused by the dams, such as the development and cutoff of meander bends, were observed. A more detailed study in a 5-mile reach passing through the Plainwell and Otsego City Dams included compiling existing valley cross section and longitudinal profile data into a database, assessing bank stability, and using a hydrologic model to simulate the channel as if the dams were removed. Fifty-four valley cross sections compiled from United States Geological Survey and consultant data sets were used as a base for a bank-stability assessment and to design a hypothetical stable channel without the two dams. The channel design involved adjusting the slope, hydraulic geometry, and floodplain width to ensure that water could be transferred through the reach without increasing flooding or erosion problems. The bank-stability assessment focused on conditions that are critical to failure. This was accomplished through the use of a two step process. The first involved evaluating the sediment removed from the bank toe when the stage is high. The second involved calculating the factor of safety for the bank based on the water table being elevated higher than the stage, mimicing a bank storage effect. Using these paired proccesses, two scenarios of critical conditions were evaluated: dams present and dams removed. Results of the bank assessments showed that, under both critical-condition scenarios, the streambanks were more susceptible to toe erosion than to block failure. As toe erosion progresses, the banks will eventually collapse as supporting material underneath is removed. Toe erosion for the damsremoved scenario resulted in higher amounts of erosion than for the dams-present scenario, leading to an overall decrease in bank stability. Effects of vegetation on the bank stability were variable; stability for some banks increase if vegetation was present but remain the same for other banks.
Ellsworth, Craig M.; VanderKooi, Scott P.
2011-01-01
The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.
30 CFR 717.18 - Dams constructed of or impounding waste material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... shall design, locate, construct, operate, maintain, modify, and abandon or remove all dams (used either... design. (ix) A permanent identification marker, at least 6 feet high that shows the dam number assigned... located on or immediately adjacent to each dam within 30 days of certification of design pursuant to this...
Dental Assistant, Advanced. Revision
1989-02-01
compound , or model- ing plaster instead of the rubber dam retainer Removing the Rubber Dam (figures 4-4 and 4-5). A ligature can also be used After the...roots or split crowns. If a is checked. When directed by the dental officer, ligature, dental compound , or modeling plaster remove the rubber dam...34clean" and 1 " dirty " JOB STEPS 1. Wash hands. 2. Recor! patient’s name. 3. Explain procedure to patient. 4. Tell patient to lie in bed or be seated
In this study, methods and approaches were developed and tested to assess changes in contaminant fluxes resulting from dam removal in a riverine system. Sediment traps and passive samplers were deployed to measure particulate and dissolved PAHs and PCBs in the water column prior...
Measurement of gravel bed load using impact plates
USDA-ARS?s Scientific Manuscript database
Accurate determinations of the rate of bed load transport are difficult to make but important for determining the fate of sediment released after the removal of a dam. Two dams were removed from the Elwha River in the state of Washington beginning in 2011, and 72 impact plates were installed downst...
Simulation of morphological changes due to dam removal
USDA-ARS?s Scientific Manuscript database
In this chapter, a brief review of numerical models and their applications for impact assessment of dam removal on sediment transport and morphological changes in alluvial rivers is given. As an example, a one-dimensional river flow and sediment transport model, CCHE1D, is applied to assess morpholo...
ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Randy M; Gross, Ian G; Smith, Cyrus M
2011-11-01
Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulnessmore » of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... Utilities. e. Name of Project: Upper Red Lake Dam Hydroelectric Project. f. Location: On the Red River, in.... Description of Request: The licensee proposes to amend the license for the Upper Red Lake Dam Hydroelectric... Project No. 2464), which is located immediately downstream from the Upper Red Lake Dam Project; (2) the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14063-000] Amnor Hydro West... feasibility of constructing the Hiram M. Chittenden Lock and Dam Hydroelectric Project (Hiram Dam Project or project) located at the Hiram M. Chittenden Lock and Dam facility owned and operated by the U.S. Army...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
...), proposing to study the feasibility of the DaGuerre Point Dam Hydropower Project (DaGuerre Point Dam Project or project) to be located at the U.S. Army Corps of Engineers' (USACE) DaGuerre Point Dam, on the...
The effects of habitat restoration on endangered fishes in the Upper Klamath Basin
NASA Astrophysics Data System (ADS)
Vanderkooi, S.; Burdick, S.; Ellsworth, C.
2009-12-01
The Klamath Basin has been prominent in the debate over the use of water in the arid west for nearly a decade. Principle competing demands include threatened and endangered species, agriculture, recreation, and Tribal rights. In an effort to recover two endangered fish species, the Lost River sucker and the shortnose sucker, several large-scale restoration projects have recently been undertaken in the basin. These include restoration of 7000 acres of drained wetlands in the Williamson River Delta in 2007 and 2008 and the removal of Chiloquin Dam on the Sprague River in 2008. The objectives of these projects include increasing amounts of usable aquatic habitats, restoring watershed function, improving water quality, and improving access to and connectivity among habitats. The U.S. Geological Survey is involved in a series of collaborative, interdisciplinary research efforts to evaluate the effectiveness of these restoration projects. Effectiveness is being evaluated by physical, biological and ecological metrics. Our focus is on the biology and ecology of endangered suckers. In the Williamson River Delta, we’re collecting data on the distribution, habitat use, relative abundance, and health and condition of early life-history stages of endangered suckers. Results to date indicate larval as well as age-0 and age-1 juvenile suckers are using newly created habitats in the delta. Preliminary results from comparisons of age-0 suckers captured within and outside of the delta suggest those using the restored habitats are in better condition. In the Sprague River, we’re studying the behavior, run timing, and distribution of adult suckers during spawning migrations as well as the relative abundance, species composition, and timing of emigrating larval suckers. Preliminary results indicate adult suckers migrated into the reach previously impounded by Chiloquin Dam in greater numbers than in the past. While these results indicate a positive response to dam removal, population-level effects of such restoration projects on suckers will not be fully evident for years to come because of the long life span and slow maturation rates of these fish. Continued monitoring of physical and biological changes due to restoration is essential to determining the effectiveness of these actions and informing future efforts.
NASA Astrophysics Data System (ADS)
Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean
2008-04-01
SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.
Lower Granite Dam Smolt Monitoring Program, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensik, Fred; Rapp, Shawn; Ross, Doug
2004-08-01
The 2003 fish collection season at Lower Granite Dam Juvenile Fish Facility (LGR) was characterized by water temperatures, total flows and spill that were below the five year average, low levels of debris, and increased smolt collection numbers compared to 2002 with the exception of unclipped sockeye/kokanee. There were 6,183,825 juvenile salmonids collected. Of these, 6,054,167 were transported to release sites below Bonneville Dam, 5,957,885 by barge and 96,282 by truck. An additional 102,340 fish were bypassed back to the river, primarily due to research projects with another 62,122 bypassed through the PIT-tag bypass system. According to the PTAGIS database,more » 152,268 PIT-tagged fish were detected at Lower Granite Dam. Of these, Smolt Monitoring Staff recorded 345 PIT-tagged raceway and sample mortalities. Of the 6,183,825 total fish collected, 113,290 were PIT-tagged or radio tagged and 380 were sacrificed by researchers. The collection included 836,885 fish that had hatchery marks other than clipped fins (elastomer, freeze brands or Coded Wire Tags). An estimated 54,857 incidental fish were collected with an additional 8,730 adult salmonids removed from the separator.« less
Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.
2015-01-01
The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... Competing Applications; McKay Dam Hydropower, LLC On May 31, 2011, McKay Dam Hydropower, LLC filed an... study the feasibility of the McKay Dam Hydroelectric Project (project) to be located at the McKay dam near Pendleton in Umatilla County, [[Page 57732
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's Gibson dam on the Sun River in Lewis and Clark and Teton...
NASA Astrophysics Data System (ADS)
Comes, E.; Jaeger, K. L.
2016-12-01
Lowhead dams have had a profound cumulative impact on rivers and streams. Their removal is an increasingly popular restoration method, however, geomorphic response remains poorly resolved. This study quantified geomorphic change following two lowhead dam removal in the Olentangy River and the downstream Scioto River, which flows through Columbus, Ohio. A paired control-treatment design compared change above and below a removed dam (treatment) to an existing dam (control) in each river system over a two and three-year period. Upstream treatment reaches included passive and active restoration via in-channel engineering. Channel change was quantified through repeat bathymetric surveys using an acoustic Doppler current profiles and near-surface riverbed substrate sampling at several time periods ( 2 surveys/year). Differencing of digital elevation models from each bathymetric survey quantified changes in erosion and deposition patterns and bathymetric heterogeneity. Results indicate upstream treatment reaches were net erosional with overall substrate coarsening that included D84 sand to gravel clast size shifts. The Olentangy River's downstream treatment reach experienced concurrent erosion and deposition within a given survey although net erosion dominated the first year of the three-year study period. The downstream treatment reach also experienced substantial grain size fluctuation between surveys with little overall change. Unanticipated engineering activities in the downstream treatment reach of the Scioto River confounded geomorphic change in this reach. Non-metric multidimensional scaling analysis indicates a moderate, but abrupt change towards overall increased heterogeneity in the first year following dam removal in the downstream reach with little overall change in the following two years. Active restoration activities in the upstream treatment reach resulted in abrupt, but slight shifts towards decreased bathymetric heterogeneity despite substantial riverbed regrading to create pool-riffle features. Repeat intra-annual surveys revealed that the river system experiences clear seasonal patterns of erosion and deposition with associated substrate coarsening and fining that would not be evident in typical dam removal studies that generally are limited to annual surveys.
Simulation and control of sediment transport due to dam removal
USDA-ARS?s Scientific Manuscript database
This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess a long-term morphological response to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
..., 75-foot-long prefabricated concrete walls attached to the downstream side of the Corps dam which... on the left bank of the dam, requiring removal of part of the left dam abutment; (2) a proposed...
Control of Sediment Availability on the Path of Channel Recovery in Bedload-Dominated Rivers
NASA Astrophysics Data System (ADS)
Doyle, H.; Renshaw, C. E.; Magilligan, F. J.
2015-12-01
Following a disturbance, a channel can recover to an equilibrium form by adjusting its slope, width, depth, grain size, or some combination of these dimensions that define the recovery path. In this study we relate the channel recovery path to the quantity and caliber of sediment introduced due to dam construction/removal or erosion caused by flooding. We suggest that the recovery path of a channel depends on the availability of sediment of a size that is transported as bedload during bankfull flows (the "mobile fraction"). We define a ratio, S*, of the sediment volume added to the channel because of the disturbance to the average annual sediment flux. We compare S* values to the recovery path of New England gravel-bedded streams following two dam emplacements and removals and flooding related to Tropical Storm Irene. Pelham Dam in Pelham, MA (removed 2012) and Kendrick Dam in Pittsford, VT (removed 2014) were on similar streams: drainage areas ~25 km2, slopes 1-2%, and bankfull widths ~10 m. Sediment was excavated from both impoundments prior to removal, resulting in lower S* values. Irene-affected study sites are on ~10 gravel-bedded streams in VT, NH, and MA. Sediment input at these sites is due to bank failures and landslides, many of which continue to supply sediment to the channel four years after flooding. To track recovery we collected annual topographic and sediment size data and calculated Shields numbers to determine if channels had reached an equilibrium form. We define equilibrium for bedload rivers as Shields numbers at bankfull discharge equal to that required to initiate bedload transport. Following dam emplacements the channels failed to recover because mobile sediment was unavailable. Fining dominated the recovery at Irene-affected sites (~10% reduction in sediment size) and dam removal sites (up to 30-60% reduction) with little post-disturbance change in channel geometry, possibly due to the limited mobile fraction.
Sediment Transport Over Run-of-River Dams
NASA Astrophysics Data System (ADS)
O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.
2016-12-01
Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 349-173] Alabama Power, Inc.; Supplement to Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam... Impact Statement (draft EIS) for the Martin Dam Hydroelectric Project No. 349- 173 (Martin Dam Project...
Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.
2008-01-01
Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.
Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot
Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi
2016-01-01
Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery. PMID:27532150
Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.
Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo
2016-01-01
Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.
Freshwater mussel survey for the Columbia Dam removal, Paulins Kill, New Jersey
Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Silldorff, Erik L.
2018-06-04
Semi-quantitative mussel surveys, conducted by the U.S. Geological Survey and the Delaware Riverkeeper Network in cooperation with The Nature Conservancy, were completed in the vicinity of the Columbia Dam, on the Paulins Kill, New Jersey, in August 2017 in order to document the mussel species composition and relative abundance prior to removal of the dam. Surveys were conducted from the Brugler Road Bridge downriver approximately 2,000 meters (m) to the Columbia Dam and downriver from the dam about 300 m to 75 m upriver from the confluence of the Paulins Kill with the Delaware River. Sixteen sections (average length=175 m) were surveyed by personnel snorkeling or SCUBA diving; 13 sections were upriver from the dam, and 3 were downriver from the dam. Mussels, as they were encountered by surveyors, were removed from the sediment, immediately identified to species, and replaced in their original collection locations. Habitat data were collected for each surveyed section. Upriver and downriver from the dam, river margins with dense vegetation were examined for mussels by personnel using snorkels in transects (approximately 25 meters) perpendicular to river flow every 50 m on both sides of the river. Only two species were found upriver from the dam, and those were present in relatively low numbers. Catch per unit effort is reported here within parentheses as the average across upriver sections in number of mussels per person hour of survey time: 42 Elliptio complanata (2.6) and 1 Pyganodon cataracta (0.1) were found upriver from the dam. No mussels were found in the dense vegetation either upriver or downriver of the dam by surveyors using snorkels. Significantly higher species richness and mussel catch per unit effort were found downriver from the dam than upriver, including 106 E. complanta (32.5), 27 Utterbackiana implicata (8.2), 1 Alasmidonta undulata (0.4), 2 Lampsilis cariosa (0.5), 6 Lampsilis radiata (2.1), 4 P. cataracta (1.1), and 1 Strophitus undulatus (0.4). The average habitat assessment score did not differ upriver and downriver from the dam.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-403] Grand River Dam.... Project No.: 1494-403. c. Date Filed: April 11, 2012. d. Applicant: Grand River Dam Authority. e. Name of.... Tamara E. Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 1494-410] Grand River Dam.... Project No: 1494-410. c. Date Filed: August 6, 2012. d. Applicant: Grand River Dam Authority. e. Name of... River Dam Authority, P.O. Box 409, Vinita, Oklahoma 74301, (918) 256-5545. i. FERC Contact: Lorance...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-391] Grand River Dam.... Project No.: 1494-391. c. Date Filed: January 7, 2011. d. Applicant: Grand River Dam Authority (GRDA). e... Contact: Tamara E. Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, OK...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... Competing Applications; Kachess Dam Hydropower, LLC On May 31, 2011, Kachess Dam Hydropower, LLC filed an... study the feasibility of the Kachess Dam Hydroelectric Project (project) to be located at Kachess Reservoir dam, owned and operated by the U.S. Bureau of Reclamation near Cle Elum and Roslyn in Kittitas...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2524-019] Grand River Dam.... Date Filed: January 21, 2011. d. Applicant: Grand River Dam Authority. e. Name of Project: Salina... Zumwalt-Smith, General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, OK 73401-0409. Tel: (918...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... approval for a new information collection to conduct a pilot study to test the Elwha River Dam Removal and... important gap in research on indirect and nonuse values provided by habitat restoration. A study of the... losses associated with the reservoir. The ability to link results of the study to precise measures of...
Simulation of sediment transport due to dam removal and control of morphological changes
USDA-ARS?s Scientific Manuscript database
This paper presents two case studies of post dam removal sedimentation in the United States. Two different one-dimensional channel evolution simulation models were used: CCHE1D and CONCEPTS, respectively. The first case is the application of CCHE1D to assess the long-term (up to 10 years) morphologi...
Eliminating Contractor Inspections of Federal Water Projects Could Save Millions.
1981-09-29
of the Buffalo Creek, West Virginia, Mine Refuse Embankment and the 1976 Teton Dam failure in Idaho have been fairly recent reminders of the risk...project failures, heightened by the Teton Dam failure, prompted several Government-sponsored dam safety reviews in the late 1970’s. Following these reviews...inspection approach was evaluated as part of the Government-wide,’ Presidentially directed Dam Safety Review of 1977. The Bureau’s 1976 Teton Dam
NASA Astrophysics Data System (ADS)
Han, Yue; Zheng, Wei; Guo, Junshan; Ma, Yihe; Ding, Junqi; Zhu, Lingkai; Che, Yongqiang; Zhang, Yanpeng
2018-02-01
Abstract . The Three Gorges dam of China is one of the largest and expensive hydropower projects of the world. The four main purposes of the project are flood control,energy production, improved navigation and fresh water supply. The dam project has been completed and running successfully with the potential benefits. However, this project is still a controversial issue among many environmentalists and socialists due to various impacts. This study focuses on the benefit and the impacts of the project, and also evaluates the performance of the project using multi-criteria analysis (MCA) approach from a sustainable perspective. Different sustainability criteria related with the dam project have been identified and used for the ranking and rating process. The final result of MCA comes with this scoring process and pairwise comparison, which evaluates the performance of the project considering different positive and negative aspects.
Catchment-wide survival of wild- and hatchery-reared Atlantic salmon smolts in a changing system
Stich, Daniel S.; Bailey, Michael M.; Holbrook, Christopher M.; Kinnison, Michael T.; Zydlewski, Joseph D.
2015-01-01
We developed a hierarchical multistate model to estimate survival of Atlantic salmon (Salmo salar) smolts in the Penobscot River, USA, over a decade during which two mainstem dams were removed from the catchment. We investigated effects of (i) environmental factors, (ii) rearing history, and (iii) management actions, including dam removal, turbine shutdown, and installation of new powerhouses. Mean ± SD smolt survival per kilometre was higher through free-flowing reaches of the catchment (0.995 ± 0.004·km−1) than through reaches containing dams that remain in the system (0.970 ± 0.019·km−1). We observed maximum survival between 12 and 17 °C and at intermediate discharges (1200 m3·s−1). Smolt survival increased concurrent with dam removal and decreased following increases in hydropower generation. The greatest increase in smolt survival followed seasonal turbine shutdowns at a dam located on the largest tributary to the Penobscot River, while other shutdowns had little influence. Our model provides a useful tool for assessing changes to survival of migratory species and will be useful for informing stocking plans to maximize numbers of smolts leaving coastal systems.
143. VIEW OF PARAPET WALL WITH ONE OF THE LAMP ...
143. VIEW OF PARAPET WALL WITH ONE OF THE LAMP COLUMNS (WITH LAMP REMOVED). PARAPET WALL FLANKS ROAD ACROSS TOP OF DAM. THIS SECTION OF PARAPET WALL IS ON THE SOUTH SIDE OF THE DAM, LOOKING SOUTHWEST (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
... hydropower at the U.S. Army Corps of Engineers (Corps) C.W. Bill Young Lock and Dam located on the Allegheny... the proposed C.W. Bill Young Lock and Dam Projects: Lock+ Hydro Friends Fund XXXIX's project (Project... attached to the downstream side of the Corps dam which would support one frame module; (2) each frame...
51. McMILLAN DAM Photographic copy of historic photo, 1937 ...
51. McMILLAN DAM - Photographic copy of historic photo, 1937 (original print filed in Work Projects Misc., File E, National Archives, Washington, D.C.) photographer unknown 'CCC ENROLLEES RECONSTRUCTING McMILLAN DAM ON PECOS RIVER DAMAGED BY FLOODS - CARLSBAD FEDERAL RECLAMATION PROJECT, NEW MEXICO' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven
2017-01-01
Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.
NASA Astrophysics Data System (ADS)
Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward
2017-04-01
Large-scale water storage infrastructure in the Conterminous United States (CONUS) provides a means of regulating the temporal variability in water supply with storage capacities ranging from seasonal storage in the wetter east to multi-annual and decadal-scale storage in the drier west. Regional differences in water availability across the CONUS provides opportunities for optimizing water dependent economic activities, such as food and energy production, through storage and transportation. However, the ability to sufficiently regulate water supplies into the future is compromised by inadequate monitoring of non-federally-owned dams that make up around 97% of all dams. Furthermore, many of these dams are reaching or have exceeded their economic design life. Understanding the role of dams in the current and future landscape of water requirements in the CONUS is needed to prioritize dam safety remediation or identify where redundant dams may be removed. A national water assessment and planning process is needed for addressing water requirements, accounting for regional differences in water supply and demand, and the role of dams in such a landscape. Most dams in the CONUS were designed without knowledge of devastating floods and prolonged droughts detected in multi-centennial paleoclimate records, consideration of projected climate change, nor consideration of optimal operation across large-scale regions. As a step towards informing water supply across the CONUS we present a paleoclimate reconstruction of annual streamflow across the CONUS over the past 555 years using a spatially and temporally complete paleoclimate record of summer drought across the CONUS targeting a set of US Geological Survey streamflow sites. The spatial and temporal structures of national streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western US, however, similar modes of temporal variability were rarely present prior to the 1950s. The 20th century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflow in the Pacific Northwest and Northeast are negatively correlated with the central US suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts. The converging issues of a slowly growing US population, evolving demands for food, energy, and water, aging dams, and reduced water storage capacity through decommissioning and sedimentation highlights the pressing need for a national water assessment and a subsequent national water plan. There are many factors that need to be understood in order to appropriately assess dam and reservoir requirements across the CONUS and to improve water use and flood protection efficiency. In addition to historical and paleoclimate-informed surface water supply, factors requiring consideration in planning for future dam and reservoir infrastructure include: -the role of conjunctive surface and groundwater storage and use; -basin-scale operational strategies to balance sectoral water demand; -projections of surface water supply; -projections of regional water demands; -impacts of water conservation; and -the influence of water policy and financial instruments.
1989-08-01
remove by gravity -washed out 585.8 i -- 89. 2 gneiss from inner - ibarrel Bottom of hole 89.2’ Tape depth 89.0’ 90 -0 I-Note: 6-7-84 water level after...barrel and5 _-_89.3 washed all meterial Bottom of hole 89.3’ left in outer barrel- 90 out of barrel befor- drilling for pull I Tape depth 89.0’ Note
1983-02-01
wash it out and mix it with grease or other media . Heated over char- coal, red ochre takes on a brighter color; the washing removes dulling impurities...effect of dye; they were mixed with various media for painting the wood and leather of boxes, arrows, spears, shields, tipis, robes, parfleche cases...etc. The media for applying the pigments varied. In general, face paint * was mixed with grease or saliva, while the medium for wood or skins was
Worldwide Emerging Environmental Issues Affecting the U.S. Military
2010-09-01
scale, biological process to remove CO2 from the environment and transform it into solid carbonate. The procedure produces approximately two pounds of...Resources Fuel Violence in Eastern D.R. Congo……………………………..5 7.2 Protests in Peru over Dam Irrigation and Hydroelectric Project Part of a Regional...the synergies developed among the three on chemicals and waste — the Basel, Rotterdam and Stockholm Conventions (see First Joint Meeting of the Main
29. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo ...
29. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, Buffalo, NY, driven by Allis Chalmers motors (size 3 HSO, head 230, 120 cpm, 1750, rpm, Impulse dia. 15) installed in the 1960s and used for water-cooling system for 230-kv cable; the cables have been removed and the pumps are not currently used. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
NASA Astrophysics Data System (ADS)
Gardes, T.; Debret, M.; Copard, Y.; Patault, E.; Deloffre, J.; Marcotte, S.; Develle, A. L.; Sabatier, P.; Chaumillon, E.; Coulombier, T.; Revillon, S.; Nizou, J.; Laberdesque, Y.; Koltalo, F.
2017-12-01
The Martot Dam is located in the Eure River Watershed (Normandy, France), few hundred meters upstream the Eure-Seine Rivers confluence. In the context of the European Water Framework Directive (2000/60/EC), the French Authorities planned to remove this dam in 2017. Nevertheless, impacts of the removal remain poorly studied. Classically, dam blocked sedimentary transfers downstream, but here, sediments are not blocked behind the dam but stored three hundred meters upstream in a hydraulic annex, called the Martot Pond. Furthermore, this pond is submitted to the tidal flow from the Seine Estuary despite the Martot Dam. The aim of the study is to evaluate the dam removal impacts on sedimentary transfers and re-suspension of contaminated sediments stored in the Martot Pond and the Eure River's channel. Concerning past transfers and sediments accumulation in the Eure River Watershed, sedimentary archives have been cored, before dam removal, at the Martot Pond and the Les Damps Pond (located 10km upstream the latter). Dating of sedimentary cores for both ponds indicates a sedimentation rate around 1 cm y-1. Trace metal elements quantification showed a wide metallic contamination with highest concentrations evidenced during the 1950-1960's (As: 13-22 mg kg-1; Cd: 40-55 mg kg-1; Cr: 170-210 mg kg-1; Cu: 400-490 mg kg-1; Hg: 2.3 mg kg-1; Mn: 1,280-2,200 mg kg-1; Ni: 64-75 mg kg-1; Zn: 905-990 mg kg-1) and the 1990-2000's (Cr: 95-215 mg kg-1; Ni: 100 mg kg-1; Pb: 670-855 mg kg-1). These variations of concentrations along cores can be associated with industrial past of the Eure River Watershed and sources of contamination can be identified. Thereby, Zn, Ni or Hg contamination could be associated with wastes of battery factory released in the Eure River during the economic recovery, while Pb contamination is linked to the activities of a cathode-ray tubes factory. Metals quantification in core materials highlighted anthropogenic impacts in the Eure River Watershed. These contaminated sediments could be re-suspended and transferred to the Seine River in case of remobilization in Martot Pond and the Eure River's channel after dam removal.
Initial fluvial response to the removal of Oregon's Marmot Dam
Jon J. Major; Jim E. O' Connor; Gordon E. Grant; Kurt R. Spicer; Heather M. Bragg; Abagail Rhode; Dwight Q. Tanner; Chauncey W. Anderson; J. Rose Wallick
2008-01-01
A temporary, 14-meter-high earthen cofferdam standing in place of Marmot Dam was breached on 19 October 2007, allowing the 80-kilometer-long Sandy River to flow freely from Mount Hood, Oregon, to the Columbia River for the first time in nearly 100 years. Marmot Dam is one of the largest dams in the Western United States (in terms of height and volume of stored sediment...
The geomorphic influences of beaver dams and failures of beaver dams
NASA Astrophysics Data System (ADS)
Butler, David R.; Malanson, George P.
2005-10-01
Uncounted millions of beaver ponds and dams existed in North America prior to European contact and colonization. These ponds acted as sediment traps that contained tens to hundreds of billions of cubic meters of sediment that would otherwise have passed through the fluvial system. Removal of beavers by overtrapping in the 16th-19th centuries severely reduced their number and the number of ponds and dams. Dam removal altered the fluvial landscape of North America, inducing sediment evacuation and entrenchment in concert with widespread reduction in the wetlands environments. Partial recovery of beaver populations in the 20th century has allowed reoccupation of the entirety of the pre-contact range, but at densities of only one-tenth the numbers. Nevertheless, modern beaver ponds also trap large volumes of sediment in the high hundred millions to low billions of cubic meters range. Failure of beaver dams is a more common phenomenon than often assumed in the literature. During the past 20 years, numerous cases of dam failure have been documented that resulted in outburst floods. These floods have been responsible for 13 deaths and numerous injuries, including significant impacts on railway lines.
Transport, dam passage, and size selection of adult Atlantic Salmon in the Penobscot River, Maine
Sigourney, Douglas B.; Zydlewski, Joseph D.; Hughes, Edward; Cox, Oliver
2015-01-01
Prior to 2012, returning adult Atlantic Salmon Salmo salar had to pass through fishways at three dams in the lower section of the Penobscot River, Maine: Veazie Dam (river kilometer [rkm] 48; removed in 2013), Great Works Dam (rkm 60; removed in 2012), and Milford Dam (rkm 62). To facilitate better passage through the lower river, a fish transport program was implemented in 2010 and 2011. Fish were captured at Veazie Dam and were either transported by truck above Milford Dam (TRKD group) or released into the head pond above Veazie Dam (run-of-the-river [ROR] group). To assess the efficacy of transport, we used PIT telemetry to compare the performance and passage of TRKD and ROR fish based on their (1) success in reaching one of the three dams upstream of Milford Dam, (2) time taken to reach an upstream dam (transit time), and (3) success in passing that upstream dam. In both years, the percentage of fish detected at upstream dams was higher for the TRKD group (82.4% in 2010; 78.6% in 2011) than for the ROR group (41.3% in 2010; 22.4% in 2011). In addition, median transit time was faster for TRKD fish (7 d in 2010; 5 d in 2011) than for ROR fish (23 d in 2010; 25 d in 2011). However, passage success through the upstream dams did not differ between the two release groups. Our analysis also revealed a strong, negative size-selective force on dam passage: larger fish were consistently less likely to successfully pass dams than smaller fish. Finally, environmental conditions also influenced passage success. Our analysis shows that the transport of adult Atlantic Salmon can be an effective means by which to increase migration success in systems where upstream passage is poor.
Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling
George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.
2006-01-01
- Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.
Rheaume, S.J.; Hubbell, D.L.; Rachol, C.M.; Simard, A.; Fuller, L.M.
2004-01-01
The removal of the Otsego City Dam on the Kalamazoo River at Otsego, Mich., is under consideration by the Michigan Department of Environmental Quality and the city of Otsego. The historical discharge of papermill waste containing polychlorinated biphenyls from sources upstream from the dam has led the U.S. Environmental Protection Agency to designate the Kalamazoo River from Morrow Dam near Comstock to its mouth near Saugatuck as a Federal Superfund site. The papermill waste is concentrated in organic sediment and kaolinite clay, with the sediment containing as much as 94 milligrams per kilogram polychlorinated biphenyls. This contaminated sediment could move if the dam is removed; therefore, it is necessary to estimate the characteristics and configuration of the sediment before removal plans begin. Data from augered sections and sediment cores show that the current Otsego City impoundment sediments were deposited in two distinctly different sedimentary environments: (1) lacustrine sediments consisting of organic-rich silt and clay, fine to medium sand, and some gravel deposited in a repetitive, cyclic fashion related to former stream velocities when the Otsego City impoundment water levels were 2-4 feet higher (1880s-1960s), and from downstream movement of lacustrine sediments during the removal of the upstream Plainwell Dam superstructure in the 1980s; and (2) more recent (1980s-2002) coarse-grained alluvium deposited on top of the lacustrine sediments. The volume of instream sediment contained within the Otsego City impoundment is estimated to be about 457,270 cubic yards. This estimate is based on the composite thicknesses of the lacustrine deposits and overlying alluvium, which were determined to contain PCBs, and does not include bank or flood-plain deposits.
NASA Astrophysics Data System (ADS)
Woelfle-Erskine, C. A.; Wilcox, A. C.
2009-12-01
Active restoration approaches such as channel reconstruction have moved beyond the realm of small streams and are being applied to larger rivers. Uncertainties arising from limited knowledge, fluvial and ecosystem variability, and contaminants are especially significant in restoration of large rivers, where project costs and the social, infrastructural, and ecological costs of failure are high. We use the case of Milltown Dam removal on the Clark Fork River, Montana and subsequent channel reconstruction in the former reservoir to examine the use of historical research and uncertainty analysis in river restoration. At a cost of approximately $120 million, the Milltown Dam removal involves the mechanical removal of approximately 2 million cubic meters of sediments contaminated by upstream mining, followed by restoration of the former reservoir reach in which a single-thread meandering channel is being constructed. Historical maps, surveys, photographs, and accounts suggest a conceptual model of a multi-thread, anastomosing river in the reach targeted for channel reconstruction, upstream of the confluence of the Clark Fork and Blackfoot Rivers. We supplemented historical research with analysis of aerial photographs, topographic data, and USGS stage-discharge measurements in a lotic but reservoir-influenced reach of the Clark Fork River within our study area to estimate avulsion frequency (0.8 avulsions/year over a 70-year period) and average rates of lateral migration and aggradation. These were used to calculate the mobility number, a dimensionless relationship between channel filling and lateral migration timescales that can be used to predict whether a river’s planform is single or multi-threaded. The mobility number within our study reach ranged from 0.6 (multi-thread channel) to 1.7 (transitional channel). We predict that, in the absence of active channel reconstruction, the post-dam channel pattern would evolve to one that alternates between single and multi-threaded. We propose that multiple working hypotheses should be applied to managing uncertainty as part of an adaptive management plan for restoration in our study area and elsewhere. In this approach, restoration planning and implementation would be underpinned by an explicitly identified set of uncertainties and hypotheses about channel processes and post-restoration responses. This framework would allow for and embrace channel processes such as bifurcations and avulsions that are excluded from dominant approaches to channel reconstruction, which emphasize single-thread meandering planforms.
Fearnside, P M
2001-03-01
Brazil's Tucuruí Dam provides valuable lessons for improving decision-making on major public works in Amazonia and elsewhere. Together with social impacts, which were reviewed in a companion paper, the project's environmental costs are substantial. Monetary costs include costs of construction and maintenance and opportunity costs of natural resources (such as timber) and of the money invested by the Brazilian government. Environmental costs include forest loss, leading to both loss of natural ecosystems and to greenhouse gas emissions. Aquatic ecosystems are heavily affected by the blockage of fish migration and by creation of anoxic environments. Decay of vegetation left in the reservoir creates anoxic water that can corrode turbines, as well as producing methane and providing conditions for methylation of mercury. Defoliants were considered for removing forest in the submergence area but plans were aborted amid a public controversy. Another controversy surrounded impacts of defoliants used to prevent regrowth along the transmission line. Mitigation measures included archaeological and faunal salvage and creation of a "gene bank" on an island in the reservoir. Decision-making in the case of Tucuruí was virtually uninfluenced by environmental studies, which were done concurrently with construction. The dam predates Brazil's 1986 requirement of an Environmental Impact Assessment. Despite limitations, research results provide valuable information for future dams. Extensive public-relations use of the research effort and of mitigation measures such as faunal salvage were evident. Decision-making was closely linked to the influence of construction firms, the military, and foreign financial interests in both the construction project and the use of the resulting electrical power (most of which is used for aluminum smelting). Social and environmental costs received virtually no consideration when decisions were made, an outcome facilitated by a curtain of secrecy surrounding many aspects of the project. Despite improvements in Brazil's system of environmental impact assessment since the Tucuruí reservoir was filled in 1984, many essential features of the decision-making system remain unchanged.
NASA Astrophysics Data System (ADS)
Wilcox, A. C.
2010-12-01
The removal of Milltown Dam in 2008 from the Clark Fork River, Montana, USA, lowered base level at the dam site by 9 m and triggered erosion of nearly 600,000 metric tons of predominantly fine reservoir sediment. Bedload and bed-material sampling, repeat topographic surveys, sediment transport modeling, geochemical fingerprinting of downstream sediments, and Lidar analysis have all been applied to study the upstream and downstream effects of the dam removal. In the years since dam breaching, successive years with similar peak flows (3-year recurrence interval) were followed by a third year with below-average runoff. Nearly all of the documented reservoir erosion occurred in the first year, when sand and silt was eroded and transported downstream. In subsequent years, minimal reservoir erosion occurred, in part as a result of active management to prevent further reservoir erosion, but coarse material eroded from the reservoir has dispersed downstream. Upstream responses in this system have been strongly mediated by Superfund remediation activities in Milltown Reservoir, in which over two million metric tons of contaminated sediments have been mechanically excavated. Downstream aggradation has been limited in the main channel but was initially substantial in bars and side channels of a multi-thread reach 21 to 25 km downstream of the dam site, suggesting that channel change has been influenced far more by the antecedent depositional environment than by proximity to the source of the sediment pulse. Comparison of observed erosion with pre-removal modeling shows that reservoir erosion exceeded model predictions by two orders of magnitude in the unconfined Clark Fork arm of the reservoir. In addition, fine reservoir sediments predicted to move exclusively in suspension traveled as bedload at lower transport stages. The resulting fine sediment deposition in substrate interstices, on bars, and in side channels of the gravel- and cobble-bed Clark Fork River is the most significant and lasting change to downstream geomorphic and ecological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerer, L.B.; Scudder, T.
1999-03-01
Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.
NASA Astrophysics Data System (ADS)
Mishra, Aanand Kumar; Singh, Ajay; Bahadur Singh, Akal
2018-06-01
High rise arc dams are widely used in the development of storage type hydropower project because of the economic advantage. Among different phases considered during the lifetime of dam, control of dam’s safety and performance becomes more concerned during the lifetime. This paper proposed the 3 – D finite element method (FEM) for stress and deformation analysis of double curvature arc dam considering the non – linearity of foundation rock following the Hoek – Brown Criterion. The proposed methodology is implemented through MATLAB scripting language and studied the double curvature arc dam proposed for Budhi Gandaki hydropower project. The stress developed in the foundation rock, compressive and tensile stress acting on the dam are investigated and analysed for the reservoir level variation. Deformation at the top of the dam and in the foundation rock is also investigated. In addition to that, stress and deformation variation in the foundation rock is analysed for various rock properties.
Code of Federal Regulations, 2014 CFR
2014-04-01
... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...
Code of Federal Regulations, 2013 CFR
2013-04-01
... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...
Code of Federal Regulations, 2012 CFR
2012-04-01
... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...
Code of Federal Regulations, 2011 CFR
2011-04-01
... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...
Code of Federal Regulations, 2010 CFR
2010-04-01
... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...
Montgomery Point Lock and Dam, White River, Arkansas
2016-01-01
ER D C/ CH L TR -1 6- 1 Monitoring Completed Navigation Projects (MCNP) Program Montgomery Point Lock and Dam, White River, Arkansas Co...Navigation Projects (MCNP) Program ERDC/CHL TR-16-1 January 2016 Montgomery Point Lock and Dam, White River, Arkansas Allen Hammack, Michael Winkler, and...20314-1000 Under MCNP Work Unit: Montgomery Point Lock and Dam, White River, Arkansas ERDC/CHL TR-16-1 ii Abstract Montgomery Point Lock and
Study on Reventment-Protected and Non-Bottom-Protected Plunge Pool of High Arch Dam
NASA Astrophysics Data System (ADS)
Yingkui, Wang; Quxiu, Cao; Fanhui, Kong
2018-05-01
Lots of high arch dam have the characteristics of “High head, Large discharge and Narrow river valley”, therefore, the security researches of energy dissipation were always the focus in these hydro-projects. Statistically, the trajectory type energy dissipation is the most widely used in the built high arch dams, and the water plunge poor were always set downstream the dam body. However, the widely used protected plunge poor need large investment with the disadvantage of complicated operation and maintenance. Along with the construction of concrete high arch dam in the Southwest China, the river overburden and water cushion were deep in dam site, which is becoming a new characteristic of these hydro-projects. Accordingly, the deep water cushion can be used for the energy dissipation design, such as the “Reventment-Protected and Non-Bottom-Protected Plunge Pool”, which has the advantage of more simplified project design and more economy investment.
Zydlewski, Joseph D.; Kinnison, Michael T.; Holbrook, Christopher M.
2011-01-01
Survival, distribution, and behavior of hatchery (n = 493) and naturally reared (n = 133) smolts of Atlantic salmon Salmo salar migrating through the Penobscot River and estuary in Maine were evaluated with acoustic telemetry in 2005 and 2006. Survival and use of a secondary migration path (the Stillwater Branch) were estimated with a multistate mark–recapture model. Higher rates of mortality per kilometer (range = 0.01–0.22) were observed near release sites and within reaches that contained three particular dams: Howland, West Enfield, and Milford dams. Estimated total survival of tagged hatchery smolts through entire individual reaches containing those dams ranged from 0.52 ( 0.18) to 0.94 ( 0.09), whereas survival through most of the reaches without dams exceeded 0.95. Of those smolts that survived to the Penobscot River–Stillwater Branch split at Marsh Island, most (≥74%) remained in the main stem around Marsh Island, where they experienced lower survival than fish that used the Stillwater Branch. Movement rates of hatchery-reared smolts were significantly lower through reaches containing dams than through reaches that lacked dams. Smolts arriving at dams during the day experienced longer delays than smolts arriving at night. Planned removal of two dams in this system is expected to enhance the passage of smolts through the main-stem corridor. However, the dams currently scheduled for removal (Great Works and Veazie dams) had less influence on smolt survival than some of the dams that will remain. This case study shows that by examining prerestoration migration dynamics throughout entire river systems rather than just in the vicinity of particular dams, tracking studies can help prioritize restoration efforts or predict the costs and benefits of future hydrosystem changes.
Burdick, S.M.; Hightower, J.E.
2006-01-01
In 1998, the Quaker Neck Dam was removed from the Neuse River near Goldsboro, North Carolina, restoring access to more than 120 km of potential main-stem spawning habitat and 1,488 km of potential tributary spawning habitat to anadromous fishes. We used plankton sampling and standardized electrofishing to examine the extent to which anadromous fishes utilized this restored spawning habitat in 2003 and 2004. Evidence of spawning activity was detected upstream of the former dam site for three anadromous species: American shad Alosa sapidissima, hickory shad A. mediocris, and striped bass Morone saxatilis. The percentages of eggs and larvae collected in the restored upstream habitat were greater in 2003, when spring flows were high, than in 2004. River reaches where spawning occurred were estimated from egg stage and water velocity data. Spawning of American shad and striped bass occurred primarily in main-stem river reaches that were further upstream during the year of higher spring flows. Hickory shad generally spawned in downstream reaches and in tributaries above and below the former dam site. These results demonstrate that anadromous fishes will take advantage of upper basin spawning habitat restored through dam removal as long as instream flows are adequate to facilitate upstream migration.
Dam Removal Provides Fish Passage, Water Quality Benefits
The Bishopville Pond Dam in Maryland has been replaced with a series of pools, runs and step-like structures, improving water quality downstream and providing access for key fish species to spawn upstream.
Early vegetation development on an exposed reservoir: implications for dam removal.
Auble, Gregor T; Shafroth, Patrick B; Scott, Michael L; Roelle, James E
2007-06-01
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.
Early vegetation development on an exposed reservoir: Implications for dam removal
Auble, G.T.; Shafroth, P.B.; Scott, M.L.; Roelle, J.E.
2007-01-01
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition. ?? 2007 Springer Science+Business Media, LLC.
72. Headgates for Agua Fria project canal on east end ...
72. Headgates for Agua Fria project canal on east end of diversion dam. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ
10 CFR 904.5 - Revenue requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-386] Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments, Motions To Intervene, and... August 16, 2010. d. Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Hydroelectric...
10 CFR 904.5 - Revenue requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...
10 CFR 904.5 - Revenue requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...
10 CFR 904.5 - Revenue requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...
1981-07-01
performed on an "as needed" basis. Sediment and accumulated debris are frequently removed from the spillway since the dam is used for water supply. 4.3...Rugr Unvriy oi uvyo M.10 J n 19504. IVION OF ATE REOURESBETHANY ’d -HOLE DAM , M-23M-i Staiiddpoismsl f aieoii AR/Z Recet aluvi m V poite inporlydaie
33 CFR 263.23 - Small flood control project authority (Section 205).
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation, except as may result from the normal procedure applying to projects authorized after submission of preliminary examination and survey reports. (b) Non-Federal responsibilities for dam and reservoir project. All new projects under this authority, including dams and reservoirs, are considered local...
33 CFR 263.23 - Small flood control project authority (Section 205).
Code of Federal Regulations, 2011 CFR
2011-07-01
... operation, except as may result from the normal procedure applying to projects authorized after submission of preliminary examination and survey reports. (b) Non-Federal responsibilities for dam and reservoir project. All new projects under this authority, including dams and reservoirs, are considered local...
Pandit, Maharaj K; Grumbine, R Edward
2012-12-01
Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. ©2012 Society for Conservation Biology.
Survival of Atlantic salmon Salmo salar smolts through a hydropower complex.
Stich, D S; Bailey, M M; Zydlewski, J D
2014-10-01
This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06-0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river. © 2014 The Fisheries Society of the British Isles.
Survival of Atlantic salmon Salmo salar smolts through a hydropower complex
Stich, D.S.; Bailey, M.M.; Zydlewski, Joseph D.
2014-01-01
This study evaluated Atlantic salmon Salmo salar smolt survival through the lower Penobscot River, Maine, U.S.A., and characterized relative differences in proportional use and survival through the main-stem of the river and an alternative migration route, the Stillwater Branch. The work was conducted prior to removal of two main-stem dams and operational changes in hydropower facilities in the Stillwater Branch. Survival and proportional use of migration routes in the lower Penobscot were estimated from multistate (MS) models based on 6 years of acoustic telemetry data from 1669 smolts and 2 years of radio-telemetry data from 190 fish. A small proportion (0·12, 95% c.i. = 0·06–0·25) of smolts used the Stillwater Branch, and mean survival through the two operational dams in this part of the river was relatively high (1·00 and 0·97). Survival at Milford Dam, the dam that will remain in the main-stem of the Penobscot River, was relatively low (0·91), whereas survival through two dams that were removed was relatively high (0·99 and 0·98). Smolt survival could decrease in the Stillwater Branch with the addition of two new powerhouses while continuing to meet fish passage standards. The effects of removing two dams in the main-stem are expected to be negligible for smolt survival based on high survival observed from 2005 to 2012 at those locations. Survival through Milford Dam was been well below current regulatory standards, and thus improvement of passage at this location offers the best opportunity for improving overall smolt survival in the lower river.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-16
... at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the... process for licensing hydropower development at non-powered dams and closed-loop pumped storage projects...-powered dam versus closed- loop pumped storage) affect the steps included in a two-year process? 3.9...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... generator; (3) a concrete tailrace releasing water into the river downstream of the dam; (4) a switchyard... study the feasibility of the Peoria Dam, Illinois--Hydroelectric Water Power Project (Peoria Dam Project...-long, 50-foot-wide, 55-foot-high powerhouse containing two horizontal Kaplan pit turbines each with a...
Project Operations: Flood Control Operations and Maintenance Policies
1996-10-30
President and an internal review performed by the Corps task group shortly after failure of the Teton Dam , we have undertaken numerous actions to modify our...practice for design, construction and operation of Corps reservoir projects. One important item as a result of the Teton Dam failure and the review...1 Glossary 1-4 1-2 CHAPTER 2 - Dam Operations Management Purpose 2-1 2-1 Policy 2-2 2-1 Emergency Plan 2-3 2-1 Dam Safety Training 2-4 2-2
1996-03-01
VII-7 VIII-1 Computer generated rendering of flood detention dam ................ VIII-3 VIII-2 American River Watershed Project Schedule...shows a plan view of the dam and plate 19 shows the dam in section and profile. Figure VIII-1 is a computer generated rendering of the dam. Table VIH-1...Williamson Act render the land ineligible for continued protection under that law, the local sponsor would be responsible for compensating the landowners
Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, James P.
2004-12-01
In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported adult spring chinook from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. A total of 239 spring chinook were outplanted in August for natural spawning in the basin.« less
Rheaume, S.J.; Rachol, C.M.; Hubbell, D.L.; Simard, Andreanne
2002-01-01
The removal of the remnants of three hydroelectric dams on the Kalamazoo River near Plainwell, Otsego, and Allegan, Michigan, has been proposed. The benefits of this removal include returning the Kalamazoo River to its pre-dam flow, increasing recreational use and safety on the river, and improving aquatic habitat. The U.S. Environmental Protection Agency has designated this reach of the Kalamazoo River as a Federal Superfund site because of the historical discharge of papermill waste containing polychlorinated biphenyls. Much of this waste material remains concentrated in organic sediment and kaolinite clay deposited upstream from the three dam foundations. Sediment containing up to 150 milligrams per kilogram polychlorinated biphenyls could move if dam foundations are removed; therefore, it is necessary to estimate the characteristic and configuration of the sediment before work begins. Data collected from augered sections and sediment cores show that impoundment sediments were deposited in two distinctly different sedimentary environments. Interbedded lacustrine sediments that overlie the pre-dam channel surface consist of organic-rich silt and clay, fine to medium sand, and some gravel. These materials were deposited in a repetitive, cyclic fashion related to former stream velocities when the impoundment water levels were 5-10 feet higher. Lowering of these water levels and demolition of the superstructures of these dams resulted in erosion of much of these instream lacustrine sediments and subsequent deposition of coarse-grained alluvium in the impounded channel behind the remaining dam foundations. The composite thicknesses of the lacustrine deposits and overlying alluvium was determined from sediment cores collected from each impoundment. The volume of instream sediment contained in each impoundment is estimated to be about 77,600 cubic yards at the Plainwell impoundment; 268,900 cubic yards at the Otsego impoundment; and 1,192,600 cubic yards at the Trowbridge impoundment. Estimates do not include bank or flood-plain deposits.
American Recovery and Reinvestment Act: North Fork Skokomish Powerhouse at Cushman No. 2 Dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Steve; McCarty, Patrick
2013-09-30
The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage sincemore » the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.« less
1979-05-01
White Rock Dam Recreation Area 25 Reservation Highway Recreation Area 27 Brown’s Valley Dike Recreation Area 28 Potential Recreation Areas 28 Section...Development 35 White Rock Dam 35 Reservation Highway 39 Brown’s Valley Dike 39 Land Use Allocation 42 Project Operations ൲ Operations: Recreation--Intensive...Facilities 4 Proposed Facilities v i i u < *1 I_ • In I . .. PROJECT DAT ~PROJECT DATA LAKE TRAVERSE AND RESERVATION DAM Reservoir Flowage rights to
Authorized and Operating Purposes of Corps of Engineers Reservoirs
1992-07-01
Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida
Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change
Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily
2015-01-01
Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological responses.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... construction by SWCD of the proposed Narrows Dam and reservoir, a non-Federal project to be located on... conditions in the affected areas without further development and assumes that irrigation operations would... construction of the 17,000 acre-foot Narrows Dam and reservoir on Gooseberry Creek, pipelines to deliver the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... the base of Mason dam in the vicinity of the exiting discharge via the project's tailrace. Baker... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12686-004] Baker County...: Baker County, Oregon (Baker County). e. Name of Project: Mason Dam Hydroelectric Project. f. Location...
Kijsamanmith, Kanittha; Timpawat, Siriporn; Vongsavan, Noppakun; Matthews, Bruce
2011-06-01
To compare red (635 nm) and infrared (780 nm) light for recording pulpal blood flow from human anterior teeth with a laser Doppler flow meter. Recordings were made from 7 healthy teeth in 5 subjects (aged 22-55 years) using a laser Doppler flow meter (Periflux 4001) equipped with both red and infrared lasers. Average blood flow signals were obtained with both light sources alternately from each tooth under five conditions: intact tooth without opaque rubber dam, intact tooth with dam, after injecting local anaesthetic (3% Mepivacaine) (LA) over the apex of the tooth and cavity preparation to almost expose the pulp, after removal and replacement of the pulp, and with the root canal empty. With infrared light, because of technical limitations, data were obtained for the first three conditions only. The dam significantly decreased the mean blood flow by 82%. Injecting LA and cavity preparation had no significant effect. With red light, dam produced a decrease of 56%, and the resulting signal was reduced by 33% after LA and cavity preparation. The remaining signal fell by 46% after pulp removal and replacement. This contribution of the pulp is similar to that recorded previously with infrared light. There was no significant further change when the pulp was finally removed. The importance of using opaque rubber dam is confirmed. With dam, there is no advantage to using red rather than infrared light, and in each case the pulp contributes less than 50% to the blood flow signal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ellsworth, Craig M.; Martin, Barbara A.
2012-01-01
Data presented in this report is a continuation of a research project that began in 2004. Larval drift parameters measured in 2009 and 2010 were similar to those measured from 2004 to 2008. Most larvae and eggs were collected at the two drift sites downstream of the former Chiloquin Dam (river kilometer 0.7 on the Sprague River and river kilometer 7.4 on the Williamson River). Mean and peak sample densities increased with proximity to Upper Klamath Lake. Peak larval densities continued to be collected between 1 and 3 hours after sunset at Chiloquin, which is the drift site nearest a known spawning area. Catch distribution of larvae and eggs in the lower Sprague and Williamson Rivers suggests that most SNS and LRS spawning continues to occur downstream of the site of the former Chiloquin Dam. The sizes and growth stages indicate that larval emigration from spawning areas resulting from drift occurs within a few days after swim-up. Larval suckers appear to move downstream quickly until they reach suitable rearing habitat.
Little Goose Lock and Dam Removable Spillway Weir
2007-08-01
Washington , Idaho Little Goose o i Lower w t i e s LIeG Harbor Granite BonnevilleW L••oh Dma•= SDam John Day S’°~Lwer1 Monumental __ •_]McNary Dam le Dam...passage route for 115 kcfs. 18 NG-1 1 Assemble at Little Goose or Lewiston rather than Portland 19 NG-12 Lower the pool elevation during construction to
Flint, Lorraine E.; Flint, Alan L.
2012-01-01
Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature projections for the 21st century could be underestimating the actual change.
Exporting dams: China's hydropower industry goes global.
McDonald, Kristen; Bosshard, Peter; Brewer, Nicole
2009-07-01
In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas.
1984-01-01
PROJECT S TYPE OF REPORT & PERIOD COVEREDOSAGE RIVER BASIN ConStruction Foundation OSAGE RIVER MISSOURI Report from September 1966 HARRY S. TRUMAN DAM...OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT VOLUME II TABLE OF...09r IWNI’(ANSAS CITY M?5OU ....... 11 1 O IA R, MISSOURI HARRY S TRUMA DAM & 1K5(V01 = CONSTRUCT"ON FOUNDATION REPORT IGEOLOGIC UNIT DESCRIPTIONS
1980-02-01
Safety Inspection of Dams" are not available. These studies should be performed by a professional engineer experienced in the design and construction...engineer experienced in the design and construction of tailings dams. An inspection and maintenance program should be initiated. Periodic inspections...Page No. SECTION 1 - PROJECT INFORMATION 1.1 General 1 1.2 Description of Project 1 1.3 Pertinent Data 2 SECTION 2 - ENGINEERING DATA 2.1 Design 5 2.2
The Three Gorges Dam of China: Technology to Bridge Two Centuries
ERIC Educational Resources Information Center
Wahby, Wafeek S.
2003-01-01
Some of the most sophisticated 20th-century technologies have been applied to build the largest hydroelectric dam in the world, the Three Gorges Dam Project (TGDP) of China. The author administered a study abroad course in China from May 27 to June 10, 2000, to study the massive project as it approached the halfway mark of its second and most…
77 FR 51993 - Western Technical College; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... hydroelectric generation at the dam. The dam is operated manually in a run-of-river mode (i.e., an operating...) distribution line; and (5) appurtenant facilities. The project would be operated in a run-of-river mode using... could otherwise enter project waters or adjacent non-project lands; Operating the project in a run-of...
Response of Benthic Macroinvertebrate Communities to Increases in Sediment Supply from Dam Removal
NASA Astrophysics Data System (ADS)
Roark, J.; Podolak, C.
2009-12-01
There are approximately 85,000 dams in the United States that have an average age of 51 years and a typical design life of 50 years. An increasingly common management strategy for these dams is to decommission them but the information on environmental impact of releasing impounded sediment on the fresh water ecosystem downstream is unknown. It is expected that the increases in sediment supply could detrimentally impact communities downstream which indicates that a reliable measure of the impact is important in making management decisions. Benthic macroinvertebrate species have been proven as valid indicators of ecosystem health through their response to water quality conditions and have more recently been used to describe ecosystem health from habitat disturbances such as sediment deposition, flow regime changes, and trophic structure changes. The objective of this study is to investigate the use of benthic macroinvertebrate community response from geomorphologic change after a dam removal as a biological indicator of ecosystem health by comparing the results of the current field study to other studies on macroinvertebrate response to dam removal and by contributing to the general knowledge on ecosystem community response to increases in sediment supply. Increasing knowledge on this type of ecosystem response will improve ability to effectively manage dam removal for restoration purposes as well as help us understand ecosystem processes. In order to quantify macroinvertebrate response to sediment deposition for the field study, density and richness of benthic macroinvertebrate species were measured on the Sandy River in Oregon where it was known that stream bed changes had taken place from a dam removal and were quantified for the previous 3 years. It was found that there was a statistically significant difference in species richness among macroinvertebrate communities (p<0.0001, f=0.930) with old habitats richer than new habitats, but there were no significant differences in density. These observations as well as differences in species dominance could be due to water quality conditions and suggests further investigations on water quality conditions in addition to a longer study period with a larger sample size. The existing body of knowledge on macroinvertebrate community response to geomorphologic change suggests that macroinvertebrate communities do react to physical habitat disturbances but they also recover quickly. Density and species richness declines have been observed as the reaction in most cases. The recovery of macroinvertebrates may have an effect on recovery time of other species that are dependent on macroinvertebrates through trophic structures, which has implications for management decisions. Since the data for this field study is partially inconsistent with what was found in previous studies it encourages the biogeoscience community to continue studying benthic macroinvertebrate communities and their response to physical disturbance. More research will help to reinforce the definition of what typical reactions would be from these benthic species and how to apply this information toward a greater understanding of dam removal on ecosystem processes.
Channel response to sediment release: insights from a paired analysis of dam removal
Collins, Mathias J.; Snyder, Noah P.; Boardman, Graham; Banks, William S.; Andrews, Mary; Baker, Matthew E.; Conlon, Maricate; Gellis, Allen; McClain, Serena; Miller, Andrew; Wilcock, Peter
2017-01-01
Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two-phased. We had an opportunity to quantitatively test the two-phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low-head dams were removed (~3–4 m) and ~65 000 m3 of sand-sized sediments were discharged to low-gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two-phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly-formed channel. Fitting functional forms to the data for both sites, we found that two-phase exponential models with changing decay constants fit the erosion data better than single-phase models. Valley width influences the two-phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re-supply from the upstream impoundments, and base flows.
VIEW OF FOSSIL CREEK DIVERSION DAM FROM DOWNSTREAM (INCLUDES 1950s ...
VIEW OF FOSSIL CREEK DIVERSION DAM FROM DOWNSTREAM (INCLUDES 1950s AUTOMATIC/REMOTE CONTROL SLUICE GATE IN UPPER CENTER OF DAM, NORTH SIDE). LOOKING NORTH-NORTHWEST - Childs-Irving Hydroelectric Project, Fossil Creek Diversion Dam, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
1979-04-01
programs for non-Federal dams. (3) To update, verify and complete the National Inventory of Dams. 1.2 DESCRIPTION OF PROJECT a. Location. The Lovejoy Pond...BUREAU OF STANDARDS- 1963-A 41 ANDROSCOGGIN RIVER BASIN NORTH WAYNE ,MAINE LOVEJOY POND DAM ME-00022 0 PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION...side of necessar mnd idenifIr bioc Sigmmber) DAMS, INSPECTION, DAM SAFETY, * Androscoggin River Basin North Wayne, Maine Lovejoy Pond * 20. ABSTRACT
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [INT-FES 11-02] Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA AGENCY: Bureau of Reclamation, Interior... Fish Passage Facilities and Fish Reintroduction Project. SUMMARY: The Bureau of Reclamation...
1981-09-14
DACW-51-81-C-0006 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK AREA & WORK UNIT NUMBERS ~ Flaherty-Giauara Associates...olie It neceary and Idontily b block number) Dam Safety National Dam Safety Program Visual Inspection Lake Muskoday Dam Hydrology, Structural Stability...DELAWARE RIVER BASIN LAKE MUSKODAY DAM SULLIVAN COUNTY, NEW YORK INVENTORY No.NY341 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM J T C NEW YORK
Characteristics of the first stage of constructing the Hoabinh Dam in Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogachenko, P.T.; Godunov, B.I.; Phunc Ne, T.
1985-06-01
As a result of an analysis of the data, investigations, and on-site observations at the Hoa-Binh Dam, Vietnam, the authors conclude: infilling of the rock mass with sand, successful for the Aswan dam, cannot be mechanically transferred to other dams; the possibility of using the energy of the river flow for removing low-quality soils in large amounts from the foundation of rock-fill dams by regulating the sequence of dumping the elements of the dam was confirmed in model investigations and successfully accomplished in the construction of the HoaBinh dam; at the site of the Hoa-Binh dam, observations of the dumpingmore » of the sand-gravel soil into water into a high shoulder did not reveal segregation of this soil, however, the data from investigations in a single borehole contradict the observations -- further on-site observation must therefore be made.« less
Lac Courte Oreilles Hydro Dam Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jason; Meyers, Amy
The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.
Highland, Lynn M.
2008-01-01
The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.
77 FR 40607 - Whitman River Dam, Inc.; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Dam, Inc.; Notice of Availability of Environmental Assessment In accordance with the National... for an original license for the Crocker Dam Hydroelectric Project, to be located on the Whitman River... Energy Regulatory Commission, 888 First Street, Washington, DC 20426. Please affix ``Crocker Dam...
18 CFR 11.5 - Exemption of minor projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Government Dams § 11.5 Exemption of minor projects. No exemption will be made from payment of annual charges for the use of Government dams or tribal lands within Indian reservations but licenses may be issued...
18 CFR 11.5 - Exemption of minor projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Government Dams § 11.5 Exemption of minor projects. No exemption will be made from payment of annual charges for the use of Government dams or tribal lands within Indian reservations but licenses may be issued...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... a Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in the... for inclusion in, the National Register of Historic Places at the Martin Dam Hydroelectric Project...
Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Brian C.; Duke, Bill B.
2004-02-01
In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adultmore » and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.« less
NASA Technical Reports Server (NTRS)
Villareal, J.; Mallery, E.; Lynch, A.; Mills, N.; Baer, L.; Wade, C.; Ronca, A.; Dalton, Donnie (Technical Monitor)
2002-01-01
During labor and birth, fetuses are exposed to considerable physical stimulation associated with labor contractions and expulsion from the womb These forces are important for the neonates' adaptation to tile extrauterine environment. To further our understanding of the relationship between labor and postpartum outcome, we developed a novel method for measuring intrauterine pressure (IUP) in freely-moving, late pregnant and parturient rats that enables us to make precise, reliable measures of the forces experienced by rat fetuses during parturition. A small (1.25 x 4 cm) telemetric blood pressure sensor was fitted within a fluid-filled balloon, similar in size to a full term rat fetus. On Gestational day (G) 19 of the rats' 22/23 day pregnancy, each dam was anesthetized and a balloon/sensor unit surgically implanted within the uterus following removal of two fetuses. Comparisons were made between sensor-implanted dams (IMPL) and a control conditions: 1) LAP-R, laparotomy with two fetuses removed or 2) LAP-NR, laparotomy with no fetuses removed. IUP signals were sampled at 10s intervals from the IMPL dams during labor and birth. Dams in all three conditions were videorecorded enabling us to analyze the effect of the implant on behavioral expressions of parturition. Contraction frequency, duration, pup-to-pup birth intervals and pup-oriented activities of the dams measured from one hour prior to the first pup birth until the birth of the third pup were unaffected by the sensor implant. Intrauterine telemetry of freely-moving dams offers significant advantages over conventional hardwired IUP measurement techniques. These findings establish and validate intrauterine telemetry as a reliable, non-invasive technique for quantifying pressures associated with parturition.
An assessment of fish assemblage structure in a large river
Kiraly, Ian A.; Coghlan, S.M.; Zydlewski, Joseph D.; Hayes, D.
2015-01-01
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main-stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main-stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free-flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs.
Enhancing ecosystem restoration efficiency through spatial and temporal coordination.
Neeson, Thomas M; Ferris, Michael C; Diebel, Matthew W; Doran, Patrick J; O'Hanley, Jesse R; McIntyre, Peter B
2015-05-12
In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.
Enhancing ecosystem restoration efficiency through spatial and temporal coordination
Neeson, Thomas M.; Ferris, Michael C.; Diebel, Matthew W.; Doran, Patrick J.; O’Hanley, Jesse R.; McIntyre, Peter B.
2015-01-01
In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems. PMID:25918378
Risk Costs for New Dams: Economic Analysis and Effects of Monitoring
NASA Astrophysics Data System (ADS)
Paté-Cornell, M. Elisabeth; Tagaras, George
1986-01-01
This paper presents new developments and illustrations of the introduction of risk and costs in cost-benefit analysis for new dams. The emphasis is on a method of evaluation of the risk costs based on the structure of the local economy. Costs to agricultural property as well as residential, commercial, industrial, and public property are studied in detail. Of particular interest is the case of sequential dam failure and the evaluation of the risk costs attributable to a new dam upstream from an existing one. Three real cases are presented as illustrations of the method: the Auburn Dam, the Dickey-Lincoln School Project, and the Teton Dam, which failed in 1976. This last case provides a calibration tool for the estimation of loss ratios. For these three projects, the risk-modified benefit-cost ratios are computed to assess the effect of the risk on the economic performance of the project. The role of a warning system provided by systematic monitoring of the dam is analyzed: by reducing the risk costs, the warning system attenuates their effect on the benefit-cost ratio. The precursors, however, can be missed or misinterpreted: monitoring does not guarantee that the risks to human life can be reduced to zero. This study shows, in particular, that it is critical to consider the risk costs in the decision to build a new dam when the flood area is large and densely populated.
Dudley, Robert W.
1999-01-01
INTRODUCTION In July 1997, the Federal Energy Regulatory Commission (FERC) issued a Final Environmental Impact Statement recommending that the 162-year-old Edwards Dam on the Kennebec River in Augusta, Maine, be removed. The impoundment formed by Edwards Dam extends about 15 mi to the city of Waterville, near the confluence of the Sebasticook River with the Kennebec River. The impoundment has a surface area of 1,143 acres, a gross storage of approximately 740 million ft3, and a usable storage of about 184 million ft3 (Stone and Webster, 1995a). According to FERC, removal of the 917-ft-long, 24-ft-high timber crib and concrete structure would restore 15 mi of riverine habitat, improve passage of ocean-migrating fish species native to the Kennebec River, and result in substantial recreational enhancements (Federal Energy Regulatory Commission, 1997). Because the removal of Edwards Dam would change the hydraulic characteristics of the river in the present-day impoundment, the potential transport of erodible, fine-grained sediment currently in the impoundment is a concern. Of particular concern is the erosion and transport of this sediment to areas downstream from the dam, a process that could introduce possible bacterial and chemical contamination and could impede river navigation as a result of sediment deposition. In an effort to build upon available information on the composition of the riverbed, the U.S. Geological Survey (USGS), in cooperation with the Maine State Planning Office, classified riverbed sediment types and mapped their areal extents in the lower (southern) half of the Edwards Dam impoundment. This report describes the methods used to collect and analyze the data used to create a map of sediment types in the Edwards Dam impoundment. The map is included with this report. Data used to map riverbed sediment types were also used to estimate the volume of observed mud and mud-containing sediment in the study area.
Marschall, Elizabeth A.; Mather, Martha E.; Parrish, Donna; Allison, Gary W.; McMenemy, James R.
2011-01-01
Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures; as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed consequences of delays at the barriers for those individuals that successfully navigate them.
Marschall, E.A.; Mather, M. E.; Parrish, D.L.; Allison, G.W.; McMenemy, J.R.
2011-01-01
Disruption to migration is a growing problem for conservation and restoration of animal populations. Anthropogenic barriers along migration paths can delay or prolong migrations, which may result in a mismatch with migration-timing adaptations. To understand the interaction of dams (as barriers along a migration path), seasonally changing environmental conditions, timing of Atlantic salmon (Salmo salar) downstream migration, and ultimate migration success, we used 10 years of river temperature and discharge data as a template upon which we simulated downstream movement of salmon. Atlantic salmon is a cool-water species whose downstream migrating smolts must complete migration before river temperatures become too warm. We found that dams had a local effect on survival as well as a survival effect that was spatially and temporally removed from the encounter with the dam. While smolts are delayed by dams, temperatures downstream can reach lethal or near-lethal temperatures;as a result, the match between completion of migration and the window of appropriate migration conditions can be disrupted. The strength of this spatially and temporally removed effect is at least comparable to the local effects of dams in determining smolt migration success in the presence of dams. We also considered smolts from different tributaries, varying in distance from the river mouth, to assess the potential importance of locally adapted migration timing on the effect of barriers. Migration-initiation temperature affected modeled smolt survival differentially across tributaries, with the success of smolts from upstream tributaries being much more variable across years than that of smolts with a shorter distance to travel. As a whole, these results point to the importance of broadening our spatial and temporal view when managing migrating populations. We must consider not only how many individuals never make it across migration barriers, but also the spatially and temporally removed consequences of delays at the barriers for those individuals that successfully navigate them. ??2011 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Alcayaga, Hernan; Caamaño, Diego; Palma, Sebastian; Contreras, Karla
2017-04-01
Countries growing rates are directly related to energy production. Therefore, developed and developing nations are focused on hydropower and dam construction; on the contrary dam removal practices are significantly different among nations, demonstrating the former group a lesser interest on removing structures. Chiles hydropower generation corresponds to 50% of the current grid, having a potential capacity to double the current situation. Thus: ¿What tools can we apply to assess the potential impacts on our rivers? The goal of this project is to study two different reaches located in two separates streams in Central Chile. The Aconcagua River represents a mountain stream (i.e. steep, narrow, and confined) subject to the operation of a hydroelectric system composed by five diversion hydropower plants built during the 90`s. The Rapel River reach corresponds to the last 10km upstream to the outlet; it is a mild and wide stream that includes the gravel-sand transition. The Rapel dam operates about 25km upstream this second reach that is characterized by an 112m wall built in 1968. The Aconcagua hydropower system was characterized within a GIS environment and a morphological response conceptual model applied. The model uses two indexes to evaluate changes in i) channel forming discharge and ii) sediment supply. The provided response shows the trends and magnitudes of the changes, based in eighth possible directions for ten morphological responsible variables. The Rapel river system was evaluated differently and sampling of sediments characteristics (D50 and armour index), discharge index for both before and after the dam operation, Morphological Quality Index (IQM) and an analysis of aerial photography time series were performed. Results showed that the hydrology indicator impacts for the Aconcagua system were more severe than the impacts on sediments transport (typically the case for diversion type hydropower). A fine armour layer was found within the Rapel river site, also the IQM method classified it as poor quality, and the analysis of aerial photos showed three areas with significant changes in sinuosity. Although, both reaches indicated aggradation, attenuation in width, and an increment in slope. The amount and the quality of the available data on both reaches allowed assessing the basic morphological changes for the current rivers morphological stage. The next step is to transfer these methods and results to other systems that lack of these level of information, thus we could somehow diagnose and quantify impacts before the construction of the structure, and not as it is done today that impacts are not corrected within the project, but mitigated once the dam is in place and operating.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2851-016] Cellu Tissue..., 2010. d. Applicant: Cellu Tissue Corporation. e. Name of Project: Natural Dam Hydroelectric Project. f.... h. Agent Contact: Chris Fiedler or Robin Gaumes, Cellu Tissue Corp., Natural Dam Mill, 4921 Route...
Space and habitat use by black bears in the Elwha valley prior to dam removal
Sager-Fradkin, K.A.; Jenkins, K.J.; Happe, P.J.; Beecham, J.J.; Wright, R.G.; Hoffman, R.A.
2008-01-01
Dam removal and subsequent restoration of salmon to the Elwha River is expected to cause a shift in nutrient dynamics within the watershed. To document how this influx of nutrients and energy may affect black bear (Ursus americanus) ecology, we used radio-telemetry to record movements of 11 male and two female black bears in the Elwha Valley from 2002-06. Our objective was to collect baseline data on bear movements prior to dam removal. We calculated annual home ranges, described seasonal timing of den entry and emergence, and described seasonal patterns of distribution and habitat use. Adaptive kernel home ranges were larger formales (mean = 151.1 km2, SE = 21.4) than females (mean = 38.8 km2, SE = 13.0). Males ranged widely and frequently left the watershed during late summer. Further, they exhibited predictable and synchronous patterns of elevation change throughout each year. Bears entered their winter dens between 8 October and 15 December and emerged from dens between 10 March and 9 May. Male bears used low-elevation conifer and hardwood forests along the Elwha floodplain during spring, mid- to high-elevation forests and meadows during early summer, high-elevation forests, meadows and shrubs during late summer, and mid-elevation forests, shrubs and meadows during fall. Data acquired during this study provide important baseline information for comparison after dam removal, when bears may alter their late summer and fall movement and denning patterns to take advantage of energy-rich spawning salmon.
1983-02-01
4 1983 • i • i . _ _ _ - K -^ REPORTS OF THE CULTURAL RISOURCES SURVEY HARRY S. TRUMAN DAM AND RESERVOIR PROJECT...iMiM US Army Corps of Engineers Kansas City District m 00 CO Harry S. Truman 15am and Reservoir, Missouri American Archaeology Division...Department of Anthropology, University of Missouri - Columbia Columbia, Missouri O Cultural Resources Survey Harry S. Truman Dam and eservoir
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... Dam Hydroelectric Company, LLC; Notice of Availability of Draft Environmental Assessment In accordance... reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's, Gibson dam on the Sun River in Lewis and Clark and Teton...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...
Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin.
Fearnside, Phillip M
2006-07-01
Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil's proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country's national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.
Local Economic Development and Hydropower Along the Brahmaputra River Basin in Northeast India
NASA Astrophysics Data System (ADS)
Mock, A.
2014-12-01
Large dams have long been controversial. They offer benefits, such as reduced greenhouse gas emissions, energy security, and local development, yet produce negative social and ecological impact, such as wildlife habitat destruction, human displacement, and the disruption of downstream fishing or agricultural industries. In the past decade, the Indian government has signed Memoranda of Understanding with hydroelectric power companies for the building of over 130 large dams on the Brahmaputra River in the state of Arunachal Pradesh in Northeast India. These dams can generate 43% of India's assessed hydropower potential to sustain India's growing economy. In addition, the Indian government claims that these dams will bring local development with needed jobs. However, local Arunachali people have protested and temporarily halted hydropower projects because of the impact of dams on their existing livelihoods. Using the North Eastern Electric Power Corporation's (NEEPCO) Ranganadi Hydroelectric Project as a case study, our project examined whether dams in Northeast India provide jobs for local people, and whether distance from the dam or work colony to a worker's hometown affects the type of job the worker received. Survey data from residents at NEEPCO's work colony in Doimukh, Arunachal Pradesh, was analyzed using SPSS (n = 18). Our research found that 100% of workers at the dam originally resided in Northeast India, with 33% from Arunachal Pradesh, and 67% from the nearby states of Assam, and Tripura. Further, our analysis revealed no statistically significant relationship between the distance to a worker's hometown and job type (p = .609). Where workers come from did not affect the type of job they received. More research using a larger sample size and additional hydroelectric project case studies is needed to further explore the relationship between worker home location and their job types.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
..., proposing to study the feasibility of the George W. Andrews Lock and Dam Hydroelectric Project. The proposed project would be located at the existing George W. Andrews Lock and Dam on the Chattahoochee River in...
Longitudinal cracking in concrete at bridge deck dams on structural rehabilitation projects.
DOT National Transportation Integrated Search
2012-10-01
The main objective of this project was to identify the causes of longitudinal cracking in newly placed concrete deck segments adjacent to : bridge deck expansion dam rehabilitations within District 3-0 of the Pennsylvania Department of Transportation...
Estimates of Sediment Load Prior to Dam Removal in the Elwha River, Clallam County, Washington
Curran, Christopher A.; Konrad, Christopher P.; Higgins, Johnna L.; Bryant, Mark K.
2009-01-01
Years after the removal of the two dams on the Elwha River, the geomorphology and habitat of the lower river will be substantially influenced by the sediment load of the free-flowing river. To estimate the suspended-sediment load prior to removal of the dams, the U.S. Geological Survey collected suspended-sediment samples during water years 2006 and 2007 at streamflow-gaging stations on the Elwha River upstream of Lake Mills and downstream of Glines Canyon Dam at McDonald Bridge. At the gaging station upstream of Lake Mills, discrete samples of suspended sediment were collected over a range of streamflows including a large peak in November 2006 when suspended-sediment concentrations exceeded 7,000 milligrams per liter, the highest concentrations recorded on the river. Based on field measurements in this study and from previous years, regression equations were developed for estimating suspended-sediment and bedload discharge as a function of streamflow. Using a flow duration approach, the average total annual sediment load at the gaging station upstream of Lake Mills was estimated at 327,000 megagrams with a range of uncertainty of +57 to -34 percent (217,000-513,000 megagrams) at the 95 percent confidence level; 77 percent of the total was suspended-sediment load and 23 percent was bedload. At the McDonald Bridge gaging station, daily suspended-sediment samples were obtained using an automated pump sampler, and concentrations were combined with the record of streamflow to calculate daily, monthly, and annual suspended-sediment loads. In water year 2006, an annual suspended-sediment load of 49,300 megagrams was determined at the gaging station at McDonald Bridge, and a load of 186,000 megagrams was determined upstream at the gaging station upstream of Lake Mills. In water year 2007, the suspended-sediment load was 75,200 megagrams at McDonald Bridge and 233,000 megagrams upstream of Lake Mills. The large difference between suspended-sediment loads at both gaging stations shows the extent of sediment trapping by Lake Mills, and a trap efficiency of 0.86 was determined for the reservoir. Pre-dam-removal estimates of suspended-sediment load and sediment-discharge relations will help planners monitor geomorphic and habitat changes in the river as it reaches a dynamic equilibrium following the removal of dams.
146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP ...
146. DETAIL VIEW, LOOKING STRAIGHT ON, OF CAST IRON LAMP STANDARD. THIS AND OTHER LAMP STANDARDS WERE REMOVED FROM THE LAMP COLUMNS ON THE PARAPET WALLS DURING WORLD WAR II AND STORED INSIDE THE DAM (January 1991) - Coolidge Dam, Gila River, Peridot, Gila County, AZ
Dams and Salmon: A Northwest Choice
ERIC Educational Resources Information Center
Tucker, Michael; Tromley, Cheryl L.
2005-01-01
This article describes an experiential exercise in which participants assume the roles of various stakeholder groups in the controversy surrounding possible dam removal to revive northwestern U. S. salmon populations. The role-play (a) increases environmental awareness in the context of the competing interests various stakeholders have in our…
Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph D.
2014-01-01
We conducted a baseline study to better understand the migratory movements and age and spawning histories of American Shad Alosa sapidissima in the Penobscot River, Maine. The Penobscot River is currently undergoing a major dam removal project that is focused on restoring migratory connectivity and recovering diadromous fish populations including American Shad. This study addresses key data gaps for a previously unstudied native population of shad prior to restoration. A combination of radio- (n = 70) and acoustic telemetry (n = 14) was used to investigate the movements of migratory adult fish in 2010 and 2011. Scale-based analyses were used to assess spawner age and iteroparity. Radiotelemetry results indicated that few tagged fish (5–8%) approached the head-of-tide dam. Tagged fish exhibited three general patterns of movement in the accessible freshwater river habitat: use of the upper river reach, the lower river reach, or both. Mean freshwater residence time ranged from 9.1 to 14.0 d. Congregating fish were observed at two sites in the upper river reach and spawning activity was observed. Freshwater survival and survival to the estuary were at least 71%. This observed high survival was consistent with the estimated age and spawning histories of tracked fish, which indicated that 75–95% of the sampled fish were repeat spawners. Estimated age of adult migrants ranged from age 4 to age 9. Postspawning acoustic-tagged American Shad exhibited a series of prolonged upstream and downstream reversals upon entering the lower estuary. These movements have been previously unreported, and suggest that estuarine residency after spawning is important to osmoregulatory acclimatization for re-entry into salt water and the resumption of postspawning feeding activity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
.... Date filed: June 10, 2013. d. Applicant: Gresham Municipal Utilities. e. Name of Project: Upper Red Lake Dam Hydroelectric Project. f. Location: On Red River in Shawano County, Wisconsin. No federal... analysis at this time. n. The Upper Red Lake Dam Hydroelectric Project would consist of the following...
18 CFR 11.3 - Use of government dams, excluding pumped storage projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL... charge for the project made pursuant to section 10(e) of the Federal Power Act. (b) Graduated flat rates...
5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOWWATER DAM, ...
5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOW-WATER DAM, LOOKING NORTHWEST (UPSTREAM). ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
41. LOCK AND DAM NO. 26 (REPLACEMENT). LOCK LOCK ...
41. LOCK AND DAM NO. 26 (REPLACEMENT). LOCK -- LOCK GATES -- LIFT GATE, GATE LEAVES -- GENERAL ASSEMBLY. M-L 26(R) 21/28 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL
1984-01-01
RIVER MISSOURI Report from September 1966 HARRY S. TROMAN DAM & RESERVOIR November 1979 OPERATION AND MAINTENANCE MANUAL 6 PERFORMING DRG. REPORT N4040E...Two of this report ) VII- I- xxiv ............................. .... ... .... ... . .2. . . OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND...RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT CHAPTER 1 INTRODUCTION 1-01. Location and Description of Project: Harry S
43 CFR 418.23 - Diversion of Rock Dam Ditch water.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...
43 CFR 418.23 - Diversion of Rock Dam Ditch water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...
43 CFR 418.23 - Diversion of Rock Dam Ditch water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...
53. McMILLAN DAM Photographic copy of historic photo, 1937 ...
53. McMILLAN DAM - Photographic copy of historic photo, 1937 (original print in '1937 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'McMILLAN DAM AFTER RECONSTRUCTION' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
Photographic copy of photograph, photographer unknown, August 1912 (original print ...
Photographic copy of photograph, photographer unknown, August 1912 (original print located at U.S. Bureau of Reclamation Upper Columbia Area Office, Yakima, Washington). "METHOD OF CONSTRUCTING DAM AFTER REMOVING OF TRESTLE" - Kachess Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA
Flow and sand transport over an immobile gravel bed.
USDA-ARS?s Scientific Manuscript database
Many dams in the USA and elsewhere have exceeded their design life and are being considered for remediation or removal, which will result in the reintroduction of fine sediments, often into coarse grained armored substrates, downstream of dams. The deposition of sand in the interstices of the grave...
Dams and transnational advocacy: Political opportunities in transnational collective action
NASA Astrophysics Data System (ADS)
Fu, Teng
Possible arguments to explain the gradual decline in big dam development and its site transferring from developed to developing countries include technical, economic, and political factors. This study focuses on the political argument---the rise of transnational anti-dam advocacy and its impact on state policy-making. Under what conditions does transnational anti-dam advocacy matter? Under what conditions does transnational advocacy change state dam policies (delay, scale down, or cancel)? It examines the role of transnational anti-dam actors in big dam building in a comparative context in Asia. Applying the social movement theory of political opportunity structure (POS) and using the qualitative case-study method, the study provides both within-case and cross-case analyses. Within-case analysis is utilized to explain the changing dynamics of big dam building in China (Three Gorges Dam and proposed Nu/Salween River dam projects), and to a lesser extent, Sardar Sarovar Project in India and Nam Theun 2 Dam in Laos. Different domestic and international POS (DPOS and IPOS) impact the strategies and outcomes of anti-dam advocacies in these countries. The degree of openness of the POS directly affects the capacity of transnational efforts in influencing state dam policies. The degree of openness or closure is measured by specific laws, institutions, discourse, or elite allies (or the absence of these) for the participation of non-state actors on big dam issues at a particular moment. This degree of openness is relative, varying over time, across countries and regions. This study finds that the impact of transnational anti-dam activism is most effective when both DPOS and IPOS are relatively open. Transnational anti-dam advocacy is least effective in influencing state dam policies when both DPOS and IPOS are relatively closed. Under a relatively open DPOS and closed IPOS, transnational anti-dam advocacy is more likely to successfully change state dam policies and even facilitate the opening of relatively closed IPOS. In contrast, under a relatively closed DPOS and open IPOS, transnational anti-dam advocacy can hardly exist. Without the domestic anti-dam pressure from below, international anti-dam efforts from above are less likely to affect state dam policies or open up closed DPOS.
Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams
NASA Astrophysics Data System (ADS)
Beveridge, C.
2017-12-01
The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River watershed.
2. OVERALL VIEW OF LOWWATER DAM, LOOKING UPSTREAM. CHAIN OF ...
2. OVERALL VIEW OF LOW-WATER DAM, LOOKING UPSTREAM. CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig
2008-01-01
Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the lab with Sedflume, an apparatus for measuring sediment erosion-parameters. In this report, we present results of the characterization of fine-grained sediment erodibility within Capitol Lake. The erodibility data were incorporated into the previously developed hydrodynamic and sediment transport model. Model simulations using the measured erodibility parameters were conducted to provide more robust estimates of the overall magnitudes and spatial patterns of sediment transport resulting from restoration of the Deschutes Estuary.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
... Hydroelectric, LLC (BOST3). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. The...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, in Bassier Parish near the Town of Ninock, Louisiana. g. Filed Pursuant to: Federal...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
.... Name of Project: Red Rock Hydroelectric Project. f. Location: The project is located at the U.S. Army Corps of Engineers Lake Red Rock Dam on the Des Moines River in Marion County, Iowa. g. Filed Pursuant.... Army Corps of Engineers' Lake Red Rock Dam. The applicant's proposal also includes the installation of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the City of Coushatta, Louisiana. g. Filed Pursuant to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the Town of Coushatta, Louisiana. g. Filed Pursuant to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
...). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. g. Filed Pursuant to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
..., LLC (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, in Bossier Parish, near the Town of Ninock, Louisiana. The proposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-18
..., LLC (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing U. S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the Town of Coushatta, Louisiana. The proposed...
76 FR 65717 - City of Broken Bow, OK; Notice of Availability of Final Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... application for an Original Major License for the Broken Bow Re-Regulation Dam Hydropower Project (FERC Project No. 12470-001). The Broken Bow Re-Regulation Dam Project is proposed to be located on the Mountain Fork River in McCurtain County, Oklahoma, at the U.S. Army Corps of Engineers' Broken Bow Re-Regulation...
NASA Astrophysics Data System (ADS)
Snyder, N. P.; Collins, M. J.; Armistead, C. C.; Conlon, M.; David, G. C.; Lisius, G.; Lucy, C. O.; Munz, K. T.; Pearson, A.; Santaniello, D. J.
2014-12-01
Removing the Merrimack Village Dam on the lower Souhegan River (drainage area ~570 km2) in southern New Hampshire in August 2008 provided a field-scale experiment in river response to a major change in sediment flux and base level. We began monitoring the study area in August 2007, surveying a series of eight permanent cross sections within the impoundment and four downstream between the dam and the confluence with the Merrimack River (drainage area ~8,000 km2). We also surveyed the longitudinal profile through the 1-km study reach, measured bed grain size distribution, and photographed the site from ground-level stations. We conducted nine repeat surveys from 2008 to 2014, with the greatest frequency soon after dam removal. In 2012 and 2014, we also surveyed the former impoundment using low-altitude aerial photographs and structure-from-motion photogrammetry. The dam removal resulted in a near-instantaneous 3.9-m drop in base level in the impoundment. The river incised rapidly through the impounded sand and removed over 50% of it within the first two months. This added sediment load resulted in up to 3.2 m of deposition in the downstream reach. After the initial, rapid phase of channel adjustment, ongoing erosion of reservoir sediment depended primarily on flood events that could access sediment stored outside of the newly developed, active channel. By 2011, about 20% of the impounded sand remained, and this proportion was similar in the 2012 and 2014 surveys. The erosion process in the former impoundment was modulated by the recruitment of large wood (several 15-20 m tall trees with intact rootballs) from terraces through bank erosion, which remained stable in the channel and armored the banks. In the past two years, these trees have begun to be buried in newly deposited sediment, suggesting initiation of a floodplain large-wood cycle (Collins et al., 2012). At present, establishment of herbaceous vegetation on geomorphic surfaces is an important process controlling the medium-term response of the former impoundment.
Haro, Alexander J.; Dudley, Robert W.; Chelminski, Michael
2012-01-01
A two-dimensional computational fluid dynamics-habitat suitability (CFD–HSI) model was developed to identify potential zones of shallow depth and high water velocity that may present passage challenges for five anadromous fish species in the Penobscot River, Maine, upstream from two existing dams and as a result of the proposed future removal of the dams. Potential depth-challenge zones were predicted for larger species at the lowest flow modeled in the dam-removal scenario. Increasing flows under both scenarios increased the number and size of potential velocity-challenge zones, especially for smaller species. This application of the two-dimensional CFD–HSI model demonstrated its capabilities to estimate the potential effects of flow and hydraulic alteration on the passage of migratory fish.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2183-072] Grand River Dam... No.: 2183-072. c. Date Filed: August 4, 2009. d. Applicant: Grand River Dam Authority. e. Name of... 16 U.S.C. 791(a)-825(r). h. Applicant Contact: D. Casey Davis, Grand River Dam Authority, P.O. Box...
75. AVALON DAM Photographic copy of historic photo, April ...
75. AVALON DAM - Photographic copy of historic photo, April 10, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'AVALON DAM - CCC ROCK WORK AT SPILLWAY NO. 2' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
52. McMILLAN DAM Photographic copy of historic photo, January ...
52. McMILLAN DAM - Photographic copy of historic photo, January 15, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'McMILLAN DAM - TRIMMING EARTH SLOPE BEFORE GRAVEL PLACING' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
4. DETAIL VIEW OF ROCKFILL SECTION OF LOWWATER DAM, LOOKING ...
4. DETAIL VIEW OF ROCKFILL SECTION OF LOW-WATER DAM, LOOKING NORTHEAST (UPSTREAM). CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKES IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
10. Downstream face of Mormon Flat Dam under construction. Cement ...
10. Downstream face of Mormon Flat Dam under construction. Cement storage shed is at center right. Photographer unknown, September 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
Sahin, S; Kurum, E
2002-11-01
Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.
Zydlewski, Joseph D.; Gardner, Cory; Coghlan, Stephen M.
2012-01-01
Dams fragment watersheds and prevent anadromous fishes from reaching historic spawning habitat. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine), has been the focus of efforts to reestablish marine-freshwater connectivity and restore anadromous fishes via the removal of two barriers to fish migration. Currently, Petromyzon marinus (Sea Lamprey) is the only anadromous fish known to spawn successfully in the stream downstream of the lowermost dam. Here, we describe the distribution and abundance of a spawning population of Sea Lamprey in Sedgeunkedunk Stream, prior to and in anticipation of habitat increase after the completion of one barrier removal. In 2008, we estimated the abundance of Sea Lamprey and its nests using daily stream surveys and an open-population mark-recapture model. We captured 47 Sea Lamprey and implanted each with a PIT tag so that we could track movements and nest associations of individual fish. The spawning migration began on 18 June, and the last living individual was observed on 27 June. We located 31 nests, distributed from head-of-tide to the lowermost dam; no spawners or nests were observed in the tidally influenced zone or upstream of this dam. Mean longevity in the stream and the number of nests attended were correlated with arrival date; early migrants were alive longer and attended more nests than later migrants. Males were more likely to be observed away from a nest, or attending three or more nests, than were females, which attended usually one or two nests. We observed a negative association between nest abundance and substrate cover by fine sediment. Based on their observed movements in the system, and the extent of their habitat use, we anticipate that spawning Sea Lamprey will recolonize formerly inaccessible habitat after dam removals.
Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA
The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... Environmental Impact Statement for Sediment Dredging Activities at John Redmond Dam and Reservoir, KS AGENCY... Redmond Dam and Reservoir, Kansas. The State of Kansas, acting through the Kansas Water Office (KWO), proposes to fund and perform removal of excessive accumulated sediment from John Redmond Reservoir for the...
NASA Astrophysics Data System (ADS)
Doyle, M. W.
2010-12-01
US infrastructure expanded dramatically in the mid-20th century, and now includes more than 79,000 dams, 15,000 miles of levees, 3.7 million miles of roads, 600,000 miles of sewer pipe, 500,000 onshore oil wells, and over 4,000 offshore oil platforms. Many structures have been in place for 50 years or more, and an increasing portion of national infrastructure is approaching or exceeding its originally intended design life. Bringing national infrastructure to acceptable levels would cost nearly 10% of the US annual GDP. Decommissioning infrastructure can decrease public spending and increase public safety while facilitating economic expansion and ecological restoration. While most infrastructure remains critical to the national economy, a substantial amount is obsolete or declining in importance. Over 11,000 dams are abandoned, and of nearly 400,000 miles of road on its lands, the U.S. Forest Service considers one-fourth non-essential and often non-functional. Removing obsolete infrastructure allows greater focus and funding on maintaining or improving infrastructure most critical to society. Moreover, a concerted program of infrastructure decommissioning promises significant long-term cost savings, and is a necessary step before more substantial, systematic changes are possible, like those needed to address the new energy sources and shifting climate. One key challenge for infrastructure reform is how to prioritize and implement such a widespread and politically-charged series of decisions. Two approaches are proposed for different scales. For small, private infrastructure, emerging state and federal ecosystem service markets can provide an economic impetus to push infrastructure removal. Ecosystem market mechanisms may also be most effective at identifying those projects with the greatest ecological bang for the buck. Examples where this approach has proved successful include dam removal for stream mitigation under the Clean Water Act, and levee decommissioning on the Missouri and Iowa Rivers for wildlife conservation areas. Programs that link offshore oil platform decommissioning to marine conservation areas are also notable examples of creative linkages between infrastructure and conservation efforts. For federal infrastructure, the forthcoming Water Resources Development Act (WRDA) should include a BRAC-like program. Faced with a number of aging military bases, the Department of Defense (DOD) began identifying installations it would rather close than maintain or modernize. Overcoming political hurdles was accomplished via the Base Realignment and Closure Commission (BRAC), a bi-partisan commission that buffered politicians by creating a slate of closures for Congress and the President to approve or scuttle in toto. From 1988-2005, BRACs closed > 125 military installations, saving > $50 billion. DOD advocated BRAC because it increased efficiency by focusing funding on those bases central to DODs mission, and removed base funding decisions from political influence. Regardless of the approach, society must develop approaches from which to base difficult end-of-life decisions for infrastructure. In most cases, removing obsolete infrastructure can allow focus on infrastructure that remains critical to society.
15. DETAIL EXTERIOR VIEW LOOKING NORTH SHOWING REINFORCED CONCRETE PILLBOX ...
15. DETAIL EXTERIOR VIEW LOOKING NORTH SHOWING REINFORCED CONCRETE PILLBOX ON BRADFORD ISLAND END OF DAM/SPILLWAY; THE PILLBOX WAS BUILT DURING WORLD WAR II TO HELP PROTECT THE DAM/SPILLWAY FROM SABOTAGE. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR
77 FR 67813 - Sam Rayburn Dam Project Power Rate
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
... period January 1, 2009, through September 30, 2012. However, the current rate schedule will expire...) prepared a 2012 Current Power Repayment Study using the existing Sam Rayburn Dam Project rate schedule and... because the current rate expires September 30, 2012. Southwestern will reevaluate the ability of the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 12.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS... downstream tow of the dam to the lowest point on the crest of the dam. (d) Gross storage capacity means the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2524-018--Oklahoma Salina Pumped Storage Project] Grand River Dam Authority; Notice of Revised Restricted Service List for a Programmatic Agreement Rule 2010 of the Federal Energy Regulatory Commission's (Commission) Rules of Practice...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-19
... (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, near the town of Ninock near the City of Shreveport, Louisiana. g. Filed Pursuant to...
Initiation of migration and movement rates of Atlantic salmon smolts in fresh water
Stich, Daniel S.; Kinnison, Michael T.; Kocik, John F.; Zydlewski, Joseph D.
2015-01-01
Timing of ocean entry is critical for marine survival of both hatchery and wild Atlantic salmon (Salmo salar) smolts. Management practices and barriers to migration such as dams may constrain timing of smolt migrations resulting in suboptimal performance at saltwater entry. We modeled influences of stocking location, smolt development, and environmental conditions on (i) initiation of migration by hatchery-reared smolts and (ii) movement rate of hatchery- and wild-reared Atlantic salmon smolts in the Penobscot River, Maine, USA, from 2005 through 2014 using acoustic telemetry data. We also compared movement rates in free-flowing reaches with rates in reaches with hydropower dams and head ponds. We compared movement rates before and after (1) removal of two mainstem dams and (2) construction of new powerhouses. Initiation of movement by hatchery fish was influenced by smolt development, stocking location, and environmental conditions. Smolts with the greatest gill Na+, K+-ATPase (NKA) activity initiated migration 24 h sooner than fish with the lowest gill NKA activity. Fish with the greatest cumulative thermal experience initiated migration 5 days earlier than those with lowest cumulative thermal experience. Smolts released furthest from the ocean initiated migration earlier than those released downstream, but movement rate increased by fivefold closer to the ocean, indicating behavioral trade-offs between initiation and movement rate. Dams had a strong effect on movement rate. Movement rate increased from 2.8 to 5.4 km·h−1 in reaches where dams were removed, but decreased from 2.1 to 0.1 km·h−1 in reaches where new powerhouses were constructed. Movement rate varied throughout the migratory period and was inversely related to temperature. Fish moved slower at extreme high or low discharge. Responses in fish movement rates to dam removal indicate the potential scope of recovery for these activities.
Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.
2016-01-01
Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3 months after addition. All taxa returned to background δ15N levels by 7 months. Since this study was conducted, both dams on the Elwha River were removed over 2011–2014 to open over 90% of the basin to anadromous fishes. We anticipate that as the full portfolio of salmon species expands through the basin, nutrient supply and demand will come into better balance.
Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana
2017-03-01
We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elwha River dam removal: A major opportunity for salmon and steelhead recolonization
Pess, George R.; Brenkman, Samuel J.; Winans, Gary A.; McHenry, Michael L.; Duda, Jeffrey J.; Beechie, Timothy J.
2010-01-01
In this in-depth paper, authors George R. Pess, Gary A. Winans and Timothy J. Beechie of the NOAA Fisheries, Northwest Fisheries Science Center in Seattle, Samuel J. Brenkman of the National Park Service, Olympic National Park, Michael L. McHenry of the Lower Elwha Klallam Tribe and Jeffrey J. Duda of the U.S. Geological Survey, Western Fisheries Research Center in Seattle, provide an historical overview of the Elwha River system, and its native anadromous fish runs and the prospect of their recolonization after the Elwha and Glines Canyon dams are removed.
Sedimentation Impacts Modeling for the Lower Elwha River
NASA Astrophysics Data System (ADS)
Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.
2012-12-01
The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some questions regarding the validity of our 1-D HEC-RAS results and motivated our second approach, which involved developing an independent 2-D hydraulic model using the U.S. Bureau of Reclamation SRH-2d program. This model had the added benefit of being able to utilize more recently surveyed bathymetric and topographic data. The 2-D model was used to improve the representation of spatial variability of likely floodplain sedimentation. For this, we used a preliminary run of the program to characterize the water surface elevation for a typical flood event. We then used the modeled water surface as an input for an eight direction pour point determination of flow direction in ArcGIS. This allowed us to approximate the flow distance from the main channel along streamlines crossing the floodplain. Using observed levee morphology, we developed an ad-hoc exponential function for overbank sedimentation as a function of flow distance from the channel. This tended to focus deposition on natural levees at the upstream side of point bars or meander necks. Despite the more narrowly focused zone of floodplain sedimentation, however, the results were consistent with the 1-D result that in-channel sedimentation is like to have a greater relative impact on system-wide hydraulics than does overbank sedimentation.
NASA Astrophysics Data System (ADS)
Andre, Edward
2012-01-01
SummaryThere is increasing concern about the availability of water supplies in developing countries to provide clean drinking water and sanitation as well as providing for irrigation for food security. This has led to hydrologically led investigation to establish the feasibility and storage capacity of potentially new dam sites. This task has become more difficult for hydrologists and others with the uncertainties created by climate change and the measurement of the hydrological, geographical and ecological footprint of new dams. The questions asked by hydrologists are increasingly likely to be required to be cast in terms of the four pillars of sustainability; environmental, economic, social and institutional. Similarly, regional planners have to be more cognisant of the social outcomes of dam development while understanding the wider hydrological context at a watershed and basin level. The paper defines the concept of sustainability assessment in the context of resettlement and analyses its implications for the Bakun Hydro-electric project in Sarawak, Malaysia. Specifically it attempts to address the question of what social sustainability would really mean in the context of communities affected by dam projects, and their catchments using hermeneutics, tradeoffs and offsets. The findings of this question were presented at a hydrological conference held in Santiago in October 2010, based on the outcome of specific questionnaire responses received from indigenous peoples affected by the Bakun Dam hydroelectric project. The paper also offers some insights pertaining to the social sustainability assessment aspects of dams and their catchments.
32. Credit JTL. Exterior transformer bank; note lightning arrestors removed ...
32. Credit JTL. Exterior transformer bank; note lightning arrestors removed from pad and smaller arrestors installed on transformers and in area near air switches. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
Thermal effects of dams in the Willamette River basin, Oregon
Rounds, Stewart A.
2010-01-01
Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
... determine appropriate permanent methods for correcting potential problems, interim risk reduction measures... Environmental Impact Statement for Dam Safety Study, Lake Lewisville Dam, Elm Fork Trinity River, Denton County... primary purposes of the project are flood risk management, [[Page 49736
Seismic risk assessment for Poiana Uzului (Romania) buttress dam on Uz river
NASA Astrophysics Data System (ADS)
Moldovan, Iren-Adelina; Toma-Danila, Dragos; Paerele, Cosmin Marian; Emilian Toader, Victorin; Petruta Constantin, Angela; Ghita, Cristian
2017-04-01
The most important specific requirements towards dams' safety is the seismic risk assessment. This objective will be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine, 2002, and Bureau (2003), taking into account the maximum expected peak ground motions at dams' site, the structures vulnerability and the downstream risk characteristics. The maximum expected values for ground motions at dams' site have been obtained using probabilistic seismic hazard assessment approaches. The structural vulnerability was obtained from dams' characteristics (age, high, water volume) and the downstream risk was assessed using human, economical, touristic, historic and cultural heritage information from the areas that might be flooded in the case of a dam failure. A couple of flooding scenarios have been performed. The results of the work consist of local and regional seismic information, specific characteristics of dam, seismic hazard values for different return periods and risk classes. The studies realized in this paper have as final goal to provide in the near future the local emergency services with warnings of a potential dam failure and ensuing flood as a result of a large earthquake occurrence, allowing further public training for evacuation. Acknowledgments This work was partially supported by the Partnership in Priority Areas Program - PNII, under MEN-UEFISCDI, DARING Project no. 69/2014 and the Nucleu Program - PN 16-35, Project no. 03 01 and 01 06.
10 CFR 904.5 - Revenue requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the...(c) of the Adjustment Act and section 1543(c)(2) of the Colorado River Basin Project Act (43 U.S.C...
78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... license for hydropower development at non-powered dams and closed-loop pumped storage projects in... for licensing hydropower development at non-powered dams and closed-loop pumped storage projects... closed- loop pumped storage) affect the steps included in a two-year process? 3.9 Should there be a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul
1992-06-01
The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.
2016-12-01
i Classification | CG-926 RDC | author | audience | month year Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam...No. 4. Title and Subtitle Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam Invasive Species Control Measures 5. Report Date...safety due to proposed invasive species control measures located in the vicinity of the Brandon Road Lock and Dam (BRLD) Navigation Project on the
Hydroacoustic Evaluation of Juvenile Salmonid Passage at The Dalles Dam Sluiceway, 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Khan, Fenton; Hedgepeth, J
2006-06-01
The U.S. Army Corps of Engineers Portland District engaged the Pacific Northwest National Laboratory to evaluate fish passage at The Dalles Dam powerhouse in 2005. The goal of the study was to provide information on smolt passage that will inform decisions on long-term measures and operations to enhance sluiceway passage and reduce turbine passage to improve smolt survival at the dam. The study addressed one of the main programs dedicated to improving juvenile salmonid survival at The Dalles Dam: Surface Flow Bypass. The study objectives (see below) were met using a combination of hydroacoustic and hydraulic data. The study incorporatedmore » fixed-location hydroacoustic methods across the entire powerhouse, with especially intense sampling using multiple split-beam transducers at all sluiceway portals. We did not sample fish passage at the spillway in 2005. In the sluiceway nearfield, we used an acoustic camera to track fish movements. The fish data were interpreted with hydraulic data from a computational fluid dynamics (CFD) model. Fish passage data were collected in the framework of an “experiment” using a randomized block design (3-day treatments; two treatments) to compare two sluiceway operational configurations: Sluice 2+5 and Sluice 2+19 (six gates open for each configuration). Total project outflow was 76% of the 10-year average for spring and 71% of the 10-year average for summer. Based on these findings, we make the following recommendations: 1) The sluice should be operated 24 h/d from April until November. 2) Open six rather than three sluice gates to take advantage of the maximum hydraulic capacity of the sluiceway. 3) Open the three gates above the western-most operating main turbine unit and the three gates at MU 8 where turbine passage rates are relatively high. 4) Operate the turbine units below open sluice gates as a standard fish operations procedure. 5) Develop hydraulic and entrance enhancements to the sluiceway to tap the potential of The Dalles Dam sluiceway to be highly efficient and effective at passing juvenile salmonids. 6) Consider the following elements for surface flow bypasses during design of any sluiceway enhancements at The Dalles Dam: Form an extensive surface flow bypass flow net (surface bypass discharge greater than ~7% of total project discharge) at both west and east ends of the dam; Create a gradual increase in water velocity approaching the surface flow bypass (ideally, acceleration < 1 m/s per meter); Make water velocities at an entrance high enough (> 3 m/s) to entrain the subject juvenile fishes, e.g., 10,000 cfs or so; Adapt the shape and orientation of the surface entrance(s) to fit site-specific features, i.e., test a Removable Sluiceway Weir. 7)The Dalles Dam sluiceway has potential to be highly efficient and effective at passing juvenile salmonids. We recommend tapping this potential with enhancements to the sluiceway.« less
Rubin, Stephen P.; Miller, Ian M.; Elder, Nancy; Reisenbichler, Reginald R.; Duda, Jeffrey J.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
(3–18 m) near the mouth of the Elwha River, between the west end of Freshwater Bay and the base of Ediz Hook, were surveyed in August and September 2008, to establish baselines prior to dam removal. Density was estimated for 9 kelp taxa, 65 taxa of invertebrates larger than 2.5 cm any dimension and 24 fish taxa. Density averaged over all sites was 3.1 per square meter (/m2) for kelp, 2.7/m2 for invertebrates, and 0.1/m2 for fish. Community structure was partly controlled by substrate type, seafloor relief, and depth. On average, 12 more taxa occurred where boulders were present compared to areas lacking boulders but with similar base substrate. Four habitat types were identified: (1) Bedrock/boulder reefs had the highest kelp density and taxa richness, and were characterized by a canopy of Nereocystis leutkeana (bull kelp) at the water surface and a secondary canopy of perennial kelp 1–2 m above the seafloor; (2) Mixed sand and gravel-cobble habitats with moderate relief provided by boulders had the highest density of invertebrates and a taxa richness nearly equivalent to that for bedrock/boulder reefs; (3) Mixed sand and gravel-cobble habitats lacking boulders supported a moderate density of kelp, primarily annual species with low growth forms (blades close to the seafloor), and the lowest invertebrate density among habitats; and (4) Sand habitats had the lowest kelp density and taxa richness among habitats and a moderate density of invertebrates. Uncertainties about nearshore community responses to increases in deposited and suspended sediments highlight the opportunity to advance scientific understanding by measuring responses following dam removal.
1979-05-01
Experience. The drainage area and lake surface area are developed from USGS Maryville Quadrangle and orthophoto sheets. The spillway and dam layout are...paths. A. Site Preraration: Removal of the tile :rin o4i.e at the site is4 recomende. B. Centerline Cutoff. rThe shallow 5 to O-fcot ieep ctfas -D-oseo...35 L ~ . .*- ~ .. *~_______________________I / °’ Page 2 Smeial Conditions frh only special condition that I am aware of at the present time is a tile
1979-06-01
floodwaters. About 600 feet downstream of the dam, West Mountain Road would be overtopped; 600 feet further downstream Reservoir Road would be overtopped for...removed and the surface coated to protect the pipes. . d. Reservoir Area- Notch Reservoir, as the name implies, is in a mountain notch. The area is...Brook which connects Notch Reservoir to the Hoosic River in the City of North Adams, Massachusetts, flows on a steep gradient down a mountain notch
Evaluation of two juvenile salmon collection devices at Cowlitz Falls Dam, Washington, 2014
Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Hurst, William
2015-01-01
In an attempt to improve overall collection efficiency, Tacoma Power developed and tested a new device in 2014, called the Upper Riffe Lake Collector (URLC). The URLC was a floating device designed to collect fish as they moved downstream after passing through turbines at Cowlitz Falls Dam. The design of the URLC included a pontoon barge that supported a large net structure designed to funnel fish into a live box where they could be removed and transported downstream of dams on the Cowlitz River.
Proceedings of the 2011 Elwha River Science Symposium
Barbero, Kiley; Morrow, Tara; Shaffer, Anne; Duda, Jeffrey J.; Jenkins, Kurt J.; Blackie, Barbara; Lear, Cathy
2011-01-01
Many of the scientists working on the Elwha project have regularly met, since around 2004, for annual meetings. Loosely organized under the auspices of the Elwha Research and Elwha Nearshore consortia, the annual meetings have been informative for many reasons, including the sharing of study plans, field schedules, and preliminary results. It has been a great way for groups of physical scientists and groups of biologists to learn about the questions of interest to each group and to explore areas of overlap. In some cases, these meetings have spawned new collaborations, synergies, and research directions. In planning for the 2011 Elwha River Science Symposium, we sought to retain this espirit de corps, but realized that the start of dam removal heralded an important new phase of the project and called for an event that celebrated this special occasion.
1979-12-01
34 which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized. Block 11. Controlling ...Dam Inventory and Inspection Section, LMSED-PD ULSF 210 Tucker Blvd., North, St. Louis, Mo. 63101D C O 11. CONTROLLING OFFICE NAME AND ADDRESS 12m...under the National Program of Inspection of Non -Federal Dams. This report assesses the general condition of the dam with a respect to safety, based on
Wildlife Habitat Impact Assessment, Chief Joseph Dam Project, Washington : Project Report 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, Douglas; Berger, Matthew
1992-01-01
Under the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program, a wildlife habitat impact assessment and identification of mitigation objectives have been developed for the US Army Corps of Engineer`s Chief Joseph Dam Project in north-central Washington. This study will form the basis for future mitigation planning and implementation.
Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,
2011-01-01
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.
Wang, L.; Infante, D.; Lyons, J.; Stewart, J.; Cooper, A.
2011-01-01
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. ?? 2010 John Wiley & Sons, Ltd.
2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 9, Tracks 9-11
2005-08-04
Walls ETL 1110-2-563, by John D. Clarkson and Robert C. Patev Belleville Locks & Dam Barge Accident on 6 Jan 05, by John Clarkson Portugues Dam Project...Update, by Alberto Gonzalez, Jim Mangold and Dave Dollar Portugues Dam: RCC Materials Investigation, by Jim Hinds Nonlinear Incremental Thermal Stress...Strain Analysis Portugues Dam, by David Dollar, Ahmed Nisar, Paul Jacob and Charles Logie Seismic Isolation of Mission-Critical Infrastructure to
78 FR 6321 - Stephen Phillips, Brentwood Dam Ventures, LLC; Notice of Transfer of Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 4254-009] Stephen Phillips, Brentwood Dam Ventures, LLC; Notice of Transfer of Exemption 1. By letter filed May 31, 2006 and supplemented on January 15, 2013, Stephen Phillips and Brentwood Dam Ventures, LLC informed the Commission that...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... of the dam not designed to be overtopped. After a full consideration of alternatives, this... for the DSA project permitting the Huntington District to begin detailed design and [[Page 70296... concrete blocks placed against the downstream face of the dam, and a pavement for scour protection...
Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph D.; Hightower, Joseph E.
2014-01-01
We investigated the fish community approaching the Veazie Dam on the Penobscot River, Maine, prior to implementation of a major dam removal and river restoration project. Multibeam sonar (dual-frequency identification sonar, DIDSON) surveys were conducted continuously at the fishway entrance from May to July in 2011. A 5% subsample of DIDSON data contained 43 793 fish targets, the majority of which were of Excellent (15.7%) or Good (73.01%) observation quality. Excellent quality DIDSON targets (n = 6876) were apportioned by species using a Bayesian mixture model based on four known fork length distributions (river herring (alewife,Alosa psuedoharengus, and blueback herring, Alosa aestivalis), American shad, Alosa sapidissima) and two size classes (one sea-winter and multi-sea-winter) of Atlantic salmon (Salmo salar). 76.2% of targets were assigned to the American shad distribution; Atlantic salmon accounted for 15.64%, and river herring 8.16% of observed targets. Shad-sized (99.0%) and salmon-sized (99.3%) targets approached the fishway almost exclusively during the day, whereas river herring-sized targets were observed both during the day (51.1%) and at night (48.9%). This approach demonstrates how multibeam sonar imaging can be used to evaluate community composition and species-specific movement patterns in systems where there is little overlap in the length distributions of target species.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... Industrial Water Supply From the Buford Dam/Lake Lanier Project AGENCY: Department of the Army, U.S. Army... accommodate municipal and industrial water supply from the Buford Dam/Lake Lanier project. The Corps is... also consider, along with operations for all authorized purposes, an expanded range of water supply...
75 FR 33290 - City of Broken Bow, OK; Notice of Availability of Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... application for an Original Major License for the Broken Bow Re-Regulation Dam Hydropower Project. The project would be located at the United States Army Corps of Engineers' (Corps) Broken Bow Re-Regulation Dam on... http://www.ferc.gov , using the ``eLibrary'' link. Enter the docket number excluding the last three...
Peters, R.J.; Duda, J.J.; Pess, G.R.; Zimmerman, M.; Crain, P.; Hughes, Z.; Wilson, A.; Liermann, M.C.; Morley, S.A.; McMillan, J.; Denton, K.; Warheit, K.
2014-01-01
The restoration of the migration route to spawning and rearing habitats upstream of the former Glines Canyon Dam represents a great opportunity for salmon on the Olympic Peninsula. By removing two aging structures, it will be possible for all 5 species of salmon and steelhead to return to wild stretches of the Elwha River and major floodplain habitat characterized by multiple channels, as well as significant portions of numerous tributaries. Measuring the progress of restoration, from the perspective of both salmon populations and the ecosystem upon which they depend, is a great test for a collaborative team of scientists. The normally challenging conditions of working in a steep gradient, high velocity wilderness river are exacerbated by the release of millions of cubic yards of sediment that had accumulated in the reservoirs. After the first two years of the dam decommissioning process, this release has changed the ecology of the river, estuary, and nearshore habitats downstream of the dams. Our goal in developing the guidelines described is to provide a roadmap for tracking what hopefully will become a successful outcome. If successfully implemented, this information should prove useful as others begin planning for the removal, alteration, or reconstruction of dams throughout North America and elsewhere, an inevitable outcome of an aging dam infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, J.L.
1994-06-01
The merits of the fauna section of the Olympic Dam Project Environmental Impact Statement (EIS) are discussed. The values of different survey methods and monitoring organisms used in this document are evaluated following 10 years of fauna monitoring and research subsequent to the preparation of the EIS. The pilot fauna reconnaissance was found to be of little value, although the associated literature review formed an integral part of the EIS. Over 95% of all amphibian, reptile and bird species recorded at Olympic Dam were confirmed or predicted to occur in the EIS. Mammal predictions were less accurate because of themore » sparse populations and irruptive nature of several arid-zone species. Prediction and monitoring of rare species were demonstrably difficult. The Olympic Dam Project EIS was found in general to be an accurate and useful document. However, it is suggested that more emphasis be placed on establishing monitoring programmes for future EISs, particularly for invertebrates. 35 refs., 1 fig., 3 tabs.« less
After Three Gorges Dam: What have we learned?
NASA Astrophysics Data System (ADS)
Natali, J.; Williams, P.; Wong, R.; Kondolf, G. M.
2013-12-01
China is at a critical point in its development path. By investing heavily in large-scale infrastructure, the rewards of economic growth weigh against long-term environmental and social costs. The construction of Three Gorges Dam, the world's largest hydroelectric project, began in 1994. Between 2002 and 2010, its 660 kilometer reservoir filled behind a 181 meter dam, displacing at least 1.4 million people and transforming Asia's longest river (the Yangtze) while generating nearly 100 billion kWh/yr of electricity -- 2.85% of China's current electric power usage. As the mega-project progenitor in a cascade of planned dams, the Three Gorges Dam emerges as a test case for how China will plan, execute and mitigate its development pathway and the transformation of its environment. Post-Project Assessments (PPA) provide a systematic, scientific method for improving the practice of environmental management - particularly as they apply to human intervention in river systems. In 2012, the Department of Landscape Architecture and Environmental Planning at University of California, Berkeley organized a symposium-based PPA for the Three Gorges Dam on the Yangtze River. Prior to this symposium, the twelve invited Chinese scientists, engineers and economists with recent research on Three Gorges Dam had not had the opportunity to present their evaluations together in an open, public forum. With a 50-year planning horizon, the symposium's five sessions centered on impacts on flows, geomorphology, geologic hazards, the environment and socioeconomic effects. Three Gorges' project goals focused on flood control, hydropower and improved navigation. According to expert research, major changes in sediment budget and flow regime from reservoir operation have significantly reduced sediment discharge into the downstream river and estuary, initiating a series of geomorphic changes with ecological and social impacts. While the dam reduces high flow stages from floods originating above the reservoir, subsequent floodplain development and degradation of levees increase downstream flood risk. As geomorphic adjustment continues, the loss of key fish and wildlife habitat will rise, a recognized but externalized environmental cost with potential mitigation measures found in protecting and restoring floodplain lakes. With significant underestimates of social impacts and project costs, the population of the surrounding area has experienced severe adverse impacts ranging from loss of ancient villages, landholdings, and livelihoods to increased threats of natural hazards -- without full compensation or public disclosure of project costs. The value of PPAs is most realized when integrated into adaptive management for river basin planning. Throughout the symposium, speakers echoed the conclusion: 'The entire Yangtze basin needs comprehensive management.' Integrated planning decisions must consider dams, water diversions, reservoir management, protection of natural areas, basin-wide land management, preservation of flood detention areas and levees, and both economic compensation and social opportunity for affected residents. The resulting analysis may influence the massive expansion of worldwide hydroelectric development as China exports its financing and dam building expertise.
Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington
NASA Astrophysics Data System (ADS)
Foley, Melissa M.; Warrick, Jonathan A.
2017-11-01
The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.
Perry, R.W.; Farley, M.J.; Hansen, G.S.; Shurtleff, D.J.; Rondorf, D.W.; LeCaire, R.
2003-01-01
In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse.
Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho
Malde, Harold E.
1981-01-01
The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.
Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia
NASA Astrophysics Data System (ADS)
Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul
2016-03-01
Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.
Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies
Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.
2017-01-01
Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.
Sando, Steven K.; Lambing, John H.
2011-01-01
Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the completion of Milltown Dam in 1908. Milltown Dam was breached on March 28, 2008, as part of Superfund remediation activities to remove the dam and excavate contaminated sediment that had accumulated in Milltown Reservoir. In preparation for the breach of Milltown Dam, permanent drawdown of Milltown Reservoir began on June 1, 2006, and lowered the water-surface elevation by about 10 to 12 feet. After the breach of Milltown Dam, the water-surface elevation was lowered an additional 17 feet. Hydrologic data-collection activities were conducted by the U.S. Geological Survey in cooperation with U.S. Environmental Protection Agency to estimate loads of suspended sediment and trace elements transported through the Clark Fork basin before and after the breach of Milltown Dam. This report presents selected results of the data-collection activities.
Disasters as a necessary part of benefit-cost analyses.
Mark, R K; Stuart-Alexander, D E
1977-09-16
Benefit-cost analyses for water projects generally have not included the expected costs (residual risk) of low-probability disasters such as dam failures, impoundment-induced earthquakes, and landslides. Analysis of the history of these types of events demonstrates that dam failures are not uncommon and that the probability of a reservoir-triggered earth-quake increases with increasing reservoir depth. Because the expected costs from such events can be significant and risk is project-specific, estimates should be made for each project. The cost of expected damage from a "high-risk" project in an urban area could be comparable to project benefits.
2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 11, Tracks 13 and 14
2005-08-04
Walls ETL 1110-2-563, by John D. Clarkson and Robert C. Patev Belleville Locks & Dam Barge Accident on 6 Jan 05, by John Clarkson Portugues Dam Project...Update, by Alberto Gonzalez, Jim Mangold and Dave Dollar Portugues Dam: RCC Materials Investigation, by Jim Hinds Nonlinear Incremental Thermal Stress...Strain Analysis Portugues Dam, by David Dollar, Ahmed Nisar, Paul Jacob and Charles Logie Seismic Isolation of Mission-Critical Infrastructure to
Harnessing Alaska. [Hydroelectric power in Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Four hydropower projects will provide electricity for isolated Alaskan cities by late 1984. A 15Mw project is already producing power. The three remaining hydro projects are described. Tyee Lake is a lake tap project. Water is supplied to the powerhouse by tapping the lake via a tunnel blasted through the lake bottom. Water then flows through a vertical pressure shaft to a power tunnel and into an aboveground powerhouse. Swan Lake consists of a double-curved arch dam and a power tunnel. Terror Lake consists of a concrete-faced compacted rockfill dam and a power tunnel.
76. AVALON DAM Photographic copy of historic photo, 1939 ...
76. AVALON DAM - Photographic copy of historic photo, 1939 (original print in '1939 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF CCC WORKERS COMPLETING CONSTRUCTION OF SUSPENSION BRIDGE - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... feasibility of the proposed Coralville Dam Hydroelectric Project No. 14388, to be located at the existing Coralville Dam on the Iowa River, near Iowa City in Johnson County, Iowa. The Coralville Dam is owned by the... Competing Applications; Coralville Energy, LLC On April 18, 2012, the Coralville Energy, LLC filed an...
9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF ...
9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF LAKE FORK CANAL, UINTAH PROJECT. TWO SLUICEWAYS TWENTY FEET WIDE HAVE BEEN LEFT IN THE DAM TO PASS BOULDERS DURING HIGH WATER. THESE SLUICEWAYS ARE CLOSED BY LOGS AND HAY DURING LOW WATER.' Date unknown - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016
Jezorek, Ian G.; Hardiman, Jill M.
2017-06-23
Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or 2010, though age-1 and older O. mykiss abundance was similar. In Rattlesnake Creek, age-0 O. mykiss abundance during 2016 slightly exceeded the mean abundance from 2001 through 2005, although age-1 and older O. mykiss abundance was lower than from 2001 through 2005. These sampling efforts also provided the opportunity to collect genetic samples to investigate parental and stock origin, although funding to analyze the samples was not part of this grant. Juvenile salmonid sampling efforts during 2016 have shown that natural spawning produced steelhead and coho smolts and that coho were colonizing some tributaries. The 2016 efforts also provided the first post-dam juvenile abundance estimates. We hope to continue monitoring to better understand abundance trends, distribution, and life history patterns of recolonizing salmonids in the White Salmon River to assess efficacy of natural recolonization and to inform management decisions.
NASA Astrophysics Data System (ADS)
Piman, T.; Cochrane, T. A.; Arias, M. E.
2013-12-01
Water flow patterns in the Mekong River and its tributaries are changing due to water resources development, particularly as a result of on-going rapid hydropower development of tributaries for economic growth. Local communities and international observers are concerned that alterations of natural flow patterns will have great impacts on biodiversity, ecosystem services, food securing and livelihood in the basin. There is also concern that un-coordinated dam development will have an adverse impact on energy production potential of individual hydropower plants. Of immediate concern is the proposed hydropower development in the transboundary Srepok, Sesan and Srekong (3S) Basin, which contributes up to 20% of the Mekong's annual flows, has a large potential for energy production, and provides critical ecosystem services to local people and the downstream Tonle Sap Lake and the Mekong delta. To assess the magnitude of potential changes in flows and hydropower production, daily flows were simulated over 20 years (1986-2005) using the SWAT and HEC ResSim models for a range of dam development and operations scenarios. Simulations of all current and proposed hydropower development in the 3S basin (41 dams) using an operation scheme to maximize electricity production will increase average dry seasonal flows by 88.1% while average wet seasonal flows decrease by 24.7% when compared to the baseline (no dams) scenario, About 55% of dry season flows changes are caused by the seven largest proposed dams (Lower Srepok 3, Lower Srepok4, Lower Sesan 3, Lower Sesan and Srepok 2, Xekong 5, Xekong 4, and Xe Xou). The total active storage of the existing and ongoing hydropower projects is only 6,616 million m3 while the cumulative active storage of the seven large proposed dams is 17,679 million m3. The Lower Srepok 3 project causes the highest impact on seasonal flow changes. Average energy production of the existing and ongoing hydropower projects is 73.2 GWh/day. Additional benefits from energy production of the seven large proposed dams (33.0 GWh/day) are less than half compared to the cumulative benefits of the exiting and ongoing projects. In total, potential energy production of all dams is 129.1 GWh/day. Cascade dam simulations, under an independent operation regime, result in high electricity production of downstream dams, particularly of small storage dams. Hourly flow alterations, however, can be significant due to intra daily reservoir operations and warrant further study as well as impact of climate change on flows and hydropower operation. Strategic site selection and coordinated reservoir operations between countries and dam operators are necessary to achieve an acceptable level of energy production in the basin and mitigate negative impacts to seasonal flow patterns which sustain downstream ecosystem productivity and livelihoods.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... Indian River in Sussex County, Delaware. The United States Army Corps of Engineers designed, built, and... project uses no dam or impoundment. The proposed project would consist of: (1) Twenty-five 122-inches-tall... water or water power from a government dam; or (4) if applicable, has involved or would involve any...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... powerhouse containing three units. Currently, there is a 50- to 60-foot-wide breach in the dam. The project... the Oakland Project because it lost its power sales contract. Since that time, the powerhouse..., the breach expanded leaving a 50- to 60-foot- wide opening in the dam. In April 2011, the Commission...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... South Haiwee reservoir, near the town of Olancha, Inyo County, California. The project would affect... (Alternatives A and B) would consist of the existing South Haiwee dam. The dam has operations limited due to... the water level in the reservoir is limited to a maximum elevation of 3,742 feet msl. The applicant is...
The potential for catastrophic dam failure at Lake Nyos maar, Cameroon
Lockwood, J.P.; Costa, J.E.; Tuttle, M.L.; Nni, J.; Tebor, S.G.
1988-01-01
The upper 40 m of Lake Nyos is bounded on the north by a narrow dam of poorly consolidated pyroclastic rocks, emplaced during the eruptive formation of the Lake Nyos maar a few hundred years ago. This 50-m-wide natural dam is structurally weak and is being eroded at an uncertain, but geologically alarming, rate. The eventual failure of the dam could cause a major flood (estimated peak discharge, 17000 m3/s) that would have a tragic impact on downstream areas as far as Nigeria, 108 km away. This serious hazard could be eliminated by lowering the lake level, either by controlled removal of the dam or by construction of a 680-m-long drainage tunnel about 65 m below the present lake surface. Either strategy would also lessen the lethal effects of future massive CO2 gas releases, such as the one that occurred in August 1986. ?? 1988 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Scodanibbio, Lucia; Mañez, Gustavo
The Cahora Bassa dam in the Lower Zambezi has undoubtedly brought varied economic benefits (such as hydroelectricity) to Mozambique. There is also, however, evidence of certain negative impacts that have increased the vulnerability of downstream populations. Specifically, current water management practices in the Zambezi have affected people’s livelihoods by the frequent unpredictable releases of water that wash away riverbank crops, impoverish fish stocks and fish habitat, and threaten the valuable shrimp exports. These releases have also worsened the effects of large floods, for example the floods of 2001. The ecosystem of the Zambezi delta, which is a Ramsar site, has also suffered since Cahora Bassa’s regulation. The Mozambican government is proposing to construct a new dam downstream of Cahora Bassa at Mphanda Nkuwa. In the feasibility study, there was no due consideration of rural downstream communities and their livelihoods. This has left many potentially affected people uninformed and vulnerable to the risks associated with the new development. The new dam is likely to worsen the already severe impacts of Cahora Bassa. The World Commission on Dams (WCD) developed seven strategic priorities, designed to inform all decisions related to future dam developments. These priorities follow principles of public participation, social equity, environmental sustainability, economic efficiency and accountability. The WCD proposed best-practice guidelines for both addressing existing dams and for any future ones which are planned. According to the WCD, affected communities have a right to participate in the decision to build a dam, they should be the first to benefit from the project, and the rivers on which their livelihoods are based should be protected. Stakeholder participation is one of the fundamental components of integrated water resources management (IWRM). For effective participation in dam projects, affected people need to be empowered, have access to information and adequate capacity. In this context JA!, a Mozambican environmental NGO, is undertaking a project to share WCD recommendations with affected people along the Zambezi River. JA! has adopted a “bottom-up” approach to ensure that the people’s interests are included in government projects. This approach could give Mozambique the power to safeguard the environment while sustaining peoples’ livelihoods.
1981-08-01
1 AU9r, 1,981 Division of Water Resources ~ .N~EtO P.O. Box CN029 I.NME Trenton, NJ 08625 50 R.MONITORING AGENCY NAME 0 ADORESS(ll dilloai how Cmnt...trespassing on the slopes of the dam. j. Provide a drain or other means for removing water collecting in the low-level outlet chamber. k. Reestablish and...Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental IProtection P.O. Box CN029 Trenton
1981-04-01
crest. There Is a pond drain about 18 inches in dimeter which is reported to be Inoperable. The top of dam stor-5 age is estimated to be 51 acre-fot...related to lateral movements and/or settlement of the rubbish fill. The dumped material should be removed and the embankment regraded. The seep- age area...drain- age area. 6 5.2 DESIGN DATA No hydraulic or hydrologic design data or criteria were available. 5.3 EXPERIENCE DATA There is no evidence of recent
1978-11-01
DIVISION, CORPS OF ENGINEERSWALTHAM, MASS 02154 NTIS GRA&n F NOVEMBER 1978 DTIC TAB Ŕ Justiftcati n r r D stributijon/ Availabilit -" os Dist jSpecial...flashboards removed and can pass the PMF outflow of 1530 cfs (750 csm) with the water level 0.6 ft.Ui below the top of the concrete core wall. Within... water treatment plant and responsible for the day-to-day operation of the dam. He represented the owner during this investigation. His address and
Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.; Smith, Sean
2015-01-01
Here we discuss considerations in the use of sidescan sonar for riverbed sediment classification using examples from two large rivers, the Colorado River below Glen Canyon Dam in Arizona and the Upper Penobscot River in northern Maine (Figure 3). These case studies represent two fluvial systems that differ in recent history, physiography, sediment transport, and fluvial morphologies. The bed of the Colorado River in Glen Canyon National Recreation Area is predominantly graveled with extensive mats of submerged vegetation, and ephemeral surficial sand deposits exist below major tributaries. The bed is imaged periodically to assess the importance of substrate type and variability on rainbow trout spawning and juvenile rearing habitats and controls on aquatic invertebrate population dynamics. The Colorado River bed further below the dam in Grand Canyon National Park is highly dynamic. Tributary inputs of sand, gravel and boulders are spatially variable, and hydraulics of individual pools and eddies vary considerably in space and in response to varying dam operations, including experimental controlled flood releases to rebuild eroding sandbars. The bed encompasses the full range of noncohesive sediments, deposited in complicated spatial patterns. The mobile portion of the Penobscot River is generally more uniform, and consists predominantly of embedded gravels interspersed between bedrock outcrops with small isolated sand patches in sections with modest or low gradients. Patches of large cobbles, boulders and bedrock outcrops are present in the lower reaches of the river near locations of two recent dam removal projects but are of limited extent below the "head of tide" on the river. Aggregations of coarse materials often correspond to locations with abrupt bed elevation drops in the Upper Penobscot River.
1980-12-01
report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to...enter the complete contract or grant number(s) under which the wo-ieported was accomplished. Leave blank in in-house reports. Block 9. Performing...34Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work
Code of Federal Regulations, 2010 CFR
2010-04-01
... PROCEDURES Bridges on Federal Dams § 630.803 Procedures. A State's application to qualify a project under... part of the agency constructing the dam to provide such bridge or approach roads to satisfy a legal...
Code of Federal Regulations, 2011 CFR
2011-04-01
... PROCEDURES Bridges on Federal Dams § 630.803 Procedures. A State's application to qualify a project under... part of the agency constructing the dam to provide such bridge or approach roads to satisfy a legal...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.
2014-07-11
High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conductedmore » during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.« less
Informing watershed connectivity barrier prioritization decisions: A synthesis
McKay, S. K.; Cooper, A. R.; Diebel, M.W.; Elkins, D.; Oldford, G.; Roghair, C.; Wieferich, Daniel J.
2017-01-01
Water resources and transportation infrastructure such as dams and culverts provide countless socio-economic benefits; however, this infrastructure can also disconnect the movement of organisms, sediment, and water through river ecosystems. Trade-offs associated with these competing costs and benefits occur globally, with applications in barrier addition (e.g. dam and road construction), reengineering (e.g. culvert repair), and removal (e.g. dam removal and aging infrastructure). Barrier prioritization provides a unique opportunity to: (i) restore and reconnect potentially large habitat patches quickly and effectively and (ii) avoid impacts prior to occurrence in line with the mitigation hierarchy (i.e. avoid then minimize then mitigate). This paper synthesizes 46 watershed-scale barrier planning studies and presents a procedure to guide barrier prioritization associated with connectivity for aquatic organisms. We focus on practical issues informing prioritization studies such as available data sets, methods, techniques, and tools. We conclude with a discussion of emerging trends and issues in barrier prioritization and key opportunities for enhancing the body of knowledge.
Dams, Hydrology and Risk in Future River Management
NASA Astrophysics Data System (ADS)
Wegner, D. L.
2017-12-01
Across America there are over 80,000 large to medium dams and globally the number is in excess of 800,000. Currently there are over 1,400 dams and diversion structures being planned or under construction globally. In addition to these documented dams there are thousands of small dams populating watersheds. Governments, agencies, native tribes, private owners and regulators all have a common interest in safe dams. Often dam safety is characterized as reducing structural risk while providing for maximum operational flexibility. In the 1970's there were a number of large and small dam failures in the United States. These failures prompted the federal government to issue voluntary dam safety guidelines. These guidelines were based on historic information incorporated into a risk assessment process to analyze, evaluate and manage risk with the goal to improve the quality of and support of dam management and safety decisions. We conclude that historic and new risks need to be integrated into dam management to insure adequate safety and operational flexibility. A recent assessment of the future role of dams in the United States premises that future costs such as maintenance or removal beyond the economic design life have not been factored into the long-term operations or relicensing of dams. The converging risks associated with aging water storage infrastructure, multiple dams within watersheds and uncertainty in demands policy revisions and an updated strategic approach to dam safety. Decisions regarding the future of dams in the United States may, in turn, influence regional water planning and management. Leaders in Congress and in the states need to implement a comprehensive national water assessment and a formal analysis of the role dams play in our water future. A research and national policy agenda is proposed to assess future impacts and the design, operation, and management of watersheds and dams.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
...), proposing to study the feasibility of the Marble Bluff Dam Hydropower Project to be located at the U.S. Bureau of Reclamation's Marble Bluff dam on the Truckee River, near Nixon, Washoe County, Nevada. The... east of the existing spillway of the Marble Bluff dam. Flow diverted at the sluice gate would be used...
Code of Federal Regulations, 2010 CFR
2010-04-01
... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10) of...
Code of Federal Regulations, 2011 CFR
2011-04-01
... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10) of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... the feasibility of the Paint Creek Dam Project No. 13633, to be located at the existing Paint Creek Dam on Paint Creek, in Highland County, Ohio. The Paint Creek Dam is owned and operated by the U.S.... Applicant Contact: Randall Smith, 4950 Frazeysburg Road, Zanesville, OH 43701, (740) 891-5424. [[Page 13528...
54. McMILLAN DAM Photographic copy of historic photo, May ...
54. McMILLAN DAM - Photographic copy of historic photo, May 5, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'McMILLAN HEADGATE OPEN AFTER COMPLETION' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM
Coralville Reservoir Water Quality Project
2006-05-01
Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... environmental analysis at this time. n. The proposed Beverly Lock and Dam Water Power Project would be located... River; (3) two turbine-generator units providing a combined installed capacity of 3.0 megawatts (MW); (4... about 17,853 megawatt-hours (MWh). The proposed Devola Lock and Dam Water Power Project would be located...
NASA Astrophysics Data System (ADS)
Wang, Wanshun; Chen, Zhuo; Li, Xiuwen
2018-03-01
The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.
75 FR 50777 - Minidoka Dam Spillway Replacement, Minidoka County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... INFORMATION: Minidoka Dam impounds Lake Walcott and is a feature of Reclamation's Minidoka Project. They are... numerous locations. In addition, the potential for ice damage to the stoplog piers requires that reservoir...
NASA Astrophysics Data System (ADS)
Marks, A. M.
2010-12-01
Fifty percent of the world’s population depends upon groundwater as their main source of drinking water (Hirata et al., 2007). Scarcity of groundwater clearly affects the entire world. One quarter of the world’s people live in areas characterized by physical water scarcity, making competition for water resources intense (International Water Management Institute (IWMI), 2006; World Water Council, 2008). Tools that forecast groundwater levels have been progressively developed over time, from the Boussinesq equation in 1871 to present day. However, complex three dimensional numerical flow models are the standard for determining groundwater behavior in most settings. These often require excessive field work, data collection, expense, and computational expertise. Artificial Neural Networks (ANNs) have been successfully used in other disciplines as a more practical and cost effective alternative for predicting outcomes dependant on multiple, complex, varying inputs. This research investigates the utility of ANNs to forecast groundwater levels from common data acquired on national data bases. Around Missoula in west central Montana, groundwater levels play an important role especially in the East Missoula and Turah areas, since groundwater levels were recently affected by the removal of the 28 ft Milltown Dam. The dam had impounded contaminated sediments which were polluting the Clark Fork River and nearby wells. Prior to dam removal engineers lowered the reservoir by 12 feet to examine the submerged portion of the dam. Water levels declined in wells during this initial drawdown and local citizens reported dry wells. This prompted a one million dollar well replacement response by the EPA to proactively protect water supplies in the 500+ domestic wells proximal to the reservoir. ANN’s can be an invaluable tool for forecasting groundwater behavior and have been successful for predicting groundwater levels within a foot of observed levels in several Milltown wells.
NASA Astrophysics Data System (ADS)
Wurster, Maria-Theresia; Weigelhofer, Gabriele; Pichler-Scheder, Christian; Hein, Thomas; Pöppl, Ronald
2017-04-01
Sediment connectivity describes the potential for sediment transport through catchment systems, further defining locality and characteristics of sedimentation in river channels. Dams generally decrease sediment connectivity and act as temporary sediment sinks. When dams are removed these sediments are being reworked and released downstream. During dam restoration works along a small-sized stream in the Bohemian Massif of Austria in December 2015 a dam failure occurred which led to the entrainment of several tons of fine-grained reservoir sediments further entering and depositing in the downstream channel reaches, located in the Thayatal National Park. Aiming to remove these fine sediment deposits the National Park Authority decided to initiate a flushing event in April 2016. The main aim of the present study was to investigate the effects of dam failure-induced fine sediment release and reservoir flushing on downstream bed sediment characteristics by applying geomorphological mapping (incl. volumetric surveys) and sedimentological analyses (freeze-core sampling and granulometry), further discussing the role of in-channel sediment connectivity. The obtained results have shown that immediately after the dam failure event a total of ca. 18 m3 of fine-grained sediments have accumulated as in-channel sediment bars which were primarily formed in zones of low longitudinal connectivity (e.g. in the backwater areas of woody debris jams, or at slip-off bank locations). The flushing event has been shown to have caused remobilization and downstream translocation of these deposits, further reducing their total volume by approx. 60%. The results of the granulometric analyses of the freeze-core samples have revealed fine sediment accumulation and storage in the upper parts of the channel bed, having further increased after the flushing event. Additionally, effects on chemical conditions and invertebrate community have been observed. These observations clearly indicate a significant influence of vertical connectivity conditions on in-channel fine sediment storage.
Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.
2016-01-01
Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.
Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington
Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H
2016-01-01
Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.
Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington
Foley, Melissa M.; Warrick, Jonathan
2017-01-01
The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.
Synthesis of common management concerns associated with dam removal
Tullos, Desiree D.; Collins, Mathias J.; Bellmore, J. Ryan; Bountry, Jennifer A.; Connolly, Patrick J.; Shafroth, Patrick B.; Wilcox, Andrew C.
2016-01-01
Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether or not these concerns are warranted at a particular site. We used a dam-removal science database supplemented with other information sources to explore seven frequently-raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by non-native plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors like natural watershed variability and disturbance history.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... at the U.S. Army Corps of Engineers' (Corps) Columbia Lock & Dam, located on the Ouachita River near... & Dam Hydroelectric Project No. 13824-000 would consist of: (1) Two to four compact bulb turbines, with... Dam; (2) a 40-foot x 60-foot control building located on the South Carolina side of the river; and (3...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
...,400-foot-long conduit tunnel; (5) a powerhouse with approximate dimensions of 80 feet wide by 160 feet.... The proposed project would consist of the following: (1) A 265- foot-high, 903-foot-long Main dam; (2) a 265-foot-high, 2,024 feet-long Saddle dam adjacent to the main dam; (3) a storage reservoir with a...
9. Photographic copy of photograph. (Source: National Archives Photo Collection, ...
9. Photographic copy of photograph. (Source: National Archives Photo Collection, Denver, NN-366-114, Box 12, Photo 4464) Rebuilt Rock Creek Diversion Dam. Intake structure for canal is at left with suliceway and overflow section to right. April 24, 1950. - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT
Westjohn, David B.
1997-01-01
The proposed removal of the remnants of a hydroelectric dam in the Muskegon River at Big Rapids, Michigan, will potentially affect flow of the river at the city's water intake system. Fifteen boreholes were augered in bottom sediments in the river just upstream from the dam relic, and streambottom profiles were made using ground-penetrating radar. Data from boreholes show that sediments captured by the dam foundation were deposited in two distinctly different sedimentary environments. Sediments that overlie the pre-dam channel surface consist of lacustrine clay, wood chips, silt, and sand. These lacustrine sediments are interbedded in a cyclical fashion, and they were deposited under low flow to stagnant water conditions during 1916-66, when a 17-foot-tall hydroelectric dam was in place. Demolition of the upper 13 feet of this dam in 1966 resulted in erosion of most of the lacustrine sediments, and subsequent deposition of coarser alluvium in the impoundment behind the remaining dam foundation. Lacustrine sediments are present in the active part of the stream channel and extend from the dam foundation to about 1,300 feet upstream. The composite thickness of lacustrine sediments and overlying coarser alluvium was determined from sediment cores collected from the boreholes. The volume of these sediments is estimated to be about 19,000 cubic yards.
24. DETAIL EXTERIOR VIEW LOOKING EAST, SHOWING FISH LADDER AT ...
24. DETAIL EXTERIOR VIEW LOOKING EAST, SHOWING FISH LADDER AT NORTH END OF DAM/SPILLWAY; WATER FLOWING THROUGH FISH LADDER IS VISIBLE AT BOTTOM. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR
43 CFR 418.23 - Diversion of Rock Dam Ditch water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly... Lahontan Reservoir. Such diversions will require the prior written approval of the Bureau and be used in...
43 CFR 418.23 - Diversion of Rock Dam Ditch water.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly... Lahontan Reservoir. Such diversions will require the prior written approval of the Bureau and be used in...
Assessing Risks of Mine Tailing Dam Failures
NASA Astrophysics Data System (ADS)
Concha Larrauri, P.; Lall, U.
2017-12-01
The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.
Lower Granite Dam Smolt Monitoring Program, 2005-2006 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensik, Fred; Rapp, Shawn; Ross, Doug
2007-01-01
The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam,more » 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.« less
Lower Granite Dam Smolt Monitoring Program, Annual Report 2005-2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menski, Fred
2007-01-01
The 2005 fish collection season at Lower Granite Dam (LGR) was characterized by average water temperatures, below average flows, above average spill, low levels of debris and the record number of smolts collected compared to the previous five years. With the continued release of unclipped supplementation chinook and steelhead above LGR, we cannot accurately distinguish wild chinook, steelhead, and sockeye/kokanee in the sample. For the purposes of this report we will designate fish as clipped and unclipped. This season a total of 13,030,967 juvenile salmonids were collected at LGR. Of these, 12,099,019 were transported to release sites below Bonneville Dam,more » 12,032,623 by barge and 66,396 by truck. An additional 898,235 fish were bypassed to the river due to over-capacity of the raceways, barges or trucks and for research purposes. This was the first season of summer spill at LGR. Spill was initiated at 12:01am June 20 as directed by the ruling set forth by Judge James Redden of the United States District Court (Order CV 01-640-RE). In addition, the Lower Granite project also conducted a summer spill test alternating spill and spill patterns between spill to the gas cap without the removable spillway weir (RSW) and spill with up to 20 kcfs utilizing the RSW. Because of the forecast low flow this year, most hatchery reared subyearling fall chinook were released up to three weeks early. With the unexpected high flows in late May and early June, more than 90% of the subyearling chinook were collected prior to the initiation of the court ordered summer spill program. Collection number fluctuations reflect river flow and project operations for any given year. For example, low flow years (2001, 2004 and 2005) result in higher collection numbers. Court ordered spill throughout the summer migration will directly affect collection of fall subyearling chinook collection numbers. The editors of this report urge the reader to use caution when comparing fish collection numbers between years, considering both annual river flows and annual project operations, because both affect fish migration and collection.« less
Beaver Mediated Water Table Dynamics in Mountain Peatlands
NASA Astrophysics Data System (ADS)
Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.
2016-12-01
Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.
1980-08-01
Phase I Investigation; however, the investigation is intended to identify any need for such studies . In reviewing this report, it should be realized that...need for more detailed hydrologic and hydraulic studies , considering the size of the dam, its general condition and the downstream damage potential. The...and/or further study . 1-1 I 1.2 DESCRIPTION OF PROJECT a. Location - The dam is located on Hunt’s Brook in a rural area of the Town of Waterford
1988-08-01
current design of Seven Oaks Dam that would extend use of the dam beyond the expected project life of 100 years, is to market the sediment that...aggregate). Marketing the sediment deposited behind the dam would serve the dual purpose of extending the useful life of the dam by restoring reservoir...o ..... UCG P 0- 54 Pine Tree Canyon 12 .Lies north of Mojave ............. 35.0 59,500 1: Aug 1931 )5 Cinermn Creek near Tehachapi
This dataset represents the dam density and storage volumes within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on National Inventory of Dams (NID) data. Attributes were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics.(See Supplementary Info for Glossary of Terms) The NID database contains information about the dam??s location, size, purpose, type, last inspection, regulatory facts, and other technical data. Structures on streams reduce the longitudinal and lateral hydrologic connectivity of the system. For example, impoundments above dams slow stream flow, cause deposition of sediment and reduce peak flows. Dams change both the discharge and sediment supply of streams, causing channel incision and bed coarsening downstream. Downstream areas are often sediment deprived, resulting in degradation, i.e., erosion of the stream bed and stream banks. This database was improved upon by locations verified by work from the USGS National Map (Jeff Simley Group). It was observed that some dams, some of them major and which do exist, were not part of the 2009 NID, but were represented in the USGS National Map dataset, and had been in the 2006 NID. Approximately 1,100 such dams were added, based on the USGS National Map lat/long and the 2006 NID attributes (dam height, storage, etc.) Finally, as clean-up, a) about 600 records with duplicate NIDID were removed, and b) about 300 reco
Lower Methow tributaries intensive effectiveness monitoring study. Interim report
Martens, Kyle D.; Connolly, Patrick J.
2008-01-01
Actions have been taken to replace diversion dams in lower Beaver Creek with a series of rock vortex weirs. Some of these diversion dams have been in place for over 100 years, and they have impaired or completely blocked upstream migration of fish. Three diversion dams were replaced in 2003 (Lower Stokes, Thurlow Transfer, and Upper Stokes), and a forth diversion dam was replaced in 2004 (Fort-Thurlow). These vortex weirs were designed and installed under the supervision of U.S. Bureau of Reclamation (BOR) engineers and completed in accordance to National Marine Fisheries Service (NMFS) and Washington Department of Fisheries and Wildlife (WDFW) fish passage criteria. The projects were designed to meet fish species recovery needs described by the Endangered Species Act (ESA) and the “BiOp” issued by NMFS (2000a). Since no specific guidelines have been identified to date specifically addressing diversion dams, WDFW and NMFS guidelines are being considered as the target design and performance criteria for the sites monitored as part of this project. Where used, the vortex weirs were designed to maintain irrigation diversion capabilities while improving fish passage.
1976-09-30
r AD-A126 989 REPORTTORN AN ARCHEOLOGICAL SURVEY 0F FIE LOCAL PROTECTION PROJECT CAMS A..U) EL PASO CENTENNIA MUSEUM TX R E GERALD 30 SEP 76 DACW47-6...ARCHEOLOGICAL SURVEY OF FIVE LOCAL PROTECTION PROJECT DAMS AND ASSOCIATED DRAINAGE AND DIVERSION CHANNELS IN NORTHWEST EL PASO, TEXAS By REX E. GERALD, Ph.D...gchelogical. Survey of Five Local9/07___Protection Dand Associated Drainage and Diversion a Channels in Northwest El Paso, Texas Gerald, Rex E
NASA Astrophysics Data System (ADS)
Fuller, Brian M.; Sklar, Leonard S.; Compson, Zacchaeus G.; Adams, Kenneth J.; Marks, Jane C.; Wilcox, Andrew C.
2011-03-01
The linkages between fluvial geomorphology and aquatic ecosystems are commonly conceptualized as a one-way causal chain in which geomorphic processes create the physical template for ecological dynamics. In streams with a travertine step-pool morphology, however, biotic processes strongly influence the formation and growth of travertine dams, creating the potential for numerous feedbacks. Here we take advantage of the decommissioning of a hydroelectric project on Fossil Creek, Arizona, where restoration of CaCO 3-rich baseflow has triggered rapid regrowth of travertine dams, to explore the interactions between biotic and abiotic factors in travertine morphodynamics. We consider three conceptual frameworks, where biotic factors independently modulate the rate of physical and chemical processes that produce travertine dams; combine with abiotic factors in a set of feedback loops; and work in opposition to abiotic processes, such that the travertine step-pool morphology reflects a dynamic balance between dominantly-biotic constructive processes and dominantly-abiotic destructive processes. We consider separately three phases of an idealized life cycle of travertine dams: dam formation, growth, and destruction by erosive floods. Dam formation is catalyzed by abiotic factors (e.g. channel constrictions, and bedrock steps) and biotic factors (e.g. woody debris, and emergent vegetation). From measurements of changes over time in travertine thickness on a bedrock step, we find evidence for a positive feedback between flow hydraulics and travertine accrual. Measurements of organic content in travertine samples from this step show that algal growth contributes substantially to travertine accumulation and suggest that growth is most rapid during seasonal algal blooms. To document vertical growth of travertine dams, we embedded 252 magnets into nascent travertine dams, along a 10 km stretch of river. Growth rates are calculated from changes over time in the magnetic field intensity at the dam surface. At each magnet we record a range of hydraulic and travertine composition variables to characterize the dominant mechanism of growth: abiotic precipitation, algal growth, trapping of organic material, or in situ plant growth. We find: (1) rapid growth of travertine dams following flow restoration, averaging more than 2 cm/year; (2) growth rates decline downstream, consistent with loss of dissolved constituents because of upstream travertine deposition, but also parallel to a decline in organic content in dam surface material and a downstream shift in dominant biotic mechanism; (3) biotic mechanisms are associated with faster growth rates; and (4) correlations between hydraulic attributes and growth rates are more consistent with biotic than abiotic controls. We conclude that the strong influence of living organisms on rates of travertine growth, coupled with the beneficial effects of travertine on ecosystem dynamics, demonstrate a positive feedback between biology and geomorphology. During our two-year study period, erosive flood flows occurred causing widespread removal of travertine. The temporal distribution of travertine growth and erosion over the study period is consistent with a bimodal magnitude-frequency relation in which growth dominates except when large, infrequent storms occur. This model may be useful in other systems where biology exerts strong controls on geomorphic processes.
NASA Astrophysics Data System (ADS)
Arias, M. E.; Farinosi, F.; Lee, E.; Livino, A.; Moorcroft, P. R.
2016-12-01
Brazil is the 2nd largest hydropower producer in the world, and this energy source will continue to be a priority in the country for the foreseeable decades. Yet, climate change is expected to alter the country's hydrological regime, in particular in the Amazon where most new hydropower development is occurring. In order to better assess the potential of hydropower projects in decades to come, it is important to evaluate how future hydrological regimes will affect their performance and suitability. This study quantifies the impacts of climate change and land use conversion on hydropower generation, and identifies mechanisms that could help energy planners to account for future changes. Using the largest network of dams in Brazil's national portfolio within a single watershed, the Tapaj's River, this study connects global and regional future environmental projections to daily river flows and operations of 37 dams with an overall potential capacity of 29.4 GW. We found that climate change could decrease hydropower potential by 477-665 MW (-6 to -8% from historical conditions) during the dry season, a critical loss since dams are expected to operate at only one third of capacity during this perioddue to the limited reservoir volume of most projects in the Amazon lowlands. Furthermore, deforestation is expected to increase the inter-annual variability in hydropower potential from 2,798 for baseline conditions to 3,764-3,899 (+967-1102) MW under future scenarios for the 2040s. Consideration of future hydrological conditions on individual dams showed that the magnitude and uncertainty of losses could be greater than 30 MW -equivalent to the total potential of some dams in the inventory- in 11 of the projects studied. Future hydrological conditions could also delay the period when maximum daily generation occurs by 22-29 days, which could have important implications to energy planning in Brazil because these run-of-river dams would no longer be able to meet the country's seasonal peak demand. This information on future changes to individual dams' performance could feed directly into the project selection process in order to adapt designs and operations to ensure the greatest benefits and least impacts from hydropower in the long term.
Survey of beaver-related restoration practices in rangeland streams of the western USA
Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline
2018-01-01
Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.
Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA.
Pilliod, David S; Rohde, Ashley T; Charnley, Susan; Davee, Rachael R; Dunham, Jason B; Gosnell, Hannah; Grant, Gordon E; Hausner, Mark B; Huntington, Justin L; Nash, Caroline
2018-01-01
Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.
Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA
NASA Astrophysics Data System (ADS)
Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R.; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline
2018-01-01
Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.
View of Diversion Dam and Flume Intake of the Childs ...
View of Diversion Dam and Flume Intake of the Childs System at the Irving Powerhouse. Looking northwest - Childs-Irving Hydroelectric Project, Childs System, Flume Intake & Forebay, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
Walla Walla River Fish Passage Operations Program, 2004-2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, James P.; Duke, Bill B.
2006-02-01
In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2004-2005 project year, there were 590 adult summer steelhead, 31 summer steelhead kelts (Oncorhynchus mykiss), 70 adult bull trout (Salvelinus confluentus); 80 adult and 1 jack spring Chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 13, 2004, and June 16, 2005. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by ODFW in order to enumerate fish passage. Of the total, 143 adult summer steelhead and 15 summer steelhead kelts were enumerated at the west ladder at Nursery Bridge Dam during the video efforts between February 4 and May 23, 2005. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year.« less
10. Photographic copy of photograph. (Source: U.S. Department of Interior. ...
10. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1919. Vol. I, RG 75, Entry 655, Box 25, National Archives, Washington, DC.) ASHURST-HAYDEN (FLORENCE) DAM SITE, BRUSH DAM ACROSS THE RIVER - San Carlos Irrigation Project, Ashurst-Hayden Dam, Gila River, T4S R11E S7, Coolidge, Pinal County, AZ
Classification of US hydropower dams by their modes of operation
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...
2016-02-19
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
Classification of US hydropower dams by their modes of operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh
A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less
View of compartment A102 bread room from forward to AFT. ...
View of compartment A-102 bread room from forward to AFT. Wood slat decking and ceiling helps to provide adequate air circulation to aid in preservation of flour and baking supplies. Enclosed structure at right of photograph is a portion of the port side coffer dam. The coffer dam ia a partial inner hull to prevent flooding if the outer hull was breached. Originally the coffer dam was filled with water-resistant cellulose mad from corncobs. This material would swell with incoming water if the hull was breached and seal off the hole. Ordinary leakage kept the material wet and created ideal conditions for rot. The material was removed from the coffer dam. Ducts at right provide fresh air to the bread room. (09) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA
Optimizing Barrier Removal to Restore Connectivity in Utah's Weber Basin
NASA Astrophysics Data System (ADS)
Kraft, M.; Null, S. E.
2016-12-01
Instream barriers, such as dams, culverts and diversions are economically important for water supply, but negatively affect river ecosystems and disrupt hydrologic processes. Removal of uneconomical and aging in-stream barriers to improve habitat connectivity is increasingly used to restore river connectivity. Most past barrier removal projects focused on individual barriers using a score-and-rank technique, ignoring cumulative change from multiple, spatially-connected barrier removals. Similarly, most water supply models optimize either human water use or aquatic connectivity, failing to holistically represent human and environmental benefits. In this study, a dual objective optimization model identified in-stream barriers that impede aquatic habitat connectivity for trout, using streamflow, temperature, and channel gradient as indicators of aquatic habitat suitability. Water scarcity costs are minimized using agricultural and urban economic penalty functions to incorporate water supply benefits and a budget monetizes costs of removing small barriers like culverts and road crossings. The optimization model developed is applied to a case study in Utah's Weber basin to prioritize removal of the most environmentally harmful barriers, while maintaining human water uses. The dual objective solution basis was developed to quantify and graphically visualize tradeoffs between connected quality-weighted habitat for Bonneville cutthroat trout and economic water uses. Modeled results include a spectrum of barrier removal alternatives based on budget and quality-weighted reconnected habitat that can be communicated with local stakeholders. This research will help prioritize barrier removals and future restoration decisions. The modeling approach expands current barrier removal optimization methods by explicitly including economic and environmental water uses.
Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.
2008-01-01
The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.
Water Power in The Wilderness: The History of Bonneville Lock and Dam
1997-01-01
to present many complex problems of site selection, proper construction techniques, and equipment design . The project first received serious...Bonneville Dam amply lived up to the hopes and dreams of its promoters and designers . In the short term, Bonneville supplied essential power for the...plan for the Columbia River. It designated Grand Coulee as the key upriver project and Bonneville as the lowermost in the chain . Report data on the
Solomon Gulch hydroelectric project takes shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The planning and current construction activities for the Solomon Gulch hydroelectric plant near Valdez, Alaska which is scheduled for dam completion in 1980 and power plant operation in 1981 are discussed. The main dam will be 115 ft high and 360 ft wide. The two paralled 48-in. dia penstocks will be constructed from surplus pipe left over from the Alaska pipeline project. Construction on the 12 MW plant began in October 1978. (LCL)
NASA Astrophysics Data System (ADS)
Chen, T. C.; Yen, H. Y.; Zhou, F. L.
2015-12-01
This study focuses on the depth and magnitude of the small scale landslide in slate area in Ai-Liao-Shi catchment, South Taiwan. Landslide inventory of 2009 Typhoon Morakot, 5×5 m DEM, and aero photo have been interpreted by GIS software to assess the slope type and the scale of landslide events. The research database includes 276 landslides which orthographic projection areas are smaller than 1 ha. The slopes were also classified into dip, orthoclinical-dip, escarpment, and orthoclinical- escarpment 4 types of slope based on the slope aspect to the bedding orientation. The sliding plane, or so call the failure plane, was identified by aero photo, field reconnaissance and verification, and DEM before and after the typhoon event. Colluvium material deposited on the slip plane was removed based on the scarp and foot position, mass movement pattern, weak plane orientation, and the micro topography of a landslide to achieve the reasonable sliding plane. The maximum depth of sliding surface is explored through the slope type and sliding plane in total of 276 landslide cases. Results demonstrate that the average maximum depth, Dam, of dip slope is 4.6 m, Dam of orthoclinical-dip, escarpment, and orthoclinical-escarpment slopes are 5.8, 6.0, and 6.3 m respectively. In general, Dam is creasing with the average slope of landslide, the relationship of both factor is achieved in the study. Meanwhile, the orthographic projection area of landslide is increasing with the slope angle till the angle up to 40 degree then decreasing. The depth also varies with landslide magnitude. Finally, the relation of the depth normal to slope surface and the depth in gravity direction of landslides in four types slope are proposed, the R square values are 0.862 to 0.891 showing a good correlation between two types of depth.
22. DETAIL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING FISH LADDER AT ...
22. DETAIL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING FISH LADDER AT NORTH END OF DAM/SPILLWAY; VIEW SHOWS SECTION OF FISH LADDER NEAR WHERE IT ENTERS THE COLUMBIA RIVER. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR
Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K
2017-05-15
Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing changes in failure probability of dams in a changing climate
NASA Astrophysics Data System (ADS)
Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.
2017-12-01
Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.
Damming the Brahmaputra: Impacts on the Resilience of Local Communities to Floods and Climate Change
NASA Astrophysics Data System (ADS)
Rampini, C.
2016-12-01
Recurrent destructive floods along the Brahmaputra river basin are a major challenge for the people and state governments of Northeast India. Climate change is expected to further exacerbate this challenge, as melting Himalayan glaciers and changes in the South Asian monsoon lead to an increase in the frequency of severe floods. At the same time, the Brahmaputra has become the focus of India's hydropower development efforts, with 140 new dams planned along its main stem and tributaries. Though these dams could provide flood protection for downstream communities, political and economic factors have led dam builders to prioritize hydroelectricity generation over flood control. Using the Ranganadi Hydroelectric Project in Arunachal Pradesh as a case study, this research investigates the effects of dam building on the resilience of downstream communities to floods that are becoming increasingly severe as a result of climate change. Findings suggest that dams in Northeast are eroding downstream communities' resilience to floods by increasing their vulnerability and reducing their adaptive capacity to these natural hazards. The risk is that, as dams and climate change jointly make the floodplains of Northeast India increasingly hazardous, uninhabitable and unproductive, they will push local communities away from these landscapes and agricultural livelihoods and towards more carbon-intensive livelihoods. More broadly this research highlights the danger of pursuing climate change mitigation and renewable energy development projects without considering their impacts on the vulnerability and adaptability of affected communities to climate change.
Modified rockfall catch fence Mayflower Creek - Detroit Dam : final report.
DOT National Transportation Integrated Search
1988-08-08
The experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is nonuniform. To deal with the constant problem of f...
Modified rockfall catch fence Mayflower Creek - Detroit Dam : interim Report.
DOT National Transportation Integrated Search
1986-07-01
This experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is non-uniform. To deal with the problem of falling ...
View of Stehr Lake from FS 502 looking upstream (northeast). ...
View of Stehr Lake from FS 502 looking upstream (northeast). Vehicle at right center is parked on earthen Upper Stehr Lake Dam. - Childs-Irving Hydroelectric Project, Childs System, Stehr Lake & Dams, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
VIEW OF DOWNSTREAM SIDE OF CHECK DAM, CONCRETE SPILLWAY WITH ...
VIEW OF DOWNSTREAM SIDE OF CHECK DAM, CONCRETE SPILLWAY WITH MORTARED ROCK WALLS, AND CIPPOLETTI WEIR ON TUMALO RESERVOIR FEED CANAL NEAR COLLINS ROAD (IN BACKGROUND). LOOKING NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR
Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington
Hardiman, Jill M.; Allen, M. Brady
2015-01-01
In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.
Lambing, John H.; Sando, Steven K.
2009-01-01
This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112 percent of the long-term mean annual peak flow (15,600 ft3/s). About 81 percent of the annual flow volume was discharged during the post-breach period. Daily loads of suspended sediment were estimated directly by using high-frequency sampling of the daily sediment monitoring. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to either streamflow or suspended-sediment discharge. Regression equations for estimating trace-element discharge in water year 2008 were developed from instantaneous streamflow and concentration data for periodic water-quality samples collected during all or part of water years 2004-08. The equations were applied to records of daily mean streamflow or daily suspended-sediment loads to produce estimated daily trace-element loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. Relatively small to moderately large daily net losses from the project area were common during the pre-breach period when low-flow conditions were prevalent. Outflow loads from the project area sharply increased immediately after the breaching of Milltown Dam and during the rising limb and peak flow of the annual hydrograph. Net losses of suspended sediment and trace elements from the project area decreased as streamflow decreased during the summer, eventually becoming small or reaching an approximate net balance between inflow and outflow. Estimated daily loads of suspended sediment and trace elements for all three stations were summed to determine cumulative inflow and outflow loads for the pre-breach and post-breach periods, as well as for the entire water year 2008. Overall, the mass balance between the combined inflow loads from two upstream source areas (upper Clark Fork and Blackfoot River basins) and the outflow loads at Clark Fork above Missoula indicates net losses
8. Photographic copy of photograph. (Source: Department of Interior. Bureau ...
8. Photographic copy of photograph. (Source: Department of Interior. Bureau of Reclamation. Bitterroot Project History 1931-1962. National Archives, Denver, RG 115, Accession #115-90-039, Box 243) Photographer unknown. View of original rock-fill crib diversion structure, September 13, 1949. Diversion and head works for big ditch on Rock Creek. - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT
8. Historic photo taken during construction of the Lost River ...
8. Historic photo taken during construction of the Lost River Diversion Dam and House. Labeled as follows, 'View showing walk construction North side. Group in foreground, left to right: - J.M. McLean, I.S. Voorhees, Asst Eng'r, A.B. Clevland, engineer... W.W. Patch, Project Engineer.' Negative # 95. Facing east. - Klamath Basin Project, Lost River Diversion Dam House, Lost River near intersection of State Highway 140 & Hill Road, Klamath Falls, Klamath County, OR
2013-02-08
Fish and Wildlife Service WRDA Water Resources Development Act Intake Project IEPR Final IEPR Report February 8, 2013 x... Wildlife Service (USFWS), Natural Resources Conservation Service (NRCS), Montana Department of Environmental Quality, The Nature Conservancy...30% design features and channel entrance and exit pre-appraisal study to provide fish passage around Intake Dam, Montana. U.S. Fish and Wildlife
2012-09-01
erosion. Piney Creek alluvium along the low terraces is Holocene in age and rock fragments in this area have igneous or metamorphic lithology with...to the Red Rocks Amphitheatre and Bandimere Speedway, which are a brief drive from the Park. Recreational use of Bear Creek Lake is also... US Army Corps of Engineers ® Omaha District Environmental Assessment for the Bear Creek Dam and Lake Project Master Plan South Platte River
Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in Amazonia
NASA Astrophysics Data System (ADS)
Fearnside, Philip M.
1989-07-01
The Balbina Dam in Brazil's state of Amazonas floods 2360 km2 of tropical forest to generate an average of only 112.2 MW of electricity. The flat topography and small size of the drainage basin make output small. Vegetation has been left to decompose in the reservoir, resulting in acidic, anoxic water that will corrode the turbines. The shallow reservoir contains 1500 islands and innumerable stagnant bays where the water's residence time will be even longer than the average time of over one year. Balbina was built to supply electricity to Manaus, a city that has grown so much while the dam was under construction that other alternatives are already needed. Government subsidies explain the explosive growth, including Brazil's unified tariff for electricity. Alternative power sources for Manaus include transmission from more distant dams or from recently discovered oil and natural gas deposits. Among Balbina's impacts are loss of potential use of the forest and displacement of about one third of the surviving members of a much-persecuted Amerindian tribe: the Waimiri-Atroari. The dam was closed on 1 October 1987 and the first of five generators began operation in February 1989. The example of Balbina points to important ways that the decision-making process could be improved in Brazil and in the international funding agencies that have directly and indirectly contributed to the project. Environmental impact analyses must be completed prior to decisions on overall project implementation and must be free of influence from project proponents. The current environmental impact assessment system in Brazil, as in many other countries, has an undesirable influence on science policy, in addition to failing to address the underlying causes of environmentally destructive development processes and inability to halt “irreversible” projects like Balbina.
Shafroth, Patrick B.; Fuentes, Tracy L.; Pritekel, Cynthia; Beirne, Matthew M.; Beauchamp, Vanessa B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The Elwha River estuary supports one of the most diverse coastal wetland complexes yet described in the Salish Sea region, in terms of vegetation types and plant species richness. Using a combination of aerial imagery and vegetation plot sampling, we identified 6 primary vegetation types and 121 plant species in a 39.7 ha area. Most of the estuary is dominated by woody vegetation types, with mixed riparian forest being the most abundant (20 ha), followed by riparian shrub (6.3 ha) and willow-alder forest (3.9 ha). The shrub-emergent marsh transition vegetation type was fourth most abundant (2.2 ha), followed by minor amounts of dunegrass (1.75 ha) and emergent marsh (0.2 ha). This chapter documents the abundance, distribution, and floristics of these six vegetation types, including plant species richness, life form, species origin (native or introduced), and species wetland indicator status. These data will serve as a baseline to which future changes can be compared, following the impending removal of Glines Canyon and Elwha Dams upstream on the Elwha River. Dam removals may alter many of the processes, materials, and biotic interactions that influence the estuary plant communities, including hydrology, salinity, sediment and wood transport, nutrients, and plant-microbe interactions.
Research on early-warning index of the spatial temperature field in concrete dams.
Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan
2016-01-01
Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.
Dam Dynamics in the Colonial Northeast and Chesapeake: Hydrologic Implications
NASA Astrophysics Data System (ADS)
Bain, D. J.; Salant, N. L.; Brandt, S. L.
2008-12-01
Recent work has highlighted the widespread presence of low-head dams for power generation during the 19th century. However, this work largely depends on census numbers tabulated in the mid-1800s, over 200 years after European activity began in North America. In order to compare the hydrologic implications of colonial era low-head dam construction with the impacts of other simultaneous processes (e.g., expatriation of the beaver or forest clearance), we have compiled historical data on mills to reconstruct the temporal and spatial dynamics of low-head dam construction in the colonial northeastern United States (i.e., Virginia to Maine). This reconstruction, combined with the results of related work on beaver pond dynamics and deforestation, provides several insights into the distribution and impacts of human impoundments during this period. While the resulting hydrologic changes are large, the addition of human dams to the system seems to be minimally offset and less important than changes arising from the expatriation of the beaver or the removal of trees during this early period. In addition, the spatial patterns of dam construction are complex, making prediction of hydrologic and associated responses more difficult to predict.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Daniel L.; Tidwell, Vincent C.; Passell, Howard D.
The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and informationmore » from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.« less
Major, Jon J.; Spicer, Kurt R.; Collins, Rebecca A.
2010-01-01
In 2007, Marmot Dam on the Sandy River, Oregon, was removed and a temporary cofferdam standing in its place was breached, allowing the river to flow freely along its entire length. Time-lapse imagery obtained from a network of digital single-lens reflex cameras placed around the lower reach of the sediment-filled reservoir behind the dam details rapid erosion of sediment by the Sandy River after breaching of the cofferdam. Within hours of the breaching, the Sandy River eroded much of the nearly 15-m-thick frontal part of the sediment wedge impounded behind the former concrete dam; within 24-60 hours it eroded approximately 125,000 m3 of sediment impounded in the lower 300-meter-reach of the reservoir. The imagery shows that the sediment eroded initially through vertical incision, but that lateral erosion rapidly became an important process.
Non-native fish control below Glen Canyon Dam - Report from a structured decision-making project
Runge, Michael C.; Bean, Ellen; Smith, David; Kokos, Sonja
2011-01-01
This report describes the results of a structured decision-making project by the U.S. Geological Survey to provide substantive input to the Bureau of Reclamation (Reclamation) for use in the preparation of an Environmental Assessment concerning control of non-native fish below Glen Canyon Dam. A forum was created to allow the diverse cooperating agencies and Tribes to discuss, expand, and articulate their respective values; to develop and evaluate a broad set of potential control alternatives using the best available science; and to define individual preferences of each group on how to manage the inherent trade-offs in this non-native fish control problem. This project consisted of two face-to-face workshops, held in Mesa, Arizona, October 18-20 and November 8-10, 2010. At the first workshop, a diverse set of objectives was discussed, which represented the range of concerns of those agencies and Tribes present. A set of non-native fish control alternatives ('hybrid portfolios') was also developed. Over the 2-week period between the two workshops, four assessment teams worked to evaluate the control alternatives against the array of objectives. At the second workshop, the results of the assessment teams were presented. Multi-criteria decision analysis methods were used to examine the trade-offs inherent in the problem, and allowed the participating agencies and Tribes to express their individual judgments about how those trade-offs should best be managed in Reclamation`s selection of a preferred alternative. A broad array of objectives was identified and defined, and an effort was made to understand how these objectives are likely to be achieved by a variety of strategies. In general, the objectives reflected desired future conditions over 30 years. A rich set of alternative approaches was developed, and the complex structure of those alternatives was documented. Multi-criteria decision analysis methods allowed the evaluation of those alternatives against the array of objectives, with the values of individual agencies and tribes deliberately preserved. Trout removal strategies aimed at the Paria to Badger Rapid reach (PBR), with a variety of permutations in deference to cultural values, and with backup removal at the Little Colorado River reach (LCR) if necessary, were identified as top-ranking portfolios for all agencies and Tribes. These PBR/LCR removal portfolios outperformed LCR-only removal portfolios, for cultural reasons and for effectiveness - the probability of keeping the humpback chub population above a desired threshold was estimated to be higher under the PBR/LCR portfolios than the LCR-only portfolios. The PBR/LCR removal portfolios also outperformed portfolios based on flow manipulations, primarily because of the effect of sport fishery and wilderness recreation objectives, as well as cultural objectives. The preference for the PBR/LCR removal portfolios was quite robust to variation in the objective weights and to uncertainty about the underlying dynamics, at least over the ranges of uncertainty investigated. Examination of the effect of uncertainty on the recommended outcomes allowed us to complete a 'value of information' analysis. The results of this analysis led to an adaptive strategy that includes three possible long-term management actions (no action; LCR removal; or PBR removal) and seeks to reduce uncertainty about the following two issues: the degree to which rainbow trout limit chub populations, and the effectiveness of PBR removal to reduce trout emigration downstream into Marble and eastern Grand Canyons, where the largest population of humpback chub exist. In the face of uncertainty about the effectiveness of PBR removal, a case might be made for including flow manipulations in an adaptive strategy, but formal analysis of this case was not conducted. The full set of conclusions described above is not definitive, however. This analysis described in this report is a simplified depiction of the t
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Robin
During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additionalmore » funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are displayed in Table 1 (page 5). Work on the restoration of the original Sandy River channel (dam removal, contract 26198) continued slowly. The draft EA was completed and sent out for review. The COE has decided to finish the NEPA with the intent to complete the project.« less
Emergency Fish Restoration Project; Final Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeCaire, Richard
Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleyemore » (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.« less
11. VIEW SHOWING THE SUPERSTRUCTURE OF THE SHED ROOF (REMOVED ...
11. VIEW SHOWING THE SUPERSTRUCTURE OF THE SHED ROOF (REMOVED AUTUMN OF 1996) PROTECTING THE PRESENT INTAKE GATES- AND RAKE-LIFTING MECHANISMS AND THE TRASH RACKS (LOWER FOREGROUND), LOOKING NORTH. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID
43 CFR 418.15 - Operations monitoring.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Wadsworth—U.S. Geological Survey (USGS) gauge number 10351300; (ii) Carson River below Lahontan Dam—USGS gauge number 10312150; (iii) Rock Dam Ditch near the end of the concrete lining; and (2) Subtracting: (i... Tarzyn Road near Fallon (below Sagouspe Dam) for satisfying water rights outside of the Project...
43 CFR 418.15 - Operations monitoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Wadsworth—U.S. Geological Survey (USGS) gauge number 10351300; (ii) Carson River below Lahontan Dam—USGS gauge number 10312150; (iii) Rock Dam Ditch near the end of the concrete lining; and (2) Subtracting: (i... Tarzyn Road near Fallon (below Sagouspe Dam) for satisfying water rights outside of the Project...
Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, Jay; Garrow, Larry
2005-06-01
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine themore » biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.« less
Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunnigan, James; DeShazer, Jay; Garrow, Larry
2004-06-01
''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determinemore » the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.« less
Snail Darters and Sacred Places: Creative Application of the Endangered Species Act
NASA Astrophysics Data System (ADS)
Gilmer, Robert Andrew
2013-11-01
Rather than exploring how indigenous people have been alienated from resources by environmental policies, this paper explores how indigenous peoples have worked with environmental organizations to use the broad protections provided by environmental laws to protect cultural resources. The Eastern Band of Cherokee Indians, along with other concerned groups, partnered with environmentalists in opposing the destruction of the endangered snail darter’s critical habitat by the Tennessee Valley Authority’s Tellico Dam. The dam had been opposed by a shifting alliance of Cherokees, local farmers, trout fisherman, and environmentalists since it was announced in 1963. A previous lawsuit by this coalition delayed the project from 1972 to 1974 under the National Environmental Policy Act. The Endangered Species Act provided this coalition with a powerful tool for opposing the destruction of burial grounds and sacred village sites throughout the lower Little Tennessee River valley. The coalition of environmental organizations, Cherokees, and others was ultimately unsuccessful in stopping the dam from being built, but was successful in establishing a strict precedent for the enforcement of the Endangered Species Act. The lawsuit also created a space for the Eastern Band to negotiate for the return of Cherokee remains and halt the removal of any additional burials. In this situation, the strategic support of environmental regulation enabled the Eastern Band to exert some degree of control over the fate of cultural resources in the valley, and also demonstrates the significant role American Indian peoples played in one of the seminal events of the environmental movement during the 1970s.
Snail darters and sacred places: creative application of the endangered species act.
Gilmer, Robert Andrew
2013-11-01
Rather than exploring how indigenous people have been alienated from resources by environmental policies, this paper explores how indigenous peoples have worked with environmental organizations to use the broad protections provided by environmental laws to protect cultural resources. The Eastern Band of Cherokee Indians, along with other concerned groups, partnered with environmentalists in opposing the destruction of the endangered snail darter's critical habitat by the Tennessee Valley Authority's Tellico Dam. The dam had been opposed by a shifting alliance of Cherokees, local farmers, trout fisherman, and environmentalists since it was announced in 1963. A previous lawsuit by this coalition delayed the project from 1972 to 1974 under the National Environmental Policy Act. The Endangered Species Act provided this coalition with a powerful tool for opposing the destruction of burial grounds and sacred village sites throughout the lower Little Tennessee River valley. The coalition of environmental organizations, Cherokees, and others was ultimately unsuccessful in stopping the dam from being built, but was successful in establishing a strict precedent for the enforcement of the Endangered Species Act. The lawsuit also created a space for the Eastern Band to negotiate for the return of Cherokee remains and halt the removal of any additional burials. In this situation, the strategic support of environmental regulation enabled the Eastern Band to exert some degree of control over the fate of cultural resources in the valley, and also demonstrates the significant role American Indian peoples played in one of the seminal events of the environmental movement during the 1970s.
Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.
2009-01-01
Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.
Crafford, Dionne; Luus-Powell, Wilmien; Avenant-Oldewage, Annemariè
2014-09-01
Baseline information on parasitic infections, including monogenean infections on wild fishes, may aid in implementation of proactive measures as opposed to reactive research aimed at crisis control with reference to future aquaculture applications. The aim of this project was to examine the freshwater monogenean fauna of the Vaal Dam, Vaal River system, South Africa. This short communication reports on infection statistics for monogenean species, some representing new locality records. Parasites were collected from host species other than Labeo spp. from the Vaal Dam, during a summer (January 2010) survey. Fish collected using gill nets of varying mesh sizes were weighed and measured. Mucous smears were prepared from the skin and fins with the aid of microscope slides. Fish were killed humanely by severing the spinal cord behind the head. Gills were carefully removed and divided into areas which were separately scraped to investigate potential parasite site preference. The areas examined were dorsal, median and ventral positions on both the anterior and posterior hemibranch. Both mucous smears and gill scrapings were examined with the aid of a stereo microscope. More parasites were collected from the first or second gill arches, the medial position on the gill, and the anterior hemibranch. Preference for either left or right gill set was inconclusive. Spatial distribution of parasites is thought to result from water flow over the gills during respiration. This paper reports a new locality record for the following monogenean species: Quadriacanthus aegypticus, Dactylogyrus extensus, Dactylogyrus minitus, Gyrodactylus kherulensis and Dactylogyrus lamellatus.
1980-06-01
1= .l 1 Cd LzL C -N w x - bo0 P4 0 r.. L4- :3 wow I- TABLE OF CONTENTS Page SECTION 1 - PROJECT INFORMATION 1.1 GENERAL 1 1.2 DESCRIPTION OF PROJECT...Classification: High (Refer to Section 3.1.E.) E. Ownership: Mr. David R. Kochel, Community Manager Hemlock Farms Community Association Hemlock Farms...0S~/m 00 (%.J? N N LOWER HEMLOCK DAM PA.-00756 I NSPECTION SURVEY PLATE A-31 lb’hJ -oo z lb - 00,00 Z 0 w -I- - 00 €0 xI Og 4O O I14 wIL -0ogo U vz i
Melis, Theodore S.; Walters, Carl; Korman, Josh
2015-01-01
With a focus on resources of the Colorado River ecosystem below Glen Canyon Dam, the Glen Canyon Dam Adaptive Management Program has included a variety of experimental policy tests, ranging from manipulation of water releases from the dam to removal of non-native fish within Grand Canyon National Park. None of these field-scale experiments has yet produced unambiguous results in terms of management prescriptions. But there has been adaptive learning, mostly from unanticipated or surprising resource responses relative to predictions from ecosystem modeling. Surprise learning opportunities may often be viewed with dismay by some stakeholders who might not be clear about the purpose of science and modeling in adaptive management. However, the experimental results from the Glen Canyon Dam program actually represent scientific successes in terms of revealing new opportunities for developing better river management policies. A new long-term experimental management planning process for Glen Canyon Dam operations, started in 2011 by the U.S. Department of the Interior, provides an opportunity to refocus management objectives, identify and evaluate key uncertainties about the influence of dam releases, and refine monitoring for learning over the next several decades. Adaptive learning since 1995 is critical input to this long-term planning effort. Embracing uncertainty and surprise outcomes revealed by monitoring and ecosystem modeling will likely continue the advancement of resource objectives below the dam, and may also promote efficient learning in other complex programs.
Spatial design principles for sustainable hydropower development in river basins
Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; ...
2015-02-27
How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less
43 CFR 418.29 - Project management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... determination by the Bureau, the Bureau may take over from the District the care, operation, maintenance, and management of the diversion and outlet works (Derby Dam and Lahontan Dam/Reservoir) or any or all of the.... Following written notification from the Bureau, the care, operation, and maintenance of the works may be...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... the Herbert Hoover Dike Major Rehabilitation Project, Martin and Palm Beach Counties AGENCY...-wide risk reduction approach as required for safety modifications to dams. FOR FURTHER INFORMATION...-2108. SUPPLEMENTARY INFORMATION: The supplemental MRR will be replaced with a system-wide Dam Safety...
1991-09-01
Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by
1980-02-01
for Permit for Construction and Repair of Dam" filed on March 16, 1959. f. Design and Construction History Design data on file with NJDEP include: 1...LAr- Us a-2. hr’s. LA9~ WATF=R? SiQ_~~- SL- !E q VOL ( YFv - mcA>-) (Acmr-- =T.) 2o4~ 2-Ito STORCH ENGINEERS shootL... of 11. Project FmnnK Wmr=X---A-1
Code of Federal Regulations, 2011 CFR
2011-07-01
... VA Pwr. Glen Elder Dam & Waconda Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0... 820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R F ICR 215.1 89.6 1757.3 1729.2 1729... Webster Dam & Res KS Rocks S Fork Solomon R F IRC 183.4 72.1 1923.7 1892.5 1892.5 1860.0 8480 3772 3772...
Code of Federal Regulations, 2010 CFR
2010-07-01
... VA Pwr. Glen Elder Dam & Waconda Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0... 820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R F ICR 215.1 89.6 1757.3 1729.2 1729... Webster Dam & Res KS Rocks S Fork Solomon R F IRC 183.4 72.1 1923.7 1892.5 1892.5 1860.0 8480 3772 3772...
1986-06-01
30 APPENDIX A: EARTHQUAKES AND GEOLOGY OF THE BARKLEY DAM AREA IN RELATION TO THE NEW MADRID EARTHQUAKE REGION TO...Dam is about 115 km from the source area of the New Madrid earthquakes of 1811-1812. Four major earthquakes are deduced to have occurred (Street and...hundreds of aftershocks, a dozen of which were felt over much of the central United States. Other major earthquakes that have happened in the New Madrid
Student Experiments on the Effects of Dam Removal on the Elwha River
NASA Astrophysics Data System (ADS)
Sandland, T. O.; Grack Nelson, A. L.
2006-12-01
The National Center for Earth Surface Dynamics (NCED) is an NSF funded Science and Technology Center devoted to developing a quantitative, predictive science of the ecological and physical processes that define and shape rivers and river networks. The Science Museum of Minnesota's (SMM) Earthscapes River Restoration classes provide k-12 students, teachers, and the public opportunities to explore NCED concepts and, like NCED scientists, move from a qualitative to a quantitative-based understanding of river systems. During a series of classes, students work with an experimental model of the Elwha River in Washington State to gain an understanding of the processes that define and shape river systems. Currently, two large dams on the Elwha are scheduled for removal to restore salmon habitat. Students design different dam removal scenarios to test and make qualitative observations describing and comparing how the modeled system evolves over time. In a following session, after discussing the ambiguity of the previous session's qualitative data, student research teams conduct a quantitative experiment to collect detailed measurements of the system. Finally, students interpret, critique, and compare the data the groups collected and ultimately develop and advocate a recommendation for the "ideal" dam removal scenario. SMM is currently conducting a formative evaluation of River Restoration classes to improve their educational effectiveness and guide development of an educator's manual. As of August 2006, pre- and post-surveys have been administered to 167 students to gauge student learning and engagement. The surveys have found the program successful in teaching students why scientists use river models and what processes and phenomena are at work in river systems. Most notable is the increase in student awareness of sediment in river systems. A post-visit survey was also administered to 20 teachers who used the models in their classrooms. This survey provided feedback about teachers' experience with the program and will help inform the development of a future educator's manual. All teachers found the program to be effective at providing opportunities for students to make qualitative observations and most (95%) found the program effective at providing students opportunities to make quantitative measurements. A full summary of evaluation results will be shared at the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocklage, Stephen J.
The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota.more » We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain John Rapids to 16.2 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 11.7 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 8-15 days to Lower Granite Dam and 22-27 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 23-25. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 4-10.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
..., proposing to study the feasibility of Project Green Dream (Project No. 13625), to be located at the New... Dam are owned and operated by the U.S. Army Corps of Engineers. Project Green Dream would include new...
NASA Astrophysics Data System (ADS)
Kameyama, S.; Shimazaki, H.; Nohara, S.; Fukushima, M.; Kudo, K.; Sato, T.
2008-12-01
In the Mekong River watershed, traditional social and industrial systems have long existed in harmony with water and biological resources. Since the 1950s, many dam-construction projects have been started to develop power and water resources to meet increasing demand for energy and food production. Since the 1970s, there have been temporary interruptions to these projects because of civil war or regional volatility of international relations. Many of these projects have been restarted in the last 15 years. This raises international interest, as there are transboundary issues cross-border issues related to both development assistance and environmental conservation. By 2008, two Chinese dams had already been completed (the Manwan dam in 1996 and the Dachaoshan dam in 2003) on the Mekong River in Yunnan province. Dam construction has some positive impacts, such as electricity production, management of water resources, and flood control. However, upstream control of water discharge can have negative impacts on traditional agricultural systems and fisheries downstream from the dams, such as drastic changes in flow volume and sediment load. We used hydrological simulation of the watershed to quantify the impact of the construction of the Dachaoshan dam by comparing annual water discharge and sediment transport before and after the dam was completed. Our main objectives were to use watershed hydrologic modeling to simulate changes to annual hydrological parameters and sediment transport, and to map spatio-temporal changes of these data before and after dam construction. Our study area covered the part of the Mekong River main channel that extends about 100 km downstream from the junction of the borders of Myanmar, Thailand, and the Lao People's Democratic Republic. We used five data validation points at 25-km intervals along this section of the river and calculated model parameters every 1 km. The years we modeled were 1990 (began dam construction) and 2006 (after dam completed). We used the MIKE-SHE and MIKE11-Enterprise (developed by DHI) to calculate seasonal changes of water level, water velocity, and sediment transport. These models provided both water discharge and sediment transport dynamics at each modeled point along the river. The sediment budget was calculated as the difference of sediment load by volume between adjacent modeled points. All parameters used in the model were calibrated with field survey data; the river structure and water flows were measured in November 2007. To validate our simulated results we used historical water-level records from the towns of Chensean and Chencone. To determine the relationship between water discharge and sediment load, we analyzed the turbidity of monthly river water samples collected in the study region between November 2007 and November 2008. Our watershed runoff models simulated water discharge and sediment load at 1-km intervals and 1-h time steps for 1990 and 2006. The model results were compiled in GIS format and maps were produced to provide simple spatial displays of modeled parameters. Our simulations show that after construction of the dam, there was a moderate decrease in peak discharge volume and water velocity during the rainy season from August to September.
2017-01-01
Background The developmental projects, particularly construction of dams, result in permanent changes of terrestrial ecosystems through inundation. Objective The present study was undertaken aiming at documenting useful plant species in Ntabelanga dam catchment area that will be impacted by the construction of the proposed dam. Methods A total of 55 randomly selected quadrats were used to assess plant species diversity and composition. Participatory rural appraisal (PRA) methods were used to identify useful plant species growing in the catchment area through interviews with 108 randomly selected participants. Results A total of 197 plant species were recorded with 95 species (48.2%) utilized for various purposes. Use categories included ethnoveterinary and herbal medicines (46 species), food plants (37 species), construction timber and thatching (14 species), firewood (five species), browse, live fence, and ornamental (four species each), and brooms and crafts (two species). Conclusion This study showed that plant species play an important role in the daily life and culture of local people. The construction of Ntabelanga dam is, therefore, associated with several positive and negative impacts on plant resources which are not fully integrated into current decision-making, largely because of lack of multistakeholder dialogue on the socioeconomic issues of such an important project. PMID:28828397
Sediment transport on Cape Sable, Everglades National Park, Florida
Zucker, Mark; Boudreau, Carrie
2010-01-01
The Cape Sable peninsula is located on the southwestern tip of the Florida peninsula within Everglades National Park (ENP). Lake Ingraham, the largest lake within Cape Sable, is now connected to the Gulf of Mexico and western Florida Bay by canals built in the early 1920's. Some of these canals breached a natural marl ridge located to the north of Lake Ingraham. These connections altered the landscape of this area allowing for the transport of sediments to and from Lake Ingraham. Saline intrusion into the formerly fresh interior marsh has impacted the local ecology. Earthen dams installed in the 1950's and 1960's in canals that breached the marl ridge have repeatedly failed. Sheet pile dams installed in the early 1990's subsequently failed resulting in the continued alteration of Lake Ingraham and the interior marsh. The Cape Sable Canals Dam Restoration Project, funded by ENP, proposes to restore the two failed dams in Lake Ingraham. The objective of this study was to collect discharge and water quality data over a series of tidal cycles and flow conditions to establish discharge and sediment surrogate relations prior to initiating the Cape Sable Canals Dam Restoration Project. A dry season synoptic sampling event was performed on April 27-30, 2009.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
..., including incrementional lowering and removal of Dream Lake Dam, rehabilitation of drainage ditches in... foreseeable environmental consequences were assessed, and appropriate mitigation measures are incorporated in...
76 FR 59657 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... Restoration Ecosystem Service Valuation Pilot. OMB Control Number: None. Form Number(s): NA. Type of Request... Restoration Ecosystem Service Valuation Survey. The planned removal of two hydroelectric dams on the Elwha...
Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.
2017-08-07
The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.
22 CFR 216.2 - Applicability of procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... river basin development; (ii) Irrigation or water management projects, including dams and impoundments... projects, programs or activities authorized or approved by A.I.D. and to substantive amendments or extensions of ongoing projects, programs, or activities. (b) Exemptions. (1) Projects, programs or activities...
77 FR 48151 - Boulder Canyon Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund... deposited by Western and shall be available without further appropriation for: (1) Defraying the costs of... River Basin Project Act; (5) Transfers to the Lower Colorado River Basin Development Fund and subsequent...
1. VIEW OF LOCKS, LOOKING NORTHEAST Photocopy of photograph, ca. ...
1. VIEW OF LOCKS, LOOKING NORTHEAST Photocopy of photograph, ca. 1980, courtesy of U.S. Engineer Office, St. Louis, Missouri. Original print is on file at Mississippi River Lock and Dam No. 27 in Granite City, Illinois. - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL
114. Photocopy of original construction drawing, 14 August 1935. (Original ...
114. Photocopy of original construction drawing, 14 August 1935. (Original print in the possession of U.S. Army Corps of Engineers, Portland District, Portland, OR.) (M-5-8, Sheet No. 14) SPILLWAY DAM FISHWAY ENTRANCE BAY DIFFUSION CHAMBER BEAN DETAILS. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR
78 FR 66911 - Notice of Availability of Draft Environmental Assessment; City of New York
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... City of New York's existing Cannonsville Dam, which impounds its Cannonsville Water Supply Reservoir. The dam and reservoir are located on the West Branch of the Delaware River, near the Township of... EA) which analyzes the potential environmental effects of construction and operation of the project...
18 CFR 4.81 - Contents of application.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., or State, as appropriate] and (is/is not) claiming preference under section 7(a) of the Federal Power... and nature of any new roads that would be built for the purpose of conducting the studies; and (2) Work plan for new dam construction. For any development within the project that would entail new dam...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... the Herbert Hoover Dike Major Rehabilitation Project, Palm Beach and Glades Counties, FL AGENCY... safety modifications to dams. FOR FURTHER INFORMATION CONTACT: Questions may be forwarded to Ms. Angela... supplemental MRR will be replaced with a system wide Dam Safety Modification (DSM) Report. Environmental...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14431-000] Coralville..., Motions To Intervene, and Competing Applications On July 5, 2012, Coralville Energy, LLC filed an... Burlington Street Dam on the Iowa River, near Iowa City in Johnson County, Iowa. The Burlington Street Dam is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...
Bureau of Reclamation Hydropower Lease of Power Privilege: Case Studies and Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Taylor L.; Levine, Aaron L.; McLaughlin, Kathleen
This report analyzes the U.S. Bureau of Reclamation's (Reclamation) lease of power privilege (LOPP) regulatory process for a nonfederal entity to use a Reclamation jurisdictional dam or conduit for power generation. Recent federal initiatives encouraging hydropower development at federally-owned facilities coupled with Reclamation's hydroelectric potential has led to an increased interest in powering Reclamation dams and conduits through the LOPP process. During the last five years, 23 of the 36 total LOPP projects (76 MW) have been initiated and are at some phase of the development process. Resource assessments analyzed in this report identify over 360 MW of hydroelectric potentialmore » at Reclamation-owned dams and conduits. This report provides considerations from Reclamation staff involved in the LOPP regulatory process and developers that have received an LOPP and are currently generating hydropower at a Reclamation dam or conduit. The authors also analyze LOPP regulatory processing timelines before and after the implementation of federal initiatives to streamline the LOPP process and provide case studies of hydropower projects that have obtained an LOPP.« less
Turbocharger with sliding piston, and having vanes and leakage dams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Quentin; Alnega, Ahmed
2011-12-06
A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent themore » vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H.W.; Hiew, K.L.; Loubser, E.
1985-11-01
The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less
Konrad, Christopher P.
2010-01-01
The Nature Conservancy has been working with U.S. Army Corps of Engineers (Corps) through the Sustainable Rivers Project (SRP) to modify operations of dams to achieve ecological objectives in addition to meeting the authorized purposes of the dams. Modifications to dam operations are specified in terms of environmental flow prescriptions that quantify the magnitude, duration, frequency, and seasonal timing of releases to achieve specific ecological outcomes. Outcomes of environmental flow prescriptions implemented from 2002 to 2008 have been monitored and evaluated at demonstration sites in five rivers: Green River, Kentucky; Savannah River, Georgia/South Carolina; Bill Williams River, Arizona; Big Cypress Creek, Texas; and Middle Fork Willamette River, Oregon. Monitoring and evaluation have been accomplished through collaborative partnerships of federal and state agencies, universities, and nongovernmental organizations.
1983-02-01
masim y an Identify by block number,) The ten volumes report the results of a cultural resources survev in the Harry S. Truman Dam and Reservoir...UNIVERSITY OF MISSOURI-COLUMBIA 1983 j .9!!: *. 1 REPORTS CF THE ’C". CULr.JPAL RESOURCES SURVEY HARRY S. TRUMAN DM AND PRESERVOIR PROJECT volume I...and Surficial Geology of the Harry S. Truman Reservoir Area, West Central Missouri, by R. A. Ward and T. L. Thompson, pp. 1-21 Part II: Report on
1983-02-01
REPORT A PERInD O 2ERED I:UlLural Resources Survey, Harry S. Truman Dam F • ild Reservoir Project, Missouri, Volumes I - X 6 PERFORMING ORG. REPORT NUMBER...West Central Missouri, by R. A. Ward and T. L. Thompson, pp. 1-21 Part II: Report on Geochronological Investigations in the Harry S. Truman Reservoir...NATIONAL BUREAU OF SIANDARDS 1963 A LI I i * I Harry S. Truman DamaS Amand Reservoir, MissouriUS Army Corps of Engineers American Archaeology Division
Little Goose Dam Full Flow PIT-Tag Detection System Project Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warf, Don; Livingston, Scott
2009-04-16
In 2006, the design phase of this project was kicked off and was for the most part modeled after the Full Flow PIT installation installed at Lower Monumental Dam during winter and spring of 2006 and 2007. As the Goose Full Flow design progressed and the project started to move towards construction, issues within contracting occurred and the project was put on delay for 1 year. Starting in mid December of 2008, Harcon Inc. was awarded the contract and construction of the new Goose Full Flow PIT-tag detection system began. The purpose of this document is to summarize the installationmore » of the Little Goose Full Flow project from start to finish and to highlight the notable successes and challenges that the installation presented along with the final results and current status.« less
Effects of water removal on a Hawaiian stream ecosystem
Kinzie, R. A.; Chong, C.; Devrell, J.; Lindstrom, D.; Wolff, R.
2006-01-01
A 3-year study of Wainiha River on Kaua'i, Hawai'i, was carried out to determine the impact that water removal had on key stream ecosystem parameters and functions. The study area included a diversion dam for a hydroelectric plant that removes water at an elevation of 213 m and returns it to the stream about 6 km downstream at an elevation of 30 m. There were two high-elevation sites, one with undiverted flow and one with reduced flow, and two low-elevation sites, one with reduced flow and one with full flow restored. Monthly samples were taken of instream and riparian invertebrates and plants. When samples from similar elevations were compared, dewatered sites had lower concentrations of benthic photosynthetic pigments than full-flow sites, and benthic ash-free dry mass (AFDM) was higher at the two low-elevation sites regardless of flow. Benthic chlorophyll a (chl a) and AFDM were higher in summer months than in the winter. Benthic invertebrate abundance was highest at the full-flow, low-elevation site and benthic invertebrate biomass was highest at the full-flow, high-elevation site. Season had only marginal effects on abundance and biomass of benthic invertebrates. Diversity of benthic invertebrates was higher at the more-downstream sites. Abundance of drifting invertebrates was highest at the site above the diversion dam and generally higher in winter than in summer months. Biomass of drifting invertebrates was also highest at the above-dam site but there was little seasonal difference. Almost all parameters measured were lowest at the site just downstream of the diversion dam. The biotic parameters responded only weakly to flows that had occurred up to 1 month before the measurements were made. Flow, elevation, and season interact in complex ways that impact ecosystem parameters and functions, but water diversion can override all these environmental factors. ?? 2006 by University of Hawai'i Press All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...
Code of Federal Regulations, 2013 CFR
2013-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...