Sample records for dam stability analysis

  1. Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.

    PubMed

    Xin, Cao; Chongshi, Gu

    2016-01-01

    Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value.

  2. Numerical Modeling of Sliding Stability of RCC dam

    NASA Astrophysics Data System (ADS)

    Mughieda, O.; Hazirbaba, K.; Bani-Hani, K.; Daoud, W.

    2017-06-01

    Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. Stability of dams against sliding is crucial due to the substantial horizontal load that requires sufficient and safe resistance to develop by mobilization of adequate shearing forces along the base of the dam foundation. In the current research, the static sliding stability of a roller-compacted-concrete (RCC) dam was modelled using finite element method to investigate the stability against sliding. A commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element static analysis was performed in which a linear plane strain isoperimetric four node elements was used for modelling the dam-foundation system. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. Usual static loading condition was applied for the static analysis. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for static loading conditions.

  3. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    PubMed Central

    Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089

  4. Construction of a Dry Ash Dam with Soilbags and Slope Stability Analysis

    NASA Astrophysics Data System (ADS)

    Li, Hui; Song, Yingjun; Gao, Jiaorong; Li, Longhua; Zhou, Yuqi; Qi, Hui

    2017-12-01

    In thermal power plants, it is necessary to build ash dams to store fly ash, which is the by-product after the combustion of coals. To solve the problem of lacking rockfill materials in Africa, A new technology of constructing ash dams using solibags filled with local sands is proposed and the method of analyzing its slope stability is suggested. The design of the ash dam using soilbags in Lamb Thermal Power Plant of Kenya is introduced in detail. The slope stability of the soilbags-constructed ash dam was analyzed by adopting the suggested method. The results show that the soilbags filled with ash or sands have high compressive strength, and the primary dam constructed with soilbags can effectively retain the backfill ash and the stacking dam reinforced with soilbags can stand stable even with the slope of 1:1.5.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    White Oak Dam is located in the White Oak Creek watershed which provides the primary surface drainage for Oak Ridge National Laboratory. A stability analysis was made on the dam by Syed Ahmed in January 1994 which included an evaluation of the liquefaction potential of the embankment and foundation. This report evaluates the stability of the dam and includes comments on the report prepared by Ahmed. Slope stability analyses were performed on the dam and included cases for sudden drawdown, steady seepage, partial pool and earthquake. Results of the stability analyses indicate that the dam is stable and failure ofmore » the structure would not occur for the cases considered. The report prepared by Ahmed leads to the same conclusions as stated above. Review of the report finds that it is complete, well documented and conservative in its selection of soil parameters. The evaluation of the liquefaction potential is also complete and this report is in agreement with the findings that the dam and foundation are not susceptible to liquefaction.« less

  6. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 2. Stability Calculations, Analysis, and Evaluations. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by

  7. National Dam Safety Program. Elm Creek Dam (Dam Number 16), (Inventory Number N.Y. 593), Conewango Creek Watershed, Allegheny River Basin, Cattaraugus County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-18

    HYDRAULICS/HYDROLOGY 5.1 Drainage Area Characteristics 5-1 5.2 Design Data 5-1 5.3 Analysis Criteria 5-1 5.4 Reservoir Capacity 5-2 5.5 Experience...Data 5-2 5.6 Overtopping Potential 5-2 5.7 Analysis of Downstream Impacts 5-2 5.8 Evaluation 5-2 SECTION 6 STRUCTURAL STABILITY 6.1 Visual Observations...elevation is 1587.0 ft. (MSL). 5.3 Analysis Criteria The analysis of the spillway capacity of the dam and the storage of the reservoir was performed using

  8. Geo-environmental Study to Identify the Affecting Factors on Dohuk's Dam and the city (Northren Iraq) by Use Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Hamdon, Alaa

    2010-05-01

    The Dohuk's dam is one of the most important Aggregated dams in Iraq, located about 1 km from Dohuk city in northern Iraq, So; this vital project provides Dohuk city by water while the city formerly dependent on wells water prior to the establishing of the dam, and this is one of the main reasons for land-use expansion in Dohuk city and its vicinity,which is meant that the Dohuk's dam safety factor ,it is the key of the city safety factor .This dam has initiated the establishment of the dam in 1980 and was established in 1988, and it's capacity is 47.5 million cubic meters. This study aims to analyze the morphometric or geometric properties and the environmental factors at drainage systems and drainage network for Dohuk area's drainage basins (which recharges water of Dohuk Dam's Lake and it is accumulated by rainfall and spring water) scientifically and geometrically. Study of the geology of construction area of the dam Structuraly and tectonically. Satellite image, topographic maps and aerial photographs used in this study for merging its results together and preparing a drainage basin's maps and a geologic interpretation map for the study area to recognize the important geologic impact on the river which comes out from dam lake, also some of the field work investigation has been depended in this study. As a final result from morphometric analysis of drainage basins, tectonic analysis and geological investigations for study area, found as the following: 1 - Determining the amount of the accumulated sediments on the dam body, which has been carried by the collected rain-full water from the drainage basins, snow and spring water (the resources of Dam Lake). Study of the impact of these deposits on dam stability and evaluate the risk of these deposits on dam body and on its safety. 2 - Identification of geological features, which are that threaten the safety of the river of city which concern the only resource for the city and stability of dam body and its related to other geological phenomena (such as earthquakes and floods ... etc.). 3 - Suggestions some of the proposals for the maintenance of the dam lake to preserve the stability of the dam body and to protect the river properties. 4- Prepare some scientific criteria to avoid a disaster affecting human activity or agricultural or industrial, which are located in the city of Dohuk.

  9. Study on the Influence of Elevation of Tailing Dam on Stability

    NASA Astrophysics Data System (ADS)

    Wan, Shuai; Wang, Kun; Kong, Songtao; Zhao, Runan; Lan, Ying; Zhang, Run

    2017-12-01

    This paper takes Yunnan as the object of a tailing, by theoretical analysis and numerical calculation method of the effect of seismic load effect of elevation on the stability of the tailing, to analyse the stability of two point driven safety factor and liquefaction area. The Bishop method is adopted to simplify the calculation of dynamic safety factor and liquefaction area analysis using comparison method of shear stress to analyse liquefaction, so we obtained the influence of elevation on the stability of the tailing. Under the earthquake, with the elevation increased, the safety coefficient of dam body decreases, shallow tailing are susceptible to liquefy. Liquefaction area mainly concentrated in the bank below the water surface, to improve the scientific basis for the design and safety management of the tailing.

  10. Historical and simulated changes in channel characteristics of the Kalamazoo River, Plainwell to Otesgo, Michigan

    USGS Publications Warehouse

    Rachol, Cynthia M.; Fitzpatrick, Faith A.; Rossi, Tiffiny

    2005-01-01

    In a study to understand the historical effects of the construction and decommissioning of dams on the Kalamazoo River, Plainwell to Otesgo, Michigan, and to simulate channel changes that may result if the dams were removed, early to mid-1800s General Land Office surveys and aerial photographs from 1938, 1981, and 1999 were compared in order to identify historical changes in the river’s planform. This analysis of the 80-mile reach from Morrow Dam to the river mouth at Saugatuck provided insight into how susceptible the river has been to channel migration. The comparison showed that changes in channel width and location were caused mainly by construction of dams and subsequent water-level adjustments in the impounded reaches upstream from the dams. Braiding also occurred downstream from one of the dams. Minor changes in channel form that were not caused by the dams, such as the development and cutoff of meander bends, were observed. A more detailed study in a 5-mile reach passing through the Plainwell and Otsego City Dams included compiling existing valley cross section and longitudinal profile data into a database, assessing bank stability, and using a hydrologic model to simulate the channel as if the dams were removed. Fifty-four valley cross sections compiled from United States Geological Survey and consultant data sets were used as a base for a bank-stability assessment and to design a hypothetical stable channel without the two dams. The channel design involved adjusting the slope, hydraulic geometry, and floodplain width to ensure that water could be transferred through the reach without increasing flooding or erosion problems. The bank-stability assessment focused on conditions that are critical to failure. This was accomplished through the use of a two step process. The first involved evaluating the sediment removed from the bank toe when the stage is high. The second involved calculating the factor of safety for the bank based on the water table being elevated higher than the stage, mimicing a bank storage effect. Using these paired proccesses, two scenarios of critical conditions were evaluated: dams present and dams removed. Results of the bank assessments showed that, under both critical-condition scenarios, the streambanks were more susceptible to toe erosion than to block failure. As toe erosion progresses, the banks will eventually collapse as supporting material underneath is removed. Toe erosion for the damsremoved scenario resulted in higher amounts of erosion than for the dams-present scenario, leading to an overall decrease in bank stability. Effects of vegetation on the bank stability were variable; stability for some banks increase if vegetation was present but remain the same for other banks.

  11. National Dam Safety Program. Wappingers Falls Dam (I.D. Number N.Y. 3, D.E.C. 613A), Hudson River Basin, Dutchess County, New York. Phase 1 Inspection Report

    DTIC Science & Technology

    1980-09-30

    Classification 2I e. Ownership 2f. Purpose of Dam 2 g. Design and Construction History 2h. Normal Operating Procedure 2 1.3 PERTINENT DATA 2 a. Drainage...4 2.2 SUBSURFACE INVESTIGATION 4 2.3 DAM AND APPURTENANT STRUCTURES 4 2.4 CONSTRUCTION RECORDS 4 2.5 OPERATION RECORDS 2.6 EVALUATION OF DATA 5 4...12 a. Visual Observations 12 b. Design and Construction Data 12 c. Stability Analysis 12 d. Operating Records 13 e. Post- Construction Changes 13 f

  12. Strain Analysis in Horizontal Geodetic Network of Dams for Control of Stability and Monitoring Deformation

    NASA Astrophysics Data System (ADS)

    Roohi, S.; Ardalan, A. A.; Khodakarami, M.

    2009-04-01

    Dams as one of the engineering structures play very important role in human life. Because, from primary human needs such as providing drinking water to professional needs such as water powerhouse creation in order to provide power for industrial centers, hospitals, manufactures and agriculture, have considerable dependent on dams. In addition destruction of a dam can be as dangerous as earthquake. Therefore maintenance, stability control and monitoring deformation of them is indispensable. In order to control stability of dams and their around lands and monitoring deformation a network is created by surveyor, geologist and dam experts on crest and body of dam or on land near the dam. Geodetic observations are done in this network by precise surveying instrument in deferent time then by using linear least square parametric adjustment method, adjusted coordinates with their variance- covariance matrix and error ellipses, redundancy numbers for observation, blunders and … are estimated in each epoch. Then displacement vectors are computed in each point of network, After that by use of Lagrangeian deformation idea and constitution of deformation equations movement, displacement model is determined and strain tensor is computed. we can induce deformation information from strain tensor in different ways such as strain ellipse then interpret deformation that happen in each point of network. Also we can compute rigid rotation from anti-symmetric part of displacement gradient tensor. After processing tow consequence epochs observations of horzontal geodetic network of Hnna dam in southwest of Esfahan, the most semi-major axis of error ellipse is estimated about 0.9mm for point D10, largest displacement is 1.4mm for point C3 that it's semimajor axis of displacement error ellipse is 1.3mm and there is different shear in all of network points exceptional points D2,C3 and C2. There is different dilatation in most of points. These amount of maximum shear and dilatation are justified because of horizontal displacement and subsidence of dam due to pressure of water that conserve behind it. Key word: strain tensor, monitoring deformation, Geodetic network, deformation equation movement, error ellipse, strain ellipse, shear, dilatation

  13. Tailings dams stability analysis using numerical modelling of geotechnical and geophysical data

    NASA Astrophysics Data System (ADS)

    Mihai, S.; Zlagnean, M.; Oancea, I.; Petrescu, A.

    2009-04-01

    Methods for monitoring seepage and detecting internal erosion are essential for the safety evaluation of embankment dams. Internal erosion is one of the major reasons for embankment dam failures, and there are thousands of large tailings dams and waste-rock dumps in the world that may pe considered as hotspots for environmental impact. In this research the geophysical survey works were performed on Cetatuia 2 tailings dam. Electrical resistivity imaging (ERI) method was able to detect spatially anomalous zones inside the embankment dam. These anomalies are the results of internal erosion phenomena which may progressing inside the dam and is difficult to detect by conventional methods. Data aquired by geophysical survey together with their interpretations were used in the numerical model for slope stability assessment. The final results show us the structural weakness induced by the presence of internal erosion elements especially for seismic loading case. This research methodology may be also available for tailings dam monitoring purposes. Electrical Rezistivity Imaging (ERI) was performed on Cetatuia 2 dam at the Uranium Milling Plant Feldioara, in order to map areas with lateral and vertical changes in resistivity. The electrodes are connected to an automated computer operated switch box that selects the 4 electrodes to be used. A computer controls the switch box and the measuring device, and runs a program that selects the electrodes, makes the measurement, and stores the measurement. For inversion processing procedures was used Res2Din software. The measured resistivity were plotted by the pseudo section contouring method. There are five resistivity pseudosections obtained from the Cetatuia 2 tailings dam during the october 2007 measurements. Four transversal profiles trans1 to trans4 are perpendicular to the berms and the longitudinal one long1 is placed along dam's crest. The high resistivities near the berms surfaces corresponds to unsaturated fill materials and the low resistivities near the crest correspond to water saturated material. The resistivities values greater then 80 ohm.m may be explained by some error obtained for that inversion model. Profiles trans3 and trans4 were measured on perpendicular directions to berm alignment and show two distinct zones. The upward low resistivities zone correspond to water saturated materials especially from the compacted clay dam's core and the downward high resistivities zone belongs to unsaturated fill materials. The boundary between high and low resistivity at the depth of about 5 to 7 meters shows the groundwater level. The continuation of the high resistivity zones towards the end of the profile trans3, which is different from other profiles is probably due to the presence of dry coarse materials in shallow depth correspondingly to sandy clay. The sand fractions from the clay matrix may be affected by internal erosional phenomena, due to seepage currents that overpassed the material critical gradient. In this case the relative high resistivities values were considered as a presumptive erosional pattern. This profile was considered for the slope stability finite element modelling. The profile long1 which is placed along dam's crest is the longest profiles and extends up to nearly 420 m. The boundary between high and low resistivity at the depth of about 4 to 8 meters shows the groundwater across the dam core. The central part of the profile (about meter 200) shows the same relative high resistivities that occurred on transversal profile trans3. Resistivity data was used for building the 3D electrical resistivity model. The water saturated materials have locations very close to dam's crest (resistivity values usually lower then 10 ohm.m) and on both dam's arms. The groundwater levels were confirmed by the piezometric measurements. Electrical Rezistivity Imaging method had the possibility to show the most important disturbant elements that in certain conditions may weak the dam's state of safety. This study considered the SSR (Shear Strength Reduction) technique for slope stability numerical modelling. In the SSR finite element technique, elasto-plastic strength is assumed for dam's materials and shear strengths are progressively reduced until collapse occurs. Numerical modelling was performed on the most critical profile choosed through analysis of geophysical and geotechnical informational volume achieved by insitu or in laboratory tests. Finite element analysis were considered in two situations: first, before geophysical investigations and second considering the whole informational of data achieved. Both situations were analysed in static and pseudo-static conditions. The factor of safety before geophysical investigations is high enough to describe a stable state of stability even for the seismic load. The total displacement distributions were modified by the presence of internal erosional element giving a high state of instability, especially for the pseudo-static case. These analysis using the finite element method prove the importance of structural disturbance elements that may occure inside the dam body produced by internal erosional processes.

  14. Method of Evaluating the Life Cycle Cost of Small Earth Dams Considering the Risk of Heavy Rainfall and Selection Method of the Optimum Countermeasure

    NASA Astrophysics Data System (ADS)

    Hori, Toshikazu; Mohri, Yoshiyuki; Matsushima, Kenichi; Ariyoshi, Mitsuru

    In recent years the increase in the number of heavy rainfall occurrences such as through unpredictable cloudbursts have resulted in the safety of the embankments of small earth dams needing to be improved. However, the severe financial condition of the government and local autonomous bodies necessitate the cost of improving them to be reduced. This study concerns the development of a method of evaluating the life cycle cost of small earth dams considered to pose a risk and in order to improve the safety of the downstream areas of small earth dams at minimal cost. Use of a safety evaluation method that is based on a combination of runoff analysis, saturated and unsaturated seepage analysis, and slope stability analysis enables the probability of a dam breach and its life cycle cost with the risk of heavy rainfall taken into account to be calculated. Moreover, use of the life cycle cost evaluation method will lead to the development of a technique for selecting the method of the optimal improvement or countermeasures against heavy rainfall.

  15. Small Displacement Coupled Analysis of Concrete Gravity Dam Foundations: Static and Dynamic Conditions

    NASA Astrophysics Data System (ADS)

    Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline

    2017-02-01

    The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.

  16. Plugs or flood-makers? The unstable landslide dams of eastern Oregon

    NASA Astrophysics Data System (ADS)

    Safran, E. B.; O'Connor, J. E.; Ely, L. L.; House, P. K.; Grant, G.; Harrity, K.; Croall, K.; Jones, E.

    2015-11-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4-33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40-70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide data sets successfully separate dam sites in eastern Oregon that failed catastrophically from those that did not. Accumulated sediments upstream of about 50% of the dam sites indicate at least short-term persistence of landslide dams prior to eventual failure. Nevertheless, only three landslide dam remnants and one extant dam significantly elevate the modern river profile. We conclude that eastern Oregon's landslide dams are indeed floodmakers, but we lack clear evidence that they form lasting plugs.

  17. Plugs or flood-makers? the unstable landslide dams of eastern Oregon

    USGS Publications Warehouse

    Safran, Elizabeth B.; O'Connor, Jim E.; Ely, Lisa L.; House, P. Kyle; Grant, Gordon E.; Harrity, Kelsey; Croall, Kelsey; Jones, Emily

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4–33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40–70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide data sets successfully separate dam sites in eastern Oregon that failed catastrophically from those that did not. Accumulated sediments upstream of about 50% of the dam sites indicate at least short-term persistence of landslide dams prior to eventual failure. Nevertheless, only three landslide dam remnants and one extant dam significantly elevate the modern river profile. We conclude that eastern Oregon's landslide dams are indeed floodmakers, but we lack clear evidence that they form lasting plugs.

  18. Evidence-based dentistry: analysis of dental anxiety scales for children.

    PubMed

    Al-Namankany, A; de Souza, M; Ashley, P

    2012-03-09

    To review paediatric dental anxiety measures (DAMs) and assess the statistical methods used for validation and their clinical implications. A search of four computerised databases between 1960 and January 2011 associated with DAMs, using pre-specified search terms, to assess the method of validation including the reliability as intra-observer agreement 'repeatability or stability' and inter-observer agreement 'reproducibility' and all types of validity. Fourteen paediatric DAMs were predominantly validated in schools and not in the clinical setting while five of the DAMs were not validated at all. The DAMs that were validated were done so against other paediatric DAMs which may not have been validated previously. Reliability was not assessed in four of the DAMs. However, all of the validated studies assessed reliability which was usually 'good' or 'acceptable'. None of the current DAMs used a formal sample size technique. Diversity was seen between the studies ranging from a few simple pictograms to lists of questions reported by either the individual or an observer. To date there is no scale that can be considered as a gold standard, and there is a need to further develop an anxiety scale with a cognitive component for children and adolescents.

  19. The Nuclear Transport Factor Kap121 Is Required for Stability of the Dam1 Complex and Mitotic Kinetochore Bi-orientation.

    PubMed

    Cairo, Lucas V; Wozniak, Richard W

    2016-03-15

    The karyopherin (Kap) family of nuclear transport factors facilitates macromolecular transport through nuclear pore complexes (NPCs). The binding of Kaps to their cargos can also regulate, both temporally and spatially, the interactions of the cargo protein with interacting partners. Here, we show that the essential yeast Kap, Kap121, binds Dam1 and Duo1, components of the microtubule (MT)-associated Dam1 complex required for linking dynamic MT ends with kinetochores (KTs). Like mutations in the Dam1 complex, loss of Kap121 function compromises the formation of normal KT-MT attachments during mitosis. We show that the stability of the Dam1 complex in vivo is dependent on its association with Kap121. Furthermore, we show that the Kap121/Duo1 complex is maintained in the presence of RanGTP but Kap121 is released by the cooperative actions of RanGTP and tubulin. We propose that Kap121 stabilizes the Dam1 complex and participates in escorting it to spindle MTs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. National Dam Safety Program. Lake Muskoday Dam (Inventory Number N.Y. 341) Delaware River Basin, Sullivan County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    DACW-51-81-C-0006 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK AREA & WORK UNIT NUMBERS ~ Flaherty-Giauara Associates...olie It neceary and Idontily b block number) Dam Safety National Dam Safety Program Visual Inspection Lake Muskoday Dam Hydrology, Structural Stability...DELAWARE RIVER BASIN LAKE MUSKODAY DAM SULLIVAN COUNTY, NEW YORK INVENTORY No.NY341 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM J T C NEW YORK

  1. Plugs or flood-makers? The unstable landslide dams of eastern Oregon

    Treesearch

    E.B. Safran; J.E. O' Connor; L.L. Ely; P.K. House; Gordon Grant; K. Harrity; K. Croall; E. Jones

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects...

  2. Dynamic Sliding Analysis of a Gravity Dam with Fluid-Structure-Foundation Interaction Using Finite Elements and Newmark's Sliding Block Analysis

    NASA Astrophysics Data System (ADS)

    Goldgruber, Markus; Shahriari, Shervin; Zenz, Gerald

    2015-11-01

    To reduce the natural hazard risks—due to, e.g., earthquake excitation—seismic safety assessments are carried out. Especially under severe loading, due to maximum credible or the so-called safety evaluation earthquake, critical infrastructure, as these are high dams, must not fail. However, under high loading local failure might be allowed as long as the entire structure does not collapse. Hence, for a dam, the loss of sliding stability during a short time period might be acceptable if the cumulative displacements after an event are below an acceptable value. This performance is not only valid for gravity dams but also for rock blocks as sliding is even more imminent in zones with higher seismic activity. Sliding modes cannot only occur in the dam-foundation contact, but also in sliding planes formed due to geological conditions. This work compares the qualitative possible and critical displacements for two methods, the well-known Newmark's sliding block analysis and a Fluid-Foundation-Structure Interaction simulation with the finite elements method. The results comparison of the maximum displacements at the end of the seismic event of the two methods depicts that for high friction angles, they are fairly close. For low friction angles, the results are differing more. The conclusion is that the commonly used Newmark's sliding block analysis and the finite elements simulation are only comparable for high friction angles, where this factor dominates the behaviour of the structure. Worth to mention is that the proposed simulation methods are also applicable to dynamic rock wedge problems and not only to dams.

  3. National Dam Safety Program. William H. Luehmann Recreation Pond Dam (Inventory Number N.Y. 1199), Delaware River Basin, Delaware County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    runoff. 5.5 FLOODS OF RECORD No records of past flooding in Sherruck Brook are available. 5.6 OVERTOPPING POTENTIAL Our analysis indicates that the...constructed in 1970 and the 30 inch CIMP drain was replaced with the 18 inch steel drain in 1980. e. Seismic Stability The structure is located in Zone...Commerce, Technical Paper No, 40, Rainfall Frequency Atlas of the United States, May 1961, 2) U.S. Department of Commerce, Hydrometeorological Report

  4. Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Fortugno, Diego; Zema, Demetrio Antonio; Bombino, Giuseppe; Tamburino, Vincenzo; Quinonero Rubio, Juan Manuel; Boix-Fayos, Carolina

    2016-04-01

    In Mediterranean semi-arid conditions the geomorphic effects of land-use changes and check dam installation on active channel headwater morphology are not completely understood. In such environments, the availability of specific studies, which monitor channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies and erosion control measures. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent (Sant'Agata, Calabria, Southern Italy) after land-use changes (e.g. fire, reforestation, land abandonment) and check dam construction across a period of about 60 years (1955-2012). A statistical analysis of historical rainfall records, an analysis of land-use change in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain-size over a 5-km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land-use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross section expansion together with low-flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: (i) the efficiency of check dams against the disrupting power of the most intense floods by stabilising the active channel; and (ii) the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. The residual sediment deficit circulating in the watershed suggests the need of slight management interventions, as, for instance, the conversion of the existing check dams into open structures, allowing a definite channel and coast stability.

  5. Emergency Planning for Dams: Bibliography and Abstracts of Selected Publications,

    DTIC Science & Technology

    1982-01-01

    Government Operations. Teton Dam Disaster: Hearings Before a Subcom- mittee of the Committee on Government Operations, House of Representatives. U.S...Government Printing Office. Washington, DC. 1976. Committee on Government Operations. Teton Dam Disaster: Thirtieth Response. U.S. Government Printing Office...Design Earthquakes. * Teton Dam Failure. *Summary of 1st Session on Evaluation OSummary of Session on Failure and of Seismic Stability. Near Failure

  6. National Dam Inspection Program. Lake Hamilton Dam (NDI-ID Number PA-01031), DER-ID Number 64-157), Delaware River Basin, Wayne County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1980-08-01

    5. That the valve on the outlet pipe be maintained and operated at least once each year . 6. That the low area on the right side of the spillway be...EVALUATION OF FEATURES 12 SECTION 6 - STRUCTURAL STABILITY 6.1 EVALUATION OF STRUCTURAL STABILITY 14 SECTION 7 - ASSESSMENT AND RECOMMENDATIONS 7.1 DAM...Classification: High (Refer to Section 3.i.E.) E. Ownership: Ms. Lavanda L. Lyman, Executive Director Rolling Hill Girl Scout Council 733 Route 202

  7. Interaction of Dams and Landslides--Case Studies and Mitigation

    USGS Publications Warehouse

    Schuster, Robert L.

    2006-01-01

    In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.

  8. Geophysical methods for the assessment of earthen dams

    USDA-ARS?s Scientific Manuscript database

    Dams and levees are an integral part of the fluvial system in watersheds. Their stability is of utmost concern to the Nation and to those directly impacted should failure occur. There are some 88,000 dams and 110,000 miles of levees in the USA. Many of those are earthen embankments and structures su...

  9. Assessing the effects of check dams on sediment dynamics in a debris-flow catchment through SfM technique

    NASA Astrophysics Data System (ADS)

    Cucchiaro, Sara; Beinat, Alberto; Calsamiglia, Aleix; Cavalli, Marco; Cazorzi, Federico; Crema, Stefano; Marchi, Lorenzo

    2017-04-01

    The Moscardo Torrent (eastern Italian Alps) is a small rugged catchment (drainage area 4.1 km2, range in elevation between 890 and 2043 m) frequently affected by debris flows that deliver large amounts of sediment to the receiving stream, and cause concerns for infrastructures located on the alluvial fan and near the confluence. Over the last decades, hydraulic control works were implemented in the main channel to limit bed erosion and to stabilize channel banks. Although the objectives of training works have been only partly achieved, check dams and hillslope stabilization works have affected the sediment transfer from hillslopes to the channels and along the main channel. The effects of hydraulic control works were investigated by means of multi-temporal Structure from Motion (SfM) surveys based on images taken from the ground and UAV. The ground and air based surveys were carried out over a channel reach in which two check dams have recently been built. SfM surveys were taken before and after three debris-flow events (occurred between June and July 2016), allowing the generation of four high-resolution Digital Elevation Models (DEMs). Geomorphic changes caused by the debris-flow events have been assessed in order to produce the DEM of Differences (DoDs with a 0.2 m spatial resolution) that allowed estimating erosion and deposition volumes in the study area. Furthermore a debris-flow monitoring system has been in operation in the Moscardo Torrent; the analysis of the videos and of the hydrographs recorded by ultrasonic sensors permitted to assess the debris-flow volumes. These estimates were used to characterize the magnitude of events in support of the topographic analysis. By examining the changing pattern of erosion and deposition over time it was possible to understand the check dams' effects on sediment dynamics. The results show that the new check dams effectively stored sediment transported by the three debris flows. However, once the check dams have been completely filled, they lost their functionality, letting sediment flow downstream along paths drawn accidentally by the torrent control works and by the morphology of debris-flow deposits. Moreover, debris-flow lobes deposited upstream of the check dams could act as sediment sources further increasing downstream debris-flow magnitude.

  10. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  11. Effects of Outlets on Cracking Risk and Integral Stability of Super-High Arch Dams

    PubMed Central

    Hu, Hang

    2014-01-01

    In this paper, case study on outlet cracking is first conducted for the Goupitan and Xiaowan arch dams. A nonlinear FEM method is then implemented to study effects of the outlets on integral stability of the Xiluodu arch dam under two loading conditions, i.e., normal loading and overloading conditions. On the basis of the case study and the numerical modelling, the outlet cracking mechanism, risk, and corresponding reinforcement measures are discussed. Furthermore, the numerical simulation reveals that (1) under the normal loading conditions, the optimal distribution of the outlets will contribute to the tensile stress release in the local zone of the dam stream surface and decrease the outlet cracking risk during the operation period. (2) Under the overloading conditions, the cracks initiate around the outlets, then propagate along the horizontal direction, and finally coalesce with those in adjacent outlets, where the yield zone of the dam has a shape of butterfly. Throughout this study, a dam outlet cracking risk control and reinforcement principle is proposed to optimize the outlet design, select the appropriate concrete material, strengthen the temperature control during construction period, design reasonable impounding scheme, and repair the cracks according to their classification. PMID:25152907

  12. Research on Safety Monitoring System of Tailings Dam Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Wang, Ligang; Yang, Xiaocong; He, Manchao

    2018-03-01

    The paper designed and implemented the safety monitoring system of tailings dam based on Internet of things, completed the hardware and software design of sensor nodes, routing nodes and coordinator node by using ZigBee wireless sensor chip CC2630 and 3G/4G data transmission module, developed the software platform integrated with geographic information system. The paper achieved real-time monitoring and data collection of tailings dam dam deformation, seepage line, water level and rainfall for all-weather, the stability of tailings dam based on the Internet of things monitoring is analyzed, and realized intelligent and scientific management of tailings dam under the guidance of the remote expert system.

  13. Experimental stocking of sport fish in the regulated Tallapoosa River to determine critical periods for recruitment

    USGS Publications Warehouse

    Lloyd, M. Clint; Lai, Quan; Sammons, Steve; Irwin, Elise R.

    2017-01-01

    The stocking of fish in riverine systems to re-establish stocks for conservation and management appears limited to a few species and often occurs in reaches impacted by impoundments. Stocking of sport fish species such as centrarchids and ictalurids is often restricted to lentic environments, although stocking in lotic environments is feasible with variable success. R. L. Harris Dam on the Tallapoosa River, Alabama is the newest and uppermost dam facility on the river (operating since 1983); flows from the dam have been managed adaptively for multiple stakeholder objectives since 2005. One of the stakeholders’ primary objectives is to provide quality sport fisheries in the Tallapoosa River in the managed area below the dam. Historically, ictalurids and cyprinids dominated the river above Lake Martin. However, investigations after Harris Dam closed have detected a shift in community structure to domination by centrarchids. Flow management (termed the Green Plan) has been occurring since March 2005; however, sport fish populations as measured by recruitment of age-1 sport fishes below the dam has not responded adequately to flow management. The objectives of this research were to: (1) determine if stocking Channel Catfish Ictalurus punctatus and Redbreast Sunfish Lepomis auritus influences year-class strength; (2) estimate vital rates (i.e. growth, mortality, and recruitment) for Channel Catfish populations for use in an age-based population model; and (3) identify age-specific survivorship and fecundity rates contributing to Channel Catfish population stability. No marked Redbreast Sunfish were recaptured due to poor marking efficacy and therefore no further analysis was conducted with this species. Stocked Channel Catfish, similarly, were not recaptured, leaving reasons for non-recapture unknown. Matrix models exploring vital rates illustrated survival to age-1 for Channel Catfish to be less than 0.03% and that survival through ages 2 – 4 had equal contribution to overall population growth, indicating recruitment limitation may impact population size and stability. Results from this study indicate stock enhancement of sport fish populations below Harris Dam may not be an effective management technique at this time.

  14. Progressive failure of lower San Fernando dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, W.H.; Morgenstern, N.R.; Robertson, P.K.

    1993-02-01

    Postearthquake deformation analyses of the lower San Fernando dam were conducted using an incremental finite-element method. In the analyses, an undrained elastoplastic model was used to simulate the collapse of liquefied materials. The model is developed based on the critical-state boundary-surface theory, the concept of steady-state strength, and the undrained behavior of liquefiable soils. A triggering condition in terms of a collapse surface was considered in this model. The hyperbolic strain-softening relationship has been introduced to simulate the postpeak behavior of liquefied materials. The analyses have shown that a progressive failure under undrained conditions may explain the observed response ofmore » the lower San Fernando dam following the 1971 earthquake. Stress redistribution initiated by the strain softening of liquefied materials is the main reason for undrained flow failures of dams, slopes, and foundations and can occur in a short period ranging from a few seconds to a few minutes. The liquefied zone after stress redistribution may be much larger than the initial liquefied zone caused directly by an earthquake. Therefore, a postearthquake deformation analysis may be essential in liquefaction stability evaluations.« less

  15. Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT).

    PubMed

    Thompson, Sarah S; Kulessa, Bernd; Benn, Douglas I; Mertes, Jordan R

    2017-04-20

    Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.

  16. Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah S.; Kulessa, Bernd; Benn, Douglas I.; Mertes, Jordan R.

    2017-04-01

    Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100-15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk.

  17. Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT)

    PubMed Central

    Thompson, Sarah S.; Kulessa, Bernd; Benn, Douglas I.; Mertes, Jordan R.

    2017-01-01

    Moraine-dammed lakes at debris-covered glaciers are becoming increasingly common and pose significant outburst flood hazards if the dam is breached. While moraine subsurface structure and internal processes are likely to influence dam stability, only few sites have so far been investigated. We conducted electrical resistivity tomography (ERT) surveys at two sites on the terminal moraine complex of the Ngozumpa Glacier, Nepal, to aid assessment of future terminus stability. The resistivity signature of glacier ice at the site (100–15 kΩ m) is more consistent with values measured from cold glacier ice and while this may be feasible, uncertainties in the data inversion introduce ambiguity to this thermal interpretation. However, the ERT data does provide a significant improvement to our knowledge of the subsurface characteristics at these sites, clearly showing the presence (or absence) of glacier ice. Our interpretation is that of a highly complex latero-terminal moraine, resulting from interaction between previous glacier advance, recession and outburst flooding. If the base-level Spillway Lake continues to expand to a fully formed moraine-dammed glacial lake, the degradation of the ice core could have implications for glacial lake outburst risk. PMID:28425458

  18. An updated numerical simulation of the ground-water flow system for the Castle Lake debris dam, Mount St. Helens, Washington, and implications for dam stability against heave

    USGS Publications Warehouse

    Roeloffs, Evelyn A.

    1994-01-01

    A numerical simulation of the ground-water flow system in the Castle Lake debris dam, calibrated to data from the 1991 and 1992 water years, was used to estimate factors of safety against heave and internal erosion. The Castle Lake debris dam, 5 miles northwest of the summit of Mount St. Helens, impounds 19,000 acre-ft of water that could pose a flood hazard in the event of a lake breakout. A new topographic map of the Castle Lake area prior to the 1980 eruption of Mount St. Helens was prepared and used to calculate the thickness of the debris avalanche deposits that compose the dam. Water levels in 22 piezometers and discharges from seeps on the dam face measured several times per year beginning in 1990 supplemented measurements in 11 piezometers and less frequent seep discharge measurements made since 1983. Observations in one group of piezometers reveal heads above the land surface and head gradients favoring upward flow that correspond to factors of safety only slightly greater than 2. The steady-state ground-water flow system in the debris dam was simulated using a threedimensional finite difference computer program. A uniform, isotropic model having the same shape as the dam and a hydraulic conductivity of 1.55 ft/day simulates the correct water level at half the observation points, but is in error by 10 ft or more at other points. Spatial variations of hydraulic conductivity were required to calibrate the model. The model analysis suggests that ground water flows in both directions between the debris dam and Castle Lake. Factors of safety against heave and internal erosion were calculated where the model simulated upward flow of ground water. A critical gradient analysis yields factors of safety as low as 2 near the piezometers where water level observations indicate low factors of safety. Low safety factors are also computed near Castle Creek where slumping was caused by a storm in January, 1990. If hydraulic property contrasts are present in areas of the debris dam unsampled by piezometers, then low safety factors may exist that are not evident in the numerical model analysis. Numerical model simulations showed that lowering Castle Lake by 40 feet increases many factors of safety by 0.1, but increases greater than 1 are limited to the area of 1990 slumping.

  19. Instability thresholds for flexible rotors in hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Flack, R. D.

    1980-01-01

    Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well.

  20. Dam regulation and riverine food-web structure in a Mediterranean river.

    PubMed

    Mor, Jordi-René; Ruhí, Albert; Tornés, Elisabet; Valcárcel, Héctor; Muñoz, Isabel; Sabater, Sergi

    2018-06-01

    Flow regimes are a major driver of community composition and structure in riverine ecosystems, and flow regulation by dams often induces artificially-stable flow regimes downstream. This represents a major source of hydrological alteration, particularly in regions where biota is adapted to strong seasonal and interannual flow variability. We hypothesized that dam-induced hydrological stability should increase the availability of autochthonous resources at the base of the food web. This, in turn, should favour herbivorous over detritivorous strategies, increasing the diversity of primary consumers, and the food-web width and length. We tested this hypothesis by studying the longitudinal variation in food-web structure in a highly-seasonal Mediterranean river affected by an irrigation dam. We compared an unregulated reach to several reaches downstream of the dam. Hydrological and sedimentological stability increased downstream of the dam, and altered the type and quantity of available resources downstream, prompting a change from a detritus-based to an algae-based food web. The fraction of links between top and intermediate species also increased, and the food web became longer and wider at the intermediate trophic levels. Food-web structure did not recover 14km downstream of the dam, despite a partial restitution of the flow regime. Our results advance the notion that hydrologic alteration affects riverine food webs via additions/deletions of taxa and variation in the strength and distribution of food-web interactions. Thus, flow regulation by dams may not only impact individual facets of biodiversity, but also food-web level properties across river networks. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Stability of hot electron plasma in the ELMO bumpy torus

    NASA Astrophysics Data System (ADS)

    Tsang, K. T.; Cheng, C. Z.

    The stability of a hot electron plasma in the ELMO Bumpy Torus was investigated using two different models. In the first model, where the hot electron distribution function is assumed to be a delta function in the perpendicular velocity, a stability boundary in addition to those discussed by Nelson and by Van Dam and Lee is found. In the second model, where the hot electron distribution function is assumed to be a Maxwellian in the perpendicular velocity, stability boundaries significantly different from those of the first model are found. Coupling of the Nelson-Van Dam-Lee mode to the compressional Alfven mode is now possible. This leads to a higher permissible core plasma beta value for stable operation.

  2. 75 FR 49429 - Metal and Nonmetal Dams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... internal water pressures. Pressures beyond a certain level would lead to structural instability. In the 18... foundation and embankment material strengths, and stability analyses to verify that the slopes of the dam..., rationales, benefits to miners, technological and economic feasibility, impact on small mines, and supporting...

  3. WinDAM C earthen embankment internal erosion analysis software

    USDA-ARS?s Scientific Manuscript database

    Two primary causes of dam failure are overtopping and internal erosion. For the purpose of evaluating dam safety for existing earthen embankment dams and proposed earthen embankment dams, Windows Dam Analysis Modules C (WinDAM C) software will simulate either internal erosion or erosion resulting f...

  4. Seismic Stability Evaluation of Alben Barkley Dam and Lake Project. Volume 2. Geological and Seismological Evaluation.

    DTIC Science & Technology

    1986-06-01

    30 APPENDIX A: EARTHQUAKES AND GEOLOGY OF THE BARKLEY DAM AREA IN RELATION TO THE NEW MADRID EARTHQUAKE REGION TO...Dam is about 115 km from the source area of the New Madrid earthquakes of 1811-1812. Four major earthquakes are deduced to have occurred (Street and...hundreds of aftershocks, a dozen of which were felt over much of the central United States. Other major earthquakes that have happened in the New Madrid

  5. A critical investigation of post-liquefaction strength and steady-state flow behavior of saturated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jong, H.L.

    1988-01-01

    The first objective was to perform a critical evaluation of the recently proposed steady-state analysis methodology for evaluation of post-liquefaction stability of potentially liquefiable soils. This analysis procedure is based on direct comparison between the in-situ undrained residual (steady state) strength of soils in an embankment or foundation, and the driving shear stresses in these soils. A laboratory investigation was performed to investigate factors affecting steady-state strengths, and also to evaluate the validity of assumptions involved in correcting the results of laboratory steady-state strength tests on undisturbed samples for effects of sampling disturbance in order to estimate in-situ strengths. Next,more » a field case study was performed using the steady-state analysis and testing methodologies to analyze Lower San Fernando Dam, which suffered a liquefaction-induced slope failure as a results of a 1971 earthquake. This leads to the second objective which was to extend the Lower San Fernando Dam case study to consideration of analysis methods used to evaluate the likelihood of triggering liquefaction during an earthquake. Finally, a number of the high quality undisturbed samples were subjected to undrained cyclic testing in order to repeat an earlier (1973) study of the use of cyclic tests data to predict liquefaction behavior at Lower San Fernando Dam.« less

  6. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  7. National Dam Inspection Program. Canonsburg Dam Number 2 (Johnsons Run Dam) (NDI Number PA 00506, PennDER Number 63-41), Ohio River Basin, Johnsons Run, Washington County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1980-02-01

    00W> 0 a*a) 9C ’~ 1 )0 MV U) CO 4 0 2, ) P4 w 4) aj 41 0 qVa 0-q40 0.4)r- ( 0 Do44 4-4 nu 00 rA ~UW 4 4 % 1 -2-i I4j V 0 > C V -4 (a 0) 41 Z -,4 4 fO 4...life or property. The assessment of the general condition ~ 1 of the dam isbased upon available data and visual inspections. Detailed investigation, and...should include items 1 through 3 below. 1 ) Detailed investigation of the structural stability of the dam. Information concerning the downstream slope has

  8. The geomorphic effects of dams on rivers: some examples from southern Italy

    NASA Astrophysics Data System (ADS)

    Rosskopf, Carmen Maria; Scorpio, Vittoria

    2017-04-01

    During the second half of the last century, many rivers in southern Italy have experienced huge channel adjustments mainly induced by anthropic interventions. Particularly, in several cases dams were built along them mainly to meet the growing need for energy and water for irrigation purposes. The present study investigates the cases of Fortore and Biferno rivers, whose lower courses are regulated respectively since 1966 and 1976 by the Occhito and Ponteliscione dams, with the aim to verify possible impacts of the dams on channel morphology and adjustments over the last 60 years. Channel changes were analyzed by means of a multi-temporal GIS analysis of topographic maps and aerial photographs integrated with topographic and geomorphological field. The obtained evolutionary trajectories highlight that channel adjustments occurred through two distinct phases and led to an overall channel narrowing and channel bed lowering accompanied by pattern changes in prevalence from multithread to single-thread channel configurations. Major channel adjustments occurred in the first phase, from the 1950s until the end of the 1990s, under the dominant control of in-channel mining, channel works and hydraulic interventions. Regarding this phase, the impact of the dams is highlighted by net differences in the amount of channel adjustments of the reaches located respectively upstream and downstream of them. Especially channel narrowing was more intense in downstream reaches (up to 98% in the Fortore River and up to 96% in the Biferno River) than in upstream reaches (up to 81% in the Fortore and up to 86% in the Biferno). With respectively 7.4 m y-1 and -7.8 m y-1, averages rates of narrowing are very similar for the Fortore and Biferno in downstream reaches. Observed differences suggest that, besides the control factors that guided the evolution of the entire fluvial systems, the closure of the two dams had additional and permanent effects on downstream reaches through overall discharge regulation and permanent sediment trapping as also confirmed by the progressive retreat of the river mouth areas. From 2000 to 2016 (phase 2), a trend inversion is observed: channel narrowing is replaced by channel stabilization or widening and partial aggradation of upstream reaches and total stabilization of downstream reaches. Besides the cessation of in-channel mining, channel recovery appears favored by several major flood events, occurred from 2003 to 2015. The ongoing trend to recovery of upstream reaches is well evident for the Fortore River, whilst for the Biferno River, due to the presence of several secondary hydraulic structures (small hydropower reservoirs and check-dams), only some localized resumption of river dynamics can be observed evidenced by bank retreat, channel widening and sediment deposition. Regarding downstream reaches of both rivers, their stabilization can be interpreted as an amelioration of their condition with respect to the precedent period (phase 1). Nevertheless, their very scarce dynamics due to the permanent disturbance created by the dams along with the very low diversity of geomorphological and ecological river corridor features, the scarce to nil recovery potentials and associated high flood risks, strongly contrast possible restorative actions.

  9. Hydropower and sustainability: resilience and vulnerability in China's powersheds.

    PubMed

    McNally, Amy; Magee, Darrin; Wolf, Aaron T

    2009-07-01

    Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water resource control at the local and international scales. Some measures that improved economic development through the market economy and a combination of dam construction and institutional reform may indeed improve hydro-political resilience at a single scale. However, if China does address large-scale hydropower construction's potential to create multi-scale geopolitical tensions, they may be vulnerable to conflict - though not necessarily violent - in domestic and international political arenas. We conclude with a look toward a resilient basin institution for the Nu/Salween River, the site of a proposed large-scale hydropower development effort in China and Myanmar.

  10. Geomorphic and Ecological Issues in Removal of Sediment-Filled Dams in the California Coast Ranges (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Oreilly, C.

    2010-12-01

    Water-supply reservoirs in the actively eroding California Coast Ranges are vulnerable to sediment filling, thus creating obsolete impounding dams (Minear & Kondolf 2009). Once full of sediment, there is more impetus to remove dams for public safety and fish passage, but managing accumulated sediments becomes a dominant issue in dam removal planning. We analyzed the planning process and sediment management analyses for five dams, all of which have important ecological resources but whose dam removal options are constrained by potential impacts to downstream urban populations. Ringe Dam on Malibu Ck, Matilija Dam on the Ventura River, Searsville Dam on San Francisquito Ck, and Upper York Creek Dam on York Ck cut off important habitat for anadromous steelhead trout (Oncorhynchus mykiss). San Clemente Dam on the Carmel River has a working fish ladder, but only some of the migratory steelhead use it. By virtue of having filled with sediment, all five dams are at greater risk of seismic failure. San Clemente Dam is at greater risk because its foundation is on alluvium (not bedrock), and the poor-quality concrete in Matilija Dam is deteriorating from an akali-aggregate reaction. Simply removing the dams and allowing accumulated sediments to be transported downstream is not an option because all these rivers have extremely expensive houses along downstream banks and floodplains, so that allowing the downstream channel to aggrade with dam-dervied sediments could expose agencies to liability for future flood losses. Analyses of potential sediment transport have been based mostly on application of tractive force models, and have supported management responses ranging from in-situ stabilization (San Clemente and Matilija) to removal of stored sediment (York) to annual dredging to maintain capacity and prevent sediment passing over the dam (proposed for Searsville).

  11. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  12. DSOD Procedures for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Howard, J. K.; Fraser, W. A.

    2005-12-01

    DSOD, which has jurisdiction over more than 1200 dams in California, routinely evaluates their dynamic stability using seismic shaking input ranging from simple pseudostatic coefficients to spectrally matched earthquake time histories. Our seismic hazard assessments assume maximum earthquake scenarios of nearest active and conditionally active seismic sources. Multiple earthquake scenarios may be evaluated depending on sensitivity of the design analysis (e.g., to certain spectral amplitudes, duration of shaking). Active sources are defined as those with evidence of movement within the last 35,000 years. Conditionally active sources are those with reasonable expectation of activity, which are treated as active until demonstrated otherwise. The Division's Geology Branch develops seismic hazard estimates using spectral attenuation formulas applicable to California. The formulas were selected, in part, to achieve a site response model similar to the 2000 IBC's for rock, soft rock, and stiff soil sites. The level of dynamic loading used in the stability analysis (50th, 67th, or 84th percentile ground shaking estimates) is determined using a matrix that considers consequence of dam failure and fault slip rate. We account for near-source directivity amplification along such faults by adjusting target response spectra and developing appropriate design earthquakes for analysis of structures sensitive to long-period motion. Based on in-house studies, the orientation of the dam analysis section relative to the fault-normal direction is considered for strike-slip earthquakes, but directivity amplification is assumed in any orientation for dip-slip earthquakes. We do not have probabilistic standards, but we evaluate the probability of our ground shaking estimates using hazard curves constructed from the USGS Interactive De-Aggregation website. Typically, return periods for our design loads exceed 1000 years. Excessive return periods may warrant a lower design load. Minimum shaking levels are provided for sites far from active faulting. Our procedures and standards are presented at the DSOD website http://damsafety.water.ca.gov/. We review our methods and tools periodically under the guidance of our Consulting Board for Earthquake Analysis (and expect to make changes pending NGA completion), mindful that frequent procedural changes can interrupt design evaluations.

  13. Coupled dam safety analysis using WinDAM

    USDA-ARS?s Scientific Manuscript database

    Windows® Dam Analysis Modules (WinDAM) is a set of modular software components that can be used to analyze overtopping and internal erosion of embankment dams. Dakota is an extensive software framework for design exploration and simulation. These tools can be coupled to create a powerful framework...

  14. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams

    USGS Publications Warehouse

    Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.

    2018-01-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide.

  15. Habitat mosaics and path analysis can improve biological conservation of aquatic biodiversity in ecosystems with low-head dams.

    PubMed

    Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S

    2018-04-01

    Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    USGS Publications Warehouse

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  17. Development of an Environmental Flow Framework for the McKenzie River Basin, Oregon

    USGS Publications Warehouse

    Risley, John; Wallick, J. Rose; Waite, Ian; Stonewall, Adam J.

    2010-01-01

    The McKenzie River is a tributary to the Willamette River in northwestern Oregon. The McKenzie River is approximately 90 miles in length and has a drainage area of approximately 1,300 square miles. Two major flood control dams, a hydropower dam complex, and two hydropower canals significantly alter streamflows in the river. The structures reduce the magnitude and frequency of large and small floods while increasing the annual 7-day minimum streamflows. Stream temperatures also have been altered by the dams and other anthropogenic factors, such as the removal of riparian vegetation and channel simplification. Flow releases from one of the flood control dams are cooler in the summer and warmer in the fall in comparison to unregulated flow conditions before the dam was constructed. In 2006, the Oregon Department of Environmental Quality listed a total of 112.4, 6.3, and 55.7 miles of the McKenzie River basin mainstem and tributary stream reaches as thermally impaired for salmonid rearing, salmonid spawning, and bull trout, respectively. The analyses in this report, along with previous studies, indicate that dams have altered downstream channel morphology and ecologic communities. In addition to reducing the magnitude and frequency of floods, dams have diminished sediment transport by trapping bed material. Other anthropogenic factors, such as bank stabilization, highway construction, and reductions of in-channel wood, also have contributed to the loss of riparian habitat. A comparison of aerial photography taken in 1939 and 2005 showed substantial decreases in secondary channels, gravel bars, and channel sinuosity, particularly along the lower alluvial reaches of the McKenzie River. In addition, bed armoring and incision may contribute to habitat degradation, although further study is needed to determine the extent of these processes. Peak streamflow reduction has led to vegetation colonization and stabilization of formerly active bar surfaces. The large flood control dams on Blue River and South Fork McKenzie River likely have had the greatest effect on downstream habitats because these sediment and flood-rich tributaries historically contributed a disproportionate volume of bed material, wood, and peak flows in comparison with the spring-fed tributaries of the upper McKenzie River basin. The ecological effects of the dams were examined by focusing on nine exemplar aquatic and terrestrial species, including spring Chinook salmon, bull trout, Oregon chub, Pacific and western brook lamprey, red-legged frog, western pond turtle, alder, and cottonwood. The changes caused by the dams to streamflow hydrograph affect all these and other species in complex ways, although a few commonalities are apparent. A loss of channel complexity in the McKenzie River basin, which is associated with the reduction in flood events and widespread channel stabilization, is the primary factor related to the observed population declines for all nine exemplar species. The dams also have caused direct ecological effects by blocking access to habitat, changing the amount and timing of available critical habitat, and changing water temperature during important seasons for different life stages.

  18. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.

    PubMed

    von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi

    2016-01-01

    River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.

  19. Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang

    2017-09-01

    Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.

  20. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    NASA Astrophysics Data System (ADS)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  1. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    USGS Publications Warehouse

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  2. National Dam Safety Program. N.J. No Name Number 30 Dam (NJ00339), Delaware River Basin, Weldon Brook, Morris County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    type of migating measures required to increase the capacity of the spillway. 2. Stability analyses should be performed to determine the need for and...type of migating measures required to ensure that the darn is stable. 3. The outlet works should be repaired to allow for emergency drawdown of the

  3. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes

    PubMed Central

    Korup, Oliver; Montgomery, David R.; Hewitt, Kenneth

    2010-01-01

    Despite longstanding research on the age and formation of the Tibetan Plateau, the controls on the erosional decay of its margins remain controversial. Pronounced aridity and highly localized rock uplift have traditionally been viewed as limits to the dissection of the plateau by bedrock rivers. Recently, however, glacier dynamics and landsliding have been argued to retard headward fluvial erosion into the plateau interior by forming dams and protective alluvial fill. Here, we report a conspicuous clustering of hundreds of natural dams along the Indus and the Tsangpo Rivers where these cross the Himalayan syntaxes. The Indus is riddled by hundreds of dams composed of debris from catastrophic rock avalanches, forming the largest concentration of giant landslide dams known worldwide, whereas the Tsangpo seems devoid of comparable landslide dams. In contrast, glacial dams such as river-blocking moraines in the headwaters of both rivers are limited to where isolated mountain ranges intersect the regional snowline. We find that to first-order, high local topographic relief along both rivers corresponds to conspicuously different knickzones and differences in the type and potential longevity of these dams. In both syntaxes, glacier and landslide dams act as a negative feedback in response to fluvial dissection of the plateau margins. Natural damming protects bedrock from river incision and delays headward knickpoint migration, thereby helping stabilize the southwestern and southeastern margins of the Tibetan Plateau in concert with the effects of upstream aridity and localized rock uplift. PMID:20212156

  4. Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR.

    PubMed

    Jakomin, Marcello; Chessa, Daniela; Bäumler, Andreas J; Casadesús, Josep

    2008-11-01

    DNA adenine methylase (dam) mutants of Salmonella enterica serovar Typhimurium grown under laboratory conditions express the std fimbrial operon, which is tightly repressed in the wild type. Here, we show that uncontrolled production of Std fimbriae in S. enterica serovar Typhimurium dam mutants contributes to attenuation in mice, as indicated by the observation that an stdA dam strain is more competitive than a dam strain upon oral infection. Dam methylation appears to regulate std transcription, rather than std mRNA stability or turnover. A genetic screen for std regulators showed that the GATC-binding protein SeqA directly or indirectly represses std expression, while the poorly characterized yifA gene product serves as an std activator. YifA encodes a putative LysR-like protein and has been renamed HdfR, like its Escherichia coli homolog. Activation of std expression by HdfR is observed only in dam and seqA backgrounds. These data suggest that HdfR directly or indirectly activates std transcription. Since SeqA is unable to bind nonmethylated DNA, it is possible that std operon derepression in dam and seqA mutants may result from unconstrained HdfR-mediated activation of std transcription. Derepression of std in dam and seqA mutants of S. enterica occurs in only a fraction of the bacterial population, suggesting the occurrence of either bistable expression or phase variation.

  5. 44 CFR 361.3 - Project description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... return of economic stability; (xi) Secondary impacts, such as dam failures, toxic releases, etc.; and... as industrial concentrations, concentrations or occurrences of natural resources, financial/economic...

  6. Chemical stability of reactive skin decontamination lotion (RSDL®).

    PubMed

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fragility Analysis of Concrete Gravity Dams

    NASA Astrophysics Data System (ADS)

    Tekie, Paulos B.; Ellingwood, Bruce R.

    2002-09-01

    Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.

  8. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    NASA Astrophysics Data System (ADS)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  9. Dam break analysis and flood inundation map of Krisak dam for emergency action plan

    NASA Astrophysics Data System (ADS)

    Juliastuti, Setyandito, Oki

    2017-11-01

    The Indonesian Regulation which refers to the ICOLD Regulation (International Committee on Large Dam required have the Emergency Action Plan (EAP) guidelines because of the dams have potential failure. In EAP guidelines there is a management of evacuation where the determination of the inundation map based on flood modeling. The purpose of the EAP is to minimize the risk of loss of life and property in downstream which caused by dam failure. This paper will describe about develop flood modeling and inundation map in Krisak dam using numerical methods through dam break analysis (DBA) using hydraulic model Zhong Xing HY-21. The approaches of dam failure simulation are overtopping and piping. Overtopping simulation based on quadrangular, triangular and trapezium fracture. Piping simulation based on cracks of orifice. Using results of DBA, hazard classification of Krisak dam is very high. The nearest village affected dam failure is Singodutan village (distance is 1.45 kilometer from dam) with inundation depth is 1.85 meter. This result can be used by stakeholders such as emergency responders and the community at risk in formulating evacuation procedure.

  10. Mps1 promotes chromosome meiotic chromosome biorientation through Dam1.

    PubMed

    Meyer, Régis E; Brown, Jamin; Beck, Lindsay; Dawson, Dean S

    2018-02-15

    In budding yeast meiosis, homologous chromosomes become linked by chiasmata and then move back and forth on the spindle until they are bioriented, with the kinetochores of the partners attached to microtubules from opposite spindle poles. Certain mutations in the conserved kinase, Mps1, result in catastrophic meiotic segregation errors but mild mitotic defects. We tested whether Dam1, a known substrate of Mps1, was necessary for its critical meiotic role. We found that kinetochore-microtubule attachments are established even when Dam1 is not phosphorylated by Mps1, but that Mps1 phosphorylation of Dam1 sustains those connections. But the meiotic defects when Dam1 is not phosphorylated are not nearly as catastrophic as when Mps1 is inactivated. The results demonstrate that one meiotic role of Mps1 is to stabilize connections that have been established between kinetochores and microtubles by phosphorylating Dam1. © 2018 Meyer et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Dam removal: Listening in

    Treesearch

    M. M. Foley; J. R. Bellmore; J. E. O' Connor; J. J. Duda; A. E. East; G. E. Grant; C. W. Anderson; J. A. Bountry; M. J. Collins; P. J. Connolly; L. S. Craig; J. E. Evans; S. L. Greene; F. J. Magilligan; C. S. Magirl; J. J. Major; G. R. Pess; T. J. Randle; P. B. Shafroth; C. E. Torgersen; D. Tullos; A. C. Wilcox

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings....

  12. The social impacts of dams: A new framework for scholarly analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchherr, Julian, E-mail: julian.kirchherr@sant.ox.ac.uk; Charles, Katrina J., E-mail: katrina.charles@ouce.ox.ac.uk

    No commonly used framework exists in the scholarly study of the social impacts of dams. This hinders comparisons of analyses and thus the accumulation of knowledge. The aim of this paper is to unify scholarly understanding of dams' social impacts via the analysis and aggregation of the various frameworks currently used in the scholarly literature. For this purpose, we have systematically analyzed and aggregated 27 frameworks employed by academics analyzing dams' social impacts (found in a set of 217 articles). A key finding of the analysis is that currently used frameworks are often not specific to dams and thus omitmore » key impacts associated with them. The result of our analysis and aggregation is a new framework for scholarly analysis (which we call ‘matrix framework’) specifically on dams' social impacts, with space, time and value as its key dimensions as well as infrastructure, community and livelihood as its key components. Building on the scholarly understanding of this topic enables us to conceptualize the inherently complex and multidimensional issues of dams' social impacts in a holistic manner. If commonly employed in academia (and possibly in practice), this framework would enable more transparent assessment and comparison of projects.« less

  13. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are considered within the model. The results of the hydrologic simulations indicated that for all hydrologic conditions scenarios, the Lago El Guineo Dam would not experience overtopping. For the dam breach hydraulic analysis, failure by piping was the selected hypothetical failure mode for the Lago El Guineo Dam.Results from the simulated dam failure of the Lago El Guineo Dam using the HEC–RAS model for the 6- and 24-hour probable maximum precipitation events indicated peak discharges below the dam of 1,342.43 and 1,434.69 cubic meters per second, respectively. Dam failure during the 24-hour, 100-year recurrence rainfall event resulted in a peak discharge directly downstream from Lago El Guineo Dam of 1,183.12 cubic meters per second. Dam failure during sunny-day conditions (no precipitation) produced a peak discharge at Lago El Guineo Dam of 1,015.31 cubic meters per second assuming the initial water-surface elevation was at the morning-glory spillway invert elevation.The results of the hydraulic analysis indicate that the flood would extend to many inhabited areas along the stream banks from the Lago El Guineo Dam to the mouth of the Río Grande as a result of the simulated failure of the Lago El Guineo Dam. Low-lying regions in the vicinity of Ciales, Manatí, and Barceloneta, Puerto Rico, are among the regions that would be most affected by failure of the Lago El Guineo Dam. Effects of the flood control (levee) structure constructed in 2000 to provide protection to the low-lying populated areas of Barceloneta, Puerto Rico, were considered in the hydraulic analysis of dam failure. The results indicate that overtopping can be expected in the aforementioned levee during 6- and 24-hour probable maximum precipitation events. The levee was not overtopped during dam failure scenarios under the 24-hour, 100-year recurrence rainfall event or sunny-day conditions.

  14. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  15. Geomorphic responses to dam removal in the United States – a two-decade perspective

    USGS Publications Warehouse

    Major, Jon J.; East, Amy; O'Connor, Jim E.; Grant, Gordon E.; Wilcox, Andrew C.; Magirl, Christopher S.; Collins, Matthias J.; Tullos, Desiree D.; Tsutsumi, Daizo; Laronne, Jonathan B.

    2017-01-01

    Recent decades have seen a marked increase in the number of dams removed in the United States. Investigations following a number of removals are beginning to inform how, and how fast, rivers and their ecosystems respond to released sediment. Though only a few tens of studies detail physical responses to removals, common findings have begun to emerge. They include: (1) Rivers are resilient and respond quickly to dam removals, especially when removals are sudden rather than prolonged. Rivers can swiftly evacuate large fractions of reservoir sediment (≥50% within one year), especially when sediment is coarse grained (sand and gravel). The channel downstream typically takes months to years—not decades—to achieve a degree of stability within its range of natural variability. (2) Modest streamflows (<2-year return interval flows) can erode and transport large amounts of reservoir sediment. Greater streamflows commonly are needed to access remnant reservoir sediment and transport it downstream. (3) Dam height, sediment volume, and sediment caliber strongly influence downstream response to dam removal. Removals of large dams (≥10 m tall) have had longer-lasting and more widespread downstream effects than more common removals of small dams. (4) Downstream valley morphology and position of a dam within a watershed influence the distribution of released sediment. Valley confinement, downstream channel gradient, locations and depths of channel pools, locations and geometries of extant channel bars, and locations of other reservoirs all influence the downstream fate of released sediment.

  16. Importance of using roller compacted concrete in techno-economic investigation and design of small dams

    NASA Astrophysics Data System (ADS)

    Rouissat, Bouchrit; Smail, N.; Zenagui, S.

    2017-12-01

    In recent years, and under constraints caused by persistent drought, Algeria has launched a new mobilization strategy for surface water resources from small and medium dams. However, by making a review of the studies and achievements of twenty small dams in the west of Algeria, some deficiencies appeared. In addition to reservoir siltation assessment, operation spillways have been the major constraint on the reliability of these types of dams. The objective of this paper is to use the roller compacted concrete (RCC) for small dams' design for the benefit it offers and its ability to incorporate spillways. The development of this reflection was applied to the Khneg Azir earth dam situated in southwest of Algeria. Its uncontrolled lateral spillway has registered significant damage following the flood of October 2005, amounted, at that time, to more than 100 million Algerian dinars (1 million US Dollars). The present research encompasses a technical and economical comparative analysis concerning multiple criteria dam design types coupled with the conjugation of the spillways. Thus, on the basis of financial estimates calculated for all design types, the variant RCC remains competitive with that of the earth dam's spillway isolated (Less than 40% of the cost). To assess the mechanical behavior of the foundations for both types of dams, (earth and RCC dams), numerical modeling has been undertaken, according to the comparative analysis of deformations in the foundations. Analysis of deformations showed that the average foundation deformations was between (0.052-0.85) m for earth dam and (0.023-0.373) m for RCC dam. These economical and technical considerations open up important prospects for the use of RCC in the design of small dams.

  17. Effect of Seepage on Change in Stress Distribution Scenario in Static and Seismic Behaviour of Earthen Dams

    NASA Astrophysics Data System (ADS)

    Nandi, N.; Chowdhury, Roy; Dutta, S. C.

    2018-02-01

    The present study makes an effort to understand the damage of earthen dams under static and seismic loading condition. To make the investigation more realistic, behaviour of earthen dams considering the occurrence of a phreatic line indicating the submerged zone due to seepage within the dam body is considered. In case of earthen dams, homogeneous or nonhomogeneous, the consideration of the occurrence of a phreatic line or seepage line through the dam body is an important part of the earthen dam design methodology. The impervious material properties in the submerged zone below the phreatic line due to seepage may differ a lot in magnitudes as compared to the value of the same materials lying above this line. Hence, to have the exact stress distribution scenarios within the earthen dam, the different material properties above and below the phreatic line are considered in this present study. The study is first carried out by two-dimensional as well as three-dimensional finite element analysis under static loading condition. The work is further extended to observe the effect of seepage due to the consideration of the phreatic line on dynamic characteristics of earthen dams. Free vibration analysis and seismic analysis based on the Complete Quadratic Combination (CQC) method by considering twodimensional and three-dimensional modeling are carried out to present the frequencies, mode shapes and the stress distribution pattern of the earthen dam.

  18. Effects of a 2006 High-Flow Release from Tiber Dam on Channel Morphology at Selected Sites on the Marias River, Montana

    USGS Publications Warehouse

    Auble, Gregor T.; Bowen, Zachary H.

    2008-01-01

    In June 2006, an opportunistic high-flow release was made from Tiber Dam on the Marias River in Mont., to investigate possible alternatives for partially restoring the river's natural flow pattern and variability. At two sites along the river, we measured channel geometry before and after the high-flow release to evaluate channel change and alteration of physical habitat. Streamflow downstream from Tiber Dam has been stabilized by reduction of high flows and augmentation of low flows. This has produced flood-control benefits as well as some possible adverse environmental effects downstream from the dam. The 2006 high-flow release resulted in a downstream hydrograph with high flows of above-average magnitude in the post-dam flow regime of the Marias River. Timing of the peak and the declining limb of the release hydrograph were very similar to a historical, unregulated hydrograph of the Marias River. Furthermore, the high flow produced many of the qualitative elements of ecologically important physical processes that can be diminished or lost due to flow stabilization downstream from a dam. Typically dry back channels were occupied by flowing water. Islands were inundated, resulting in vegetation removal and sediment accretion that produced new disturbance patches of bare, moist substrate. Cut banks were eroded, and large woody debris was added to the river and redistributed. Flood-plain surfaces were inundated, producing substantial increases in wetted perimeter and spatially distinctive patterns of deposition associated with natural levee formation. The scale of the 2006 high flow - in terms of peak magnitude and the lateral extent of bottomland influenced by inundation or lateral channel movement - was roughly an order of magnitude smaller than the scale of an infrequent high flow in the pre-dam regime. Overall extent and composition of riparian vegetation will continue to change under a scaled-down, post-dam flow regime. For example, the importance of the non-native Russian-olive (Elaeagnus angustifolia) will likely increase. Reestablishing a more natural pattern of flows, however, should promote the increase of native cottonwood and willow (Salix spp.) in the new-albeit smaller-post-dam riparian ecosystem. A more natural flow regime will also likely provide improved habitat for native fish in the Marias River. Response of fish communities to such flows is the subject of current fisheries studies being conducted in cooperation with Bureau of Reclamation.

  19. National Dam Safety Program. Garnerville Dam (Inventory Number N.Y. 744), Hudson River Basin, Rockland County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-08-01

    drain and the 8-inch pipeline are in good operating condition and appear to be well maintained. e. Reservoir Area There are neither slides, rockfalls ...Stability fOpcrc c- ,k- I p. Miscellaneous 1 1I I L Project ._Dheet___ _.. Subject ABy Gi ___ A _ A _Chk. by I 0 Q I 40 CiQI /" e6dn-r-f/aa /Ortf e / 7, 4 o

  20. Applying 1D Sediment Models to Reservoir Flushing Studies: Measuring, Monitoring, and Modeling the Spencer Dam Sediment Flush with HEC-RAS

    DTIC Science & Technology

    2016-07-01

    approximately 5 hours (hr) after opening main gates. Multiple channels eroded (Figure 5), moving sediment through the dam throughout the first day...additional sediment evacuation was observed over the next 4 weeks. ERDC/CHL CHETN-XIV-52 July 2016 5 Figure 5. Multiple channels eroded...2015. A physically-based channel - modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS Bank-Stability and Toe-Erosion

  1. Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  2. Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.

    PubMed

    Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  3. A chance to stop and breathe: participants’ experiences in the North American Opiate Medication Initiative clinical trial

    PubMed Central

    2014-01-01

    Background The North American Opiate Medication Initiative (NAOMI) clinical trial compared the effectiveness of injectable diacetylmorphine (DAM) or hydromorphone (HDM) to oral methadone maintenance treatment (MMT). This study aimed to determine participants’ perceptions of treatment delivered in NAOMI. Methods A qualitative sub-study was conducted with 29 participants (12 female): 18 (62.1%) received injectable DAM or HDM and 11 (37.9%) received MMT. A phenomenological theoretical framework was used. Semi-structured interviews were audio-recorded and transcribed verbatim. A thematic analysis was used over successive phases and was driven by the semantic meanings of the data. Results Participants receiving injectable medications suggested that the supervised delivery model was stringent but provided valuable stability to their lives. Females discussed the adjustment required for the clinical setting, while males focused on the challenging clinic schedule and its impact on employment abilities. Participants receiving MMT described disappointment with being randomized to this treatment; however, positive aspects, including the quick titration time and availability of auxiliary services, were also discussed. Conclusion Treatment with injectable DAM (or HDM) is preferred by participants and considered effective in reducing the burden of opioid dependency. Engaging patients in research regarding their perceptions of treatment provides a comprehensive assessment of treatment needs and barriers. Clinical trial registration NCT00175357 PMID:25262567

  4. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil moisture in the dry season, making plant growth easier. We concluded that several changes occurred in the T0-T2 period and at 0-30 m to the impoundment, mainly for the deciduous forests, where this community turned into a "riparian-deciduous forest" with large basal area in these patches. However, unlike other transitory disturbances, damming is a permanent alteration and transforms the landscape to a different scenario, probably with major long-term consequences for the environment.

  5. Groundwater-Surface Water Interaction: A Case Study of Embankment Dam Safety Assessment in Sweden.

    NASA Astrophysics Data System (ADS)

    Ferdos, F.; Dargahi, B.

    2015-12-01

    Seepage, when excessive and unimpeded, can cause embankment dam failure. Such failures are often initiated by internal erosion and piping. Modelling these phenomena in embankment dams, accounting for the groundwater-surface water interactions, is crucial when performing dam safety assessments. The aim of this study was to evaluate the applicability of modelling seepage flows in multi-region dams using a finite element based multi-physics model. The model was applied to the Trängslet dam, the largest dam in Sweden. The objectives were to analyze the characteristics of both the flow and the surface-ground water interactions occurring in the dam, including: i) the saturated and unsaturated laminar flow regimes within the dam body, ii) the non-linear through-flow in the dam shoulders' coarse material, iii) the influence of the surface waves in the reservoir on the seepage flow by coupling the physics to a hydrodynamic interface, and iv) the influence of a conceptual "erosion tunnel" on the seepage flow and its interaction with the surface water flow by coupling the physics to a CFD interface. The focus of the study was on the influence of the transient water head boundary condition, surface waves and the internal erosion tunnel on the location of the phreatic line and the seepage flow rate. The simulated seepage flow of the dam in its original condition tallied with the monitoring measurements (40-70 l/s). The main feature found was the relatively high position of the phreatic line, which could compromise the stability of the dam. The combination of the seepage model with the reservoir hydrodynamics indicated a negligible influence of the surface waves on seepage flow. Results from the combination of the seepage model with fluid dynamics indicated that a conceptual "erosion tunnel" placed within the dam, even as high as in the unsaturated zone, significantly affects the phreatic line's position. This also causes the seepage flow to increase by several orders of magnitude, resulting in non-linear turbulent flow regimes in the downstream shoulder of the dam and, ultimately, dam failure. While the modelling was limited by a lack of reliable geometrical and geotechnical data, the results of the study do highlight the importance of including groundwater-surface water interactions in dam safety assessments.

  6. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    EPA Science Inventory

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  7. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  8. Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds

    NASA Astrophysics Data System (ADS)

    Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.

    2012-12-01

    Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.

  9. The rate and pattern of bed incision and bank adjustment on the Colorado River in Glen Canyon downstream from Glen Canyon Dam, 1956-2000

    USGS Publications Warehouse

    Grams, P.E.; Schmidt, J.C.; Topping, D.J.

    2007-01-01

    Closure of Glen Canyon Dam in 1963 transformed the Colorado River by reducing the magnitude and duration of spring floods, increasing the magnitude of base flows, and trapping fine sediment delivered from the upper watershed. These changes caused the channel downstream in Glen Canyon to incise, armor, and narrow. This study synthesizes over 45 yr of channel-change measurements and demonstrates that the rate and style of channel adjustment are directly related to both natural processes associated with sediment deficit and human decisions about dam operations. Although bed lowering in lower Glen Canyon began when the first cofferdam was installed in 1959, most incision occurred in 1965 in conjunction with 14 pulsed high flows that scoured an average of 2.6 m of sediment from the center of the channel. The average grain size of bed material has increased from 0.25 mm in 1956 to over 20 mm in 1999. The magnitude of incision at riffles decreases with distance downstream from the dam, while the magnitude of sediment evacuation from pools is spatially variable and extends farther downstream. Analysis of bed-material mobility indicates that the increase in bed-material grain size and reduction in reach-average gradient are consistent with the transformation of an adjustable-bed alluvial river to a channel with a stable bed that is rarely mobilized. Decreased magnitude of peak discharges in the post-dam regime coupled with channel incision and the associated downward shifts of stage-discharge relations have caused sandbar and terrace erosion and the transformation of previously active sandbars and gravel bars to abandoned deposits that are no longer inundated. Erosion has been concentrated in a few pre-dam terraces that eroded rapidly for brief periods and have since stabilized. The abundance of abandoned deposits decreases downstream in conjunction with decreasing magnitude of shift in the stage-discharge relations. In the downstream part of the study area where riffles controlling channel elevation have not incised, channel narrowing has resulted from decreased magnitude of peak discharges and minor post-dam deposition. These physical changes to the aquatic and riparian systems have supported the establishment and success of an artifact ecosystem dominated by non-native species. Models for the channel response downstream from large dams typically consider factors such as the degree of sediment deficit, the pre-dam surface and subsurface grain size, and the magnitude of post-dam average flows. These results suggest that it is also necessary to consider (1) the possibility of variable responses among different channel elements and (2) the potential importance of exceptional flows resulting from management decisions. ?? 2007 Geological Society of America.

  10. Dynamic decision making for dam-break emergency management - Part 2: Application to Tangjiashan landslide dam failure

    NASA Astrophysics Data System (ADS)

    Peng, M.; Zhang, L. M.

    2013-02-01

    Tangjiashan landslide dam, which was triggered by the Ms = 8.0 Wenchuan earthquake in 2008 in China, threatened 1.2 million people downstream of the dam. All people in Beichuan Town 3.5 km downstream of the dam and 197 thousand people in Mianyang City 85 km downstream of the dam were evacuated 10 days before the breaching of the dam. Making such an important decision under uncertainty was difficult. This paper applied a dynamic decision-making framework for dam-break emergency management (DYDEM) to help rational decision in the emergency management of the Tangjiashan landslide dam. Three stages are identified with different levels of hydrological, geological and social-economic information along the timeline of the landslide dam failure event. The probability of dam failure is taken as a time series. The dam breaching parameters are predicted with a set of empirical models in stage 1 when no soil property information is known, and a physical model in stages 2 and 3 when knowledge of soil properties has been obtained. The flood routing downstream of the dam in these three stages is analyzed to evaluate the population at risk (PAR). The flood consequences, including evacuation costs, flood damage and monetized loss of life, are evaluated as functions of warning time using a human risk analysis model based on Bayesian networks. Finally, dynamic decision analysis is conducted to find the optimal time to evacuate the population at risk with minimum total loss in each of these three stages.

  11. TSSGNEO suggestions for refinement of safety criteria for dam at the Sayano-Shushenskaya HPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savich, A. I.; Gaziev, E. G.

    2013-09-15

    Analysis of radial-displacements of the dam, measured by direct and inverted plumb lines, indicates that curves of the variation in radial displacements of the dam at different elevations make it possible to plot diagrams of increases in the radial displacement over the entire height of the dam, i.e., inclines of the axis of the dam to the vertical.

  12. National Dam Safety Program. Lock 2 Dam at Mechanicville (I.D. Number NY 988) Upper Hudson River Basin, Rensselaer-Saratoga County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-09-30

    municipalities of Warrensburg, Glens Falls, Hudson Falls, Saratoga Springs; Arlington, Vermont ; Greenwich, Schuylerville, Cambridge; Bennington ...of Vermont and Massachusetts. the Hudson River main stem travels approximately 140 miles from its headquarters south of Lake Placid to the Lock 2 Dam... Vermont ; Adams, North Adams, and Williamstown, Massachusetts; and Hoosick Falls. 5.2 ANALYSIS CRITERIA The analysis of the spillway capacity of the dam

  13. Simulation analysis of temperature control on RCC arch dam of hydropower station

    NASA Astrophysics Data System (ADS)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  14. Earthern embankment overtopping analysis using the WinDAM B software

    USDA-ARS?s Scientific Manuscript database

    Over 11,000 small watershed dams have been constructed with USDA involvement over an eighty year period. WinDAM B software has been developed to help engineers address dam safety concerns relative to potential overtopping of these earthen embankments. The primary function of the software is threef...

  15. Concrete Durability in Harsh Environmental Conditions Exposed to Freeze Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Hamze, Youssef

    Under line Pathology of Materials; one of the environmental causes of damage effects on concrete is freeze thaw cycles, which deteriorate the concrete exposed to water in cold weather. An example of old concrete is a dam project that was built in Canada, in the early 1909-1913. This project was reconstructed in 1932, 1934 and 1972, and required renovation due to the ice abrasion with the freeze/thaw cycles. Before completing any renovation, it is required to analyze the structural stability and the concrete failures of this dam. An investigation was conducted to determine the quality of the concrete in the Piers and in the Bridge Deck Slab. It was also required to determine the basic materials' properties that constitute this project. This will improve the analysis of its stability [10]. Core samples were examined and used as test samples, for the Alkali-Silica reactivity test samples, as well as the compressive strength test, the Chloride Ion test, and the freeze thaw testing which was performed on two sets of 12 concrete core samples that were taken from different locations in the project. These locations are the representations of the age of the concrete. Thus, the age difference between the samples' two sets is four decades. Testing was performed on prisms cut from cores. ASTM C-666 procedure (A) was applied using an automatic test system [6]. It was suggested that a plan for renovation of this project should be performed after the analysis is undertaken to assess the conditions estimating the remaining life of the concrete in this project [15].

  16. Effect of sterilization on stiffness and dimensional stability of rubber-dam clamps.

    PubMed

    Giebink, D L; Mathieu, G P; Hondrum, S O

    1996-01-01

    Simulated clinical conditions were used to test the effect of sterilization on rubber-dam clamp stiffness and dimension. Sixty Hygienic and Ivory W7 clamps were either steam or dry heat sterilized and compared to controls. Stiffness and dimensional change between Ivory clamp groups was significant (p<.0001); the sterilized clamps showed less change than the controls. Hygienic groups showed a significant different between the control and dry heat groups (p<.05); the sterilized clamps showed less change than the controls. The change in stiffness and interjaw width for all Ivory clamps compared to all Hygienic clamps was significant (p<.0001). The Hygienic clamps changes less than the Ivory clamps. The results indicate that steam and dry heat sterilization do not affect retention of rubber-dam clamps.

  17. Geomorphic status of regulated rivers in the Iberian Peninsula.

    PubMed

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation, challenging the successful long-term implementation of river basin management programmes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of dam construction and increasing pollutants on the ecohydrological evolution of a shallow freshwater lake in the Yangtze floodplain.

    PubMed

    Zeng, Linghan; McGowan, Suzanne; Cao, Yanmin; Chen, Xu

    2018-04-15

    Large river-floodplain systems which provide a variety of societal, economic and biological benefits are undergoing extensive and intensive human disturbance. However, floodplain lakes responses to multiple stressors are poorly understood. The Yangtze River and its floodplain which provide water and food resources for more than 300 million people are an important region in China. Hydrological regulation as well as socio-economic development have brought profound negative influence on this ecologically important area. To improve understanding of decadal-scale responses of floodplain lakes to multiple stressors, lake sediment proxies including particle size, geochemical elements, diatoms and chironomids were analysed in a lead-210 dated core from Futou Lake. The analyses show that dams constructed in 1935 and the early 1970s stabilized hydrological conditions in Futou Lake and impeded the interaction with the Yangtze River, resulting in a decrease in major elements (e.g., Mg, Al, Fe) transported into the lake and an increase of macrophyte-related chironomids (C. sylvestris-type, P. penicillatus-type and Paratanytarsus sp.). After the late 1990s, further decreases in major elements and increases in median grain size are attributed to the erosion of the Yangtze riverbed and declining supply of major elements-enriched sediments from the upper Yangtze caused by the impoundment of the Three Gorges Dam. Chironomid and diatom assemblages indicate that hydrological stabilization caused by dam constructions stimulated the growth of macrophytes, which may be important in buffering against an ecosystem state change towards a phytoplankton-dominated and turbid state with ongoing eutrophication. However, a recent increase in Zn, TP and the emergence of eutrophic diatom and chironomid species indicate initial signs of water quality deterioration which may be related to the combined effects of hydrological stabilization and aquaculture. Over all, the sediment record from Futou Lake emphasizes the importance of interactions between hydrological change and pollutant loads in determining floodplain lake ecosystem state. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    PubMed Central

    Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-01-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam. PMID:29657755

  20. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  1. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China.

    PubMed

    Zhao, Bo; Wang, Yun-Sheng; Luo, Yong-Hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  2. Analysis of the typical small watershed of warping dams in the sand properties

    NASA Astrophysics Data System (ADS)

    Li, Li; Yang, Ji Shan; Sun, Wei Ying; Shen, Sha Sha

    2018-06-01

    Coarse sediment with a particle size greater than 0.05mm is the main deposit of riverbed in the lower Yellow River, the Loess Plateau is one of the concentrated source of coarse sediment, warping dam is one of the important engineering measures for gully control. Jiuyuangou basin is a typical small basin in the first sub region of hilly-gullied loess region, twenty warping dams in Jiuyuangou basin was selected as research object, samples of sediment along the main line of dam from upper, middle to lower reaches of dam fields and samples of undisturbed soil in slope of dam control basin were taken to carry out particle gradation analysis, in the hope of clearing reducing capacity on coarse sediment of different types of warping dam through the experimental data. The results show that the undisturbed soil in slope of dam control basin has characteristics of standard loess, the particle size are mainly distributed in 0.025 0.05mm, and the 0.05mm particle size of Jiuyuangou basinof loess is an obvious boundary; Particle size of sediment in 15 warping dam of Jiuyuangou basin are mainly distributed in 0.031 0.05mm with the dam tail is greater than dam front in general. The separation effect of horizontal pipe drainage is better than shaft drainage for which particle size greater than 0.05mm, notch dam is for particle size between 0.025 0.1 mm, and fill dam is for particle size between 0.016 0.1 mm, they all have a certain function in the sediment sorting.

  3. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  4. Molecular modeling and cytotoxicity of diffractaic acid: HP-β-CD inclusion complex encapsulated in microspheres.

    PubMed

    Silva, Camilla V N S; Barbosa, Jéssica A P; Ferraz, Milena S; Silva, Nicácio H; Honda, Neli K; Rabello, Marcelo M; Hernandes, Marcelo Z; Bezerra, Beatriz P; Cavalcanti, Isabella M F; Ayala, Alejandro P; Santos, Noemia P S; Santos-Magalhães, Nereide S

    2016-11-01

    In this pioneer study, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was used to improve the solubility of the diffractaic acid (DA) via inclusion complex (DA:HP-β-CD). Subsequently, DA:HP-β-CD was incorporated into poly-ε-caprolactone (PCL) microspheres (DA:HP-β-CD-MS). Microspheres containing DA (DA-MS) or DA:HP-β-CD (DA:HP-β-CD-MS) were prepared using the multiple W/O/W emulsion-solvent evaporation technique. The phase-solubility diagram of DA in HP-β-CD (10-50mM) showed an A L type curve with a stability constant K 1:1 =821M -1 . 1 H NMR, FTIR, X-ray diffraction and thermal analysis showed changes in the molecular environment of DA in DA:HP-β-CD. The molecular modeling approach suggests a guest-host complex formation between the carboxylic moiety of both DA and the host (HP-β-CD). The mean particle size of the microspheres were ∅ DA-MS =5.23±1.65μm and ∅ DA:HP-β-CD-MS =4.11±1.39μm, respectively. The zeta potential values of the microspheres were ζ DA-MS =-7.85±0.32mV and ζ DA:HP-β-CD-MS =-6.93±0.46mV. Moreover, the encapsulation of DA:HP-β-CD into microspheres resulted in a more slower release (k 2 =0.042±0.001; r 2 =0.996) when compared with DA-MS (k 2 =0.183±0.005; r 2 =0.996). The encapsulation of DA or DA:HP-β-CD into microspheres reduced the cytotoxicity of DA (IC 50 =43.29μM) against Vero cells (IC 50 of DA-MS=108.48μM and IC 50 of DA:HP-β-CD-MS=142.63μM). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transport, dam passage, and size selection of adult Atlantic Salmon in the Penobscot River, Maine

    USGS Publications Warehouse

    Sigourney, Douglas B.; Zydlewski, Joseph D.; Hughes, Edward; Cox, Oliver

    2015-01-01

    Prior to 2012, returning adult Atlantic Salmon Salmo salar had to pass through fishways at three dams in the lower section of the Penobscot River, Maine: Veazie Dam (river kilometer [rkm] 48; removed in 2013), Great Works Dam (rkm 60; removed in 2012), and Milford Dam (rkm 62). To facilitate better passage through the lower river, a fish transport program was implemented in 2010 and 2011. Fish were captured at Veazie Dam and were either transported by truck above Milford Dam (TRKD group) or released into the head pond above Veazie Dam (run-of-the-river [ROR] group). To assess the efficacy of transport, we used PIT telemetry to compare the performance and passage of TRKD and ROR fish based on their (1) success in reaching one of the three dams upstream of Milford Dam, (2) time taken to reach an upstream dam (transit time), and (3) success in passing that upstream dam. In both years, the percentage of fish detected at upstream dams was higher for the TRKD group (82.4% in 2010; 78.6% in 2011) than for the ROR group (41.3% in 2010; 22.4% in 2011). In addition, median transit time was faster for TRKD fish (7 d in 2010; 5 d in 2011) than for ROR fish (23 d in 2010; 25 d in 2011). However, passage success through the upstream dams did not differ between the two release groups. Our analysis also revealed a strong, negative size-selective force on dam passage: larger fish were consistently less likely to successfully pass dams than smaller fish. Finally, environmental conditions also influenced passage success. Our analysis shows that the transport of adult Atlantic Salmon can be an effective means by which to increase migration success in systems where upstream passage is poor.

  6. Stress and deformation analysis of double curvature arc dams using finite element method (FEM): A case of budhi gandaki hydropower project

    NASA Astrophysics Data System (ADS)

    Mishra, Aanand Kumar; Singh, Ajay; Bahadur Singh, Akal

    2018-06-01

    High rise arc dams are widely used in the development of storage type hydropower project because of the economic advantage. Among different phases considered during the lifetime of dam, control of dam’s safety and performance becomes more concerned during the lifetime. This paper proposed the 3 – D finite element method (FEM) for stress and deformation analysis of double curvature arc dam considering the non – linearity of foundation rock following the Hoek – Brown Criterion. The proposed methodology is implemented through MATLAB scripting language and studied the double curvature arc dam proposed for Budhi Gandaki hydropower project. The stress developed in the foundation rock, compressive and tensile stress acting on the dam are investigated and analysed for the reservoir level variation. Deformation at the top of the dam and in the foundation rock is also investigated. In addition to that, stress and deformation variation in the foundation rock is analysed for various rock properties.

  7. Seismic performance of arch dams on non-homogeneous and discontinuous foundations (a case study: Karun 4 Dam)

    NASA Astrophysics Data System (ADS)

    Ferdousi, A.

    2017-06-01

    The present study set out to investigate the nonlinear seismic response of the dam-reservoir-rock foundation system, taking into consideration the effects of change in the material properties of discontinuous foundation. To this end, it is important to provide the proper modeling of truncated boundary conditions at the far-end of rock foundation and reservoir fluid domain and to correctly apply the in situ stresses for rock foundation. The nonlinear seismic response of an arch dam mainly depends on the opening and sliding of the dam body's contraction joints and foundation discontinuities, failure of the jointed rock and concrete materials, etc. In this paper, a time domain dynamic analysis of the 3D dam-reservoir-foundation interaction problem was performed by developing a nonlinear Finite Element program. The results of the analysis of Karun-4 Dam revealed the essential role of modeling discontinuities and boundary conditions of rock foundation under seismic excitation.

  8. Ecosystem-level consequences of migratory faunal depletion caused by dams

    USGS Publications Warehouse

    Freeman, Mary C.; Pringle, C.M.; Greathouse, E.A.; Freeman, B.J.; Limburg, K.E.; Waldman, J.R.

    2003-01-01

    Humans have been damming rivers for millennia, and our more ambitious efforts over the past century have arguably altered river ecosystems more extensively than any other anthropogenic activity. Effects of damming on river biota include decimation of migratory fauna (e.g., diadromous and potamodromous fishes and crustaceans), lost fisheries, and imperilment of obligate riverine taxa. Although effects of dams on biota have been widely documented, ecosystem-level consequences of faunal depletion caused by dams are only beginning to be appreciated. We discuss consequences to river ecosystems of altering distributions and abundances of migratory fauna, which often provide trophic subsidies and may strongly influence the structure of local habitats and communities. It is well documented that anadromous fishes can provide a major input of nutrients and energy to freshwater systems when spawning adults return from the sea. Other less-studied taxa that migrate between distinct portions of riverine systems (e.g., acipencerids, catostomids, and prochilodontids) may similarly provide trophic transfers within undammed river systems, in addition to modifying local communities and habitats through feeding and spawning activities. Experimental faunal exclusions have demonstrated strong potential effects of some amphidromous shrimps and potamodromous fishes on benthic organic matter and algal and invertebrate communities. Depletion of these animals above dams is likely to significantly affect ecosystem processes such as primary production and detrital processing. The decline of freshwater mussels isolated by dams from their migratory fish hosts has likely lowered stream productivity, nutrient retention and benthic stability. Greater focus on effects of dams on ecosystem processes, as mediated by faunal change, would improve our ability to assess the costs and benefits of future river management strategies.

  9. Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering

    NASA Astrophysics Data System (ADS)

    Hynes-Griffin, M. E.; Buege, L. L.

    1983-09-01

    Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.

  10. Simulated effects of dam removal on water temperatures along the Klamath River, Oregon and California, using 2010 Biological Opinion flow requirements

    USGS Publications Warehouse

    Risley, John C.; Brewer, Scott J.; Perry, Russell W.

    2012-01-01

    Computer model simulations were run to determine the effects of dam removal on water temperatures along the Klamath River, located in south-central Oregon and northern California, using flow requirements defined in the 2010 Biological Opinion of the National Marine Fisheries Service. A one-dimensional, daily averaged water temperature model (River Basin Model-10) developed by the U.S. Environmental Protection Agency Region 10, Seattle, Washington, was used in the analysis. This model had earlier been configured and calibrated for the Klamath River by the U.S. Geological Survey for the U.S. Department of the Interior, Klamath Secretarial Determination to simulate the effects of dam removal on water temperatures for current (2011) and future climate change scenarios. The analysis for this report was performed outside of the scope of the Klamath Secretarial Determination process at the request of the Bureau of Reclamation Technical Services Office, Denver, Colorado.For this analysis, two dam scenarios were simulated: “dams in” and “dams out.” In the “dams in” scenario, existing dams in the Klamath River were kept in place. In the “dams out” scenario, the river was modeled as a natural stream, without the J.C. Boyle, Copco1, Copco2, and Iron Gate Dams, for the entire simulation period. Output from the two dam scenario simulations included daily water temperatures simulated at 29 locations for a 50-year period along the Klamath River between river mile 253 (downstream of Link River Dam) and the Pacific Ocean. Both simulations used identical flow requirements, formulated in the 2010 Biological Opinion, and identical climate conditions based on the period 1961–2009.Simulated water temperatures from January through June at almost all locations between J.C. Boyle Reservoir and the Pacific Ocean were higher for the “dams out” scenario than for the “dams in” scenario. The simulated mean monthly water temperature increase was highest [1.7–2.2 degrees Celsius (°C)] in May downstream of Iron Gate Dam. However, from August to December, dam removal generally cooled water temperatures. During these months, water temperatures decreased 1°C or more between Copco Lake and locations 50 miles or more downstream. The greatest mean monthly temperature decrease was 4°C in October just downstream of Iron Gate Dam. Near the ocean, the effects of dam removal were small (less than 0.2°C) for most months. However, the mean November temperature near the ocean was almost 0.5°C cooler with dam removal.

  11. Application of Soil Nailing Technique for Protection and Preservation Historical Buildings

    NASA Astrophysics Data System (ADS)

    Kulczykowski, Marek; Przewłócki, Jarosław; Konarzewska, Bogusława

    2017-10-01

    Soil nailing is one of the recent in situ techniques used for soil improvement and in stabilizing slopes. The process of soil nailing consists of reinforcing the natural ground with relatively small steel bars or metal rods, grouted in the pre-drilled holes. This method has a wide range of applications for stabilizing deep excavations and steep slopes. Soil nailing has recently become a very common method of slope stabilisation especially where situated beneath or adjacent to historical buildings. Stabilisation by nails drilled into existing masonry structures such as failing retaining walls abutments, provide long term stability without demolition and rebuilding costs. Two cases of soil nailing technology aimed at stabilising slopes beneath old buildings in Poland are presented in this paper. The first concerns application of this technology to repair a retaining wall supporting the base of the dam at the historic hydroelectric power plant in Rutki. The second regards a concept of improving the slope of the Castle Hill in Sandomierz. An analysis of the slope stability for the latter case, using stabilisation technique with the piling system and soil nailing was performed. Some advantages of soil nailing especially for protection of historical buildings, are also underlined. And, the main results of an economic comparison analysis are additionally presented.

  12. Dam failure analysis for the Lago de Matrullas Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Torres-Sierra, Heriberto; Gómez-Fragoso, Julieta

    2015-01-01

    Results from the simulated dam failure of the Lago de Matrullas Dam using the HEC–RAS model for the 6- and 24-hour PMP events showed peak discharges at the dam of 3,149.33 and 3,604.70 m3/s, respectively. Dam failure during the 100-year-recurrence, 24-hour rainfall event resulted in a peak discharge of 2,103.12 m3/s directly downstream from the dam. Dam failure under sunny day conditions produced a peak discharge of 1,695.91 m3/s at the dam assuming the antecedent lake level was at the morning-glory spillway invert elevation. Flood-inundation maps prepared as part of the study depict the flood extent and provide valuable information for preparing an Emergency Action Plan. Results of the failure analysis indicate that a failure of the Lago de Matrullas Dam could cause flooding to many of the inhabited areas along stream banks from the Lago de Matrullas Dam to the mouth of the Río Grande de Manatí. Among the areas most affected are the low-lying regions in the vicinity of the towns of Ciales, Manatí, and Barceloneta. The delineation of the flood boundaries near the town of Barceloneta considered the effects of a levee constructed during 2000 at Barceloneta in the flood plain of the Río Grande de Manatí to provide protection against flooding to the near-by low-lying populated areas. The results showed overtopping can be expected in the aforementioned levee during 6- and 24-hour probable-maximum-precipitation dam failure scenarios. No overtopping of the levee was simulated, however, during dam failure scenarios under the 100-year recurrence, 24-hour rainfall event or sunny day conditions.

  13. Geophysical evaluation of the Success Dam foundation, Porterville, California

    USGS Publications Warehouse

    Hunter, L.E.; Powers, M.H.; Haines, S.; Asch, T.; Burton, B.L.; Serafini, D.C.

    2006-01-01

    Success Dam is a zonedearth fill embankment located near Porterville, CA. Studies of Success Dam by the recent Dam Safety Assurance Program (DSAP) have demonstrated the potential for seismic instability and large deformation of the dam due to relatively low levels of earthquake shaking. The U.S. Army Corps of Engineers conducted several phases of investigations to determine the properties of the dam and its underlying foundation. Detailed engineering studies have been applied using a large number of analytical techniques to estimate the response of the dam and foundation system when subjected to earthquake loading. Although a large amount of data have been acquired, most are 'point' data from borings and results have to be extrapolated between the borings. Geophysical techniques were applied to image the subsurface to provide a better understanding of the spatial distribution of key units that potentially impact the stability. Geophysical investigations employing seismic refraction tomography, direct current (DC) resistivity, audio magnetotellurics (AMT) and self-potential (SP) were conducted across the location of the foundation of a new dam proposed to replace the existing one. Depth to bedrock and the occurrence of beds potentially susceptible to liquefaction were the focus of the investigations. Seismic refraction tomography offers a deep investigation of the foundation region and looks at compressional and shear properties of the material. Whereas resistivity surveys determines conductivity relationships in the shallow subsurface and can produce a relatively high-resolution image of geological units with different electrical properties. AMT was applied because it has the potential to look considerably deeper than the other methods, is useful for confirming depth to bedrock, and can be useful in identifying deep seated faults. SP is a passive electrical method that measures the electrical streaming potential in the subsurface that responds to the movement of ground water. SP surveys were conducted at low pool and high pool conditions in order to look for evidence of seepage below the existing dam. In this paper, we summarize these techniques, present their results at Success Dam, and discuss general application of these techniques for investigating dams and their foundations.

  14. Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.

    2014-12-01

    Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must en­able the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the dam and the methods of monitoring techniques applied by various disciplines. Some results have been obtained from this method for nearly eight years are presented in this work. In addition, the results of bathymetric surveys between 2005 and 2010 will be compared using the cross sections where the maximum changes occurred on the dam bottom of the reservoir area.

  15. Modeling of Long-Term Fate of Mobilized Fines due to Dam-Embankment Interfacial Dislocations

    NASA Astrophysics Data System (ADS)

    Glascoe, L. G.; Ezzedine, S. M.; Kanarska, Y.; Lomov, I.; Antoun, T. H.

    2011-12-01

    Transverse cracks in embankment dams can develop as a result of post-construction settlements, earthquake deformations, or anthropogenic loads such as emplaced explosives. During these dislocations, fine particles are released from the damaged zones and can create unwanted inertial erosion and piping through the transverse cracks. These processes are equally critical to the overall stability of the dam. We present numerical results related to the problem of the fluid flow, transport, and filtration of particulates from damaged zones between the concrete sections of a gravity dam and the embankment wraparound sections. The model solves simultaneously the flow, attachment, and washout of fine particles within a wraparound heterogeneous porous media. We used a state-of-the-art finite element method with adaptive mesh refinement to capture 1) the interface between water dense with fines and clear water, and 2) the non-linearity of the free surface itself. A few scenarios of sediment entrapment in the filter layers of a gravity dam were considered. Several parameterizations of the filtration model and constitutive laws of soil behavior were also investigated. Through these analyses, we concluded that the attachment kinetic isotherm is the key function of the model. More parametric studies need to be conducted to assess the sensitivity of the kinetic isotherm parameters on the overall stability of the embankment. These kinetic parameters can be obtained, for example, through numerical micro- and meso-scale studies. It is worth mentioning that the current model, for the more realistic non-linear kinetic isotherms, has predicted a self-rehabilitation of the breached core with retention of 50% of the mobilized fines using a very conservative filtration length. A more realistic value should exceed the assumed one, resulting in a retention exceeding 50%. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the U.S. Department of Homeland Security, Science and Technology Directorate.

  16. Quantifying recreation use values from removing dams and restoring free-flowing rivers: A contingent behavior travel cost demand model for the Lower Snake River

    NASA Astrophysics Data System (ADS)

    Loomis, John

    2002-06-01

    A travel cost demand model that uses intended trips if dams are removed and the river restored is presented as a tool for evaluating the potential recreation benefits in this counterfactual but increasingly policy relevant analysis of dam removal. The model is applied to the Lower Snake River in Washington using data from mail surveys of households in the Pacific Northwest region. Five years after dam removal, about 1.5 million visitor days are estimated, with this number growing to 2.5 million annually during years 20-100. Using the travel cost method model estimate of the value of river recreation, if the four dams are removed and the 225 km river is restored, the annualized benefits at a 6.875% discount rate would be $310 million. This gain in river recreation exceeds the loss of reservoir recreation but is about $60 million less than the total costs of the dam removal alternative. The analysis suggests this extension of the standard travel cost method may be suitable for evaluating the gain in river recreation associated with restoration of river systems from dam removal or associated with dam relicensing conditions.

  17. Tailings dam-break flow - Analysis of sediment transport

    NASA Astrophysics Data System (ADS)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846-852 . Aleixo, R., Ozeren, Y., Altinakar, M. and Wren, D. (2014a) Velocity Measurements using Particle Tracking in Tailings dam Failure experiments, Proceedings of the 3rd IAHR-Europe conference, Porto, Portugal. Aleixo, R., Ozeren, Y., Altinakar, M. (2014b) Tailing dam-break analysis by means of a combined PIV-PTV tool, Proceedings of the River Flow Conference, Lausanne, Switzerland.

  18. Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations

    USGS Publications Warehouse

    Minsley, Burke J.; Ikard, Scott

    2010-01-01

    Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and discussed in the context of, the geophysical work (Minsley and others, 2010) where appropriate.

  19. Advances on the Failure Analysis of the Dam-Foundation Interface of Concrete Dams.

    PubMed

    Altarejos-García, Luis; Escuder-Bueno, Ignacio; Morales-Torres, Adrián

    2015-12-02

    Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.

  20. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  1. National Program for Inspection of Non-Federal Dams. Baker Floodwater Reservoir Site 11 (NH 00478), NHWRB No. 249.13, Merrimack River Basin, Wentworth, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1979-07-01

    General 5-1 b. Design Data 5-1 c. Experience Data 5-1 d. Visual Observation 5-1 e. Overtopping Potential 5-1 f. Dam Failure Analysis 5-2 6. STRUCTURAL...the Soil Conservation Service, Durham, New Hampshire. The construction * contractor was Robie Construction Company , Inc. i. Normal Operating...INVENTORY OF DAMS P 0O - ... - SECTION 5 HYDROLOGY AND HYDRAULIC ANALYSIS • 5.1 Evaluation of Features a. General. Baker Dam Site 11 is an earthen

  2. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  3. How far downstream do dams impact streamflow?

    NASA Astrophysics Data System (ADS)

    Troy, T.

    2017-12-01

    Water infrastructure can be a double-edged sword. For example, dams can provide significant flood protection and stable water supplies, but they negatively impact river ecosystems. As the United States enters an era of dam decommissioning instead of dam building, it raises the question of how far downstream dams provide protection against flood peaks and sustaining environmental flows. This study uses USGS streamflow observations, the National Inventory of Dams, and VIC-modeled streamflow as a proxy for naturalized streamflow to evaluate the scale at which dams impact a variety of hydrologic signatures such as flood return period flows, streamflow variability, and low flows. Results over the Delaware River show that the impact of dams quickly dissipates as one moves downstream, but this is due to the basin's characteristics. This analysis is performed over the contiguous United States, quantifying the length scale of impact as a function of dam capacity, position on the river network, and the hydroclimatology.

  4. Harvesting river water through small dams promote positive environmental impact.

    PubMed

    Agoramoorthy, Govindasamy; Chaudhary, Sunita; Chinnasamy, Pennan; Hsu, Minna J

    2016-11-01

    While deliberations relating to negative consequences of large dams on the environment continue to dominate world attention, positive benefits provided by small dams, also known as check dams, go unobserved. Besides, little is known about the potential of check dams in mitigating global warming impacts due to less data availability. Small dams are usually commissioned to private contractors who do not have clear mandate from their employers to post their work online for public scrutiny. As a result, statistics on the design, cost, and materials used to build check dams are not available in public domain. However, this review paper presents data for the first time on the often ignored potential of check dams mitigating climate-induced hydrological threats. We hope that the scientific analysis presented in this paper will promote further research on check dams worldwide to better comprehend their eco-friendly significance serving society.

  5. Key Impact Factors on Dam Break Fatalities

    NASA Astrophysics Data System (ADS)

    Huang, D.; Yu, Z.; Song, Y.; Han, D.; Li, Y.

    2016-12-01

    Dam failures can lead to catastrophes on human society. However, there is a lack of research about dam break fatalities, especially on the key factors that affect fatalities. Based on the analysis of historical dam break cases, most studies have used the regression analysis to explore the correlation between those factors and fatalities, but without implementing optimization to find the dominating factors. In order to understand and reduce the risk of fatalities, this study has proposed a new method to select the impact factors on the fatality. It employs an improved ANN (Artificial Neural Network) combined with LOOCV (Leave-one-out cross-validation) and SFS (Stepwise Forward Selection) approach to explore the nonlinear relationship between impact factors and life losses. It not only considers the factors that have been widely used in the literature but also introduces new factors closely involved with fatalities. Dam break cases occurred in China from 1954 to 2013 are summarized, within which twenty-five cases are selected with a comprehensive coverage of geographic position and temporal variation. Twelve impact factors are taken into account as the inputs, i.e., severity of dam break flood (SF), population at risk (PR), public understanding of dam break (UB), warning time (TW), evacuation condition (EC), weather condition during dam break (WB), dam break mode (MB), water storage (SW), building vulnerability (VB), dam break time (TB), average distance from the affected area to the dam (DD) and preventive measures by government (PG).From those, three key factors of SF, MB and TB are chosen. The proposed method is able to extract the key factors, and the derived fatality model performs well in various types of dam break conditions.

  6. National Dam Inspection Program. Black Creek Reservoir Dam (NY 00182) Mohawk River Basin, Town of Norway, Herkimer County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    Conflicting stateetmto appear in various records as to the nature of the foundation soils under the embankment sections and Anhursen spillway section. in...one document the foundation soil is referred to as gravel and In another It is referred to as sand and clay. A drawing representing a stability...Spup.rr-. Mius (itGL-44.c kcA..) b. Land Use - Type FoF S-T c. Terrain - Relief -_OPr.S o; FeO, 51 6 To oS, d. Surface - Soil GLACIAL -01-L e. Runoff

  7. National Dam Inspection Program. Colonial Dam Number 1. (NDI Number PA-00206, PennDER Number 26-12) Ohio River Basin, Allen Run, Fayette County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1980-05-01

    the structure. It is important to note that the condition of the dam depends on numerous and constantly changing internal and external factors which are...observations of condi- tions as they existed on the date of the field inspec- tion, the general condition of the Colonial Dam No. 1 is considered to be fair ...95.53)( 75.71)( 36.90)( 16.26) S3mARr OF DAM SAFlMT ANALYSIS PLAN I ............... INITIAL VALUE SPLILWAT CREZS TOP OP DAM E.EVATION 966.00 966.00

  8. Influence of maternal hyperthyroidism in the rat on the expression of neuronal and astrocytic cytoskeletal proteins in fetal brain.

    PubMed

    Evans, I M; Pickard, M R; Sinha, A K; Leonard, A J; Sampson, D C; Ekins, R P

    2002-12-01

    Maternal hypothyroidism during pregnancy impairs brain function in human and rat offspring, but little is known regarding the influence of maternal hyperthyroidism on neurodevelopment. We have previously shown that the expression of neuronal and glial differentiation markers in fetal brain is compromised in hypothyroid rat dam pregnancies and have now therefore extended this investigation to hyperthyroid rat dams. Study groups comprised partially thyroidectomised dams, implanted with osmotic pumps infusing either vehicle (TX dams) or a supraphysiological dose of thyroxine (T4) (HYPER dams), and euthyroid dams infused with vehicle (N dams). Cytoskeletal protein abundance was determined in fetal brain at 21 days of gestation by immunoblot analysis. Relative to N dams, circulating total T4 levels were reduced to around one-third in TX dams but were doubled in HYPER dams. Fetal brain weight was increased in HYPER dams, whereas litter size and fetal body weight were reduced in TX dams. Glial fibrillary acidic protein expression was similar in HYPER and TX dams, being reduced in both cases relative to N dams. alpha-Internexin (INX) abundance was reduced in HYPER dams and increased in TX dams, whereas neurofilament 68 (NF68) exhibited increased abundance in HYPER dams. Furthermore, INX was inversely related to - and NF68 directly related to - maternal serum total T4 levels, independently of fetal brain weight. In conclusion, maternal hyperthyroidism compromises the expression of neuronal cytoskeletal proteins in late fetal brain, suggestive of a pattern of accelerated neuronal differentiation.

  9. 75 FR 9592 - FPL Energy Maine Hydro, LLC; Notice of Intent To Prepare an Environmental Document and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... a probable maximum flood, and modification of the existing earthen embankments for improved slope stability and safety. The proposed remedial measures would not alter the basic footprint of the existing dam...

  10. Impacts of settlement, damming, and hydromanagement in two boreal lakes: A comparative paleolimnological study

    USGS Publications Warehouse

    Serieyssol, C.A.; Edlund, M.B.; Kallemeyn, L.W.

    2009-01-01

    Namakan Lake, located in shared border waters in northeastern Minnesota and northwestern Ontario, was subjected to several anthropogenic impacts including logging, damming, water-level manipulations, and perhaps climate change. We used paleolimnology to determine how these stressors impacted Namakan Lake in comparison to a control lake (Lac La Croix) that was not subject to damming and hydromanagement. One core was retrieved from each lake for 210Pb dating and analysis of loss-on-ignition and diatom composition. 210Pb-derived chronologies from the cores indicated that sediment accumulation increased after logging and damming in Namakan Lake; Lac La Croix showed no significant change. Loss-on-ignition analysis also showed an increase in concentration and accumulation of inorganic material after damming in Namakan Lake; again, minimal changes were observed in Lac La Croix. Diatom communities in both lakes displayed community shifts at the peak of logging. Simultaneous, post-1970s diatom community changes may reflect regional climate warming. Taxonomic richness in Namakan Lake decreased sharply after damming and the peak of logging, and was followed by a slow recovery to taxonomic richness similar to that prior to damming. Ecological variability among post-damming diatom communities, however, was greater in Namakan Lake than in Lac La Croix. A diatom calibration set was used to reconstruct historical conductivity and total phosphorus (TP). Lac La Croix showed little historical change in conductivity and TP. In contrast, conductivity increased for several decades in Namakan Lake after damming, possibly in relation to several large fires and flooding. Total phosphorus also increased in Namakan Lake after damming, with a possible decrease in the last decade to pre-damming TP levels. ?? Springer Science+Business Media B.V. 2008.

  11. Characteristics of the first stage of constructing the Hoabinh Dam in Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogachenko, P.T.; Godunov, B.I.; Phunc Ne, T.

    1985-06-01

    As a result of an analysis of the data, investigations, and on-site observations at the Hoa-Binh Dam, Vietnam, the authors conclude: infilling of the rock mass with sand, successful for the Aswan dam, cannot be mechanically transferred to other dams; the possibility of using the energy of the river flow for removing low-quality soils in large amounts from the foundation of rock-fill dams by regulating the sequence of dumping the elements of the dam was confirmed in model investigations and successfully accomplished in the construction of the HoaBinh dam; at the site of the Hoa-Binh dam, observations of the dumpingmore » of the sand-gravel soil into water into a high shoulder did not reveal segregation of this soil, however, the data from investigations in a single borehole contradict the observations -- further on-site observation must therefore be made.« less

  12. Flood hydrology and dam-breach hydraulic analyses of five reservoirs in Colorado

    USGS Publications Warehouse

    Stevens, Michael R.; Hoogestraat, Galen K.

    2013-01-01

    The U.S. Department of Agriculture Forest Service has identified hazard concerns for areas downstream from five Colorado dams on Forest Service land. In 2009, the U.S. Geological Survey, in cooperation with the Forest Service, initiated a flood hydrology analysis to estimate the areal extent of potential downstream flood inundation and hazard to downstream life, property, and infrastructure if dam breach occurs. Readily available information was used for dam-breach assessments of five small Colorado reservoirs (Balman Reservoir, Crystal Lake, Manitou Park Lake, McGinnis Lake, and Million Reservoir) that are impounded by an earthen dam, and no new data were collected for hydraulic modeling. For each reservoir, two dam-breach scenarios were modeled: (1) the dam is overtopped but does not fail (break), and (2) the dam is overtopped and dam-break occurs. The dam-breach scenarios were modeled in response to the 100-year recurrence, 500-year recurrence, and the probable maximum precipitation, 24-hour duration rainstorms to predict downstream flooding. For each dam-breach and storm scenario, a flood inundation map was constructed to estimate the extent of flooding in areas of concern downstream from each dam. Simulation results of the dam-break scenarios were used to determine the hazard classification of the dam structure (high, significant, or low), which is primarily based on the potential for loss of life and property damage resulting from the predicted downstream flooding.

  13. Dynamic decision making for dam-break emergency management - Part 1: Theoretical framework

    NASA Astrophysics Data System (ADS)

    Peng, M.; Zhang, L. M.

    2013-02-01

    An evacuation decision for dam breaks is a very serious issue. A late decision may lead to loss of lives and properties, but a very early evacuation will incur unnecessary expenses. This paper presents a risk-based framework of dynamic decision making for dam-break emergency management (DYDEM). The dam-break emergency management in both time scale and space scale is introduced first to define the dynamic decision problem. The probability of dam failure is taken as a stochastic process and estimated using a time-series analysis method. The flood consequences are taken as functions of warning time and evaluated with a human risk analysis model (HURAM) based on Bayesian networks. A decision criterion is suggested to decide whether to evacuate the population at risk (PAR) or to delay the decision. The optimum time for evacuating the PAR is obtained by minimizing the expected total loss, which integrates the time-related probabilities and flood consequences. When a delayed decision is chosen, the decision making can be updated with available new information. A specific dam-break case study is presented in a companion paper to illustrate the application of this framework to complex dam-breaching problems.

  14. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers

    PubMed Central

    Hass, Matthew R.; Liow, Hien-haw; Chen, Xiaoting; Sharma, Ankur; Inoue, Yukiko U.; Inoue, Takayoshi; Reeb, Ashley; Martens, Andrew; Fulbright, Mary; Raju, Saravanan; Stevens, Michael; Boyle, Scott; Park, Joo-Seop; Weirauch, Matthew T.; Brent, Michael; Kopan, Raphael

    2015-01-01

    SUMMARY We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA Adenine Methyltransferase) were fused to protein pairs to be queried Interaction or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome, and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level. PMID:26257285

  15. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 9, Tracks 9-11

    DTIC Science & Technology

    2005-08-04

    Walls ETL 1110-2-563, by John D. Clarkson and Robert C. Patev Belleville Locks & Dam Barge Accident on 6 Jan 05, by John Clarkson Portugues Dam Project...Update, by Alberto Gonzalez, Jim Mangold and Dave Dollar Portugues Dam: RCC Materials Investigation, by Jim Hinds Nonlinear Incremental Thermal Stress...Strain Analysis Portugues Dam, by David Dollar, Ahmed Nisar, Paul Jacob and Charles Logie Seismic Isolation of Mission-Critical Infrastructure to

  16. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  17. National Dam Inspection Program. Saxe Pond Dam (NDI I.D. Number PA-729, DER ID Number 8-10) Susquehanna River Basin. North Branch Mehoopany Creek, Bradford County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1981-04-01

    presently utilized as a fishing camp. b. Location. -The dam is located approximately 2 miles northwest of the Village of Colley, Wilmot Township...1.3 Pertinent Data. a. Drainage Area. 3.13 square miles b. Discharge at Dam Site ( cfs ). Maximum flood at dam site Unknown Drainline capacity at normal...Overtopping Analysis. Complete summary sheets for the computer output are presented in Appendix D. Peak inflow (PMF) 11580 cfs Spillway capacity (recessed

  18. Erosion monitoring along the Coosa River below Logan Martin Dam near Vincent, Alabama, using terrestrial light detection and ranging (T-LiDAR) technology

    USGS Publications Warehouse

    Kimbrow, Dustin R.; Lee, Kathryn G.

    2013-01-01

    Alabama Power operates a series of dams on the Coosa River in east central Alabama. These dams form six reservoirs that provide power generation, flood control, recreation, economic opportunity, and fish and wildlife habitats to the region. The Logan Martin Reservoir is located approximately 45 kilometers east of Birmingham and borders Saint Clair and Talladega Counties. Discharges below the reservoir are controlled by power generation at Logan Martin Dam, and there has been an ongoing concern about the stability of the streambanks downstream of the dam. The U.S. Geological Survey, in cooperation with Alabama Power conducted a scientific investigation of the geomorphic conditions of a 115-meter length of streambank along the Coosa River by using tripod-mounted terrestrial light detection and ranging technology. Two surveys were conducted before and after the winter flood season of 2010 to determine the extent and magnitude of geomorphic change. A comparison of the terrestrial light detection and ranging datasets indicated that approximately 40 cubic meters of material had been eroded from the upstream section of the study area. The terrestrial light detection and ranging data included in this report consist of electronic point cloud files containing several million georeferenced data points, as well as a surface model measuring changes between scans.

  19. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  20. Effects of roads and well pads on erosion in the Largo Canyon watershed, New Mexico, 2001-02

    USGS Publications Warehouse

    Matherne, Anne Marie

    2006-01-01

    Largo Canyon, located in the San Juan Basin of northwestern New Mexico, is one of the longest dry washes in the world. Oil and gas production in the San Juan Basin, which began in the 1940's, required the development of an extensive network of dirt roads to service the oil and gas wells in the Navajo Reservoir area. Presently, there are about eight wells per square mile, and the density of oil and gas wells is expected to increase. Potential environmental effects on landscape stability that may result from the additional roads and well pads have not been documented. In 2001, the U.S. Geological Survey began a study in cooperation with the Bureau of Land Management to evaluate the effects of roads and well pads associated with oil and gas operations on the erosion potential of Bureau of Land Management lands in the Largo Canyon watershed. The effects of roads and well pads on erosion were quantified by installing sediment dams (dams) and by surveying transects across roads and well pads. Data from 26 dams were used in the analysis. Dams were installed at 43 sites: 21 on hillsides upslope from roads or pads to measure erosion from hillslopes, 11 at the downslope edges of roads to measure erosion from roads, and 11 at the downslope edges of well pads to measure erosion from well pads. Pairs of survey transects were established at nine well pads and two road locations. Sediment-accumulation data for 26 dams, recorded at 17 measurement intervals, indicate that average erosion rates at the dams significantly correlate to size of the contributing area. The average erosion rate normalized by drainage area was 0.001 foot per year below roads, 0.003 foot per year on hillslopes, and 0.011 foot per year below well pads. Results of a two-sample t-test indicate that there was no significant difference in average erosion rates for dams located on hillslopes and below roads, whereas average erosion rates were significantly greater for dams below well pads than for dams on hillslopes and dams below roads. The average erosion rates estimated from the data collected during this study most likely represent minimum erosion rates. Sediment-accumulation data for measurement intervals and for dams that were breached during 2002, resulting from the large volume of runoff generated by high-intensity storms, were not used to compute erosion rates. For this reason, the higher range of erosion rates is underrepresented and the results of this study are biased toward the lower end of the range of erosion rates. Measurements along road transects generally indicate that sediment is eroded from the top of road berms and redeposited at the base of the berms and may be transported downslope along the road. Measurements along well-pad transects generally indicate that sediment eroded from hillslopes is transported over the surface of the well pad and down the well-pad edges. Based on field observations, roads aligned parallel to topographic contours facilitate erosional processes in two ways: (1) roads cut across and collect runoff from previously established drainages and (2) roads, where they are cut into hillsides or into the land surface, provide focal points for the initiation of erosion. Roads aligned across topographic contours can serve as conduits to channel runoff but do not constitute a large percentage of the road network.

  1. Dam removal: Listening in

    NASA Astrophysics Data System (ADS)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  2. Dam removal: Listening in

    USGS Publications Warehouse

    Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  3. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 11, Tracks 13 and 14

    DTIC Science & Technology

    2005-08-04

    Walls ETL 1110-2-563, by John D. Clarkson and Robert C. Patev Belleville Locks & Dam Barge Accident on 6 Jan 05, by John Clarkson Portugues Dam Project...Update, by Alberto Gonzalez, Jim Mangold and Dave Dollar Portugues Dam: RCC Materials Investigation, by Jim Hinds Nonlinear Incremental Thermal Stress...Strain Analysis Portugues Dam, by David Dollar, Ahmed Nisar, Paul Jacob and Charles Logie Seismic Isolation of Mission-Critical Infrastructure to

  4. Risk Costs for New Dams: Economic Analysis and Effects of Monitoring

    NASA Astrophysics Data System (ADS)

    Paté-Cornell, M. Elisabeth; Tagaras, George

    1986-01-01

    This paper presents new developments and illustrations of the introduction of risk and costs in cost-benefit analysis for new dams. The emphasis is on a method of evaluation of the risk costs based on the structure of the local economy. Costs to agricultural property as well as residential, commercial, industrial, and public property are studied in detail. Of particular interest is the case of sequential dam failure and the evaluation of the risk costs attributable to a new dam upstream from an existing one. Three real cases are presented as illustrations of the method: the Auburn Dam, the Dickey-Lincoln School Project, and the Teton Dam, which failed in 1976. This last case provides a calibration tool for the estimation of loss ratios. For these three projects, the risk-modified benefit-cost ratios are computed to assess the effect of the risk on the economic performance of the project. The role of a warning system provided by systematic monitoring of the dam is analyzed: by reducing the risk costs, the warning system attenuates their effect on the benefit-cost ratio. The precursors, however, can be missed or misinterpreted: monitoring does not guarantee that the risks to human life can be reduced to zero. This study shows, in particular, that it is critical to consider the risk costs in the decision to build a new dam when the flood area is large and densely populated.

  5. Spatial Multicriteria Decision Analysis of Flood Risks in Aging-Dam Management in China: A Framework and Case Study

    PubMed Central

    Yang, Meng; Qian, Xin; Zhang, Yuchao; Sheng, Jinbao; Shen, Dengle; Ge, Yi

    2011-01-01

    Approximately 30,000 dams in China are aging and are considered to be high-level risks. Developing a framework for analyzing spatial multicriteria flood risk is crucial to ranking management scenarios for these dams, especially in densely populated areas. Based on the theories of spatial multicriteria decision analysis, this report generalizes a framework consisting of scenario definition, problem structuring, criteria construction, spatial quantification of criteria, criteria weighting, decision rules, sensitivity analyses, and scenario appraisal. The framework is presented in detail by using a case study to rank dam rehabilitation, decommissioning and existing-condition scenarios. The results show that there was a serious inundation, and that a dam rehabilitation scenario could reduce the multicriteria flood risk by 0.25 in the most affected areas; this indicates a mean risk decrease of less than 23%. Although increased risk (<0.20) was found for some residential and commercial buildings, if the dam were to be decommissioned, the mean risk would not be greater than the current existing risk, indicating that the dam rehabilitation scenario had a higher rank for decreasing the flood risk than the decommissioning scenario, but that dam rehabilitation alone might be of little help in abating flood risk. With adjustments and improvement to the specific methods (according to the circumstances and available data) this framework may be applied to other sites. PMID:21655125

  6. Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams

    PubMed Central

    Altarejos-García, Luis; Escuder-Bueno, Ignacio; Morales-Torres, Adrián

    2015-01-01

    Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern. PMID:28793709

  7. Evaluating the Impact of Gilgel Gibe Dam on the Lake Turkana Water Levels: An Illustration from an Endorheic Lake in Africa

    NASA Astrophysics Data System (ADS)

    Velpuri, N.; Senay, G. B.

    2010-12-01

    Lake Turkana is one of the lakes in the Great Rift Valley, Africa. This lake has no outlet hence it is considered as closed or endorheic lake. To meet the demand of electricity in the east African region, Ethiopia is currently building Gilgel Gibe-III dam on the Omo River, which supplies up to 80% of the inflows to the Lake Turkana. On completion, this dam would be the tallest dam in Africa with a height of 241 m. As Lake Turkana is highly dependent on the inflows from the Omo River, the construction of this dam could potentially pose a threat to the downstream river valley and to Lake Turkana. This hydroelectric project is arguably one of the most controversial projects in the region. The impact of the dam on the lake is evaluated using Remote Sensing datasets and hydrologic modeling. First, lake water levels (1998-2007) were estimated using the Simplified Lake Water Balance (SLAB) approach which takes in satellite based rainfall estimates, modeled runoff and evapotranspiration data over the Turkana basin. Modeled lake levels were validated against TOPEX/POSIEDON/Jason-1 satellite altimeter data. Validation results showed that the model could capture observed trends and seasonal variations in lake levels. The fact that the lake is endorheic makes it easy to model the lake levels. Using satellite based estimates for the years 1998-2009, future scenarios for rainfall and evapotranspiration were generated using the Monte Carlo simulation approach and the impact of Gilgel Gibe-III dam on the Lake Turkana water levels is evaluated using SLAB approach. Preliminary results indicate that the impact of the dam on the lake would vary with the initial water level in the lake at the time of dam commissioning. It was found that during the initial period of dam/reservoir filling the lake level would drop up to 2-3 m (95% confidence interval). However, on average the lake would stabilize within 10 years from the date of commissioning. The variability within the lake levels due to reduced inflows after the dam commissioning were found to be within the natural variability of the lake (0-5 m). The use of cost free satellite based estimates for runoff and evapotranspiration modeling makes this approach consistent and credible. It is also easy to replicate on any other dam in the world. Results obtained from this approach are very valuable and would aid decision makers and environmentalists in proper decision making.

  8. Dams and transnational advocacy: Political opportunities in transnational collective action

    NASA Astrophysics Data System (ADS)

    Fu, Teng

    Possible arguments to explain the gradual decline in big dam development and its site transferring from developed to developing countries include technical, economic, and political factors. This study focuses on the political argument---the rise of transnational anti-dam advocacy and its impact on state policy-making. Under what conditions does transnational anti-dam advocacy matter? Under what conditions does transnational advocacy change state dam policies (delay, scale down, or cancel)? It examines the role of transnational anti-dam actors in big dam building in a comparative context in Asia. Applying the social movement theory of political opportunity structure (POS) and using the qualitative case-study method, the study provides both within-case and cross-case analyses. Within-case analysis is utilized to explain the changing dynamics of big dam building in China (Three Gorges Dam and proposed Nu/Salween River dam projects), and to a lesser extent, Sardar Sarovar Project in India and Nam Theun 2 Dam in Laos. Different domestic and international POS (DPOS and IPOS) impact the strategies and outcomes of anti-dam advocacies in these countries. The degree of openness of the POS directly affects the capacity of transnational efforts in influencing state dam policies. The degree of openness or closure is measured by specific laws, institutions, discourse, or elite allies (or the absence of these) for the participation of non-state actors on big dam issues at a particular moment. This degree of openness is relative, varying over time, across countries and regions. This study finds that the impact of transnational anti-dam activism is most effective when both DPOS and IPOS are relatively open. Transnational anti-dam advocacy is least effective in influencing state dam policies when both DPOS and IPOS are relatively closed. Under a relatively open DPOS and closed IPOS, transnational anti-dam advocacy is more likely to successfully change state dam policies and even facilitate the opening of relatively closed IPOS. In contrast, under a relatively closed DPOS and open IPOS, transnational anti-dam advocacy can hardly exist. Without the domestic anti-dam pressure from below, international anti-dam efforts from above are less likely to affect state dam policies or open up closed DPOS.

  9. Accident study of torrential protective structures based on the French RTM database

    NASA Astrophysics Data System (ADS)

    Boncompain, Ingrid; Quefféléan, Yann; Carladous, Simon

    2017-04-01

    Torrential protective structures such as dikes, sediment traps, and check dams aim to reduce damage on elements at risk. They are built given a reference scenario. Nevertheless, this scenario can be exceeded or structures can fail because of their design or their ageing. We later talk about "accidents". The 1996 Aras disaster near Biescas (Spain) showed that consequences can be significant: 35 of 40 check dams were destroyed which involved 87 fatalities in a campsite. The accident probability and its consequences must be taken into account to analyze risk. Databases are useful tools to extract needed information. In France, the Restoration of Mountainous Areas department (RTM) has been public funded to develop a database, specific to mountainous areas (the Alps and the Pyrenees). Almost 12 500 check dams, 80 sediment traps and 600 dikes were registered in public forests in 2011. These samples were assumed significant for check dams and sediment traps but not for dikes because the most part was missing. In parallel, more than 31 000 torrential events were registered. Given these elements, an accident study was developed. We first extracted 1 925 events with accidents on protective structures: 39 % occurred during the 19th century and 53 % have occurred since 1900. Sediment traps were involved in 37 events, check dams in 336, and dikes in 1488. Then, a detailed analysis was specifically carried out for check dams. Event phenomena were extracted: torrential flood, liquid flood, snow avalanche, rock fall, and landslide. Accident typology was also specified: scouring, breaking of several check dams, total or partial destruction of one structure, overflowing. Causes of accidents on check dams were first analyzed. Torrential floods were responsible of 85 % of events (284 of 336) even if other phenomena must be also taken into account. Almost 45 % of events (152 of 336) involved total destruction of one or several check dams. Taking into account events for the last 150 years, 30 events were registered with destruction of several check dams: the annual probability of occurrence is 3.10-4. Analyzing consequences, only 11 of previously retained events (1925) were registered with fatalities. Finally, these quantitative elements were compared to qualitative feedback analysis from field practitioners and were illustrated with the 1987 Saint-Antoine event, in Modane. The total or partial destruction of 25 check dams released between 20 000 and 30 000 m3, which was one third of the estimated debris flow volume (85 000 m3) which damaged an industrial area. The lack of their maintenance partially explained this accident. As a conclusion, we must keep in mind that these results are limited to available data (all events have not been necessarily reported). Accidents on check dams are rare according to these data. It can be due to their general maintenance. This first analysis could be improved taking into account expert analysis, completing with information from other countries databases and formalizing the approach through a dependability analysis framework.

  10. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how to remove problematic natural dams that increase flooding risks; they can also investigate possibilities to mimic the ecosystem state generated by natural dams in places where these dams are regularly removed.

  11. An analysis of the potential for Glen Canyon Dam releases to inundate archaeological sites in the Grand Canyon, Arizona

    USGS Publications Warehouse

    Sondossi, Hoda A.; Fairley, Helen C.

    2014-01-01

    The development of a one-dimensional flow-routing model for the Colorado River between Lees Ferry and Diamond Creek, Arizona in 2008 provided a potentially useful tool for assessing the degree to which varying discharges from Glen Canyon Dam may inundate terrestrial environments and potentially affect resources located within the zone of inundation. Using outputs from the model, a geographic information system analysis was completed to evaluate the degree to which flows from Glen Canyon Dam might inundate archaeological sites located along the Colorado River in the Grand Canyon. The analysis indicates that between 4 and 19 sites could be partially inundated by flows released from Glen Canyon Dam under current (2014) operating guidelines, and as many as 82 archaeological sites may have been inundated to varying degrees by uncontrolled high flows released in June 1983. Additionally, the analysis indicates that more of the sites currently (2014) proposed for active management by the National Park Service are located at low elevations and, therefore, tend to be more susceptible to potential inundation effects than sites not currently (2014) targeted for management actions, although the potential for inundation occurs in both groups of sites. Because of several potential sources of error and uncertainty associated with the model and with limitations of the archaeological data used in this analysis, the results are not unequivocal. These caveats, along with the fact that dam-related impacts can involve more than surface-inundation effects, suggest that the results of this analysis should be used with caution to infer potential effects of Glen Canyon Dam on archaeological sites in the Grand Canyon.

  12. The changing hydrology of a dammed Amazon

    PubMed Central

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  13. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate.

    PubMed

    Kibret, Solomon; Lautze, Jonathan; McCartney, Matthew; Nhamo, Luxon; Wilson, G Glenn

    2016-09-05

    Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected. Modifying conventional water management frameworks to improve malaria control, holds the potential to mitigate some of this increase and should be more actively implemented.

  14. Dams, Hydrology and Risk in Future River Management

    NASA Astrophysics Data System (ADS)

    Wegner, D. L.

    2017-12-01

    Across America there are over 80,000 large to medium dams and globally the number is in excess of 800,000. Currently there are over 1,400 dams and diversion structures being planned or under construction globally. In addition to these documented dams there are thousands of small dams populating watersheds. Governments, agencies, native tribes, private owners and regulators all have a common interest in safe dams. Often dam safety is characterized as reducing structural risk while providing for maximum operational flexibility. In the 1970's there were a number of large and small dam failures in the United States. These failures prompted the federal government to issue voluntary dam safety guidelines. These guidelines were based on historic information incorporated into a risk assessment process to analyze, evaluate and manage risk with the goal to improve the quality of and support of dam management and safety decisions. We conclude that historic and new risks need to be integrated into dam management to insure adequate safety and operational flexibility. A recent assessment of the future role of dams in the United States premises that future costs such as maintenance or removal beyond the economic design life have not been factored into the long-term operations or relicensing of dams. The converging risks associated with aging water storage infrastructure, multiple dams within watersheds and uncertainty in demands policy revisions and an updated strategic approach to dam safety. Decisions regarding the future of dams in the United States may, in turn, influence regional water planning and management. Leaders in Congress and in the states need to implement a comprehensive national water assessment and a formal analysis of the role dams play in our water future. A research and national policy agenda is proposed to assess future impacts and the design, operation, and management of watersheds and dams.

  15. Flexible, Water-Resistant Urethane Coatings for Ferrous Surfaces on U.S. Army Corps of Engineers’ Dams.

    DTIC Science & Technology

    1982-07-01

    of Opaque Specimens by, Broad-Band Filter Reflectometry , ASTM E 97 (1977). could be produced on a specialty basis by interested 3 TEST SPECIMEN...Aeronautics and Space Adminis- tration ( NASA ) study deals with the long-term hy- drolytic stability of urethane elastomers used with CONCLUSIONS AND...necessary for high hydrolytic stability-are not better than the polyether- solids coatings. The NASA study may be correct in based X series. The highest

  16. Monitoring dam structural health from space: Insights from novel InSAR techniques and multi-parametric modeling applied to the Pertusillo dam Basilicata, Italy

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Perissin, Daniele; Salzer, Jacqueline T.; Lundgren, Paul; Lacava, Giusy; Milillo, Giovanni; Serio, Carmine

    2016-10-01

    The availability of new constellations of synthetic aperture radar (SAR) sensors is leading to important advances in infrastructure monitoring. These constellations offer the advantage of reduced revisit times, providing low-latency data that enable analysis that can identify infrastructure instability and dynamic deformation processes. In this paper we use COSMO-SkyMed (CSK) and TerraSAR-X (TSX) data to monitor seasonal induced deformation at the Pertusillo dam (Basilicata, Italy) using multi-temporal SAR data analysis. We analyzed 198 images spanning 2010-2015 using a coherent and incoherent PS approach to merge COSMO-SkyMed adjacent tracks and TerraSAR-X acquisitions, respectively. We used hydrostatic-seasonal-temporal (HST) and hydrostatic-temperature-temporal (HTT) models to interpret the non-linear deformation at the dam wall using ground measurements together with SAR time-series analysis. Different look geometries allowed us to characterize the horizontal deformation field typically observed at dams. Within the limits of our models and the SAR acquisition sampling we found that most of the deformation at the Pertusillo dam can be explained by taking into account only thermal seasonal dilation and hydrostatic pressure. The different models show slightly different results when interpreting the aging term at the dam wall. The results highlight how short-revisit SAR satellites in combination with models widely used in the literature for interpreting pendulum and GPS data can be used for supporting structural health monitoring and provide valuable information to ground users directly involved in field measurements.

  17. Life sciences domain analysis model

    PubMed Central

    Freimuth, Robert R; Freund, Elaine T; Schick, Lisa; Sharma, Mukesh K; Stafford, Grace A; Suzek, Baris E; Hernandez, Joyce; Hipp, Jason; Kelley, Jenny M; Rokicki, Konrad; Pan, Sue; Buckler, Andrew; Stokes, Todd H; Fernandez, Anna; Fore, Ian; Buetow, Kenneth H

    2012-01-01

    Objective Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research. Together, these models can facilitate data exchange for translational research. Materials and methods The content of the LS DAM was driven by analysis of life sciences and translational research scenarios and the concepts in the model are derived from existing information models, reference models and data exchange formats. The model is represented in the Unified Modeling Language and uses ISO 21090 data types. Results The LS DAM v2.2.1 is comprised of 130 classes and covers several core areas including Experiment, Molecular Biology, Molecular Databases and Specimen. Nearly half of these classes originate from the BRIDG model, emphasizing the semantic harmonization between these models. Validation of the LS DAM against independently derived information models, research scenarios and reference databases supports its general applicability to represent life sciences research. Discussion The LS DAM provides unambiguous definitions for concepts required to describe life sciences research. The processes established to achieve consensus among domain experts will be applied in future iterations and may be broadly applicable to other standardization efforts. Conclusions The LS DAM provides common semantics for life sciences research. Through harmonization with BRIDG, it promotes interoperability in translational science. PMID:22744959

  18. Modelling the Effects of Land-Use Changes on Climate: a Case Study on Yamula DAM

    NASA Astrophysics Data System (ADS)

    Köylü, Ü.; Geymen, A.

    2016-10-01

    Dams block flow of rivers and cause artificial water reservoirs which affect the climate and the land use characteristics of the river basin. In this research, the effect of the huge water body obtained by Yamula Dam in Kızılırmak Basin is analysed over surrounding spatial's land use and climate change. Mann Kendal non-parametrical statistical test, Theil&Sen Slope method, Inverse Distance Weighting (IDW), Soil Conservation Service-Curve Number (SCS-CN) methods are integrated for spatial and temporal analysis of the research area. For this research humidity, temperature, wind speed, precipitation observations which are collected in 16 weather stations nearby Kızılırmak Basin are analyzed. After that these statistical information is combined by GIS data over years. An application is developed for GIS analysis in Python Programming Language and integrated with ArcGIS software. Statistical analysis calculated in the R Project for Statistical Computing and integrated with developed application. According to the statistical analysis of extracted time series of meteorological parameters, statistical significant spatiotemporal trends are observed for climate change and land use characteristics. In this study, we indicated the effect of big dams in local climate on semi-arid Yamula Dam.

  19. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    NASA Astrophysics Data System (ADS)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  20. Predicting velocity in bendway weir eddy fields

    Treesearch

    Kristoph-Dietrich Kinzli; Christopher I. Thornton

    2010-01-01

    Rehabilitation of the Middle Rio Grande (MRG) in central New Mexico has become necessary because of changes in morphology resulting from the installation of dams, and because of habitat restoration considerations for the endangered Rio Grande silvery minnow (Hybognathus amarus). Bendway weirs are erosion control and channel-stabilization structures placed transverse to...

  1. A video method to study Drosophila sleep.

    PubMed

    Zimmerman, John E; Raizen, David M; Maycock, Matthew H; Maislin, Greg; Pack, Allan I

    2008-11-01

    To use video to determine the accuracy of the infrared beam-splitting method for measuring sleep in Drosophila and to determine the effect of time of day, sex, genotype, and age on sleep measurements. A digital image analysis method based on frame subtraction principle was developed to distinguish a quiescent from a moving fly. Data obtained using this method were compared with data obtained using the Drosophila Activity Monitoring System (DAMS). The location of the fly was identified based on its centroid location in the subtracted images. The error associated with the identification of total sleep using DAMS ranged from 7% to 95% and depended on genotype, sex, age, and time of day. The degree of the total sleep error was dependent on genotype during the daytime (P < 0.001) and was dependent on age during both the daytime and the nighttime (P < 0.001 for both). The DAMS method overestimated sleep bout duration during both the day and night, and the degree of these errors was genotype dependent (P < 0.001). Brief movements that occur during sleep bouts can be accurately identified using video. Both video and DAMS detected a homeostatic response to sleep deprivation. Video digital analysis is more accurate than DAMS in fly sleep measurements. In particular, conclusions drawn from DAMS measurements regarding daytime sleep and sleep architecture should be made with caution. Video analysis also permits the assessment of fly position and brief movements during sleep.

  2. Effect of beaver dams on the hydrology of small mountain streams: Example from the Chevral in the Ourthe Orientale basin, Ardennes, Belgium

    NASA Astrophysics Data System (ADS)

    Nyssen, J.; Pontzeele, J.; Billi, P.

    2011-05-01

    SummaryThe European beaver ( Castor fiber) was recently reintroduced to Belgium, after an absence of more than 150 years; around 120 beaver dam systems have been established. In Europe, few studies consider the hydrological effects of those dams, and the spatial scale larger than that of one beaver pond system has not been addressed at all. This research focuses on the hydrological effects of a series of six beaver dams on the Chevral R., a second order tributary of the Ourthe Orientale R. in a forested area of the Ardennes. Thereby, also the Ourthe Orientale sub-basin itself was taken into account, being the area with probably the highest density of beaver dams in Belgium. The main research questions regarded: (1) the extent to which discharge peaks are reduced at the very location and well downstream of beaver dams and (2) the impact of the beaver dams on low flows. The first approach consisted of a temporal analysis of the Ourthe Orientale discharge and precipitation data for the periods 1978-2003 (before) and 2004-2009 (after the establishment of beaver dams in the sub-basin). The second study determined the in situ impact of the beaver dams: discharges were measured (September 2009-March 2010) upstream as well as downstream of the 0.52 ha beaver dam system on the Chevral river, and changes in water level within the system of six dams were monitored. Our findings indicate that there is a significant lowering of discharge peaks in the downstream river reaches due to the effect of the beaver dams. The temporal analysis of the Ourthe Orientale sub-basin shows an increase in the recurrence interval for major floods; for instance, the recurrence interval of a reference flood of 60 m 3 s -1 increased from 3.4 years to 5.6 years since the establishment of the beaver dams. At the scale of the Chevral beaver dams' site, we measured that the dams top off the peak flows, in addition delaying them by approximately 1 day. There are also increased low flows: Q355 (i.e. the discharge exceeded 355 days in a year) of the Ourthe Orientale was 0.6 (±0.15) m 3 s -1 before beaver dam installation and 0.88 (±0.52) m 3 s -1 thereafter. These findings agree with studies that suggest natural measures for flood control at the level of small mountain streams instead or in complement of building large anthropogenic constructions. Nevertheless, more studies are needed to assess the effectiveness of beaver dams in flood mitigation at the scale of sub-basins.

  3. 3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope

    NASA Astrophysics Data System (ADS)

    Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping

    2018-05-01

    There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.

  4. Influence of groundwater pumping on streamflow restoration following upstream dam removal

    USGS Publications Warehouse

    Constantz, J.; Essaid, H.

    2007-01-01

    We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter-watersbed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/ groundwater simulations (using MODFLOW-2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi-arid, and and conditions. As a result of including the impact of groundwater pumping, post-dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi-arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal.

  5. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: an assessment based on sequential proximate analysis

    USGS Publications Warehouse

    Mesa, M.G.; Magie, C.D.

    2006-01-01

    The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River-bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18-20%; energy content over 11 kJ g-1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95-99% of their muscle and 73-86% of their viscera lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics.

  6. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  7. Anthropogenic controls on geomorphic evolution of the Upper Missouri River

    NASA Astrophysics Data System (ADS)

    Benthem, A.; Skalak, K.; Schenk, E.; Hupp, C.; Galloway, J.; Nustad, R.

    2012-12-01

    The 70-mile free flowing Upper Missouri River reach is bounded upstream by the Garrison Dam and downstream by Lake Oahe. The Garrison Dam, which regulates flow into the reach, was completed in 1953; the Oahe Dam (which created Lake Oahe and the associated delta near Bismarck, ND) was completed in 1959. This reach is used for recreation, water supply, fisheries, and as habitat for threatened and endangered species. The Upper Missouri River regularly (approximately every two years) received annual peak flows above 100,000 cubic feet per second (cfs) prior to the completion of the Garrison Dam. Annual peak flows consistently have been between 30,000 and 45,000 cfs following dam completion. The largest flood since dam regulation occurred in 2011 following an abnormally high snow pack season and a week-long rain event in the headwaters. Flood releases from the Garrison Dam began in May 2011 and peaked in June with a flow of approximately 150,000 cfs. The peak flow was sustained for two weeks. The dam releases have had a discernible impact on the Missouri River throughout this section. The 2011 flood has highlighted the critical need for quantifying the complex interaction between the regional geomorphology and human activities. It is necessary to first understand and quantify the historical impacts of the dams in order to determine the impact of the 2011 flood on channel planform, morphology, and sediment dynamics. We have created a spatial-temporal conceptual model of the governing fluvial and deltaic processes for the reach. Methods used for the development of the conceptual model include interpretation of repeat aerial photography, historical streamgage data, historical cross-sectional surveys, in addition to ground-truthing data with sediment cores, channel surveys, and dendrogeomorphic tools. Preliminary results indicate that prior to the 2011 flood the reach had achieved a dynamic equilibrium in response to dam closure and subsequent managed flows. The perturbation from the dam closure attenuated over approximately a 30-year period. Cross-sectional analysis indicates the reach just below the Garrison Dam increased in capacity over this period and the lower end of the reach (just upstream of the delta) either maintained capacity or experienced a reduction. Analysis of channel planform through repeat aerial photography suggests channel adjustment of varying types and degrees. Loss of islands and erosion has occurred in the 20 miles just below the dam; the next 30 miles have generally remained metastable and many islands in the remaining 20 miles of the river have become bank-attached. Loss of conveyance and increased frequency and growth of islands has occurred in the delta above the reservoir. However, the Upper Missouri River is still responding to the historic flood of 2011 and analysis is ongoing.

  8. Risk Perception Analysis Related To Existing Dams In Italy

    NASA Astrophysics Data System (ADS)

    Solimene, Pellegrino

    2013-04-01

    In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned earthfill dam is illustrated by defining the risk analysis during its construction and operation. A qualitative "Event Tree Analysis" makes clear with an example the probability of occurrence of the events triggered by an earthquake, and leads to a classification of the damage level. Finally, a System Dynamics (SD) approach is presented to investigate possibilities of a preventive planning in relationship to the risk, so that it's possible to establish shared procedures to achieve the correct management in any crisis phase. As a qualitative result of a SD application, figure 1 presents a flow-chart about a case study on the same dam so to illustrate the emergency planning in a step by step procedure according to the Regulations.

  9. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas

    NASA Astrophysics Data System (ADS)

    Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.

    2005-07-01

    As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.

  10. Reinvestigation and analysis a landslide dam event in 2012 using UAV

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Lung; Huang, Zji-Jie; Lin, Jun-Tin

    2015-04-01

    Geological condition of Taiwan is fracture with locating on Pacific Rim seismic area. Typhoons usually attack during summer and steep mountains are highly weathered, which induces landslide in mountain area. The situation happens more frequently recent years due to weather change effect. Most landslides are very far away from residence area. Field investigation is time consuming, high budget, limited data collected and dangerous. Investigation with satellite images has disadvantages such as less of the actual situation and poor resolution. Thus the possibility for slope investigation with UAV will be proposed and discussed in this research. Hazard investigation and monitoring is adopted UAV in recent years. UAV has advantages such as light weight, small volume, high mobility, safe, easy maintenance and low cost. Investigation can be executed in high risk area. Use the mature aero photogrammetry , combines aero photos with control point. Digital surface model (DSM) and Ortho photos can be produced with control points aligned. The resolution can be less than 5cm thus can be used as temporal creeping monitoring before landslide happens. A large landslide site at 75k of road No. 14 was investigated in this research. Landslide happened in June, 2012 with heavy rainfall and landslide dam was formed quickly after that. Analysis of this landslide failure and mechanism were discussed in this research using DEMs produced prior this event with aero photos and after this event with UAV. Residual slope stability analysis is thus carried out after strength parameters obtain from analysis described above. Thus advice for following potential landslide conditions can be provided.

  11. Seasonal trend analysis and ARIMA modeling of relative humidity and wind speed time series around Yamula Dam

    NASA Astrophysics Data System (ADS)

    Eymen, Abdurrahman; Köylü, Ümran

    2018-02-01

    Local climate change is determined by analysis of long-term recorded meteorological data. In the statistical analysis of the meteorological data, the Mann-Kendall rank test, which is one of the non-parametrical tests, has been used; on the other hand, for determining the power of the trend, Theil-Sen method has been used on the data obtained from 16 meteorological stations. The stations cover the provinces of Kayseri, Sivas, Yozgat, and Nevşehir in the Central Anatolia region of Turkey. Changes in land-use affect local climate. Dams are structures that cause major changes on the land. Yamula Dam is located 25 km northwest of Kayseri. The dam has huge water body which is approximately 85 km2. The mentioned tests have been used for detecting the presence of any positive or negative trend in meteorological data. The meteorological data in relation to the seasonal average, maximum, and minimum values of the relative humidity and seasonal average wind speed have been organized as time series and the tests have been conducted accordingly. As a result of these tests, the following have been identified: increase was observed in minimum relative humidity values in the spring, summer, and autumn seasons. As for the seasonal average wind speed, decrease was detected for nine stations in all seasons, whereas increase was observed in four stations. After the trend analysis, pre-dam mean relative humidity time series were modeled with Autoregressive Integrated Moving Averages (ARIMA) model which is statistical modeling tool. Post-dam relative humidity values were predicted by ARIMA models.

  12. Role of the check dam in land development on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Xu, Xiang-Zhou; Zhang, Luo-Hao; Zhu, Tongxin; Dang, Tian-Min; Zhang, Hong-Wu; Xu, Shi-Guo

    2017-04-01

    Check dam is one of the most effective measures to reduce flow connectivity, which can retain soil and water, and increase land productivity. More than 100,000 check dams have been built on the Loess Plateau since 1950s. However, quantifying the effect of check dams on water resources and water environments remains a challenge. In this study, an in-depth field investigation together with a credible statistical analysis was carried out in two representative catchments on the Loess Plateau, Nanxiaohegou Catchment and Jiuyuangou Catchment, to assess the effectiveness of check dams in soil, water and nutrients conservation. The results show: (1) Check dam plays an important role in conserving water, soil, and nutrients on the Loess Plateau. About half of the total transported water and more than 80 % of the total transported soil and nutrients, had been locally retained in the selected catchments. Hence check dams had a significant benefit to improve soil fertility in the small watersheds, and reducing water pollution downstream of dams. (2) Compared to terrace farmlands, forest lands and grasslands, check-dam lands were much more important in conserving water, soil and nutrients in the catchments. Nearly 50% of the reduced water and more than 70% of the stored soil and nutrients in the study catchments were solely retained by the check dams, whereas the area of the dam lands was less than 7% of the total conservation land area. (3) Check dams are still effective in large storms even if dams were damaged by floods. It is often assumed that check dams could only retain sediment in small flood events whereas most of the stored soil may be washed out as the dams may be destroyed in a disastrous flood. Furthermore, if a major check dam, namely the key project dam, was built in the gully outlet, the flood could be controlled, and thereupon the dam-break can be also avoided. We suggest that a compensation and incentive policy be implemented on dam building to realize the sustainable development of local economy and ecological environment.

  13. Landscape context and the biophysical response of rivers to dam removal in the United States

    PubMed Central

    Magilligan, Francis J.; Torgersen, Christian E.; Major, Jon J.; Anderson, Chauncey W.; Connolly, Patrick J.; Wieferich, Daniel; Shafroth, Patrick B.; Evans, James E.; Infante, Dana; Craig, Laura S.

    2017-01-01

    Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities. PMID:28692693

  14. Landscape context and the biophysical response of rivers to dam removal in the United States

    USGS Publications Warehouse

    Foley, Melissa M.; Magilligan, Francis J.; Torgersen, Christian E.; Major, Jon J.; Anderson, Chauncey; Connolly, Patrick J.; Wieferich, Daniel; Shafroth, Patrick B.; Evans, James E.; Infante, Dana M.; Craig, Laura

    2017-01-01

    Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities.

  15. Dam-breach analysis and flood-inundation mapping for Lakes Ellsworth and Lawtonka near Lawton, Oklahoma

    USGS Publications Warehouse

    Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod

    2012-01-01

    Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times for selected bridge crossings. Some areas of concern near the city of Lawton, if a dam breach occurs at Lakes Ellsworth or Lawtonka, include water treatment plants, wastewater treatment plants, recreational areas, and community-services offices.

  16. Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Freeman, Michael L.

    2011-01-01

    The Jordan River in Midvale and West Jordan, Utah, flows adjacent to two U.S. Environmental Protection Agency Superfund sites: Midvale Slag and Sharon Steel. At both sites, geotechnical caps extend to the east bank of the river. The final remediation tasks for these sites included the replacement of a historic sheet-pile dam and the stabilization of the river banks adjacent to the Superfund sites. To assist with these tasks, two hydraulic modeling codes contained in the U.S. Geological Survey (USGS) Multi-Dimensional Surface-Water Modeling System (MD_SWMS), System for Transport and River Modeling (SToRM) and Flow and Sediment Transport and Morphological Evolution of Channels (FaSTMECH), were used to provide predicted water-surface elevations, velocities, and boundary shear-stress values throughout the study reach of the Jordan River. A SToRM model of a 0.7 mile subreach containing the sheet-pile dam was used to compare water-surface elevations and velocities associated with the sheet-pile dam and a proposed replacement structure. Maps showing water-surface elevation and velocity differences computed from simulations of the historic sheet-pile dam and the proposed replacement structure topographies for streamflows of 500 and 1,000 cubic feet per second (ft3/s) were created. These difference maps indicated that the velocities associated with the proposed replacement structure topographies were less than or equal to those associated with the historic sheet-pile dam. Similarly, water-surface elevations associated with the proposed replacement structure topographies were all either greater than or equal to water-surface elevations associated with the sheet-pile dam. A FaSTMECH model was developed for the 2.5-mile study reach to aid engineers in bank stabilization designs. Predicted water-surface elevations, velocities and shear-stress values were mapped on an aerial photograph of the study reach to place these parameters in a spatial context. Profile plots of predicted cross-stream average water-surface elevations and cross-stream maximum and average velocities showed how these parameters change along the study reach for two simulated discharges of 1,040 ft3/s and 2,790 ft3/s. The profile plots for the simulated streamflow of 1,040 ft3/s show that the highest velocities are associated with the constructed sheet-pile replacement structure. Results for the simulated streamflow of 2,790 ft3/s indicate that the geometry of the 7800 South Bridge causes more backwater and higher velocities than the constructed sheet-pile replacement structure.

  17. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents.

    PubMed

    Zema, Demetrio Antonio; Bombino, Giuseppe; Denisi, Pietro; Lucas-Borja, Manuel Esteban; Zimbone, Santo Marcello

    2018-06-12

    In mountain streams possible negative impacts of check dams on soil, water and riparian vegetation due to check dam installation can be noticed. In spite of the ample literature on the qualitative effects of engineering works on channel hydrology, morphology, sedimentary effects and riparian vegetation characteristics, quantitative evaluations of the changes induced by check dams on headwater characteristics are rare. In order to fill this gap, this study has evaluated the effects of check dams located in headwaters of Calabria (Southern Italy) on hydrological and geomorphological processes and on the response of riparian vegetation to these actions. The analysis has compared physical and vegetation indicators in transects identified around check dams (upstream and downstream) and far from their direct influence (control transects). Check dams were found to influence significantly unit discharge, surface and subsurface sediments (both upstream and downstream), channel shape and transverse distribution of riparian vegetation (upstream) as well as cover and structure of riparian complexes (downstream). The actions of the structures on torrent longitudinal slope and biodiversity of vegetation were less significant. The differences on bed profile slope were significant only between upstream and downstream transects. The results of the Agglomerative Hierarchical Cluster analysis confirmed the substantial similarity between upstream and control transects, thus highlighting that the construction of check dams, needed to mitigate the hydro-geological risks, has not strongly influenced the torrent functioning and ecology before check dam construction. Moreover, simple and quantitative linkages between torrent hydraulics, geomorphology and vegetation characteristics exist in the analysed headwaters; these relationships among physical adjustments of channels and most of the resulting characteristics of the riparian vegetation are specific for the transect locations with respect of check dams. Conversely, the biodiversity of the riparian vegetation basically eludes any quantitative relations with the physical and other vegetal characteristics of the torrent transects. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Vulnerability of Karangkates dams area by means of zero crossing analysis of data magnetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunaryo,, E-mail: sunaryo@ub.ac.id, E-mail: sunaryo.geofis.ub@gmail.com; Susilo, Adi

    2015-04-24

    Study with entitled Vulnerability Karangkates Dam Area By Means of Zero Crossing Analysis of Data Magnetic has been done. The study was aimed to obtain information on the vulnerability of two parts area of Karangkates dams, i.e. Lahor dam which was inaugurated in 1977 and Sutami dam inaugurated in 1981. Three important things reasons for this study are: 1). The dam age was 36 years old for Lahor dam and 32 years old for Sutami dam, 2). Geologically, the location of the dams are closed together to the Pohgajih local shear fault, Selorejo local fault, and Selorejo limestone-andesite rocks contactmore » plane, and 3). Karangkates dams is one of the important Hydro Power Plant PLTA with the generating power of about 400 million KWH per year from a total of about 29.373MW installed in Indonesia. Geographically, the magnetic data acquisition was conducted at coordinates (112.4149oE;-8.2028oS) to (112.4839oE;-8.0989oS) by using Proton Precession Magnetometer G-856. Magnetic Data acquisition was conducted in the radial direction from the dams with diameter of about 10 km and the distance between the measurements about 500m. The magnetic data acquisition obtained the distribution of total magnetic field value in the range of 45800 nT to 44450 nT. Residual anomalies obtained by doing some corrections, including diurnal correction, International Geomagnetic Reference Field (IGRF) correction, and reductions so carried out the distribution of the total magnetic field value in the range of -650 nT to 700 nT. Based on the residual anomalies, indicate the presence of 2 zones of closed closures dipole pairs at located in the west of the Sutami dam and the northwest of the Lahor dam from 5 total zones. Overlapping on the local geological map indicated the lineament of zero crossing patterns in the contour of residual anomaly contour with the Pohgajih shear fault where located at about 4 km to the west of the Sutami dam approximately and andesite-limestone rocks contact where located at about 6 km to the west of the Lahor dam approximately. These shown a possible of vulnerability on geohazards at the west zone of the Karangkates (Lahor-Sutami) dams area if there are triggers by the vibration (earthquake) on the Pohgajih shear fault, andesite-limestone contact plane, and instability rocks on two zones of closed closure dipole pairs area. Reality, on the location of the study shown some local landslide at the several locations and the main road that need considering for disaster mitigation.« less

  19. Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Marston, Richard A.; Mills, John D.; Wrazien, David R.; Bassett, Beau; Splinter, Dale K.

    2005-10-01

    In 1906, the Bureau of Reclamation created Jackson Lake Dam on the Snake River in what later became Grand Teton National Park. The geomorphic, hydrologic and vegetation adjustments downstream of the dam have yet to be documented. After a larger reservoir was completed further downstream in 1957, the reservoir release schedule from Jackson Lake Dam was changed in a manner that lowered the magnitude and frequency of floods. The stability of the Snake River exhibited a complex response to the change in flow regime. Close to major tributaries, the Snake River increased in total sinuosity and rates of lateral channel migration. Away from the influence of tributaries, the river experienced fewer avulsions and a decrease in sinuosity. Vegetation maps were constructed from 1945 and 1989 aerial photography and field surveys. Using these data, we determined how vegetation is directly related to the number of years since each portion of the floodplain was last occupied by the channel. The vegetation has changed from a flood-pulse dominated mosaic to a more terrestrial-like pattern of succession. Changes in the Snake River and its floodplain have direct implications on bald eagle habitat, moose habitat, fish habitat, safety of rafting and canoeing, and biodiversity at the community and species levels.

  20. Does location of rotation center in artificial disc affect cervical biomechanics?

    PubMed

    Mo, Zhongjun; Zhao, Yanbin; Du, Chengfei; Sun, Yu; Zhang, Ming; Fan, Yubo

    2015-04-15

    A 3-dimensional finite element investigation. To compare the biomechanical performances of different rotation centers (RCs) in the prevalent artificial cervical discs. Various configurations are applied in artificial discs. Design parameters may influence the biomechanics of implanted spine. The RC is a primary variation in the popular artificial discs. Implantation of 5 prostheses was simulated at C5-C6 on the basis of a validated finite element cervical model (C3-C7). The prostheses included ball-in-socket design with a fixed RC located on the inferior endplate (BS-FI) and on the superior endplate (BS-FS), with a mobile RC at the inferior endplate (BS-MI), dual articulation with a mobile RC between the endplates (DA-M), and sliding articulation with various RCs (SA-V). The spinal motions in flexion and extension served as a displacement loading at the C3 vertebrae. Total disc replacements reduced extension moment. The ball-in-socket designs required less flexion moment, whereas the flexion stiffness of the spines with DA-M and SA-V was similar to that of the healthy model. The contributions of the implanted level to the global motions increased in the total disc replacements, except in the SA-V and DA-M models (in flexion). Ball-in-socket designs produced severe stress distributions in facet cartilage, whereas DA-M and SA-V produced more severe stress distribution on the bone-implant interface. Cervical stability was extremely affected in extension and partially affected in flexion by total disc replacement. With the prostheses with mobile RC, cervical curvature was readjusted under a low follower load. The SA-V and BS-FS designs exhibited better performances in the entire segmental stiffness and in the stability of the operative level than the BS-MI and BS-FI designs in flexion. The 5 designs demonstrated varying advantages relative to the stress distribution in the facet cartilages and on the bone-implant interface. 5.

  1. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our findings argue for reconsidering some imminent dam developments in the Mekong. With nearly 3000 dams awaiting development world-wide, results from the Mekong are of global importance, demonstrating that strategic planning and sequencing of dams is instrumental for sustainable development of dams and hydropower.

  2. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  3. The Economic Benefits Of Multipurpose Reservoirs In The United States- Federal Hydropower Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.; Stewart, Kevin M.

    The United States is home to over 80,000 dams, of which approximately 3% are equipped with hydroelectric generating capabilities. When a dam serves as a hydropower facility, it provides a variety of energy services that range from clean, reliable power generation to load balancing that supports grid stability. In most cases, the benefits of dams and their associated reservoirs go far beyond supporting the nation s energy demand. As evidenced by the substantial presence of non-powered dams with the ability to store water in large capacities, the primary purpose of a dam may not be hydropower, but rather one ofmore » many other purposes. A dam and reservoir may support navigation, recreation, flood control, irrigation, and water supply, with each multipurpose benefit providing significant social and economic impacts on a local, regional, and national level. When hydropower is one of the services provided by a multipurpose reservoir, it is then part of an integrated system of competing uses. Operating rules, management practices, consumer demands, and environmental constraints must all be balanced to meet the multipurpose project s objectives. When federal dams are built, they are authorized by Congress to serve one or more functions. Legislation such as the Water Resources Development Act regulates the operation of the facility in order to coordinate the authorized uses and ensure the dam s intended objectives are being met. While multipurpose reservoirs account for billions of dollars in contributions to National Economic Development (NED) every year, no attempt has been made to evaluate their benefits on a national scale. This study is an on-going work conducted by Oak Ridge National Laboratory in an effort to estimate the economic benefits of multipurpose hydropower reservoirs in the United States. Given the important role that federal hydropower plays in the U.S., the first focus of this research will target the three main federal hydropower owners Tennessee Valley Authority, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. Together these three agencies own and operate 157 powered dams which account for almost half of the total installed hydropower capacity in the U.S. Future work will include engaging publicly-owned utilities and the private sector in order to quantify the benefits of all multipurpose hydropower reservoirs in the U.S.« less

  4. Using supercomputers for the time history analysis of old gravity dams

    NASA Astrophysics Data System (ADS)

    Rouve, G.; Peters, A.

    Some of the old masonry dams that were built in Germany at the beginning of this century are a matter of concern today. In the course of time certain deterioration caused or amplified by aging has appeared and raised questions about the safety of these old dams. The Finite Element Method, which in the past two decades has found a widespread application, offers a suitable tool to re-evaluate the safety of these old gravity dams. The reliability of the results, however, strongly depends on the knowledge of the material parameters. Using historical records and observations a numerical back-analysis models has been developed to simulate the behaviour of these old masonry structures and to estimate their material properties by calibration. Only an implementation on a fourth generation vector computer made the application of this large model possible in practice.

  5. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.

    PubMed

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A

    2012-04-10

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin.

  6. Performance of Koyna dam based on static and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Azizan, Nik Zainab Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar

    2017-10-01

    This paper discusses the performance of Koyna dam based on static pushover analysis (SPO) and incremental dynamic analysis (IDA). The SPO in this study considered two type of lateral load which is inertial load and hydrodynamic load. The structure was analyse until the damage appears on the structure body. The IDA curves were develop based on 7 ground motion, where the characteristic of the ground motions: i) the distance from the epicenter is less than 15km, (ii) the magnitude is equal to or greater than 5.5 and (iii) the PGA is equal to or greater than 0.15g. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. Elastic respond spectrum developed based on soil type B by using Eurocode 8. By using SPO and IDA method are able to determine the limit states of the dam. The limit state proposed in this study are yielding and ultimate state which is identified base on crack pattern perform on the structure model. The comparison of maximum crest displacement for both methods is analysed to define the limit state of the dam. The displacement of yielding state for Koyna dam is 23.84mm and 44.91mm for the ultimate state. The results are able to be used as a guideline to monitor Koyna dam under seismic loadings which are considering static and dynamic.

  7. Seismic Hazard and Ground Motion Characterization at the Itoiz Dam (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Rivas-Medina, A.; Santoyo, M. A.; Luzón, F.; Benito, B.; Gaspar-Escribano, J. M.; García-Jerez, A.

    2012-08-01

    This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty ( T = 0.1 s) and when it is filled with water to its maximum capacity ( T = 0.22 s). Additionally, seismic hazard analysis is done for two return periods: 975 years, related to the project earthquake, and 4,975 years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA ( T) of T = 0.1 and 0.22 s for the return periods of 975 and 4,975 years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling earthquakes and the dam site we considered finite sources in these computations. We conclude that directivity effects should be taken into account as an important variable in this kind of studies for ground motion characteristics.

  8. Seismic Stability Evaluation of Alben Barkley Lock and Dam Project. Volume 3. Field and Laboratory Investigations

    DTIC Science & Technology

    1989-03-01

    the embayment indicating extensive inundation by the sea during these epochs. Some Oligocene and Miocene deposits can be found in the southern part of...accurately measure sleeve fric- tion in low-strength materials without careful calibration and equipment warm -up. The tension cone measures sleeve

  9. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  10. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica).

    PubMed

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-02-09

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.

  11. Investigating the effect of lignosulfonate on erosion rate of the embankments constructed with clayey sand.

    PubMed

    Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Moayedi, Hossein; Panjsetooni, Alireza; Nazir, Ramli

    2013-01-01

    Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.

  12. Investigating the Effect of Lignosulfonate on Erosion Rate of the Embankments Constructed with Clayey Sand

    PubMed Central

    Koohpeyma, Hamid Reza; Vakili, Amir Hossein; Panjsetooni, Alireza; Nazir, Ramli

    2013-01-01

    Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow. PMID:24459437

  13. Dam pre-release as an important operation strategy in reducing flood impact in Malaysia

    NASA Astrophysics Data System (ADS)

    Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad

    2018-03-01

    The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.

  14. The socio-economics dynamics of Dam on Rural Communities: A case study of Oyan Dam, Nigeria

    NASA Astrophysics Data System (ADS)

    Ayeni, Amidu; Ojifo, Lawrence

    2018-06-01

    Dams construction and operations have many benefits, nevertheless, they have also led to lots of negative social, health and human impacts. It is based on this that this study assesses the potential and socio-economics dynamics of Oyan dam between 1980 and 2016. The data used for this study include water level and discharge records of the dam between 2007 and 2016, Landsat imageries of 1984 and 2016 and socio-economic datasets for the period. Analysis of the dam potentials (water supply, agriculture and hydropower) and socio-economic impacts of the dam were carried out using basic statistical tools, land use change anaysis and field survey using questionnaire, structured interview with major stakeholders and personal observation. The results revealed that the water level and storage of the Oyan dam had a relative reduction of about 2 % as well as non-stationarity pattern of water abstraction and production for the period. The landuse classes show all classes decreased in extent except the cultivated landuse that acrued an increased of 19.9 % between 1984 and 2016. Furthermore, commercial water supply varied significantly between 2010 and 2016 while irrigation scheme is grossly under-utilized from the inception in 1983 to 2016. Finally, the result of socio-economic impacts revealed that majority of the selected communities' members are actually not benefiting from the dam and their livelihoods are not from the dam.

  15. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of tributaries.

  16. National Dam Inspection Program. Big Elk Lake Dam (NDI I.D. PA-0056 DER I.D. 058-019) Susquehanna River Basin, Elk Lake Stream, Susquehanna County, Pennsylvania. Phase I Inspection Report.

    DTIC Science & Technology

    1981-03-19

    Drainage Area 2.88 square miles(") b. Discharge at Dam Site ( cfs ) Maximum known flood at dam site Unknown Outlet conduit at maximum pool Not...the spillway was determined to be 164 cfs , based on the available 2.7-foot freeboard relative to the crest of the embankment. The Big Elk Lake watershed...computer analysis are presented in Appendix D. The 100-year flood, determined according to the recommended procedure, was found to have a peak of 2290 cfs

  17. Prioritizing removal of dams for passage of diadromous fishes on a major river system

    USGS Publications Warehouse

    Kocovsky, P.M.; Ross, R.M.; Dropkin, D.S.

    2009-01-01

    Native diadromous fishes have been extirpated from much of the Susquehanna River system for nearly a century. Recent restoration efforts have focused on removal of dams, but there are hundreds of dams and presently there is no biologically based system to assist in prioritizing their removal. We present a new method that uses existing habitat suitability index models (HSI) for American shad Alosa sapidissima, alewife A. pseudoharengus, blueback herring A. aestivalis, and American eel Anguilla rostrata to prioritize the removal of non-hydropower dams within the Susquehanna River system. We ranked HSI scores for each of the four species, association between a landscape-scale factor and HSIs, length of river opened by removing a dam, and distance from the mouth at Chesapeake Bay for each dam and then calculated a mean rank prioritization for dam removal by averaging the ranks for the seven criteria. This prioritization method is resistant to outliers, is not strongly affected by somewhat arbitrary decisions on metrics included in the analysis, and provides a biologically based prioritization for dam removal that can be easily amended to include other metrics or adapted to other river systems and that complements other social and economic considerations that must be included in decisions to remove dams.

  18. Rock Mass Behavior Under Hydropower Embankment Dams: A Two-Dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A.; Ask, M. V. S.; Dahlström, L.-O.; Nordlund, E.

    2012-09-01

    Sweden has more than 190 large hydropower dams, of which about 50 are pure embankment dams and over 100 are concrete/embankment dams. This paper presents results from conceptual analyses of the response of typical Swedish rock mass to the construction of a hydropower embankment dam and its first stages of operation. The aim is to identify locations and magnitudes of displacements that are occurring in the rock foundation and grout curtain after construction of the dam, the first filling of its water reservoir, and after one seasonal variation of the water table. Coupled hydro-mechanical analysis was conducted using the two-dimensional distinct element program UDEC. Series of the simulations have been performed and the results show that the first filling of the reservoir and variation of water table induce largest magnitudes of displacement, with the greatest values obtained from the two models with high differential horizontal stresses and smallest spacing of sub-vertical fractures. These results may help identifying the condition of the dam foundation and contribute to the development of proper maintenance measures, which guarantee the safety and functionality of the dam. Additionally, newly developed dams may use these results for the estimation of the possible response of the rock foundation to the construction.

  19. The role of beaver in shaping steelhead trout (Oncorhynchus mykiss) habitat complexity and thermal refugia in a central Oregon stream

    NASA Astrophysics Data System (ADS)

    Consolati, F.; Wheaton, J. M.; Neilson, B. T.; Bouwes, N.; Pollock, M. M.

    2012-12-01

    The incised and degraded habitat of Bridge Creek, tributary to the John Day River in central Oregon, is thought to be limiting the local population of ESA-listed steelhead trout (Oncorhynchus mykiss). Restoration efforts for this watershed are aimed to improve their habitat through reconnecting the channel with portions of its former floodplain (now terraces) to increase stream habitat complexity and the extent of riparian vegetation. This is being done via the installation of over a hundred beaver dam support (BDS) structures that are designed to either mimic beaver dams or support existing beaver dams. The overall objective of this study is to determine if the BDS structures have had an effect on stream channel habitat complexity and thermal refugia in selected sections of Bridge Creek. Analysis of stream temperature data in restoration treatment and control areas will show the effects of beaver dams on stream temperature. Analysis of aerial imagery and high resolution topographic data will exhibit how the number and types of geomorphic units have changed after the construction of beaver dams. Combined, the results of this research are aimed to increase our understanding of how beaver dams impact fish habitat and stream temperature.

  20. Endocrine-disruptor molecular responses, occurrence of intersex and gonado-histopathological changes in tilapia species from a tropical freshwater dam (Awba Dam) in Ibadan, Nigeria.

    PubMed

    Adeogun, Aina O; Onibonoje, Kolawole; Ibor, Oju R; Omiwole, Roseline A; Chukwuka, Azubuike V; Ugwumba, Alex O; Ugwumba, Adiaha A A; Arukwe, Augustine

    2016-05-01

    In the present study, the occurrence of endocrine disruptive responses in Tilapia species from Awba Dam has been investigated, and compared to a reference site (Modete Dam). The Awba Dam is a recipient of effluents from University of Ibadan (Nigeria) and several other anthropogenic sources. A total of 132 Tilapia species (Sarotherodon malenotheron (n=57 and 32, males and females, respectively) and Tilapia guineensis (n=23 and 20, males and females, respectively)) were collected from June to September 2014. At the reference site, samples of adult male and female S. melanotheron (48 males and 47 females) and T. guineensis (84 males and 27 females) were collected. Gonads were morphologically and histologically examined and gonadosomatic index (GSI) was calculated. Hepatic mRNA transcriptions of vitellogenin (Vtg) and zona radiata protein (Zrp) genes were analyzed using validated RT-qPCR. Significant increase in Vtg and Zrp transcripts were observed in male tilapias from Awba Dam, compared to males from the reference site. In addition, male tilapias from Awba Dam produced significantly higher Vtg and Zrp mRNA, compared to females in June and July. However, at the natural peak spawning period in August and September, females produced, significantly higher Vtg and Zrp mRNA, compared to males. Fish gonads revealed varying incidence of intersex with a striking presence of two (2) pairs of testes and a pair of ovary in S. melanotheron from Awba Dam. The entire fish population examined at Awba Dam showed a high prevalence of intersex (34.8%), involving phenotypic males and females of both species. Analysis of sediment contaminant levels revealed that As, Cd, Pb, Hg and Ni (heavy metals), monobutyltin cation, 4-iso-nonyphenol and PCB congeners (138, 153 and 180) were significantly higher in Awba Dam, compared to the reference site. Principal component analysis (PCA) showed that fish variables were positively correlated with sediment contaminant burden at Awba Dam, indicating that the observed endocrine disruptive responses are associated with contaminant concentrations. Overall, the occurrence of intersex and elevated expressions of Vtg and Zrp in male fish, suggest that the measured contaminants were eliciting severe endocrine disruptive effects in Awba Dam biota, which is an important source of domestic water supply and fisheries for the University of Ibadan community. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dynamic analysis of an inflatable dam subjected to a flood

    NASA Astrophysics Data System (ADS)

    Lowery, K.; Liapis, S.

    A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.

  2. Seismic Stability Evaluation of Folsom Dam and Reservoir Project. Report 4. Mormon Island Auxiliary Dam. Phase 1

    DTIC Science & Technology

    1990-12-01

    soundings were made with a Felcon bit which is a 3- web crowd-in bit for 6-5/8-in. casing but has an enlarged diameter near the bit (7-1/4-in. OD) and...Fed Figure 40. Becker Htammer drilling rig Figure 41. Three- web crowd-in Felcon bit for open-bit penetration testing and sampling, and eight-tooth crowd...0 000 l’ U 900 o US U 0 m wIX = r = 0 c 1 ,- 2 cc w > uW~- 0 .4-t)t UO: >. N m Cj U 0 (I uuja:o o o oH 00 U~~ u C1 to F-4 m 0 0 V) V) 0) NN 00_

  3. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the dams. Therefore, this study gives essential information about the dam safety and related analysis. Monitoring of dams is crucial since deformation might have occurred as a result of erosion, water load, hydraulic gradients, and water saturation. The case study is the deformation measurements of Ataturk Dam. This dam was constructed on Firat River and it has importance for providing drinking water, hydroelectric power and especially irrigation. In addition, brief information is given about this dam and the methods of geodetic and non-geodetic monitoring measurements applied by various disciplines. Geodetic monitoring methods are emphasized in this study. Some results have been obtained from this method for nearly seven years are presented in this work. In addition, some deformation predictions have been made especially for the cross sections where the maximum deformations took place.

  4. Hydro-geomorphology of the middle Elwha River, Washington, following dam removal

    NASA Astrophysics Data System (ADS)

    Morgan, J. A.; Nelson, P. A.; Brogan, D. J.

    2017-12-01

    Dam removal is an increasingly common river restoration practice, which can produce dramatic increases in sediment supply to downstream reaches. There remains, however, considerable uncertainty in how mesoscale morphological units (e.g., riffles and pools) respond to the flow and sediment supply changes associated with dam removal. The recent removal of Glines Canyon Dam on the Elwha River in Washington State provides a natural setting to explore how increased sediment supply due to dam removal may affect downstream reaches. Here, we present observations and surveys documenting how a 1 km reach, located approximately 5 km downstream of the former dam site, has evolved following dam removal. Annual topographic/bathymetric surveys were conducted in 2014-2016 using RTK-GNSS methods, and these surveys were coupled with airborne lidar to create continuous surface maps of the valley bottom. Differencing the elevation models reveals channel widening and migration due to lateral bank retreat and bar aggradation. Analysis of aerial imagery dating back to 1939 suggests that rates of both widening and meander migration have increased following dam removal. We also used results from depth-averaged hydrodynamic modeling with a fuzzy c-means clustering approach to delineate riffle and pool units; this analysis suggests that both riffles and pools stayed relatively consistent from 2014-2015, while both areas decreased from 2015 to 2016. Without any considerable changes to the hydrologic regime these higher rates of change are implied to be the result of the increased sediment supply. Our results, which indicate an increased dynamism due directly to the amplified sediment supply, have the potential to further inform river managers and restoration specialists who oversee projects related to changing sediment regimes.

  5. Evaluating the effects of dam breach methodologies on Consequence Estimation through Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Thames, B. A.

    2013-12-01

    Dam breach modeling often includes application of models that are sophisticated, yet computationally intensive to compute flood propagation at high temporal and spatial resolutions. This results in a significant need for computational capacity that requires development of newer flood models using multi-processor and graphics processing techniques. Recently, a comprehensive benchmark exercise titled the 12th Benchmark Workshop on Numerical Analysis of Dams, is organized by the International Commission on Large Dams (ICOLD) to evaluate the performance of these various tools used for dam break risk assessment. The ICOLD workshop is focused on estimating the consequences of failure of a hypothetical dam near a hypothetical populated area with complex demographics, and economic activity. The current study uses this hypothetical case study and focuses on evaluating the effects of dam breach methodologies on consequence estimation and analysis. The current study uses ICOLD hypothetical data including the topography, dam geometric and construction information, land use/land cover data along with socio-economic and demographic data. The objective of this study is to evaluate impacts of using four different dam breach methods on the consequence estimates used in the risk assessments. The four methodologies used are: i) Froehlich (1995), ii) MacDonald and Langridge-Monopolis 1984 (MLM), iii) Von Thun and Gillete 1990 (VTG), and iv) Froehlich (2008). To achieve this objective, three different modeling components were used. First, using the HEC-RAS v.4.1, dam breach discharge hydrographs are developed. These hydrographs are then provided as flow inputs into a two dimensional flood model named Flood2D-GPU, which leverages the computer's graphics card for much improved computational capabilities of the model input. Lastly, outputs from Flood2D-GPU, including inundated areas, depth grids, velocity grids, and flood wave arrival time grids, are input into HEC-FIA, which provides the consequence assessment for the solution to the problem statement. For the four breach methodologies, a sensitivity analysis of four breach parameters, breach side slope (SS), breach width (Wb), breach invert elevation (Elb), and time of failure (tf), is conducted. Up to, 68 simulations are computed to produce breach hydrographs in HEC-RAS for input into Flood2D-GPU. The Flood2D-GPU simulation results were then post-processed in HEC-FIA to evaluate: Total Population at Risk (PAR), 14-yr and Under PAR (PAR14-), 65-yr and Over PAR (PAR65+), Loss of Life (LOL) and Direct Economic Impact (DEI). The MLM approach resulted in wide variability in simulated minimum and maximum values of PAR, PAR 65+ and LOL estimates. For PAR14- and DEI, Froehlich (1995) resulted in lower values while MLM resulted in higher estimates. This preliminary study demonstrated the relative performance of four commonly used dam breach methodologies and their impacts on consequence estimation.

  6. Flood hydrology and dam-breach hydraulic analyses of four reservoirs in the Black Hills, South Dakota

    USGS Publications Warehouse

    Hoogestraat, Galen K.

    2011-01-01

    Extensive information about the construction of dams or potential downstream hazards in the event of a dam breach is not available for many small reservoirs within the Black Hills National Forest. In 2009, the U.S. Forest Service identified the need for reconnaissance-level dam-breach assessments for four of these reservoirs within the Black Hills National Forest (Iron Creek, Horsethief, Lakota, and Mitchell Lakes) with the potential to flood downstream structures. Flood hydrology and dam-breach hydraulic analyses for the four selected reservoirs were conducted by the U.S. Geological Survey in cooperation with the U.S. Forest service to estimate the areal extent of downstream inundation. Three high-flow breach scenarios were considered for cases when the dam is in place (overtopped) and when a dam break (failure) occurs: the 100-year recurrence 24-hour precipitation, 500-year recurrence peak flow, and the probable maximum precipitation. Inundation maps were developed that show the estimated extent of downstream floodwaters from simulated scenarios. Simulation results were used to determine the hazard classification of a dam break (high, significant, or low), based primarily on the potential for loss of life or property damage resulting from downstream inundation because of the flood surge.The inflow design floods resulting from the two simulated storm events (100-year 24-hour and probable maximum precipitation) were determined using the U.S. Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). The inflow design flood for the 500-year recurrence peak flow was determined by using regional regression equations developed for streamflow-gaging stations with similar watershed characteristics. The step-backwater hydraulic analysis model, Hydrologic Engineering Center's River Analysis System (HEC-RAS), was used to determine water-surface profiles of in-place and dam-break scenarios for the three inflow design floods that were simulated. Inundation maps for in-place and dam-break scenarios were developed for the area downstream from the dam to the mouth of each stream.Dam-break scenarios for three of the four reservoirs assessed in this study were rated as low hazards owing to absence of permanent structures downstream from the dams. Iron Creek Lake's downstream channel to its mouth does not include any permanent structures within the inundation flood plains. For the two reservoirs with the largest watershed areas, Lakota and Mitchell Lake, the additional floodwater surge resulting from a dam break would be minor relative to the magnitude of the large flood streamflow into the reservoirs, based on the similar areal extent of inundation for the in-place and dam-break scenarios as indicated by the developed maps. A dam-break scenario at Horsethief Lake is rated as a significant hazard because of potential lives-in-jeopardy in downstream dwellings and appreciable economic loss.

  7. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin

    PubMed Central

    Ziv, Guy; Baran, Eric; Nam, So; Rodríguez-Iturbe, Ignacio; Levin, Simon A.

    2012-01-01

    The Mekong River Basin, site of the biggest inland fishery in the world, is undergoing massive hydropower development. Planned dams will block critical fish migration routes between the river's downstream floodplains and upstream tributaries. Here we estimate fish biomass and biodiversity losses in numerous damming scenarios using a simple ecological model of fish migration. Our framework allows detailing trade-offs between dam locations, power production, and impacts on fish resources. We find that the completion of 78 dams on tributaries, which have not previously been subject to strategic analysis, would have catastrophic impacts on fish productivity and biodiversity. Our results argue for reassessment of several dams planned, and call for a new regional agreement on tributary development of the Mekong River Basin. PMID:22393001

  8. Dam-breach analysis and flood-inundation mapping for selected dams in Oklahoma City, Oklahoma, and near Atoka, Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.

    2015-01-01

    Digital-elevation models, field survey measurements, hydraulic data, and hydrologic data (U.S. Geological Survey streamflow-gaging stations North Canadian River below Lake Overholser near Oklahoma City, Okla. [07241000], and North Canadian River at Britton Road at Oklahoma City, Okla. [07241520]), were used as inputs for the one-dimensional dynamic (unsteady-flow) models using Hydrologic Engineering Centers River Analysis System (HEC–RAS) software. The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood dam-breach scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times at selected bridge crossings. Points of interest such as community-services offices, recreational areas, water-treatment plants, and wastewater-treatment plants were identified on the flood-inundation maps.

  9. Evaluation of the Three Gorges Dam project using multi-criteria analysis (MCA) based on a sustainable perspective

    NASA Astrophysics Data System (ADS)

    Han, Yue; Zheng, Wei; Guo, Junshan; Ma, Yihe; Ding, Junqi; Zhu, Lingkai; Che, Yongqiang; Zhang, Yanpeng

    2018-02-01

    Abstract . The Three Gorges dam of China is one of the largest and expensive hydropower projects of the world. The four main purposes of the project are flood control,energy production, improved navigation and fresh water supply. The dam project has been completed and running successfully with the potential benefits. However, this project is still a controversial issue among many environmentalists and socialists due to various impacts. This study focuses on the benefit and the impacts of the project, and also evaluates the performance of the project using multi-criteria analysis (MCA) approach from a sustainable perspective. Different sustainability criteria related with the dam project have been identified and used for the ranking and rating process. The final result of MCA comes with this scoring process and pairwise comparison, which evaluates the performance of the project considering different positive and negative aspects.

  10. Geodetic deformation monitoring at Pendidikan Diponegoro Dam

    NASA Astrophysics Data System (ADS)

    Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki

    2017-07-01

    Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6

  11. Quantitative and Qualitative Geospatial Analysis of a Probable Catastrophic Dam Failure

    NASA Astrophysics Data System (ADS)

    Oduor, P. G.; Stenehjem, J.

    2011-12-01

    Geospatial techniques were used in assessing inundation extents that would occur in the event of a catastrophic failure of Fort Peck dam. Fort Peck dam, located in Montana, USA has a spillway design which under dam failure the crest is expected to reach Williston a major economic hub in North Dakota in 1.4 days with a peak elevation of 1891 ft (576.377 m) msl (mean sea level). In this study, we address flooding extents and impacts on establishments with respect to a peak elevation of 1891 ft. From this study, we can unequivocally state that the City of Williston will be significantly impacted if Fort Peck dam fails with almost all critical needs, for example, gasoline stations, emergency facilities and grocery stores completely inundated. A secondary catastrophic event may be tied to the primary economic activity in Williston, that is, oil rigs of which most lie on the pathway of an inadvertent flood crest. We also applied a Discrete Fourier Transformation (DFT), and Lomb-Scargle normalized periodogram analyses and fitting of Fort Peck dam reservoir level fluctuations to gauge (a) likelihood of the dam overtopping, and (b) anatomic life span. Whereas we found that inasmuch as the dam could be considered stable by directly analyzing other dams that have failed, there is still a lower likelihood of it to fail at a 99-232 years range from construction. There was lack of concomitancy between overtopping and dam failure rates.

  12. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation

    PubMed Central

    Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika

    2014-01-01

    Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than Dam presence. PMID:25566225

  13. A NEW SYSTEM TO MONITOR DATA ANALYSES AND RESULTS OF PHYSICS DATA VALIDATION BETWEEN PULSES AT DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FLANAGAN,A; SCHACHTER,J.M; SCHISSEL,D.P

    2003-02-01

    A Data Analysis Monitoring (DAM) system has been developed to monitor between pulse physics analysis at the DIII-D National Fusion Facility (http://nssrv1.gat.com:8000/dam). The system allows for rapid detection of discrepancies in diagnostic measurements or the results from physics analysis codes. This enables problems to be detected and possibly fixed between pulses as opposed to after the experimental run has concluded thus increasing the efficiency of experimental time. An example of a consistency check is comparing the experimentally measured neutron rate and the expected neutron emission, RDD0D. A significant difference between these two values could indicate a problem with one ormore » more diagnostics, or the presence of unanticipated phenomena in the plasma. This new system also tracks the progress of MDSplus dispatched data analysis software and the loading of analyzed data into MDSplus. DAM uses a Java Servlet to receive messages, CLIPS to implement expert system logic, and displays its results to multiple web clients via HTML. If an error is detected by DAM, users can view more detailed information so that steps can be taken to eliminate the error for the next pulse.« less

  14. System to monitor data analyses and results of physics data validation between pulses at DIII-D

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Schachter, J. M.; Schissel, D. P.

    2004-06-01

    A data analysis monitoring (DAM) system has been developed to monitor between pulse physics analysis at the DIII-D National Fusion Facility (http://nssrv1.gat.com:8000/dam). The system allows for rapid detection of discrepancies in diagnostic measurements or the results from physics analysis codes. This enables problems to be detected and possibly fixed between pulses as opposed to after the experimental run has concluded, thus increasing the efficiency of experimental time. An example of a consistency check is comparing the experimentally measured neutron rate and the expected neutron emission, RDD0D. A significant difference between these two values could indicate a problem with one or more diagnostics, or the presence of unanticipated phenomena in the plasma. This system also tracks the progress of MDSplus dispatched data analysis software and the loading of analyzed data into MDSplus. DAM uses a Java Servlet to receive messages, C Language Integrated Production System to implement expert system logic, and displays its results to multiple web clients via Hypertext Markup Language. If an error is detected by DAM, users can view more detailed information so that steps can be taken to eliminate the error for the next pulse.

  15. Geophysical Investigations at Hidden Dam, Raymond, California: Summary of Fieldwork and Data Analysis

    USGS Publications Warehouse

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2010-01-01

    Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify potential seepage in that area. This report is primarily a summary of the field geophysical data acquisition, with some preliminary results and interpretation. Further work will involve a more rigorous analysis of the geophysical datasets and an examination of a large dataset of historical observations of water levels in a number of observation wells and piezometers compared with reservoir elevation. In addition, a partially saturated flow model will be developed to better understand seepage patterns given the available information about dam construction, geophysical results, and data from installed observation wells and piezometers.

  16. Longitudinal distribution of Chironomidae (Diptera) downstream from a dam in a neotropical river.

    PubMed

    Pinha, G D; Aviz, D; Lopes Filho, D R; Petsch, D K; Marchese, M R; Takeda, A M

    2013-08-01

    The damming of a river causes dangerous consequences on structure of the environment downstream of the dam, modifying the sediment composition, which impose major adjustments in longitudinal distribution of benthic community. The construction of Engenheiro Sérgio Motta Dam in the Upper Paraná River has caused impacts on the aquatic communities, which are not yet fully known. This work aimed to provide more information about the effects of this impoundment on the structure of Chironomidae larvae assemblage. The analysis of data of physical and chemical variables in relation to biological data of 8 longitudinal sections in the Upper Paraná River showed that composition of Chironomidae larvae of stations near Engenheiro Sérgio Motta Dam differed of the other stations (farther of the Dam). The predominance of coarse sediments at stations upstream and finer sediments further downstream affected the choice of habitat by different morphotypes of Chironomidae and it caused a change in the structure of this assemblage in the longitudinal stretch.

  17. Risk-informed Management of Water Infrastructure in the United States: History, Development, and Best Practices

    NASA Astrophysics Data System (ADS)

    Wolfhope, J.

    2017-12-01

    This presentation will focus on the history, development, and best practices for evaluating the risks associated with the portfolio of water infrastructure in the United States. These practices have evolved from the early development of the Federal Guidelines for Dam Safety and the establishment of the National Dam Safety Program, to the most recent update of the Best Practices for Dam and Levee Risk Analysis jointly published by the U.S. Department of Interior Bureau of Reclamation and the U.S. Army Corps of Engineers. Since President Obama signed the Water Infrastructure Improvements for the Nation Act (WIIN) Act, on December 16, 2016, adding a new grant program under FEMA's National Dam Safety Program, the focus has been on establishing a risk-based priority system for use in identifying eligible high hazard potential dams for which grants may be made. Finally, the presentation provides thoughts on the future direction and priorities for managing the risk of dams and levees in the United States.

  18. Displacement-based back-analysis of the model parameters of the Nuozhadu high earth-rockfill dam.

    PubMed

    Wu, Yongkang; Yuan, Huina; Zhang, Bingyin; Zhang, Zongliang; Yu, Yuzhen

    2014-01-01

    The parameters of the constitutive model, the creep model, and the wetting model of materials of the Nuozhadu high earth-rockfill dam were back-analyzed together based on field monitoring displacement data by employing an intelligent back-analysis method. In this method, an artificial neural network is used as a substitute for time-consuming finite element analysis, and an evolutionary algorithm is applied for both network training and parameter optimization. To avoid simultaneous back-analysis of many parameters, the model parameters of the three main dam materials are decoupled and back-analyzed separately in a particular order. Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations. Good agreement between the numerical results and the monitoring data was obtained for most observation points, which implies that the back-analysis method and decoupling method are effective for solving complex problems with multiple models and parameters. The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams. With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.

  19. Near‐surface evaluation of Ball Mountain Dam, Vermont, using multi‐channel analysis of surface waves (MASW) and refraction tomography seismic methods on land‐streamer data

    USGS Publications Warehouse

    Ivanov, Julian M.; Johnson, Carole D.; Lane, John W.; Miller, Richard D.; Clemens, Drew

    2009-01-01

    A limited seismic investigation of Ball Mountain Dam, an earthen dam near Jamaica, Vermont, was conducted using multiple seismic methods including multi‐channel analysis of surface waves (MASW), refraction tomography, and vertical seismic profiling (VSP). The refraction and MASW data were efficiently collected in one survey using a towed land streamer containing vertical‐displacement geophones and two seismic sources, a 9‐kg hammer at the beginning of the spread and a 40‐kg accelerated weight drop one spread length from the geophones, to obtain near‐ and far‐offset data sets. The quality of the seismic data for the purposes of both refraction and MASW analyses was good for near offsets, decreasing in quality at farther offsets, thus limiting the depth of investigation to about 12 m. Refraction tomography and MASW analyses provided 2D compressional (Vp) and shear‐wave (Vs) velocity sections along the dam crest and access road, which are consistent with the corresponding VSP seismic velocity estimates from nearby wells. The velocity sections helped identify zonal variations in both Vp and Vs (rigidity) properties, indicative of material heterogeneity or dynamic processes (e.g. differential settlement) at specific areas of the dam. The results indicate that refraction tomography and MASW methods are tools with significant potential for economical, non‐invasive characterization of construction materials at earthen dam sites.

  20. Responses of riparian reptile communities to damming and urbanization

    USGS Publications Warehouse

    Hunt, Stephanie D.; Guzy, Jacquelyn C.; Price, Steven J.; Halstead, Brian J.; Eskew, Evan A.; Dorcas, Michael E.

    2013-01-01

    Various anthropogenic pressures, including habitat loss, threaten reptile populations worldwide. Riparian zones are critical habitat for many reptile species, but these habitats are also frequently modified by anthropogenic activities. Our study investigated the effects of two riparian habitat modifications-damming and urbanization-on overall and species-specific reptile occupancy patterns. We used time-constrained search techniques to compile encounter histories for 28 reptile species at 21 different sites along the Broad and Pacolet Rivers of South Carolina. Using a hierarchical Bayesian analysis, we modeled reptile occupancy responses to a site's distance upstream from dam, distance downstream from dam, and percent urban land use. The mean occupancy response by the reptile community indicated that reptile occupancy and species richness were maximized when sites were farther upstream from dams. Species-specific occupancy estimates showed a similar trend of lower occupancy immediately upstream from dams. Although the mean occupancy response of the reptile community was positively related to distance downstream from dams, the occupancy response to distance downstream varied among species. Percent urban land use had little effect on the occupancy response of the reptile community or individual species. Our results indicate that the conditions of impoundments and subsequent degradation of the riparian zones upstream from dams may not provide suitable habitat for a number of reptile species.

  1. Converging stepped spillways: Simplified momentum analysis approach

    USDA-ARS?s Scientific Manuscript database

    Roller compacted concrete (RCC) stepped spillways are growing in popularity for providing overtopping protection for aging watershed dams with inadequate auxiliary spillway capacity and for the construction of new dams. Site conditions, such as limited right-of-way, topography, and geological forma...

  2. Variability of streambed hydraulic conductivity in an intermittent stream reach regulated by Vented Dams: A case study

    NASA Astrophysics Data System (ADS)

    Naganna, Sujay Raghavendra; Deka, Paresh Chandra

    2018-07-01

    The hydro-geological properties of streambed together with the hydraulic gradients determine the fluxes of water, energy and solutes between the stream and underlying aquifer system. Dam induced sedimentation affects hyporheic processes and alters substrate pore space geometries in the course of progressive stabilization of the sediment layers. Uncertainty in stream-aquifer interactions arises from the inherent complex-nested flow paths and spatio-temporal variability of streambed hydraulic properties. A detailed field investigation of streambed hydraulic conductivity (Ks) using Guelph Permeameter was carried out in an intermittent stream reach of the Pavanje river basin located in the mountainous, forested tract of western ghats of India. The present study reports the spatial and temporal variability of streambed hydraulic conductivity along the stream reach obstructed by two Vented Dams in sequence. Statistical tests such as Levene's and Welch's t-tests were employed to check for various variability measures. The strength of spatial dependence and the presence of spatial autocorrelation among the streambed Ks samples were tested by using Moran's I statistic. The measures of central tendency and dispersion pointed out reasonable spatial variability in Ks distribution throughout the study reach during two consecutive years 2016 and 2017. The streambed was heterogeneous with regard to hydraulic conductivity distribution with high-Ks zones near the backwater areas of the vented dam and low-Ks zones particularly at the tail water section of vented dams. Dam operational strategies were responsible for seasonal fluctuations in sedimentation and modifications to streambed substrate characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous streambed Ks profiles. The channel downstream of vented dams contained significantly more cohesive deposits of fine sediment due to the overflow of surplus suspended sediment-laden water at low velocity and pressure head. The statistical test results accept the hypothesis of significant spatial variability of streambed Ks but refuse to accept the temporal variations. The deterministic and geo-statistical approaches of spatial interpolation provided virtuous surface maps of streambed Ks distribution.

  3. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    NASA Astrophysics Data System (ADS)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  4. Channel evolution on the dammed Elwha River, Washington, USA

    USGS Publications Warehouse

    Draut, A.E.; Logan, J.B.; Mastin, M.C.

    2011-01-01

    Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.

  5. The effect of river damming on vegetation: is it always unfavourable? A case study from the River Tiber (Italy).

    PubMed

    Ceschin, Simona; Tombolini, Ilaria; Abati, Silverio; Zuccarello, Vincenzo

    2015-05-01

    River damming leads to strong hydromorphological alterations of the watercourse, consequently affecting river vegetation pattern. A multitemporal and spatial analysis of the dam effect on composition, structure and dynamic of the upstream vegetation was performed on Tiber River at Nazzano-dam (Rome). The main research questions were as follows: How does plant landscape vary over time and along the river? Where does the dam effect on vegetation end? How does naturalistic importance of the vegetation affected by damming change over time? Data collection was performed mapping the vegetation in aerial photos related to the period before (1944), during (1954) and after dam construction (1984, 2000). The plant landscape has significantly changed over time and along the river, particularly as a result of the dam construction (1953). The major vegetation changes have involved riparian forests and macrophytes. Dam effect on vegetation is evident up to 3 km, and gradually decreases along an attenuation zone for about another 3 km. Despite the fact that the damming has caused strong local hydromorphological modification of the river ecosystem transforming it into a sub-lacustrine habitat, it has also led to the formation of wetlands of considerable naturalistic importance. Indeed, in these man-made wetlands, optimal hydrological conditions have been created by favouring both the expansion of pre-existing riparian communities and the rooting of new aquatic communities, albeit typical of lacustrine ecosystems. Some of these plant communities have become an important food resource, refuge or nesting habitats for aquatic fauna, while others fall into category of Natura 2000 habitats. Therefore, river damming seems to have indirectly had a "favourable" effect for habitat conservation and local biodiversity.

  6. Soil occupation and atmospheric variations over Sobradinho Lake area. Part one: an observational analysis

    NASA Astrophysics Data System (ADS)

    Correia, M. F.; da Silva Dias, M. A. F.; da Silva Aragão, M. R.

    2006-11-01

    Sobradinho Lake lies in the São Francisco River Basin, in one of the most arid regions in Northeastern Brazil, within a land stretch categorized as the Lower-middle São Francisco, situated at about 40 km away from the municipality of Petrolina (09°23'S 40°30'W) in the state of Pernambuco. The dam, in its full capacity, consists of a lake of approximately 4,214 km2; 280 km in length, the width of which varies from 5 to 50 km. The dam storage capacity is that of 34.1 billion m3 of water. Being situated in a semi-arid region, the dam brought about significant development to local irrigated agriculture. The caatinga ecosystem has, for that matter, undergone considerable changes. Statistical analysis techniques applied to data collected before and after the filling of the lake, made it possible both to make an assessment of the impact of the dam construction on the region meteorology and to diagnose the variability of such an impact on environmental conditions. Results showed that the dam has brought about considerable changes to regional meteorology. The alterations were observed to be more significant as regards atmospheric humidity and wind speed.

  7. Accuracy Analysis of a Dam Model from Drone Surveys

    PubMed Central

    Buffi, Giulia; Venturi, Sara

    2017-01-01

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185

  8. Accuracy Analysis of a Dam Model from Drone Surveys.

    PubMed

    Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio

    2017-08-03

    This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.

  9. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  10. Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic region, USA

    USGS Publications Warehouse

    Merritts, Dorothy; Walter, Robert; Rahnis, Michael; Hartranft, Jeff; Cox, Scott; Gellis, Allen; Potter, Noel; Hilgartner, William; Langland, Michael; Manion, Lauren; Lippincott, Caitlin; Siddiqui, Sauleh; Rehman, Zain; Scheid, Chris; Kratz, Laura; Shilling, Andrea; Jenschke, Matthew; Datin, Katherine; Cranmer, Elizabeth; Reed, Austin; Matuszewski, Derek; Voli, Mark; Ohlson, Erik; Neugebauer, Ali; Ahamed, Aakash; Neal, Conor; Winter, Allison; Becker, Steven

    2011-01-01

    Recently, widespread valley-bottom damming for water power was identified as a primary control on valley sedimentation in the mid-Atlantic US during the late seventeenth to early twentieth century. The timing of damming coincided with that of accelerated upland erosion during post-European settlement land-use change. In this paper, we examine the impact of local drops in base level on incision into historic reservoir sediment as thousands of ageing dams breach. Analysis of lidar and field data indicates that historic milldam building led to local base-level rises of 2-5 m (typical milldam height) and reduced valley slopes by half. Subsequent base-level fall with dam breaching led to an approximate doubling in slope, a significant base-level forcing. Case studies in forested, rural as well as agricultural and urban areas demonstrate that a breached dam can lead to stream incision, bank erosion and increased loads of suspended sediment, even with no change in land use. After dam breaching, key predictors of stream bank erosion include number of years since dam breach, proximity to a dam and dam height. One implication of this work is that conceptual models linking channel condition and sediment yield exclusively with modern upland land use are incomplete for valleys impacted by milldams. With no equivalent in the Holocene or late Pleistocene sedimentary record, modern incised stream-channel forms in the mid-Atlantic region represent a transient response to both base-level forcing and major changes in land use beginning centuries ago. Similar channel forms might also exist in other locales where historic milling was prevalent.

  11. National Dam Safety Program. Conklingville Dam, Inventory no. NY 146, Upper Hudson River Basin, Saratoga County, New York. Phase 1 Inspection Report

    DTIC Science & Technology

    1978-07-31

    on o ti pand inlna nto- tho horizonta r ip , of thpese j6ihtj cracks ’qro vary #mpor-tant tactors whIlh, dairedt3.y r, ntrol thpe stabili.ty o2 tile...dvxolpll Vmay ~ ju~ d b wil und 1 󈧏. ~ ir to ,r ww. 1r -okc ’ard :l~ave 3-~v.t’ voz f;- IxppOrl6 oxcopl, fr~Ioton- alon the’iid4 g2 planes.~ I...8217" dnn usi~zgsbippin hiss wi~’h wil be fn~sh4 Ppr sfand oo -1), 4hd culk f L*t’s ip ±iic o.cmntr p u ~y ..-&i a- to .... ~ V V w 101 %,S. &V 6. ~A

  12. Assessing potential removal of low-head dams in urban settings: an example from the Ottawa River, NW Ohio.

    PubMed

    Roberts, Sheila J; Gottgens, Johan F; Spongberg, Alison L; Evans, James E; Levine, Norman S

    2007-01-01

    This is a study of the scientific component of an effort to restore an urban river by removing a low-head dam. The Secor Dam is owned by a local government entity near Toledo, Ohio. The proposed removal of the last structure impeding flow on the Ottawa River has broad appeal, but the owner is concerned about liability issues, particularly potential changes to the flood regime, the presence of contaminated sediments behind the dam, and possible downstream transport of reservoir sediments. Assessing sediment contamination involved sediment sampling and analysis of trace metals and organic contaminants. Forecasting sediment transport involved field methods to determine the volume and textural properties of reservoir and upstream sediment and calculations to determine the fate of reservoir sediments. Forecasting changes in the flood regime involved HEC-RAS hydrological models to determine before and after dam removal flood scenarios using LiDAR data imported into an ArcGIS database. The resulting assessment found potential sediment contamination to be minor, and modeling showed that the removal of the dam would have minimal impacts on sediment transport and flood hazards. Based on the assessment, the removal of the dam has been approved by its owners.

  13. Geologic and Seismologic Investigation

    DTIC Science & Technology

    1988-12-01

    Descriptions, Hidden and Buchanan Dams 4 1.6.1 Hidden Dam 4 1.6.2 Buchanan Dam 5 2 TECTONIC SETTING 2.1 General 7 2.2 Cretaceous-Cenozoic Tectonic ...Activity 7 2.2.1 Cretaceous-Paleogene 8 2.2.2 Neogene 9 2.2.3 Late Cenozoic Tectonic Model 9 3 REGIONAL GEOLOGY 3.1 General 11 3.2 Geologic Units 11...detected by the imagery analysis which indicates there has been no tectonic movement from about 100,000 to 400,000 years ago to the present. The field

  14. National Dam Safety Program. Watchung Lake Dam (NJ00767), Raritan River Basin, Stony Brook, Somerset County, New Jersey Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    Safety Program Erosion Embankmients Watchung Lake Dam, N.J. Visual InspectionSeae IStructural Analysis Spillways 12M~ A0ST Acr (cathiue samvwgip @ta N...determined by a qualified professional consultant engaged by the owner using more sophisticated methods , procedures and studies within six months...be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). The decision to consider the spillway " inaae - quate" instead of

  15. A Video Method to Study Drosophila Sleep

    PubMed Central

    Zimmerman, John E.; Raizen, David M.; Maycock, Matthew H.; Maislin, Greg; Pack, Allan I.

    2008-01-01

    Study Objectives: To use video to determine the accuracy of the infrared beam-splitting method for measuring sleep in Drosophila and to determine the effect of time of day, sex, genotype, and age on sleep measurements. Design: A digital image analysis method based on frame subtraction principle was developed to distinguish a quiescent from a moving fly. Data obtained using this method were compared with data obtained using the Drosophila Activity Monitoring System (DAMS). The location of the fly was identified based on its centroid location in the subtracted images. Measurements and Results: The error associated with the identification of total sleep using DAMS ranged from 7% to 95% and depended on genotype, sex, age, and time of day. The degree of the total sleep error was dependent on genotype during the daytime (P < 0.001) and was dependent on age during both the daytime and the nighttime (P < 0.001 for both). The DAMS method overestimated sleep bout duration during both the day and night, and the degree of these errors was genotype dependent (P < 0.001). Brief movements that occur during sleep bouts can be accurately identified using video. Both video and DAMS detected a homeostatic response to sleep deprivation. Conclusions: Video digital analysis is more accurate than DAMS in fly sleep measurements. In particular, conclusions drawn from DAMS measurements regarding daytime sleep and sleep architecture should be made with caution. Video analysis also permits the assessment of fly position and brief movements during sleep. Citation: Zimmerman JE; Raizen DM; Maycock MH; Maislin G; Pack AI. A video method to study drosophila sleep. SLEEP 2008;31(11):1587–1598. PMID:19014079

  16. Preimpoundment water quality in the Tioga River Basin, Pennsylvania and New York

    USGS Publications Warehouse

    Ward, Janice R.

    1981-01-01

    The addition of Hammond Lake water to the outflow from Tioga Lake will probably improve the water quality of the Tioga River below Tioga Dam. Releases from the multi-level withdrawal system will allow the water quality of the river to stabilize, and not be subject to the extreme low-flow conditions that have historically damaged aquatic life.

  17. The 1992 Inland Waterway Review

    DTIC Science & Technology

    1992-10-01

    AR (10 miles north of Texarkana ), is a portion of a comprehensive project up to Denison Dam, TX. Authorized features are bank stabilization. Planning...167,558,240 142,970,257 3,525,307 35,342,243 2015 149,811,794 145,114,811 2,208,890 32,854,150 2016 119,219,187 147,291,533 2,053,384 62,979,880 2017

  18. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli.

    PubMed

    Stephenson, Stacy Ann-Marie; Brown, Paul D

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of Dam inhibitors against UPEC or dam-deficient UPEC strains as attenuated live vaccines. However, further investigations are necessary to determine the post-transcriptional influence of dam on the regulatory network of virulence genes central to pathogenesis.

  19. Application of remote sensing data for measuring freshwater ecosystems changes below the Zeya dam in the Russian Far East

    NASA Astrophysics Data System (ADS)

    Nikitina, Oxana I.; Bazarov, Kirill Y.; Egidarev, Evgeny G.

    2018-06-01

    The large Zeya hydropower dam is located on the Zeya River, the largest left-bank tributary of the Amur-Heilong River in Russia. The dam had been constructed by 1980 and its operation has significantly transformed the flow regime of the Zeya River. The flow regulation has reduced the magnitude of periodic flooding of the floodplain areas located downstream from the Zeya dam and disrupted habitats of flora and fauna. An estimation of the transformation of the freshwater ecosystems is required to develop measures necessary either to maintain or restore disrupted ecosystems. Application of remote sensing methods allows measuring characteristics of the ecosystem's components. Two sections of a floodplain below the Zeya dam were considered for analysis in order to detect changes in objects at each site during the comparison of remote data from 1969/1971 and 2016.

  20. Dam construction impacts on multiscale characterization of sediment discharge in two typical karst watersheds of southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Xu, Chaohao; Liu, Meixian; Wang, Kelin

    2018-03-01

    Southwest China, as one of the largest continuous karst areas in the world, is a severely eroded region due to its special geological condition. Thus, soil and water conservation measures such as dam construction have been extensively implemented in this region to control sediment delivery. However, it remains unclear how dam construction affects multiscale variability of sediment discharge (SD) and its potentially influential factors in southwest China. To assess this, annual SD, water discharge (WD), precipitation (PT), potential evapotranspiration (PET), and normalized differential vegetation index (NDVI) data from 1955 to 2015 were obtained from two karst watersheds of Liujiang (no large dams) and Hongshui (dam-controlled). These sites shared the similar climatic conditions. The Mann-Kendal test, Wilcoxon rank-sum test, and continuous wavelet transform analysis was used to detect the trends and periodicity in SD, and wavelet coherence analysis were employed to detect the temporal covariance between SD and WD, PT, PET, and NDVI. Results indicated that the multiscale variability of SD was strongly influenced by dam construction. The annual SD showed significant 4-year periodic oscillation in the Liujiang watershed, while no significant cycles were found in the Hongshui watershed. Dam construction exerted substantial influence on the multiscale correlations between SD and its associated factors. The time scales that the NDVI resonated with SD were concentrated on the periodicity of 2- and 3-year in the Liujiang watershed. In contrast, no significant periodicities were observed in the Hongshu watershed. This study yields a greater understanding of SD dynamics, and is helpful for better watershed management in karst areas of southwest China.

  1. Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction Effects,

    DTIC Science & Technology

    1980-01-01

    standard procedure for Analysis of all types of civil engineering struc- tures. Early in its development, it became apparent that this method had...unique potentialities in the evaluation of stress in dams, and many of its earliest civil engineering applications concerned special problems associated...with such structures [3,4]. The earliest dynamic finite element analyses of civil engineering structures involved the earthquake response analysis of

  2. The effects of river impoundment and hatchery rearing on the migration behavior of juvenile steelhead in the Lower Snake River, Washington

    USGS Publications Warehouse

    Plumb, J.M.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2006-01-01

    We used radiotelemetry to monitor the migration behavior of juvenile hatchery and wild steelhead Oncorhynchus mykiss as they migrated through Lower Granite Reservoir and Dam on the lower Snake River, Washington. From 1996 to 2001, we surgically implanted radio transmitters in 1,540 hatchery steelhead and 1,346 wild steelhead. For analysis, we used the inverse Gaussian distribution to describe travel time distributions for cohorts (>50 fish) of juvenile steelhead as they migrated downriver. Mean travel rates were significantly related to reach- and discharge-specific water velocities. Also, mean travel rates near the dam were slower for a given range of water velocities than were mean travel rates through the reservoir, indicating that the presence of the dam caused delay to juvenile steelhead over and above the effect of water velocity. Hatchery steelhead took about twice as long as wild steelhead to pass the dam as a result of the higher proportions of hatchery steelhead traveling upriver from the dam. Because upriver travel and the resulting migration delay might decrease survival, it is possible that hatchery steelhead survive at lower rates than wild steelhead. Our analysis identified a discharge threshold (???2,400 m3/s) below which travel time and the percentage of fish traveling upriver from the dam increased rapidly, providing support for the use of minimum flow targets to mitigate for fish delay and possibly enhance juvenile steelhead survival.

  3. Sustainability of dams-an evaluation approach

    NASA Astrophysics Data System (ADS)

    Petersson, E.

    2003-04-01

    Situated in the stream bed of a river, dams and reservoirs interrupt the natural hydrological cycle. They are very sensitive to all kinds of changes in the catchment, among others global impacts on land use, climate, settlement structures or living standards. Vice versa dams strongly affect the spatially distributed, complex system of ecology, economy and society in the catchment both up- and downstream of the reservoir. The occurrence of negative impacts due to large dams led to serious conflicts about future dams. Nevertheless, water shortages due to climatic conditions and their changes, that are faced by enormous water and energy demands due to rising living standards of a growing world population, seem to require further dam construction, even if both supply and demand management are optimised. Although environmental impact assessments are compulsory for dams financed by any of the international funding agencies, it has to be assumed that the projects lack sustainability. Starting from an inventory of today's environmental impact assessments as an integral part of a feasibility study the presentation will identify their inadequacies with regard to the sustainability of dams. To improve the sustainability of future dams and avoid the mistakes of the past, the planning procedures for dams have to be adapted. The highly complex and dynamical system of interrelated physical and non-physical processes, that involves many different groups of stakeholders, constitutes the need for a model-oriented decision support system. In line with the report of the World Commission of Dams an integrated analysis and structure of the complex interrelations between dams, ecology, economy and society will be presented. Thus the system, that a respective tool will be based on, is analysed. Furthermore an outlook will be given on the needs of the potential users of a DSS and how it has to be embedded in the overall planning process. The limits of computer-based decision-support in the very specific context of dam construction will be identified. Special focus will be on the constraints arising from the need to jointly evaluate qualitative and quantitative aspects and the methodological potential of multi-criteria evaluation in this respect.

  4. Morphodynamics of Travertine Dam/Waterfall Growth due to the Interaction of Biological Activity, Water Flow and Limestone Emplacement

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Parker, G.

    2012-12-01

    Plitvice Lakes in Croatia are characterized by a step-like train of lakes and waterfalls. The waterfalls are located at the crests of naturally-emplaced dams. The top of each dam grows upward at the rate of a few millimeters per year. It is thought that the upward growth of these dams is caused by the interaction of water flow and biological activity, resulting in the precipitation of dissolved limestone. Dam evolution is initiated by the growth of mosses that favor swift, shallow water. Bacteria that inhabit the roots of the moss excrete solid limestone (travertine) from the water. The limestone fossilizes the moss, and then more moss grows on top of the travertine deposit. In this way, the natural dam can grow over to 10 m high, impounding the water behind it to form a lake. We propose a simple model to explain the formation of natural limestone dams by the interaction between water flow and biologically-mediated travertine deposition. We assume for simplicity that light is the only factor determining the growth of moss, which is then colonized by travertine-emplacing bacteria. We also assume that the water is saturated with dissolved limestone, so that the process is not limited by limestone availability. Photosynthesis, and thus the growth rate of moss are crudely approximated as decreasing linearly with depth. We employ the shallow water equations to describe water flow over the dam. In order to obtain a profile of permanent form for a dam migrating upward and downstream at constant speed, we solve the problem in a moving coordinate system. When water flows over the dam, it is accelerated in the streamwise direction, and the water surface forms a backwater curve. The flow regime changes from Froude-subcritical to Froude-supercritical at a point slightly downstream of the crest of the dam. Farther downstream, the flow attains a threshold velocity beyond which moss is detached. This threshold point defines the downstream end of the active part of the dam. The analysis provides a first-order morphodynamic model of natural dam/waterfall evolution.

  5. Erosion risk analysis by GIS in environmental impact assessments: a case study--Seyhan Köprü Dam construction.

    PubMed

    Sahin, S; Kurum, E

    2002-11-01

    Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.

  6. A Markov chain analysis of the movements of juvenile salmonids in the forebay of McNary Dam, Washington and Oregon, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Hatton, Tyson W.

    2012-01-01

    Passage and survival data for yearling and subyearling Chinook salmon and juvenile steelhead were collected at McNary Dam between 2006 and 2009. These data have provided critical information for resource managers to implement structural and operational changes designed to improve the survival of juvenile salmonids as they migrate past the dam. Much of the information collected at McNary Dam was in the form of three-dimensional tracks of fish movements in the forebay. These data depicted the behavior of multiple species (in three dimensions) during different diel periods, spill conditions, powerhouse operations, and test configurations of the surface bypass structures (temporary spillway weirs; TSWs). One of the challenges in reporting three-dimensional results is presenting the information in a manner that allows interested parties to summarize the behavior of many fish over many different conditions across multiple years. To accomplish this, we investigated the feasibility of using a Markov chain analysis to characterize fish movement patterns in the forebay of McNary Dam. The Markov chain analysis is one way that can be used to summarize numerically the behavior of fish in the forebay. Numerically summarizing the behavior of juvenile salmonids in the forebay of McNary Dam using the Markov chain analysis allowed us to confirm what had been previously summarized using visualization software. For example, proportions of yearling and subyearling Chinook salmon passing the three powerhouse areas was often greater in the southern and middle areas, compared to the northern area. The opposite generally was observed for steelhead. Results of this analysis also allowed us to confirm and quantify the extent of milling behavior that had been observed for steelhead. For fish that were first detected in the powerhouse region, less than 0.10 of the steelhead, on average, passed within each of the powerhouse areas. Instead, steelhead transitioned to adjoining areas in the spillway before passing the dam. In comparison, greater than 0.20 of the Chinook salmon passed within the powerhouse areas. Less milling behavior was observed for all species for fish that first approached the spillway. Compared to the powerhouse areas, a higher proportion of fish, regardless of species, passed the spillway areas and fewer transitioned to adjoining areas in the powerhouse. In addition to quantifying what had been previously speculated about the behavior of fish in the forebay of McNary Dam, the Markov chain analysis refined our understanding of how fish behavior and passage can be influenced by changes to the operations and structure of McNary Dam. For example, the addition of TSWs to the spillway area clearly influenced the passage of fish. Previous results have been reported showing that TSWs increased the number of fish passing through non-turbine routes and the fish-track videos indicated, in general, how fish behaved before passing through the TSWs. However, the analysis presented in this report allowed us to better understand how fish moved across the face of the dam before passing the TSWs and provided a way to quantify the effect of TSW location. Installation of the TSWs in bays 22 and 20 clearly increased passage proportions through the southern one-third of the spillway area for all species, most significantly for steelhead. When the TSWs were moved to bays 19 and 20 in 2008, overall passage through the southern one-third of the spillway remained higher than 2006, but decreased from what was observed in 2007. Shifting the TSWs to the north decreased the proportion of fish passing through the TSWs and increased the number of fish that moved to adjoining areas before passing the dam. Perhaps the most interesting new information to come out of the two-step Markov chain analysis relates to how the performance of the TSWs was influenced by their proximity to the powerhouse. During 2007, the highest proportion of fish passing through TSW22 was for fish that transitioned from the powerhouse area. In contrast, a relatively low proportion of fish passed through TSW20 after coming from the powerhouse area. Instead, the proportion of fish that passed TSW20 after coming from the northern part of the spillway was twice as high as the proportion of fish that passed through TSW20 after coming from the powerhouse. During 2008, the TSW in bay 22 was moved to bay 19, leaving the TSW in bay 20 as the one closest to the powerhouse. As was the case when a TSW was located in bay 22; the proportion of fish passing TSW20 after coming from the powerhouse was greater than the proportion of fish passing through TSW20 after coming from the northern part of the spillway. Passage proportions for fish passing through TSW19, the farthest north of the two TSWs during 2008, was higher for fish that came from the northern part of the spillway compared to the proportion of fish that passed through TSW19 after coming from the powerhouse. The Markov chain analysis provided a mathematical way to characterize fish behavior in the forebay of McNary Dam and helped refine our understanding of how fish movements were influenced by operational and structural changes at McNary Dam. The Markov chain analysis also could be used to examine how future structural and operational changes proposed for McNary Dam might influence the passage of juvenile salmonids.

  7. A Markov chain analysis of the movements of juvenile salmonids, including sockeye salmon, in the forebay of McNary Dam, Washington and Oregon, 2006-09

    USGS Publications Warehouse

    Adams, Noah S.; Hatton, Tyson W.

    2012-01-01

    Passage and survival data were collected at McNary Dam between 2006 and 2009. These data have provided critical information for resource managers to implement structural and operational changes designed to improve the survival of juvenile salmonids as they migrate past the dam. Much of the valuable information collected at McNary Dam was in the form of three-dimensional (hereafter referred to as 3-D) tracks of fish movements in the forebay. These data depicted the behavior of multiple species (in three dimensions) during different diel periods, spill conditions, powerhouse operations, and testing of the surface bypass structures (temporary spillway weirs; TSWs). One of the challenges in reporting 3-D results is presenting the information in a manner that allows interested parties to summarize the behavior of many fish over many different conditions across multiple years. To accomplish this, we used a Markov chain analysis to characterize fish movement patterns in the forebay of McNary Dam. The Markov chain analysis allowed us to numerically summarize the behavior of fish in the forebay. This report is the second report published in 2012 that uses this analytical method. The first report included only fish released as part of the annual studies conducted at McNary Dam. This second report includes sockeye salmon that were released as part of studies conducted by the Chelan and Grant County Public Utility Districts at mid-Columbia River dams. The studies conducted in the mid-Columbia used the same transmitters as were used for McNary Dam studies, but transmitter pulse width was different between studies. Additionally, no passive integrated transponder tags were implanted in sockeye salmon. Differences in transmitter pulse width resulted in lower detection probabilities for sockeye salmon at McNary Dam. The absence of passive integrated transponder tags prevented us from determining if fish passed the powerhouse through the juvenile bypass system (JBS) or turbines. To facilitate comparison among species in this report, we combined JBS and turbine passage for yearling Chinook salmon, steelhead, and subyearling Chinook salmon even though we were able to differentiate between passage through the JBS or turbines for these three species. Information on passage proportions through the JBS and turbines can be found in the first report. Numerically summarizing the behavior of juvenile salmonids in the forebay of McNary Dam using the Markov chain analysis allowed us to confirm what had been previously summarized using visualization software. For example, within the powerhouse region, passage proportions among the three powerhouse areas were often greater in the southern and middle areas of the powerhouse compared to the northern area of the powerhouse for yearling and subyearling Chinook salmon. The opposite generally was observed for steelhead. The results of this analysis also allowed us to confirm and quantify the extent of milling behavior that was observed for steelhead. For fish that were first detected in the powerhouse region, less than 0.10 of the steelhead, on average, passed within each of the powerhouse areas. Instead, steelhead transitioned to adjoining areas in the spillway before passing the dam. In comparison, greater than 0.20 of the Chinook salmon passed within each of the powerhouse areas. Less milling behavior was observed for all species for fish that first approached the spillway. Compared to the powerhouse areas, a higher proportion of fish, regardless of species, passed the spillway areas and fewer transitioned to adjoining areas in the powerhouse. In addition to quantifying what had been previously speculated about the behavior of fish in the forebay of McNary Dam, the Markov chain analysis refined our understanding of how fish behavior and passage can be influenced by changes to the operations and structure of McNary Dam. For example, the addition of TSWs to the spillway area clearly influenced the passage of fish. Previous results have been reported showing that TSWs increased passage through non-turbine routes and the fish-track videos indicated, in general, how fish behaved before passing the TSWs. However, the analysis presented in this report allowed us to better understand how fish transitioned across the face of the dam before passing the TSWs and resulted in a quantitative way to measure the effect of moving the location of the TSWs from year to year. Installation of the TSWs in bays 22 and 20 clearly increased passage proportions through the southern one-third of the spillway area for all species, most significantly for steelhead. When the TSWs were moved to bays 19 and 20 in 2008, overall passage through the southern one-third of the spillway remained higher than 2006, but decreased from what was observed in 2007. Shifting the TSWs to the north decreased the proportion of fish passing through the TSWs and increased the number of fish that transitioned to adjoining areas before passing the dam. Perhaps the most interesting new information to come out of the two-step Markov chain analysis relates to how the performance of the TSWs was influenced by their proximity to the powerhouse. During 2007, the highest proportion of fish passing through TSW 22 was for fish that transitioned from the powerhouse area. In contrast, a relatively low proportion of fish passed through TSW 20 after coming from the powerhouse area. Instead, the proportion of fish that passed TSW 20 after coming from the northern part of the spillway was twice as high as the proportion of fish that passed through TSW 20 after coming from the powerhouse. During 2008, the TSW in bay 22 was moved to bay 19, leaving the TSW in bay 20 as the one closest to the powerhouse. As was the case when a TSW was located in bay 22, the proportion of fish passing through TSW 20 after coming from the powerhouse was higher than the proportion of fish passing TSW 20 after coming from the northern part of the spillway. Passage proportions for fish passing through TSW 19, the farthest north of the two TSWs during 2008, was higher for fish that came from the northern part of the spillway compared to the proportion of fish that passed through TSW 19 after coming from the powerhouse. The Markov chain analysis provided a mathematical way to characterize fish behavior in the forebay of McNary Dam and helped refine our understanding of how fish movements were influenced by operational and structural changes at the dam. The numerical information used to quantify the behavior of fish also can be used to construct simulations to examine how proposed fish passage structures might influence passage of juvenile salmonids. To demonstrate this, we used the results of the Markov chain analysis to examine how a virtual fish collector located in the center of the powerhouse might influence passage of juvenile salmonids at McNary Dam.

  8. Annual Peak-Flow Frequency Characteristics and (or) Peak Dam-Pool-Elevation Frequency Characteristics of Dry Dams and Selected Streamflow-Gaging Stations in the Great Miami River Basin, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2009-01-01

    This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.

  9. Bank erosion along the dam-regulated lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Hupp, C.R.; Schenk, E.R.; Richter, J.M.; Peet, Robert K.; Townsend, Phil A.

    2009-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability and erosion. Three high dams (completed between 1953 and 1963) were built along the Piedmont portion of the Roanoke River, North Carolina; just downstream the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, >700 bank-erosion pins were installed along 66 bank transects. Additionally, discrete measurements of channel bathymetry, turbidity, and presence or absence of mass wasting were documented along the entire study reach (153 km). A bank-erosion- floodplain-deposition sediment budget was estimated for the lower river. Bank toe erosion related to consistently high low-flow stages may play a large role in increased mid- and upper-bank erosion. Present bank-erosion rates are relatively high and are greatest along the middle reaches (mean 63 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates, such that erosion-rate maxima have since migrated downstream. Mass wasting and turbidity also peak along the middle reaches; floodplain sedimentation systematically increases downstream in the study reach. The lower Roanoke River isnet depositional (on floodplain) with a surplus of ??2,800,000 m3yr. Results suggest that unmeasured erosion, particularly mass wasting, may partly explain this surplus and should be part of sediment budgets downstream of dams. ?? 2009 The Geological Society of America.

  10. National Dam Inspection Program. Upper Pigeon Hill Dam. (NDI I.D. Number PA-00340, PennDER I.D. Number 67-5) Susquehanna River Basin, Gitts Run, York County, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1980-03-01

    recommended guidelines, the Spillway Design Flood (SDF) ranges between the 1 /2-PMF (Probable Maximum Flood) and PMF. Since the dam is near the lower end of...overtopping. A breach analysis indicates that failure under 1 /2-PMF conditions would probably not lead to increased property damage or loss of life at...ii OVERVIEW PHOTOGRAPH ......... .................. V TABLE OF CONTENTS ......... ................... vi SECTION 1 - GENERAL INFORMATION

  11. Efficient Implementation of High Order Inverse Lax-Wendroff Boundary Treatment for Conservation Laws

    DTIC Science & Technology

    2011-07-15

    with or without source terms representing chemical reactions in detonations . The results demonstrate the designed fifth order accuracy, stability, and...good performance for problems involving complicated interactions between detonation /shock waves and solid boundaries. AMS subject classification... detonation ; no-penetration con- ditions 1Division of Applied Mathematics, Brown University, Providence, RI 02912. E-mail: sirui@dam.brown.edu. 2State Key

  12. Spillway sizing of large dams in Austria

    NASA Astrophysics Data System (ADS)

    Reszler, Ch.; Gutknecht, D.; Blöschl, G.

    2003-04-01

    This paper discusses the basic philosophy of defining and calculating design floods for large dams in Austria, both for the construction of new dams and for a re-assessment of the safety of existing dams. Currently the consensus is to choose flood peak values corresponding to a probability of exceedance of 2*10-4 for a given year. A two step procedure is proposed to estimate the design flood discharges - a rapid assessment and a detailed assessment. In the rapid assessment the design discharge is chosen as a constant multiple of flood values read from a map of regionalised floods. The safety factor or multiplier takes care of the uncertainties of the local estimation and the regionalisation procedure. If the current design level of a spillway exceeds the value so estimated, no further calculations are needed. Otherwise (and for new dams) a detailed assessment is required. The idea of the detailed assessment is to draw upon all existing sources of information to constrain the uncertainties. The three main sources are local flood frequency analysis, where flood data are available; regional flood estimation from hydrologically similar catchments; and rainfall-runoff modelling using design storms as inputs. The three values obtained by these methods are then assessed and weighted in terms of their reliability to facilitate selection of the design flood. The uncertainty assessment of the various methods is based on confidence intervals, estimates of regional heterogeneity, data availability and sensitivity analyses of the rainfall-runoff model. As the definition of the design floods discussed above is based on probability concepts it is also important to examine the excess risk, i.e. the possibility of the occurrence of a flood exceeding the design levels. The excess risk is evaluated based on a so called Safety Check Flood (SCF), similar to the existing practice in other countries in Europe. The SCF is a vehicle to analyse the damage potential of an event of this magnitude. This is to provide guidance for protective measures to dealing with very extreme floods. The SCF is used to check the vulnerability of the system with regard to structural stability, morphological effects, etc., and to develop alarm plans and disaster mitigation procedures. The basis for estimating the SCF are the uncertainty assessments of the design flood values estimated by the three methods including unlikely combinations of the controlling factors and attending uncertainties. Finally we discuss the impact on the downstream valley of floods exceeding the design values and of smaller floods and illustrate the basic concepts by examples from the recent flood in August 2002.

  13. National Dam Safety Program. Delmar Reservoir Number 1 Dam (Inventory Number N.Y. 1401), Lower Hudson River Basin, Albany County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    provides Infortiation ar’d analysis ort tlepk-sical conditi dain as of the report date. Informatior% andI analysis are baseti oA yis inspection of the... analysis was not performed in the usual manner of modeling a watershed area. The drainage area for this structure was limited to the reservoir itself...SYSTEM 6 4.4 EVALUATION 6 5 HYDROLOGIC/HYDRAULIC 7 * *1 I PAGE NO. 5.1 DRAINAGE AREA CHARACTERISTICS 7 5.2 ANALYSIS CRITERIA 7 5.3 SPILLWAY CRITERIA 7 5.4

  14. Environmental Flow Assessments in the McKenzie and Santiam River Basins, Oregon

    NASA Astrophysics Data System (ADS)

    Risley, J. C.; Bach, L.; Budai, C.; Duffy, K.

    2012-12-01

    The McKenzie and Santiam Rivers are tributaries of the Willamette River in northwestern Oregon, draining areas of 3,370 and 4,690 square kilometers, respectively. The river basins are heavily forested and contain streams that historically provided critical habit for salmonid rearing, salmonid spawning, and bull trout. In the 1950s and 1960s, hydropower and flood control dams were constructed in both basins. In 2008, the U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy (TNC) and the U.S. Army Corps of Engineers (Corps), began assessing the impacts of dam regulation in the two basins on streamflow, geomorphic, and ecological processes (Risley et. al., 2010; 2012). The baseline assessments were made under the auspices of the Sustainable Rivers Project (SRP), formed in 2002 by TNC and the Corps. SRP is a nation-wide partnership aimed at developing, implementing, and refining environmental flows downstream of dams. Environmental flows can be defined as the streamflow needed to sustain ecosystems while continuing to meet human needs. Determining environmental flows is an iterative collective process involving stakeholders, workshops, bio-monitoring, and follow-up assessments. The dams on the McKenzie and Santiam Rivers have decreased the frequency and magnitude of floods and increased the magnitude of low flows. In the Santiam River study reaches, for example, annual 1-day maximum streamflows decreased by 46-percent on average because of regulated streamflow conditions. Annual 7-day minimum flows in six of the seven study reaches increased by 146 percent on average. On a seasonal basis, median monthly streamflows in both river basins decreased from February to May and increased from September to January. However, the magnitude of these impacts usually decreased farther downstream from the dams because of the cumulative inflow from unregulated tributaries and groundwater discharge below the dams. In addition to streamflow assessments, the USGS studies included a geomorphic and ecological characterization of both rivers using reach characterization, historical channel mapping, aerial photography, and specific gage analysis methods. Decreased flooding and decreased sediment supply resulting from the dams likely contributed to a decrease in gravel bars, which are critical to salmonid spawning. Secondary channel features and sinuosity also decreased. However, other anthropogenic factors, such as bank stabilization revetments, land filling, and channel dredging, have also impacted channel morphology in both basins. Exemplar native terrestrial and aquatic species of interest and used in developing environmental flows for both river basins include black cottonwood, red alder, bull trout, spring Chinook, Oregon chub, red-legged frogs, and western pond turtles. Suggestions for future bio-monitoring and investigations were also provided in the study reports. References: Risley, John, Wallick, J.R., Waite, Ian, and Stonewall, Adam, 2010, Development of an environmental flow framework for the McKenzie River basin, Oregon: U.S. Geological Survey Scientific Investigations Report 2010-5016, 94 p. Risley, J.C., Wallick, J.R., Mangano, J.F., and Jones, K.F., 2012, An environmental streamflow assessment for the Santiam River basin, Oregon: U.S. Geological Survey Open-File Report 2012-1133, 66 p.

  15. Relation between selected water-quality variables and lake level in Upper Klamath and Agency Lakes, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Fuhrer, Gregory J.; Morace, Jennifer L.

    1996-01-01

    Based on the analysis of data that they have been collecting for several years, the Klamath Tribes recently recommended that the Bureau of Reclamation (Reclamation) modify the operating plan for the dam to make the minimum lake levels for the June-August period more closely resemble pre-dam conditions (Jacob Kann, written commun., 1995). The U.S. Geological Survey (USGS) was asked to analyze the available data for the lake and to assess whether the evidence exists to conclude that year-to-year differences in certain lake water-quality variables are related to year-to-year differences in lake level. The results of the analysis will be used as scientific input in the process of developing an operating plan for the Link River Dam.

  16. The Effects of the Saluda Dam on the Surface-Water and Ground-Water Hydrology of the Congaree National Park Flood Plain, South Carolina

    USGS Publications Warehouse

    Conrads, Paul; Feaster, Toby D.; Harrelson, Larry G.

    2008-01-01

    The Congaree National Park was established '... to preserve and protect for the education, inspiration, and enjoyment of present and future generations an outstanding example of a near-virgin, southern hardwood forest situated in the Congaree River flood plain in Richland County, South Carolina' (Public Law 94-545). The resource managers at Congaree National Park are concerned about the timing, frequency, magnitude, and duration of flood-plain inundation of the Congaree River. The dynamics of the Congaree River directly affect ground-water levels in the flood plain, and the delivery of sediments and nutrients is constrained by the duration, extent, and frequency of flooding from the Congaree River. The Congaree River is the southern boundary of the Congaree National Park and is formed by the convergence of the Saluda and Broad Rivers 24 river miles upstream from the park. The streamflow of the Saluda River has been regulated since 1929 by the operation of the Saluda Dam at Lake Murray. The U.S. Geological Survey, in cooperation with the National Park Service, Congaree National Park, studied the interaction between surface water in the Congaree River and ground water in the flood plain to determine the effect Saluda Dam operations have on water levels in the Congaree National Park flood plain. Analysis of peak flows showed the reduction in peak flows after the construction of Lake Murray was more a result of climate variability and the absence of large floods after 1930 than the operation of the Lake Murray dam. Dam operations reduced the recurrence interval of the 2-year to 100-year peak flows by 6.1 to 17.6 percent, respectively. Analysis of the daily gage height of the Congaree River showed that the dam has had the effect of lowering high gage heights (95th percentile) in the first half of the year (December to May) and raising low gage heights (5th percentile) in the second half of the year (June to November). The dam has also had the effect of increasing the 1-, 3-, 7-, 30-, and 90-day minimum gage heights by as much as 23.9 percent and decreasing the 1-, 3-, 7-, 30-, and 90-day maximum gage heights by as much as 7.2 percent. Analysis of the ground-water elevations in the Congaree National Park flood plain shows similar results as the gage-height analysis--the dam has had the effect of lowering high ground-water elevations and increasing low ground-water elevations. Overall, the operation of the dam has had a greater effect on the gage heights within the river banks than gage heights in the flood plain. This result may have a greater effect on the subsurface water levels of the surficial flood-plain aquifer than the frequency and magnitude of inundation of the flood plain.

  17. Characterization of debris flows by rainstorm condition at a torrent on the Mount Yakedake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Okano, Kazuyuki; Suwa, Hiroshi; Kanno, Tadahiro

    2012-01-01

    We analyzed rainstorm control on debris-flow magnitude and flow characteristics using the 14 sets of rainstorm and debris-flow data obtained from 1980 to 2005 at the Kamikamihorizawa Creek of Mount Yakedake. With the principal component analysis on five parameters of debris flows: frontal velocity, peak velocity, peak flow depth, peak discharge and total discharge, and with video-record of boulder-dams in motion, and the preceding rainfall intensities, we conclude that the 14 debris flows could be categorized into three groups. The flows in the first group have large hydraulic magnitude and massive and turbulent boulder-dams filled with slurry matrix. The flows in the second group have small hydraulic magnitude and boulder-dams scarcely filled with slurry matrix, and the dam is observed to alternate between stopping and starting. The flows in the third group have small hydraulic magnitude and boulder dams filled with slurry matrix. Analysis of hillslope hydrology and debris-flow data asserted that the antecedent rainfall conditions control not only the hydraulic magnitude of debris flows but also the boulder-dam features. Large rainstorms of high intensity and durations as short as 10 minutes induces fast and large storm runoff to the headwaters and the source reaches of debris flow, while rainstorms with durations as long as 24 h raises water content in the bottom deposits along the debris-flow growth reaches and generates substantial runoff from the tributaries. Classification of the three groups is done based on water availability to debris flows on the source and growth reaches at the occurrence of debris flow.

  18. 78 FR 43868 - Notice of Intent To Prepare a Draft Environmental Impact Statement for the Whittier Narrows Dam...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... completed in 1957 as an integral component of the Los Angeles County Drainage Area system of dams and... several measures including: emergency management preparedness, remote monitoring, increased inspections... Scope of Analysis. The EIS will also evaluate the impacts of alternatives on environmental resources...

  19. Three-dimensional earthquake analysis of roller-compacted concrete dams

    NASA Astrophysics Data System (ADS)

    Kartal, M. E.

    2012-07-01

    Ground motion effect on a roller-compacted concrete (RCC) dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam-foundation-reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.

  20. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence.

    PubMed

    James, Allison E; Rogovskyy, Artem S; Crowley, Michael A; Bankhead, Troy

    2016-01-01

    DNA methyltransferases have been implicated in the regulation of virulence genes in a number of pathogens. Relapsing fever Borrelia species harbor a conserved, putative DNA methyltransferase gene on their chromosome, while no such ortholog can be found in the annotated genome of the Lyme disease agent, Borrelia burgdorferi. In the relapsing fever species Borrelia hermsii, the locus bh0463A encodes this putative DNA adenine methyltransferase (dam). To verify the function of the BH0463A protein product as a Dam, the gene was cloned into a Dam-deficient strain of Escherichia coli. Restriction fragment analysis subsequently demonstrated that complementation of this E. coli mutant with bh0463A restored adenine methylation, verifying bh0463A as a Dam. The requirement of bh0463A for B. hermsii viability, infectivity, and persistence was then investigated by genetically disrupting the gene. The dam- mutant was capable of infecting immunocompetent mice, and the mean level of spirochetemia in immunocompetent mice was not significantly different from wild type B. hermsii. Collectively, the data indicate that dam is dispensable for B. hermsii viability, infectivity, and persistence.

  1. Understanding Hydrological Regime Alterations Caused by dams: the Santiago River case in the Andean Region of the Amazon Basin.

    NASA Astrophysics Data System (ADS)

    Rosero-Lopez, D.; Flecker, A.; Walter, M. T.

    2016-12-01

    Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.

  2. [Effects of cascading hydropower dams operation on the structure and distribution pattern of benthic macroinvertebrate assemblages in Manwan Reservoir, Southwest China].

    PubMed

    Li, Jin Peng; Dong, Shi Kui; Peng, Ming Chun; Wu, Xuan; Zhou, Fang; Yu, Yin

    2017-12-01

    Benthic macroinvertebrate assemblages are one of the biological groups in aquatic ecosystem most sensitive to the habitat change and degradation, and can be a biological indicator for the aquatic ecosystem change and succession in cascading hydropower dam reservoir. The middle and lower reaches of the Lancang River are key spot for international biodiversity conservation and ecological studies on the effects of cascading hydropower dam exploitation. In this study, the reservoir of Manwan hydropower dam, the first dam in Lancang-Mekong river main stream, was selected as the study site. The benthic macroinvertebrate assemblages were sampled in 2011 and 2016 respectively. Meanwhile, the survey data before impounding (natural river, 1996) and early stage of single dam (1997) were collected to conduct the overall analysis for structure, distribution pattern and evolution of benthic macroinvertebrate assemblages. The results showed that the dominant biological group was gradually changed from the Oligochaeta and Insecta to the Mollusca. Along the longitudinal gradient, the density and biomass of the benthic macroinvertebrate assemblages were remarkably increased in reservoir, especially in the lacustrine zone. As for the functional feeding group, the predator and gatherer-collector changed into filter-collector predominantly in lacustrine zone. With the cascading dams operation, the biotic index indicated that the water quality of reservoir in 2016 was better than in 2011. The evolution of benthic macroinvertebrate assemblages in the Manwan Reservoir was related to the operation of Xiaowan dam in the upper reach, the hydrological regime and siltation in the reservoir, and would continue with dynamic changes with the operation of the cascading hydropower dam.

  3. Geoelectrical Methods and Monitoring for Dam Safety Assessment, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Lim, S. K.; Oldenburg, D.; Kang, S.; Song, S. H.

    2016-12-01

    Geoelectrical methods and monitoring to detect the seepage and internal erosion are essential for the safety assessment of earth dams. This work aims to develop improved methodologies to analyze the observed data and to monitor changes in seepage flow using direct current (DC) and self-potential (SP) methods. The seasonal variation of water level at dams causes a change in seepage and water saturation and hence alters the resistivity of the dam material. DC data are sensitive to water saturation and hence changes in saturation can be obtained by repeatedly measuring DC data. However, a more diagnostic parameter for safety assessment is fluid flow, and resistivity is only weakly coupled to that. Fortunately SP signals are directly related to fluid flow, and thus an SP survey has the potential to characterize fluid flow through the earth matrix. In Korea, the safety assessment of earth fill dams has been dealt by Korea Rural Community Corporation (KRC). Most of the dams are relatively old ( >50 years), hence assessing deterioration and corresponding seepage of those dams are crucial. In order to evaluate the engineering geological properties of the soil at earth dams in Korea, two boreholes in each dam were drilled to a bedrock depth that exceeds the height of the dam. A large set of field tests, including standard penetration tests (SPT) and in-situ permeability tests, were carried out along the boreholes. However, seepage paths in the dam is complex hence those limited measurements at a few points is not sufficient to delineate the zone of preferential seepage flow. For this, KRC developed permanent DC monitoring systems at a number of agricultural dams in Korea. The data were automatically collected every 6 hours. During the monitoring, the measurements of the water level at two boreholes were gathered at the same time. In this presentation we select an agricultural dam and delineate an anomalous leakage zone by inverting and interpreting time-lapse DC resistivity data acquired under conditions of variable water level. We use these results to simulate SP signals and investigate their potential in monitoring seepage. Our results lay the foundation for developing an automated analysis of DC and SP data to recognize normal and abnormal conditions and to provide an alert when variations beyond a specified threshold are detected.

  4. Analysis of Stream Channel Geometry Temporal and Spatial Evolution after Historic Dam Removal - two French case studies

    NASA Astrophysics Data System (ADS)

    Slawson, Deborah; Manière, Louis; Marchandeau, Florent

    2014-05-01

    IRSTEA, in partnership with the French Office national de l'eau et des milieux aquatiques (ONEMA), has begun a study of channel geomorphology in small streams where dams have been removed or breached between two and 200 years ago, without any subsequent restoration of the channel in the legacy sediments. A preliminary analysis of two sites in the Morvan, Burgundy, will be presented; a dam breached at the beginning of the 20th century and another in the last decade. Using ergodic reasoning, historical and recent upstream and downstream channel geometry is being used to predict the future temporal and spatial scales of channel physical habitat restoration. With the implementation of the European Water Framework Directive (WFD), dam removal has become a more frequently used method for restoring stream ecological continuity. In France, these obstacles are ubiquitous in medium and small streams and considerably reduce lateral and longitudinal connectivity. Improvement in the hydromorphologically controlled, physical habitat, particularly flow and sediment transport regimes, is often essential to improvement in stream biology. However, dam removal may cause long-term disturbances in flow and sediment transport regimes. In the absence of channel restoration measures in addition to dam removal, these disturbances may result in long-term negative impacts on fish, macroinvertebrate, and riparian plant physical habitat. These negative impacts may include channel incision and lowering of the water table, disconnection from floodplains, increased stream power and bed scouring, and increased sediment load from headcutting and bank erosion. Over time, these negative impacts may resolve themselves. However, the time frame necessary for reestablishing adequate physical habitat is not well-known. Some studies have indicated that many decades or longer may be required, depending on a variety of factors. Under the WFD, the REstoring rivers FOR effective catchment Management (REFORM) project is stressing the use of reference condition benchmarks when identifying objectives for and designing stream restoration projects. To identify appropriate reference condition benchmarks, it is important to understand over what temporal and spatial scales physical habitat improvement may take place after dam removal, including: 1. defining the spatial and temporal objectives for physical habitat restoration as a result of dam removal and 2. determining if dam removal alone will be sufficient to achieve those objectives or if additional channel restoration measures might be required.

  5. The Evolution of Riparian Landscape Elements Following Upstream Regulation and Depletion on the Rio Grande

    NASA Astrophysics Data System (ADS)

    Everitt, B. L.

    2006-12-01

    In 1915 closure of Elephant Butte Dam in central New Mexico profoundly altered the hydrologic regime of the Rio Grande for 560 km downstream, and set in motion a cascade of interwoven geomorphic, biological, and cultural responses. Geomorphic response included shrinking of the width and depth of the channel, and an increase in sinuosity. Cultural responses included artificial channel modification on 320 km of the river within the boundaries of the original irrigation project, beginning in 1933. The pre-dam river and its flood plain consisted of a mosaic of geomorphic elements that formed a functional riverine landscape, and founded a diverse habitat for the plants, animals, and people that lived there. A preliminary comparison of the modern river with pre-dam topographic mapping permits identification of individual landscape elements, including overflow land (flood plain) both cultivated and uncultivated, with oxbows and back-swamps. The pre-dam channel included a low water thread and un-vegetated flood bars. From pre-dam description and photographs we can assume the usual complement of pools and riffles, point bars and undercut banks. Until dredged in the 1970s, the unmodified reach retained the entire suite of landscape elements, although in somewhat different proportions from the pre-dam river, and remained a functional riparian system. Channel sinuosity increased from 1.45 in 1910 to 1.7 in 1970, thus riverbank habitat increased by 1.17%. In 1970 undercut banks still provided protection for fish, and point bars generated by lateral migration still provided seed beds for pioneer species. The smaller shallower channel raised groundwater beneath the flood plain and retarded flood waves, creating a generally more mesic environment, although the river occasionally dries up, as it did prior to 1915. In contrast, an impoverished suite of landscape elements characterizes the channelized reach. Lateral stability precludes point bars and undercut banks. Bounding levees separate the channel from its former flood plain. All areas are impacted by heavy machinery during periodic channel maintenance. I conclude that the environmental degradation caused by artificial channel modification has far outweighed any generated by upstream hydrologic control.

  6. Seeking more Opportunities of Check Dams' harmony with nearby Circumstances via Design Thinking Process

    NASA Astrophysics Data System (ADS)

    Lin, Huan-Chun; Chen, Su-Chin; Tsai, Chen-Chen

    2014-05-01

    The contents of engineering design should indeed contain both science and art fields. However, the art aspect is too less discussed to cause an inharmonic impact with natural surroundings, and so are check dams. This study would like to seek more opportunities of check dams' harmony with nearby circumstances. According to literatures review of philosophy and cognition science fields, we suggest a thinking process of three phases to do check dams design work for reference. The first phase, conceptualization, is to list critical problems, such as the characteristics of erosion or deposition, and translate them into some goal situations. The second phase, transformation, is to use cognition methods such as analogy, association and metaphors to shape an image and prototypes. The third phase, formation, is to decide the details of the construction, such as stable safety analysis of shapes or materials. According to the previous descriptions, Taiwan's technological codes or papers about check dam design mostly emphasize the first and third phases, still quite a few lacks of the second phase. We emphases designers shouldn't ignore any phase of the framework especially the second one, or they may miss some chances to find more suitable solutions. Otherwise, this conceptual framework is simple to apply and we suppose it's a useful tool to design a more harmonic check dam with nearby natural landscape. Key Words: check dams, design thinking process, conceptualization, transformation, formation.

  7. Archaeological Investigations at Sites 45-OK-250 and 45-OK-4, Chief Joseph Dam Project, Washington.

    DTIC Science & Technology

    1984-01-01

    level behind Chief Joseph Dam. Systematic random sampling using I x I x ’ - 0.1-m collection units in 1 x 1, 1 x 2, or 2 x 2 m cel Is disclosed...ft to the operating pool . level behind Chief Joseph Dam. Systematic random sampling using 1 x 1 x 0.1-i collection units In 1 x 1, 1 x 2, or 2 x 2 m...contingencies under which data were collected , describe data collection and analysis, and organize and summarize data In a torm useful to the widest

  8. Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria

    NASA Astrophysics Data System (ADS)

    Tiri, Ammar; Lahbari, Noureddine; Boudoukha, Abderrahmane

    2017-12-01

    The assessment of surface water in Koudiat Medouar watershed is very important especially when it comes to pollution of the dam waters by discharges of wastewater from neighboring towns in Oued Timgad, who poured into the basin of the dam, and agricultural lands located along the Oued Reboa. To this end, the multivariable method was used to evaluate the spatial and temporal variation of the water surface quality of the Koudiat Medouar dam, eastern Algeria. The stiff diagram has identified two main hydrochemical facies. The first facies Mg-HCO3 is reflected in the first sampling station (Oued Reboa) and in the second one (Oued Timgad), while the second facies Mg-SO4 is reflected in the third station (Basin Dam). The results obtained by the analysis of variance show that in the three stations all parameters are significant, except for Na, K and HCO3 in the first station (Oued Reboa) and the EC in the second station (Oued Timgad) and at the end NO3 and pH in the third station (Basin Dam). Q-mode hierarchical cluster analysis showed that two main groups in each sampling station. The chemistry of major ions (Mg, Ca, HCO3 and SO4) within the three stations results from anthropogenic impacts and water-rock interaction sources.

  9. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  10. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  11. Monitoring and research to describe geomorphic effects of the 2011 controlled flood on the Green River in the Canyon of Lodore, Dinosaur National Monument, Colorado and Utah

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Kaplinski, Matt; Alexander, Jason A.; Kohl, Keith

    2014-01-01

    In 2011, a large magnitude flow release from Flaming Gorge Reservoir, Wyoming and Utah, occurred in response to high snowpack in the middle Rocky Mountains. This was the third highest recorded discharge along the Green River downstream of Flaming Gorge Dam, Utah, since its initial closure in November 1962 and motivated a research effort to document effects of these flows on channel morphology and sedimentology at four long-term monitoring sites within the Canyon of Lodore in Dinosaur National Monument, Colorado and Utah. Data collected in September 2011 included raft-based bathymetric surveys, ground-based surveys of banks, channel cross sections and vegetation-plot locations, sand-bar stratigraphy, and painted rock recovery on gravel bars. As part of this surveying effort, Global Navigation Satellite System (GNSS) data were collected at benchmarks on the canyon rim and along the river corridor to establish a high-resolution survey control network. This survey control network allows for the collection of repeatable spatial and elevation data necessary for high accuracy geomorphic change detection. Nearly 10,000 ground survey points and more than 20,000 bathymetric points (at 1-meter resolution) were collected over a 5-day field campaign, allowing for the construction of reach-scale digital elevation models (DEMs). Additionally, we evaluated long-term geomorphic change at these sites using repeat topographic surveys of eight monumented cross sections at each of the four sites. Analysis of DEMs and channel cross sections show a spatially variable pattern of erosion and deposition, both within and between reaches. As much as 5 meters of scour occurred in pools downstream from flow constrictions, especially in channel segments where gravel bars were absent. By contrast, some channel cross sections were stable during the 2011 floods, and have shown almost no change in over a decade of monitoring. Partial mobility of gravel bars occurred, and although in some locations vegetation such as tamarisk (Tamarix ramosissima) was damaged, wholesale bed motion necessary to fully clear these surfaces was not evident. In flow recirculation zones, eddy sandbars aggraded one meter or more, increasing the area of bars exposed during typical dam operations. Yet overall, the 2011 flood resulted in a decrease in reach-scale sand storage because bed degradation exceeded bar deposition. The 2011 response is consistent with that of a similar event in 1999, which was followed by sand-bar erosion and sediment accumulation on the bed during subsequent years of normal dam operational flows. Although the 1999 and 2011 floods were exceptional in the post-dam system, they did not exceed the pre-dam 2-year flood, isolating their effects to the modern active channel with minor erosion or reworking of pre-dam deposits stabilized through vegetation encroachment.

  12. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA).

    PubMed

    Erova, Tatiana E; Kosykh, Valeri G; Sha, Jian; Chopra, Ashok K

    2012-05-01

    Aeromonas hydrophila is both a human and animal pathogen, and the cytotoxic enterotoxin (Act) is a crucial virulence factor of this bacterium because of its associated hemolytic, cytotoxic, and enterotoxic activities. Previously, to define the role of some regulatory genes in modulating Act production, we showed that deletion of a glucose-inhibited division gene (gidA) encoding tRNA methylase reduced Act levels, while overproduction of DNA adenine methyltransferase (Dam) led to a concomitant increase in Act-associated biological activities of a diarrheal isolate SSU of A. hydrophila. Importantly, there are multiple GATC binding sites for Dam within an upstream sequence of the gidA gene and one such target site in the act gene upstream region. We showed the dam gene to be essential for the viability of A. hydrophila SSU, and, therefore, to better understand the interaction of the encoding genes, Dam and GidA, in act gene regulation, we constructed a gidA in-frame deletion mutant of Escherichia coli GM28 (dam(+)) and GM33 (∆dam) strains. We then tested the expressional activity of the act and gidA genes by using a promoterless pGlow-TOPO vector containing a reporter green fluorescent protein (GFP). Our data indicated that in GidA(+) strains of E. coli, constitutive methylation of the GATC site(s) by Dam negatively regulated act and gidA gene expression as measured by GFP production. However, in the ∆gidA strains, irrespective of the presence or absence of constitutively active Dam, we did not observe any alteration in the expression of the act gene signifying the role of GidA in positively regulating Act production. To determine the exact mechanism of how Dam and GidA influence Act, a real-time quantitative PCR (RT-qPCR) assay was performed. The analysis indicated an increase in gidA and act gene expression in the A. hydrophila Dam-overproducing strain, and these data matched with Act production in the E. coli GM28 strain. Thus, the extent of DNA methylation caused by constitutive versus overproduction of Dam, as well as possible conformation of DNA influence the expression of act and gidA genes in A. hydrophila SSU. Our results indicate that the act gene is under the control of both Dam and GidA modification methylases, and Dam regulates Act production via GidA. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Epidemiology of clinical feline herpesvirus infection in zoo-housed cheetahs (Acinonyx jubatus).

    PubMed

    Witte, Carmel L; Lamberski, Nadine; Rideout, Bruce A; Vaida, Florin; Citino, Scott B; Barrie, Michael T; Haefele, Holly J; Junge, Randall E; Murray, Suzan; Hungerford, Laura L

    2017-10-15

    OBJECTIVE To determine the incidence of and risk factors for clinical feline herpesvirus (FHV) infection in zoo-housed cheetahs and determine whether dam infection was associated with offspring infection. DESIGN Retrospective cohort study. ANIMALS 144 cheetah cubs born in 6 zoos from 1988 through 2007. PROCEDURES Data were extracted from the health records of cheetahs and their dams to identify incident cases of clinical FHV infection and estimate incidence from birth to 18 months of age. Univariate and multivariable Cox proportional hazards models, controlling for correlations among cheetahs with the same dam, were used to identify risk factors for incident FHV infection. RESULTS Cumulative incidence of FHV infection in cheetah cubs was 35% (50/144). No significant association between dam and offspring infection was identified in any model. Factors identified as significant through multivariable analysis varied by age group. For cheetahs up to 3 months of age, the most important predictor of FHV infection was having a dam that had received a preparturition FHV vaccine regimen that included a modified-live virus vaccine versus a dam that had received no preparturition vaccine. Other risk factors included being from a small litter, being born to a primiparous dam, and male sex. CONCLUSIONS AND CLINICAL RELEVANCE This study provided the first population-level characterization of the incidence of and risk factors for FHV infection in cheetahs, and findings confirmed the importance of this disease. Recognition that clinical FHV infection in the dam was not a significant predictor of disease in cubs and identification of other significant factors have implications for disease management.

  14. [Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: a review].

    PubMed

    Yang, Kun; Deng, Xi; Li, Xue-Ling; Wen, Ping

    2011-05-01

    Hydroelectric cascade exploitation, one of the major ways for exploiting water resources and developing hydropower, not only satisfies the needs of various national economic sectors, but also promotes the socio-economic sustainable development of river basin. unavoidable anthropogenic impacts on the entire basin ecosystem. Based on the process of hydroelectric cascade exploitation and the ecological characteristics of river basins, this paper reviewed the major impacts of hydroelectric cascade exploitation on dam-area ecosystems, river reservoirs micro-climate, riparian ecosystems, river aquatic ecosystems, wetlands, and river landscapes. Some prospects for future research were offered, e.g., strengthening the research of chain reactions and cumulative effects of ecological factors affected by hydroelectric cascade exploitation, intensifying the study of positive and negative ecological effects under the dam networks and their joint operations, and improving the research of successional development and stability of basin ecosystems at different temporal and spatial scales.

  15. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    DTIC Science & Technology

    1982-07-01

    plan would not adversely impact on any endangered species. 5. An archaeological analysis of the recommiended plan revealed that no cultural resources... Archaeological Resources. .. ...... ......... E-18 4. General Effect of High Flows on Fish and Wildlife Resources .. .... ...... ..... .......... E-19...E-29 5.5 Imperial Dam to the Southerly International Boundary. .. ...... ..... ...... .... E-33 5.6 Archaeological Resources

  16. 78 FR 38307 - Gresham Municipal Utilities; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    .... Date filed: June 10, 2013. d. Applicant: Gresham Municipal Utilities. e. Name of Project: Upper Red Lake Dam Hydroelectric Project. f. Location: On Red River in Shawano County, Wisconsin. No federal... analysis at this time. n. The Upper Red Lake Dam Hydroelectric Project would consist of the following...

  17. Pequonnock River Basin, Bridgeport, Connecticut. Forest Lake Dam CT 00078. Phase I Inspection Report. National Dam Inspection Program.

    DTIC Science & Technology

    1978-08-01

    Legislation for the protection of wet lands has come too late for this watershed and the remaining small wet lands, if retained, have little value...Ridge Mountains of Central Virginia, 11.55" in Westminister , Maryland and 13" in Steuben County, Pennsylvania. HYDRAULIC ANALYSIS LAKE FOREST Due to

  18. Sharing Perspectives and Learning from One Another: Southern Paiutes, Scientists, and Policymakers in the Glen Canyon Dam Adaptive Management Program

    NASA Astrophysics Data System (ADS)

    Austin, D. E.; Bulletts, K.; Bulletts, C.

    2017-12-01

    The traditional lands of the Southern Paiute people in the United States are bounded by more than 600 miles of the Colorado River from the Kaiparowits Plateau in the north to Blythe, California in the south. According to Southern Paiute traditional knowledge, Southern Paiutes were the first inhabitants of this region and are responsible for protecting and managing this land along with the water and all that is upon and within it. In 1963, the Bureau of Reclamation completed construction of Glen Canyon Dam on the Colorado River, and in 1972, the Glen Canyon National Recreation Area was established, encompassing Lake Mead above the Dam and a world class trout fishery on the Colorado River between the Dam and Lees Ferry. Below Lees Ferry on its way to Lake Mead and Hoover Dam, the Colorado River flows through Grand Canyon National Park and the Navajo and Hualapai reservations. U.S. federal law requires that Glen Canyon Dam be operated with minimal impact to the natural, recreational, and cultural resources of the region of the Colorado River that is potentially impacted by flows from the Dam. The Grand Canyon Protection Act and the Environmental Impact Statement (EIS) for the Operation of the Glen Canyon Dam established a program of long-term research and monitoring of the effects of the Dam on these resources. In 1991, three Southern Paiute tribes - the Kaibab Band of Paiute Indians, the Paiute Indian Tribe of Utah, and the San Juan Southern Paiute Tribe - agreed to participate in studies to identify cultural resources impacted by Glen Canyon Dam and to recommend strategies for their protection, In 1995, the EIS was completed and transition to the Adaptive Management Program (AMP) called for in the Grand Canyon Protection Act was begun. At that time, Southern Paiute activities expanded to include assessing potential environmental and cultural impacts of the dam, developing monitoring procedures, and interacting with scientists, other tribal representatives, and policymakers in the AMP. This presentation summarizes an analysis of two decades of Southern Paiute participation in the AMP, highlighting key interactions and learning experiences as well as ongoing challenges for Southern Paiute participants.

  19. Monitoring the ongoing deformation and seasonal behaviour affecting Mosul Dam through space-borne SAR data

    NASA Astrophysics Data System (ADS)

    Tessari, G.; Riccardi, P.; Pasquali, P.

    2017-12-01

    Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalized to assess possible damages affecting a dam through remote sensing and civil engineering surveys.

  20. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

  1. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  2. Hypergravity Effects on Rodent Pregnancy and Parturition

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Baer, L. A.; Mills, N. A.; Wade, C. E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    No mammal has yet undergone birth, or parturition, in the microgravity of space. Previous studies (Ronco & Alberts, 2000) have shown that mid-pregnant rat dams exposed to spaceflight (0-g) and landed 48-72 hrs before term successfully delivered robust, healthy offspring Microgravity-exposed dams exhibited twice the expected numbers of labor contractions whereas length of pregnancy, duration of labor, fetal wastage, number of neonates born and litter gender ratios were identical to controls. In the present study, we report the results of rodent pregnancy and parturition at the opposite end of the gravity spectrum, in hypergravity. Dams exposed to either: 1.0-g, 1.5-g, 1.75-g or 2.0-g from Gestational day (G) 11 and throughout the births of their litters had comparable pregnancy and labor durations, fetal wastage, numbers of neonates born and litter Tender ratios. During parturition, hypergravity-exposed dams exhibited significantly fewer labor contractions as compared to 1.0-g controls. Dams that underwent birth in hypergravity had significantly fewer offspring surviving the immediate postpartum period (P1: 1.0-g, 11.92 +/- 2.84; 1.5-g, 10.88 +/- 2.17; 1.75-g, 9.22 +/-1.99; 2.0-g, 8.83 +/- 3.31). Within 24 hrs postpartum, neonatal survival was further diminished in hypergravity [P2: 100% (1.0-g); 96% (1.5-g); 96% (1.75-g); 73% (2.0-g)] and continued to decline (P10: 100%(1.0-g.); 90%(1.5-g); 87%(1.75-g), 40%(2.0-g)]. Neonatal losses stabilized by P5 for the 1.5-g andl.75-g conditions but continued until P9 for the 2.0-g condition. Together, these findings show that postnatal, but not prenatal, survival is compromised following birth in hypergravity, Maternal and neonatal factors that contribute to peri-parturitional vulnerability to altered gravity environments will be discussed.

  3. Evaluation of decision making and negotiation processes under uncertainties regarding the water management of Peiros-Parapeiros Dam, in Achaia Region (Greece).

    NASA Astrophysics Data System (ADS)

    Podimata, Marianthi V.; Yannopoulos, Panayotis C.

    2015-04-01

    Water managers, decision-makers, water practitioners and others involved in Integrated Water Resources Management often encounter the problem of finding a joint agreement among stakeholders concerning the management of a common water body. Handling conflict situations/disputes over water issues and finding an acceptable joint solution remain a thorny issue in water negotiation processes, since finding a formula for wise, fair and sustainable management of a water resource is a complex process that includes environmental, economic, technical, socio-political criteria and their uncertainties. Decision Support Systems and Adaptive Management are increasingly used in that direction. To assist decision makers in handling water disputes and execute negotiations, a conceptual tool is required. The Graph Model for Conflict Resolution is a Decision Support flexible tool for negotiation support regarding water conflicts. It includes efficient algorithms for estimating strategic moves of water stakeholders, even though there is a lack of detail concerning their real motives and prospects. It calculates the stability of their states and encourages what-if analyses. This paper presents a case study of water decision makers' evaluations concerning the management of up-coming technical infrastructure Peiros-Parapeiros Dam, in Achaia Region (Greece). The continuous consultations between institutions and representatives revealed that the formation of a joint agreement between stakeholders is not easy, due to arising conflicts and contradictions regarding the jurisdiction and legal status of the dam operator and the cost undertaking of the dam operation. This paper analyzes the positions of the parties involved in the consultation process and examines possible conflict resolution states, using GMCR II. This methodology tries to minimize uncertainty to a certain extent concerning the possible moves/decisions of involved parties regarding the operation and management of the dam by developing and simulating potential strategic interactions and multilateral negotiations and finding confidence-building cooperation schemes (cooperative arrangements) over water use and management.

  4. A New System to Monitor Data Analyses and Results of Physics Data Validation Between Pulses at DIII-D

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Schachter, J. M.; Schissel, D. P.

    2001-10-01

    A Data Analysis Monitoring (DAM) system has been developed to monitor between pulse physics analysis at the DIII-D National Fusion Facility. The system allows for rapid detection of discrepancies in diagnostic measurements or the results from physics analysis codes. This enables problems to be detected and possibly fixed between pulses as opposed to after the experimental run has concluded thus increasing the efficiency of experimental time. An example of a consistency check is comparing the stored energy from integrating the measured kinetic profiles to that calculated from magnetic measurements by EFIT. This new system also tracks the progress of MDSplus dispatching of software for data analysis and the loading of analyzed data into MDSplus. DAM uses a Java Servlet to receive messages, Clips to implement expert system logic, and displays its results to multiple web clients via HTML. If an error is detected by DAM, users can view more detailed information so that steps can be taken to eliminate the error for the next pulse. A demonstration of this system including a simulated DIII-D pulse cycle will be presented.

  5. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    NASA Astrophysics Data System (ADS)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  6. Abandoned floodplain plant communities along a regulated dryland river

    USGS Publications Warehouse

    Reynolds, L. V.; Shafroth, Patrick B.; House, P. K.

    2014-01-01

    Rivers and their floodplains worldwide have changed dramatically over the last century because of regulation by dams, flow diversions and channel stabilization. Floodplains no longer inundated by river flows following dam-induced flood reduction comprise large areas of bottomland habitat, but the effects of abandonment on plant communities are not well understood. Using a hydraulic flow model, geomorphic mapping and field surveys, we addressed the following questions along the Bill Williams River, Arizona: (i) What per cent of the bottomland do abandoned floodplains comprise? and (ii) Are abandoned floodplains quantitatively different from adjacent xeric and riparian surfaces in terms of vegetation composition and surface sediment? We found that nearly 70% of active channel and floodplain area was abandoned following dam installation. Abandoned floodplains along the Bill Williams River tend to be similar to each other yet distinct from neighbouring habitats: they have been altered physically from their historic state, leading to distinct combinations of surface sediments, hydrology and plant communities. Abandoned floodplains may transition to xeric communities over time but are likely to retain some riparian qualities as long as there is access to relatively shallow ground water. With expected increases in water demand and drying climatic conditions in many regions, these surfaces and associated vegetation will continue to be extensive in riparian landscapes worldwide

  7. Differential predation by northern squawfish Ptychocheilus oregonensis on live and dead juvenile salmonids in the Bonneville Dam tailrace (Columbia River)

    USGS Publications Warehouse

    Petersen, James H.; Gadomski, Dena M.; Poe, Thomas P.

    1994-01-01

    Juvenile salmonids (Oncorhynchus spp.) that have been killed or injured during dam passage may be highly vulnerable or preferred prey of predators that aggregate below dams. Salmonid loss due to predation will be overestimated using gut content analysis if some prey were dead or moribund when consumed. To examine this issue, field experiments were conducted in the Bonneville Dam tailrace (Columbia River) to compare rates of capture of live and dead juvenile salmonids by northern squawfish (Ptychocheilus oregonensis). Known numbers of coded-wire-tagged live and dead chinook salmon (O. tshawytscha) were released into the tailrace on six nights. Northern squawfish were collected after each release and their gut contents were examined for tags. When 50% of salmon released were dead, northern squawfish consumed 62% dead salmon. When 10% of salmon released were dead, comparable with dam passage mortality, 22% of the tags found in northern squawfish digestive tracts were from dead salmon. These results indicate that predator feeding behavior and prey condition are important considerations when estimating the impact of predation on a prey population.

  8. In vivo gene expression and the adaptive response: from pathogenesis to vaccines and antimicrobials.

    PubMed Central

    Heithoff, D M; Sinsheimer, R L; Low, D A; Mahan, M J

    2000-01-01

    Microbial pathogens possess a repertoire of virulence determinants that each make unique contributions to fitness during infection. Analysis of these in vivo-expressed functions reveals the biology of the infection process, encompassing the bacterial infection strategies and the host ecological and environmental retaliatory strategies designed to combat them (e.g. thermal, osmotic, oxygen, nutrient and acid stress). Many of the bacterial virulence functions that contribute to a successful infection are normally only expressed during infection. A genetic approach was used to isolate mutants that ectopically expressed many of these functions in a laboratory setting. Lack of DNA adenine methylase (Dam) in Salmonella typhimurium abolishes the preferential expression of many bacterial virulence genes in host tissues. Dam- Salmonella were proficient in colonization of mucosal sites but were defective in colonization of deeper tissue sites. Additionally, Dam- mutants were totally avirulent and effective as live vaccines against murine typhoid fever. Since dam is highly conserved in many pathogenic bacteria that cause significant morbidity and mortality worldwide, Dams are potentially excellent targets for both vaccines and antimicrobials. PMID:10874736

  9. A Framework to Assess the Cumulative Hydrological Impacts of Dams on flow Regime

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, D.

    2016-12-01

    In this study we proposed a framework to assess the cumulative impact of dams on hydrological regime, and the impacts of the Three Gorges Dam on flow regime in Yangtze River were investigated with the framework. We reconstructed the unregulated flow series to compare with the regulated flow series in the same period. Eco-surplus and eco-deficit and the Indicators of Hydrologic Alteration parameters were used to examine the hydrological regime change. Among IHA parameters, Wilcoxon signed-rank test and Principal Components Analysis identified the representative indicators of hydrological alterations. Eco-surplus and eco-deficit showed that the reservoir also changed the seasonal regime of the flows in autumn and winter. Annual extreme flows and October flows changes lead to negative ecological implications downstream from the Three Gorges Dam. Ecological operation for the Three Gorges Dam is necessary to mitigate the negative effects on the river ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation.

  10. The invisibility of fisheries in the process of hydropower development across the Amazon.

    PubMed

    Doria, Carolina Rodrigues da Costa; Athayde, Simone; Marques, Elineide E; Lima, Maria Alice Leite; Dutka-Gianelli, Jynessa; Ruffino, Mauro Luis; Kaplan, David; Freitas, Carlos E C; Isaac, Victoria N

    2018-05-01

    We analyze the invisibility of fisheries and inadequacy of fishers' participation in the process of hydropower development in the Amazon, focusing on gaps between legally mandated and actual outcomes. Using Ostrom's institutional design principles for assessing common-pool resource management, we selected five case studies from Brazilian Amazonian watersheds to conduct an exploratory comparative case-study analysis. We identify similar problems across basins, including deficiencies in the dam licensing process; critical data gaps; inadequate stakeholder participation; violation of human rights; neglect of fishers' knowledge; lack of organization and representation by fishers' groups; and lack of governmental structure and capacity to manage dam construction activities or support fishers after dam construction. Fishers have generally been marginalized or excluded from decision-making regarding planning, construction, mitigation, compensation, and monitoring of the social-ecological impacts of hydroelectric dams. Addressing these deficiencies will require concerted investments and efforts by dam developers, government agencies and civil society, and the promotion of inter-sectorial dialogue and cross-scale participatory planning and decision-making that includes fishers and their associations.

  11. The Interaction between Logjams, Channel Evolution, and Sports Fisheries on a Dam Regulated Low Gradient River.

    NASA Astrophysics Data System (ADS)

    Schenk, E.; Hupp, C. R.; Moulin, B.

    2014-12-01

    The purpose of our study was to determine the interaction between in-stream large wood (LW), bank erosion, and sports fisheries in the 210 river kilometer (km) Coastal Plain segment of the dam-regulated Roanoke River, North Carolina. Methods included collecting background geomorphic data including a 200 km channel geometry survey and measurements from 701 bank erosion pins at 36 cross-sections over 132 km. LW concentrations were evaluated over a 177 km reach using georeferenced aerial video taken during regulated low flow (56 m3/s). LW transport was measured using 290 radio tagged LW pieces (mean diameter = 35.0 cm, length = 9.3 m) installed between 2008 and 2010. Largemouth bass (Micropterus salmoides) were surveyed in 2010 at 29 sites using a boat mounted electroshock unit. The abundance of LW in logjams was 59 pieces/km and these were concentrated (21.5 logjams/km) in an actively eroding reach with relatively high sinuosity, high local LW production rates, and narrow channel widths. Most jams (70%) are available nearly year round as aquatic habitat, positioned either on the lower bank or submerged at low-water flows. The actively eroding reach is adjusting to upstream dam regulation by channel widening. The channel upstream of this reach has widened and stabilized while the channel downstream of the eroding reach is still relatively narrow but with lower bank erosion rates. Repeat surveys of radio tagged LW determined that transport was common throughout the study area despite dam regulation and a low channel gradient (0.0016). The mean distance travelled by a radio tagged piece of LW was 11.9 km with a maximum of 101 km (84 tags moved, 96 stationary, 110 not found). Radio tagged LW that moved during the study was found at low flow either in logjams (44%), as individual LW (43%), or submerged mid-channel (14%). Largemouth bass biomass density (g/hr effort) was highest in the actively eroding reach where logjams were most common. Our results support the hypothesis that channel evolution processes control bank stability and complexity that in turn control logjam frequency. Areas with higher concentrations of logjams have larger and more largemouth bass, a valued sports fish.

  12. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    NASA Astrophysics Data System (ADS)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    Hydropower reservoirs in deep gorges usually experience slope failures and mass movements. History also showed that some of these projects suffered severe landslides, which left lots of victims and enormous economic loss. Thus, it became vital to make substantial slope stability studies in such reservoirs to ensure safe project development. This study also presents a regional scale instability assessment of the Tekeze Hydropower reservoir slopes. Tekeze hydropower project is a newly constructed double arch dam that completed in August 2009. It is developed on Tekeze River, tributary of Blue Nile River that runs across the northern highlands of Ethiopia. It cuts a savage gorge 2000m deep, the deepest canyon in Africa. The dam is the highest dam in Ethiopia at 188m, 10 m higher than China's Three Gorges Dam. It is being developed by Chinese company at a cost of US350M. The reservoir is designed at 1140 m elevation, as retention level to store more than 9000 million m3 volume of water that covers an area of 150 km2, mainly in channel filling form. In this study, generation of digital elevation model from ASTER satellite imagery and surface field investigation is initially considered for further image processing and terrain parameters' analyses. Digitally processed multi spectral ASTER ortho-images drape over the DEM are used to have different three dimensional perspective views in interpreting lithological, structural and geomorphological features, which are later verified by field mapping. Terrain slopes are also delineated from the relief scene. A GIS database is ultimately developed to facilitate the delineation of geotechnical units for slope rock mass classification. Accordingly, 83 geotechnical units are delineated and, within them, 240 measurement points are established to quantify in-situ geotechnical parameters. Due to geotechnical uncertainties, four classification systems; namely geomorphic rock mass strength classification (RMS), slope mass rating (SMR), rock slope stability probability classification (SSPC) and geological strength index (GSI) are employed to classify the rock mass. The results are further compared with one another to delineate the instability conditions and produce an instability map of the reservoir slopes. Instability of the reservoir slopes is found to be mainly associated with daylighting discontinuities, thinly bedded/foliated slates, and karstified limestone. It is also noted that these features are mostly located in the regional gliding plane and shear zone, which are related with old slides scars. In general, the instabilities are found relatively far from the dam axis, in relatively less elevated and less steep slopes, which are going to be nearly covered by the impoundment; thus, they are normally expected to have less hazard in relation to the reservoir setting. Some minor failures will be generally expected during the reservoir filling.

  13. 77 FR 29626 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Hydroelectric, LLC (BOST3). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. The...

  14. 77 FR 29622 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ..., LLC (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, in Bossier Parish, near the Town of Ninock, Louisiana. The proposed...

  15. 77 FR 29623 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ..., LLC (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing U. S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the Town of Coushatta, Louisiana. The proposed...

  16. Local Economic Development and Hydropower Along the Brahmaputra River Basin in Northeast India

    NASA Astrophysics Data System (ADS)

    Mock, A.

    2014-12-01

    Large dams have long been controversial. They offer benefits, such as reduced greenhouse gas emissions, energy security, and local development, yet produce negative social and ecological impact, such as wildlife habitat destruction, human displacement, and the disruption of downstream fishing or agricultural industries. In the past decade, the Indian government has signed Memoranda of Understanding with hydroelectric power companies for the building of over 130 large dams on the Brahmaputra River in the state of Arunachal Pradesh in Northeast India. These dams can generate 43% of India's assessed hydropower potential to sustain India's growing economy. In addition, the Indian government claims that these dams will bring local development with needed jobs. However, local Arunachali people have protested and temporarily halted hydropower projects because of the impact of dams on their existing livelihoods. Using the North Eastern Electric Power Corporation's (NEEPCO) Ranganadi Hydroelectric Project as a case study, our project examined whether dams in Northeast India provide jobs for local people, and whether distance from the dam or work colony to a worker's hometown affects the type of job the worker received. Survey data from residents at NEEPCO's work colony in Doimukh, Arunachal Pradesh, was analyzed using SPSS (n = 18). Our research found that 100% of workers at the dam originally resided in Northeast India, with 33% from Arunachal Pradesh, and 67% from the nearby states of Assam, and Tripura. Further, our analysis revealed no statistically significant relationship between the distance to a worker's hometown and job type (p = .609). Where workers come from did not affect the type of job they received. More research using a larger sample size and additional hydroelectric project case studies is needed to further explore the relationship between worker home location and their job types.

  17. Evaluating the Mosul Dam's Instability after Resumption of Maintenance

    NASA Astrophysics Data System (ADS)

    Al-husseinawi, Y.; Li, Z.; Clarke, P. J.; Edwards, S.

    2017-12-01

    There is serious concern about the safety of Mosul dam in the north of Iraq. Millions of people in the downstream area are exposed to risk of catastrophic collapse of this dam due to its soluble foundation. Recent study (Milillo et al., 2016, Scientific Report/10.1038/srep37408) reported that the dam deformation has accelerated since August 2014, when grouting operations were interrupted due to the conflict in the region. In this study, we investigate the health of Mosul dam since Jun 2016 using three independent datasets: Sentinel-1A/B SAR images, levelling, and GPS measurement. The latter are based on three epochs of terrestrial observation for levelling and GPS data: March 2016, December 2016 and July 2017. During this period, maintenance operations are being recovered to keep the dam stable. The monitoring network, on which the levelling and GPS observations are based, consists of eighty-seven pillars distributed on the dam surface. The results from InSAR and leveling data show that the dam crest is settling by 9 mm/yr. In contrast to previous studies, our results show a deceleration in the settlement. This may be due to the maintenance operations performed in the last few months. InSAR time series analysis was performed using the in-house tool TM-SBAS. When using the small baseline Sentinel-1 constellation, all possibilities of image choice are taken into consideration and the SRTM DEM accuracy is sufficient to generate the differential interferograms. Data from both Sentinel-1A and -1B images are used, and these results can be compared with multi-platform (Envisat, Sentinel-1, Cosmo-SkyMed, and TerraSar-X) data collected during the period between March 2003 and September 2016.

  18. Analysis of the hydrological safety of dams combining two numerical tools: Iber and DualSPHysics

    NASA Astrophysics Data System (ADS)

    González-Cao, J.; García-Feal, O.; Domínguez, J. M.; Crespo, A. J. C.; Gómez-Gesteira, M.

    2018-02-01

    The upgrade of the hydrological safety of dams is a critical issue to avoid failures that can dramatically affect people and assets. This paper shows a numerical methodology to analyse the safety of the Belesar dam (NW, Spain) based on two different numerical codes. First, a mesh-based code named Iber, suited to deal with large 2-D domains, is used to simulate the impoundment. The initial conditions and the inlet provided to Iber correspond to the maximum water elevation and the maximum expected inflow to the impoundment defined in the technical specifications of the dam, which are associated to the more hazardous operation conditions of the dam. Iber provides information about the time needed for water to attain the crest of the dam when floodgates are closed. In addition, it also provides the velocity of discharge when gates are opened. Then, a mesh-free code named DualSPHysics, which is especially suited to deal with complex and violent 3-D flows, is used to reproduce the behaviour of one of the spillways of the dam starting from the results obtained with Iber, which are used as inlet conditions for DualSPHysics. The combined results of both model show that the left spillway can discharge the surplus of water associated to the maximum inflow to the reservoir if the gates of the spillways are opened before the overtopping of the dam was observed. In addition, water depth measured on the spillway is considerably lower than the lateral walls, preventing overtopping. Finally, velocities at different points of the spillway showed to be in good agreement with theoretical values.

  19. Is there enough sand? Evaluating the fate of Grand Canyon sandbars

    USGS Publications Warehouse

    Wright, S.A.; Schmidt, J.C.; Meles, T.S.; Topping, D.J.; Rubin, D.M.

    2008-01-01

    Large dams have the potential to dramatically alter the flow regime, geomorphology, and aquatic ecosystem of downstream river reaches. Development of flow release regimes in order to meet multiple objectives is a challenge facing dam operators, resource managers, and scientists. Herein, we review previous work and present new analyses related to the effects of Glen Canyon Dam on the downstream reach of the Colorado River in Marble and Grand Canyons. The dam traps the entire incoming sediment load in Lake Powell and modulates the hydrologic regime by, for example, eliminating spring snowmelt floods, resulting in changes in the geomorphology of the river downstream. The primary geomorphic impact has been the erosion of sandbars along the banks of the river. Recognition of this impact has led to many scientific studies and a variety of experimental operations of Glen Canyon Dam with the goal of rebuilding the eroding sandbars. These efforts have thus far been generally unsuccessful and the question remains as to whether or not the dam can be operated such that sandbars can be rebuilt and maintained over extended periods with the existing sediment supply. We attempt to answer this question by evaluating a dam operation that may be considered a "best-case scenario" for rebuilding and maintaining eroded sandbars. Our analysis suggests that this best-case scenario may indeed have viability for rebuilding sandbars, and that the initial rate at which sandbars could be rebuilt is comparable to the rate at which sandbars have been eroded since dam construction. The question remains open as to the viability of operations that deviate from the best-case scenario that we have defined.

  20. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  1. Analysis of Causes of Uplift Anomalies in the Čierny Váh Subsoil

    NASA Astrophysics Data System (ADS)

    Bednárová, Emília; Grambličková, Danka; Škvarka, Juraj; Majerčák, Vlastimil; Slávik, Ivan

    2017-12-01

    The pumped storage hydropower plant of Čierny Váh was created by means of damming up the valley of the Čierny Váh River. The dam is 18.5 m high above terrain and 375 m long in the dam’s crest. Total capacity of the reservoir is 5.1 million m3. Complicated geological conditions in the subsoil of dam’s body - fractured dolomite with local occurrence of tectonic breccia and clays, with the occurrence of intense disturbances - called for the construction of the grouting curtain in the dam’s subsoil. Its depth is about 20 in the area of the riverine plain, and about 60 m in the areas of abutments. During foregoing operations of the structure, more than 30 years, local anomalies in the uplift development in the right abutment’s subsoil of the lower reservoir dam were recorded. Their abnormally high values on the downstream side of grouting curtain have become the subject of extensive discussion and a stimulus for its remediation. To ensure reliable operation of the hydraulic structure a comprehensive analysis of the impact of the long-term operation of the reservoir on the dam safety was carried out. This included an examination of the causes of anomalous development of uplifts using FEM numerical modelling. The paper presents obtained results from this analysis.

  2. Preliminary study of the water-temperature regime of the North Santiam River downstream from Detroit and Big Cliff dams, Oregon

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    A riverine-temperature model and associated data-collection system were developed to help the Corps of engineers determine cost benefits of selective-withdrawal structures for future use with dams on the Willamette River System. A U.S. Geological Survey Lagrangian reference frame, digital computer model was used to simulate stream temperatures on the North Santiam River downstream of the multipurpose Detroit dam and a reregulating dam (Big Cliff), from river mile 45.6 to 2.9. In simulation, only available air-temperature and windspeed information from a nearby National Weather Service station at Salem, Oregon were used. This preliminary investigation found that the model predicted mean daily temperatures to within 0.4 C standard deviation. Analysis of projected selective-withdrawal scenarios showed that the model has the sensitivity to indicate water-temperature changes 42.7 miles downstream on the North Santiam River. (USGS)

  3. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  4. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  5. Bed Sediment Monitoring of Multiple Contiguous Small Dam Removals

    NASA Astrophysics Data System (ADS)

    Galster, J. C.; Wyrick, J. R.

    2010-12-01

    Dam removal is crucial for reconnecting river habitats, restoring passage of fish and other aquatic organisms, and restoring the free flow of water and sediment. However, removal of obsolete dams is often resisted due to concerns of releasing sediment and initiating channel instability. Two dams on the Musconetcong River in northern New Jersey have been removed as part of a watershed-wide effort to remove or breach all major obstructions to restore the river to its original free-flowing state. The two dams were consecutively situated 1 kilometer apart and their removals provided an opportunity to study the geomorphic response in the form of bed elevation changes and sediment size through pre- and post-removal monitoring. Initial geomorphic surveys of the riverbed in the vicinity of and between the two dams have shown areas of erosion and deposition. These surveys have established a set of control points along the river channel between the two dams, and confirm the downstream movement of a sediment plume and localized areas of erosion. At the upstream dam, comparisons pre- and post-dam removal surveys show greater than 100 cubic meters of sediment being both eroded and deposited within the site. Most but not all of the erosion occurred around the newly exposed sediment bar upstream of the former dam, where the thalweg has reestablished itself following the dam’s removal. Areas that were excavated during removal have experienced deposition. Most of the deposition occurred downstream and on the left-hand bank. Due to the two low flow culverts in the former dam, a mid-channel sediment bar formed but has subsequently eroded. At the downstream dam site, erosion has removed up to 1.1 m of sediment from the bed in places while depositing up to 0.5 m sediment in others. As sediment from the former impoundment migrated through the project site, areas excavated during the removal became areas of deposition following the removal, and; alternately, areas in the channel margins where sediments were placed experienced gradual erosion. Grain size analysis shows a coarsening of the riverbed over the first nine months since removal. Grain size analyses were done upstream and downstream of the dam sites as well as at two locations between the sites. Pebble counts were completed using the random walk method at each of the six sites. The largest change in grain sizes at the four sites occurred upstream of the downstream dam site, where there was a significant coarsening of the sediment from October 2008 to June 2009. This has most likely occurred from the increase in energy upstream of the dam post-removal, which has transported many of the fine-grained sediments downstream. Downstream of this dam site sediment size has not significantly changed, suggesting that the fine sediments have been transported downstream far enough to leave the site. Surveys of the channel thalweg above and below both dams also show a pulse of sediment migrating slowing from the uppermost impoundment areas. Long-term monitoring of the channel thalweg may reveal reach-level changes in channel slope.

  6. Water contaminations in Karaj dam's rivers and their relationship with outcrop rocks with using GIS method

    NASA Astrophysics Data System (ADS)

    Shadmehr, Mehdi; Bafekr, Gilava; Pirouz, Mortaza

    2010-05-01

    Karaj Dam is located in the middle part of Alborz Mountain and its distance from Capital city, Tehran, is 63 kilometers. Watershed area approximately is 1000 square kilometers, average rate of rainfall is 625 mm per year and watershed altitude is between 4900 to 1700 meters from open sea. Karaj Dam is as a drinking water source for Tehran and Karaj cities and 21000 hectares of agricultural irrigation. Our studies is connected with As, Pb, Sb, Hg, Mo contaminant elements . We used 194 rock samples for chemical analysis and 12 water quality control stations. Chemical analysis values of rocks in the GIS divided into different classes with regard to the standard allowable values. We used SRTM data to find major catchments area and small watershed basin area behind the dam. After the necessary calculations, we determined which small basin area can be important to make more elements to pollution. The results compared with 12 water quality control stations and direct connection between the chemical composition of the rocks and water contaminated that comes from that area are very obvious. Our Study shows that natural contaminations can be enter to cycle from the southern part of basin, 14 kilometers from dam to east. Water contaminations is located along Shahrestanak river to Shahrestanak bridge and then to Mahan factory. The catchment's area for this river has highest amount of As, Sb, Pb and water quality control stations close that area show high contamination.

  7. Impact of damming on the Chironomidae of the upper zone of a tropical run-of-the-river reservoir.

    PubMed

    Brandimarte, A L; Anaya, M; Shimizu, G Y

    2016-06-01

    We examined the effects of the Mogi-Guaçu river damming (São Paulo State, Brazil) on the Chironomidae fauna. Pre, during, and post-filling sampling was carried out in the main channel and margins of one site in the upper zone of the reservoir, using a modified Petersen grab (325 cm2). We evaluated the total, subfamily, and tribe densities and also their relative abundance. Analysis of genera included densities, relative abundance, richness, and dominance. The Rosso's ecological value index (EVI) determined the ecological importance of each genus. There was a tendency of decrease of the total Chironomidae density, increase in the percentage of Chironomini, and decrease in densities and percentages of Orthocladiinae and Tanytarsini. These changes in percentage were respectively related to Polypedilum, Lopescladius, and Rheotanytarsus, the genera with the highest EVI values. After-filling richness was lower in the margins and dominance of genera did not change significantly. Chironomidae in the margins was more sensitive to damming than in the main channel. This difference in sensibility sustains the use of Chironomidae as bioindicators. Damming impact was indicated by the reduction of both genera richness in the margins and relative abundance of groups typical of faster waters. The results have highlighted the need for multi-habitat analysis combined with a before-after sampling approach in the environmental impact studies concerning the damming impact on the benthic fauna.

  8. Numerical Analysis on Seepage in the deep overburden CFRD

    NASA Astrophysics Data System (ADS)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  9. Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method

    NASA Astrophysics Data System (ADS)

    Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie

    2016-09-01

    This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.

  10. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.

  11. Integrated Flood Forecast and Virtual Dam Operation System for Water Resources and Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio

    2014-05-01

    While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.

  12. Landslide study at Sacele reservoir in Romania

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Ambrosi, Christian; Spataro, Alessio; Martin, James; Olgun, Guney

    2010-05-01

    Sacele reservoir is locate on the river Tàrlung, about 3 Km upstream from Sacele and about 12 Km from Brasov (Romania). It represents the main drinking water source for Brasov. The Sacele reservoir is recognized as a dam of exceptional importance and therefore it requires special surveillance. In the East side of the basin, in proximity of the barrage, the slope shows evidences of instability; for this reason stabilization works, mainly consisting in re-profiling the slope, and drainage installation, has been conducted without success. This study, financed by the World Bank, aims to provide important information for the estabilishment of an authomatic monitoring system able to reduce the existing risk. Conducted studies includes: - analysis of existing informations - data acquisition by mean of field survey (geodetical and gelogical) and in situ investigation (boreholes, geophisical, sample test) - developement of GIS based geological model - developement of landslide models based on FLAC and FLAC3D Finally the model results leading to the identification of the triggering factors are discussed. The conducted work is a comprehensive study (from data to models) that highligth some interesting conclusions showing how the "stabilization" works increased total displacements and shear strain, and produced a new deeper cinematic.

  13. High-resolution topography and geomorphology of select archeological sites in Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Corbett, Skye C.; Sankey, Joel B.; Fairley, Helen C.

    2014-01-01

    Along the Colorado River corridor between Glen Canyon Dam and Lees Ferry, Arizona, located some 25 km downstream from the dam, archaeological sites dating from 8,000 years before present through the modern era are located within and on top of fluvial and alluvial terraces of the prehistorically undammed river. These terraces are known to have undergone significant erosion and retreat since emplacement of Glen Canyon Dam in 1963. Land managers and policy makers associated with managing the flow of the Colorado River are interested in understanding how the operations of Glen Canyon Dam have affected the archeological sites associated with these terraces and how dam-controlled flows currently interact with other landscape-shaping processes. In 2012, the U.S. Geological Survey initiated a research project in Glen Canyon to study the types and causes of erosion of the terraces. This report provides the first step towards this understanding by presenting comparative analyses on several types of high-resolution topographic data (airborne lidar, terrestrial lidar, and airborne photogrammetry) that can be used in the future to document and analyze changes to terrace-based archaeological sites. Herein, we present topographic and geomorphologic data of four archaeological sites within a 14 km segment of Glen Canyon using each of the three data sources. In addition to comparing each method’s suitability for adequately representing the topography of the sites, we also analyze the data within each site’s context and describe the geomorphological processes responsible for erosion. Our results show that each method has its own strengths and weaknesses, and that terrestrial and airborne lidar are essentially interchangeable for many important topographic characterization and monitoring purposes. However, whereas terrestrial lidar provides enhanced capacity for feature recognition and gully morphology delineation, airborne methods (whether by way of laser or optical sensors) are better suited for reach- and regional-scale mapping. Our site-specific geomorphic analyses of the four archeological sites indicate that their current topographical conditions are a result of different and sometimes competing erosional agents, including bedrock- and terrace-based overland flow, fluvial-induced terrace bank collapse, and alluvial-fan-generated debris flows. Although the influences of anthropogenic-induced erosion from dam operations are not specifically analyzed in this report, we do identify geomorphic settings where dam operations are either more or less likely to affect archeological site stability. This information can be used to assist with future monitoring efforts of these sites and identification of similar conditions for other archeological sites along the Colorado River corridor in Glen Canyon.

  14. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine the exposed shoreface of Stampede Reservoir near the dam, and exposures of steeply dipping strike-slip faults were found.

  15. 77 FR 68757 - Clean River Power MR-1, LLC; Clean River Power MR-2, LLC; Clean River Power MR-3, LLC; Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... environmental analysis at this time. n. The proposed Beverly Lock and Dam Water Power Project would be located... River; (3) two turbine-generator units providing a combined installed capacity of 3.0 megawatts (MW); (4... about 17,853 megawatt-hours (MWh). The proposed Devola Lock and Dam Water Power Project would be located...

  16. Temporary Restoration of Bull Trout Passage at Albeni Falls Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paluch, Mark; Scholz, Allan; McLellan, Holly

    2009-07-13

    This study was designed to monitor movements of bull trout that were provided passage above Albeni Falls Dam, Pend Oreille River. Electrofishing and angling were used to collect bull trout below the dam. Tissue samples were collected from each bull trout and sent to the U. S. Fish and Wildlife Service Abernathy Fish Technology Center Conservation Genetics Lab, Washington. The DNA extracted from tissue samples were compared to a catalog of bull trout population DNA from the Priest River drainage, Lake Pend Oreille tributaries, and the Clark Fork drainage to determine the most probable tributary of origin. A combined acousticmore » radio or radio tag was implanted in each fish prior to being transported and released above the dam. Bull trout relocated above the dam were able to volitionally migrate into their natal tributary, drop back downstream, or migrate upstream to the next dam. A combination of stationary radio receiving stations and tracking via aircraft, boat, and vehicle were used to monitor the movement of tagged fish to determine if the spawning tributary it selected matched the tributary assigned from the genetic analysis. Seven bull trout were captured during electrofishing surveys in 2008. Of these seven, four were tagged and relocated above the dam. Two were tagged and left below the dam as part of a study monitoring movements below the dam. One was immature and too small at the time of capture to implant a tracking tag. All four fish released above the dam passed by stationary receivers stations leading into Lake Pend Oreille and no fish dropped back below the dam. One of the radio tags was recovered in the tributary corresponding with the results of the genetic test. Another fish was located in the vicinity of its assigned tributary, which was impassable due to low water discharge at its mouth. Two fish have not been located since entering the lake. Of these fish, one was immature and not expected to enter its natal tributary in the fall of 2008. The other fish was large enough to be mature, but at the time of capture its sex was unable to be determined, indicating it may not have been mature at the time of capture. These fish are expected to enter their natal tributaries in early summer or fall of 2009.« less

  17. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares.

    PubMed

    Sheriff, Michael J; Krebs, Charles J; Boonstra, Rudy

    2009-11-01

    1. Prey responses to high predation risk can be morphological or behavioural and ultimately come at the cost of survival, growth, body condition, or reproduction. These sub-lethal predator effects have been shown to be mediated by physiological stress. We tested the hypothesis that elevated glucocorticoid concentrations directly cause a decline in reproduction in individual free-ranging female snowshoe hares, Lepus americanus. We measured the cortisol concentration from each dam (using a faecal analysis enzyme immunoassay) and her reproductive output (litter size, offspring birth mass, offspring right hind foot (RHF) length) 30 h after birth. 2. In a natural monitoring study, we monitored hares during the first and second litter from the population peak (2006) to the second year of the decline (2008). We found that faecal cortisol metabolite (FCM) concentration in dams decreased 52% from the first to the second litter. From the first to the second litter, litter size increased 122%, offspring body mass increased 130%, and offspring RHF length increased 112%. Dam FCM concentrations were inversely related to litter size (r(2) = 0.19), to offspring birth mass (r(2) = 0.32), and to offspring RHF length (r(2) = 0.64). 3. In an experimental manipulation, we assigned wild-caught, pregnant hares to a control and a stressed group and held them in pens. Hares in the stressed group were exposed to a dog 1-2 min every other day before parturition to simulate high predation risk. At parturition, unsuccessful-stressed dams (those that failed to give birth to live young) and stressed dams had 837% and 214%, respectively, higher FCM concentrations than control dams. Of those females that gave birth, litter size was similar between control and stressed dams. However, offspring from stressed dams were 37% lighter and 16% smaller than offspring from control dams. Increasing FCM concentration in dams caused the decline of offspring body mass (r(2) = 0.57) and RHF (r(2) = 0.52). 4. This is the first study in a free-ranging population of mammals to show that elevated, predator-induced, glucocorticoid concentrations in individual dams caused a decline in their reproductive output measured both by number and quality of offspring. Thus, we provide evidence that any stressor, not just predation, which increases glucocorticoid concentrations will result in a decrease in reproductive output.

  18. Sensitivity of Water-Energy Nexus to dam operation: A Water-Energy Productivity concept.

    PubMed

    Basheer, Mohammed; Elagib, Nadir Ahmed

    2018-03-01

    Understanding and modelling the complex nature of interlinkages between water and energy are essential for efficient use of the two resources. Hydropower storage dams represent an interesting example of the water-energy interdependencies since they are often multipurpose. The concept of Water-Energy Productivity (WEP), defined as the amount of energy produced per unit of water lost in the process, is introduced in this study to illustrate the relationship between energy generation and water losses by examining the sensitivity of the Water-Energy Nexus (WEN) to changing dam operation policy. This concept is demonstrated by developing a water allocation model of the White Nile in Sudan, including Jebel Aulia Dam (JAD), using a general river and reservoir simulation software called RiverWare. A number of 77 operation scenarios of JAD are examined for 30 hydrologic years (1980-2009), considering reducing the Full Supply Level (FSL) gradually from its current value to the minimum possible value, increasing the Minimum Operating Level (MOL) gradually to the maximum possible level, and operating the dam at a Constant Operating Level (COL). The results show that raising the operating level does not necessarily increase the WEP. In comparison to the current policy, the analysis shows that a maximum WEP of 32.6GWh/BCM (GWh/Billion Cubic Meters) would be reached by raising the MOL to 375masl (meters above sea level), resulting in an increase in average annual energy generation to 164.6GWh (+18.1%) at the expense of an annual water loss of 5.05BCM (+12.7%). Even though this operation policy results in a more efficient water use compared to the original operation policy, a basin-wide assessment that includes all hydropower storage dams in the Nile basin should be conducted to decide on where and how much energy should be generated. The present analysis and future examination of the multi-dimensions of the WEN in the context of dam operation are imperative to improve the decision making in the quest for efficient resource use and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Maternal Vaccination with a Fimbrial Tip Adhesin and Passive Protection of Neonatal Mice against Lethal Human Enterotoxigenic Escherichia coli Challenge

    PubMed Central

    Luiz, Wilson B.; Rodrigues, Juliana F.; Crabb, Joseph H.

    2015-01-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 107 bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126

  20. The future role of dams in the United States of America

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Allaire, Maura; Devineni, Naresh; Kwon, Hyun Han; Pal, Indrani; Raff, David; Wegner, David

    2017-02-01

    xml:id="wrcr22481-sec-1001" numbered="no">Storage and controlled distribution of water have been key elements of a human strategy to overcome the space and time variability of water, which have been marked by catastrophic droughts and floods throughout the course of civilization. In the United States, the peak of dam building occurred in the mid-20th century with knowledge limited to the scientific understanding and hydrologic records of the time. Ecological impacts were considered differently than current legislative and regulatory controls would potentially dictate. Additionally, future costs such as maintenance or removal beyond the economic design life were not fully considered. The converging risks associated with aging water storage infrastructure and uncertainty in climate in addition to the continuing need for water storage, flood protection, and hydropower result in a pressing need to address the state of dam infrastructure across the nation. Decisions regarding the future of dams in the United States may, in turn, influence regional water futures through groundwater outcomes, economic productivity, migration, and urban growth. We advocate for a comprehensive national water assessment and a formal analysis of the role dams play in our water future. We emphasize the urgent need for environmentally and economically sound strategies to integrate surface and groundwater storage infrastructure in local, regional, and national water planning considerations. A research agenda is proposed to assess dam failure impacts and the design, operation, and need for dams considering both paleo and future climate, utilization of groundwater resources, and the changing societal values toward the environment.

  1. Development of probabilistic operating rules for Hluhluwe Dam, South Africa

    NASA Astrophysics Data System (ADS)

    Ndiritu, J.; Odiyo, J.; Makungo, R.; Mwaka, B.; Mthethwa, N.; Ntuli, C.; Andanje, A.

    2017-08-01

    Hluhluwe Dam, with a 30 million m3 reservoir that supplies water for irrigation and Hluhluwe municipality in Kwa-Zulu Natal Province, South Africa, was consistently experiencing low storage levels over several non-drought years since 2001. The dam was operated by rules of thumb and there were no records of water releases for irrigation - the main user of the dam. This paper describes an assessment of the historic behaviour of the reservoir since its completion in 1964 and the development of operating rules that accounted for: i) the multiple and different levels of reliability at which municipal and irrigation demands need to be supplied, and ii) inter-annual and inter-decadal variability of climate and inflows into the dam. The assessment of the behaviour of the reservoir was done by simulation assuming trigonometric rule curves that were optimized to maximize both yield and storage state using the SCE-UA method. The resulting reservoir behaviour matched the observed historic trajectory reasonably well and indicated that the dam has mainly been operated at a demand of 10 million m3/year until 2000 when the demand suddenly rose to 25 million m3/year. Operating rules were developed from a statistical analysis of the base yields from 500 simulations of the reservoir each using 5 year-long stochastically generated sequences of inflows, rainfall and evaporation. After the implementation of the operating rules in 2009, the storage state of the dam improved and matched those of other reservoirs in the region that had established operating rules.

  2. Pilot plant studies of the CO{sub 2} capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO{sub 2} capture technology development plant and the Boundary Dam CO{sub 2} capture demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idem, R.; Wilson, M.; Tontiwachwuthikul, P.

    2006-04-12

    Evaluations of the benefits of using a mixed MEA/MDEA solvent for CO{sub 2} capture in terms of the heat requirement for solvent regeneration, lean and rich loadings, CO{sub 2} production, and solvent stability were performed by comparing the performance of aqueous 5 kmol/m{sup 3} MEA with that of an aqueous 4:1 molar ratio MEA/MDEA blend of 5 kmol/ml total amine concentration as a function of the operating time. The tests were performed using two pilot CO{sub 2} capture plants of the International Test Centre for CO{sub 2} Capture (ITC), which provided two different sources and compositions of flue gas. Themore » University of Regina CO{sub 2} plant (UR unit) processes flue gas from the combustion of natural gas while the Boundary Dam CO{sub 2} plant (BD unit) processes flue gas from a coal-fired electric power station. The results show that a huge heat-duty reduction can be achieved by using a mixed MEA/MDEA solution instead of a single MEA solution in an industrial environment of a CO{sub 2} capture plant. However, this benefit is dependent on whether the chemical stability of the solvent can be maintained.« less

  3. Influence of dams on river-floodplain dynamics in the Elwha River, Washington

    USGS Publications Warehouse

    Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.

    2008-01-01

    The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.

  4. Increasing drought risk in large-dam basins of South Korea

    NASA Astrophysics Data System (ADS)

    Jung, I. W.; Shin, Y.; Park, J.; Kim, D.

    2017-12-01

    In 2015, South Korea suffered one of the worst droughts in recent years. Seoul and Gyeonggi and Gangwon provinces experienced severe drought conditions, receiving less than 43 percent of the annual precipitation average of the past 30 years. Additionally, the 2015 summer precipitation was less than half of the average. The lack of summer precipitation induced serious shortages in dam storages, which are important supplies for the dry season. K-water, a public company managing South Korea's public water supply system, is fighting to secure public water supply and minimize potential damage that may occur before the subsequent wet season. This study detected significant decreasing trends (95% confidence interval) in dry-seasonal runoff rates (=dam inflow / precipitation) in three dams basins (Soyang, Chungju, and Andong). Changes in potential evapotranspiration (PET) and precipitation indices were examined to investigate potential causes of decreasing runoff rates trends. However, there were no clear relations among changes in runoff rates, PET, and precipitation indices. Runoff rate reduction in the three dams may increase the risk of dam operational management and long-term water resource planning. Therefore, it will be necessary to perform a multilateral analysis to better understand decreasing runoff rates.AcknowledgementsThis research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.

  5. Amazonian freshwater habitats experiencing environmental and socioeconomic threats affecting subsistence fisheries.

    PubMed

    Alho, Cleber J R; Reis, Roberto E; Aquino, Pedro P U

    2015-09-01

    Matching the trend seen among the major large rivers of the globe, the Amazon River and its tributaries are facing aquatic ecosystem disruption that is affecting freshwater habitats and their associated biodiversity, including trends for decline in fishery resources. The Amazon's aquatic ecosystems, linked natural resources, and human communities that depend on them are increasingly at risk from a number of identified threats, including expansion of agriculture; cattle pastures; infrastructure such as hydroelectric dams, logging, mining; and overfishing. The forest, which regulates the hydrological pulse, guaranteeing the distribution of rainfall and stabilizing seasonal flooding, has been affected by deforestation. Flooding dynamics of the Amazon Rivers are a major factor in regulating the intensity and timing of aquatic organisms. This study's objective was to identify threats to the integrity of freshwater ecosystems, and to seek instruments for conservation and sustainable use, taking principally fish diversity and fisheries as factors for analysis.

  6. Monitoring As A Helpful Means In Forensic Analysis Of Dams Static Instability Events

    NASA Astrophysics Data System (ADS)

    Solimene, Pellegrino

    2013-04-01

    Monitoring is a means of controlling the behavior of a structure, which during its operational life is subject to external actions as ordinary loading conditions and disturbing ones; these factors overlap with the random manner defined by the statistical parameter of the return period. The analysis of the monitoring data is crucial to gain a reasoned opinion on the reliability of the structure and its components, and also allows to identify, in the overall operational scenario, the time when preparing interventions aimed at maintaining the optimum levels of functionality and safety. The concept of monitoring in terms of prevention is coupled with the activity of Forensic Engineer who, by Judiciary appointment for the occurrence of an accident, turns its experience -the "Scientific knowledge"- in an "inverse analysis" in which he summed up the results of a survey, which also draws on data sets arising in the course of the constant control of the causes and effects, so to determine the correlations between these factors. His activity aims at giving a contribution to the identification of the typicality of an event, which represents, together with "causal link" between the conduct and events and contra-juridical, the factors judging if there an hypothesis of crime, and therefore liable according to law. In Italy there are about 10,000 dams of varying sizes, but only a small portion of them are considered "large dams" and subjected to a rigorous program of regular inspections and monitoring, in application of specific rules. The rest -"small" dams, conventionally defined as such by the standard, but not for the impact on the area- is affected by a heterogeneous response from the local authorities entrusted with this task: there is therefore a high potential risk scenario, as determined by the presence of not completely controlled structures that insist even on areas heavily populated. Risk can be traced back to acceptable levels if they were implemented with the necessary uniformity of procedures usually adopted for major works, and, therefore, is intended to emphasize the importance to have a more complete cognitive picture of the issues affecting the dams, especially so-called "minor" and their relationship with the embedding territory. This contribution consists of a brief digression on dams, their characteristics, functions performed by them and their relationship with the territory in terms of risk and benefit. After, it is discussed the concept of risk factors that characterize the importance of monitoring extended to the crisis management with a focus to the fast verification of structural reliability after a crisis event. A case study of the vulnerability of a dam under seismic action by "Event tree analysis" is presented, based on data acquired in the course of constant surveillance and control. Some considerations about the monitoring actions related specifically to earthquakes and weather events are presented in order to emphasize its function with regard to risk mitigation through early warning procedures. Finally, the results of a survey on the main accidents involving Italian and USA dams are presented even as a factor pushing to improve the national regulatory framework . Finally, we will discuss some anomalies in the regional rules, leading to interruption in the technical management of the dams by the Public Authority, holding the function of supervision and control over these works and the role of reference for the management of flood mitigation for the hydraulic system. Several hints are provided to contribute towards overcoming the problems that emerged, necessary and urgent to provide answer to the question of security of civil society.

  7. National Program for Inspection of Non-Federal Dams. Tihonet Pond Number 2 Dam (MA 00030), Massachusetts Coastal Basin, Wareham, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    INSPECTION REPORT IDENTIFICATION NO.: MA 00030 S NAME OF DAM : TIHONET POND NO.2 DAM TOWN : WAREHAM COUNTY AND STATE : PLYMOUTH , MASSACHUSETTS STREAM...northeast of this dam serves to impound the water of Tihonet Pond also. This dam is referred to as Dam # 14 on Plymouth County Inspection Reports and...1. Approximately 1800 ft. northeast of this dam a second dam is located. This dam is referred to as Dam # 14 on Plymouth County . Inspection Reports

  8. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Volume II: Experiment Salmonid Survival with Combined PIT-CWT Tagging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Ken

    1997-06-01

    Experiment designs to estimate the effect of transportation on survival and return rates of Columbia River system salmonids are discussed along with statistical modeling techniques. Besides transportation, river flow and dam spill are necessary components in the design and analysis otherwise questions as to the effects of reservoir drawdowns and increased dam spill may never be satisfactorily answered. Four criteria for comparing different experiment designs are: (1) feasibility, (2) clarity of results, (3) scope of inference, and (4) time to learn. In this report, alternative designs for conducting experimental manipulations of smolt tagging studies to study effects of river operationsmore » such as flow levels, spill fractions, and transporting outmigrating salmonids around dams in the Columbia River system are presented. The principles of study design discussed in this report have broad implications for the many studies proposed to investigate both smolt and adult survival relationships. The concepts are illustrated for the case of the design and analysis of smolt transportation experiments. The merits of proposed transportation studies should be measured relative to these principles of proper statistical design and analysis.« less

  9. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    USGS Publications Warehouse

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because little information is available about their survival as they pass hydroelectric dams in the lower Columbia River. Collecting information on fish released in the Mid-Columbia River, as well as on fish released 8 kilometers upstream of McNary Dam, allowed us to evaluate similarities and differences in passage and survival probabilities. In general, juvenile salmonids released in the Mid-Columbia River and detected at and downstream of McNary Dam showed trends in passage and survival probabilities that were similar to fish released 8 kilometers upstream of McNary Dam. This suggests that increased migration time or length of migration had little effect on behavior and survival of Mid-Columbia River released juvenile salmonids detected at McNary Dam.

  10. Modeling Streamflow and Water Temperature in the North Santiam and Santiam Rivers, Oregon, 2001-02

    USGS Publications Warehouse

    Sullivan, Annett B.; Roundsk, Stewart A.

    2004-01-01

    To support the development of a total maximum daily load (TMDL) for water temperature in the Willamette Basin, the laterally averaged, two-dimensional model CE-QUAL-W2 was used to construct a water temperature and streamflow model of the Santiam and North Santiam Rivers. The rivers were simulated from downstream of Detroit and Big Cliff dams to the confluence with the Willamette River. Inputs to the model included bathymetric data, flow and temperature from dam releases, tributary flow and temperature, and meteorologic data. The model was calibrated for the period July 1 through November 21, 2001, and confirmed with data from April 1 through October 31, 2002. Flow calibration made use of data from two streamflow gages and travel-time and river-width data. Temperature calibration used data from 16 temperature monitoring locations in 2001 and 5 locations in 2002. A sensitivity analysis was completed by independently varying input parameters, including point-source flow, air temperature, flow and water temperature from dam releases, and riparian shading. Scenario analyses considered hypothetical river conditions without anthropogenic heat inputs, with restored riparian vegetation, with minimum streamflow from the dams, and with a more-natural seasonal water temperature regime from dam releases.

  11. Impact of Climate Change and Human Intervention on River Flow Regimes

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Mittal, Neha; Mishra, Ashok

    2017-04-01

    Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.

  12. Do dam constructions in a Vietnamese river basin result in change points in hydrologic regime and how reliable are different methods?

    NASA Astrophysics Data System (ADS)

    Vu, Tinh Thi; Kiesel, Jens; Guse, Bjoern; Fohrer, Nicola

    2017-04-01

    The damming of rivers causes one of the most considerable impacts of our society on the riverine environment. More than 50% of the world's streams and rivers are currently impounded by dams before reaching the oceans. The construction of dams is of high importance in developing and emerging countries, i.e. for power generation and water storage. In the Vietnamese Vu Gia - Thu Bon Catchment (10,350 km2), about 23 dams were built during the last decades and store approximately 2,156 billion m3 of water. The water impoundment in 10 dams in upstream regions amounts to 17 % of the annual discharge volume. It is expected that impacts from these dams have altered the natural flow regime. However, up to now it is unclear how the flow regime was altered. For this, it needs to be investigated at what point in time these changes became significant and detectable. Many approaches exist to detect changes in stationary or consistency of hydrological records using statistical analysis of time series for the pre- and post-dam period. The objective of this study is to reliably detect and assess hydrologic shifts occurring in the discharge regime of an anthropogenically influenced river basin, mainly affected by the construction of dams. To achieve this, we applied nine available change-point tests to detect change in mean, variance and median on the daily and annual discharge records at two main gauges of the basin. The tests yield conflicting results: The majority of tests found abrupt changes that coincide with the damming-period, while others did not. To interpret how significant the changes in discharge regime are, and to which different properties of the time series each test responded, we calculated Indicators of Hydrologic Alteration (IHAs) for the time period before and after the detected change points. From the results, we can deduce, that the change point tests are influenced in different levels by different indicator groups (magnitude, duration, frequency, etc) and that within the indicator groups, some indicators are more sensitive than others. For instance, extreme low-flow, especially 7- and, 30-day minima and mean minimum low flow, as well as the variability of monthly flow are highly-sensitive to most detected change points. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts.

  13. Engineering and Design: Geotechnical Analysis by the Finite Element Method

    DTIC Science & Technology

    1995-07-31

    of an Idealized ’Wet Clay’.” Nobari, E. S., Lee, K. L., and Duncan, J. M. Soil Mechanics, Wiesbaden I, 47-54. (1973). “ Hydraulic Fracturing in Zoned...nonsteady flow conditions - Pore pressures induced by loading under undrained conditions - Potential for cracking in embankment dams - Potential for hydraulic ... fracturing in embankment dams - Potential for hydraulic separation between concrete and soil - Settlements and horizontal movements b. Comparing

  14. Characterizing Axial Stiffness of Individual Batter Piles with Emphasis on Elevated, Laterally Loaded, Clustered Pile Groups

    DTIC Science & Technology

    2016-11-01

    1 1.3 Analyzing massive concrete pile-founded structures .................................................. 1 1.4 Pile...at the impact deck for the Lock and Dam 3 structural system at each incremental analysis step with C33=0.55...55 Table 4.2. Axial force, pile cap moment, and mudline moment for the three piles in the Lock and Dam 3 structural system at each

  15. Analysis of Existing Information on Adult Fish Movements through Dams on the Upper Mississippi River,

    DTIC Science & Technology

    1984-02-01

    of the number of fish that may have passed through a dam was given. REFERENCE: Gustafson. S. P., J. L. Gels , and C. J. Bublitz. 1979. 1978 Progress...77 253 9.5 0 If 03/03/77 162 53.5 0 " 01/18/77 118 1 0 " 05/06/77 226 4 0 03/11/77 170 28 0 ASO ,"j

  16. Simplified Dynamic Structural Time History Response Analysis of Flexible Approach Walls Founded on Clustered Pile Groups Using Impact_Deck

    DTIC Science & Technology

    2016-07-01

    Abstract Flexible approach walls are being considered for retrofits, replacements, or upgrades to Corps lock structures that have exceeded their...case of Lock and Dam 3, the peak reaction force for any individual pile group was 11% of the peak impact load. DISCLAIMER: The contents of this...Generation Flexible Approach Walls ......................................... 1 1.2.1 Lock and Dam 3

  17. Flood prevention dams for arid regions at a micro-scale sub-catchment, case study: Tabuk, Saudi Arabia.

    PubMed

    Abushandi, Eyad

    2016-12-01

    Unexpected flash flooding is one of the periodic hydrological problems affecting the city of Tabuk in Saudi Arabia. The region has high potential for floods as it suffers high rainfall intensity in a short time and also has high urbanization rates and topographic complexity. Constructing flood prevention dams is one option to solve this problem. A cost-effective design requires a detailed feasibility study and analysis for the selection of suitable sites. The aim of this study was to develop a method for selecting a suitable site for flood protection dams in the Abu Saba'a district, the most affected part of the city of Tabuk during the flash flood in January 2013. Spatial analysis was applied using Landsat Thematic Mapper images and Shuttle Radar Topography Mission digital elevation model to select a site in the Abu Saba'a area. A simple model using ArcGIS was built including all suggested parameters. The results showed the best site for a dam was 2 km distance backfrom the area, where all parameter values matched. The results showed that the dynamic properties of land cover can affect site selection. It is therefore suggested that more field and hydrological data should be gathered for greater accuracy.

  18. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects ofmore » local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at large spatial scales as to generalize the directionality of hydrologic responses.« less

  19. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  20. Geomorphic change on the Missouri River during the flood of 2011: Chapter I in 2011 Floods of the Central United States

    USGS Publications Warehouse

    Schenk, Edward R.; Skalak, Katherine J.; Benthem, Adam J.; Dietsch, Benjamin J.; Woodward, Brenda K.; Wiche, Gregg J.; Galloway, Joel M.; Nustad, Rochelle A.; Hupp, Cliff R.

    2014-01-01

    The 2011 flood on the Missouri River was one of the largest floods since the river became regulated by a series of high dams in the mid-20th century (greater than 150,000 cubic feet per second during the peak). The flood persisted through most of the summer, eroding river banks, adding sand to sandbars, and moving the thalweg of the channel in many places. The U.S. Geological Survey monitored and assessed the changes in two reaches of the Missouri River: the Garrison Reach in North Dakota, bounded by the Garrison Dam and the Lake Oahe Reservoir, and the Recreational Reach along the boundary of South Dakota and Nebraska bounded upstream by the Gavins Point Dam and extending downstream from Ponca, Nebraska. Historical cross-section data from the Garrison Dam closure until immediately before the flood indicate that the upper reaches of the river near the dam experienced rapid erosion, channel incision, and island/sandbar loss following the dam closure. The erosion, incision, and land loss lessened with time. Conversely, the lower reach near the Lake Oahe Reservoir slackwaters became depositional with channel in-filling and sandbar growth through time as the flow slowed upon reaching the reservoir. Preliminary post-flood results in the Garrison Reach indicate that the main channel has deepened at most cross-sections whereas sandbars and islands have grown vertically. Sandbars and the thalweg migrated within the Recreational Reach, however net scouring and aggradation was minimal. Changes in the two-dimensional area of sandbars and islands are still being assessed using high-resolution satellite imagery. A sediment balance can be constructed for the Garrison Reach using cross-sections, bathymetric data, sand traps for wind-blown material, a quasi-three-dimensional numerical model, and dating of sediment cores. Data collection and analysis for a reach-scale sediment balance and a concurrent analysis of the effects of riparian and island vegetation on sediment deposition currently (2014) is ongoing.

  1. Raman spectroscopy analysis of differences in composition of spent culture media of in vitro cultured preimplantation embryos isolated from normal and fat mice dams.

    PubMed

    Fabian, Dušan; Kačmarová, Martina; Kubandová, Janka; Čikoš, Štefan; Koppel, Juraj

    2016-06-01

    The aim of the present study was to compare overall patterns of metabolic activity of in vitro cultured preimplantation embryos isolated from normal and fat mice dams by means of non-invasive profiling of spent culture media using Raman spectroscopy. To produce females with two different types of body condition (normal and fat), a previously established two-generation model was used, based on overfeeding of experimental mice during prenatal and early postnatal development. Embryos were isolated from spontaneously ovulating and naturally fertilized dams at the 2-cell stage of development and cultured to the blastocyst stage in synthetic oviductal medium KSOMaa. Embryos from fat mice (displaying significantly elevated body weight and fat) showed similar developmental capabilities in vitro as embryos isolated from normal control dams (displaying physiological body weight and fat). The results show that alterations in the composition of culture medium caused by the presence of developing mouse preimplantation embryos can be detected using Raman spectroscopy. Metabolic activity of embryos was reflected in evident changes in numerous band intensities in the 1620-1690cm(-1) (amide I) region and in the 1020-1140cm(-1) region of the Raman spectrum for KSOMaa. Moreover, multivariate analysis of spectral data proved that the composition of proteins and other organic compounds in spent samples obtained after the culture of embryos isolated from fat dams was different from that in spent samples obtained after the culture of embryos from control dams. This study demonstrates that metabolic activity of cultured preimplantation embryos might depend on the body condition of their donors. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Channel adjustments in a Mediterranean river over the last 150 years in the context of anthropic and natural controls

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Rosskopf, Carmen M.

    2016-12-01

    Evolutionary trajectories and related control factors of the Fortore River (southern Italy) are analyzed over a 150-year period as to assess channel modifications. A multitemporal GIS analysis of topographic maps and aerial photographs together with topographic and geomorphological field surveys were performed. Attention was focused on the impact caused by human disturbance, above all the presence of the Occhito dam at only 40 km upstream of the Fortore mouth (central Adriatic coast). Results show that channel adjustments occurred in three distinct phases and were primarily driven by human disturbance that diversely affected reaches located upstream and downstream of the dam. From the last decades of the nineteenth century to the 1950s (phase 1), channel widening prevailed along upstream reaches whilst narrowing along downstream reaches. Major channel adjustments occurred from the 1950s until the end of the 1990s (phase 2), especially channel narrowing of up to 81% in upstream reaches and 98% in downstream reaches. Narrowing was accompanied by channel-bed lowering of 1 to 5 m and by pattern changes in prevalence from multithread to largely prevailing single-thread channel configurations. In-channel mining, channel works, and hydraulic interventions are considered key driving factors of observed channel adjustments. The closure of the Occhito dam in 1966 had significant and permanent effects on downstream reaches through overall discharge regulation and permanent sediment trapping as also proved by the progressive retreat of the Fortore river mouth area. From 2000 to 2015 (phase 3), a substantial trend inversion was observed with overall channel widening and partial aggradation of upstream reaches and total stabilization of downstream reaches. As highlighted by an integrated multitemporal analysis of recent channel changes and flood events, the latter have played an important role in channel recovery of upstream reaches. Comparison between the Fortore River and other rivers in southern Italy has allowed us to ascertain that the reconstructed evolutionary trajectories are quite similar and that control factors are essentially the same. In particular, it confirms the role of major hydraulic structures as to the amount of channel adjustments of downstream reaches and the ensuing scarce to nil potential to channel recovery of regulated reaches.

  3. Experience in operating earth dams of the NIVA cascade of the Kola Regional Power administration constructed in 1930-1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosova, O.N.; Margolina, O.G.; Sergeeva, N.S.

    1995-08-01

    This article discusses Russian experiences in monitoring earth-filled dams of the Niva region. These are low and medium head facilities in operation from 30 to 60 years. As shown by the experiences of long-term operation of earth structures in this area and on embankments being constructed by the method of dumping soil into water, it is necessary to impose more stringent requirements with respect to determining the steepness of these slopes to increase their stability, as is done when the structures are constructed dry. To organize successful monitoring of seepage processes in the investigated structures having substantial anisotropy of themore » soil, special recommendations of the disposition of piezometers under such specific conditions should be worked out. Recommendations on the disposition of piezometers under conditions of a noticeable effect of the groundwater regime of the surrounding territory on the seepage regime of the hydro development should be worked out accordingly. Since the calculations made in the work, as a result of which instability of many slopes was detected, are not always confirmed by practice, it is advisable to correct the method of such calculations with consideration of the characteristics of the formation of the seepage flow in the downstream shoulder of dams with pronounced anisotropy of the soil.« less

  4. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis.

    PubMed

    Seagroves, Tiffany N; Peacock, Danielle L; Liao, Debbie; Schwab, Luciana P; Krueger, Robin; Handorf, Charles R; Haase, Volker H; Johnson, Randall S

    2010-05-01

    Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.

  5. The Influence of Water Conservancy Projects on River Network Connectivity, A Case of Luanhe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Z.; Li, C.

    2017-12-01

    Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.

  6. The geomorphic impact of catastrophic glacier ice loss in mountain regions

    NASA Astrophysics Data System (ADS)

    Evans, S. G.

    2006-12-01

    Perhaps the most dramatic manifestation of global warming is catastrophic glacier ice loss in mountain regions. The geomorphic impact of this process was first outlined by Evans and Clague in 1994 and includes mountain slope instability, glacier avalanching, the formation and failure of moraine dammed lakes, and the formation and failure of ice dammed lakes. The present paper is an update of the 1994 publication and has three components. First, a global review of recent glacier-related geomorphic events is undertaken. Second, an analysis of two cases from the Coast Mountains of British Columbia - the 1975 Devastation Glacier landslide and the 1983 Nostetuko Lake outburst resulting from the failure of a moraine dam illustrates the interaction of glacier ice loss and related geomorphic events. At Devastation Glacier, approximately 13 M m3 of altered Quaternary volcanic rock and glacier ice was lost from the west flank of Pylon Peak in the Mount Meager volcanic complex. The events were initiated by a catastrophic rockslide, involving altered Quaternary pyroclastic rocks, which continued down Devastation Creek valley as a high velocity debris avalanche. The overall length of the slide path was 7 km and the vertical height of the path was 1220 m yielding a fahrboschung of 10°. Other large landslides occurred in Devastation Creek valley in 1931 and 1947. Stability analysis of the initial failure shows that the 1975 rockslide was the result of a complex history of glacial erosion, loading and unloading of the toe of the slide mass caused by the Little Ice Age advance and subsequent retreat of Devastation Glacier. The shearing resistance along the base of the rockslide mass was reduced prior to 1975 by substantial previous slope displacements related to glacial ice loss. Some of this displacement is likely to have occurred as subglacial slope deformation since ice fall and crevasse patterns suggest the presence of slide like shearing displacements below the base of adjacent glacier ice. In the Nostetuko case, the analysis of large-scale digital elevation models indicate that the outburst of 6.5 M m3 of water was initiated by a 1.5 M m3 glacier avalanche from Cumberland Glacier which initiated the breach. 1.6 M m3 of moraine was removed during the sudden breach and injected into the headwaters of the Nostetuko River. Thirdly, an attempt is made to quantify the increase in denudation and related sediment flux in mountain landscapes subject to catastrophic glacier-ice loss.

  7. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

  8. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation

    PubMed Central

    Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams. PMID:26540105

  9. Detection de fuite dans les barrages en remblai par la methode de polarisation spontanee et par tomographie electrique: Cas de la jonction de deux barrages en remblai

    NASA Astrophysics Data System (ADS)

    Nzumotcha Tchoumkam, Linda Armelle

    The infiltration through the core of foundation of embankment dams is a problem which is worrying for safety and economical dams. The mechanism of infiltration can be progressive and can disturb the stability or the durability of the structures. Consequently, its evolution can undermine public security. Statistics made for 11192 embankment dams through the world showed that until 1986, 48% of damages have been caused by internal erosion. This internal erosion was generated by infiltration through the core or the foundation of embankment dam. Electrical, electromagnetic and thermometric methods are usually considered as investigation methods. The goal of this work is to study the sensibility of the self-potential method (S.P.) to detect seepage for the case of embankment dams. We used S.P jointly with electrical resistance tomography (ERT). To attain this objective, we acquired self-potential and resistivity data with periodic changes of the water level in the reservoir. These changes were made every spring (in November) and every summer (in April) at the emptying and impounding of the reservoir. For this project, measures have been conducted over a period of two years (2008-2010). Before that, thermometry, self-potential and magnetic methods were applied on the site to acquire information about seepage and its approximate position. Flow rate was also measured. In April 2010, injection of grout was used to clog seepage. The measurements allowed to represent the variation of potential with time and space. That permitted to make a distinction between different sources of self-potential signal. The mapping of the electric potential during the emptying and the impounding of the reservoir showed a negative anomaly which correlate to an outflow located in the upstream of the dam. The monitoring of the S.P. signal permitted to dissociate an anomaly zone which can be related to the site of injection of grout. The gradient of self-potential decreased with the increase of pressure gradient. We have computed the effective electro kinetic (EK) coupling coefficient of the dam from the variation of the potential with water level. Time-lapse ERT is used to control the variation of electrical conductivity of the material together with changes in water level. The anomaly in the time-lapse represented agrees with the outflow. We also propose a 3D numerical model to interpret the measurements in a semi-quantitative manner. Comparing between results of modeling and the survey data, differences are noted that can be explained in different ways. More work would be needed to elucidate those differences, in particular with the measurement strategy and the estimation of coupling coefficients. Nevertheless, the proposed approach allowed to underline different variations under the ground. These results have also been used to discuss the limitations of the self-potential method applied to detect seepage in the dam.

  10. Geologic features of dam sites in the Nehalem, Rogue, and Willamette River basins, Oregon, 1935-37

    USGS Publications Warehouse

    Piper, A.M.

    1947-01-01

    The present report comprises brief descriptions of geologic features at 19 potential dam sites in the Nehalem, Rogue, and Willamette River basins in western Oregon. The topography of these site and of the corresponding reservoir site was mapped in 1934-36 under an allocation of funds, by the Public Works Administration for river-utilization surveys by the Conservation Branch of the United States Geological Survey. The field program in Oregon has been under the immediate charge of R. O. Helland. The 19 dam sites are distributed as follows: three on the Nehalem River, on the west or Pacific slope of the Oregon Coast range; four on Little Butte Creek and two on Evans Creek, tributaries of the Rogue River in the eastern part of the Klamath Mountains; four on the South and Middle Santiam Rivers, tributaries of the Willamette River from the west slope of the Cascade mountains; and six on tributaries of the Willamette River from the east slope of the Coast Range. Except in the Evans Creek basin, all the rocks in the districts that were studied are of comparatively late geological age. They include volcanic rocks, crystalline rocks of several types, marine and nonmarine sedimentary rocks, and recent stream deposits. The study of geologic features has sought to estimate the bearing power and water-tightness of the rocks at each dam site, also to place rather broad limits on the type of dam for which the respective sites seem best suited. It was not considered necessary to study the corresponding reservoir sites in detail for excessive leakage appears to be unlikely. Except at three of the four site in the Santiam River basin, no test pits have been dug nor exploratory holes drilled, so that geologic features have been interpreted wholly from natural outcrops and from highway and railroad cuts. Because these outcrops and cuts are few, many problems related to the construction and maintenance of dams can not be answered at the this time and all critical features of the sites should be thoroughly explored by test pits and drilled holes before any dam is designed. This applied especially to sites in the Nehalem and Willamette River basins where commonly the cover of timber and brush is dense and the rocks are rather deeply weathered. On the Middle Santiam and South Santiam Rivers, the Cascadia, Greenpeter, and Sweet Home sits have been studies intensively by the United States Engineer Department, whose work included exploration by diamond-drill holes and test pits. Their conclusions as to geologic features are given in a report by McKitrick and have been reviewed by the writer. Data from this source have been used freely in the discussion of the respective sites in this report. The probability of destructive earthquakes in the region appears to be small but is not negligible. Prudence suggests that any high dam should embody features to assure stability against moderately strong earth motions.

  11. Computation and analysis of the instantaneous-discharge record for the Colorado River at Lees Ferry, Arizona : May 8, 1921, through September 30, 2000

    USGS Publications Warehouse

    Topping, David J.; Schmidt, John C.; Vierra, L.E.

    2003-01-01

    A gaging station has been operated by the U.S. Geological Survey at Lees Ferry, Arizona, since May 8, 1921. In March 1963, Glen Canyon Dam was closed 15.5 miles upstream, cutting off the upstream sediment supply and regulating the discharge of the Colorado River at Lees Ferry for the first time in history. To evaluate the pre-dam variability in the hydrology of the Colorado River, and to determine the effect of the operation of Glen Canyon Dam on the downstream hydrology of the river, a continuous record of the instantaneous discharge of the river at Lees Ferry was constructed and analyzed for the entire period of record between May 8, 1921, and September 30, 2000. This effort involved retrieval from the Federal Records Centers and then synthesis of all the raw historical data collected by the U.S. Geological Survey at Lees Ferry. As part of this process, the peak discharges of the two largest historical floods at Lees Ferry, the 1884 and 1921 floods, were reanalyzed and recomputed. This reanalysis indicates that the peak discharge of the 1884 flood was 210,000?30,000 cubic feet per second (ft3/s), and the peak discharge of the 1921 flood was 170,000?20,000 ft3/s. These values are indistinguishable from the peak discharges of these floods originally estimated or published by the U.S. Geological Survey, but are substantially less than the currently accepted peak discharges of these floods. The entire continuous record of instantaneous discharge of the Colorado River at Lees Ferry can now be requested from the U.S. Geological Survey Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, and is also available electronically at http://www.gcmrc.gov. This record is perhaps the longest (almost 80 years) high-resolution (mostly 15- to 30-minute precision) times series of river discharge available. Analyses of these data, therefore, provide an unparalleled characterization of both the natural variability in the discharge of a river and the effects of dam operations on a river. Following the construction and quality-control checks of the continuous record of instantaneous discharge, analyses of flow duration, sub-daily flow variability, and flood frequency were conducted on the pre- and post-dam parts of the record. These analyses indicate that although the discharge of the Colorado River varied substantially prior to the closure of Glen Canyon Dam in 1963, operation of the dam has caused changes in discharge that are more extreme than the pre-dam natural variability. Operation of the dam has eliminated flood flows and base flows, and thereby has effectively 'flattened' the annual hydrograph. Prior to closure of the dam, the discharge of the Colorado River at Lees Ferry was lower than 7,980 ft3/s half of the time. Discharges lower than about 9,000 ft3/s were important for the seasonal accumulation and storage of sand in the pre-dam river downstream from Lees Ferry. The current operating plan for Glen Canyon Dam no longer allows sustained discharges lower than 8,000 ft3/s to be released. Thus, closure of the dam has not only cut off the upstream supply of sediment, but operation of the dam has also largely eliminated discharges during which sand could be demonstrated to accumulate in the river. In addition to radically changing the hydrology of the river, operation of the dam for hydroelectric-power generation has introduced large daily fluctuations in discharge. During the pre-dam era, the median daily range in discharge was only 542 ft3/s, although daily ranges in discharge exceeding 20,000 ft3/s were observed during the summer thunderstorm season. Relative to the pre-dam period of record, dam operations have increased the daily range in discharge during all but 0.1 percent of all days. The post-dam median daily range in discharge, 8,580 ft3/s, exceeds the pre-dam median discharge of 7,980 ft3/s. Operation of the dam has also radically changed the frequency of floods on the Colorado River at Lees Ferry. The frequency of f

  12. Transducer Workshop (16th) Held in San Antonio, Texas on June 18-20, 1991

    DTIC Science & Technology

    1991-06-01

    34 he from 1936-40 he was Instructor in EE at Armour says even of the very first gage which Dat- (now Illinois) Institute of Technology in wyler bonded...wirebonds are draped over a dam separating the sensor from the conformal coat- Compared to the first generation sensor de- ing used for structural...base. (No discussion will prevent flow of the coating onto the sensor. be included on the electrical stability of circuit Draping the sensor lead wires

  13. Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering Held at Vicksburg, Mississippi on 21 September 1982.

    DTIC Science & Technology

    1983-09-01

    al. (1981) was conducted on Copper City No. 2 tailings embankment damn near Miami, Arizona . Due to the extreme topographic relief in the area of the...mode of behavior and scale. ThiL dependency is summarized in the factor R. For example, circular shear instability as in a copper porphyry slope...OF THE PROBABILISTIC SLOPE STABILITY MODEL. . 32 6.1 DESCRIPTION OF COPPER CITY NUMBER 2 TAILINGS DAM . . 32 6.2 SUBSURFACE INVESTIGATION

  14. Chapter D. The Loma Prieta, California, Earthquake of October 17, 1989 - Earth Structures and Engineering Characterization of Ground Motion

    USGS Publications Warehouse

    Holzer, Thomas L.

    1998-01-01

    This chapter contains two papers that summarize the performance of engineered earth structures, dams and stabilized excavations in soil, and two papers that characterize for engineering purposes the attenuation of ground motion with distance during the Loma Prieta earthquake. Documenting the field performance of engineered structures and confirming empirically based predictions of ground motion are critical for safe and cost effective seismic design of future structures as well as the retrofitting of existing ones.

  15. Design of Gravity Dams on Rock Foundations. Sliding Stability Assessment by Limit Equilibrium and Selection of Shear Strength Parameters.

    DTIC Science & Technology

    1983-10-01

    failure envelopes compound the problems relating to the distribution of normal stress. Any given linear approximation of a curvilin- ear envelope will be...EEEEEEEEEEEEEE *mmmmmmumlll -. °. - t. - ji 11--1 i 1I -. E ’ ’" 1.25E MICROCOP REOUIO _ET HRNATIONA BUEUIFSANAD16- 11111 44 i , ... . , . ro. ’ . * * . .. U...Solution of cementing agents such as calcite and carbonates results in subse- quent strength losses. Oxidation to form new chemical compounds within

  16. Balancing Energy, Food Security, and Critical Ecosystems: Dam Siting, Design and Operations in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Wild, T. B.; Reed, P. M.; Loucks, D.

    2016-12-01

    The Mekong River basin in Southeast Asia is one of several river basins with exceptionally high biodiversity value where intensive hydropower dam development is anticipated. In the Mekong basin, over 100 dams are planned to be constructed in the next 20-30 years. As planned, these dams will alter the river's natural water, sediment and nutrient flows, and will fragment fish migration pathways. In doing so, they will degrade one of the world's most productive freshwater fish habitats, upon which some 60 million people depend for food and income security. For those dams that have not yet been constructed, there still exist opportunities to modify their siting, design and operation (SDO) to achieve a more balanced set of tradeoffs among hydropower production, sediment/nutrient passage and adult fish/larvae passage. We present a successful case study wherein we explored such alternative SDO opportunities in partnership with the Government of Cambodia for Sambor Dam, planned to be built on the main stem of the Mekong. Sambor would be one of the world's longest dams, spanning 18 km across the river just upstream of (1) Tonle Sap Lake, which supplies 70% of Cambodians' protein, and (2) the Mekong Delta in Vietnam, responsible for 50% of Vietnam's rice production. We will describe key dam siting and design modifications required to mitigate ecological impacts. We will then focus on the most promising alternative dam siting/design concept, exploring the reservoir operations space to demonstrate that a complex set of tradeoffs exist among a diverse set of energy and ecosystem objectives. Results indicate that even for a hydrologically small reservoir, a wide array of potential reservoir operating policies exist that have vastly different food-energy implications. While some policies would significantly mitigate ecological impacts, many policies exist that would pose a severe threat to the sustainability of the fishery. Failure to sample the reservoir operations space at appropriate resolution could result in failure to accurately identify tradeoffs and vulnerabilities. We explore energy-ecosystem tradeoffs while demonstrating to stakeholders the impacts of transitioning from their initial deterministic analysis that largely focused on energy revenue to broader many-objective stochastic problem formulations.

  17. Innovative techniques for analyzing the three-dimensional behavioral results from acoustically tagged fish

    NASA Astrophysics Data System (ADS)

    Steig, Tracey W.; Timko, Mark A.

    2005-04-01

    Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.

  18. Opinions and practices of healthcare professionals on assessment of disease associated malnutrition in children: Results from an international survey.

    PubMed

    Huysentruyt, Koen; Hulst, Jessie; Bian, Feifei; Shamir, Raanan; White, Melinda; Galera-Martinez, Raphael; Morais-Lopez, Anna; Kansu, Aydan; Gerasimidis, Konstantinos

    2018-04-05

    Lack of consensus on clinical indicators for the assessment of pediatric disease associated malnutrition (DAM) may explain its under-recognition in clinical practice. This study surveyed the opinions of health professionals (HP) on clinical indicators of DAM and barriers impeding routine nutritional screening in children. Web-based questionnaire survey (April 2013-August 2015) in Australia, Belgium, Israel, Spain, The Netherlands, Turkey and UK. There were 937 questionnaires returned via local professional associations, of which 693 respondents fulfilled the inclusion criteria and were included in the final analysis; 315 pediatric gastroenterologists and 378 pediatric dieticians. The most important clinical indicators of DAM were ongoing weight loss (80.4%), increased energy/nutrient losses (73.0%), suboptimal energy/macronutrient intake (68.6%), a high nutritional risk condition (67.2%) and increased energy/nutrient requirements (66.2%). These findings were consistent across countries and professions. The most common approach to screen for DAM was assessment of weight changes (85%), followed by the usage of growth charts (77-80%). Common perceived barriers for routine nutritional screening/assessment were low staff awareness (47.5%), no local policy or guidelines (33.4%) and lack of time to screen (33.4%). HP who routinely assess and treat children with DAM identified ongoing weight loss, increased losses, increased requirements, low intake and high nutritional risk conditions as the most important clinical indicators of DAM. These clinical indicators should now serve as a basis to form clinical-based criteria for the identification of DAM in routine clinical practice. Low awareness, lack of guidelines or local policy and lack of resources were the most important barriers of routine screening. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. A multi-year analysis of passage and survival at McNary Dam, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Walker, C.E.; Perry, R.W.

    2011-01-01

    We analyzed 6 years (2004–09) of passage and survival data collected at McNary Dam to determine how dam operations and environmental conditions affect passage and survival of juvenile salmonids. A multinomial logistic regression was used to examine how environmental variables and dam operations relate to passage behavior of juvenile salmonids at McNary Dam. We used the Cormack-Jolly-Seber release-recapture model to determine how the survival of juvenile salmonids passing through McNary Dam relates to environmental variables and dam operations. Total project discharge and the proportion of flow passing the spillway typically had a positive effect on survival for all species and routes. As the proportion of water through the spillway increased, the number of fish passing the spillway increased, as did overall survival. Additionally, survival generally was higher at night. There was no meaningful difference in survival for fish that passed through the north or south portions of the spillway or powerhouse. Similarly, there was no difference in survival for fish released in the north, middle, or south portions of the tailrace. For subyearling Chinook salmon migrating during the summer season, increased temperatures had a drastic effect on passage and survival. As temperature increased, survival of subyearling Chinook salmon decreased through all passage routes and the number of fish that passed through the turbines increased. During years when the temporary spillway weirs (TSWs) were installed, passage through the spillway increased for spring migrants. However, due to the changes made in the location of the TSW between years and the potential effect of other confounding environmental conditions, it is not certain if the increase in spillway passage was due solely to the presence of the TSWs. The TSWs appeared to improve forebay survival during years when they were operated.

  20. Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of dam complex access road and U.S. Highway 189 to center of dam, 874 feet/352 degrees from Hydroelectric Powerplant (HAER UT-93-B) to center of dam, Charleston, Wasatch County, UT

  1. Mycoplasma haemolamae infection in a 4-day-old cria: Support for in utero transmission by use of a polymerase chain reaction assay

    PubMed Central

    Ladd, Sabine M.; Sponenberg, D. Phillip; Crisman, Mark V.; Messick, Joanne B.

    2006-01-01

    Abstract Blood smear examination in a 4-day-old alpaca revealed massive erythrocyte parasitism by Mycoplasma haemolamae. Blood collected from both the nonparasitemic dam and the cria were positive for M. haemolamae by polymerase chain reaction (PCR) analysis. These findings suggest in utero transmission of M. haemolamae in camelids, even when the dam is not parasitemic. PMID:16604978

  2. Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlingsmore » at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of the 1,253 PIT tagged fish released, a total of 719 unique tags were detected at mainstem Snake and Columbia River dams. A total of 2,420 yearlings were PIT tagged and released at Lyons Ferry Hatchery. PIT tagged yearlings had a mean fork length of 159.0 mm and mean condition factor of 1.10. Of the 2,420 PIT tagged fish released, a total of 979 unique tags were detected at mainstem Snake and Columbia River dams (Lower Monumental and McNary). Median travel times, based on all detections, of PIT tagged fish released from Pittsburg Landing were 10.5 days to Lower Granite Dam, 21.7 days to McNary Dam and 29.8 days to Bonneville Dam. Median migration rates were 16.4 rkm/d to Lower Granite Dam, 18.3 rkm/d to McNary Dam and 18.9 rkm/d to Bonneville Dam. The median arrival dates were April 25 at Lower Granite Dam, May 6 at McNary Dam and May 14 at Bonneville Dam. The 90% passage dates were May 5 at Lower Granite Dam, May 20 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 9.5 fpp yearlings released from Big Canyon were 13.3 days to Lower Granite Dam, 26.0 days to McNary Dam and 30.8 days to Bonneville Dam. Median migration rates were 13.0 rkm/d to Lower Granite Dam, 15.3 rkm/d to McNary Dam and 18.3 rkm/d to Bonneville Dam. The median arrival dates were April 27 at Lower Granite Dam, May 11 at McNary Dam and May 15 at Bonneville Dam. The 90% passage dates were May 9 at Lower Granite Dam, May 24 at McNary Dam and May 25 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged 30 fpp yearlings released from Big Canyon were 20.8 days to Lower Granite Dam, 37.6 days to McNary Dam and 43.5 days to Bonneville Dam. Median migration rates were 8.3 rkm/d to Lower Granite Dam, 10.6 rkm/d to McNary Dam and 12.9 rkm/d to Bonneville Dam. The median arrival dates were May 5 at Lower Granite Dam, May 23 at McNary Dam and May 28 at Bonneville Dam. The 90% passage dates were May 22 at Lower Granite Dam, May 31 at McNary Dam and June 5 at Bonneville Dam. Median arrival dates, based on all detections, of PIT tagged yearlings released from Captain John Rapids were April 26 at Lower Granite Dam, May 8 at McNary Dam and May 14 at Bonneville Dam. The 90% passage dates were May 8 at Lower Granite Dam, May 23 at McNary Dam and May 26 at Bonneville Dam. Median travel times, based on all detections, of PIT tagged fish released from Lyons Ferry Hatchery were 16.9 days to Lower Monumental Dam, 20.9 days to McNary Dam and 30.3 days to Bonneville Dam. Median migration rates were 1.7 rkm/d to Lower Monumental Dam, 7.0 rkm/d to McNary Dam and 12.6 rkm/d to Bonneville Dam. The median arrival dates were April 27 at Lower Monumental Dam, May 1 at McNary Dam and May 8 at Bonneville Dam. The 90% passage dates were May 13 at Lower Monumental Dam, May 16 at McNary Dam and May 24 at Bonneville Dam.« less

  3. Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey.

    PubMed

    Varol, Memet

    2013-10-01

    Water samples were collected at monthly intervals during 1 year of monitoring from Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin to assess the concentrations of dissolved heavy metals and to determine their spatial and seasonal variations. The results indicated that dissolved heavy metal concentrations in the reservoirs were very low, reflecting the natural background levels. The lowest total metal concentrations in the three dam reservoirs were detected at sampling sites close to the dam wall. However, the highest total concentrations were observed at sites, which are located at the entrance of the streams to the reservoirs. Fe, Cr and Ni were the most abundant elements in the reservoirs, whereas Cd and As were the less abundant. The mean concentrations of dissolved metals in the dam reservoirs never exceeded the maximum permitted concentrations established by EC (European Community), WHO and USEPA drinking water quality guidelines. All heavy metals showed significant seasonal variations. As, Cd, Cr, Cu, Fe, Ni and Pb displayed higher values in the dry season, while higher values for Zn in the wet season. Cluster analysis grouped all ten sampling sites into three clusters. Clusters 1 and 2, and cluster 3 corresponded to relatively low polluted and moderate polluted regions, respectively. PCA/FA demonstrated the dissolved metals in the dam reservoirs controlled by natural sources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Meta-analysis of environmental effects of beaver in relation to artificial dams

    NASA Astrophysics Data System (ADS)

    Ecke, Frauke; Levanoni, Oded; Audet, Joachim; Carlson, Peter; Eklöf, Karin; Hartman, Göran; McKie, Brendan; Ledesma, José; Segersten, Joel; Truchy, Amélie; Futter, Martyn

    2017-11-01

    Globally, artificial river impoundment, nutrient enrichment and biodiversity loss impair freshwater ecosystem integrity. Concurrently, beavers, ecosystem engineers recognized for their ability to construct dams and create ponds, are colonizing sites across the Holarctic after widespread extirpation in the 19th century, including areas outside their historical range. This has the potential to profoundly alter hydrology, hydrochemistry and aquatic ecology in both newly colonized and recolonized areas. To further our knowledge of the effects of beaver dams on aquatic environments, we extracted 1366 effect sizes from 89 studies on the impoundment of streams and lakes. Effects were assessed for 16 factors related to hydrogeomorphology, biogeochemistry, ecosystem functioning and biodiversity. Beaver dams affected concentrations of organic carbon in water, mercury in water and biota, sediment conditions and hydrological properties. There were no overall adverse effects caused by beaver dams or ponds on salmonid fish. Age was an important determinant of effect magnitude. While young ponds were a source of phosphorus, there was a tendency for phosphorus retention in older systems. Young ponds were a source methylmercury in water, but old ponds were not. To provide additional context, we also evaluated similarities and differences between environmental effects of beaver-constructed and artificial dams (767 effect sizes from 75 studies). Both are comparable in terms of effects on, for example, biodiversity, but have contrasting effects on nutrient retention and mercury. These results are important for assessing the role of beavers in enhancing and/or degrading ecological integrity in changing Holarctic freshwater systems.

  5. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  6. Experimental research on the dam-break mechanisms of the Jiadanwan landslide dam triggered by the Wenchuan earthquake in China.

    PubMed

    Xu, Fu-gang; Yang, Xing-guo; Zhou, Jia-wen; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation.

  7. Experimental Research on the Dam-Break Mechanisms of the Jiadanwan Landslide Dam Triggered by the Wenchuan Earthquake in China

    PubMed Central

    Xu, Fu-gang; Yang, Xing-guo; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation. PMID:23844387

  8. Behaviour of levee on softsoil caused by rapid drawdown

    NASA Astrophysics Data System (ADS)

    Upomo, Togani Cahyadi; Effendi, Mahmud Kori; Kusumawardani, Rini

    2018-03-01

    Rapid Drawdown is a condition where the water elevation that has reached the peak suddenly drops. As the water level reaches the peak, hydrostatic pressure helps in the stability of the slope. When water elevation decreases there will be two effects. First, reduced hydrostatic pressure and second, modification of pore water pressure. Rapid draw down usually comon in hydraulic structure such as dam and levee. This study will discuss behaviour of levee on softsoil caused by rapid drawdown. The analysis based on method which developed by US Army Corps Engineer and modified method which developed by Duncan, Wright, dan Wong. Results of analysis show that in drawdown condition, at 1 m drop of water, safety factor obtained based on US Army Corps Engineer method was 1.16 and 0.976 while based on Duncan, Wright, and Wong methods were 1.244 and 1.117. At 0.5 m water level, safety factor based on US Army Corps Engineer method was 1.287 and 1.09 while Duncan, Wright, and Wong were 1.357 and 1.194.

  9. 33 CFR 100.1102 - Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). 100.1102 Section... Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). (a) General. Sponsors are... Roadrunner Resort and Headgate Dam). Bullhead City Boat Drags Sponsor: Sunshine Promotions Date: 2 to 4...

  10. 33 CFR 100.1102 - Marine Events on the Colorado River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... River, between Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). 100.1102 Section... Davis Dam (Bullhead City, Arizona) and Headgate Dam (Parker, Arizona). (a) General. Sponsors are... Roadrunner Resort and Headgate Dam). Bullhead City Boat Drags Sponsor: Sunshine Promotions Date: 2 to 4...

  11. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations

    PubMed Central

    2014-01-01

    Background Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Results Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. Conclusions We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed. PMID:24903056

  12. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations.

    PubMed

    Hansen, Michael M; Limborg, Morten T; Ferchaud, Anne-Laure; Pujolar, José-Martin

    2014-06-05

    Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.

  13. A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI

    PubMed Central

    Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa

    2018-01-01

    Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369

  14. Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, P.; Norton, K. P.; Mackintosh, A.

    2014-07-01

    Glacier retreat since the Little Ice Age has resulted in the development or expansion of hundreds of glacial lakes in Patagonia. Some of these lakes have produced large (≥106 m3) Glacial Lake Outburst Floods (GLOFs) damaging inhabited areas. GLOF hazard studies in Patagonia have been mainly based on the analysis of short-term series (≤50 years) of flood data and until now no attempt has been made to identify the relative susceptibility of lakes to failure. Power schemes and associated infrastructure are planned for Patagonian basins that have historically been affected by GLOFs, and we now require a thorough understanding of the characteristics of dangerous lakes in order to assist with hazard assessment and planning. In this paper, the conditioning factors of 16 outbursts from moraine dammed lakes in Patagonia were analysed. These data were used to develop a classification scheme designed to assess outburst susceptibility, based on image classification techniques, flow routine algorithms and the Analytical Hierarchy Process. This scheme was applied to the Baker Basin, Chile, where at least 7 moraine-dammed lakes have failed in historic time. We identified 386 moraine-dammed lakes in the Baker Basin of which 28 were classified with high or very high outburst susceptibility. Commonly, lakes with high outburst susceptibility are in contact with glaciers and have moderate (>8°) to steep (>15°) dam outlet slopes, akin to failed lakes in Patagonia. The proposed classification scheme is suitable for first-order GLOF hazard assessments in this region. However, rapidly changing glaciers in Patagonia make detailed analysis and monitoring of hazardous lakes and glaciated areas upstream from inhabited areas or critical infrastructure necessary, in order to better prepare for hazards emerging from an evolving cryosphere.

  15. Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, P.; Norton, K. P.; Mackintosh, A.

    2014-12-01

    Glacier retreat since the Little Ice Age has resulted in the development or expansion of hundreds of glacial lakes in Patagonia. Some of these lakes have produced large (≥ 106 m3) Glacial Lake Outburst Floods (GLOFs) damaging inhabited areas. GLOF hazard studies in Patagonia have been mainly based on the analysis of short-term series (≤ 50 years) of flood data and until now no attempt has been made to identify the relative susceptibility of lakes to failure. Power schemes and associated infrastructure are planned for Patagonian basins that have historically been affected by GLOFs, and we now require a thorough understanding of the characteristics of dangerous lakes in order to assist with hazard assessment and planning. In this paper, the conditioning factors of 16 outbursts from moraine-dammed lakes in Patagonia were analysed. These data were used to develop a classification scheme designed to assess outburst susceptibility, based on image classification techniques, flow routine algorithms and the Analytical Hierarchy Process. This scheme was applied to the Baker Basin, Chile, where at least seven moraine-dammed lakes have failed in historic time. We identified 386 moraine-dammed lakes in the Baker Basin of which 28 were classified with high or very high outburst susceptibility. Commonly, lakes with high outburst susceptibility are in contact with glaciers and have moderate (> 8°) to steep (> 15°) dam outlet slopes, akin to failed lakes in Patagonia. The proposed classification scheme is suitable for first-order GLOF hazard assessments in this region. However, rapidly changing glaciers in Patagonia make detailed analysis and monitoring of hazardous lakes and glaciated areas upstream from inhabited areas or critical infrastructure necessary, in order to better prepare for hazards emerging from an evolving cryosphere.

  16. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  17. The Effects of Dams on Downstream Channel Characteristics in Pennsylvania and Maryland: Assessing the Potential Consequences of Dam Removal

    NASA Astrophysics Data System (ADS)

    Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.

    2003-12-01

    The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.

  18. Preliminary stage-discharge relations for Tombigbee River at Aliceville lock and dam, near Pickensville, Alabama

    USGS Publications Warehouse

    Nelson, G.H.; Ming, C.O.

    1983-01-01

    The construction of Aliceville lock and dam and other related channel alterations, completed in 1979, has resulted in changes to the stage-discharge relations in the vicinity. The scarcity of current-meter measurements, coupled with backwater conditions, makes definition of a single stage-discharge relation impossible. However, limit curves can be defined that would encompass such a relation. Backwater is defined as water backed up or retarded in its course as compared with water flowing under normal or natural conditions. This results in a rise in stage above normal water level while the discharge remains unaffected. Backwater is usually caused by temporary obstruction(s) to flow downstream. Backwater at Aliceville Dam results from a variety of river conditions. Some of these conditions are large tributary inflow, return of flood plain flows to the main channel during recessions, and operations at Gainesville Dam during low flows. The discharges obtained from 26 current-meter measurements, along with computed discharges through the dam, are plotted versus stage. The plot illustrates, by the scatter of data points, the variations in backwater. Curves are drawn to envelope the extreme plot patterns showing possible ranges of several feet in stage for any given discharge. The upper end of the curves were extrapolated based on the results of a step-backwater analysis.

  19. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2010-06-25

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are notmore » known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.« less

  20. Effects of leachate accumulation on landfill stability in humid regions of China.

    PubMed

    Jianguo, Jiang; Yong, Yang; Shihui, Yang; Bin, Ye; Chang, Zhang

    2010-05-01

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19m, which was higher than the top of the dam crest (8-20m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH(3)-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units capital I, Ukrainian and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Effects of leachate accumulation on landfill stability in humid regions of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Jianguo, E-mail: jianguoj@mail.tsinghua.edu.c; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education; Yang Yong

    2010-05-15

    Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19 m, which was higher than themore » top of the dam crest (8-20 m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH{sub 3}-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691 mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units I and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered.« less

  2. Histological and Metabolic State of Dams Suckling Small Litter or MSG-Treated Pups.

    PubMed

    Capriglioni Cancian, Claudia Regina; Leite, Nayara Carvalho; Montes, Elisangela Gueiber; Fisher, Stefani Valeria; Waselcoski, Leticia; Lopes Stal, Emily Caroline; Christoforo, Renata Zanardini; Grassiolli, Sabrina

    Lactation is an important function that is dependent on changes in the maternal homeostasis and sustained by histological maternal adjustments. We evaluated how offspring manipulations during the lactational phase can modulate maternal morphologic aspects in the mammary gland, adipose tissue, and pancreatic islets of lactating dams. Two different models of litter-manipulation-during-lactation were used: litter sizes, small litters (SL) or normal litters (NL) and subcutaneous injections in the puppies of monosodium glutamate (MSG), or saline (CON). SL Dams and MSG Dams presented an increase in WAT content and higher plasma levels of glucose, triglycerides, and insulin, in relation to NL Dams and CON Dams, respectively. The MG of SL Dams and MSG Dams presented a high adipocyte content and reduced alveoli development and the milk of the SL Dams presented a higher calorie and triglyceride content, compared to that of the NL Dams. SL Dams presented a reduction in islet size and greater lipid droplet accumulation in BAT, in relation to NL Dams. SL Dams and MSG Dams present similar responses to offspring manipulation during lactation, resulting in changes in metabolic parameters. These alterations were associated with higher fat accumulation in BAT and changes in milk composition only in SL Dams.

  3. Histological and Metabolic State of Dams Suckling Small Litter or MSG-Treated Pups

    PubMed Central

    Capriglioni Cancian, Claudia Regina; Montes, Elisangela Gueiber; Fisher, Stefani Valeria; Waselcoski, Leticia; Lopes Stal, Emily Caroline; Christoforo, Renata Zanardini; Grassiolli, Sabrina

    2016-01-01

    Lactation is an important function that is dependent on changes in the maternal homeostasis and sustained by histological maternal adjustments. We evaluated how offspring manipulations during the lactational phase can modulate maternal morphologic aspects in the mammary gland, adipose tissue, and pancreatic islets of lactating dams. Two different models of litter-manipulation-during-lactation were used: litter sizes, small litters (SL) or normal litters (NL) and subcutaneous injections in the puppies of monosodium glutamate (MSG), or saline (CON). SL Dams and MSG Dams presented an increase in WAT content and higher plasma levels of glucose, triglycerides, and insulin, in relation to NL Dams and CON Dams, respectively. The MG of SL Dams and MSG Dams presented a high adipocyte content and reduced alveoli development and the milk of the SL Dams presented a higher calorie and triglyceride content, compared to that of the NL Dams. SL Dams presented a reduction in islet size and greater lipid droplet accumulation in BAT, in relation to NL Dams. SL Dams and MSG Dams present similar responses to offspring manipulation during lactation, resulting in changes in metabolic parameters. These alterations were associated with higher fat accumulation in BAT and changes in milk composition only in SL Dams. PMID:28004032

  4. An Evaluation of the Success Rate of Sermo Dam Management in Daerah Istimewa Yogyakarta

    NASA Astrophysics Data System (ADS)

    Andriawan, A.; Sobriyah; Ikhsan, C.

    2017-11-01

    In dam operating and maintaining activities, there are some activities becoming the main function: the assessment of dam condition to keep monitoring and safeguarding the condition of dam as the main building. To achieve the maximum service, the maximal dam management is required as well and it should be followed with management evaluation. This case study was taken place in Sermo Dam of Daerah Istimewa Yogyakarta during 2015 - 2017. The method applied in this study was descriptive quantitative one, conducting a research using primary and secondary data. In this research, the assessment of dam condition was viewed from 1 (one) component, dam body, so that the component weight was 100%. The value of dam body condition was obtained from data of Sermo Dam monitoring in 2015-2016 and from the result of field survey in 2017. The result of research showed that the condition values of Sermo Dam with dam body component were 92.66% in 2015, 92.99% in 2016, and 93.99% in 2017. The result also showed that the value of dam body condition tended to increase during 2015-2017. To maintain the condition, the maximal operation and maintenance of dam was recommended.

  5. Hydrological Analysis for Inflow Forecasting into Temengor Dam

    NASA Astrophysics Data System (ADS)

    Najid, MI; Sidek, LM; Hidayah, B.; Roseli, ZA

    2016-03-01

    These days, natural disaster such as flood is the main concern for hydrologists. One of solutions in understanding the reason of flood is by prediction of the event sooner than normal occurrence. One of the criteria is lead time or travel time that is important in the study of fresh waters and flood events. Therefore, estimation of lead or travel time for flood event can be beneficial primary information. The objective of this study is to estimate the lead time or travel time for outlet of Temengor dam in Malaysia. Tenaga Nasional Berhad (TNB) Sungai Perak dam operation has the main contribution on decision support for early water released and flood warning to authorities and locals resident for in the down streams area. For this study, hydrological analysis carried out will help to determine which years that give more rainfall contribution into the reservoir. Rainfall contribution of reservoir help to understanding rainfall distribution and peak discharge on that period. It also help for calibration of forecasting model system for better accuracy of flood hydrograph. There may be various methods to determine the rainfall contribution of catchment. The result has shown that, the rainfall contribution for Temengor catchment, is more on November in each year which is the monsoon season in Malaysia. TNB dam operational decision support systems can prepare and be more aware at this time for flood control and flood mitigation.

  6. Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014

    USGS Publications Warehouse

    Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.

    2015-01-01

    The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the

  7. Modeling the capacity of riverscapes to support beaver dams

    NASA Astrophysics Data System (ADS)

    Macfarlane, William W.; Wheaton, Joseph M.; Bouwes, Nicolaas; Jensen, Martha L.; Gilbert, Jordan T.; Hough-Snee, Nate; Shivik, John A.

    2017-01-01

    The construction of beaver dams facilitates a suite of hydrologic, hydraulic, geomorphic, and ecological feedbacks that increase stream complexity and channel-floodplain connectivity that benefit aquatic and terrestrial biota. Depending on where beaver build dams within a drainage network, they impact lateral and longitudinal connectivity by introducing roughness elements that fundamentally change the timing, delivery, and storage of water, sediment, nutrients, and organic matter. While the local effects of beaver dams on streams are well understood, broader coverage network models that predict where beaver dams can be built and highlight their impacts on connectivity across diverse drainage networks are lacking. Here we present a capacity model to assess the limits of riverscapes to support dam-building activities by beaver across physiographically diverse landscapes. We estimated dam capacity with freely and nationally-available inputs to evaluate seven lines of evidence: (1) reliable water source, (2) riparian vegetation conducive to foraging and dam building, (3) vegetation within 100 m of edge of stream to support expansion of dam complexes and maintain large colonies, (4) likelihood that channel-spanning dams could be built during low flows, (5) the likelihood that a beaver dam is likely to withstand typical floods, (6) a suitable stream gradient that is neither too low to limit dam density nor too high to preclude the building or persistence of dams, and (7) a suitable river that is not too large to restrict dam building or persistence. Fuzzy inference systems were used to combine these controlling factors in a framework that explicitly also accounts for model uncertainty. The model was run for 40,561 km of streams in Utah, USA, and portions of surrounding states, predicting an overall network capacity of 356,294 dams at an average capacity of 8.8 dams/km. We validated model performance using 2852 observed dams across 1947 km of streams. The model showed excellent agreement with observed dam densities where beaver dams were present. Model performance was spatially coherent and logical, with electivity indices that effectively segregated capacity categories. That is, beaver dams were not found where the model predicted no dams could be supported, beaver avoided segments that were predicted to support rare or occasional densities, and beaver preferentially occupied and built dams in areas predicted to have pervasive dam densities. The resulting spatially explicit reach-scale (250 m long reaches) data identifies where dam-building activity is sustainable, and at what densities dams can occur across a landscape. As such, model outputs can be used to determine where channel-floodplain and wetland connectivity are likely to persist or expand by promoting increases in beaver dam densities.

  8. Integrated satellite InSAR and slope stability modeling to support hazard assessment at the Safuna Alta glacial lake, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Frey, Holger; Huggel, Christian; Strozzi, Tazio; Büechi, Emanuel; Cui, Fanpeng; Flores, Andrés; Saito, Carlos

    2017-04-01

    The Safuna glacial lakes (77˚ 37' W, 08˚ 50' S) are located in the headwater of the Tayapampa catchment, in the northernmost part of the Cordillera Blanca, Peru. The upper lake, Laguna Safuna Alta at 4354 m asl has formed in the 1960s behind a terminal moraine of the retreating Pucajirca Glacier, named after the peak south of the lakes. Safuna Alta currently has a volume of 15 x 106 m3. In 2002 a rock fall of several million m3 from the proximal left lateral moraine hit the Safuna Alta lake and triggered an impact wave which overtopped the moraine dam and passed into the lower lake, Laguna Safuna Baja, which absorbed most of the outburst flood from the upper lake, but nevertheless causing loss in cattle, degradation of agricultural land downstream and damages to a hydroelectric power station in Quitaracsa gorge. Event reconstructions showed that the impact wave in the Safuna Alta lake had a runup height of 100 m or more, and weakened the moraine dam of Safuna Alta. This fact, in combination with the large lake volumes and the continued possibility for landslides from the left proximal moraine pose a considerable risk for the downstream settlements as well as the recently completed Quitaracsa hydroelectric power plant. In the framework of a project funded by the European Space Agency (ESA), the hazard situation at the Safuna Alta lake is assessed by a combination of satellite radar data analysis, field investigations, and slope stability modeling. Interferometric analyses of the Synthetic Aperture Radar (InSAR) of ALOS-1 Palsar-1, ALOS-2 Palsar-2 and Sentinel-1 data from 2016 reveal terrain displacements of 2 cm y-1 in the detachment zone of the 2002 rock avalanche. More detailed insights into the characteristics of these terrain deformations are gained by repeat surveys with differential GPS (DGPS) and tachymetric measurements. A drone flight provides the information for the generation of a high-resolution digital elevation model (DEM), which is used for the modeling of the geomechanical slope stability using the W/Slope and UDEC models. Model application, however, is limited due to data scarcity regarding geotechnical slope properties, which needed to be estimated. The combination of these data products, measurements and model results provide important information for the estimation of potential source areas for future slope collapses and involved volumes. Eventually, such information can be used for the definition of possible rock avalanche scenarios and related chain reactions in order to elaborate a hazard map for resulting lake outburst floods. At the same time, the potential for an operational slope stability monitoring system at this site will be evaluated.

  9. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  10. Mapping the social impacts of small dams: The case of Thailand's Ing River basin.

    PubMed

    Fung, Zali; Pomun, Teerapong; Charles, Katrina J; Kirchherr, Julian

    2018-05-24

    The social impacts of large dams have been studied extensively. However, small dams' social impacts have been largely neglected by the academic community. Our paper addresses this gap. We examine the social impacts of multiple small dams in one upstream and one downstream village in Thailand's Ing River basin. Our research is based on semi-structured interviews with beneficiaries, government and NGOs. We argue that small dams' social impacts are multi-faceted and unequal. The dams were perceived to reduce fish abundance and provide flood mitigation benefits. Furthermore, the dams enabled increased access to irrigation water for upstream farmers, who re-appropriated water via the dams at the expense of those downstream. The small dams thus engendered water allocation conflicts. Many scholars, practitioners and environmentalists argue that small dams are a benign alternative to large dams. However, the results of our research mandate caution regarding this claim.

  11. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1989 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnsen, Richard C.

    1990-02-19

    This project is a part of the continuing Smolt Monitoring Program (SMP) to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC). The SMP provides timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis by the FPC for travel time, relative magnitude and timing of the smolt migration. Sampling sites were McNary, John Day and Bonneville Dams under the SMP, and the Dalles Dam under the Fish Spill Memorandum of Agreement'' for 1989. All pertinent fish capture, condition and brand data, as well as dam operationsmore » and river flow data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 15 refs., 6 figs., 6 tabs.« less

  12. Time-Frequency Methods for Structural Health Monitoring †

    PubMed Central

    Pyayt, Alexander L.; Kozionov, Alexey P.; Mokhov, Ilya I.; Lang, Bernhard; Meijer, Robert J.; Krzhizhanovskaya, Valeria V.; Sloot, Peter M. A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and “strange” behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany). PMID:24625740

  13. Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)

    NASA Astrophysics Data System (ADS)

    Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane

    2016-04-01

    In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS'. In October of 2015, geodetic deformation measurements were conducted by considering FIG reports related to deformation measurements and German DIN 18710 Engineering Measurements norms in the Çorum province of Turkey. The main purpose of the study is to determine optimum measurement and evaluation methods that will be used to specify movements in the horizontal and vertical directions for the fill dam. For this purpose; • In reference networks consisting of 8 points, measurements were performed by using long-term dual-frequency GNSS receivers for duration of 8 hours. • GNSS measurements were conducted in varying times between 30 minutes and 120 minutes at the 44 units object points on the body of the dam. • Two repetitive measurements of real time kinematic (RTK) GNSS were conducted at the object points on dam. • Geometric leveling measurements were performed between reference and object points. • Trigonometric leveling measurements were performed between reference and object points. • Polar measurements were performed between references and object points. GNSS measurements performed at reference points of the monitoring network for 8 hours have been evaluated by using GAMIT software in accordance with the IGS points in the region. In this manner, regional and local movements in the network can be determined. It is aimed to determine measurement period which will provide 1-2mm accuracy that expected in local GNSS network by evaluating GNSS measurements performed on body of dam. Results will be compared by offsetting GNSS and terrestrial measurements. This study will investigate whether or not there is increased accuracy provided by GNSS measurements carried out among reference points without the possibility of vision.

  14. Channel adjustments to historical disturbances along the lower Brazos and Sabine Rivers, south-central USA

    NASA Astrophysics Data System (ADS)

    Heitmuller, Franklin T.

    2014-01-01

    Historical channel adjustments are documented and discussed in context with anthropogenic disturbances along two meandering, coastal plain rivers - the lower Brazos and Sabine Rivers in the south-central United States. Hard-copy streamflow-measurement notes of the U.S. Geological Survey were utilized to render historical cross sections (1925-2007) at nine gauging stations, which were complemented with repeat photographs and flood-frequency analysis to assess trajectories of channel change and interpret causative mechanisms. Downstream- and upstream-propagating disturbances caused episodes of channel-bed incision and aggradation at different locations for distinct time periods along both rivers. Incision associated with upstream dams is detected, but channels are compensated downstream with sediment inputs from lateral channel migration and tributaries. In one case, temporary aggradation along the Brazos River at Waco was likely caused by a combination of dam construction and regional soil erosion. Channel-bed incision on the lowermost Brazos River is unrelated to dams, but is associated with instream aggregate extraction, possibly in conjunction with downstream channelization. On the Sabine River, extensive aggradation during the 1930s might be associated with logging activities (1880s-1930s), but whether the cause is pervasive regional-scale hillslope erosion or local-scale mill-site activities is indeterminate. Following passage of this sediment, the river generally recovered to pre-disturbance conditions and has exhibited stability despite a mainstem reservoir. Translation of this sediment slug is attenuated by a transition to a flood-prone, distributary-dominated system downstream of the Holocene-Pleistocene terrace onlap position. Additional findings include cross-channel hingepoints separating thalweg incision from simultaneous point-bar or bank accretion at meander bends, which indicates channel adjustment occurs along non-cohesive beds in preference to cohesive or artificially reinforced banks. Also, flood reduction has resulted in bankfull stages that are higher than levels associated with the post-regulation 2-year return period. Finally, vegetation encroachment along banks since the 1970s coupled with reduced flooding along the lower Brazos River has promoted bank accretion deposits that, when fully developed, serve as morphologic indicators of the post-regulation 1- to 2-year return period stage.

  15. National Program for Inspection of Non-Federal Dams. Lovejoy Pond Dam ME-00022, Androscoggin River Basin, North Wayne, Maine. Phase I Inspection Report.

    DTIC Science & Technology

    1979-04-01

    programs for non-Federal dams. (3) To update, verify and complete the National Inventory of Dams. 1.2 DESCRIPTION OF PROJECT a. Location. The Lovejoy Pond...BUREAU OF STANDARDS- 1963-A 41 ANDROSCOGGIN RIVER BASIN NORTH WAYNE ,MAINE LOVEJOY POND DAM ME-00022 0 PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION...side of necessar mnd idenifIr bioc Sigmmber) DAMS, INSPECTION, DAM SAFETY, * Androscoggin River Basin North Wayne, Maine Lovejoy Pond * 20. ABSTRACT

  16. The formation and failure of natural dams

    USGS Publications Warehouse

    Costa, J.E.; Schuster, R.L.

    1987-01-01

    Of the numerous kinds of dams that form by natural processes, dams formed from landslides, glacial ice, and neoglacial moraines present the greatest threat to people and property. The most common types of mass movements that form landslide dams are rock and debris avalanches, rock and soil slumps and slides, and mud, debris, and earth flows. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snowmelt and earthquakes. Landslide dams can be classified into six categories based on their relation with the valley floor. Type I dams (11%) of the 81 landslide dams around the world that were classifed do not reach from one valley side to the other. Type II dams (44%) span the entire valley flood, occasionally depositing material high up on opposite valley sides. Type III dams (41%) move considerable distances both upstream and downstream from the landslide failure. Type IV dams (1%) are rare and involve the contemporaneous failure of material from both sides of a valley. Type V dams (1%) are also rare, and are created when a single landslide sends multiple tongues of debris into a valley forming two or more landslide dams in the same surfaces, that extend under the stream or valley and emerge on the opposite valley side. Many landslide dams fail shortly after formation. Overtopping is by far the most common cause of failure. Glacial ice dams can produce at least nine kinds of ice-dammed lakes. The most dangerous are lakes formed in main valleys dammed by tributary glaciers. Failure can occur by erosion of a drainage tunnel under or through the ice dam or by a channel over the ice dam. Cold polar ice dams generally drain supraglacially or marginally by downmelting of an outlet channel. Warmer temperate-ice dams tend to fail by sudden englacial or subglacial breaching and drainage. Late neoglacial moraine-dammed lakes are located in steep mountain areas affected by the advances and retreats of valley glaciers in the last several centuries. The most common reported failure mechanism is overtopping and breaching by a wave or series of waves in the lake, generated by icefalls, rockfalls, or snow or rock avalanches. Melting of ice-cores or frozen ground and piping and seepage are other possible failure mechanisms. (Lantz-PTT)

  17. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    USGS Publications Warehouse

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  18. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    USGS Publications Warehouse

    Wang, L.; Infante, D.; Lyons, J.; Stewart, J.; Cooper, A.

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. ?? 2010 John Wiley & Sons, Ltd.

  19. Are Wind Power and Hydropower Complements or Competitors? An Analysis of Ecosystem Service Constraints in the Roanoke Basin

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Fernandez, A. R.; Blumsack, S.

    2011-12-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  20. Hydroeconomic Analysis of the Balance between Renewable Wind Energy, Hydropower, and Ecosystems Services in the Roanoke River Basin

    NASA Astrophysics Data System (ADS)

    Fernandez, A.; Blumsack, S.; Reed, P.

    2012-04-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  1. Numerical modelling of glacial lake outburst floods using physically based dam-breach models

    NASA Astrophysics Data System (ADS)

    Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.; Hassan, M. A. A. M.; Lowe, A.

    2015-03-01

    The instability of moraine-dammed proglacial lakes creates the potential for catastrophic glacial lake outburst floods (GLOFs) in high-mountain regions. In this research, we use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed within a generalised likelihood uncertainty estimation (GLUE) framework, to quantify predictive uncertainty in model outputs associated with a reconstruction of the Dig Tsho failure in Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Multiple breach scenarios were produced by differing parameter ensembles associated with a range of breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was found to exert a dominant influence over model performance. The downstream routing of scenario-specific breach hydrographs revealed significant differences in the timing and extent of inundation. A GLUE-based methodology for constructing probabilistic maps of inundation extent, flow depth, and hazard is presented and provides a useful tool for communicating uncertainty in GLOF hazard assessment.

  2. Simulated peak inflows for glacier dammed Russell Fiord, near Yakutat, Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2004-01-01

    In June 2002, Hubbard Glacier advanced across the entrance to 35-mile-long Russell Fiord creating a glacier-dammed lake. After closure of the ice and moraine dam, runoff from mountain streams and glacial melt caused the level in ?Russell Lake? to rise until it eventually breached the dam on August 14, 2002. Daily mean inflows to the lake during the period of closure were estimated on the basis of lake stage data and the hypsometry of Russell Lake. Inflows were regressed against the daily mean streamflows of nearby Ophir Creek and Situk River to generate an equation for simulating Russell Lake inflow. The regression equation was used to produce 11 years of synthetic daily inflows to Russell Lake for the 1992-2002 water years. A flood-frequency analysis was applied to the peak daily mean inflows for these 11 years of record to generate a 100-year peak daily mean inflow of 235,000 cubic feet per second. Regional-regression equations also were applied to the Russell Lake basin, yielding a 100-year inflow of 157,000 cubic feet per second.

  3. Authorized and Operating Purposes of Corps of Engineers Reservoirs

    DTIC Science & Technology

    1992-07-01

    Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida

  4. Engineering and Ecological Aspects of Dam Removal-An Overview

    DTIC Science & Technology

    2006-09-01

    indicated. Figure 3. Teton Dam failure, Idaho, 1976 BENEFITS AND COSTS OF DAMS Dams have provided and continue to provide a diverse...ERDC TN-EMRRP-SR-80 1 Engineering and Ecological Aspects of Dam Removal—An Overview September 2006 By Jock Conyngham1, J. Craig Fischenich1...High ______________________________________________________________________ OVERVIEW Decommissioning and removing dams has

  5. 18. DETAIL AT JUNCTION OF MAIN DAM AT LEFT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL AT JUNCTION OF MAIN DAM AT LEFT AND DIVERSION DAM AT RIGHT SHOWING LOG CRIBBING. SPACES INSIDE CRIBBING WERE FILLED WITH STONE TO ANCHOR DAM; DETERIORATION OF DAM HAS ALLOWED STONE BALLAST TO WASH AWAY. Photographed July 18, 1938. - Forge Creek Dam-John Cable Mill, Townsend, Blount County, TN

  6. 1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A GRAVITY SECTION IS THE THIRD DAM BUILT BY SEATTLE CITY LIGHT TO PROVIDE WATER FOR GORGE POWERHOUSE AND WAS COMPLETED IN 1961, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  7. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia.

    PubMed

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-29

    Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2.40, 95% CI = 0.84, 6.88). A classification tree revealed insights in the importance of the dam as a risk factor for malaria. Assuming that the relationship between the dam and malaria is causal, 43% of the malaria occurring in children was due to living in close proximity to the dam. This study indicates that children living in close proximity to a man-made reservoir in Ethiopia are at higher risk of malaria compared to those living farther away. It is recommended that sound prevention and control programme be designed and implemented around the reservoir to reduce the prevalence of malaria. In this respect, in localities near large dams, health impact assessment through periodic survey of potential vectors and periodic medical screening is warranted. Moreover, strategies to mitigate predicted negative health outcomes should be integral parts in the preparation, construction and operational phases of future water resource development and management projects.

  8. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia

    PubMed Central

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-01

    Background Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. Methods A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Results Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2.40, 95% CI = 0.84, 6.88). A classification tree revealed insights in the importance of the dam as a risk factor for malaria. Assuming that the relationship between the dam and malaria is causal, 43% of the malaria occurring in children was due to living in close proximity to the dam. Conclusion This study indicates that children living in close proximity to a man-made reservoir in Ethiopia are at higher risk of malaria compared to those living farther away. It is recommended that sound prevention and control programme be designed and implemented around the reservoir to reduce the prevalence of malaria. In this respect, in localities near large dams, health impact assessment through periodic survey of potential vectors and periodic medical screening is warranted. Moreover, strategies to mitigate predicted negative health outcomes should be integral parts in the preparation, construction and operational phases of future water resource development and management projects. PMID:19178727

  9. Use of Sentinel-1 SAR data to monitor Mosul dam vulnerability

    NASA Astrophysics Data System (ADS)

    Riccardi, Paolo; Tessari, Giulia; Lecci, Daniele; Floris, Mario; Pasquali, Paolo

    2017-04-01

    The structural monitoring of dams is an important practice to guarantee their safety. Moreover, the water reservoir and the efficient operation and safety of surrounding areas need to be monitored. Considering the importance of large dams as multipurpose infrastructure for flood control, energy production, water supply and irrigation, ensuring their longevity is a key aspect on their management. Therefore, it is of great importance to detect dam deterioration potentially resulting in its shutdown or failure, preventing life and economic losses. Traditional dam monitoring requires the identification of soil movements, tilt, displacements, structural stress and strain behaviour. Since the '90, innovative remote sensing techniques based on satellite Synthetic Aperture Radar (SAR) data were developed to detect and monitor surface displacements. The main advantages of SAR data are the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the advancement. Moreover, the availability of SAR satellite acquisitions from the 1990s enables to reconstruct the historical evolution of dam behaviour. Furthermore, the use of SAR Interferometry (InSAR) techniques, Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR), produce accurate velocity maps and displacement time-series. The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. An iconic case demonstrating the relevance of remote sensing observations is the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, thus the risk for the population is very high. It is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security issues. It consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core. It was completed in 1984 and started generating power on 1986. Since then, frequent consolidation works have been carried out pumping cement mixtures into the soil foundation to keep it stable and prevent it from sinking and then breaking apart. To overcome the impossibility of directly monitoring the structure, analysis of recent deformation affecting the Mosul dam is achieved considering C-band Sentinel-1 SAR data, acquired from the end of 2014 to the present. These 20-m ground resolution data can provide a millimetric precision on displacements. Furthermore, ESA archive available SAR data (ERS and Envisat) are considered to reconstruct the temporal evolution of the deformations. In this work, different stacks of data are processed applying SBAS and PS A-DInSAR techniques; deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalised to assess possible damages affecting a dam through remote sensing and civil engineering surveys.

  10. Putting Roman Dams in Context: a Virtual Approach

    NASA Astrophysics Data System (ADS)

    Decker, M. J.; Du Vernay, J. P.; Mcleod, J. B.

    2017-08-01

    Water resources and management have become a critical global issue. During the half-millennium of its existence, the Roman Empire developed numerous strategies to cope with water management, from large-scale urban aqueduct systems, to industrial-scale water mills designed to cope with feeding growing city populations. Roman engineers encountered, adopted, and adapted indigenous hydraulic systems, and left lasting imprints on the landscape of the Mediterranean and temperate Western Europe by employing a range of water technologies. A recent academic study has enabled the identification of remains of and references to seventy-two dams from the Roman era, constructed in Spain between the 1st and 4th century AD. Such unique heritage, without comparisons in the Mediterranean makes Spain an emblematic case study for the analysis of Roman hydraulic engineering and water management policies. Fifty dams have been located and detailed. The twenty-two outstanding, although identified on the ground, have not been able to be acceptably characterized, due in some cases to their being ruins in a highly degraded state, others due to their being masked by repairs and reconstructions subsequent to the Roman era. A good example of such neglected dams is the buttress dam of Consuegra , in Toledo province (Castilla-La Mancha). Dating to the 3rd - 4th century AD, the Dam of Consuegra, on the basin of the Guadiana, with its over 600 metres length and 4,80 metres height, is a remarkable case of Roman engineering mastery. It had a retaining wall upstream, numerous buttresses and perhaps an embankment downstream, of which no remains are left. The application of 3D digital imaging technique to create a high quality virtual model of such monuments has proved to be successful especially for the study of the technological aspects related its construction. The case study of the Roman dam of Muel (Zaragoza) has shown, in fact, as best practices in digital archaeology can provide an original and innovative perspective on a long time studied monument. In this paper it will be explored how deploying recent computer technologies to the Roman dam at Consuegra can advance our understanding of the history of local and regional landscape change and the technology of water management. In summer 2016, the dam has been documented with terrestrial laser scanning with two FARO Focus 3D x330 and aerial photogrammetry image capturing with a DJI Phantom 4 drone. Data was processed in various 3D software applications to generate 3D representations of the dam including 3D point clouds, animations, and meshed models.

  11. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome

    PubMed Central

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-01-01

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational weight gain, glucose intolerance, hyperinsulinaemia and mild hyperglycaemia. Compared to the offspring of lean dams, exposure to gestational diabetes mellitus during the prenatal period resulted in obesity, hepatic steatosis and insulin resistance in young rat offspring that consumed a postnatal diet that was low in fat. The combination of maternal gestational diabetes mellitus and the postnatal consumption of a high-fat diet by the offspring caused a more severe metabolic phenotype. Metabolomic profiling of the liver tissues of the offspring of gestational diabetic dams revealed accumulation of lipotoxic lipids and reduced phosphatidylethanolamine levels compared to the offspring of lean dams. The results establish that gestational diabetes mellitus is a driver of hepatic steatosis and insulin resistance in the offspring. PMID:25922055

  12. Habitat Evaluation Procedures (HEP) Report : Grand Coulee Dam Mitigation, 1996-1999 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le

    1999-07-01

    The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.

  13. Effects of Wynoochee Dam on Anadromous Fish.

    DTIC Science & Technology

    1980-10-01

    RD-R149 774 EFFECTS OF IYNOOCHEE DAN ON RNRDROMOUS FISH(Ill WASHINGTON DEPT OF FISHERIES OLYMPIA S B MATHEWS OCT 88 DAC67-88-M-i76i UNCLASSIFIED F/G...partments of Fisheries and Game on the effects of the Wynoochee River dam, as well as an analysis of other pertinent data relating to the de- cline of fish...step taken for replacement or enhancement. COHO SALMON The sources consulted were 1) Washington Department of Fisheries ’ (WDF) progress report titled

  14. Effects of remedial grouting on the ground-water flow system at Red Rock Dam near Pella, Iowa

    USGS Publications Warehouse

    Linhart, S. Mike; Schaap, Bryan D.

    2001-01-01

    Hydrographs, statistical analysis of waterlevel data, and water-chemistry data suggest that underseepage on the northeast side of the dam has been reduced but not completely eliminated. Some areas appear to have been affected to a greater degree and for a longer period of time than other areas. Future monitoring of water levels, water chemistry, and stable isotopes can aid in the evaluation of the long-term effectiveness of remedial grouting.

  15. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

    PubMed Central

    Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2018-01-01

    Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs. PMID:29672560

  16. Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHart, Michele; Berggren, Thomas J.; Filardo, Margaret

    2003-09-01

    The runoff volumes in 2002 were near average for the January to July period above Lower Granite Dam (80%) and The Dalles Dam (97%). The year 2002 hydrosystem operations and runoff conditions resulted in flows that were less than the seasonal Biological Opinion (Opinion) flow objectives at Lower Granite Dam for both the spring and summer period. The seasonal flow objectives for Priest Rapids and McNary dams were exceeded for the spring period, but at McNary Dam summer flow objectives were not met. While seasonal flow objectives were exceeded for the spring at McNary Dam, the 2002 season illustrated thatmore » Biological Opinion management to seasonal flow targets can result in conditions where a major portion of the juvenile fish migration migrates in conditions that are less than the flow objectives. The delay in runoff due to cool weather conditions and the inability of reservoirs to augment flows by drafting lower than the flood control elevations, resulted in flows less than the Opinion objectives until May 22, 2002. By this time approximately 73% of the yearling chinook and 56% of steelhead had already passed the project. For the most part, spill in 2002 was managed below the gas waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. The exception was at Lower Monumental Dam where no Biological Opinion spill occurred due to the need to conduct repairs in the stilling basin. Survival estimates obtained for PIT tagged juveniles were similar in range to those observed prior to 2001. A multi-year analysis of juvenile survival and the factors that affect it was conducted in 2002. A water transit time and flow relation was demonstrated for spring migrating chinook and steelhead of Snake River and Mid Columbia River origin. Returning numbers of adults observed at Bonneville Dam declined for spring chinook, steelhead and coho, while summer and fall chinook numbers increased. However, all numbers were far greater than observed in the past ten years averaged together. In 2002, about 87 million juvenile salmon were released from Federal, State, Tribal or private hatcheries into the Columbia River Basin above Bonneville Dam. This represents an increase over the past season, when only 71 million juvenile fish were released into the same area.« less

  17. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Baer, L. A.; Daunton, N. G.; Wade, C. E.

    2001-01-01

    A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Recent spaceflight and centrifugation studies demonstrate that reproduction and ontogenesis in mammals are amenable to study under gravitational conditions that deviate considerably from those typically experienced on Earth (1 x g). In the present study, we tested the hypothesis that maternal reproductive experience determines neonatal outcome following gestation and birth under increased (hyper) gravity. Primigravid and bigravid female rats and their offspring were exposed to 1.5 x g centrifugation from Gestational Day 11 either through birth or through the first postnatal week. On the day of birth, litter sizes were identical across gravity and parity conditions, although significantly fewer live neonates were observed among hypergravity-reared litters born to primigravid dams than among those born to bigravid dams (82% and 94%, respectively; 1.0 x g controls, 99%). Within the hypergravity groups, neonatal mortality was comparable across parity conditions from Postnatal Day 1 through Day 7, at which time litter sizes stabilized. Maternal reproductive experience ameliorated neonatal losses during the first 24 h after birth but not on subsequent days, and neonatal mortality was associated with changes in maternal care patterns. These results indicate that repeated maternal reproductive experience affords protection against neonatal losses during exposure to increased gravity. Differential mortality of neonates born to primigravid versus bigravid dams denotes gravitational load as one environmental mechanism enabling the expression of parity-related variations in birth outcome.

  18. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    USGS Publications Warehouse

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-01-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  19. Life cycle efficiency of beef production: VIII. Relationship between residual feed intake of heifers and subsequent cow efficiency ratios.

    PubMed

    Davis, M E; Lancaster, P A; Rutledge, J J; Cundiff, L V

    2016-11-01

    Data were collected from 1953 through 1980 from identical and fraternal twin beef and dairy females born in 1953, 1954, 1959, 1964, and 1969, and from crossbred females born as singles in 1974, and their progeny. Numbers of dams that weaned at least 1 calf and were included in the first analysis were 37, 45, and 56 in the 1964, 1969, and 1974 data sets, respectively. Respective numbers of dams that weaned 3 calves and were included in a second analysis were 6, 8, 8, 22, 33, and 33 in the 1953, 1954, 1959, 1964, 1969, and 1974 experiments. Individual feed consumption was measured at 28-d intervals from the time females were placed on the experiment until 3 calves were weaned or the dams had reached 5 yr of age. Residual feed intake (RFI) and residual gain (RG) of the heifers that subsequently became the dams in this study were determined based on ADG and DMI from 240 d of age to first calving. Various measures of cow efficiency were calculated on either a life cycle or actual lifetime basis using ratios of progeny and dam weight outputs to progeny and dam feed inputs. Residual feed intake was phenotypically independent of ADG and metabolic midweight (MMW), whereas the correlation between RFI and DMI was positive and highly significant ( = 0.67; < 0.0001). Residual gain was highly correlated with ADG ( = 0.75; < 0.0001) and had near 0 correlations with DMI and MMW. Correlations indicated that heifers that ate less and had smaller metabolic midweights from 240 d of age to first calving had superior efficiency ratios as cows. Residual feed intake was not significantly correlated with age at puberty, age at calving, or milk production. Results of this study do not indicate any serious antagonisms of postweaning heifer RFI with subsequent cow and progeny performance traits or with life cycle or actual lifetime cow efficiency. In addition, selection for increased RG would result in earlier ages at calving, but would also tend to result in taller and heavier cows.

  20. Status and trends of the rainbow trout population in the Lees Ferry reach of the Colorado River downstream from Glen Canyon Dam, Arizona, 1991–2009

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.

    2011-01-01

    The Lees Ferry reach of the Colorado River, a 25-kilometer segment of river located immediately downstream from Glen Canyon Dam, has contained a nonnative rainbow trout (Oncorhynchus mykiss) sport fishery since it was first stocked in 1964. The fishery has evolved over time in response to changes in dam operations and fish management. Long-term monitoring of the rainbow trout population downstream of Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program. A standardized sampling design was implemented in 1991 and has changed several times in response to independent, external scientific-review recommendations and budget constraints. Population metrics (catch per unit effort, proportional stock density, and relative condition) were estimated from 1991 to 2009 by combining data collected at fixed sampling sites during this time period and at random sampling sites from 2002 to 2009. The validity of combining population metrics for data collected at fixed and random sites was confirmed by a one-way analysis of variance by fish-length class size. Analysis of the rainbow trout population metrics from 1991 to 2009 showed that the abundance of rainbow trout increased from 1991 to 1997, following implementation of a more steady flow regime, but declined from about 2000 to 2007. Abundance in 2008 and 2009 was high compared to previous years, which was likely the result of increased early survival caused by improved habitat conditions following the 2008 high-flow experiment at Glen Canyon Dam. Proportional stock density declined between 1991 and 2006, reflecting increased natural reproduction and large numbers of small fish in samples. Since 2001, the proportional stock density has been relatively stable. Relative condition varied with size class of rainbow trout but has been relatively stable since 1991 for fish smaller than 152 millimeters (mm), except for a substantial decrease in 2009. Relative condition was more variable for larger size classes, and substantial decreases were observed for the 152-304-mm size class in 2009 and 305-405-mm size class in 2008 that persisted into 2009.

  1. National Dam Safety Program. Tomahawk Lake Dam (Inventory Number N.Y. 618), Lower Hudson River Basin, Orange County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-14

    Guidelines for Safety Inspection of Dams. d. Hazard Classification - Cherry Hill Road crosses the channel 1600 feet downstream from the dam and Tuthill...Road crosses the channel 1.5 miles below the dam. A home is located within 5 feet of the stream elevation, about 10 feet from the stream, and...below the dam. Cherry Hill Road crosses the channel 1600 feet downstream of the dam and Tuthill Road crosses the channel 1.5 miles below the dam. A home

  2. 107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  3. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen-Tien, Viet; Elliott, Robert J. R.; Strobl, Eric A.

    2018-05-01

    Vietnam is a country with diverse terrain and climatic conditions and a dependency on hydropower for a significant proportion of its power needs and as such, is particularly vulnerable to changes in climate. In this paper we apply SWAT (Soil and Water Assessment Tool) derived discharge simulation results coupled with regression analysis to estimate the performance of hydropower plants for Vietnam between 1995 and mid-2014 when both power supply and demand increased rapidly. Our approach is to examine the watershed formed from three large inter-boundary basins: The Red River, the Vietnam Coast and the Lower Mekong River, which have a total area of 977,964 km2. We then divide this area into 7,887 sub-basins with an average area of 131.6 km2 (based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 Hydrological Response Units (HRUs). Next we simulate river flow for the 40 largest hydropower plants across Vietnam. Our validation process demonstrates that the simulated flows are significantly correlated with the gauged inflows into these dams and are able to serve as a good proxy for the inflows into hydropower dams in our baseline energy regression, which captures 87.7% of the variation in monthly power generation. In other results we estimate that large dams sacrifice on average around 18.2% of their contemporaneous production for the purpose of flood control. When we assess Vietnam's current alignment of dams we find that the current cascades of large hydropower dams appear to be reasonably efficient: each MWh/day increase in upstream generation adds 0.146 MWh/day to downstream generation. The study provides evidence for the multiple benefits of a national system of large hydropower dams using a cascade design. Such a system may help overcome future adverse impacts from changes in climate conditions. However, our results show that there is still room for improvement in the harmonization of cascades in some basins. Finally, possible adverse hydro-ecological impacts due to the proliferation of large upstream dams, including those located beyond Vietnam's border, need to be carefully considered.

  4. Upstream Passage, Spawning, and Stock Identification of Fall Chinook in the Snake River, 1992 and 1993 : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, H. Lee; Mendel, Glen W.

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, andmore » ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs.« less

  5. Hydro-dam - A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake.

    PubMed

    Lin, Zihan; Qi, Jiaguo

    2017-10-01

    Recent proliferation of hydro-dams was one of the nature-based solutions to meet the increasing demand for energy and food in the Lower Mekong River Basin (LMRB). While construction of these hydro-dams generated some hydropower and facilitated expansion of irrigated lands, it also significantly altered the basin-wide hydrology and subsequently impacted wetland ecosystems. Unintended adverse consequences of ecosystem services from lakes and wetlands offset the intended gains in hydroelectricity and irrigated agriculture. The trade-offs between gains in energy and food production and losses in aquatic ecosystem services were perceived to be significant but knowledge of the magnitude, spatial extent, and type of ecosystem services change is lacking and, therefore, the question whether the hydro-dam is an optimized solution or a potential ecological problem remains unanswered. In this study, as the first step to answer this question and using the Tonlé Sap Lake as an example, we quantified one of the impacts of hydro-dams on lake ecosystem's phenology in terms of open water area, a critical ecological characteristic that affects lake systems' fish production, biodiversity, and livelihoods of the local communities. We used the MODIS-NDVI time series, forecast function and the Mann-Kendall trend test method to first quantify the open water area, analyzed its changes over time, and then performed correlation analysis with climate variables to disentangle dam impacts. The results showed reduced hydro-periods, diminishing lake seasonality and a declining trend in Tonlé Sap Lake open water area over the past 15 years. These changes were insignificantly related to climatic influence during the same period. It is concluded that basin-wide hydro-dam construction and associated agricultural irrigation were deemed to be the primary cause of these ecological changes. Further analyses of changes in the lake's ecosystem services, including provision and cultural services, need to be carried out in order to have a holistic understanding of the trade-offs brought by the hydro-dam proliferation as a solution to the emerging energy and food demand in the LMRB. Published by Elsevier Inc.

  6. Rubber dam may increase the survival time of dental restorations.

    PubMed

    Keys, William; Carson, Susan J

    2017-03-01

    Data sourcesCochrane Oral Health's Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, LILACS, SciELO, Chinese BioMedical Literature Database, VIP, China National Knowledge Infrastructure, ClinicalTrials.gov, World Health Organization International Clinical Trials Registry Platform, OpenGrey and Sciencepaper Online databases. Handsearches in a number of journals.Study selectionRandomised controlled trials, including split-mouth studies assessing the effects of rubber dam isolation for restorative treatments in dental patients.Data extraction and synthesisTwo review authors independently screened the results of the electronic searches, extracted data and assessed the risk of bias of the included studies.ResultsFour studies involving a total of 1,270 patients were included. The studies were at high risk of bias. One trial was excluded from the analysis due to inconsistencies in the presented data. Restorations had a significantly higher survival rate in the rubber dam isolation group compared to the cotton roll isolation group at six months in participants receiving composite restorative treatment of non-carious cervical lesions (risk ratio (RR) 1.19, 95% confidence interval (CI) 1.04 to 1.37, very low-quality evidence). The rubber dam group had a lower risk of failure at two years in children undergoing proximal atraumatic restorative treatment in primary molars (hazard ratio (HR) 0.80, 95% CI 0.66 to 0.97, very low-quality evidence). One trial reported limited data showing that rubber dam usage during fissure sealing might shorten the treatment time. None of the included studies mentioned adverse effects or reported the direct cost of the treatment, or the level of patient acceptance/satisfaction. There was also no evidence evaluating the effects of rubber dam usage on the quality of the restorations.ConclusionsWe found some very low-quality evidence, from single studies, suggesting that rubber dam usage in dental direct restorative treatments may lead to a lower failure rate of the restorations, compared with the failure rate for cotton roll usage. Further high quality research evaluating the effects of rubber dam usage on different types of restorative treatments is required.

  7. The Dams and Monitoring Systems and Case Study: Ataturk and Karakaya Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Gülnerman, A. G.

    2017-12-01

    Dams are among the most important engineering structures used for flood controls, agricultural purposes as well as drinking and hydroelectric power. Especially after the Second World War, developments on the construction technology, increase the construction of larger capacity dams. There are more than 150.000 dams in the world and almost 1000 dams in Turkey, according to international criteria. Although dams provide benefits to humans, they possess structural risks too. To determine the performance of dams on structural safety, assessing the spatial data is very important. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some general information on dams and their different monitoring systems by taking into account two different dams and their structural specifications with the required information. The case study in this paper depends on a comparison of the monitoring surveys on Atatürk Dam and Karakaya Dam, which are constructed on Firat River with two different structural type in Turkey. In addition, brief information is given about these dams and the methods of geodetic and non-geodetic monitoring measurements applied by various disciplines. The last part of the study focuses on the inference of the geodetic monitoring methods, which depend on a seven years of geodetic monitoring.

  8. Socioeconomic and Institutional Dimensions of Dam Removals: The Wisconsin Experience

    PubMed

    Born; Genskow; Filbert; Hernandez-Mora; Keefer; White

    1998-05-01

    / There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders

  9. Air demand estimation in bottom outlets with the particle finite element method. Susqueda Dam case study

    NASA Astrophysics Data System (ADS)

    Salazar, Fernando; San-Mauro, Javier; Celigueta, Miguel Ángel; Oñate, Eugenio

    2017-07-01

    Dam bottom outlets play a vital role in dam operation and safety, as they allow controlling the water surface elevation below the spillway level. For partial openings, water flows under the gate lip at high velocity and drags the air downstream of the gate, which may cause damages due to cavitation and vibration. The convenience of installing air vents in dam bottom outlets is well known by practitioners. The design of this element depends basically on the maximum air flow through the air vent, which in turn is a function of the specific geometry and the boundary conditions. The intrinsic features of this phenomenon makes it hard to analyse either on site or in full scaled experimental facilities. As a consequence, empirical formulas are frequently employed, which offer a conservative estimate of the maximum air flow. In this work, the particle finite element method was used to model the air-water interaction in Susqueda Dam bottom outlet, with different gate openings. Specific enhancements of the formulation were developed to consider air-water interaction. The results were analysed as compared to the conventional design criteria and to information gathered on site during the gate operation tests. This analysis suggests that numerical modelling with the PFEM can be helpful for the design of this kind of hydraulic works.

  10. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    USGS Publications Warehouse

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  11. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to mergingmore » and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.« less

  12. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 1. Construction History and Field and Laboratory Studies. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    truck Service truck Steel casing, 8-foot diameter with 3/4-inch wall thickness, was installed as the shaft was advanced. A shaft cover, constructed of... steel mats. was hoisted over the shaft at night for security. To obtain in-situ density tests at selected intervals in the bottom of the shaft...subcontractor installed the three wells using an air-rotary rig, and driving steel casing as the wells were advanced. He then perforated the casings

  13. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods.

    PubMed

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  14. Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge.

    PubMed

    Luiz, Wilson B; Rodrigues, Juliana F; Crabb, Joseph H; Savarino, Stephen J; Ferreira, Luis C S

    2015-12-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. ECHETA DAM SPILLWAY. COMING OUT BELOW THE DAM. AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM SPILLWAY. COMING OUT BELOW THE DAM. AT CENTER OF PHOTO. VIEW TO NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  16. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    NASA Astrophysics Data System (ADS)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  17. Influences of Dam Operations in Groundwater-Surface Water Mixing Zones: Towards Multiscale Understanding

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Scheibe, T. D.; Chen, X.; Huang, M.; Arntzen, E.; Garayburu-Caruso, V. A.; Graham, E.; Johnson, T. C.; Strickland, C. E.

    2017-12-01

    The installation and operation of dams have myriad influences on ecosystems, from direct effects on hydrographs to indirect effects on marine biogeochemistry and terrestrial food webs. With > 50000 existing and > 3700 planned large dams world-wide there is a pressing need for holistic understanding of dam impacts. Such understanding is likely to reveal unrecognized opportunities to modify dam operations towards beneficial outcomes. One of the most dramatic influences of daily dam operations is the creation of `artificial intertidal zones' that emerge from short-term increases and decreases in discharge due to hydroelectric power demands; known as hydropeaking. There is a long history of studying the influences of hydropeaking on macrofauna such as fish and invertebrates, but only recently has significant attention been paid to the hydrobiogeochemical effects of hydropeaking. Our aim here is to develop an integrated conceptual model of the hydrobiogeochemical influences of hydropeaking. To do so we reviewed available literature focusing on hydrologic and/or biogeochemical influences of hydropeaking. Results from these studies were collated into a single conceptual model that integrates key physical (e.g., sediment transport, hydromorphology) and biological (e.g., timescale of microbiome response) processes. This conceptual model highlights non-intuitive impacts of hydropeaking, the presence of critical thresholds, and strong interactions among processes. When examined individually these features suggest context dependency, but when viewed through an integrated conceptual model, common themes emerge. We will further discuss a critical next step, which is the local to regional to global evaluation of this conceptual model, to enable multiscale understanding. We specifically propose a global `hydropeaking network' of researchers using common methods, data standards, and analysis techniques to quantify the hydrobiogeochemical effects of hydropeaking across biomes. We will conclude with a prospective discussion of key science questions that emerge from the conceptual model and that can only be answered through a global, synchronized effort. Such an effort has the potential to strongly influence dam operations towards improved health of river corridor ecosystems from local to global scales.

  18. Evaluation of Groundwater Leakage into a Drainage Tunnel in Jinping-I Arch Dam Foundation in Southwestern China: A Case Study

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng; Hong, Jia-Min; Zheng, Hua-Kang; Li, Yi; Hu, Ran; Zhou, Chuang-Bing

    2016-03-01

    The Jinping-I double-curvature arch dam, located in the middle reach of Yalong River and with a maximum height of 305 m, is the world's highest dam of this type that has been completed. Since the second stage of reservoir impounding, after which the reservoir water level was gradually raised by about 232 m, a significant amount of leakage was observed from the drainage holes drilled in the lowest drainage tunnel at the left bank abutment at an elevation of 1595 m a.s.l. (above sea level), with an observed maximum pressure of about 0.3 MPa. A number of investigations, including water quality analysis, digital borehole imaging, tunnel geological mapping, and in situ groundwater monitoring, were performed to examine the source of leaking, the groundwater flow paths, and the performance of the grouting curtains. By defining two objective functions using the in situ time series measurements of flow rate and hydraulic head, respectively, a multiobjective inverse modeling procedure was proposed to evaluate the permeability of the foundation rocks that was underestimated in the design stage. This procedure takes advantage of the orthogonal design, finite element forward modeling of the transient groundwater flow, artificial neural network, and non-dominated sorting genetic algorithm, hence significantly reducing the computational cost and improving the reliability of the inversed results. The geological structures that lead to the leakage were identified and the seepage flow behaviors in the dam foundation and the left bank abutment were assessed. Based on the field measurements and the inverse modeling results, the effects of the engineering treatments of the leakage event on the dam safety were analyzed. It has been demonstrated that the seepage control system is effective in lowering the groundwater level and limiting the amount of seepage in the dam foundation, and the leakage event does not pose a threat to the safety of the dam.

  19. Sediment Transport and Deposition Resulting from a Dam-Removal Sediment Pulse: Milltown Dam, Clark Fork River, MT

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2010-12-01

    The removal of Milltown Dam in 2008 from the Clark Fork River, Montana, USA, lowered base level at the dam site by 9 m and triggered erosion of nearly 600,000 metric tons of predominantly fine reservoir sediment. Bedload and bed-material sampling, repeat topographic surveys, sediment transport modeling, geochemical fingerprinting of downstream sediments, and Lidar analysis have all been applied to study the upstream and downstream effects of the dam removal. In the years since dam breaching, successive years with similar peak flows (3-year recurrence interval) were followed by a third year with below-average runoff. Nearly all of the documented reservoir erosion occurred in the first year, when sand and silt was eroded and transported downstream. In subsequent years, minimal reservoir erosion occurred, in part as a result of active management to prevent further reservoir erosion, but coarse material eroded from the reservoir has dispersed downstream. Upstream responses in this system have been strongly mediated by Superfund remediation activities in Milltown Reservoir, in which over two million metric tons of contaminated sediments have been mechanically excavated. Downstream aggradation has been limited in the main channel but was initially substantial in bars and side channels of a multi-thread reach 21 to 25 km downstream of the dam site, suggesting that channel change has been influenced far more by the antecedent depositional environment than by proximity to the source of the sediment pulse. Comparison of observed erosion with pre-removal modeling shows that reservoir erosion exceeded model predictions by two orders of magnitude in the unconfined Clark Fork arm of the reservoir. In addition, fine reservoir sediments predicted to move exclusively in suspension traveled as bedload at lower transport stages. The resulting fine sediment deposition in substrate interstices, on bars, and in side channels of the gravel- and cobble-bed Clark Fork River is the most significant and lasting change to downstream geomorphic and ecological systems.

  20. Characterization of a dam Mutant of Serratia marcescens and Nucleotide Sequence of the dam Region

    PubMed Central

    Ostendorf, Tammo; Cherepanov, Peter; de Vries, Johann; Wackernagel, Wilfried

    1999-01-01

    The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors. PMID:10383952

  1. Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Yuan, Wenhao; Yin, Daowei; Finlayson, Brian; Chen, Zhongyuan

    2012-04-01

    The geomorphic impacts of dams on downstream river channels are complex, not readily predictable for specific cases, but widely reported in the literature. For the Three Gorges Dam on the Yangtze (Changjiang) River in China, no studies of the impact of the changed flow and sediment conditions below the dam on the behaviour of the channel were included in the pre-dam feasibility report. We have assembled a database of flow and sediment data for the middle Yangtze River from Yichang to Hankou and used this to analyse changes following the closure of the dam. While total flow is little affected, the operating strategy for the dam that provides for storage of part of the summer high flows to maintain hydroelectric power generation in winter (the low flow season) is reflected in changes to the seasonal distribution of flow below the dam. We calculated potential sediment carrying capacity and compared it with measured sediment concentrations for both pre- and post-dam conditions. While channel sedimentation is indicated along the middle Yangtze for pre-dam conditions, scour is indicated for post-dam conditions, highest at Yichang immediately below the dam and decreasing downstream.

  2. Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed.

    PubMed

    Toride, Kinya; Cawthorne, Dylan L; Ishida, Kei; Kavvas, M Levent; Anderson, Michael L

    2018-06-01

    California's interconnected water system is one of the most advanced water management systems in the world, and understanding of long-term trends in atmospheric and hydrologic behavior has increasingly being seen as vital to its future well-being. Knowledge of such trends is hampered by the lack of long-period observation data and the uncertainty surrounding future projections of atmospheric models. This study examines historical precipitation trends over the Shasta Dam watershed (SDW), which lies upstream of one of the most important components of California's water system, Shasta Dam, using a dynamical downscaling methodology that can produce atmospheric data at fine time-space scales. The Weather Research and Forecasting (WRF) model is employed to reconstruct 159years of long-term hourly precipitation data at 3km spatial resolution over SDW using the 20th Century Reanalysis Version 2c dataset. Trend analysis on this data indicates a significant increase in total precipitation as well as a growing intensity of extreme events such as 1, 6, 12, 24, 48, and 72-hour storms over the period of 1851 to 2010. The turning point of the increasing trend and no significant trend periods is found to be 1940 for annual precipitation and the period of 1950 to 1960 for extreme precipitation using the sequential Mann-Kendall test. Based on these analysis, we find the trends at the regional scale do not necessarily apply to the watershed-scale. The sharp increase in the variability of annual precipitation since 1970s is also detected, which implies an increase in the occurrence of extreme wet and dry conditions. These results inform long-term planning decisions regarding the future of Shasta Dam and California's water system. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya.

    PubMed

    Pandit, Maharaj K; Grumbine, R Edward

    2012-12-01

    Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. ©2012 Society for Conservation Biology.

  4. The blind men meet the elephant at the dam: Alternative spatial and taxonomic components reveal different insights about how low-head dams impact fish biodiversity

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Smith, Joseph M.; Hitchman, Sean M.

    2017-01-01

    Dams are ubiquitous environmental impacts that threaten aquatic ecosystems. The ability to compare across research studies is essential to conserve the native biodiversity that is impacted by the millions of low‐head dams that currently fragment streams and rivers. Here, we identify a previously unaddressed obstacle that impedes this generalization. Specifically, divergent spatial and taxonomic approaches that result from different conceptualizations of the dam‐biodiversity problem can produce conflicting science‐based conclusions about the same dam impact. In this research, using the same dammed and undammed sites, we evaluated the scientific generality of different conceptualizations of the dam‐biodiversity problem. We compared two different but commonly used spatial approaches—(1) above dam–below dam vs. (2) undammed–dammed comparisons—and 11 different, commonly used taxonomic approaches (three assemblage summaries, eight guilds). Sites above the dam structure had less diverse fish assemblages than sites below dams, whereas sites below the dam structure were similar to undammed sites. Thus, spatial approach 1 detected a large dam effect and spatial approach 2 detected a small dam effect. Similarly, some taxonomic responses (species richness, diversity, abundance, and number of guilds) detected large dam effects; other responses detected small (riffle specialist guild) or no dam effects (pool generalists). In summary, our results showed that how the problem was framed altered scientific conclusions and created different dam realities. The metaphor of how individual blind men disagree about the structure of an elephant, based on examinations of different body parts, reinforces the need for a coordinated, holistic perspective on dam research. Although no single approach is adequate for all problems, identifying the form, consequences of, and relationships among different research conceptualizations will set the stage for future syntheses of dam‐biodiversity research to advance science‐based conservation.

  5. The application of dam break monitoring based on BJ-2 images

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Li, Suju; Wu, Wei; Liu, Ming

    2018-03-01

    Flood is one of the major disasters in China. There are heavy intensity and wide range rainstorm during flood season in eastern part of China, and the flood control capacity of rivers is lower somewhere, so the flood disaster is abrupt and caused lots of direct economic losses. In this paper, based on BJ-2 Spatio-temporal resolution remote sensing data, reference image, 30-meter Global Land Cover Dataset(GlobeLand 30) and basic geographic data, forming Dam break monitoring model which including BJ-2 date processing sub-model, flood inundation range monitoring sub-model, dam break change monitoring sub-model and crop inundation monitoring sub-model. Case analysis in Poyang County Jiangxi province in 20th, Jun, 2016 show that the model has a high precision and could monitoring flood inundation range, crops inundation range and breach.

  6. Potential of modified flow-release rules for Kingsley Dam in meeting crane habitat requirements, Platte River, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.W.; Hiew, K.L.; Loubser, E.

    1985-11-01

    The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less

  7. Nonlinear scaling of the Unit Hydrograph Peaking Factor for dam safety

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.; Loney, D.

    2017-12-01

    Existing U.S. Army Corps of Engineers (USACE) policy suggests unit hydrograph peaking factor (UHPF), the ratio of an observed and modeled event unit hydrograph peak, range between 1.25 and 1.50 to ensure dam safety. It is pertinent to investigate the impact of extreme flood events on the validity of this range through physically based rainfall-runoff models not available during the planning and design of most USACE dams. The UHPF range was analyzed by deploying the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model in the Goose Creek, VA, watershed to develop a UHPF relationship with excess rainfall across various return-period events. An effective rainfall factor (ERF) is introduced to validate existing UHPF guidance as well as provide a nonlinear UHPF scaling relation when effective rainfall does not match that of the UH design event.

  8. Data collection and documentation of flooding downstream of a dam failure in Mississippi

    USGS Publications Warehouse

    Van Wilson, K.; ,

    2005-01-01

    On March 12, 2004, the Big Bay Lake dam failed, releasing water and affecting lives and property downstream in southern Mississippi. The dam is located near Purvis, Mississippi, on Bay Creek, which flows into Lower Little Creek about 1.9 miles downstream from the dam. Lower Little Creek flows into Pearl River about 16.9 miles downstream from the dam. Knowledge of the hydrology and hydraulics of floods caused by dam breaks is essential to the design of dams. A better understanding of the risks associated with possible dam failures may help limit the loss of life and property that often occurs downstream of a dam failure. The USGS recovered flood marks at the one crossing of Bay Creek and eight crossings of Lower Little Creek. Additional flood marks were also flagged at three other bridges crossing tributaries where backwater occurred. Flood marks were recovered throughout the stream reach of about 3/4 to 15 miles downstream of the dam. Flood marks that were flagged will be surveyed so that a flood profile can be documented downstream of the Big Bay Lake dam failure. Peak discharges are also to be estimated where possible. News reports stated that the peak discharge at the dam was about 67,000 cubic feet per second. Preliminary data suggest the peak discharge from the dam failure attenuated to about 13,000 cubic feet per second at Lower Little Creek at State Highway 43, about 15 miles downstream of the dam.

  9. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    USGS Publications Warehouse

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.

  10. ECHETA DAM RIPRAP ON RESERVOIR SIDE OF THE DAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM RIP-RAP ON RESERVOIR SIDE OF THE DAM AT BREACH. VIEW TO NORTH-NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  11. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China.

    PubMed

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-12-02

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the "source-pathway-target" in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method.

  12. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China

    PubMed Central

    Liu, Renzhi; Liu, Jing; Zhang, Zhijiao; Borthwick, Alistair; Zhang, Ke

    2015-01-01

    Over the past half century, a surprising number of major pollution incidents occurred due to tailings dam failures. Most previous studies of such incidents comprised forensic analyses of environmental impacts after a tailings dam failure, with few considering the combined pollution risk before incidents occur at a watershed-scale. We therefore propose Watershed-scale Tailings-pond Pollution Risk Analysis (WTPRA), designed for multiple mine tailings ponds, stemming from previous watershed-scale accidental pollution risk assessments. Transferred and combined risk is embedded using risk rankings of multiple routes of the “source-pathway-target” in the WTPRA. The previous approach is modified using multi-criteria analysis, dam failure models, and instantaneous water quality models, which are modified for application to multiple tailings ponds. The study area covers the basin of Gutanting Reservoir (the largest backup drinking water source for Beijing) in Zhangjiakou City, where many mine tailings ponds are located. The resultant map shows that risk is higher downstream of Gutanting Reservoir and in its two tributary basins (i.e., Qingshui River and Longyang River). Conversely, risk is lower in the midstream and upstream reaches. The analysis also indicates that the most hazardous mine tailings ponds are located in Chongli and Xuanhua, and that Guanting Reservoir is the most vulnerable receptor. Sensitivity and uncertainty analyses are performed to validate the robustness of the WTPRA method. PMID:26633450

  13. Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA.

    Treesearch

    Shannon Claeson; B. Coffin

    2015-01-01

    Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate-sized dams, like Hemlock Dam (7.9m tall and 56m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam...

  14. Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: Effects of dam construction and land use change on regional inputs

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Galy, Valier; Rosenheim, Brad E.; Shields, Michael; Cui, Xingqian; Van Metre, Peter

    2015-10-01

    We use a dated sediment core from Lake Whittington (USA) in the lower Mississippi River to reconstruct linkages in the carbon cycling and fluvial sediment dynamics over the past 80 years. Organic carbon (OC) sources were characterized using bulk (δ13C, ramped pyrolysis-oxidation (PyrOx) 14C, δ15N, and TN:OC ratios) and compound-specific (lignin phenols and fatty acids, including δ13C and 14C of the fatty acids) analyses. Damming of the Missouri River in the 1950s, other hydrological modifications to the river, and soil conservation measures resulted in reduced net OC export, in spite of increasing OC concentrations. Decreasing δ13C values coincided with increases in δ15N, TN:OC ratios, long-chain fatty acids, and lignin-phenol concentrations, suggesting increased inputs of soil-derived OC dominated by C3 vegetation, mainly resulting from changes in farming practices and crop distribution. However, ramped PyrOx 14C showed no discernible differences downcore in thermochemical stability, indicating a limited impact on soil OC turnover.

  15. Impacts of Small Scale Flow Regulation on Sediment Dynamics in an Ecologically Important Upland River

    NASA Astrophysics Data System (ADS)

    Quinlan, E.; Gibbins, C. N.; Batalla, R. J.; Vericat, D.

    2015-03-01

    Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km-2 year-1, a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m-2. Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.

  16. Reconstruction of multidimensional carbon hosts with combined 0D, 1D and 2D networks for enhanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Xia, X. H.; Wang, Y. D.; Wang, X. L.; Tu, J. P.

    2017-02-01

    It is a core task to find solutions to suppress the "shuttle effect" of polysulfides and improve high rate capability at the sulfur cathode of lithium sulfur batteries. Herein we first time propose a concept of multileveled blocking "dams" to suppress the diffusion of polysulfides. We report a facile and effective strategy to construct multidimensional conductive carbon hosts for accommodation of active sulfur. Multidimensional ternary carbon networks (MTCNs) with 0D nanospheres, 1D nanotubes and 2D nanoflakes are organically combined together to provide multileveled conductive channels to reserve active sulfur and promote stable sustained reactions. In the light of enhanced conductivity and multileveled blocking "dams" for polysulfides, the designed MTCNs/S cathode has been demonstrated with noticeable improvement in discharge capacity (1472 mAh g-1 at 0.l C) and long-term cycling stability (65% retention at 5.0 C after 500 cycles). Our research may provide a new insight in the gradient blocking of polysulfides with the help of multidimensional carbon networks.

  17. 9. Excavation work at Pleasant Dam (now called Waddell Dam). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Excavation work at Pleasant Dam (now called Waddell Dam). Photographer unknown, July, 22, 1926. Source: Maricopa County Municipal Water Conservation District Number One (MWD). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  18. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  19. National Program for Inspection of Non-Federal Dams. Houghton Pond Dam (MA 00444), Charles River Basin, Holliston, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1979-07-01

    RD-A154 892 NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS i/I HOUGHTON POND DAM (MA..(U) CORPS OF ENGINEERS WALTHAM UNCLASSIFIED N NEN ENGLAND...HOUGHTON POND DAM MA 00444 PHASE I INSPECTION REPORT _ NATIONAL DAM INSPECTION PROGRAM DTIC EECTE CD JUN4 985 -LJE DEPARTMENT OF THE ARMY NEW ENGLAND...16 SUPPLEMENTARY NOTES Co ver program reads: Phase I Inspection Report, National Dam Inspection Program ; however, the official title of the program

  20. National Dam Safety Program. Still Lake Dam (Inventory Number N.Y. 1266), Long Island Basin, Westchester County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-05

    Location The dam is located in Ossining , Westchester County, New York. The dam is located approximately four miles north- east of the City of... Ossining . c. Size Classification The dam has a structural height of 16 feet and a reservoir storage capacity of 150 acre-feet. The dam is clas- sified as...President of the Association is Mr. Barry Shainman, Adams Road, Ossining , New York, 10562, Telephone No. (914) 762-118C. f. Purpose Still Lake Dam

  1. Influence of Flow Regulation on Summer Water Temperature: Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, A.; Hannah, D. M.; Peiry, J.; Campo, A. M.

    2012-12-01

    This study quantifies the effects of the Paso de las Piedras Dam on the thermal behaviour of the Sauce Grande River, Argentina, during a summer season. A 30-day data set of continuous hourly data was assembled for eight stream temperature gauging sites deployed above and below the impoundment. Time series span the hottest period recorded during summer 2009 to evaluate variations in river water temperature under strong meteorological influence. The methods include: (i) analysis of the time series by inspecting the absolute differences in daily data (magnitude, timing, frequency, duration and rate of change), (ii) classification of diurnal regimes by using a novel regime 'shape' and 'magnitude' classifying method (RSMC), and (ii) quantification of the sensitivity of water temperature regimes to air temperature by computation of a novel sensitivity index (SI). Results showed that fluctuations in daily water temperatures were linked to meteorological drivers; however, spatial variability in the shape and the magnitude of the thermographs revealed the effects of the impoundment in regulating the thermal behaviour of the river downstream. An immediate cooling effect below the dam was evident. Mean daily temperatures were reduced in up to 4 °C, and described a warming trend in the downstream direction over a distance of at least 15 km (up to +2.3 °C). Diurnal cycles were reduced in amplitude and delayed in timing, and revealed a dominance of regime magnitude stability and regime shape climatic insensitivity over a distance of 8 km downstream. These findings provide new information about the water quality of the Sauce Grande River and inform management of flows to maintain the ecological integrity of the river system. Also, they motivate further analysis of potential correlates under varying hydrological and meteorological conditions. The methods presented herein have wider applicability for quantifying river thermal regimes and their sensitivity to climate and other drivers of change over a range of temporal and spatial scales.

  2. Anthropogenic Water Uses and River Flow Regime Alterations by Dams

    NASA Astrophysics Data System (ADS)

    Ferrazzi, M.; Botter, G.

    2017-12-01

    Dams and impoundments have been designed to reconcile the systematic conflict between patterns of anthropogenic water uses and the temporal variability of river flows. Over the past seven decades, population growth and economic development led to a marked increase in the number of these water infrastructures, so that unregulated free-flowing rivers are now rare in developed countries and alterations of the hydrologic cycle at global scale have to be properly considered and characterized. Therefore, improving our understanding of the influence of dams and reservoirs on hydrologic regimes is going to play a key role in water planning and management. In this study, a physically based analytic approach is combined to extensive hydrologic data to investigate natural flow regime alterations downstream of dams in the Central-Eastern United States. These representative case studies span a wide range of different uses, including flood control, water supply and hydropower production. Our analysis reveals that the most evident effects of flood control through dams is a decrease in the intra-seasonal variability of flows, whose extent is controlled by the ratio between the storage capacity for flood control and the average incoming streamflow. Conversely, reservoirs used for water supply lead to an increase of daily streamflow variability and an enhanced inter-catchment heterogeneity. Over the last decades, the supply of fresh water required to sustain human populations has become a major concern at global scale. Accordingly, the number of reservoirs devoted to water supply increased by 50% in the US. This pattern foreshadows a possible shift in the cumulative effect of dams on river flow regimes in terms of inter-catchment homogenization and intra-annual flow variability.

  3. Determining the effects of dams on subdaily variation in river flows at a whole-basin scale

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Letcher, B.H.; Nislow, K.H.; Lutz, K.A.; Magilligan, F.J.

    2010-01-01

    River regulation can alter the frequency and magnitude of subdaily flow variations causing major impacts on ecological structure and function. We developed an approach to quantify subdaily flow variation for multiple sites across a large watershed to assess the potential impacts of different dam operations (flood control, run-of-river hydropower and peaking hydropower) on natural communities. We used hourly flow data over a 9-year period from 30 stream gages throughout the Connecticut River basin to calculate four metrics of subdaily flow variation and to compare sites downstream of dams with unregulated sites. Our objectives were to (1) determine the temporal scale of data needed to characterize subdaily variability; (2) compare the frequency of days with high subdaily flow variation downstream of dams and unregulated sites; (3) analyse the magnitude of subdaily variation at all sites and (4) identify individual sites that had subdaily variation significantly higher than unregulated locations. We found that estimates of flow variability based on daily mean flow data were not sufficient to characterize subdaily flow patterns. Alteration of subdaily flows was evident in the number of days natural ranges of variability were exceeded, rather than in the magnitude of subdaily variation, suggesting that all rivers may exhibit highly variable subdaily flows, but altered rivers exhibit this variability more frequently. Peaking hydropower facilities had the most highly altered subdaily flows; however, we observed significantly altered ranges of subdaily variability downstream of some flood-control and run-of-river hydropower dams. Our analysis can be used to identify situations where dam operating procedures could be modified to reduce the level of hydrologic alteration. ?? 2009 John Wiley & Sons, Ltd.

  4. Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    USGS Publications Warehouse

    Maranto, C.J.; Parrish, J.K.; Herman, D.P.; Punt, A.E.; Olden, J.D.; Brett, M.T.; Roby, D.D.

    2011-01-01

    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base. ??2011 Society for Conservation Biology.

  5. Use of fatty acid analysis to determine dispersal of caspian terns in the Columbia River Basin, USA.

    PubMed

    Maranto, Christina J; Parrish, Julia K; Herman, David P; Punt, André E; Olden, Julian D; Brett, Michael T; Roby, Daniel D

    2011-08-01

    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C(20) and C(22) monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base. © 2011 Society for Conservation Biology.

  6. High saturated fat diet alters the lipid composition of triacylglycerol and polar lipids in the femur of dam and offspring rats.

    PubMed

    Miotto, Paula M; Castelli, Laura M; Amoye, Foyinsola; Ward, Wendy E; LeBlanc, Paul J

    2015-06-01

    Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post-weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n-3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n-3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5-month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19-day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n-3 and n-6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n-6:n-3 ratio in dams only. The PL fraction showed decreased n-6 PUFA in both dams and pups. The magnitude of the diet-mediated responses, specifically TAG 18:1 and PL n-6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet-induced changes in bone lipids on bone structure, as quantified through micro-computed tomography.

  7. Applying a two-dimensional morphodynamic model to assess impacts to Chinook salmon spawning habitat from dam removal

    NASA Astrophysics Data System (ADS)

    Lee, A. A.; Crosato, A.; Omer, A. Y. A.; Bregoli, F.

    2017-12-01

    The need for accurate and robust predictive methods of assessing fluvial ecosystems is highlighted by the accelerating practice of dam removal. Dam removal can be a restorative measure, but the sudden release of impounded sediment and change in flow regime may negatively impact aquatic biota and their habitat. This study assesses the performance of a quasi-three-dimensional morphodynamic numerical model, coupled with habitat suitability indices, to predict short-term impacts to Chinook salmon (Oncorhynchus tshawytscha) spawning habitat from dam removal. The 2007 removal of Marmot Dam on the Sandy River (Oregon, U.S.A.) is used as a case study. Delft3D-FLOW is employed to simulate changes in river channel topography, sediment composition and hydrodynamic conditions for a 20-kilometer reach of the Sandy River. The transport of non-uniform sediment and three-dimensional flow effects are included in the model. Output parameters such as flow depth, velocity and substrate are processed to evaluate habitat quality in the year following the Marmot Dam removal. Impacts are evaluated across four life-stages of Chinook salmon. As a hindcast analysis, the morphodynamic model sufficiently reproduces the evolution of river morphology at the reach-scale while requiring only a low level of calibration. The model performs well in predicting impacts to fish passage, but carries more uncertainty for developing life stages. By coupling flow-sediment-biota interactions, this method shows strong potential for habitat assessment in unsteady and non-uniform environments. Computation time is a primary constraint, as it limits grid-cell resolution, modelling of suspended sediment and capacity to characterize the sediment grain size distribution. Research on the effects of suspended sediment on habitat quality is ongoing, and further research is recommended for modelling reservoir erosion processes numerically.

  8. Alternatives to Dam Building: Deindustrialization and the Redevelopment of Waterways in the Northeast During the Twentieth Century

    NASA Astrophysics Data System (ADS)

    Taber, J. S.; Pompeii, B. J.; Nicoletti, C.; Lopez-Morales, C. A.

    2010-12-01

    The Northeast United States contains more dams than any other region in the country but it lacks structures on the scale of the Hoover or Bonneville dams in the American West. This work addresses why the Northeast lacks such large dams and how the pattern of small dams within the region shaped its social development. During the twentieth century, changing social and economic conditions rendered the initial purposes of many dams in the region moot, but these structures continued to influence hydrologic conditions and the provision of ecosystem services to an expanding population. The continued existence of many of these dams resulted from a worldview unable to conceive of dam removal as it did to the economic or environmental services provided by the structure. Documenting the process by which society developed alternatives to dam building in this region can contextualize the origins and contingent character of ideas about dam removal. The overarching theme in this process is the deindustrialization of the Northeast, which pitted the interests of industrial cities undergoing economic reorganization, emerging suburban communities, and growing service industries in the region. This paper considers changing attitudes toward dams as part of a four step process: (1) although the mill dams of the industrial revolution remained after electrification rendered manufacturers independent of direct water power in the early twentieth century, deindustrialization reshaped the political and legal responses to flooding by stregnthening the political and economic position of service industries and suburban residential interests; (2) the most tangible response to this development was proposed federal investment in dam building in the region between the 1930s and the 1950s; (3) political conflicts between local interests and federal proposals for dam construction slowed down the dam building process and enabled people to consider alternative strategies for flood control and power generation; and (4) these alternatives included conservation measures such as the preservation of wetlands, but they also included the construction of coal and nuclear power plants in place of hydroelectric dams. Documenting the complexities underlying dam building and its alternatives in a deindustrializing region saddled with obsolete dams can contextualize contemporary debates regarding the maintenance or removal of old dams.

  9. Impact of beaver dams on abundance and distribution of anadromous salmonids in two lowland streams in Lithuania.

    PubMed

    Virbickas, Tomas; Stakėnas, Saulius; Steponėnas, Andrius

    2015-01-01

    European beaver dams impeded movements of anadromous salmonids as it was established by fishing survey, fish tagging and redd counts in two lowland streams in Lithuania. Significant differences in abundancies of other litophilic fish species and evenness of representation by species in the community were detected upstream and downstream of the beaver dams. Sea trout parr marked with RFID tags passed through several successive beaver dams in upstream direction, but no tagged fish were detected above the uppermost dam. Increase in abundances of salmonid parr in the stream between the beaver dams and decrease below the dams were recorded in November, at the time of spawning of Atlantic salmon and sea trout, but no significant changes were detected in the sections upstream of the dams. After construction of several additional beaver dams in the downstream sections of the studied streams, abundance of Atlantic salmon parr downstream of the dams decreased considerably in comparison with that estimated before construction.

  10. Multicriteria decision analysis applied to Glen Canyon Dam

    USGS Publications Warehouse

    Flug, M.; Seitz, H.L.H.; Scott, J.F.

    2000-01-01

    Conflicts in water resources exist because river-reservoir systems are managed to optimize traditional benefits (e.g., hydropower and flood control), which are historically quantified in economic terms, whereas natural and environmental resources, including in-stream and riparian resources, are more difficult or impossible to quantify in economic terms. Multicriteria decision analysis provides a quantitative approach to evaluate resources subject to river basin management alternatives. This objective quantification method includes inputs from special interest groups, the general public, and concerned individuals, as well as professionals for each resource considered in a trade-off analysis. Multicriteria decision analysis is applied to resources and flow alternatives presented in the environmental impact statement for Glen Canyon Dam on the Colorado River. A numeric rating and priority-weighting scheme is used to evaluate 29 specific natural resource attributes, grouped into seven main resource objectives, for nine flow alternatives enumerated in the environmental impact statement.

  11. Sediment Transport Over Run-of-River Dams

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  12. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  13. Assessing Risks of Mine Tailing Dam Failures

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  14. 76 FR 13601 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... opportunities for fish passage improvements or dam removal that may fit into existing funding programs directed... uses of dams, anticipated uses of dams, important issues or concerns to dam owners, and owners... dams will also be identified. Affected Public: Business or other for-profit organizations. Frequency...

  15. Marine and Hydrokinetic Maps | Geospatial Data Science | NREL

    Science.gov Websites

    production. Nonpowered Dams Assessment: An Assessment of Energy Potential at Non-Powered Dams in the United States The Nonpowered Dams Assessment, created by Oak Ridge National Laboratory, assesses non-powered dams across the nation to determine their ability to generate electricity. Non-powered dam electric

  16. 53. AVALON DAM Photographic copy of historic photo, August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. AVALON DAM - Photographic copy of historic photo, August 9, 1893 (original print located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'EDDY DAM. LOOKING EAST.' VIEW OF COLLAPSED DAM - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  17. National Dam Inspection Program. Bentleyville Dam (NDI ID Number PA- 1096, DER ID Number 63-49), Ohio River Basin, Tributary North Branch Pigeon Creek, Washington County, Pennsylvania. Phase I Inspection Report

    DTIC Science & Technology

    1981-06-01

    controlled manner.V The Bentleyville Dam is a significant hazard-small size dam. TK2 recommended spillway design flood (SDF) for a dam of this size and...the dam was completed in 1938. 9. Evaluation. No major deficiencies were observed during the inspection which were considered as having an immediate

  18. Military Hydrology. Report 12. Case Study Evaluation of Alternative Dam-Breach Flood Wave Methods. Volume 1. Main Report.

    DTIC Science & Technology

    1986-11-01

    Report Organization. .................... 7 *PART 11: CASE STUDIES .......................... 9 Teton Dam Failure Flood. ...................... 9...channel, (3) Laurel Run Dam , and (4) Stillhouse Hollow Dam . The Laurel Run and Teton case studies involved field data sets from actual dam failures. The...hypothetical prismatic channel case study used the Teton reservoir and dam data but replaced the complex Teton Valley geometry with a prismatic channel

  19. National Program for Inspection of Non-Federal Dams. Pleasant Lake Dam (NH 00362) (NHWRB 176.02), Merrimack River Basin, New London, New Hampshire. Phase I Inspection Report.

    DTIC Science & Technology

    1978-11-01

    the - full PMF. The selected TF inflow of 16,000 cfs results in a discharge at the dam of 12,460 cfs . Since the maximum capacity .* of the dam prior...to overtopping is only approximately 640 cfs , the TF would overtop the dam by over 4 feet. The dam is in POOR condition at the present time, due...accompanied the hurricane of 1938 and resulted [- in the dam being overtopped by two feet. This lake level indicates a discharge of approximately 4500 cfs

  20. National Dam Inspection Program. Converse Lake Dam (CT 00044). Connecticut Coastal Basin, Greenwich, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1980-02-01

    Guidelines for Safety Inspection of Dams, and with good engineering judgement and practice, and is hereby submitted for approval. ’ /00s~rs H W. NT’EGAN...below the top of the dam, with water flowing over the spillway. b. Dam Crest - The top of the dam is a concrete cap and is in good condition (Photo 1...the masonry portion is not substantial the dam is not safe. Masonry on water side is a good job of cement rubble. Top width is 7’. But it is doubtful

  1. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  2. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    NASA Astrophysics Data System (ADS)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  3. Trading river services: optimizing dam decisions at the basin scale to improve socio-ecological resilience

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Gold, A.; Uchida, E.; McGreavy, B.; Smith, S. M.; Wilson, K.; Blachly, B.; Newcomb, A.; Hart, D.; Gardner, K.

    2017-12-01

    Dam removal has become a cornerstone of environmental restoration practice in the United States. One outcome of dam removal that has received positive attention is restored access to historic habitat for sea-run fisheries, providing a crucial gain in ecosystem resilience. But dams also provide stakeholders with valuable services, and uncertain socio-ecological outcomes can arise if there is not careful consideration of the basin scale trade offs caused by dam removal. In addition to fisheries, dam removals can significantly affect landscape nutrient flux, municipal water storage, recreational use of lakes and rivers, property values, hydroelectricity generation, the cultural meaning of dams, and many other river-based ecosystem services. We use a production possibility frontiers approach to explore dam decision scenarios and opportunities for trading between ecosystem services that are positively or negatively affected by dam removal in New England. Scenarios that provide efficient trade off potentials are identified using a multiobjective genetic algorithm. Our results suggest that for many river systems, there is a significant potential to increase the value of fisheries and other ecosystem services with minimal dam removals, and further increases are possible by including decisions related to dam operations and physical modifications. Run-of-river dams located near the head of tide are often found to be optimal for removal due to low hydroelectric capacity and high impact on fisheries. Conversely, dams with large impoundments near a river's headwaters can be less optimal for dam removal because their value as nitrogen sinks often outweighs the potential value for fisheries. Hydropower capacity is negatively impacted by dam removal but there are opportunities to meet or exceed lost capacity by upgrading preserved hydropower dams. Improving fish passage facilities for dams that are critical for safety or water storage can also reduce impacts on fisheries. Our method is helpful for identifying efficient decision scenarios, but finding the optimal decision requires a deep and mutual understanding of stakeholder preferences. We outline how to interpret these preferences, identify overlaps with the efficient decision scenarios, and estimate the monetary budget required to act on these decisions.

  4. National Dam Inspection Program. Quakake Dam (NDI ID Number PA-00613, DER ID Number 13-11), Delaware River Basin, Quakake Creek, Carbon County, Pennsylvania. Phase I Inspection Report.

    DTIC Science & Technology

    1981-04-01

    5.4 Method of Analysis. The facility has been analyzed in accordance with procedures and guidelines established by the U.S. Army, Corps of Engineers...1 CHECKED IT____________ - DATE 3 264 &MAbh.: & &E),~iAS 4Ke A wACE )_’ 7Z LS.&.S. PLA IL - W&S6 Af8aLw)" A.-~ 1PE*)𔃾X F_ ?LATF- E - 8-77)r4liS IA

  5. Rehabilitation of a debris-flow prone mountain stream in southwestern China - Strategies, effects and implications

    NASA Astrophysics Data System (ADS)

    Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang

    2012-01-01

    SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.

  6. Dynamics of Bottomland Geomorphology and Vegetation Along a Dammed, Arid Region River: Implications for Streamflow Management

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; House, P. K.

    2007-05-01

    In arid and semiarid western North America, floodplain forests dominated by native cottonwood and willow trees are highly valued as wildlife habitat and preferred recreation sites and are thus the focus of conservation efforts. The Bill Williams River harbors some of the most extensive native floodplain forests in the lower Colorado River region. Our work is aimed at understanding the dynamics of the Bill Williams River floodplain forests, in the context of pre- and post-dam hydrology and geomorphology. We have mapped bottomland geomorphology and vegetation using seven sets of orthorectified aerial photographs spanning more than 50 years. Two sets of photos (1953 and 1964) pre-date the completion of Alamo Dam, a large flood control structure; and three sets of photos (1996, 2002, and 2005) are from an era during which streamflow downstream of the dam has been managed to promote the establishment and survival of native floodplain forest. Comparison of the aerial photographs to LiDAR data collected in 2005 is providing a framework for quantifying changes in valley bottom morphology and estimating reach-scale changes in volumes of stored and evacuated sediment between 1953 and 2005. Furthermore, comparison of the extent of pre-dam active channel in 1953 with the extent of floodwaters from a regulated moderate flood in 2005 provides an approximation of the predominant patterns of aggradation and degradation in the system over this interval of time. Flood magnitude on the Bill Williams has been dramatically reduced since the closure of Alamo Dam in 1968, and low flows have increased considerably since 1979. Channels along the Bill Williams R. narrowed an average of 111 m (71 %) between 1953 and 1987, with most narrowing occurring after dam closure. Multiple regression analysis revealed significant relationships among flood power, summer flows, intermittency (independent variables) and channel width (dependent variable). Concurrent with channel narrowing was an expansion of dense floodplain vegetation, consisting primarily of native cottonwood and willow and non-native tamarisk shrubs. Moderate flood releases (~7000 ft3/s) from Alamo Dam in the early 1990's widened the river channel and resulted in the establishment of new woody vegetation. For the following nine years, relatively steady, low discharges were released from the dam, resulting in channel narrowing, extensive beaver pond creation, and dense vegetation growth. Moderate flood releases in 2005 again widened channels, destroyed beaver ponds, and created conditions suitable for new vegetation establishment. In addition to understanding the specific conditions along the Bill Williams River, our work should contribute to a more general understanding of connections between fluvial processes and floodplain vegetation, in the contexts of geomorphic response downstream of a large dam and efforts to manage streamflow for ecological benefits downstream.

  7. Brazil's Amazonian dams: Ecological and socioeconomic impacts

    NASA Astrophysics Data System (ADS)

    Fearnside, P. M.

    2016-12-01

    Brazil's 2015-2024 Energy Expansion Plan calls for 11 hydroelectric dams with installed capacity ≥ 30 MW in the country's Amazon region. Dozens of other large dams are planned beyond this time horizon, and dams with < 30 MW installed capacity number in the hundreds. Amazonian dams have substantial environmental and socioeconomic impacts. Loss of forest to flooding is one, the Balbina and Tucuruí Dams being examples (each 3000 km2). If the Babaquara/Altamira Dam is built it will flood as much forest as both of these combined. Some planned dams imply loss of forest in protected areas, for example on the Tapajós River. Aquatic and riparian ecosystems are lost, including unique biodiversity. Endemic fish species in rapids on the Xingu and Tapajós Rivers are examples. Fish migrations are blocked, such as the commercially important "giant catfish" of the Madeira River. Dams emit greenhouse gases, including CO2 from the trees killed and CH4 from decay under anoxic conditions at the bottom of reservoirs. Emissions can exceed those from fossil-fuel generation, particularly over the 20-year period during which global emissions must be greatly reduced to meet 1.5-2°C limit agreed in Paris. Carbon credit for dams under the Climate Convention causes further net emission because the dams are not truly "additional." Anoxic environments in stratified reservoirs cause methylation of mercury present in Amazonian soils, which concentrates in fish, posing a health risk to human consumers. Population displacement is a major impact; for example, the Marabá Dam would displace 40,000 people, mostly traditional riverside dwellers (ribeirinhos). Various dams impact indigenous peoples, such as the Xingu River dams (beginning with Belo Monte) and the São Luiz do Tapajós and Chacorão Dams on the Tapajós River. Brazil has many energy options other than dams. Much energy use has little benefit for the country, such as exporting aluminum. Electric showerheads use 5% of the country's power. Losses in transmission lines (20%) are far above global averages and can be expected to increase as Amazonian hydroelectric dams far from consumer centers come on line. Brazil has tremendous wind and solar potential, but these do not have the same priority as dams. At the root of many questionable policies is a decision-making process in need of reform.

  8. Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia)

    NASA Astrophysics Data System (ADS)

    Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean

    2008-04-01

    SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.

  9. Empirical and semi-analytical models for predicting peak outflows caused by embankment dam failures

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Chen, Yunliang; Wu, Chao; Peng, Yong; Song, Jiajun; Liu, Wenjun; Liu, Xin

    2018-07-01

    Prediction of peak discharge of floods has attracted great attention for researchers and engineers. In present study, nine typical nonlinear mathematical models are established based on database of 40 historical dam failures. The first eight models that were developed with a series of regression analyses are purely empirical, while the last one is a semi-analytical approach that was derived from an analytical solution of dam-break floods in a trapezoidal channel. Water depth above breach invert (Hw), volume of water stored above breach invert (Vw), embankment length (El), and average embankment width (Ew) are used as independent variables to develop empirical formulas of estimating the peak outflow from breached embankment dams. It is indicated from the multiple regression analysis that a function using the former two variables (i.e., Hw and Vw) produce considerably more accurate results than that using latter two variables (i.e., El and Ew). It is shown that the semi-analytical approach works best in terms of both prediction accuracy and uncertainty, and the established empirical models produce considerably reasonable results except the model only using El. Moreover, present models have been compared with other models available in literature for estimating peak discharge.

  10. Mitigating Dam Impacts Using Environmental Flow Releases

    NASA Astrophysics Data System (ADS)

    Richter, B. D.

    2017-12-01

    One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible benefits of dam re-operations.

  11. National Program of Inspection of Non-Federal Dams.

    DTIC Science & Technology

    1982-05-01

    actions to improve the .;,.fety of Federal dams . 3 B. PROGRAM REVITALIZATION Subsequent to the failure of the Teton Dam , near Newdale, Idaho, in June...development of hydrostatic heads sufficient to create in the area downstream of the dam sand boils that erode materials by the phenomenon known as " piping " and...Eh irmmhhhommlm mhhhhmmmmhhlo US Arm op National Program of Inspection of Non-Federal Dams Final Report to Congress The National Dam Inspection Act of

  12. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  13. 30 CFR 715.18 - Dams constructed of or impounding waste material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing or new dams without the approval of the regulatory authority. The permittee shall design, locate... design precipitation event within 10 days. (viii) During construction of dams subject to this section... adjacent to each dam within 30 days of certification of design pursuant to this section. (4) All dams...

  14. 75 FR 30805 - Gibson Dam Hydroelectric Company, LLC; Notice Soliciting Comments, and Final Terms and Conditions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... of Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company, LLC. e. Name of Project: Gibson Dam Hydroelectric...

  15. State-discharge relations at dams on the Illinois and Des Plaines rivers in Illinois

    USGS Publications Warehouse

    Mades, Dean M.

    1981-01-01

    Stage-discharge relations were developed for the Brandon Road Dam on the Des Plainse River and the Dresden Island, Marseilles, Starved Rock, Peoria, and La Grange Dams on the Illinois River. At Brandon Road Dam, streamflow is regulated by the operation of tainter gates and headgates. Tainter gates are operated to regulate streamflow at the Dresden Island, Marseilles, and Starved Rock Dams. Peoria Dam and La Grange Dam comprise timber Chanoine wickets which are lowered to a horizontal position on the streambed when used for streamflow regulation. Both dams have concrete abutments housing butterfly valves that are also used for regulation. A total of 50 discharge measurements ranging from 49.0 to 2,450 cubic meter per second were used to determine discharge coefficients in equations expressing discharge as a function of headwater depth, tailwater depth, and gate opening. A stage-discharge relation for Chanoine wicket dams developed from a U.S. Army Corps of Engineers hydraulic model study in 1937 and 1938 was verified with discharge measurements made downstream from the Peoria and La Grange Dams. (USGS)

  16. Impact of dam failure-induced flood on road network using combined remote sensing and geospatial approach

    NASA Astrophysics Data System (ADS)

    Foumelis, Michael

    2017-01-01

    The applicability of the normalized difference water index (NDWI) to the delineation of dam failure-induced floods is demonstrated for the case of the Sparmos dam (Larissa, Central Greece). The approach followed was based on the differentiation of NDWI maps to accurately define the extent of the inundated area over different time spans using multimission Earth observation optical data. Besides using Landsat data, for which the index was initially designed, higher spatial resolution data from Sentinel-2 mission were also successfully exploited. A geospatial analysis approach was then introduced to rapidly identify potentially affected segments of the road network. This allowed for further correlation to actual damages in the following damage assessment and remediation activities. The proposed combination of geographic information systems and remote sensing techniques can be easily implemented by local authorities and civil protection agencies for mapping and monitoring flood events.

  17. Effects of a Dam Reservoir on the Distribution of Heavy Metals in Two Chilean Native Freshwater Fish Species.

    PubMed

    Copaja, S V; Muñoz, G S; Nuñez, V R; Pérez, C; Vila, I; Véliz, D

    2016-07-01

    In order to determine the effect of a dam on metal concentrations in riverine fish species, we studied fish inhabiting the influent (Cachapoal River) and effluent (Rapel River) of the Rapel Reservoir in central Chile. Heavy metals were quantified in gills, liver and muscle of the catfish Trichomycterus areolatus and the silverside Basilichthys microlepidotus. Also, the bioaccumulation index (BAI) was estimated by considering heavy metal concentrations obtained from water and sediment. Results showed the presence of Al, Cu, Fe, Mn, Pb and Zn in the fish organs. The analysis showed high metal concentrations in catfish inhabiting the influent compared to those collected in the effluent. These results indicate a possible filter effect of the dam for most of the metals identified in the fish organs, because metal concentrations decreased in the effluent. Finally, catfish exhibited a larger BAI for most metals analyzed.

  18. Transplacental cocaine exposure. 2: Effects of cocaine dose and gestational timing.

    PubMed

    Wilkins, A S; Jones, K; Kosofsky, B E

    1998-01-01

    We have utilized a mouse model of transplacental cocaine exposure to investigate the effects of cocaine dose and gestational timing in altering brain and body growth and postnatal behavior in exposed offspring. Pregnant dams were injected with cocaine HCl at 40 mg/kg/day (COC 40) or 20 mg/kg/day (COC 20), or 10 mg/kg/day (COC 10) SC from embryonic day (E) 8 to E17, or cocaine HCl at 40 mg/kg/day SC from E8 to E13 (COC Early) or from E13 to E17 (COC Late) divided in two daily doses. COC 40 and COC Late dams, as well as dams in nutritionally paired control groups (injected with saline vehicle and pair-fed with the COC dams: SPF 40, SPF 20, SPF 10), demonstrated less weight gain than SAL controls (injected with saline vehicle and allowed access to food ad lib). The surrogate fostered offspring of COC 40 and SPF 40 dams demonstrated brain and body growth retardation [on postnatal day (P) 1 and P9] when compared to pups born to SAL dams. Offspring of COC Late, SPF 20, and SPF 10 dams demonstrated brain and body growth retardation on P1 when compared to pups born to SAL dams. Pups from all groups were tested for first-order Pavlovian conditioning on P9, or for the ability to ignore redundant information in a blocking paradigm on P50. Only COC 40 mice (i.e., offspring born to COC 40 dams) were unable to acquire an aversion to an odor previously paired with shock on P9. When compared with SAL controls, COC 40 mice (and to a less significant extent SPF 40 mice) demonstrated a persistent behavioral deficit in the blocking paradigm on P50, which may reflect alterations in selective attention. Correlation analyses indicated that the dose and gestational timing of transplacental cocaine exposure, and varying degrees of malnutrition, had effects on blocking performance, with greater prenatal cocaine exposure and increased prenatal malnutrition resulting in more significant behavioral impairments. A path regression analysis demonstrated independent and significant effects of prenatal cocaine as well as prenatal malnutrition in contributing to impaired performance in the blocking paradigm. As suggested by the clinical literature, our preclinical data support a model whereby the dose and duration of prenatal cocaine exposure have direct effects on offspring brain and body growth and on behavioral performance.

  19. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    USGS Publications Warehouse

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or proposed.

  20. Damming the rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

Top