Sample records for damage functions due

  1. 77 FR 44562 - Housing Assistance Due to Structural Damage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...: Temporary Housing: Money is available to rent a different place to live for a limited period of time. When... housing unit. Housing Repair: Money is available to homeowners to repair disaster damage to their primary... make the damaged home safe, sanitary, and functional. Housing Replacement: Money is available to...

  2. Indoor Air Problems and Hoarseness in Children.

    PubMed

    Kallvik, Emma; Putus, Tuula; Simberg, Susanna

    2016-01-01

    A well-functioning voice is becoming increasingly important because voice-demanding professions are increasing. The largest proportion of voice disorders is caused by factors in the environment. Moisture damage is common and can initiate microbial growth and/or diffusion of chemicals from building materials. Indoor air problems due to moisture damage are associated with a number of health symptoms, for example, rhinitis, cough, and asthma symptoms. The purpose of this study was to investigate if children attending a day care center, preschool, or school with indoor air problems due to moisture damage were hoarse more often than the children in a control group. Information was collected through electronic and paper questionnaires from the parents of 6- to 9-year-old children (n = 1857) attending 57 different day care centers, preschools, or schools with or without indoor air problems due to moisture damage. The results showed a significant correlation between the degree of indoor air problem due to moisture damage and the frequency of hoarseness. Significant predictors for the child being hoarse every week or more often were dry cough, phlegm cough, and nasal congestion. The results indicate that these symptoms and exposure to indoor air problems due to moisture damage should be included in voice anamnesis. Furthermore, efforts should be made to remediate indoor air problems due to moisture damage and to treat health symptoms. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Damage detection in sandwich composite materials using laser vibrometry in conjunction with nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Underwood, Sara; Koester, David; Adams, Douglas E.

    2009-03-01

    Fiberglass sandwich panels are tested to study a vibration-based method for locating damage in composite materials. This method does not rely on a direct comparison of the natural frequencies, mode shapes, or residues in the forced vibration response data. Specifically, a nonlinear system identification based method for damage detection is sought that reduces the sensitivity of damage detection results to changes in vibration measurements due to variations in boundary conditions, environmental conditions, and material properties of the panel. Damage mechanisms considered include a disbond between the core and face sheet and a crack within the core. A panel is excited by a skewed piezoelectric actuator over a broad frequency range while a three-dimensional scanning laser vibrometer measures the surface velocity of the panel along three orthogonal axes. The forced frequency response data measured using the scanning laser vibrometer at multiple excitation amplitudes is processed to identify areas of the panel that exhibit significant nonlinear response characteristics. It is demonstrated that these localized nonlinearities in the panel coincide with the damaged areas of the composite material. Because changes in the measured frequency response functions due to nonlinear distortions associated with the damage can be identified without comparing the vibration data to a reference (baseline) signature of the undamaged material, this vibration technique for damage detection in composite materials exhibits less sensitivity to variations in the underlying linear characteristics than traditional methods. It is also demonstrated that the damage at a given location can be classified as either due to a disbond or core crack because these two types of damage produce difference signatures when comparing the multi-amplitude frequency response functions.

  4. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation.

    PubMed

    Freni, G; La Loggia, G; Notaro, V

    2010-01-01

    Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly because a large part of the total uncertainty is dependent on depth-damage curves. Improving the estimation of these curves may provide better results in term of uncertainty reduction than the adoption of detailed hydraulic models.

  5. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  6. Assessment of ecosystem productivity damage due to land use.

    PubMed

    Kaenchan, Piyanon; Guinée, Jeroen; Gheewala, Shabbir H

    2018-04-15

    Land use can affect ecosystems on land and their services. Because land use has mainly local effects, damage to ecosystem productivity due to land use should be modelled spatially dependent. Unfortunately, even though land use of impacts are particular importance for countries whose economies are highly agriculture-based, ecosystem productivity damage due to land use has not yet been assessed in Thailand so far. This study presents the method for assessing the damage to ecosystem productivity due to land use (land occupation and land transformation) in Thailand. Ecosystem productivity damage is expressed through net primary production (NPP). To convert the damage into monetary units, this study performs an economic valuation of NPP using the production function approach. The results show that the value of marginal product of NPP is around 10-15 Thai baht (THB) (1 USD≈36 THB), per tonne dry weight biomass. The results are applied to the case of biodiesel production. The method presented in this paper could be a guideline for future land use impact assessment research. In addition, converting the NPP damage results into monetary units facilitates integration of impact assessment and economic analysis results for supporting decision support tools such as cost benefit analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    Numerous natural and man-made agents are continuously released into the environment due to human activity. Many of these agents cause irreversible damage to the normal biological functions leading to morbidity and mortality in the exposed organisms. The possibility of deliberat...

  8. (WASHINGTON, DC) A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    Numerous natural and man-made agents are continuously released into the environment due to human activity. Many of these agents cause irreversible damage to the normal biological functions leading to morbidity and mortality in the exposed organisms. The possibility of deliberat...

  9. 38 CFR 4.40 - Functional loss.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Functional loss. 4.40... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the... damage, and the functional loss, with respect to all these elements. The functional loss may be due to...

  10. Real-Time Prognostics of a Rotary Valve Actuator

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  11. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.

    2013-08-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, with damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports, and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters will definitely still be necessary for damage modelling; multivariate approaches, crossing insurance data with external material, should also be investigated more deeply.

  12. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.

    2013-03-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters, will definitely still be necessary for damage modelling and multivariate approaches, crossing insurance data with external material, should also be deeper investigated.

  13. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions

    PubMed Central

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-01

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole. PMID:26805869

  14. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    PubMed

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  15. Foveal damage in habitual poppers users.

    PubMed

    Audo, Isabelle; El Sanharawi, Mohamed; Vignal-Clermont, Catherine; Villa, Antoine; Morin, Annie; Conrath, John; Fompeydie, Dominique; Sahel, José-Alain; Gocho-Nakashima, Kiyoko; Goureau, Olivier; Paques, Michel

    2011-06-01

    To describe foveal damage in habitual use of poppers, a popular recreational drug. Retrospective observational case series. Six patients with bilateral vision loss after chronic popper inhalation were seen in 4 university-based ophthalmology departments. Symptoms, medical history, ophthalmic examination, and functional and morphological tests are described. All patients experienced progressive bilateral vision loss, with central photopsia in 2 cases. Initial visual acuities ranged from 20/50 to 20/25. In all patients, a bilateral yellow foveal spot was present that, by optical coherence tomography, was associated with disruption of the outer segments of foveal cones. Functional and anatomical damage was restricted to the fovea. The poppers involved were identified as isopropyl nitrite in 3 cases. Four patients showed anatomical and/or functional improvement over several months after discontinuing popper inhalation. Repeated inhalation of poppers may be associated with prolonged bilateral vision loss due to the disruption of foveal cone outer segments. Retinal damage may progressively improve following drug discontinuation.

  16. Pharmacological Activation of the EDA/EDAR Signaling Pathway Restores Salivary Gland Function following Radiation-Induced Damage

    PubMed Central

    Hill, Grace; Headon, Denis; Harris, Zoey I.; Huttner, Kenneth; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage. PMID:25409170

  17. Food-Derived Antioxidant Polysaccharides and Their Pharmacological Potential in Neurodegenerative Diseases

    PubMed Central

    Li, Haifeng; Ding, Fei; Xiao, Lingyun; Shi, Ruona; Wang, Hongyu; Han, Wenjing

    2017-01-01

    Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities. PMID:28753972

  18. Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Chan, Monica Kar

    There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.

  19. The great East Japan earthquake disaster: distribution of hospital damage in Miyagi Prefecture.

    PubMed

    Ochi, Sae; Nakagawa, Atsuhiro; Lewis, James; Hodgson, Susan; Murray, Virginia

    2014-06-01

    In catastrophic events, a key to reducing health risks is to maintain functioning of local health facilities. However, little research has been conducted on what types and levels of care are the most likely to be affected by catastrophic events. Problem The Great East Japan Earthquake Disaster (GEJED) was one of a few "mega disasters" that have occurred in an industrialized society. This research aimed to develop an analytical framework for the holistic understanding of hospital damage due to the disaster. Hospital damage data in Miyagi Prefecture at the time of the GEJED were collected retrospectively. Due to the low response rate of questionnaire-based surveillance (7.7%), publications of the national and local governments, medical associations, other nonprofit organizations, and home web pages of hospitals were used, as well as literature and news sources. The data included information on building damage, electricity and water supply, and functional status after the earthquake. Geographical data for hospitals, coastline, local boundaries, and the in undated areas, as well as population size and seismic intensity were collected from public databases. Logistic regression was conducted to identify the risk factors for hospitals ceasing inpatient and outpatient services. The impact was displayed on maps to show the geographical distribution of damage. Data for 143 out of 147 hospitals in Miyagi Prefecture (97%) were obtained. Building damage was significantly associated with closure of both inpatient and outpatient wards. Hospitals offering tertiary care were more resistant to damage than those offering primary care, while those with a higher proportion of psychiatric care beds were more likely to cease functioning, even after controlling for hospital size, seismic intensity, and distance from the coastline. Implementation of building regulations is vital for all health care facilities, irrespective of function. Additionally, securing electricity and water supplies is vital for hospitals at risk for similar events in the future. Improved data sharing on hospital viability in a future event is essential for disaster preparedness.

  20. Covariance of dynamic strain responses for structural damage detection

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.

    2017-10-01

    A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.

  1. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    PubMed

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Nectarine promotes longevity in Drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    Aging is associated with increased oxidative damage and gradual decline of physiology function with age, and is modulated by numerous genetic and environmental factors. Functional fruits are thought to be ideal candidates for promoting longevity and healthspan due to their high contents of polypheno...

  3. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    PubMed

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  4. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Lv, Liang; Zhang, Mingxiao; Lu, Zhongwen; Qiao, Zhao; Qiu, Fuming

    2018-05-01

    Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination of thermal shock stress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

  5. [Tanning lamp radiation-induced photochemical retinal damage].

    PubMed

    Volkov, V V; Kharitonova, N N; Mal'tsev, D S

    2014-01-01

    On the basis of original clinical research a rare case of bilateral retinal damage due to tanning lamp radiation exposure is presented. Along with significant decrease of visual acuity and light sensitivity of central visual field as well as color vision impairment, bilateral macular dystrophy was found during an ophthalmoscopy and confirmed by optical coherent tomography and fluorescent angiography. Intensive retinoprotective, vascular, and antioxidant therapy was effective and led to functional improvement and stabilization of the pathologic process associated with photochemical retinal damage. A brief review of literature compares mechanisms of retinal damage by either short or long-wave near visible radiation.

  6. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    PubMed

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Absence of ERK5/MAPK7 delays tumorigenesis in Atm-/- mice.

    PubMed

    Granados-Jaén, Alba; Angulo-Ibáñez, Maria; Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X; Reina, Manuel; Espel, Enric

    2016-11-15

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm-/- mice. Compared with Atm-/- thymocytes, Mapk7-/-Atm-/- thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm-/- mice by partially restoring the DNA damage response in thymocytes.

  8. 38 CFR 4.40 - Functional loss.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...

  9. 38 CFR 4.40 - Functional loss.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...

  10. 38 CFR 4.40 - Functional loss.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...

  11. 38 CFR 4.40 - Functional loss.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...

  12. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.

    PubMed

    Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M

    2016-11-29

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.

  13. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage

    PubMed Central

    Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576

  14. Increasing impacts of climate extremes on critical infrastructures in Europe

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Bianchi, Alessandra; Feyen, Luc; Silva, Filipe Batista e.; Marin, Mario; Lavalle, Carlo; Leblois, Antoine

    2016-04-01

    The projected increases in exposure to multiple climate hazards in many regions of Europe, emphasize the relevance of a multi-hazard risk assessment to comprehensively quantify potential impacts of climate change and develop suitable adaptation strategies. In this context, quantifying the future impacts of climatic extremes on critical infrastructures is crucial due to their key role for human wellbeing and their effects on the overall economy. Critical infrastructures describe the existing assets and systems that are essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact as a result of the failure to maintain those functions. We assess the direct damages of heat and cold waves, river and coastal flooding, droughts, wildfires and windstorms to energy, transport, industry and social infrastructures in Europe along the 21st century. The methodology integrates in a coherent framework climate hazard, exposure and vulnerability components. Overall damage is expected to rise up to 38 billion €/yr, ten time-folds the current climate damage, with drastic variations in risk scenarios. Exemplificative are drought and heat-related damages that could represent 70% of the overall climate damage in 2080s versus the current 12%. Many regions, prominently Southern Europe, will likely suffer multiple stresses and systematic infrastructure failures due to climate extremes if no suitable adaptation measures will be taken.

  15. Examining cognitive emotion regulation in frontal lobe patients: The mediating role of response inhibition.

    PubMed

    Falquez, Rosalux; Dinu-Biringer, Ramona; Stopsack, Malte; Arens, Elisabeth A; Wick, Wolfgang; Barnow, Sven

    2015-01-01

    Previous investigations have demonstrated the relationship between inhibitory deficits and maladaptive emotion regulation. Although several neuropsychological studies show that frontal lobe damage can lead to extreme inhibition impairments, there have been no investigations regarding the influence of frontal lobe damage and related inhibition impairments on the use of maladaptive strategies. The goal of the current study was to examine the impact of executive functions impairments due to frontal lobe damage on cognitive emotion regulation. Fifteen patients with frontal lobe damage were compared to twenty-two healthy controls on their reported use of maladaptive strategies. The effect of behavioral inhibition deficits among the frontal lobe damage group was examined. Patients reflected a heightened use of maladaptive strategies compared to healthy controls, significantly mediated by Go/NoGo task errors, which are an indicator for response inhibition deficits. Results suggest that a heightened use of maladaptive strategies by patients relies to a strong extent on their impaired impulse control, highlighting the complex interplay between executive functions and emotional regulation.

  16. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  17. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  18. Uni- and multi-variable modelling of flood losses: experiences gained from the Secchia river inundation event.

    NASA Astrophysics Data System (ADS)

    Carisi, Francesca; Domeneghetti, Alessio; Kreibich, Heidi; Schröter, Kai; Castellarin, Attilio

    2017-04-01

    Flood risk is function of flood hazard and vulnerability, therefore its accurate assessment depends on a reliable quantification of both factors. The scientific literature proposes a number of objective and reliable methods for assessing flood hazard, yet it highlights a limited understanding of the fundamental damage processes. Loss modelling is associated with large uncertainty which is, among other factors, due to a lack of standard procedures; for instance, flood losses are often estimated based on damage models derived in completely different contexts (i.e. different countries or geographical regions) without checking its applicability, or by considering only one explanatory variable (i.e. typically water depth). We consider the Secchia river flood event of January 2014, when a sudden levee-breach caused the inundation of nearly 200 km2 in Northern Italy. In the aftermath of this event, local authorities collected flood loss data, together with additional information on affected private households and industrial activities (e.g. buildings surface and economic value, number of company's employees and others). Based on these data we implemented and compared a quadratic-regression damage function, with water depth as the only explanatory variable, and a multi-variable model that combines multiple regression trees and considers several explanatory variables (i.e. bagging decision trees). Our results show the importance of data collection revealing that (1) a simple quadratic regression damage function based on empirical data from the study area can be significantly more accurate than literature damage-models derived for a different context and (2) multi-variable modelling may outperform the uni-variable approach, yet it is more difficult to develop and apply due to a much higher demand of detailed data.

  19. Variation of mechanical properties due to hygrothermal ageing and permanent changes upon redrying in clay/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamim, Salah Uddin Ahmed

    2011-12-01

    Epoxy polymers are an important class of material for use in various applications. Due to their hydrophilic nature, epoxy resins tend to absorb moisture. Absorption of moisture degrades the functional, structural and mechanical properties. For polymers, moisture absorption can lead to both reversible and irreversible changes. In this study, the combined effect of moisture and elevated temperature on the mechanical properties of Epon 862 and its nanocomposites were investigated. The extent of permanent damage on fracture toughness and flexural properties of epoxy, due to the aggressive degradation provided by hygrothermal ageing, was determined by drying the epoxy and their clay/epoxy nanocomposites after moisture absorption. From the investigation it was found out that, clay can help in reducing the negative effect of hygrothermal ageing. Significant permanent damage was observed for fracture toughness and modulus, while the extent of permanent damage was less significant for flexural strength. Failure mechanism of this nanocomposites were studied by using Scanning Electron Microscopy (SEM).

  20. Absence of ERK5/MAPK7 delays tumorigenesis in Atm−/− mice

    PubMed Central

    Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X.; Reina, Manuel; Espel, Enric

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm−/− mice. Compared with Atm−/− thymocytes, Mapk7−/−Atm−/− thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm−/− mice by partially restoring the DNA damage response in thymocytes. PMID:27793024

  1. DNA damage induces down-regulation of Prp19 via impairing Prp19 stability in hepatocellular carcinoma cells.

    PubMed

    Yin, Jie; Zhang, Yi-An; Liu, Tao-Tao; Zhu, Ji-Min; Shen, Xi-Zhong

    2014-01-01

    Pre-mRNA processing factor 19 (Prp19) activates pre-mRNA spliceosome and also mediates DNA damage response. Prp19 overexpression in cells with functional p53 leads to decreased apoptosis and increases cell survival after DNA damage. Here we showed that in hepatocellular carcinoma (HCC) cells with inactive p53 or functional p53, Prp19 was down-regulated due to the impaired stability under chemotherapeutic drug treatment. Silencing Prp19 expression enhanced apoptosis of HCC cells with or without chemotherapeutic drug treatment. Furthermore high level of Prp19 may inhibit chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells through modulating myeloid leukemia cell differentiation 1 expression. These results indicated that targeting Prp19 may potentiate pro-apoptotic effect of chemotherapeutic agents on HCC.

  2. Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures

    NASA Astrophysics Data System (ADS)

    Hasanzadeh Nafari, Roozbeh; Amadio, Mattia; Ngo, Tuan; Mysiak, Jaroslav

    2017-07-01

    The damage triggered by different flood events costs the Italian economy millions of euros each year. This cost is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in urban areas. In this study, we derived a new flood loss function for Italian residential structures (FLF-IT), on the basis of empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed based on a new Australian approach (FLFA), which represents the confidence limits that exist around the parameterized functional depth-damage relationship. After model calibration, the performance of the model was validated for the prediction of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that the newly derived function performs well (no bias and only 10 % mean absolute error), especially when the water depth is high. Results of these validation tests illustrate the importance of model calibration. The advantages of the FLF-IT model over other Italian models include calibration with empirical data, consideration of the epistemic uncertainty of data, and the ability to change parameters based on building practices across Italy.

  3. Damage estimation of subterranean building constructions due to groundwater inundation - the GIS-based model approach GRUWAD

    NASA Astrophysics Data System (ADS)

    Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.

    2012-09-01

    The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.

  4. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance

    PubMed Central

    Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping

    2016-01-01

    In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes. PMID:27782088

  5. Experimental Study on Damage Detection in Timber Specimens Based on an Electromechanical Impedance Technique and RMSD-Based Mahalanobis Distance.

    PubMed

    Wang, Dansheng; Wang, Qinghua; Wang, Hao; Zhu, Hongping

    2016-10-22

    In the electromechanical impedance (EMI) method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD) is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.

  6. Experimental Verification of a Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1995-01-01

    The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.

  7. Comparing the ISO-recommended and the cumulative data-reduction algorithms in S-on-1 laser damage test by a reverse approach method

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Stratan, Aurel; Nemes, George

    2018-01-01

    We compare the ISO-recommended (the standard) data-reduction algorithm used to determine the surface laser-induced damage threshold of optical materials by the S-on-1 test with two newly suggested algorithms, both named "cumulative" algorithms/methods, a regular one and a limit-case one, intended to perform in some respects better than the standard one. To avoid additional errors due to real experiments, a simulated test is performed, named the reverse approach. This approach simulates the real damage experiments, by generating artificial test-data of damaged and non-damaged sites, based on an assumed, known damage threshold fluence of the target and on a given probability distribution function to induce the damage. In this work, a database of 12 sets of test-data containing both damaged and non-damaged sites was generated by using four different reverse techniques and by assuming three specific damage probability distribution functions. The same value for the threshold fluence was assumed, and a Gaussian fluence distribution on each irradiated site was considered, as usual for the S-on-1 test. Each of the test-data was independently processed by the standard and by the two cumulative data-reduction algorithms, the resulting fitted probability distributions were compared with the initially assumed probability distribution functions, and the quantities used to compare these algorithms were determined. These quantities characterize the accuracy and the precision in determining the damage threshold and the goodness of fit of the damage probability curves. The results indicate that the accuracy in determining the absolute damage threshold is best for the ISO-recommended method, the precision is best for the limit-case of the cumulative method, and the goodness of fit estimator (adjusted R-squared) is almost the same for all three algorithms.

  8. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center

    PubMed Central

    Willi, Jessica; Küpfer, Pascal; Evéquoz, Damien; Fernandez, Guillermo; Polacek, Norbert

    2018-01-01

    Abstract Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation. PMID:29309687

  9. Modeling and Measuring the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2016-12-01

    Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and annealing in apatite and expand the range of geologic settings that can be studied using low-temperature thermochronology. References: [1] Fox, M., Shuster, D. (2014), EPSL 397, 174-183; [2] Gautheron, C. et al. (2013), Chem. Geol. 351, 257-267; [3] Flowers, R. et al. (2009), GCA 73, 2347-2365; [4] Shuster, D., Farley, K. (2009), GCA 73, 6183-6196.

  10. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Mackereth, Melinda D; Doetsch, Paul W; Shadel, Gerald S

    2002-06-01

    The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.

  11. The Role of Attention in Binocular Rivalry as Revealed through Optokinetic Nystagmus.

    DTIC Science & Technology

    1995-11-01

    break down selectively when parts of the stri- ate and prestriate cortex is damaged. Speci cally, a group of patients su ering fromApperceptive Agnosia ...1981). Visual performance in cases of visual agnosia . In M. van- Ho , & G. Hohn (Eds.), Functional recovery from brain damage (pp. 275{286...macaques. Nature, 373, 609{611. Breese, B. (1899). On inhibition. Psychol.Rev., 3, 1{65. Campion, J., & Latto, R. (1985). Apperceptive agnosia due to

  12. Probabilistic analysis and fatigue damage assessment of offshore mooring system due to non-Gaussian bimodal tension processes

    NASA Astrophysics Data System (ADS)

    Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng

    2017-08-01

    Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.

  13. Apoptosis Modulation in the Immune System Reveals a Role of Neutrophils in Tissue Damage in a Murine Model of Chlamydial Genital Infection.

    PubMed

    Zortel, Tom; Schmitt-Graeff, Annette; Kirschnek, Susanne; Häcker, Georg

    2018-05-05

    Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown, but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of B-cell lymphoma 2 (Bcl-2) in hematopoietic cells (Bcl-2 mice), and mice where mature neutrophils are lacking due to the deletion of Myeloid cell leukemia 1 (Mcl-1) in myeloid cells (LysM-cre-mcl-1-flox mice; Mcl-1 mice). We monitored bacterial clearance, cellular infiltrate, and long-term tissue damage. Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2 mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2 mice caused increased tissue damage. The loss of neutrophils in Mcl-1 mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1 mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Inhibition of apoptosis in the hematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.

  14. Ramus marginalis mandibulae nervus facialis palsy in hemifacial microsomia.

    PubMed

    Silvestri, A; Mariani, G; Vernucci, R A

    2008-12-01

    The paralysis of the ramus marginalis mandibulae nervus facialis may occur in Hemifacial Microsomia (HM); the combination of both HM and palsy contributes to an elongation of the mandibular body. This study explores a possible correlation between neurological deficit, muscular atony, and structural deficiency. Of 58 patients with HM who had come to the University of Rome (Sapienza) Pre-surgical Orthodontics Unit, 4 patients were afflicted with Hemifacial Microsomia and ramus marginalis mandibulae nervus palsy; these patients underwent physical, neurological, opthamologic and systemic examinations. The results were then analysed in order to determine a possible correlation between neuro-muscular and structural deficit. Electroneurographic and electromyographic examinations were performed to estimate facial nerve and muscles involvement. Neuroelectrographic exam showed a damage of the nervous motor fibres of the facial nerve ipsilateral to HM, with an associated damage of the muscular function, while neuro-muscular functions on the healthy side were normal. The peripheral nervous and muscular deficits affect the function of facial soft tissues and the growth of mandibular body with an asymmetry characterised by a hypodevelopment of the ramus (due to the HM) and by an elongation of the mandibular body (due to ramus marginalis mandibulae nerve palsy), so that the chin deviation is contralateral to HM. In these forms, a neurological examination is necessary to assess the neurological damage on the HM side. Neuromuscular deficiency can also contribute to a relapse tendency after a surgical-orthodontic treatment.

  15. Computational Modeling of Resting-State Activity Demonstrates Markers of Normalcy in Children with Prenatal or Perinatal Stroke

    PubMed Central

    Raja Beharelle, Anjali; Griffa, Alessandra; Hagmann, Patric; Solodkin, Ana; McIntosh, Anthony R.; Small, Steven L.; Deco, Gustavo

    2015-01-01

    Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere “take over” their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children. PMID:26063923

  16. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Acetylcholine Esterase Activity and Behavioral Response in Hypoxia Induced Neonatal Rats: Effect of Glucose, Oxygen and Epinephrine Supplementation

    ERIC Educational Resources Information Center

    Chathu, Finla; Krishnakumar, Amee; Paulose, Cheramadathikudyil S.

    2008-01-01

    Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death.…

  18. The Functional Organization of Trial-Related Activity in Lexical Processing after Early Left Hemispheric Brain Lesions: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B. L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In…

  19. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae.

    PubMed

    Basrai, M A; Velculescu, V E; Kinzler, K W; Hieter, P

    1999-10-01

    Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.

  20. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  1. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  2. Pericyte function in the physiological central nervous system.

    PubMed

    Muramatsu, Rieko; Yamashita, Toshihide

    2014-01-01

    Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Genomic biomarkers and clinical outcomes of physical activity.

    PubMed

    Izzotti, Alberto

    2011-07-01

    Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms. © 2011 New York Academy of Sciences.

  4. Long-term follow-up of the cervical spine with conventional radiographs in patients with rheumatoid arthritis.

    PubMed

    Blom, M; Creemers, M C W; Kievit, W; Lemmens, J A M; van Riel, P L C M

    2013-01-01

    To investigate the prevalence of cervical spine damage due to rheumatoid arthritis (RA) in the long term and to investigate which disease-specific factors are related to this damage. Patients with early RA from the Nijmegen inception cohort with 6 to 12 years of follow-up were included. Conventional radiographs of the cervical spine were obtained at baseline, 3, 6, 9, and 12 years and scored for erosions of C1 and C2, anterior atlantoaxial subluxation (AAS) and atlantoaxial impaction (AAI). Disease-specific factors, such as disease activity, functionality, and peripheral joint damage, at baseline, 3, 6, and 9 years, were compared between patients with and without cervical spine damage at 9 years. A total of 196 patients were included, of whom 134 had radiographs at 9 years. Cervical spine damage was present in 16% (22/134) of the patients at 9 years. During the total 12 years of follow-up, AAS and erosions of C2 were observed most frequently. Erosions of C1 and AAI were very rare. Patients with cervical spine damage at 9 years had a higher number of erosions of the peripheral joints and failed more disease-modifying anti-rheumatic drugs (DMARDs) at 3, 6, and 9 years. Patients without peripheral erosive disease at 3 years were unlikely to develop cervical spine damage within 9 years of disease duration. The prevalence of cervical spine damage due to RA was 16% at 9 years. Patients without peripheral erosive disease at 3 years were unlikely to develop cervical spine damage at 9 years.

  5. Probabilistic evaluation of uncertainties and risks in aerospace components

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.

    1992-01-01

    This paper summarizes a methodology developed at NASA Lewis Research Center which computationally simulates the structural, material, and load uncertainties associated with Space Shuttle Main Engine (SSME) components. The methodology was applied to evaluate the scatter in static, buckling, dynamic, fatigue, and damage behavior of the SSME turbo pump blade. Also calculated are the probability densities of typical critical blade responses, such as effective stress, natural frequency, damage initiation, most probable damage path, etc. Risk assessments were performed for different failure modes, and the effect of material degradation on the fatigue and damage behaviors of a blade were calculated using a multi-factor interaction equation. Failure probabilities for different fatigue cycles were computed and the uncertainties associated with damage initiation and damage propagation due to different load cycle were quantified. Evaluations on the effects of mistuned blades on a rotor were made; uncertainties in the excitation frequency were found to significantly amplify the blade responses of a mistuned rotor. The effects of the number of blades on a rotor were studied. The autocorrelation function of displacements and the probability density function of the first passage time for deterministic and random barriers for structures subjected to random processes also were computed. A brief discussion was included on the future direction of probabilistic structural analysis.

  6. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.

    PubMed

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-12-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.

  7. Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice

    PubMed Central

    Rani, Reena; Li, Jie; Pang, Qishen

    2008-01-01

    Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147

  8. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  9. Wavelength and pulselength dependence of laser conditioning and bulk damage in doubler-cut KH2PO4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J J; Bruere, J R; Bolourchi, M

    2005-10-28

    An experimental technique has been utilized to measure the variation of bulk damage scatter with damaging fluence in plates of KH{sub 2}PO{sub 4} (KDP) crystals. Bulk damage in unconditioned and laser-conditioned doubler-cut KDP crystals has been studied using 527 nm (2{omega}) light at pulselengths of 0.3-10 ns. It is found that there is less scatter due to damage at fixed fluence for longer pulselengths. In particular, there is {approx}4X increase in fluence for equivalent scatter for damage at 2{omega}, 10 ns as compared to 0.30 ns in unconditioned KDP. The results for the unconditioned and conditioned KDP show that formore » all the pulselengths the scatter due to the bulk damage is a strong function of the damaging fluence ({phi}{sup -5}). It is determined that the 2{omega} fluence pulselength-scaling for equivalent bulk damage scatter in unconditioned KDP varies as {tau}{sup 0.30{+-}0.11} and in 3{omega}, 3ns ramp-conditioned KDP varies as {tau}{sup 0.27{+-}0.14}. The effectiveness of 2{omega} and 3{omega} laser conditioning at pulselengths in the range of 0.30-23 ns for damage induced 2{omega}, 3 ns is analyzed in terms of scatter. For the protocols tested (i.e. peak conditioning irradiance, etc.), the 3{omega}, 300 ps conditioning to a peak fluence of 3 J/cm{sup 2} had the best performance under 2{omega}, 3 ns testing. The general trend in the performance of the conditioning protocols was shorter wavelength and shorter pulselength appear to produce better conditioning for testing at 2{omega}, 3 ns.« less

  10. Drought impact functions as intermediate step towards drought damage assessment

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Svensson, Cecilia; Prosdocimi, Ilaria; Hannaford, Jamie; Helm Smith, Kelly; Svoboda, Mark; Stahl, Kerstin

    2016-04-01

    While damage or vulnerability functions for floods and seismic hazards have gained considerable attention, there is comparably little knowledge on drought damage or loss. On the one hand this is due to the complexity of the drought hazard affecting different domains of the hydrological cycle and different sectors of human activity. Hence, a single hazard indicator is likely not able to fully capture this multifaceted hazard. On the other hand, drought impacts are often non-structural and hard to quantify or monetize. Examples are impaired navigability of streams, restrictions on domestic water use, reduced hydropower production, reduced tree growth, and irreversible deterioration/loss of wetlands. Apart from reduced crop yield, data about drought damage or loss with adequate spatial and temporal resolution is scarce, making the development of drought damage functions difficult. As an intermediate step towards drought damage functions we exploit text-based reports on drought impacts from the European Drought Impact report Inventory and the US Drought Impact Reporter to derive surrogate information for drought damage or loss. First, text-based information on drought impacts is converted into timeseries of absence versus presence of impacts, or number of impact occurrences. Second, meaningful hydro-meteorological indicators characterizing drought intensity are identified. Third, different statistical models are tested as link functions relating drought hazard indicators with drought impacts: 1) logistic regression for drought impacts coded as binary response variable; and 2) mixture/hurdle models (zero-inflated/zero-altered negative binomial regression) and an ensemble regression tree approach for modeling the number of drought impact occurrences. Testing the predictability of (number of) drought impact occurrences based on cross-validation revealed a good agreement between observed and modeled (number of) impacts for regions at the scale of federal states or provinces with good data availability. Impact functions representing localized drought impacts are more challenging to construct given that less data is available, yet may provide information that more directly addresses stakeholders' needs. Overall, our study contributes insights into how drought intensity translates into ecological and socioeconomic impacts, and how such information may be used for enhancing drought monitoring and early warning.

  11. 28 CFR 79.61 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Cor pulmonale means heart disease, including hypertrophy of the right ventricle, due to pulmonary... Criteria for Claims by Ore Transporters § 79.61 Definitions. (a) Chronic renal disease means the chronic... injury means structural or functional damage to the kidney tubules that results in renal disease and...

  12. 28 CFR 79.51 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Cor pulmonale means heart disease, including hypertrophy of the right ventricle, due to pulmonary... Criteria for Claims by Uranium Millers § 79.51 Definitions. (a) Chronic renal disease means the chronic... or functional damage to the kidney tubules that results in renal disease and dysfunction. (g) Miller...

  13. 28 CFR 79.51 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Cor pulmonale means heart disease, including hypertrophy of the right ventricle, due to pulmonary... Criteria for Claims by Uranium Millers § 79.51 Definitions. (a) Chronic renal disease means the chronic... or functional damage to the kidney tubules that results in renal disease and dysfunction. (g) Miller...

  14. 28 CFR 79.61 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Cor pulmonale means heart disease, including hypertrophy of the right ventricle, due to pulmonary... Criteria for Claims by Ore Transporters § 79.61 Definitions. (a) Chronic renal disease means the chronic... injury means structural or functional damage to the kidney tubules that results in renal disease and...

  15. Discrimination between acute and chronic decline of Central European forests using map algebra of the growth condition and forest biomass fuzzy sets: A case study.

    PubMed

    Samec, Pavel; Caha, Jan; Zapletal, Miloš; Tuček, Pavel; Cudlín, Pavel; Kučera, Miloš

    2017-12-01

    Forest decline is either caused by damage or else by vulnerability due to unfavourable growth conditions or due to unnatural silvicultural systems. Here, we assess forest decline in the Czech Republic (Central Europe) using fuzzy functions, fuzzy sets and fuzzy rating of ecosystem properties over a 1×1km grid. The model was divided into fuzzy functions of the abiotic predictors of growth conditions (F pred including temperature, precipitation, acid deposition, soil data and relative site insolation) and forest biomass receptors (F rec including remote sensing data, density and volume of aboveground biomass, and surface humus chemical data). Fuzzy functions were designed at the limits of unfavourable, undetermined or favourable effects on the forest ecosystem health status. Fuzzy sets were distinguished through similarity in a particular membership of the properties at the limits of the forest status margins. Fuzzy rating was obtained from the least difference of F pred -F rec . Unfavourable F pred within unfavourable F rec indicated chronic damage, favourable F pred within unfavourable F rec indicated acute damage, and unfavourable F pred within favourable F rec indicated vulnerability. The model in the 1×1km grid was validated through spatial intersection with a point field of uniform forest stands. Favourable status was characterised by soil base saturation (BS)>50%, BCC/Al>1, C org >1%, MgO>6g/kg, and nitrogen deposition<1200mol(H + )/ha·year. Vulnerable forests had BS humus 46-60%, BCC/Al 9-20 and NDVI≈0.42. Chronic forest damage occurs in areas with low temperatures, high nitrogen deposition, and low soil BS and C org levels. In the Czech Republic, 10% of forests were considered non-damaged and 77% vulnerable, with damage considered acute in 7% of forests and chronic in 5%. The fuzzy model used suggests that improvement in forest health will depend on decreasing environmental load and restoration concordance between growth conditions and tree species composition. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  17. RhNRG-1β Protects the Myocardium against Irradiation-Induced Damage via the ErbB2-ERK-SIRT1 Signaling Pathway

    PubMed Central

    Gu, Anxin; Jie, Yamin; Sun, Liang; Zhao, Shuping; E, Mingyan; You, Qingshan

    2015-01-01

    Radiation-induced heart disease (RIHD), which is a serious side effect of the radiotherapy applied for various tumors due to the inevitable irradiation of the heart, cannot be treated effectively using current clinical therapies. Here, we demonstrated that rhNRG-1β, an epidermal growth factor (EGF)-like protein, protects myocardium tissue against irradiation-induced damage and preserves cardiac function. rhNRG-1β effectively ameliorated irradiation-induced myocardial nuclear damage in both cultured adult rat-derived cardiomyocytes and rat myocardium tissue via NRG/ErbB2 signaling. By activating ErbB2, rhNRG-1β maintained mitochondrial integrity, ATP production, respiratory chain function and the Krebs cycle status in irradiated cardiomyocytes. Moreover, the protection of irradiated cardiomyocytes and myocardium tissue by rhNRG-1β was at least partly mediated by the activation of the ErbB2-ERK-SIRT1 signaling pathway. Long-term observations further showed that rhNRG-1β administered in the peri-irradiation period exerts continuous protective effects on cardiac pump function, the myocardial energy metabolism, cardiomyocyte volume and interstitial fibrosis in the rats receiving radiation via NRG/ErbB2 signaling. Our findings indicate that rhNRG-1β can protect the myocardium against irradiation-induced damage and preserve cardiac function via the ErbB2-ERK-SIRT1 signaling pathway. PMID:26332771

  18. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  19. Computational modeling of resting-state activity demonstrates markers of normalcy in children with prenatal or perinatal stroke.

    PubMed

    Adhikari, Mohit H; Raja Beharelle, Anjali; Griffa, Alessandra; Hagmann, Patric; Solodkin, Ana; McIntosh, Anthony R; Small, Steven L; Deco, Gustavo

    2015-06-10

    Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children. Copyright © 2015 the authors 0270-6474/15/358914-11$15.00/0.

  20. Use of urinary γ-glutamyl transferase (GGT) to monitor the pattern of proteinuria in dogs with leishmaniasis treated with N-methylglucamine antimoniate.

    PubMed

    Paltrinieri, Saverio; Mangiagalli, Giulia; Ibba, Fabrizio

    2018-05-25

    The aim of this study was to assess if the coupled analysis of the urinary protein to creatinine (UPC) ratio and of the GGT/UC ratio (the ratio between urinary γ-glutamyl transferase activity and urinary creatinine) may be used in treated leishmaniotic dogs to differentiate dogs with transient impairment of tubular function from dogs with persistent tubular damage. To this aim, 40 urine from 10 proteinuric and leishmaniotic dogs that at the first visit had high GGT/UC ratio, consistent with tubular damage, were collected and analyzed before treatments and 2, 4 and 6 weeks after treatment with N-methylglucamine antimoniate and allopurinol. Compared with pre-treatment values, at the end of the study period the UPC ratio decreased only in 5/10 dogs, which, however, were still proteinuric or borderline proteinuric. Conversely, the GGT/CU ratio decreased in 8/10 dogs and in 3 of them the values at the end of the study period were below the threshold consistent with tubular proteinuria. The GGT/UC values at 6 weeks was significantly lower than before treatment. However, transient increases were frequent for both the analytes. These results indicate that in most of the dogs that remain proteinuric after treatment, likely due to the persistent glomerular damage, the GGT/UC ratio tends to normalize. This suggests that in these dogs tubular proteinuria at admission depends on functional impairment of tubular cells likely due to the overflow of proteins from damaged glomeruli. However, tubular proteinuria occasionally persists, suggesting that tubulointerstitial damages persist even in dogs responsive to treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy.

    PubMed

    Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A

    2018-06-01

    To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after acute kidney injury, designed to interdict renal tubular damage. Magn Reson Med 79:3144-3153, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics

    PubMed Central

    Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.

    2017-01-01

    Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage. PMID:28163885

  3. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.

    PubMed

    Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H

    2017-02-06

    Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.

  4. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.

    PubMed

    Paul, Atanu; Wang, Bin

    2017-05-18

    Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Functional photoacoustic microscopy of diabetic vasculature

    NASA Astrophysics Data System (ADS)

    Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.

    2012-06-01

    We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.

  6. Functional photoacoustic microscopy of diabetic vasculature

    PubMed Central

    Krumholz, Arie; Wang, Lidai; Yao, Junjie

    2012-01-01

    Abstract. We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (∼400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change. PMID:22734725

  7. [Preventive measures against health damage due to chemicals in household products].

    PubMed

    Kaniwa, Masa-aki

    2010-01-01

    Chemicals in household products have been paid much attention as the main cause of health damage in consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabrics, plastics and rubber products for household use, are reviewed, focusing on 1) the incidence of health damage due to household products, 2) causative product-chemical investigation, and 3) case studies on skin damage.

  8. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  9. Zoledronate Attenuates Accumulation of DNA Damage in Mesenchymal Stem Cells and Protects Their Function

    PubMed Central

    Misra, Juhi; Mohanty, Sindhu T.; Madan, Sanjeev; Fernandes, James A.; Hal Ebetino, F.; Russell, R. Graham G.

    2015-01-01

    Abstract Mesenchymal stem cells (MSCs) undergo a decline in function following ex vivo expansion and exposure to irradiation. This has been associated with accumulation of DNA damage and has important implications for tissue engineering approaches or in patients receiving radiotherapy. Therefore, interventions, which limit accumulation of DNA damage in MSC, are of clinical significance. We were intrigued by findings showing that zoledronate (ZOL), an anti‐resorptive nitrogen containing bisphosphonate, significantly extended survival in patients affected by osteoporosis. The effect was too large to be simply due to the prevention of fractures. Moreover, in combination with statins, it extended the lifespan in a mouse model of Hutchinson Gilford Progeria Syndrome. Therefore, we asked whether ZOL was able to extend the lifespan of human MSC and whether this was due to reduced accumulation of DNA damage, one of the important mechanisms of aging. Here, we show that this was the case both following expansion and irradiation, preserving their ability to proliferate and differentiate in vitro. In addition, administration of ZOL before irradiation protected the survival of mesenchymal progenitors in mice. Through mechanistic studies, we were able to show that inhibition of mTOR signaling, a pathway involved in longevity and cancer, was responsible for these effects. Our data open up new opportunities to protect MSC from the side effects of radiotherapy in cancer patients and during ex vivo expansion for regenerative medicine approaches. Given that ZOL is already in clinical use with a good safety profile, these opportunities can be readily translated for patient benefit. Stem Cells 2016;34:756–767 PMID:26679354

  10. Zoledronate Attenuates Accumulation of DNA Damage in Mesenchymal Stem Cells and Protects Their Function.

    PubMed

    Misra, Juhi; Mohanty, Sindhu T; Madan, Sanjeev; Fernandes, James A; Hal Ebetino, F; Russell, R Graham G; Bellantuono, Ilaria

    2016-03-01

    Mesenchymal stem cells (MSCs) undergo a decline in function following ex vivo expansion and exposure to irradiation. This has been associated with accumulation of DNA damage and has important implications for tissue engineering approaches or in patients receiving radiotherapy. Therefore, interventions, which limit accumulation of DNA damage in MSC, are of clinical significance. We were intrigued by findings showing that zoledronate (ZOL), an anti-resorptive nitrogen containing bisphosphonate, significantly extended survival in patients affected by osteoporosis. The effect was too large to be simply due to the prevention of fractures. Moreover, in combination with statins, it extended the lifespan in a mouse model of Hutchinson Gilford Progeria Syndrome. Therefore, we asked whether ZOL was able to extend the lifespan of human MSC and whether this was due to reduced accumulation of DNA damage, one of the important mechanisms of aging. Here, we show that this was the case both following expansion and irradiation, preserving their ability to proliferate and differentiate in vitro. In addition, administration of ZOL before irradiation protected the survival of mesenchymal progenitors in mice. Through mechanistic studies, we were able to show that inhibition of mTOR signaling, a pathway involved in longevity and cancer, was responsible for these effects. Our data open up new opportunities to protect MSC from the side effects of radiotherapy in cancer patients and during ex vivo expansion for regenerative medicine approaches. Given that ZOL is already in clinical use with a good safety profile, these opportunities can be readily translated for patient benefit. © 2015 AlphaMed Press.

  11. Protective Effects of Gelam Honey against Oxidative Damage in Young and Aged Rats

    PubMed Central

    Sahhugi, Zulaikha; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities. PMID:25505937

  12. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development.

    PubMed

    Sears, Catherine R; Zhou, Huaxin; Justice, Matthew J; Fisher, Amanda J; Saliba, Jacob; Lamb, Isaac; Wicker, Jessica; Schweitzer, Kelly S; Petrache, Irina

    2018-03-01

    Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.

  13. The potential dysfunction of otolith organs in patients after mumps infection

    PubMed Central

    Tian, Liang; Han, Zhao; Wang, Jing; Chi, Fang-Lu

    2017-01-01

    Objective To investigate the relationship between mumps and the extent of hearing impairment and otolith organ damage. Methods A total of 27 patients with unilateral hearing impairment following mumps were enrolled. The degrees of hearing loss and otolith organ damage were confirmed by audiometric and vestibular evoked myogenic potential [VEMP] tests. All the results were compared and analyzed using Stata 13.0 software for Windows. Results The VEMP thresholds of the affected ears were significantly higher than those of the unaffected ears in both tests (cervical VEMP [cVEMP] test and ocular VEMP [oVEMP] test; p = 0.000 and 0.001, respectively). The mean cVEMP and oVEMP threshold values of the affected ears with hearing impairment for ≤10 years were significantly lower than those of affected ears with hearing impairment for >10 years [p = 0.009 and 0.004, respectively]. Conclusions Deafness resulting from mumps is usually profound and permanent, which indicates severe damage to the cochlea due to the disease. The functions of otolith organs in the vestibular system are also impaired. Over time, the function of the otolith organs or their neural pathway may suffer secondary damage. PMID:28746415

  14. GPCR-autoantibodies in chronic heart failure.

    PubMed

    Boivin-Jahns, Valerie; Jahns, Roland

    2018-06-01

    Chronic heart failure (CHF) is a syndrome characterized by shortness of breath, fluid retention, and a progressive reduction in cardiac function. More than 60% of the cases are ischemic in origin (i.e., due to myo-cardial infarction) and about 30% are caused by non-ischemic myocardial damage (i.e., due to genetic or non-genetic causes like myocardial inflammation). Because of alterations in both cellular and humoral immunity patients with non-ischemic CHF often develop abnormal or misled immune responses, including cross-reacting antibodies and/or autoantibodies to various cardiac anti-gens. Non-ischemic myo-cardial damage was found to progress to CHF particularly, when associated (a) with the generation of autoantibodies directed against distinct myocyte membrane proteins critically involved in cardiac function - like G-protein coup-led membrane receptors (GPCRs), or (b) with virus persistence in the myocardium. This article will review current knowledge on the pathophysiological relevance of GPCR-autoreactivity in CHF by giving an overview on the so far available evidence from pre-clinical, clinical and epidemiological studies on the CHF-inducing potential of GPCR-autoantibodies and thereon based novel therapeutic approaches in GPCR autoantibody-associated CHF.

  15. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  16. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ.

    PubMed

    Dare, Anna J; Bolton, Eleanor A; Pettigrew, Gavin J; Bradley, J Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P

    2015-08-01

    Ischemia-reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ

    PubMed Central

    Dare, Anna J.; Bolton, Eleanor A.; Pettigrew, Gavin J.; Bradley, J. Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P.

    2015-01-01

    Ischemia–reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24 h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. PMID:25965144

  19. Impact resistance of fiber composite blades used in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Friedrich, L. A.; Preston, J. L., Jr.

    1973-01-01

    Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.

  20. Comparative study on the inhibitory effects of α-tocopherol and radon on carbon tetrachloride-induced renal damage.

    PubMed

    Kataoka, Takahiro; Yamato, Keiko; Nishiyama, Yuichi; Morii, Yuji; Etani, Reo; Takata, Yuji; Hanamoto, Katsumi; Kawabe, Atsuishi; Sakoda, Akihiro; Ishimori, Yuu; Taguchi, Takehito; Yamaoka, Kiyonori

    2012-01-01

    Since the 2011 nuclear accident in Fukushima, the effects of low-dose irradiation, especially internal exposure, are at the forefront of everyone's attention. However, low-dose radiation induced various stimulating effects such as activation of antioxidative and immune functions. In this study, we attempted to evaluate the quantitative effects of the activation of antioxidative activities in kidney induced by radon inhalation on carbon tetrachloride (CCl4)-induced renal damage. Mice were subjected to intraperitoneal (i.p.) injection of CCl4 after inhaling approximately 1000 or 2000 Bq/m3 radon for 24 h, or immediately after i.p. injection of α-tocopherol (100, 300, or 500 mg/kg bodyweight). In case of renal function, radon inhalation at a concentration of 2000 Bq/m3 has the inhibitory effects similar to α-tocopherol treatment at a dose of 300-500 mg/kg bodyweight. The activities of superoxide dismutase and catalase in kidneys were significantly higher in mice exposed to radon as compared to mice treated with CCl4 alone. These findings suggest that radon inhalation has an antioxidative effect against CCl4-induced renal damage similar to the antioxidative effects of α-tocopherol due to induction of antioxidative functions.

  1. Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation

    NASA Astrophysics Data System (ADS)

    Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.

    2008-09-01

    In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.

  2. Hypopituitarism Presenting as Adrenal Insufficiency and Hypothyroidism in a Patient with Wilson's Disease: a Case Report

    PubMed Central

    2016-01-01

    Wilson's disease typically presents symptoms associated with liver damage or neuropsychiatric disturbances, while endocrinologic abnormalities are rare. We report an unprecedented case of hypopituitarism in a patient with Wilson's disease. A 40-year-old woman presented with depression, general weakness and anorexia. Laboratory tests and imaging studies were compatible with liver cirrhosis due to Wilson's disease. Basal hormone levels and pituitary function tests indicated secondary hypothyroidism and adrenal insufficiency due to hypopituitarism. Brain MRI showed T2 hyperintense signals in both basal ganglia and midbrain but the pituitary imaging was normal. She is currently receiving chelation therapy along with thyroid hormone and steroid replacement. There may be a relationship between Wilson's disease and hypopituitarism. Copper deposition or secondary neuronal damage in the pituitary may be a possible explanation for this theory. PMID:27478349

  3. Hypopituitarism Presenting as Adrenal Insufficiency and Hypothyroidism in a Patient with Wilson's Disease: a Case Report.

    PubMed

    Lee, Hae Won; Kang, Jin Du; Yeo, Chang Woo; Yoon, Sung Woon; Lee, Kwang Jae; Choi, Mun Ki

    2016-08-01

    Wilson's disease typically presents symptoms associated with liver damage or neuropsychiatric disturbances, while endocrinologic abnormalities are rare. We report an unprecedented case of hypopituitarism in a patient with Wilson's disease. A 40-year-old woman presented with depression, general weakness and anorexia. Laboratory tests and imaging studies were compatible with liver cirrhosis due to Wilson's disease. Basal hormone levels and pituitary function tests indicated secondary hypothyroidism and adrenal insufficiency due to hypopituitarism. Brain MRI showed T2 hyperintense signals in both basal ganglia and midbrain but the pituitary imaging was normal. She is currently receiving chelation therapy along with thyroid hormone and steroid replacement. There may be a relationship between Wilson's disease and hypopituitarism. Copper deposition or secondary neuronal damage in the pituitary may be a possible explanation for this theory.

  4. A Closed Parameterization of DNA–Damage by Charged Particles, as a Function of Energy — A Geometrical Approach

    PubMed Central

    Van den Heuvel, Frank

    2014-01-01

    Purpose To present a closed formalism calculating charged particle radiation damage induced in DNA. The formalism is valid for all types of charged particles and due to its closed nature is suited to provide fast conversion of dose to DNA-damage. Methods The induction of double strand breaks in DNA–strings residing in irradiated cells is quantified using a single particle model. This leads to a proposal to use the cumulative Cauchy distribution to express the mix of high and low LET type damage probability generated by a single particle. A microscopic phenomenological Monte Carlo code is used to fit the parameters of the model as a function of kinetic energy related to the damage to a DNA molecule embedded in a cell. The model is applied for four particles: electrons, protons, alpha–particles, and carbon ions. A geometric interpretation of this observation using the impact ionization mean free path as a quantifier, allows extension of the model to very low energies. Results The mathematical expression describes the model adequately using a chi–square test (). This applies to all particle types with an almost perfect fit for protons, while the other particles seem to result in some discrepancies at very low energies. The implementation calculating a strict version of the RBE based on complex damage alone is corroborated by experimental data from the measured RBE. The geometric interpretation generates a unique dimensionless parameter for each type of charged particle. In addition, it predicts a distribution of DNA damage which is different from the current models. PMID:25340636

  5. Medicare-Eligible Retiree Health Care Fund Audited Financial Statements. Fiscal Year 2013

    DTIC Science & Technology

    2013-12-09

    litigation or claims and assessments due to events such as medical malpractice ; property or environmental damages; and contract disputes. The MERHCF is a...appropriate TMA functions to the DHA. Any reference in law, rule , regulation, or issuance to TMA will be deemed to be a reference to DHA, unless...P.L. 106-398). TFL functions as a second payer to Medicare, paying out-of- pocket costs for medical services covered under Medicare for beneficiaries

  6. Protections of bovine serum albumin protein from damage on functionalized graphene-based electrodes by flavonoids.

    PubMed

    Sun, Bolu; Gou, Yuqiang; Xue, Zhiyuan; Zheng, Xiaoping; Ma, Yuling; Hu, Fangdi; Zhao, Wanghong

    2016-05-01

    A sensitive electrochemical sensor based on bovine serum albumin (BSA)/poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene nanosheets (PDDA-G) composite film modified glassy carbon electrode (BSA/PDDA-G/GCE) had been developed to investigate the oxidative protein damage and protections of protein from damage by flavonoids. The performance of this sensor was remarkably improved due to excellent electrical conductivity, strong adsorptive ability, and large effective surface area of PDDA-G. The BSA/PDDA-G/GCE displayed the greatest degree of BSA oxidation damage at 40 min incubation time and in the pH 5.0 Fenton reagent system (12.5 mM FeSO4, 50 mM H2O2). The antioxidant activities of four flavonoids had been compared by fabricated sensor based on the relative peak current ratio of SWV, because flavonoids prevented BSA damage caused by Fenton reagent and affected the BSA signal in a solution containing Co(bpy)3(3+). The sensor was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). UV-vis spectrophotometry and FTIR were also used to investigate the generation of hydroxyl radical and BSA damage, respectively. On the basis of results from electrochemical methods, the order of the antioxidant activities of flavonoids is as follows: (+)-catechin>kaempferol>apigenin>naringenin. A novel, direct SWV analytical method for detection of BSA damage and assessment of the antioxidant activities of four flavonoids was developed and this electrochemical method provided a simple, inexpensive and rapid detection of BSA damage and evaluation of the antioxidant activities of samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The effect of urothelial damage on ureteric motility. An ultrastructural and functional study.

    PubMed

    Ugaily-Thulesius, L; Thulesius, O; Sabha, M

    1988-07-01

    Evidence of a leaky urothelial barrier in bilharzial uropathy is presented. The ultrastructural basis of this concept is demonstrated together with its functional consequences. The study was conducted on 4 ureters obtained at surgery from patients with non-functioning kidneys due to chronic bilharzial infections. Six normal ureters from kidney donors served as controls. Light and electron microscopic studies showed a reduced thickness of the transitional epithelium together with localised disruption of intercellular junctions and infiltration of red blood cells. The functional studies involved in vitro demonstration of stable phasic peristaltic contractions which were fundamentally altered by the addition of urine. The changes in motility included increase in contractile frequency and elevation of basal tone, inducing a state of hypermotility which could be equated with ureteric spasm. These changes were partly reversible upon administration of the histamine l-blocker, mepyramine. Evidence is presented to show that these changes might be induced in vivo by histamine released from mast cells triggered by urine leaking through a damaged urothelial barrier. The functional consequences (pain, spasm) are discussed.

  8. DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences

    PubMed Central

    Musilli, S.; Nicolas, N.; El Ali, Z.; Orellana-Moreno, P.; Grand, C.; Tack, K.; Kerdine-Römer, S.; Bertho, J. M.

    2017-01-01

    90Sr is one of the radionuclides released after nuclear accidents that can significantly impact human health in the long term. 90Sr accumulates mostly in the bones of exposed populations. Previous research has shown that exposure induces changes in bone physiology both in humans and in mice. We hypothesize that, due to its close location with bone marrow stromal cells (BMSCs), 90Sr could induce functional damage to stromal cells that may explain these biological effects due to chronic exposure to 90Sr. The aim of this work was to verify this hypothesis through the use of an in vitro model of MS5 stromal cell lines exposed to 1 and 10 kBq.mL−1 of 90Sr. Results indicated that a 30-minute exposure to 90Sr induced double strand breaks in DNA, followed by DNA repair, senescence and differentiation. After 7 days of exposure, MS5 cells showed a decreased ability to proliferate, changes in cytokine expression, and changes in their ability to support hematopoietic progenitor proliferation and differentiation. These results demonstrate that chronic exposure to a low concentration of 90Sr can induce functional changes in BMSCs that in turn may explain the health effects observed in following chronic 90Sr exposure. PMID:28134299

  9. DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences.

    PubMed

    Musilli, S; Nicolas, N; El Ali, Z; Orellana-Moreno, P; Grand, C; Tack, K; Kerdine-Römer, S; Bertho, J M

    2017-01-30

    90 Sr is one of the radionuclides released after nuclear accidents that can significantly impact human health in the long term. 90 Sr accumulates mostly in the bones of exposed populations. Previous research has shown that exposure induces changes in bone physiology both in humans and in mice. We hypothesize that, due to its close location with bone marrow stromal cells (BMSCs), 90 Sr could induce functional damage to stromal cells that may explain these biological effects due to chronic exposure to 90 Sr. The aim of this work was to verify this hypothesis through the use of an in vitro model of MS5 stromal cell lines exposed to 1 and 10 kBq.mL -1 of 90 Sr. Results indicated that a 30-minute exposure to 90 Sr induced double strand breaks in DNA, followed by DNA repair, senescence and differentiation. After 7 days of exposure, MS5 cells showed a decreased ability to proliferate, changes in cytokine expression, and changes in their ability to support hematopoietic progenitor proliferation and differentiation. These results demonstrate that chronic exposure to a low concentration of 90 Sr can induce functional changes in BMSCs that in turn may explain the health effects observed in following chronic 90 Sr exposure.

  10. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation

    PubMed Central

    Kataoka, Takahiro

    2013-01-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation. PMID:23420683

  11. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro

    2013-07-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.

  12. The 8-oxoguanine DNA glycosylase 1 (ogg1) decreases the vulnerability of the developing brain to DNA damage.

    PubMed

    Gu, Aihua; Ji, Guixiang; Yan, Lifeng; Zhou, Yong

    2013-12-01

    The developing brain is particularly vulnerable to oxidative DNA damage, which may be the cause of most major congenital mental anomalies. The repair enzyme ogg1 initiates the highly conserved base-excision repair pathway. However, its function in the embryonic brain is largely unknown. This study is the first to validate the function of ogg1 during brain development using zebrafish embryos. Ogg1 was found to be highly expressed in the brain throughout early embryonic development, with particularly enrichment observed in the midbrain. The lack of ogg1 causes severe brain defects including changes in brain volume and integrity, destruction of the midbrain-hindbrain boundary, and balance and motor impairment, while overexpression of ogg1 can partially rescue these defects. Multiple cellular and molecular events were involved in the manifestation of brain defects due primarily to the lack of ogg1. These included (1) increased apoptosis; (2) decreased proliferation; and (3) aberrant axon distribution and extension from the inner surface towards the outer layers. The results of a microarray analysis showed that the expression of genes involved in cell cycle checkpoint, apoptosis, and neurogenesis were significantly changed in response to ogg1 knockdown. Cmyb was the key downstream gene that responses to DNA damage caused by ogg1 deficiency. Notably, the recruitment of ogg1 mRNA can alleviate the effects on the brain due to neural DNA damage. In summary, we introduce here that ogg1 is fundamentally required for protecting the developing brain, which may be helpful in understanding the aetiology of congenital brain deficits. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Bo; Yang Zhenhua; Shangguan Lei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after,more » or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.« less

  14. Non-native plants and adaptive collaborative approaches to ecosystem restoration [Chapter 8

    Treesearch

    John Schelhas; James H. Miller; Jeanne C. Chambers

    2012-01-01

    Non-native invasive plant species (NNIPS) pose a serious socio-ecological challenge due to their potential to replace and damage critical human-sustaining ecosystems (OTA 1993; Mack et al. 2000; Pimentel 2002). The impacts of non-native species are widespread and significant - altering ecosystem structure and function, threatening other species, and imposing human...

  15. Mathematical modeling of damage function when attacking file server

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Skrypnikov, A. V.; Chernyshova, E. V.; Mogutnov, R. V.; Levushkin, D. M.

    2018-05-01

    The development of information technologies in Russia and the prospects for their further improvement allow us to identify a stable trend of expansion of both functions of the corresponding automated information systems (AIS) and the spheres of their application. At the same time, many threats to information processes in the AIS are expanding, which in turn stimulates the development of adequate means and systems for ensuring the information security of the AS and methods for assessing their protection. It is necessary to assess the ability of the system to continue its normal functioning under the conditions of permanent destructive influences and to resist them, to adapt the functioning algorithms to new conditions and to organize functional restoration or to ensure functioning with a gradual process of degradation, possibly without losing the most significant “critical” information functions. The analysis and evaluation of reliability are needed to be transformed into the analysis and evaluation of survivability. Survivability can be considered as the ability of the information system to store and restore the performance of basic functions in a given volume and for a given time in the case of a change in the system structure and / or algorithms and the conditions of its functioning due to adverse effects. One of the system survivability indicators is the reserve of survivability (S-survivability) that is the critical number of defects reduced by a unit. The authors will consider defect as a unit of measurement of damage to the information system by adverse impact. U is denoted as the critical number of defects, then S = 1-U is the index of S-survivability. The article gives the definition of an analytical formula for the function of damage and risk.

  16. Vestibular sensory functional status of cochlear implanted ears versus non-implanted ears in bilateral profound deaf adults.

    PubMed

    Cozma, Romică Sebastian; Dima-Cozma, Lucia Corina; Rădulescu, Luminiţa Mihaela; Hera, Maria Cristina; Mârţu, Cristian; Olariu, Raluca; Cobzeanu, Bogdan Mihail; Bitere, Oana Roxana; Cobzeanu, Mihail Dan

    2018-01-01

    Patients with hearing loss who underwent cochlear implantation can present symptomatic or asymptomatic vestibular damages earlier or later after the surgery. The vestibular permanent lesions could be acute, produced by surgical trauma or could be progressive due to local morphological changes made by the presence of the portelectrode in the inner ear (fibrosis related, ossification, basilar membrane distortion, endolymphatic hydrops). Besides histopathological findings in inner ear of cochlear implanted patients, the vestibular permanent damages could be found by assessment of clinical vestibular status. This study reports the sensorial vestibular functional findings for adults in cochlear implanted ears related to the electrode insertion type (cochleostomy or round window approach) and comparing to non-implanted deaf ears. A total of 20 adult patients with 32 cochlear implanted ears (12 patients with binaural cochlear implant and eight with monoaural) were selected for postoperatory vestibular examination by cervical and ocular vestibular myogenic potentials and vestibular caloric tests. The same tests were made for a control group of 22 non-implanted deaf ears. Functional testing results were reported related to the electrode insertion approach. For the cochleostomy group, we found different deficits: in 40% for saccular function, 44% for utricular function, and 12% horizontal canal dysfunction. In round window group, the deficit was present in 14.29% for saccular function, 28.57% for utricular function, and 28.58% for horizontal canal. In 46.88% of implanted ears, the vestibular function was completely preserved on all tested sensors. In conclusion, the vestibular functional status after inner ear surgery presents sensorial damages in 53.12% ears compare with the vestibular dysfunction existing in 50% of deaf non-operated ears. Round window insertion allows for better conservation of the vestibular function.

  17. [Preventive measures against health damage due to chemicals in household products].

    PubMed

    Kaniwa, Masa-aki

    2006-01-01

    Chemicals in household products have been paid much attention as main cause of health damage on consumers, such as allergic contact dermatitis. Preventive measures against health damage due to chemicals in fabric, plastic and rubber products for household uses, are reviewed, focusing on (1) regulation and voluntary control by manufacturers, (2) incidence of health damage from household products, (3) causative product-chemical investigation, (4) case studies on skin damage and respiratory tract damage.

  18. Functional dyspepsia pathogenesis and therapeutic options--implications for management.

    PubMed

    Smith, M Lancaster

    2005-08-01

    Functional dyspepsia is far more common than dyspepsia due to organic disease, both in the community and general practice. Proposed aetiopathogenic factors include gastric acid, Helicobacter pylori infection, delayed emptying, hypersensitivity or impaired accommodation of the stomach, dysfunction of the duodenum or brain-gut axis, psychosocial morbidity and post-infective mucosal damage. More effective therapy will depend on the development of drugs targeted at these putative pathophysiological mechanisms. On current evidence tricyclic antidepressants appear to be more effective than either acid suppressants or H. pylori eradication.

  19. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  20. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    NASA Technical Reports Server (NTRS)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  1. Self-learning health monitoring algorithm in composite structures

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto

    2018-02-01

    The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.

  2. Different pathways of tumor damage due to PDT: the influence of parameters of laser irradiation

    NASA Astrophysics Data System (ADS)

    Meerovich, Gennadii A.; Stratonnikov, Alexander A.; Loschenov, Victor B.; Kogan, Eugenia A.; Gladskikh, Olga P.; Lukianets, Eugeny A.; Vorozhtsov, Georgy N.; Paltsev, Mikhail A.

    2001-01-01

    The investigation of tumor damage in vivo due to photodynamic therapy (PDT) using aluminium sulphophthalocyanine were performed. Obtained results showed that antitumor action of PDT is connected with different mechanisms of tumor damage; necrosis, apoptosis, and exochromatolis of tumor cells as well as vascular damages.

  3. Establishment of a Mouse Model with Misregulated Chromosome Condensation due to Defective Mcph1 Function

    PubMed Central

    Walther, Diego J.; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W.; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie

    2010-01-01

    Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1gt/gt mice, the overall survival rates of the Mcph1gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function. PMID:20169082

  4. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    PubMed

    Trimborn, Marc; Ghani, Mahdi; Walther, Diego J; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie

    2010-02-16

    Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  5. Visual feature integration with an attention deficit.

    PubMed

    Arguin, M; Cavanagh, P; Joanette, Y

    1994-01-01

    Treisman's feature integration theory proposes that the perception of illusory conjunctions of correctly encoded visual features is due to the failure of an attentional process. This hypothesis was examined by studying brain-damaged subjects who had previously been shown to have difficulty in attending to contralesional stimulation. These subjects exhibited a massive feature integration deficit for contralesional stimulation relative to ipsilesional displays. In contrast, both normal age-matched controls and brain-damaged subjects who did not exhibit any evidence of an attention deficit showed comparable feature integration performance with left- and right-hemifield stimulation. These observations indicate the crucial function of attention for visual feature integration in normal perception.

  6. Pediatric traumatic brain injury: language outcomes and their relationship to the arcuate fasciculus.

    PubMed

    Liégeois, Frédérique J; Mahony, Kate; Connelly, Alan; Pigdon, Lauren; Tournier, Jacques-Donald; Morgan, Angela T

    2013-12-01

    Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Spirulina maxima Protects Liver From Isoniazid and Rifampicin Drug Toxicity.

    PubMed

    Jatav, Santosh Kumar; Kulshrestha, Archana; Zacharia, Anish; Singh, Nita; Tejovathi, G; Bisen, P S; Prasad, G B K S

    2014-07-01

    Hepatotoxicity associated with isoniazid and rifampicin is one of the major impediments in antituberculosis therapy. The present study explored the prophylactic and therapeutic efficacies of Spirulina maxima in isoniazid and rifampicin induced hepatic damage in a rat model. Hepatic damage induced in Wistar rats by isoniazid and rifampicin resulted in significant alterations in biomarkers of liver function, namely, bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, and oxidative stress markers such as superoxide dismutase, catalase, glutathione, and thiobarbituric acid reactive substances. Co-administration of Spirulina maxima along with antituberculosis drugs protected liver from hepatotoxicity due to isoniazid and rifampicin. Administration of Spirulina maxima consecutively for 2 weeks to hepatodamaged animals resulted in restoration of hepatic function as evident from normalization of serum markers of liver function. Thus, the present study revealed remarkable prophylactic and therapeutic potential of Spirulina maxima. Co-administration of Spirulina maxima and antituberculosis drugs is advantageous as it provides extra nutritional benefit. © The Author(s) 2014.

  8. Cold starting of fluorescent lamps - part II: experiments on glow times and electrode damaging

    NASA Astrophysics Data System (ADS)

    Langer, Reinhard; Paul, Irina; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard

    2017-01-01

    In the present work we present experiments on cold start and the resulting electrode damaging (reducing lamp life) of AC driven fluorescent lamps. The crucial parameter is the glow time, determined from time resolved measurements of lamp voltage and current. The relation between the energy consumed during glow phase and the glow time is studied. It turns out that there is no common threshold of energy until the glow-to-arc transition takes place, but strong energy input into the lamp yields short glow times. The transient behaviour from the glow to the arc regime is investigated and the stable operation points of the arc discharge are determined, yielding an arc discharge voltage-current characteristics of the lamp type investigated. The electrode damage is investigated as a function of the open source voltage and the ballast resistance. Subsequent cold starts lead to an increase of the glow time due to electrode damaging, i.e., the electrode damage accumulates. Different regeneration procedures and their effectiveness are compared. Regeneration burning turns out to be more effective than heating up the electrode. A criterion for avoiding high electrode damage is obtained, indicating that the average power during glow time should exceed 20 W.

  9. Catalog of Residential Depth-Damage Functions Used by the Army Corps of Engineers in Flood Damage Estimation

    DTIC Science & Technology

    1992-05-01

    regression analysis. The strength of any one variable can be estimated along with the strength of the entire model in explaining the variance of percent... applicable a set of damage functions is to a particular situation. Sometimes depth- damage functions are embedded in computer programs which calculate...functions. Chapter Six concludes with recommended policies on the development and application of depth-damage functions. 5 6 CHAPTER TWO CONSTRUCTION OF

  10. Preserved speech abilities and compensation following prefrontal damage.

    PubMed

    Buckner, R L; Corbetta, M; Schatz, J; Raichle, M E; Petersen, S E

    1996-02-06

    Lesions to left frontal cortex in humans produce speech production impairments (nonfluent aphasia). These impairments vary from subject to subject and performance on certain speech production tasks can be relatively preserved in some patients. A possible explanation for preservation of function under these circumstances is that areas outside left prefrontal cortex are used to compensate for the injured brain area. We report here a direct demonstration of preserved language function in a stroke patient (LF1) apparently due to the activation of a compensatory brain pathway. We used functional brain imaging with positron emission tomography (PET) as a basis for this study.

  11. Flood damage curves for consistent global risk assessments

    NASA Astrophysics Data System (ADS)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek

    2016-04-01

    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra-national scale flood damage assessments, and guide assessment in countries where no damage model is currently available.

  12. Developmental consequences of cryopreservation of mammalian oocytes and embryos.

    PubMed

    Smith, Gary D; Silva E Silva, Cristine Ane

    2004-08-01

    During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.

  13. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging

    PubMed Central

    Toth, Peter; Tarantini, Stefano; Csiszar, Anna

    2017-01-01

    Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855

  14. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice

    PubMed Central

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J.; Karl, Michael

    2016-01-01

    Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis. PMID:20962747

  15. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice.

    PubMed

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J; Karl, Michael

    2011-02-01

    Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.

  16. Time Course and Association of Functional and Biochemical Markers in Severe Semitendinosus Damage Following Intensive Eccentric Leg Curls: Differences between and within Subjects.

    PubMed

    Carmona, Gerard; Mendiguchía, Jurdan; Alomar, Xavier; Padullés, Josep M; Serrano, David; Nescolarde, Lexa; Rodas, Gil; Cussó, Roser; Balius, Ramón; Cadefau, Joan A

    2018-01-01

    Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders ( n = 10, severe muscle damage) and moderate responders ( n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage.

  17. Time Course and Association of Functional and Biochemical Markers in Severe Semitendinosus Damage Following Intensive Eccentric Leg Curls: Differences between and within Subjects

    PubMed Central

    Carmona, Gerard; Mendiguchía, Jurdan; Alomar, Xavier; Padullés, Josep M.; Serrano, David; Nescolarde, Lexa; Rodas, Gil; Cussó, Roser; Balius, Ramón; Cadefau, Joan A.

    2018-01-01

    Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage. PMID:29467666

  18. Aβ Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    PubMed Central

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ 40 and 42 was not caused via NMDA receptor internalization induced by Aβ increase. β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβ increase and the decrease of β 2 receptor function in glia. PMID:22645624

  19. On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct*

    NASA Astrophysics Data System (ADS)

    Jepsen, Katrine Aalbæk; Solov'yov, Ilia A.

    2017-06-01

    Different factors lead to DNA damage and if it is not repaired in due time, the damaged DNA could initiate mutagenesis and cancer. To avoid this deadly scenario, specific enzymes can scavenge and repair the DNA, but the enzymes have to bind first to the damaged sites. We have investigated this binding for a specific enzyme called (6-4) photolyase, which is capable of repairing certain UV-induced damage in DNA. Through molecular dynamics simulations we describe the binding between photolyase and the DNA and reveal that several charged amino acid residues in the enzyme, such as arginines and lysines turn out to be important. Especially R421 is crucial, as it keeps the DNA strands at the damaged site inside the repair pocket of the enzyme separated. DNA photolyase is structurally highly homologous to a protein called cryptochrome. Both proteins are biologically activated similarly, namely through flavin co-factor photoexcitation. It is, however, striking that cryptochrome cannot repair UV-damaged DNA. The present investigation allowed us to conclude on the small but, apparently, critical differences between photolyase and cryptochrome. The performed analysis gives insight into important factors that govern the binding of UV-damaged DNA and reveal why cryptochrome cannot have this functionality.

  20. Protein Tyrosine Nitration: Role in Aging.

    PubMed

    Chakravarti, Bulbul; Chakravarti, Deb N

    2017-01-01

    Aging is the inevitable fate of all living organisms, but the molecular basis of physiological aging is poorly understood. Oxidative stress is believed to play a key role in the aging process. In addition to Reactive Oxygen Species (ROS), Reactive Nitrogen Species (RNS) are generated during aerobic metabolism in living organisms. Although protein damage and functional modification by ROS have been demonstrated in details, fewer studies have been reported on protein damage by RNS and its implication in the aging process. Proteins undergoing tyrosine nitration are associated with pathophysiology of several diseases, as well as physiological aging. The purpose of the current review article is to provide a brief summary of the biochemical mechanisms of tyrosine nitration, methodologies used for the detection of these modified proteins, effect of RNS induced post translational modification on biological functions and the putative role of tyrosine nitrated proteins in the aging process. Published studies on the role of RNS in age related functional alteration of various organs/ tissues were critically reviewed and evaluated. Covalent modification of various proteins by tyrosine nitration is associated with modification of biological functions of various organs/tissues such as skeletal muscle, heart, brain and liver due to aging. This information will be helpful to further investigate the interplay of different biochemical pathways and networks involved in the tyrosine nitration of various proteins due to aging with the ultimate goal to prevent the detrimental effects of RNS on the functional activities of these proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    PubMed Central

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  2. Statistical analysis of the uncertainty related to flood hazard appraisal

    NASA Astrophysics Data System (ADS)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  3. Fracture and crack growth in orthotropic laminates

    NASA Technical Reports Server (NTRS)

    Goree, James G.; Kaw, Autar K.

    1985-01-01

    A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding.

  4. Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy.

    PubMed

    Antonucci, Ivana; Pantalone, Andrea; Tete, Stefano; Salini, Vincenzo; Borlongan, Cesar V; Hess, David; Stuppia, Liborio

    2012-01-01

    Stem cells have been proposed as a powerful tool in the treatment of several human diseases, both for their ability to represent a source of new cells to replace those lost due to tissue injuries or degenerative diseases, and for the ability of produce trophic molecules able to minimize damage and promote recovery in the injured tissue. Different cell types, such as embryonic, fetal or adult stem cells, human fetal tissues and genetically engineered cell lines, have been tested for their ability to replace damaged cells and to restore the tissue function after transplantation. Amniotic fluid -derived Stem cells (AFS) are considered a novel resource for cell transplantation therapy, due to their high renewal capacity, the "in vitro" expression of embryonic cell lineage markers, and the ability to differentiate in tissues derived from all the three embryonic layers. Moreover, AFS do not produce teratomas when transplanted into animals and are characterized by a low antigenicity, which could represent an advantage for cell transplantation or cell replacement therapy. The present review focuses on the biological features of AFS, and on their potential use in the treatment of pathological conditions such as ischemic brain injury and bone damages.

  5. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    NASA Technical Reports Server (NTRS)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  6. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats

    NASA Astrophysics Data System (ADS)

    Hogri, Roni; Bamford, Simeon A.; Taub, Aryeh H.; Magal, Ari; Giudice, Paolo Del; Mintz, Matti

    2015-02-01

    Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways. Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge, offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a model-based approach does not require prior system identification, allowing for de novo experience-based learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to existing parametric ``black box'' models.

  7. Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies

    PubMed Central

    Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina

    2013-01-01

    Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661

  8. Aliskiren Prevents the Toxic Effects of Peritoneal Dialysis Fluids during Chronic Dialysis in Rats

    PubMed Central

    Pérez-Martínez, Juan; Pérez-Martínez, Francisco C.; Carrión, Blanca; Masiá, Jesús; Ortega, Agustín; Simarro, Esther; Nam-Cha, Syong H.; Ceña, Valentín

    2012-01-01

    The benefits of long-term peritoneal dialysis (PD) in patients with end-stage renal failure are short-lived due to structural and functional changes in the peritoneal membrane. In this report, we provide evidence for the in vitro and in vivo participation of the renin-angiotensin-aldosterone system (RAAS) in the signaling pathway leading to peritoneal fibrosis during PD. Exposure to high-glucose PD fluids (PDFs) increases damage and fibrosis markers in both isolated rat peritoneal mesothelial cells and in the peritoneum of rats after chronic dialysis. In both cases, the addition of the RAAS inhibitor aliskiren markedly improved damage and fibrosis markers, and prevented functional modifications in the peritoneal transport, as measured by the peritoneal equilibrium test. These data suggest that inhibition of the RAAS may be a novel way to improve the efficacy of PD by preventing inflammation and fibrosis following peritoneal exposure to high-glucose PDFs. PMID:22558414

  9. 7 CFR 3015.170 - Damage, loss, or theft of equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and (ii) The damage, loss, or theft is not due to an act of God. (2) Equipment replaced. If the... § 3015.169(c) or (ii) The damage, loss, or theft is due to an act of God. (2) Recipient not compensated...

  10. Hypothyroidism associated with parathyroid disorders.

    PubMed

    Mantovani, Giovanna; Elli, Francesca Marta; Corbetta, Sabrina

    2017-03-01

    Hypothyroidism may occur in association with congenital parathyroid disorders determining parathyroid hormone insufficiency, which is characterized by hypocalcemia and concomitant inappropriately low secretion of parathormone (PTH). The association is often due to loss of function of genes common to thyroid and parathyroid glands embryonic development. Hypothyroidism associated with hypoparathyroidism is generally mild and not associated with goiter; moreover, it is usually part of a multisystemic involvement not restricted to endocrine function as occurs in patients with 22q11 microdeletion/DiGeorge syndrome, the most frequent disorders. Hypothyroidism and hypoparathyroidism may also follow endocrine glands' damages due to autoimmunity or chronic iron overload in thalassemic disorders, both genetically determined conditions. Finally, besides PTH deficiency, hypocalcemia can be due to PTH resistance in pseudohypoparathyroidism; when hormone resistance is generalized, patients can suffer from hypothyroidism due to TSH resistance. In evaluating patients with hypothyroidism and hypocalcemia, physical examination and clinical history are essential to drive the diagnostic process, while routine genetic screening is not recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ultrafast, Broad-Band, Passive Laser Shields Based on Novel Semiconductor/Conducting Polymer Interface Technology - SBIR 89.I (A89-083). Phase 1

    DTIC Science & Technology

    1990-02-14

    of the present results to be in the tens of uJ/cm’. f) Comparatively high laser damage thresholds , due to the innate properties of the polymers used. g...number of interface systems switched in this mode as well. Intrinsic laser - induced polymer switching and nonlinear optical effects in these polymers...Effective Laser Shields Essential functional attributes of functional laser filters are ns or sub-ns risetimes, broad-band action (across the visible, near-IR

  12. Quantification of flash flood economic risk using ultra-detailed stage-damage functions and 2-D hydraulic models

    NASA Astrophysics Data System (ADS)

    Garrote, J.; Alvarenga, F. M.; Díez-Herrero, A.

    2016-10-01

    The village of Pajares de Pedraza (Segovia, Spain) is located in the floodplain of the Cega River, a left bank tributary of the Douro River. Repeated flash flood events occur in this small village because of its upstream catchment area, mountainous character and impermeable lithology, which reduce concentration time to just a few hours. River overbank flow has frequently caused flooding and property damage to homes and rural properties, most notably in 1927, 1991, 1996, 2001, 2013 and 2014. Consequently, a detailed analysis was carried out to quantify the economic risk of flash floods in peri-urban and rural areas. Magnitudes and exceedance probabilities were obtained from a flood frequency analysis of maximum discharges. To determine the extent and characteristics of the flooded area, we performed 2D hydraulic modeling (Iber 2.0 software) based on LIDAR (1 m) topography and considering three different scenarios associated with the initial construction (1997) and subsequent extension (2013) of a linear defense structure (rockfill dike or levee) to protect the population. Specific stage-damage functions were expressly developed using in situ data collection for exposed elements, with special emphasis on urban-type categories. The average number of elements and their unit value were established. The relationship between water depth and the height at which electric outlets, furniture, household goods, etc. were located was analyzed; due to its effect on the form of the function. Other nonspecific magnitude-damage functions were used in order to compare both economic estimates. The results indicate that the use of non-specific magnitude-damage functions leads to a significant overestimation of economic losses, partly linked to the use of general economic cost data. Furthermore, a detailed classification and financial assessment of exposed assets is the most important step to ensure a correct estimate of financial losses. In both cases, this should include a consideration of the socio-economic and cultural conditions prevailing in the area, as well as the types of flood that affect it.

  13. Anomaly-Based Intrusion Detection Systems Utilizing System Call Data

    DTIC Science & Technology

    2012-03-01

    Functionality Description Persistence mechanism Mimicry technique Camouflage malware image: • renaming its image • appending its image to victim...particular industrial plant . Exactly which one was targeted still remains unknown, however a majority of the attacks took place in Iran [24]. Due... plant to unstable phase and eventually physical damage. It is interesting to note that a particular block of code - block DB8061 is automatically

  14. Self-repairing composites for airplane components

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2008-03-01

    Durability and damage tolerance criteria drives the design of most composite structures. Those criteria could be altered by developing structure that repairs itself from impact damage. This is a technology for increasing damage tolerance for impact damage. Repaired damage would enable continued function and prevent further degradation to catastrophic failure in the case of an aircraft application. Further, repaired damage would enable applications to be utilized without reduction in performance due to impacts. Self repairing structures are designed to incorporate hollow fibers, which will release a repairing agent when the structure is impacted, so that the repairing agent will fill delaminations, voids and cracks in les than one minute, thus healing matrix voids. The intent is to modify the durability and damage tolerance criteria by incorporation of self-healing technologies to reduce overall weight: The structure will actually remain lighter than current conventional design procedures allow. Research objective(s) were: Prove that damage can be repaired to within 80-90% of original flexural strength in less than one minute, in laminates that are processed at 300-350F typical for aircraft composites. These were successfully met. The main focus was on testing of elements in compression after impact and a larger component in shear at Natural Process Design, Inc. Based on these results the advantages purposes are assessed. The results show potential; with self repairing composites, compressive strength is maintained sufficiently so that less material can be used as per durability and damage tolerance, yielding a lighter structure.

  15. Structural health monitoring and damage evaluation for steel confined reinforced concrete column using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Du, Fangzhu; Li, Dongsheng

    2018-03-01

    As a new kind of composite structures, the using of steel confined reinforced concrete column attract increasing attention in civil engineer. During the damage process, this new structure offers highly complex and invisible failure mechanism due to the combination effects of steel tubes, concrete, and steel rebar. Acoustic emission (AE) technique has been extensively studied in nondestructive testing (NDT) and is currently applied in civil engineering for structural health monitoring (SHM) and damage evaluation. In the present study, damage property and failure evolution of steel confined and unconfined reinforced concrete (RC) columns are investigated under quasi-static loading through (AE) signal. Significantly improved loading capacity and excellent energy dissipation characteristic demonstrated the practicality of that proposed structure. AE monitoring results indicated that the progressive deformation of the test specimens occur in three stages representing different damage conditions. Sentry function compares the logarithm ratio between the stored strain energy (Es) and the released acoustic energy (Ea); explicitly disclose the damage growth and failure mechanism of the test specimens. Other extended AE features including index of damage (ID), and relax ratio are calculated to quantitatively evaluate the damage severity and critical point. Complicated temporal evolution of different AE features confirms the potential importance of integrated analysis of two or more parameters. The proposed multi-indicators analysis is capable of revealing the damage growth and failure mechanism for steel confined RC columns, and providing critical warning information for structure failure.

  16. [Plasma cell dyscrasias and renal damage].

    PubMed

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  17. Damage Response in Fluid Flow Networks

    NASA Astrophysics Data System (ADS)

    Gavrilchenko, Tatyana; Katifori, Eleni

    The networks found in biological fluid flow systems such as leaf venation and animal vasculature are characterized by hierarchically nested loops. This structure allows the system to be resilient against fluctuations in the flow of fluid and to be robust against damage. We analytically and computationally investigate how this loopy hierarchy determines the extent of disruption in fluid flow in the vicinity of a damage site. Perturbing the network with the removal of a single edge results in the differential flow as a function of distance from the perturbation decaying as a power law. The power law exponent is generally around -2 in 2D, but we find that it varies due to edge effects, initial edge conductivity, and local topology. We expect that these network flow findings, directly applicable to plant and animal veins, will have analogues in electrical grids, traffic flow and other transport networks.

  18. Resistance of alpha-crystallin quaternary structure to UV irradiation.

    PubMed

    Krivandin, A V; Muranov, K O; Yakovlev, F Yu; Poliansky, N B; Wasserman, L A; Ostrovsky, M A

    2009-06-01

    The damaging effect of UV radiation (lambda > 260 nm) on bovine alpha-crystallin in solution was studied by small-angle X-ray scattering, gel permeation chromatography, electrophoresis, absorption and fluorescence spectroscopy, and differential scanning calorimetry. The results obtained show that damage to even a large number of subunits within an alpha-crystallin oligomer does not cause significant rearrangement of its quaternary structure, aggregation of oligomers, or the loss of their solubility. Due to the high resistance of its quaternary structure, alpha-crystallin is able to prevent aggregation of destabilized proteins (especially of gamma- and beta-crystallins) and so to maintain lens transparency throughout the life of an animal (the chaperone-like function of alpha-crystallin).

  19. Mechanisms of poliovirus inactivation by the direct and indirect effects of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.

    1980-08-01

    This study was designed to measure the effects of ionizing radiation on poliovirus particles when given under conditions where either direct (in broth) or indirect (in water) effects were predominant. Under direct conditions, inactivation of poliovirus was found to be due primarily to RNA damage, although capsid damage could account for about one-third of the viral inactivation. RNA damage did not appear to be due to strand breakage and therefore was probably caused primarily by base damage or crosslink formation. Capsid damage under direct irradiation conditions did not result in significant alterations of either the sedimentation coefficients or the isoelectricmore » points of the poliovirus particles or detectable modification of the sizes of the viral proteins. It did, however, cause loss of availability to bind to host cells. Under indirect conditions no more than 25% of viral inactivation appeared to be due to RNA damage. However, the sedimentation coefficients and isoelectric points of the viral particles were greatly altered, and their abilities to bind to cells were lost at about three-fourths the rate of loss of infectivity. Capsid damage in this case did result in changes in the sizes of capsid proteins. Therefore, the majority of the radiation inactivation under indirect conditions appeared to be due to protein damage.« less

  20. Bottom-up modeling of damage in heterogeneous quasi-brittle solids

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio

    2013-03-01

    The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale "effective" elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141-171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the "exact" (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity-concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.

  1. Analysis of liver damage from radon, X-ray, or alcohol treatments in mice using a self-organizing map.

    PubMed

    Kanzaki, Norie; Kataoka, Takahiro; Etani, Reo; Sasaoka, Kaori; Kanagawa, Akihiro; Yamaoka, Kiyonori

    2017-01-01

    In our previous studies, we found that low-dose radiation inhibits oxidative stress-induced diseases due to increased antioxidants. Although these effects of low-dose radiation were demonstrated, further research was needed to clarify the effects. However, the analysis of oxidative stress is challenging, especially that of low levels of oxidative stress, because antioxidative substances are intricately involved. Thus, we proposed an approach for analysing oxidative liver damage via use of a self-organizing map (SOM)-a novel and comprehensive technique for evaluating hepatic and antioxidative function. Mice were treated with radon inhalation, irradiated with X-rays, or subjected to intraperitoneal injection of alcohol. We evaluated the oxidative damage levels in the liver from the SOM results for hepatic function and antioxidative substances. The results showed that the effects of low-dose irradiation (radon inhalation at a concentration of up to 2000 Bq/m 3 , or X-irradiation at a dose of up to 2.0 Gy) were comparable with the effect of alcohol administration at 0.5 g/kg bodyweight. Analysis using the SOM to discriminate small changes was made possible by its ability to 'learn' to adapt to unexpected changes. Moreover, when using a spherical SOM, the method comprehensively examined liver damage by radon, X-ray, and alcohol. We found that the types of liver damage caused by radon, X-rays, and alcohol have different characteristics. Therefore, our approaches would be useful as a method for evaluating oxidative liver damage caused by radon, X-rays and alcohol. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  2. Development of self-powered strain sensor using mechano-luminescent ZnS:Cu and mechano-optoelectronic P3HT

    NASA Astrophysics Data System (ADS)

    Pulliam, Elias; Hoover, George; Tiparti, Dhruv; Ryu, Donghyeon

    2017-04-01

    Aerospace structural systems are prone to structural damage during their use by vibration, impact, material degradation, and other factors. Due to the harsh environments in which aerospace structures operate, aerospace structures are susceptible to various types of damage and often their structural integrity is jeopardized unless damage onset is detected in timely manner. Yet, current state-of-the-art sensor technologies are still limited for structural health monitoring (SHM) of aerospace structures due to their high power consumption, need for large form factor design, and manageable integration into aerospace structures. This study proposes a design of multilayered self-powered strain sensor by coupling mechano-luminescent (ML) property of copper-doped zinc sulfide (ZnS:Cu) and mechano-optoelectronic (MO) property of poly(3-hexylthiophene) (P3HT). One functional layer of the self-powered strain sensor is ZnS:Cu-based elastomeric composites that emit light in response to mechanical deformation. Another functional layer is P3HT-based thin films that generate direct current (DC) under light illumination and DC magnitude changes with applied strain. First, ML light emission characteristics of ZnS:Cu-based composites are studied under cyclic tensile strain with two various maximum strain up to 10% and 15% at various loading frequencies from 5 Hz to 20 Hz. Second, piezo-optical properties of P3HT-based thin films are investigated by acquiring light absorption of the thin films at various strains from 0% to 2% tensile strain. Last, micro-mechanical properties of the P3HT-based thin films are characterized using nanoindentation.

  3. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis.

    PubMed

    Koedel, Uwe; Frankenberg, Tobias; Kirschnek, Susanne; Obermaier, Bianca; Häcker, Hans; Paul, Robert; Häcker, Georg

    2009-05-01

    During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1beta and G-CSF as well as reduced levels of anti-inflammatory TGF-beta. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.

  4. Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis

    PubMed Central

    Kirschnek, Susanne; Obermaier, Bianca; Häcker, Hans; Paul, Robert; Häcker, Georg

    2009-01-01

    During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1β and G-CSF as well as reduced levels of anti-inflammatory TGF-β. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils. PMID:19478887

  5. Cryopreservation of red blood cells.

    PubMed

    Lagerberg, Johan W

    2015-01-01

    Cryopreservation of red blood cell concentrates (RBCs) is an important method for maintaining an inventory of rare RBC units and managing special transfusion circumstances. The permeating additive glycerol is used as a cryoprotectant to protect RBCs against freezing damage. The use of thawed RBCs was hampered a 24-h outdating period due to potential bacterial contamination when a functionally open system was used for addition and removal of the glycerol. With the introduction of a functionally closed system for the glycerolization and deglycerolization of RBC units, extended post-thaw storage became possible. Here, we describe the cryopreservation of red blood cells according to the high-glycerol method, using a functionally closed processing system.

  6. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  7. Ductile Damage and Fatigue Behavior of Semi-Finished Tailored Blanks for Sheet-Bulk Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Besserer, Hans-Bernward; Hildenbrand, Philipp; Gerstein, Gregory; Rodman, Dmytro; Nürnberger, Florian; Merklein, Marion; Maier, Hans Jürgen

    2016-03-01

    To produce parts from sheet metal with thickened functional elements, bulk forming operations can be employed. For this new process class, the term sheet-bulk metal forming has been established recently. Since sheet-bulk metal forming processes such as orbital forming generates triaxial stress and strain states, ductile damage is induced in the form of voids in the microstructure. Typical parts will experience cyclic loads during service, and thus, the influence of ductile damage on the fatigue life of parts manufactured by orbital forming is of interest. Both the formation and growth of voids were characterized following this forming process and then compared to the as-received condition of the ferritic deep drawing steel DC04 chosen for this study. Subsequent to the forming operation, the specimens were fatigued and the evolution of ductile damage and the rearrangement of the dislocation networks occurring during cyclic loading were determined. It was shown, that despite an increased ductile damage due to the forming process, the induced strain hardening has a positive effect on the fatigue life of the material. However, by analyzing the fatigued specimens a development of the ductile damage by an increasing number of voids and a change in the void shape were detected.

  8. The protective effect of menhaden oil in the oxidative damage and renal necrosis due to dietary choline deficiency.

    PubMed

    Ossani, Georgina P; Repetto, Marisa G; Boveris, Alberto; Monserrat, Alberto J

    2013-02-26

    Weanling rats fed a choline-deficient diet develop kidney oxidative damage, tubular and cortical kidney necrosis, renal failure and animal death. The effect of dietary menhaden oil was assayed on the mentioned sequence correlating oxidative stress with renal structure and function. Rats were fed ad libitum 4 different diets: (a) a choline-deficient diet with corn oil and sunflower hydrogenated oil as a source of fatty acids; (b) the same diet supplemented with choline; (c) a choline-deficient diet with menhaden oil as a source of fatty acids; and (d) the previous diet supplemented with choline. Animals were sacrificed at days 0, 2, 4 and 7. The histopathological study of the kidneys showed that renal necrosis was only observed at day 7 in choline-deficient rats receiving the vegetable oil diet, simultaneously with increased creatinine plasma levels. Homogenate chemiluminescence (BOOH-initiated chemiluminescence) and phospholipid oxidation indicate the development of oxidative stress and damage in choline-deficient rats fed vegetable oils as well as the protective effect of menhaden oil. Rats fed with the fish oil diet showed that oxidative stress and damage develop later, as compared with vegetable oil, with no morphological damage during the experimental period.

  9. Indirect choroidal ruptures: aetiological factors, patterns of ocular damage, and final visual outcome.

    PubMed Central

    Wood, C M; Richardson, J

    1990-01-01

    Indirect choroidal ruptures result from blunt ocular trauma and have a pathognomonic fundal appearance. We analysed a group of 30 patients with indirect choroidal ruptures with specific reference to the circumstances of the injury, the pattern of ocular damage, the cause of any visual loss, and the final visual outcome. Using this analysis we deduce a pathogenetic explanation for the characteristic fundus signs in patients with indirect choroidal ruptures. The majority of cases were young males injured during sport or by an assault, a minority were injured at work. Diffuse nonfocal impact injuries due to punches were associated with ruptures concentric with and adjacent to the optic disc. Focal impact injuries, due to projectiles, showed more extensive ocular damage. Seventeen of 30 patients regained 6/12 vision after injury. Injuries due to projectiles and temporally situated ruptures were associated with a poorer visual outcome than others. Macular damage was the commonest cause of visual loss, principally due to pigmentary maculopathy, traumatic inner retinal damage, and choroidal neovascular membranes rather than direct focal damage by the rupture. Images PMID:2337545

  10. Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods

    NASA Astrophysics Data System (ADS)

    Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe

    2008-05-01

    Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.

  11. Functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški

    2014-09-01

    Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.

  12. The effect of oxidation on the mechanical response and microstructure of porcine aortas.

    PubMed

    Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D Timmie

    2014-09-01

    Reactive oxygen species (ROS), a product of many cellular functions, has been implicated in many age-related pathophysiological processes, including cardiovascular disease. The arterial proteins collagen and elastin may also undergo structural and functional changes due to damage caused by ROS. This study examined the effect of oxidation on the mechanical response of porcine aortas and aorta elastin and the associated changes in structural protein ultrastructure as a step in exploring the role of molecular changes in structural proteins with aging on elastic artery function. We examined the change in mechanical properties of aorta samples after various oxidation times as a first step in understanding how the oxidative environment associated with aging could impact mechanical properties of arterial structural proteins. We used confocal microscopy to visualize how the microstructure of isolated elastin changed with oxidation. We find that short term oxidation of elastin isolated from aortas leads to an increase in material stiffness, but also an increase in the fiber diameter, increase in void space in the matrix, and a decrease in the fiber orientation, possibly due to fiber cross-linking. The short term effects of oxidation on arterial collagen is more complex, with increase in material stiffness seen in the collagen region of the stress stretch curve at low extents of oxidation, but not at high levels of oxidation. These results may provide insight into the relationship between oxidative damage to tissue associated with aging and disease, structure of the arterial proteins elastin and collagen, and arterial mechanical properties and function. © 2013 Wiley Periodicals, Inc.

  13. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  14. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.

    PubMed

    Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo

    2018-02-20

    To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p < 0.001). No cord MTR differences were found between patient groups. Patients with SOD1 ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.

  15. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    PubMed

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  16. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.

    PubMed

    Cinelli, I; Destrade, M; Duffy, M; McHugh, P

    2018-03-01

    Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: a functional neuroimaging study.

    PubMed

    Steele, C A; Powell, J L; Kemp, G J; Halford, J C G; Wilding, J P; Harrold, J A; Kumar, S V D; Cuthbertson, D J; Cross, A A; Javadpour, M; MacFarlane, I A; Stancak, A A; Daousi, C

    2015-09-01

    Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.

  18. Gallium arsenide solar cell radiation damage study

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  19. [Technological advances in neurorehabilitation].

    PubMed

    Gutiérrez-Martínez, Josefina; Núñez-Gaona, Marco Antonio; Carrillo-Mora, Paul

    2014-07-01

    Neurological rehabilitation arose as formal method in the 60's, for the therapeutic treatment of patients with stroke or spinal cord injury, which develop severe sequelae that affect their motor and sensory abilities. Although the Central Nervous System has plasticity mechanisms for spontaneous recovery, a high percentage of patients should receive specialized therapies to regain motor function, such as Constraint Induced Movement Therapy or Upright physical Therapy. The neurorehabilitation has undergone drastic changes over the last two decades due to the incorporation of computer and robotic electronic devices, designed to produce positive changes in cortical excitability of the cerebral hemisphere damaged and so to improve neuroplasticity. Among equipment, we can mention those for electrotherapy devices, apparatus for transcranial magnetic stimulation, the robotic lower limb orthoses, robot for upper limb training, systems for functional electrical stimulation, neuroprosthesis and brain computer interfaces. These devices have caused controversy because of its application and benefits reported in the literature. The aim of Neurorehabilitation technologies is to take advantage of the functional neuromuscular structures preserved, and they compensate or re-learn the functions that previously made the damaged areas. The purpose of this article is to mention some clinical applications and benefits that these technologies offer to patients with neuronal injury.

  20. Out-of-plane properties

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Portanova, Marc A.

    1995-01-01

    This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage initiates was measured and the delamination size as a function of force was determined. The force to initiate large damage was significantly lower in braids and weaves. The delamination diameter - impact forace relationship was quanitfied using a damage resistance parameter, Q(*), which related delamination diameter to imapct force over a range of delamination sizes. Using this Q(*) parameter to rate the materials, the stitched uniweaves, toughened epoxy tapes, and through-the-thickness orthogonal interlock weave were the most damage resistant.

  1. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  2. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  3. The Use of Logistic Model in RUL Assessment

    NASA Astrophysics Data System (ADS)

    Gumiński, R.; Radkowski, S.

    2017-12-01

    The paper takes on the issue of assessment of remaining useful life (RUL). The goal of the paper was to develop a method, which would enable use of diagnostic information in the task of reducing the uncertainty related to technical risk. Prediction of the remaining useful life (RUL) of the system is a very important task for maintenance strategy. In the literature RUL of an engineering system is defined as the first future time instant in which thresholds of conditions (safety, operational quality, maintenance cost, etc) are violated. Knowledge of RUL offers the possibility of planning the testing and repair activities. Building models of damage development is important in this task. In the presented work, logistic function will be used to model fatigue crack development. It should be remembered that modeling of every phase of damage development is very difficult, yet modeling of every phase of damage separately, especially including on-line diagnostic information is more effective. Particular attention was paid to the possibility of forecasting the occurrence of damage due to fatigue while relying on the analysis of the structure of a vibroacoustic signal.

  4. No effect of prolonged pulsed high frequency ultrasound imaging of the basilar membrane on cochlear function or hair cell survival found in an initial study.

    PubMed

    Landry, Thomas G; Bance, Manohar L; Adamson, Robert B; Brown, Jeremy A

    2018-06-01

    Miniature high frequency ultrasound devices show promise as tools for clinical middle ear and basal cochlea imaging and vibrometry. However, before clinical use it is important to verify that the ultrasound exposure does not damage the cochlea. In this initial study, electrophysiological responses of the cochlea were measured for a range of stimulus frequencies in both ears of anesthetized chinchillas, before and after exposing the organ of Corti region of one ear to pulsed focused ultrasound for 30 min. Measurements were again taken after an 11 day survival period. Cochlear tissue was examined with a confocal microscope for signs of damage to the cochlear hair cells. No significant change in response thresholds due to exposure was found, and no signs of ultrasound-induced tissue damage were observed, although one animal (out of ten) did have a region of extensive tissue damage in the exposed cochlea. However, after further analysis this was concluded to be not likely a result of the ultrasound exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Structural correlates of imbibitional injury in Typha pollen

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Leopold, A. C.; Hoekstra, F. A.

    1988-01-01

    The ultrastructure of Typha latifolia pollen was examined as a function of pollen moisture content and incubation temperature, in order to identify possible lesions induced by imbibitional chilling. A syndrome of structural traits was found which characterizes damaged grains. Compared to viable grains, the protoplast of damaged pollen has a higher proportion of its volume occupied by vesicles, and less volume occupied by cytoplasm. Damaged grains also tend to have dilated cisternae of endoplasmic reticulum, larger starch grains and lipid bodies, poorly preserved mitochondria and membranes, and, sometimes, numerous electron-dense globules associated with membranes. The percentage of grains exhibiting this damage syndrome correlates closely with the number of ungerminated grains in most samples, regardless of moisture content or incubation temperature. Injury due to rapid imbibition from the dry state or to imbibitional chilling appear to be similar structurally, regardless of whether the stresses are imposed singly or together. The injury is not confined to one cell component (e.g., mitochondria), but may involve a generalized disruption of membranes. These results suggest that similar stress responses are elicited by imbibition from the dry state and by imbibitional chilling.

  6. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    PubMed

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  7. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    PubMed Central

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined. PMID:28773696

  8. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems.

    PubMed

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-07-14

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

  9. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    NASA Astrophysics Data System (ADS)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input-output relationships in high-dimensional systems for many problems in science and engineering. The HDMR method is developed to improve the efficiency of the deducing high dimensional behaviors. The method is formed by a particular organization of low dimensional component functions, in which each function is the contribution of one or more input variables to the output variables.

  10. A study of material damping in large space structures

    NASA Technical Reports Server (NTRS)

    Highsmith, A. L.; Allen, D. H.

    1989-01-01

    A constitutive model was developed for predicting damping as a function of damage in continuous fiber reinforced laminated composites. The damage model is a continuum formulation, and uses internal state variables to quantify damage and its subsequent effect on material response. The model is sensitive to the stacking sequence of the laminate. Given appropriate baseline data from unidirectional material, and damping as a function of damage in one crossply laminate, damage can be predicted as a function of damage in other crossply laminates. Agreement between theory and experiment was quite good. A micromechanics model was also developed for examining the influence of damage on damping. This model explicitly includes crack surfaces. The model provides reasonable predictions of bending stiffness as a function of damage. Damping predictions are not in agreement with the experiment. This is thought to be a result of dissipation mechanisms such as friction, which are not presently included in the analysis.

  11. Patients with n-hexane induced polyneuropathy: a clinical follow up.

    PubMed Central

    Chang, Y C

    1990-01-01

    The prognosis of hexacarbon induced polyneuropathy is usually good, though its clinical course after the cessation of exposure has not been described in detail. Eleven patients with moderate to severe n-hexane induced polyneuropathy due to occupational exposure were regularly followed up for a period of four years at the neurological department of the National Taiwan University Hospital. Sensorimotor neuropathy was diagnosed in nine patients and motor neuropathy in two. All were removed from further exposure to n-hexane after aetiological confirmation, but motor disturbance continued to worsen in five cases. Sensory functions were regained earlier than motor functions. All the patients, including one who was tetraplegic and confined to a wheelchair in the early stages, regained their full motor capabilities within one to four years. Three patients with severe neuropathy had residual muscle atrophy in the intrinsic foot and hand muscles. Signs of damage to the central nervous system, including increased tendon reflexes in two patients and leg tightness in six patients, emerged as muscle power was nearing complete recovery. The tightness of the legs gradually disappeared, but muscle cramps of the calves developed and these were still present at the end of follow up. Two patients had mild abnormal colour vision, and the abnormality was still detectable four years later. It is concluded that n-hexane induced neuropathy has a good prognosis, and that spasticity due to damage to the central nervous system is functionally reversible; muscle cramps and dyschromatopsia persist much longer. PMID:2166555

  12. Kirschner-wire fixation for postburn flexion contracture deformity and consequences on articular surface.

    PubMed

    Sungur, Nezih; Ulusoy, Mustafa Gürhan; Boyacgil, Süreyya; Ortaparmak, Hülya; Akyüz, Mihriban; Ortak, Turgut; Koçer, Uğur; Sensöz, Omer

    2006-02-01

    Kirschner-wire (K-wire) fixation for 3-6 weeks is an approved method for stabilization of the fingers after the release of flexion contracture deformity. On the other hand, articular surface damage in small joints due to pin fixation is still a topic of debate. Reports claiming permanent joint destruction due to this procedure exist in the literature. To clarify this doubt, a prospective study was carried out in 72 patients with flexion contracture of the hand fingers. After the surgical release of the deformity, immobilization of the interphalangeal (IP) and metacarpophalangeal (MCP) joints was carried out with K-wire fixation for 3 weeks. Clinical evaluation of the patients was accomplished with total active motion (TAM), grip, and pinch force measurements, whereas magnetic resonance (MR) and radionuclide imaging were used as radiodiagnostic tools. Mean follow-up period of the patients was 32 months. Satisfactory results were obtained in terms of functional and esthetic aspects. Evaluation of the data derived from the clinical and radiologic measurements revealed no permanent articular surface damage. K-wire fixation was documented to be an invaluable therapeutic approach not only to prevent recurrence of the contracture deformity but also to stabilize the skin graft effectively. This technique was concluded to provide effective immobilization without permanent articular damage.

  13. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Arockiarajan, A.

    2016-03-01

    1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar), frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω). Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field) as well as butterfly curves (longitudinal strain vs. electric field) are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  14. Civil protection and Damaging Hydrogeological Events: comparative analysis of the 2000 and 2015 events in Calabria (southern Italy)

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Caloiero, Tommaso; Aurora Pasqua, Angela; Perrotta, Piero; Russo, Luigi; Tansi, Carlo

    2017-11-01

    Calabria (southern Italy) is a flood prone region, due to both its rough orography and fast hydrologic response of most watersheds. During the rainy season, intense rain affects the region, triggering floods and mass movements that cause economic damage and fatalities. This work presents a methodological approach to perform the comparative analysis of two events affecting the same area at a distance of 15 years, by collecting all the qualitative and quantitative features useful to describe both rain and damage. The aim is to understand if similar meteorological events affecting the same area can have different outcomes in terms of damage. The first event occurred between 8 and 10 September 2000, damaged 109 out of 409 municipalities of the region and killed 13 people in a campsite due to a flood. The second event, which occurred between 30 October and 1 November 2015, damaged 79 municipalities, and killed a man due to a flood. The comparative analysis highlights that, despite the exceptionality of triggering daily rain was higher in the 2015 event, the damage caused by the 2000 event to both infrastructures and belongings was higher, and it was strongly increased due to the 13 flood victims. We concluded that, in the 2015 event, the management of pre-event phases, with the issuing of meteorological alert, and the emergency management, with the preventive evacuation of people in hazardous situations due to landslides or floods, contributed to reduce the number of victims.

  15. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    NASA Astrophysics Data System (ADS)

    Ross, Ryan D.; Cole, Lisa E.; Roeder, Ryan K.

    2012-10-01

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate ( l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  16. The 2008 South China Freeze and its Impact on the Forests

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.

    2008-12-01

    An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.

  17. Juvenile idiopathic arthritis in adulthood: fulfilment of classification criteria for adult rheumatic diseases, long-term outcomes and predictors of inactive disease, functional status and damage.

    PubMed

    Oliveira-Ramos, Filipa; Eusébio, Mónica; M Martins, Fernando; Mourão, Ana Filipa; Furtado, Carolina; Campanilho-Marques, Raquel; Cordeiro, Inês; Ferreira, Joana; Cerqueira, Marcos; Figueira, Ricardo; Brito, Iva; Canhão, Helena; Santos, Maria José; Melo-Gomes, José A; Fonseca, João Eurico

    2016-01-01

    To determine how adult juvenile idiopathic arthritis (JIA) patients fulfil classification criteria for adult rheumatic diseases, evaluate their outcomes and determine clinical predictors of inactive disease, functional status and damage. Patients with JIA registered on the Rheumatic Diseases Portuguese Register (Reuma.pt) older than 18 years and with more than 5 years of disease duration were included. Data regarding sociodemographic features, fulfilment of adult classification criteria, Health Assessment Questionnaire, Juvenile Arthritis Damage Index-articular (JADI-A) and Juvenile Arthritis Damage Index-extra-articular (JADI-E) damage index and disease activity were analysed. 426 patients were included. Most of patients with systemic JIA fulfilled criteria for Adult Still's disease. 95.6% of the patients with rheumatoid factor (RF)-positive polyarthritis and 57.1% of the patients with RF-negative polyarthritis matched criteria for rheumatoid arthritis (RA). 38.9% of the patients with extended oligoarthritis were classified as RA while 34.8% of the patients with persistent oligoarthritis were classified as spondyloarthritis. Patients with enthesitis-related arthritis fulfilled criteria for spondyloarthritis in 94.7%. Patients with psoriatic arthritis maintained this classification. Patients with inactive disease had lower disease duration, lower diagnosis delay and corticosteroids exposure. Longer disease duration was associated with higher HAQ, JADI-A and JADI-E. Higher JADI-A was also associated with biological treatment and retirement due to JIA disability and higher JADI-E with corticosteroids exposure. Younger age at disease onset was predictive of higher HAQ, JADI-A and JADI-E and decreased the chance of inactive disease. Most of the included patients fulfilled classification criteria for adult rheumatic diseases, maintain active disease and have functional impairment. Younger age at disease onset was predictive of higher disability and decreased the chance of inactive disease.

  18. Simulating Damage Due to a Lightning Strike Event: Effects of Temperature Dependent Properties on Interlaminar Damage

    NASA Technical Reports Server (NTRS)

    Ghezeljeh, Paria Naghipour; Pineda, Evan Jorge

    2014-01-01

    A multidirectional, carbon fiber-epoxy, composite panel is subjected to a simulated lightning strike, within a finite element method framework, and the effect of material properties on the failure (delamination) response is investigated through a detailed numerical study. The numerical model of the composite panel consists of individual homogenized plies with user-defined, cohesive interface elements between them. Lightning strikes are simulated as an assumed combination of excessive heat and high pressure loadings. It is observed that the initiation and propagation of lightning-induced delamination is a significant function of the temperature dependency of interfacial fracture toughness. This dependency must be defined properly in order to achieve reliable predictions of the present lightning-induced delamination in the composite panel.

  19. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  20. Discussion on the Technology and Method of Computer Network Security Management

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlei

    2017-09-01

    With the rapid development of information technology, the application of computer network technology has penetrated all aspects of society, changed people's way of life work to a certain extent, brought great convenience to people. But computer network technology is not a panacea, it can promote the function of social development, but also can cause damage to the community and the country. Due to computer network’ openness, easiness of sharing and other characteristics, it had a very negative impact on the computer network security, especially the loopholes in the technical aspects can cause damage on the network information. Based on this, this paper will do a brief analysis on the computer network security management problems and security measures.

  1. 48 CFR 22.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the unpaid wages due laborers and mechanics and the liquidated damages due the Government, make payments in the following order— (1) Pay laborers and mechanics the wages they are owed (or prorate...

  2. 48 CFR 22.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the unpaid wages due laborers and mechanics and the liquidated damages due the Government, make payments in the following order— (1) Pay laborers and mechanics the wages they are owed (or prorate...

  3. 48 CFR 22.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the unpaid wages due laborers and mechanics and the liquidated damages due the Government, make payments in the following order— (1) Pay laborers and mechanics the wages they are owed (or prorate...

  4. 48 CFR 22.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the unpaid wages due laborers and mechanics and the liquidated damages due the Government, make payments in the following order— (1) Pay laborers and mechanics the wages they are owed (or prorate...

  5. Zygoma Implant-Supported Prosthetic Rehabilitation of a Patient After Bilateral Maxillectomy.

    PubMed

    Celakil, Tamer; Ayvalioglu, Demet Cagil; Sancakli, Erkan; Atalay, Belir; Doganay, Ozge; Kayhan, Kivanc Bektas

    2015-10-01

    Maxillectomy defects may vary from localized to extensive soft and hard tissue loss. In addition to physical and psychologic damages, functional and aesthetic aspects must be restored. This clinical report describes the rehabilitation of a patient with a zygoma implant-supported obturator prosthesis caused by a subtotal bilateral maxillectomy due to a squamous oral cell carcinoma. Prosthetic rehabilitation of this patient was performed after zygoma implant surgery. A maxillary obturator prosthesis supported by 2 osseointegrated zygoma implants was fabricated. Despite limited mouth opening and anatomic deficiencies, the patient's aesthetic and functional demands were fulfilled.

  6. Uncertainty in flood damage estimates and its potential effect on investment decisions

    NASA Astrophysics Data System (ADS)

    Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; de Moel, H.

    2016-01-01

    This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage functions and maximum damages can have large effects on flood damage estimates. This explanation is then used to quantify the uncertainty in the damage estimates with a Monte Carlo analysis. The Monte Carlo analysis uses a damage function library with 272 functions from seven different flood damage models. The paper shows that the resulting uncertainties in estimated damages are in the order of magnitude of a factor of 2 to 5. The uncertainty is typically larger for flood events with small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.

  7. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    NASA Astrophysics Data System (ADS)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  8. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shownmore » by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after administration. • SFN prevents testicular oxidative damage and inflammation in diabetic mice. • SFN testicular protection from diabetic damage is associated with Nrf2 activation.« less

  9. Controlled-Release Personal Use Arthropod Repellent Formulation. Phase 2

    DTIC Science & Technology

    1986-09-15

    damage, pitting M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to visualize due to severe opacity S - Granulation scar tissue POS...M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to visualize due to severe opacity S - Granulation scar tissue POS -Positive...Corneal epithelial damage, piling L - Corneal epithelial damage, pitting M - Hypopyon N - Corneal neovascularization P - Pannus R - Unable to

  10. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    PubMed

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae because relatively low numbers of T. urticae per plant can attract predators. Leaf damage also increased as a function of mite-days until the entire leaf was blanched. T. urticae populations decreased at this time, but predator response to volatiles dropped before the entire leaf was blanched and before the T. urticae population decreased. This result supports our hypothesis that predator response to plant volatiles is linked to and limited by the degree of leaf damage, and that the quantitative response to T. urticae populations occurs only within a range when plant quality has not been severely compromised.

  11. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis

    PubMed Central

    Chung, Eun Ji; Tirrell, Matthew

    2016-01-01

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows for easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this review, we first describe the pathogenesis of atherosclerosis and the damage caused to vascular tissue, as well as the current diagnostic and treatment options. Then we provide an overview of targeted strategies using self-assembling nanoparticles and include liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, we elaborate on and provide an overview of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles. PMID:26085109

  12. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.

    PubMed

    Kabeche, Lilian; Nguyen, Hai Dang; Buisson, Rémi; Zou, Lee

    2018-01-05

    The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is crucial for DNA damage and replication stress responses. Here, we describe an unexpected role of ATR in mitosis. Acute inhibition or degradation of ATR in mitosis induces whole-chromosome missegregation. The effect of ATR ablation is not due to altered cyclin-dependent kinase 1 (CDK1) activity, DNA damage responses, or unscheduled DNA synthesis but to loss of an ATR function at centromeres. In mitosis, ATR localizes to centromeres through Aurora A-regulated association with centromere protein F (CENP-F), allowing ATR to engage replication protein A (RPA)-coated centromeric R loops. As ATR is activated at centromeres, it stimulates Aurora B through Chk1, preventing formation of lagging chromosomes. Thus, a mitosis-specific and R loop-driven ATR pathway acts at centromeres to promote faithful chromosome segregation, revealing functions of R loops and ATR in suppressing chromosome instability. Copyright © 2018, American Association for the Advancement of Science.

  13. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions.

    PubMed

    Sandhir, Rajat; Yadav, Aarti; Sunkaria, Aditya; Singhal, Nitin

    2015-10-01

    Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcmanus, H.L.; Chamis, C.C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less

  15. A performance-based approach to landslide risk analysis

    NASA Astrophysics Data System (ADS)

    Romeo, R. W.

    2009-04-01

    An approach for the risk assessment based on a probabilistic analysis of the performance of structures threatened by landslides is shown and discussed. The risk is a possible loss due to the occurrence of a potentially damaging event. Analytically the risk is the probability convolution of hazard, which defines the frequency of occurrence of the event (i.e., the demand), and fragility that defines the capacity of the system to withstand the event given its characteristics (i.e., severity) and those of the exposed goods (vulnerability), that is: Risk=p(D>=d|S,V) The inequality sets a damage (or loss) threshold beyond which the system's performance is no longer met. Therefore a consistent approach to risk assessment should: 1) adopt a probabilistic model which takes into account all the uncertainties of the involved variables (capacity and demand), 2) follow a performance approach based on given loss or damage thresholds. The proposed method belongs to the category of the semi-empirical ones: the theoretical component is given by the probabilistic capacity-demand model; the empirical component is given by the observed statistical behaviour of structures damaged by landslides. Two landslide properties alone are required: the area-extent and the type (or kinematism). All other properties required to determine the severity of landslides (such as depth, speed and frequency) are derived via probabilistic methods. The severity (or intensity) of landslides, in terms of kinetic energy, is the demand of resistance; the resistance capacity is given by the cumulative distribution functions of the limit state performance (fragility functions) assessed via damage surveys and cards compilation. The investigated limit states are aesthetic (of nominal concern alone), functional (interruption of service) and structural (economic and social losses). The damage probability is the probabilistic convolution of hazard (the probability mass function of the frequency of occurrence of given severities) and vulnerability (the probability of a limit state performance be reached, given a certain severity). Then, for each landslide all the exposed goods (structures and infrastructures) within the landslide area and within a buffer (representative of the maximum extension of a landslide given a reactivation), are counted. The risk is the product of the damage probability and the ratio of the exposed goods of each landslide to the whole assets exposed to the same type of landslides. Since the risk is computed numerically and by the same procedure applied to all landslides, it is free from any subjective assessment such as those implied in the qualitative methods.

  16. Nematode Damage Functions: The Problems of Experimental and Sampling Error

    PubMed Central

    Ferris, H.

    1984-01-01

    The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865

  17. A Salvage Operation for Total Penis Amputation Due to Circumcision

    PubMed Central

    Gundeslioglu, Ayse Ozlem

    2013-01-01

    Circumcision is one of the most common rituals in Jewish and Islamic cultures. It may also be performed for phimosis correction or the treatment of recurrent balanitis. Although circumcision is considered to be a technically easy and safe surgical procedure with no significant risk, it may lead to severe complications such as necrotizing fasciitis or total penis amputation. In this report, we present a case of penis amputation at two levels occurring with third-degree burns due to electrocautery during circumcision. Although penile replantation was attempted, it was unsuccessful due to burn damage to the veins. After restoration of the functional structures, the penis was buried in the inguinal area by reepithelization to maintain blood circulation. The recovery of the penis was successful. This case is presented as a novel example of groin flap surgery to achieve a functionally and aesthetically acceptable outcome in a salvage operation for a penis with significant traumatic injury, which has not been previously reported in the literature. PMID:23730602

  18. Cognitive and Learning Strategies for Longstanding Temporal Lobe Lesions in a Child Who Suffered from "Herpes Simplex" Virus Encephalitis: A Case Study over 10 Years

    ERIC Educational Resources Information Center

    van Schoor, A. N.; Naude, H.; van Rensburg, M.; Pretorius, E.; Boon, J. M.

    2005-01-01

    This article presents a case study indicating that "Herpes simplex" virus (HSV) encephalitis may cause permanent learning disabilities due to damage to the temporal lobes as it discusses the results of a case study extending over 10 years to determine the long-term effects on both the anatomy of the brain and the intellectual functioning of the…

  19. Cognitive and Learning Strategies for Longstanding Temporal Lobe Lesions in a Child Who Suffered from "Herpes Simplex" Virus Encephalitis: A Case Study over 10 Years

    ERIC Educational Resources Information Center

    van Schoor, A. N.; Naude, H.; van Rensburg, M.; Pretorius, E.; Boon, J. M.

    2004-01-01

    This article presents a case study indicating that "Herpes simplex" virus (HSV) encephalitis may cause permanent learning disabilities due to damage to the temporal lobes, as it discusses the results of a case study extending over 10 years to determine the long-term effects on both the anatomy of the brain and the intellectual functioning of the…

  20. Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization

    NASA Astrophysics Data System (ADS)

    Fang, Sheng-En; Perera, Ricardo; De Roeck, Guido

    2008-06-01

    This paper develops a sensitivity-based updating method to identify the damage in a tested reinforced concrete (RC) frame modeled with a two-dimensional planar finite element (FE) by minimizing the discrepancies of modal frequencies and mode shapes. In order to reduce the number of unknown variables, a bidimensional damage (element) function is proposed, resulting in a considerable improvement of the optimization performance. For damage identification, a reference FE model of the undamaged frame divided into a few damage functions is firstly obtained and then a rough identification is carried out to detect possible damage locations, which are subsequently refined with new damage functions to accurately identify the damage. From a design point of view, it would be useful to evaluate, in a simplified way, the remaining bending stiffness of cracked beam sections or segments. Hence, an RC damage model based on a static mechanism is proposed to estimate the remnant stiffness of a cracked RC beam segment. The damage model is based on the assumption that the damage effect spreads over a region and the stiffness in the segment changes linearly. Furthermore, the stiffness reduction evaluated using this damage model is compared with the FE updating result. It is shown that the proposed bidimensional damage function is useful in producing a well-conditioned optimization problem and the aforementioned damage model can be used for an approximate stiffness estimation of a cracked beam segment.

  1. Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins.

    PubMed

    Azad, Gajendra K; Balkrishna, Shah Jaimin; Sathish, Narayanan; Kumar, Sangit; Tomar, Raghuvir S

    2012-01-15

    Several studies have demonstrated that Ebselen is an anti-inflammatory and anti-oxidative agent. Contrary to this, studies have also shown a high degree of cellular toxicity associated with Ebselen usage, the underlying mechanism of which remains less understood. In this study we have attempted to identify a possible molecular mechanism behind the above by investigating the effects of Ebselen on Saccharomyces cerevisiae. Significant growth arrest was documented in yeast cells exposed to Ebselen similar to that seen in presence of DNA damaging agents (including methyl methane sulfonate [MMS] and hydroxy urea [HU]). Furthermore, mutations in specific lysine residues in the histone H3 tail (H3 K56R) resulted in increased sensitivity of yeast cells to Ebselen presumably due to alterations in post-translational modifications of histone proteins towards regulating replication and DNA damage repair. Our findings suggest that Ebselen functions through activation of DNA damage response, alterations in histone modifications, activation of checkpoint kinase pathway and derepression of ribonucleotide reductases (DNA repair genes) which to the best of our knowledge is being reported for the first time. Interestingly subsequent to Ebselen exposure there were changes in global yeast protein expression and specific histone modifications, identification of which is expected to reveal a fundamental cellular mechanism underlying the action of Ebselen. Taken together these observations will help to redesign Ebselen-based therapy in clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Quasi-Static 3-Point Reinforced Carbon-Carbon Bend Test and Analysis for Shuttle Orbiter Wing Leading Edge Impact Damage Thresholds

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Sotiris, Kellas

    2006-01-01

    Static 3-point bend tests of Reinforced Carbon-Carbon (RCC) were conducted to failure to provide data for additional validation of an LS-DYNA RCC model suitable for predicting the threshold of impact damage to shuttle orbiter wing leading edges. LS-DYNA predictions correlated well with the average RCC failure load, and were good in matching the load vs. deflection. However, correlating the detectable damage using NDE methods with the cumulative damage parameter in LS-DYNA material model 58 was not readily achievable. The difficulty of finding internal RCC damage with NDE and the high sensitivity of the mat58 damage parameter to the load near failure made the task very challenging. In addition, damage mechanisms for RCC due to dynamic impact of debris such as foam and ice and damage mechanisms due to a static loading were, as expected, not equivalent.

  3. Predicting long-term renal damage in children with vesicoureteral reflux under conservative initial management: 205 cases in a tertiary referral center.

    PubMed

    Alvarez, Natalia; Alvira, Reyes Delgado; Ruiz, Yurema Gonzalez; Atuan, Rafael Fernandez; Hinojosa, Alexander Siles; Heras, Miguel Angel Rihuete; Roldan, Marisa Justa; Romero, Jesus Gracia

    2018-01-01

    Vesicoureteral reflux (VUR) is one of the most common ailments in children. Evidence-based guidelines recommend conservative treatment in children with VUR, followed by endoscopic surgery in those with breakthrough febrile urinary tract infections (UTIs). Despite this fact, the management of VUR is still controversial. Our objective is to evaluate the conservative strategy in children with primary VUR in terms of renal function and scarring, and identify factors associated with poor prognosis in those children. A retrospective study was carried out in a tertiary center in children with primary VUR under conservative strategy treatment from 1989 to 2015. Data extracted included age of presentation, family and prenatal backgrounds, radiographic evaluation including ultrasound (US), dimercaptosuccinic acid (DMSA) scans and voiding cystourethrogram (VCUG). The SPSS program was used for statistical analysis. Two-hundred and five patients were diagnosed and followed a conservative therapy scheme (49.8% males, 50.2% females) after febrile UTI (73.17%) or prenatal diagnosis (26.83%). VCUG showed 53.20% of low-moderate VUR grade, 46.80% high VUR grade. Renal damage was present at diagnosis in 40.89%. Mean follow-up reakthrough recurrent febrile UTIs and underwent surgery. Conservative therapy was followed in 189 patients. Renal scarring or decreased kidney function were shown in 15.12% respectively. Renal damage was identified as a risk factor for poor prognosis (p-value <0.005) only for renal function deterioration. Patients with high-grade VUR required surgery in a significantly greater proportion (p <0.005) due to recurrent febrile UTIs. Conservative strategy is a feasible treatment for primary VUR in children. The majority of cases could be managed conservatively with good outcomes after long-term follow-up. Decreased renal function is more frequent in patients with high-grade VUR. Renal damage at diagnosis increases the risk for surgical treatment.

  4. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging.

    PubMed

    Edifizi, Diletta; Schumacher, Björn

    2017-11-04

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.

  5. Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging

    PubMed Central

    Edifizi, Diletta; Schumacher, Björn

    2017-01-01

    DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process. PMID:29113067

  6. Glycerophospholipid Profiles of Bats with White-Nose Syndrome.

    PubMed

    Pannkuk, Evan L; McGuire, Liam P; Warnecke, Lisa; Turner, James M; Willis, Craig K R; Risch, Thomas S

    2015-01-01

    Pseudogymnoascus destructans is an ascomycetous fungus responsible for the disease dubbed white-nose syndrome (WNS) and massive mortalities of cave-dwelling bats. The fungus infects bat epidermal tissue, causing damage to integumentary cells and pilosebaceous units. Differences in epidermal lipid composition caused by P. destructans infection could have drastic consequences for a variety of physiological functions, including innate immune efficiency and water retention. While bat surface lipid and stratum corneum lipid composition have been described, the differences in epidermal lipid content between healthy tissue and P. destructans-infected tissue have not been documented. In this study, we analyzed the effect of wing damage from P. destructans infection on the epidermal polar lipid composition (glycerophospholipids [GPs] and sphingomyelin) of little brown bats (Myotis lucifugus). We hypothesized that infection would lead to lower levels of total lipid or higher oxidized lipid product proportions. Polar lipids from three damaged and three healthy wing samples were profiled by electrospray ionization tandem mass spectrometry. We found lower total broad lipid levels in damaged tissue, specifically ether-linked phospholipids, lysophospholipids, phosphatidylcholine, and phosphatidylethanolamine. Thirteen individual GP species from four broad GP classes were present in higher amounts in healthy tissue. Six unsaturated GP species were absent in damaged tissue. Our results confirm that P. destructans infection leads to altered lipid profiles. Clinical signs of WNS may include lower lipid levels and lower proportions of unsaturated lipids due to cellular and glandular damage.

  7. Helicopter rotor blade frequency evolution with damage growth and signal processing

    NASA Astrophysics Data System (ADS)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  8. Evaluation of fishing gear induced pipeline damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellinas, C.P.; King, B.; Davies, R.

    1995-12-31

    Impact and damage to pipelines due to fishing activities is one of the hazards faced by North Sea pipelines during their operating lives. Available data indicate that about one in ten of reported incidents are due to fishing activities. This paper is concerned with one such occurrence, the assessment of the resulting damage, the methods used to confirm pipeline integrity and the approaches developed for its repair.

  9. Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites

    NASA Astrophysics Data System (ADS)

    Potluri, P.; Hogg, P.; Arshad, M.; Jetavat, D.; Jamshidi, P.

    2012-10-01

    3D woven composites, due to the presence of through-thickness fibre-bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, ability to withstand damage depends on weave topology as well as geometry of individual tows. There is an extensive literature on damage tolerance of 2D prepreg laminates but limited work is reported on the damage tolerance of 3D weaves. In view of the recent interest in 3D woven composites from aerospace as well as non-aerospace sectors, this paper aims to provide an understanding of the impact damage resistance as well as damage tolerance of 3D woven composites. Four different 3D woven architectures, orthogonal, angle interlocked, layer-to-layer and modified layer-to-layer structures, have been produced under identical weaving conditions. Two additional structures, Unidirectional (UD) cross-ply and 2D plain weave, have been developed for comparison with 3D weaves. All the four 3D woven laminates have similar order of magnitude of damage area and damage width, but significantly lower than UD and 2D woven laminates. Damage Resistance, calculated as impact energy per unit damage area, has been shown to be significantly higher for 3D woven laminates. Rate of change of CAI strength with impact energy appears to be similar for all four 3D woven laminates as well as UD laminate; 2D woven laminate has higher rate of degradation with respect to impact energy. Undamaged compression strength has been shown to be a function of average tow waviness angle. Additionally, 3D weaves exhibit a critical damage size; below this size there is no appreciable reduction in compression strength. 3D woven laminates have also exhibited a degree of plasticity during compression whereas UD laminates fail instantly. The experimental work reported in this paper forms a foundation for systematic development of computational models for 3D woven architectures for damage tolerance.

  10. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  11. 48 CFR 22.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... violations do not cover the unpaid wages due laborers and mechanics and the liquidated damages due the Government, make payments in the following order— (1) Pay laborers and mechanics the wages they are owed (or...

  12. Towards developing drought impact functions to advance drought monitoring and early warning

    NASA Astrophysics Data System (ADS)

    Bachmair, Sophie; Stahl, Kerstin; Hannaford, Jamie; Svoboda, Mark

    2015-04-01

    In natural hazard analysis, damage functions (also referred to as vulnerability or susceptibility functions) relate hazard intensity to the negative effects of the hazard event, often expressed as damage ratio or monetary loss. While damage functions for floods and seismic hazards have gained considerable attention, there is little knowledge on how drought intensity translates into ecological and socioeconomic impacts. One reason for this is the multifaceted nature of drought affecting different domains of the hydrological cycle and different sectors of human activity (for example, recognizing meteorological - agricultural - hydrological - socioeconomic drought) leading to a wide range of drought impacts. Moreover, drought impacts are often non-structural and hard to quantify or monetarize (e.g. impaired navigability of streams, bans on domestic water use, increased mortality of aquatic species). Knowledge on the relationship between drought intensity and drought impacts, i.e. negative environmental, economic or social effects experienced under drought conditions, however, is vital to identify critical thresholds for drought impact occurrence. Such information may help to improve drought monitoring and early warning (M&EW), one goal of the international DrIVER project (Drought Impacts: Vulnerability thresholds in monitoring and Early-warning Research). The aim of this study is to test the feasibility of designing "drought impact functions" for case study areas in Europe (Germany and UK) and the United States to derive thresholds meaningful for drought impact occurrence; to account for the multidimensionality of drought impacts, we use the broader term "drought impact function" over "damage function". First steps towards developing empirical drought impact functions are (1) to identify meaningful indicators characterizing the hazard intensity (e.g. indicators expressing a precipitation or streamflow deficit), (2) to identify suitable variables representing impacts, damage, or loss due to drought, and (3) to test different statistical models to link drought intensity with drought impact information to derive meaningful thresholds. While the focus regarding drought impact variables lies on text-based impact reports from the European Drought Impact report Inventory (EDII) and the US Drought Impact Reporter (DIR), the information gain through exploiting other variables such as agricultural yield statistics and remotely sensed vegetation indices is explored. First results reveal interesting insights into the complex relationship between drought indicators and impacts and highlight differences among drought impact variables and geographies. Although a simple intensity threshold evoking specific drought impacts cannot be identified, developing drought impact functions helps to elucidate how drought conditions relate to ecological or socioeconomic impacts. Such knowledge may provide guidance for inferring meaningful triggers for drought M&EW and could have potential for a wide range of drought management applications (for example, building drought scenarios for testing the resilience of drought plans or water supply systems).

  13. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor.

    PubMed

    Deshmukh, Rahul; Sharma, Vivek; Mehan, Sidharth; Sharma, Nidhi; Bedi, K L

    2009-10-12

    Enhancing cyclic nucleotides signaling by inhibition of phosphodiesterases (PDEs) is known to be beneficial in disorders associated with cognitive decline. The present study was designed to investigate the effect of vinpocetine (PDE1 inhibitor) on intracerebroventricular (i.c.v.) streptozotocin induced experimental sporadic dementia of Alzheimer's type. Infusion of streptozotocin impaired learning and memory, increased oxidative-nitritive stress and induced cholinergic hypofunction in rats. Chronic treatment with vinpocetine (5, 10 and 20 mg/kg i.p.) for 21 days following first i.c.v. streptozotocin infusion significantly improved learning and memory in Morris water maze and passive avoidance paradigms. Further, vinpocetine significantly reduced the oxidative-nitritive stress, as evidenced by decrease in malondialdehyde (MDA) and nitrite levels, and restored the reduced glutathione (GSH) levels. Significant increase in acetylcholinesterase activity and lactate dehydrogenase levels was observed in the present model indicating cholinergic hypofunction and increase in neuronal cell damage. Chronic treatment with vinpocetine also reduced significantly the increase in acetylcholinesterase activity and lactate dehydrogenase levels indicating restorative capacity of vinpocetine with respect to cholinergic functions and preventing the neuronal damage. The observed beneficial effects of vinpocetine on spatial memory may be due to its ability to favorably modulate cholinergic functions, prevent neuronal cell damage and possibly through its antioxidant mechanism also.

  14. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Privat-Maldonado, Angela; O'Connell, Deborah; Welch, Emma; Vann, Roddy; van der Woude, Marjan W.

    2016-10-01

    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections.

  15. [The dose-effect relationship of water fluoride levels and renal damage in children].

    PubMed

    Liu, Jun-Ling; Xia, Tao; Yu, Yao-Yong; Sun, Xian-Zhong; Zhu, Qilong; He, Weihong; Zhang, Ming; Wang, Aiguo

    2005-05-01

    To explore the dose-effect relationship of water fluoride levels and renal damage in children and observe the difference of renal function between high-loaded fluoride people and dental fluorosis people in the same water fluoride level region. 210 children were divided into seven groups in term of drinking water fluoride levels and whether they suffered from dental fluorosis. Fluoride concentrations in urine and serum and activities of urine NAG and gamma-GT were determined. The urine and serum fluoride of high-loaded fluoride people and dental fluorosis people increased compared with control, moreover fluoride contents in urine and serum increased gradually with the increase of fluoride level in drinking water. Urine NAG and gamma-GT activities significantly increased in dental fluorosis people from area of 2.58 mg/L fluoride in drinking water and in those two groups from area of 4.51 mg/L fluoride in drinking water. Moreover, there existed an obvious dose-effect relationship between the drinking water fluoride concentration and NAG and gamma-GT activity. Over 2.0 mg/L fluoride in drinking water can cause renal damage in children, and the damage degree increases with the drinking water fluoride content. Renal damage degree is not related to whether the children suffered from dental fluorosis and mainly due to water fluoride concentration.

  16. Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    PubMed Central

    Privat-Maldonado, Angela; O’Connell, Deborah; Welch, Emma; Vann, Roddy; van der Woude, Marjan W.

    2016-01-01

    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections. PMID:27759098

  17. Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view.

    PubMed

    Languren, Gabriela; Montiel, Teresa; Julio-Amilpas, Alberto; Massieu, Lourdes

    2013-10-01

    The aim of the present review is to offer a current perspective about the consequences of hypoglycemia and its impact on the diabetic disorder due to the increasing incidence of diabetes around the world. The main consequence of insulin treatment in type 1 diabetic patients is the occurrence of repetitive periods of hypoglycemia and even episodes of severe hypoglycemia leading to coma. In the latter, selective neuronal death is observed in brain vulnerable regions both in humans and animal models, such as the cortex and the hippocampus. Cognitive damage subsequent to hypoglycemic coma has been associated with neuronal death in the hippocampus. The mechanisms implicated in selective damage are not completely understood but many factors have been identified including excitotoxicity, oxidative stress, zinc release, PARP-1 activation and mitochondrial dysfunction. Importantly, the diabetic condition aggravates neuronal damage and cognitive failure induced by hypoglycemia. In the absence of coma prolonged and severe hypoglycemia leads to increased oxidative stress and discrete neuronal death mainly in the cerebral cortex. The mechanisms responsible for cell damage in this condition are still unknown. Recurrent moderate hypoglycemia is far more common in diabetic patients than severe hypoglycemia and currently important efforts are being done in order to elucidate the relationship between cognitive deficits and recurrent hypoglycemia in diabetics. Human studies suggest impaired performance mainly in memory and attention tasks in healthy and diabetic individuals under the hypoglycemic condition. Only scarce neuronal death has been observed under moderate repetitive hypoglycemia but studies suggest that impaired hippocampal synaptic function might be one of the causes of cognitive failure. Recent studies have also implicated altered mitochondrial function and mitochondrial oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy.

    PubMed

    Boudoures, Anna L; Saben, Jessica; Drury, Andrea; Scheaffer, Suzanne; Modi, Zeel; Zhang, Wendy; Moley, Kelle H

    2017-06-01

    Mitochondria are the most prominent organelle in the oocyte. Somatic cells maintain a healthy population of mitochondria by degrading damaged mitochondria via mitophagy, a specialized autophagy pathway. However, evidence from previous work investigating the more general macroautophagy pathway in oocytes suggests that mitophagy may not be active in the oocyte. This would leave the vast numbers of mitochondria - poised to be inherited by the offspring - vulnerable to damage. Here we test the hypothesis that inactive mitophagy in the oocyte underlies maternal transmission of dysfunctional mitochondria. To determine whether oocytes can complete mitophagy, we used either CCCP or AntimycinA to depolarize mitochondria and trigger mitophagy. After depolarization, we did not detect co-localization of mitochondria with autophagosomes and mitochondrial DNA copy number remained unchanged, indicating the non-functional mitochondrial population was not removed. To investigate the impact of an absence of mitophagy in oocytes with damaged mitochondria on offspring mitochondrial function, we utilized in vitro fertilization of high fat high sugar (HF/HS)-exposed oocytes, which have lower mitochondrial membrane potential and damaged mitochondria. Here, we demonstrate that blastocysts generated from HF/HS oocytes have decreased mitochondrial membrane potential, lower metabolites involved in ATP generation, and accumulation of PINK1, a mitophagy marker protein. This mitochondrial phenotype in the blastocyst mirrors the phenotype we show in HF/HS exposed oocytes. Taken together, these data suggest that the mechanisms governing oocyte mitophagy are fundamentally distinct from those governing somatic cell mitophagy and that the absence of mitophagy in the setting of HF/HS exposure contributes to the oocyte-to-blastocyst transmission of dysfunctional mitochondria. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Investigations of Pulmonary Epithelial Cell Damage due to Air-Liquid Interfacial Stresses in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.

    2004-01-01

    Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.

  20. Structural kinematics based damage zone prediction in gradient structures using vibration database

    NASA Astrophysics Data System (ADS)

    Talha, Mohammad; Ashokkumar, Chimpalthradi R.

    2014-05-01

    To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.

  1. Ubiad1 Is an Antioxidant Enzyme that Regulates eNOS Activity by CoQ10 Synthesis

    PubMed Central

    Mugoni, Vera; Postel, Ruben; Catanzaro, Valeria; De Luca, Elisa; Turco, Emilia; Digilio, Giuseppe; Silengo, Lorenzo; Murphy, Michael P.; Medana, Claudio; Stainier, Didier Y.R.; Bakkers, Jeroen; Santoro, Massimo M.

    2013-01-01

    Summary Protection against oxidative damage caused by excessive reactive oxygen species (ROS) by an antioxidant network is essential for the health of tissues, especially in the cardiovascular system. Here, we identified a gene with important antioxidant features by analyzing a null allele of zebrafish ubiad1, called barolo (bar). bar mutants show specific cardiovascular failure due to oxidative stress and ROS-mediated cellular damage. Human UBIAD1 is a nonmitochondrial prenyltransferase that synthesizes CoQ10 in the Golgi membrane compartment. Loss of UBIAD1 reduces the cytosolic pool of the antioxidant CoQ10 and leads to ROS-mediated lipid peroxidation in vascular cells. Surprisingly, inhibition of eNOS prevents Ubiad1-dependent cardiovascular oxidative damage, suggesting a crucial role for this enzyme and nonmitochondrial CoQ10 in NO signaling. These findings identify UBIAD1 as a nonmitochondrial CoQ10-forming enzyme with specific cardiovascular protective function via the modulation of eNOS activity. PMID:23374346

  2. Dehydroepiandrosterone restores hepatocellular function and prevents liver damage in estrogen-deficient females following trauma and hemorrhage.

    PubMed

    Kuebler, J F; Jarrar, D; Wang, P; Bland, K I; Chaudry, I H

    2001-05-15

    Recent studies have shown that administration of the sex steroid dehydroepiandrosterone (DHEA) in males following trauma-hemorrhagic shock has salutary effects on the depressed cardiovascular and immunological functions under those conditions. Since the effects of sex steroids are gender specific, we examined whether administration of DHEA has any beneficial effects on hepatocellular function in female rats with low estrogen levels following trauma-hemorrhage. Ovariectomy was performed in female Sprague-Dawley rats 14 days prior to the experiments. The animals then underwent a 5-cm midline laparotomy and were subjected to hemorrhagic shock (40 mm Hg for 90 min). This was followed by fluid resuscitation (Ringer's lactate over 60 min) and administration of DHEA (30 mg/kg BW) or vehicle subcutaneously at the end of resuscitation. At 24 h after resuscitation hepatocellular function, i.e., clearance of indocyanine green (ICG), and hepatocyte damage (serum alanine aminotransferase) were measured. Plasma levels of DHEA and 17beta-estradiol were also assayed. Vehicle-treated rats had significantly reduced hepatocellular function, increased ALT activity, and decreased levels of 17beta-estradiol following trauma-hemorrhage compared to sham-operated animals (P < 0.05, ANOVA and Student-Newman-Keuls test). In animals receiving DHEA following trauma-hemorrhage, hepatocellular function and ALT activity were similar to those of shams. However, administration of DHEA did not influence the plasma levels of 17beta-estradiol. Administration of DHEA following trauma-hemorrhage restored hepatocellular function and reduced hepatic damage that was observed in ovariectomized female rats under such conditions. This salutary effect of DHEA did not appear to be due to elevated levels of plasma 17beta-estradiol. We therefore propose that DHEA should be considered a novel, safe, and useful adjunct in the treatment of trauma-induced hepatocellular dysfunction in ovariectomized and postmenopausal females. Copyright 2001 Academic Press.

  3. The role of the iron catalyst in the toxicity of multi-walled carbon nanotubes (MWCNTs).

    PubMed

    Visalli, Giuseppa; Facciolà, Alessio; Iannazzo, Daniela; Piperno, Anna; Pistone, Alessandro; Di Pietro, Angela

    2017-09-01

    This study aimed to investigate the role of iron, used as a catalyst, in the biological response to pristine and functionalized multi-walled carbon nanotubes (p/fMWCNTs) with an iron content of 2.5-2.8%. Preliminarily, we assessed the pro-oxidant activity of MWCNTs-associated iron by an abiotic test. To evaluate iron bioavailability, we measured intracellular redox-active iron in A549 cells exposed to both MWCNT suspensions and to the cell medium preconditioned by MWCNTs, in order to assess the iron dissolution rate under physiological conditions. Moreover, in exposed cells, we detected ROS levels, 8-oxo-dG and mitochondrial function. The results clearly highlighted that MWCNTs- associated iron was not redox-active and that iron leakage did not occur under physiological conditions, including the oxidative burst of specialized cells. Despite this, in MWCNTs exposed cells, higher level of intracellular redox-active iron was measured in comparison to control and a significant time-dependent ROS increase was observed (P<0.01). Higher levels of 8-oxo-dG, a marker of oxidative DNA damage, and decreased mitochondrial function, confirmed the oxidative stress induced by MWCNTs. Based on the results we believe that oxidative damage could be attributable to the release of endogenous redox-active iron. This was due to the damage of acidic vacuolar compartment caused by endocytosis-mediated MWCNT internalization. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Recycled-PET fibre based panels for building thermal insulation: environmental impact and improvement potential assessment for a greener production.

    PubMed

    Ingrao, Carlo; Lo Giudice, Agata; Tricase, Caterina; Rana, Roberto; Mbohwa, Charles; Siracusa, Valentina

    2014-09-15

    A screening of Life Cycle Assessment for the evaluation of the damage arising from the production of 1 kg of recycled Polyethylene Terephthalate (RPET) fibre-based panel for building heat insulation was carried out according to the ISO 14040:2006 and 14044:2006. All data used were collected on site based on observations during site visits, review of documents and interviews with technical personnel and management. These data were processed by using SimaPro 7.3.3, accessing the Ecoinvent v.2.2 database and using the Impact 2002+ method. The study showed damage to be equal to 0.000299 points mostly due to the: 1) PET thermo-bonding fibre supply from China by means of a freight-equipped intercontinental aircraft; 2) production of bottle-grade granulate PET; 3) medium voltage electricity consumption during the manufacturing of RPET fibre panel. It was also highlighted that there were environmental benefits due to recycling through mainly avoiding significant emissions and reduced resource consumption. An improvement assessment was carried out to find solutions aimed at reducing the damage coming from the most impacting phases. Furthermore, the environmental impacts due to the production of the analysed RPET fibre-based panel were compared to other materials with the same insulating function, such as polystyrene foam, rock wool and cork slab. Finally, the environmental benefits of the recycling of PET bottles for flake production were highlighted compared to other treatment scenarios such as landfill and municipal incineration. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul

    2017-12-01

    Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.

  6. Genotoxicity following Organophosphate Pesticides Exposure among Orang Asli Children Living in an Agricultural Island in Kuala Langat, Selangor, Malaysia.

    PubMed

    Sutris, J M; How, V; Sumeri, S A; Muhammad, M; Sardi, D; Mohd Mokhtar, M T; Muhammad, H; Ghazi, H F; Isa, Z M

    2016-01-01

    Agriculture is an important sector for the Malaysian economy. The use of pesticides in agriculture is crucial due to its function in keeping the crops from harmful insects. Children living near agricultural fields are at risk of pesticide poisoning. To evaluate the genotoxic risk among children who exposed to pesticides and measure DNA damage due to pesticides exposure. In a cross-sectional study 180 Orang Asli Mah Meri children aged between 7 and 12 years were studied. They were all living in an agricultural island in Kuala Langat, Selangor, Malaysia. The data for this study were collected via modified validated questionnaire and food frequency questionnaire, which consisted of 131 food items. 6 urinary organophosphate metabolites were used as biomarkers for pesticides exposure. For genotoxic risk or genetic damage assessment, the level of DNA damage from exfoliated buccal mucosa cells was measured using the comet assay electrophoresis method. Out of 180 respondents, 84 (46.7%) showed positive traces of organophosphate metabolites in their urine. Children with detectable urinary pesticide had a longer tail length (median 43.5; IQR 30.9 to 68.1 μm) than those with undetectable urinary pesticides (median 24.7; IQR 9.5 to 48.1 μm). There was a significant association between the extent of DNA damage and the children's age, length of residence in the area, pesticides detection, and frequency of apple consumption. The organophosphate genotoxicity among children is associated with the amount of exposure (detectability of urinary pesticide) and length of residence in (exposure) the study area.

  7. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  8. [A Comparison Study on Early Damage Detection of Left Ventricular Function Based on Doppler Imaging Method for Children with Tumor].

    PubMed

    Liu, Ying; Zhang, Haowei; Zhang, Hang

    2015-12-01

    The early damage detection and evaluation are of great significance in treatment and prognosis to the left ventricular function for children with tumor. In this paper, it is reported that the early damage of the left ventricular function was observed by pulsed wave Doppler (PWD) and tissue Doppler imaging (TDI) in our laboratory. Eighty children half a year to fourteen years old were included in this study. The cardiac function indices in chemotherapy group and control group were measured and compared. The results showed that there was significant difference in mitral and tricuspid annulus flow spectrum between the two groups. Compared with PWD,TDI is more prompt, objective and accurate in detecting early damage of left ventricular function in children with tumor. And TDI is a good method for early identification of ventricular function damage in children with tumor.

  9. Operational Data Reduction Procedure for Determining Density and Vertical Structure of the Martian Upper Atmosphere from Mars Global Surveyor Accelerometer Measurements

    NASA Technical Reports Server (NTRS)

    Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.

    1998-01-01

    The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.

  10. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    PubMed Central

    Ferraz da Silva, Igor; Freitas-Lima, Leandro Ceotto; Graceli, Jones Bernardes; Rodrigues, Lívia Carla de Melo

    2018-01-01

    The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC) present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs). OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs. PMID:29358929

  11. A framework for comparing structural and functional measures of glaucomatous damage

    PubMed Central

    Hood, Donald C.; Kardon, Randy H.

    2007-01-01

    While it is often said that structural damage due to glaucoma precedes functional damage, it is not always clear what this statement means. This review has two purposes: first, to show that a simple linear relationship describes the data relating a particular functional test (standard automated perimetry (SAP)) to a particular structural test (optical coherence tomography (OCT)); and, second, to propose a general framework for relating structural and functional damage, and for evaluating if one precedes the other. The specific functional and structural tests employed are described in Section 2. To compare SAP sensitivity loss to loss of the retinal nerve fiber layer (RNFL) requires a map that relates local field regions to local regions of the optic disc as described in Section 3. When RNFL thickness in the superior and inferior arcuate sectors of the disc are plotted against SAP sensitivity loss (dB units) in the corresponding arcuate regions of the visual field, RNFL thickness becomes asymptotic for sensitivity losses greater than about 10 dB. These data are well described by a simple linear model presented in Section 4. The model assumes that the RNFL thickness measured with OCT has two components. One component is the axons of the retinal ganglion cells and the other, the residual, is everything else (e.g. glial cells, blood vessels). The axon portion is assumed to decrease in a linear fashion with losses in SAP sensitivity (in linear units); the residual portion is assumed to remain constant. Based upon severe SAP losses in anterior ischemic optic neuropathy (AION), the residual RNFL thickness in the arcuate regions is, on average, about one-third of the premorbid (normal) thickness of that region. The model also predicts that, to a first approximation, SAP sensitivity in control subjects does not depend upon RNFL thickness. The data (Section 6) are, in general, consistent with this prediction showing a very weak correlation between RNFL thickness and SAP sensitivity. In Section 7, the model is used to estimate the proportion of patients showing statistical abnormalities (worse than the 5th percentile) on the OCT RNFL test before they show abnormalities on the 24-2 SAP field test. Ignoring measurement error, the patients with a relatively thick RNFL, when healthy, will be more likely to show significant SAP sensitivity loss before statistically significant OCT RNFL loss, while the reverse will be true for those who start with an average or a relatively thin RNFL when healthy. Thus, it is important to understand the implications of the wide variation in RNFL thickness among control subjects. Section 8 describes two of the factors contributing to this variation, variations in the position of blood vessels and variations in the mapping of field regions to disc sectors. Finally, in Sections 7 and 9, the findings are related to the general debate in the literature about the relationship between structural and functional glaucomatous damage and a framework is proposed for understanding what is meant by the question, ‘Does structural damage precede functional damage in glaucoma?’ An emphasis is placed upon the need to distinguish between “statistical” and “relational” meanings of this question. PMID:17889587

  12. Rockfall vulnerability assessment for masonry buildings

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga

    2015-04-01

    The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.

  13. An elastic failure model of indentation damage. [of brittle structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1984-01-01

    A mechanistically consistent model for indentation damage based on elastic failure at tensile or shear overloads, is proposed. The model accommodates arbitrary crack orientation, stress relaxation, reduction and recovery of stiffness due to crack opening and closure, and interfacial friction due to backward sliding of closed cracks. This elastic failure model was implemented by an axisymmetric finite element program which was used to simulate progressive damage in a silicon nitride plate indented by a tungsten carbide sphere. The predicted damage patterns and the permanent impression matched those observed experimentally. The validation of this elastic failure model shows that the plastic deformation postulated by others is not necessary to replicate the indentation damage of brittle structural ceramics.

  14. Assessment of rat optic nerve damage due to microbeam radiation therapy in the treatment of glioblastomas.

    PubMed

    Mohamed, A; Worobec, S; Schultke, E

    2008-01-01

    Glioblastomas are the most common and aggressive subtype of human primary brain tumors. Due to their uncontrolled cellular proliferation, intense invasion, and lack of apoptosis, they are extremely difficult to treat. Currently, different approaches such as surgery, chemotherapy and radiation therapy have been employed as possible treatments however thus far; these treatments are not curative. Currently, microbeam radiation therapy (MRT) is being trialed in animal models of malignant brain tumors (rats) to aid in treatment. Some of the protocols tested have been shown to significantly increase survival rates. However, due to the high x-ray doses uses in MRT, the surrounding tissue of the targeted Glioblastomas may be irreversibly damaged. In previous studies, lens damage and clouding of the cornea have been observed in microbeam exposed eyes. However, to date no studies have assessed optic nerve damage. Therefore, this study examines the potential rat optic nerve damage following exposure to microbeam radiation therapy in the treatment of Glioblastomas. Although there appears to be no significant damage to the optic nerve, slight inflammation was observed within the extra ocular muscle.

  15. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    PubMed Central

    Pi, Jingbo; Zhang, Qiang; Fu, Jingqi; Woods, Courtney G.; Hou, Yongyong; Corkey, Barbara E; Collins, Sheila; Andersen, Melvin E.

    2009-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function. PMID:19501608

  16. Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of (161)Tb-folate and (177)Lu-folate.

    PubMed

    Haller, Stephanie; Pellegrini, Giovanni; Vermeulen, Christiaan; van der Meulen, Nicholas P; Köster, Ulli; Bernhardt, Peter; Schibli, Roger; Müller, Cristina

    2016-12-01

    The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process. (161)Tb has been shown to be more effective for tumor therapy than (177)Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of (161)Tb-folate and compare it to the renal effects caused by (177)Lu-folate. Renal side effects were investigated in nude mice after the application of different activities of (161)Tb-folate (10, 20, and 30 MBq per mouse) over a period of 8 months. Renal function was monitored by the determination of (99m)Tc-DMSA uptake in the kidneys and by measuring blood urea nitrogen and creatinine levels in the plasma. Histopathological analysis was performed by scoring of the tissue damage observed in HE-stained kidney sections from euthanized mice. Due to the co-emitted Auger/conversion electrons, the mean absorbed renal dose of (161)Tb-folate (3.0 Gy/MBq) was about 24 % higher than that of (177)Lu-folate (2.3 Gy/MBq). After application of (161)Tb-folate, kidney function was reduced in a dose- and time-dependent manner, as indicated by the decreased renal uptake of (99m)Tc-DMSA and the increased levels of blood urea nitrogen and creatinine. Similar results were obtained when (177)Lu-folate was applied at the same activity. Histopathological investigations confirmed comparable renal cortical damage after application of the same activities of (161)Tb-folate and (177)Lu-folate. This was characterized by collapsed tubules and enlarged glomeruli with fibrin deposition in moderately injured kidneys and glomerulosclerosis in severely damaged kidneys. Tb-folate induced dose-dependent radionephropathy over time, but did not result in more severe damage than (177)Lu-folate when applied at the same activity. These data are an indication that Auger/conversion electrons do not exacerbate overall renal damage after application with (161)Tb-folate as compared to (177)Lu-folate, even though they result in an increased dose deposition in the renal tissue. Global toxicity affecting other tissues than kidneys remains to be investigated after (161)Tb-based therapy, however.

  17. Neuronal Dysfunction Associated with Cholesterol Deregulation

    PubMed Central

    Loganes, Claudia; Bilel, Sabrine; Celeghini, Claudio; Tommasini, Alberto

    2018-01-01

    Cholesterol metabolism is crucial for cells and, in particular, its biosynthesis in the central nervous system occurs in situ, and its deregulation involves morphological changes that cause functional variations and trigger programmed cell death. The pathogenesis of rare diseases, such as Mevalonate Kinase Deficiency or Smith–Lemli–Opitz Syndrome, arises due to enzymatic defects in the cholesterol metabolic pathways, resulting in a shortage of downstream products. The most severe clinical manifestations of these diseases appear as neurological defects. Expanding the knowledge of this biological mechanism will be useful for identifying potential targets and preventing neuronal damage. Several studies have demonstrated that deregulation of the cholesterol pathway induces mitochondrial dysfunction as the result of respiratory chain damage. We set out to determine whether mitochondrial damage may be prevented by using protective mitochondria-targeted compounds, such as MitoQ, in a neuronal cell line treated with a statin to induce a biochemical block of the cholesterol pathway. Evidence from the literature suggests that mitochondria play a crucial role in the apoptotic mechanism secondary to blocking the cholesterol pathway. Our study shows that MitoQ, administered as a preventive agent, could counteract the cell damage induced by statins in the early stages, but its protective role fades over time. PMID:29783748

  18. [Regulatory mechanisms in focal cerebral ischemia. New possibilities in neuroprotective therapy].

    PubMed

    Nagy, Zoltán; Simon, László; Bori, Zoltán

    2002-03-20

    Permanent or temporary disruption of cerebral blood flow rapidly depletes brain regions of their limited energy reserves (glycogen, glucose, oxygen, ATP) leading to an energy crisis. Tissue damage occurs due to the energy crisis. The central part of the damage, the ischaemic "core" region is surrounded by zones of the shell-like penumbra. Necrotic, as well as apoptotic cell death could be identified in the penumbra. Going away from the ischaemic core different neurochemical processes are occurring by space and time. "Immediate early response" genes (c-fos, fos-B, c-Jun, krox 20, 24) are activated, heatshock proteins (hsp 70, 72, HSF, HSE, HIF), cytokines (TNF-alpha, IL-1 beta), inflammatory factors (COX), adhesion and glial factors (ICAM-1, ELAM-1, P-selectin), vasoactive factors (IL-6, -10, PAF), reactive oxigen radicals and connected factors (O2, OH, NO, NOS, SOD) are produced within minutes and hours. Cell deaths, necrosis and apoptosis due to the activation of calpains, caspases and nucleases occur in days. In parallel, growth factors and plasticity proteins (BDNF, NGF, TGF-beta, VEGF, PDGF, GAP-43) are activated as a basis of functional rehabilitation.

  19. The influence of operational and environmental loads on the process of assessing damages in beams

    NASA Astrophysics Data System (ADS)

    Furdui, H.; Muntean, F.; Minda, A. A.; Praisach, Z. I.; Gillich, N.

    2015-07-01

    Damage detection methods based on vibration analysis make use of the modal parameter changes. Natural frequencies are the features that can be acquired most simply and inexpensively. But this parameter is influenced by environmental conditions, e.g. temperature and operational loads as additional masses or axial loads induced by restraint displacements. The effect of these factors is not completely known, but in the numerous actual research it is considered that they affect negatively the damage assessment process. This is justified by the small frequency changes occurring due to damage, which can be masked by the frequency shifts due to external loads. The paper intends to clarify the effect of external loads on the natural frequencies of beams and truss elements, and to show in which manner the damage detection process is affected by these loads. The finite element analysis, performed on diverse structures for a large range of temperature values, has shown that the temperature itself has a very limited effect on the frequency changes. Thus, axial forces resulted due to obstructed displacements can influence more substantially the frequency changes. These facts are demonstrated by experimental and theoretical studies. Finally, we succeed to adapt a prior contrived relation providing the frequency changes due to damage in order to fit the case of known external loads. Whereas a new baseline for damage detection was found, considering the effect of temperature and external loads, this process can be performed without other complication.

  20. Repair for mitral stenosis due to pannus formation after Duran ring annuloplasty.

    PubMed

    Song, Seunghwan; Cho, Seong Ho; Yang, Ji-Hyuk; Park, Pyo Won

    2010-12-01

    Mitral stenosis after mitral repair with using an annuloplasty ring is not common and it is almost always due to pannus formation. Mitral valve replacement was required in most of the previous cases of pannus covering the mitral valve leaflet, which could not be stripped off without damaging the valve leaflets. In two cases, we removed the previous annuloplasty ring and pannus without leaflet injury, and we successfully repaired the mitral valve. During the follow-up of 4 months and 39 months respectively, we observed improvement of the patients' symptoms and good valvular function. Redo mitral repair may be a possible method for treating mitral stenosis due to pannus formation after ring annuloplasty. Copyright © 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.

    PubMed

    Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun

    2017-04-01

    A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

  2. Exaggerated thyroid stimulating hormone secretion in children exposed to the Chernobyl nuclear reactor catastrophe.

    PubMed

    Boyarskaya, O Y; Kopilova, O V

    2008-02-01

    We present results of a long-term study of the morpho-functional state of the thyroid gland and of the functional capacities of the hypothalamic-hypophyseal system, as shown by thyrotropin releasing hormone stimulation, in different groups of children who suffered from the Chernobyl accident. It was shown that the thyroid gland of the children who were evacuated from the 30-km zone was damaged most severely due to the influence of radioactive iodine (131I). Living on radionuclide-polluted territories in conditions of iodine deficiency has been an additional contributory factor in the development of thyroid gland diseases. Latent functional deficiency of the hypothalamic-hypophyseal system can be one of the reasons leading to oncopathology of the thyroid gland.

  3. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  4. Characterization and recovery of Deep Sub Micron (DSM) technologies behavior under radiation

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Wang, Xiao

    2005-01-01

    This paper serves a twofold purpose: characterize the behavior of a reconfigurable chip exposed to radiation; and demonstrate a method for functionality recovery due to Total Ionizing Dose (TID) effects. The experiments are performed using a PL developed reconfigurable device, a Field Programmable Transistor Array (FPTA). The paper initially describes experiments on the characterization of the NMOS transistor behavior for TID values up to 300krad. The behavior of analog and digital circuits downloaded onto the FPTA chip is also assessed for TID effects. This paper also presents a novel approach for circuit functionality recovery due to radiation effects based on Evolvable Hardware. The key idea is to reconfigure a programmable device, in-situ, to compensate, or bypass its degraded or damaged components. Experiments with total radiation dose up to 300kRad show that while the functionality of a variety of circuits, including digital gates, a rectifier and a Digital to Analog Converter implemented on a FPTA-2 chip is degraded/lost at levels before 200kRad, the correct functionality can be recovered through the proposed evolutionary approach and the chips are able to survive higher radiation, for several functions in excess of total radiation dose of 250kRad.

  5. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  6. Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat.

    PubMed

    Whishaw, I Q

    2000-03-03

    Damage to the motor cortex of the rat (Rattus norvegicus) impairs skilled movements used in reaching for food with the contralateral forepaw. Nevertheless, there is substantial recovery in success over a two-week postsurgical period. The profile of behavioral recovery is believed to reflect the eventual normalization of behavior, but this idea has not been explicitly examined. The present experiments examined postsurgical reaching success and reaching movements as a function of (1) lesion type, (2) lesion size, (3) lesion location, (4) depletion of forebrain noradrenaline, and (4) presurgical and postsurgical experience. The results show that at least two separate processes contribute to recovery in postsurgical performance. The early postsurgical period was characterized by extreme difficulties in making reaching movements. The experiments suggest that this initial impairment was due to the loss of the innate cortical engram that supports the action patterns used for skilled movements. Subsequent recovery in reaching success was not due to the reacquisition of normal movements, but was due rather to the use of compensatory movements. The results are discussed in relation to the idea that true recovery from motor cortex injury will require that damaged neurons and their connections be rescued or replaced.

  7. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    PubMed

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function.

    PubMed

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo; Xin, Ying; Cai, Lu

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5mg/kg daily in five days of each week for 3months and then kept until 6months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3months, and the protective effect could be sustained at 3months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Supply and demand analysis for flood insurance by using logistic regression model: case study at Citarum watershed in South Bandung, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sidi, P.; Mamat, M.; Sukono; Supian, S.

    2017-01-01

    Floods have always occurred in the Citarum river basin. The adverse effects caused by floods can cover all their property, including the destruction of houses. The impact due to damage to residential buildings is usually not small. Indeed, each of flooding, the government and several social organizations providing funds to repair the building. But the donations are given very limited, so it cannot cover the entire cost of repair was necessary. The presence of insurance products for property damage caused by the floods is considered very important. However, if its presence is also considered necessary by the public or not? In this paper, the factors that affect the supply and demand of insurance product for damaged building due to floods are analyzed. The method used in this analysis is the ordinal logistic regression. Based on the analysis that the factors that affect the supply and demand of insurance product for damaged building due to floods, it is included: age, economic circumstances, family situations, insurance motivations, and lifestyle. Simultaneously that the factors affecting supply and demand of insurance product for damaged building due to floods mounted to 65.7%.

  10. Impact of genomic damage and ageing on stem cell function

    PubMed Central

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  11. Linking loss of sodium-iodide symporter expression to DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyckesvärd, Madeleine Nordén; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg; Kapoor, Nirmal

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression andmore » transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.« less

  12. Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells.

    PubMed

    Koller, Verena J; Fürhacker, Maria; Nersesyan, Armen; Mišík, Miroslav; Eisenbauer, Maria; Knasmueller, Siegfried

    2012-05-01

    Glyphosate (G) is the largest selling herbicide worldwide; the most common formulations (Roundup, R) contain polyoxyethyleneamine as main surfactant. Recent findings indicate that G exposure may cause DNA damage and cancer in humans. Aim of this investigation was to study the cytotoxic and genotoxic properties of G and R (UltraMax) in a buccal epithelial cell line (TR146), as workers are exposed via inhalation to the herbicide. R induced acute cytotoxic effects at concentrations > 40 mg/l after 20 min, which were due to membrane damage and impairment of mitochondrial functions. With G, increased release of extracellular lactate dehydrogenase indicative for membrane damage was observed at doses > 80 mg/l. Both G and R induced DNA migration in single-cell gel electrophoresis assays at doses > 20 mg/l. Furthermore, an increase of nuclear aberrations that reflect DNA damage was observed. The frequencies of micronuclei and nuclear buds were elevated after 20-min exposure to 10-20 mg/l, while nucleoplasmatic bridges were only enhanced by R at the highest dose (20 mg/l). R was under all conditions more active than its active principle (G). Comparisons with results of earlier studies with lymphocytes and cells from internal organs indicate that epithelial cells are more susceptible to the cytotoxic and DNA-damaging properties of the herbicide and its formulation. Since we found genotoxic effects after short exposure to concentrations that correspond to a 450-fold dilution of spraying used in agriculture, our findings indicate that inhalation may cause DNA damage in exposed individuals.

  13. Proton Irradiation as a Screen for Displacement-Damage Sensitivity in Bipolar Junction Transistors

    NASA Astrophysics Data System (ADS)

    Arutt, Charles N.; Warren, Kevin M.; Schrimpf, Ronald D.; Weller, Robert A.; Kauppila, Jeffrey S.; Rowe, Jason D.; Sternberg, Andrew L.; Reed, Robert A.; Ball, Dennis R.; Fleetwood, Daniel M.

    2015-12-01

    NPN and PNP bipolar junction transistors of varying sizes are irradiated with 4-MeV protons and 10-keV X-rays to determine the amount of ionization-related degradation caused by protons and calculate an improved estimate of displacement-related degradation due to protons. While different ratios of degradation produced by displacement damage and ionization effects will occur for different device technologies, this general approach, with suitable margin, can be used as a screen for sensitivity to neutron-induced displacement damage. Further calculations are performed to estimate the amount of degradation produced by 1-MeV equivalent neutron displacement damage compared to that produced by the displacement damage due to protons. The results are compared to previous work.

  14. Kidney injury after sodium phosphate solution beyond the acute renal failure.

    PubMed

    Fernández-Juárez, Gema; Parejo, Leticia; Villacorta, Javier; Tato, Ana; Cazar, Ramiro; Guerrero, Carmen; Marin, Isabel Martinez; Ocaña, Javier; Mendez-Abreu, Angel; López, Katia; Gruss, Enrique; Gallego, Eduardo

    2016-01-01

    Screening colonoscopy with polipectomy reduces colonorectal cancer incidence and mortality. An adequate bowel cleansing is one of the keys to achieving best results with this technique. Oral sodium phosphate solution (OSP) had a widespread use in the 90s decade. Its efficacy was similar to polyethylene glycol (PEG) solution, but with less cost and convenient administration. Series of patients with acute renal failure due to OSP use have been reported. However, large cohorts of patients found no difference in the incidence of renal damage between these two solutions. From 2006 to 2009 we identified twelve cases of phosphate nephropathy after colonoscopy prepared with OSP. All patients were followed up to six months. All patients had received just a single dose. We analyzed 12 cases with phosphate nephropathy; three patients debuted with AKI and nine patients had chronic renal injury. Four cases were confirmed with renal biopsy. One patient with AKI needed hemodialysis at diagnosis without subsequent recovery. Two patients (both with chronic damage) fully recovered their previous renal function. The remaining patients (nine) had an average loss of estimated glomerular filtration rate of 24ml/min/1.73m(2). The use of OSP can lead to both acute and chronic renal damage. However, chronic injury was the most common pattern. Both forms of presentation imply a significant and irreversible loss of renal function. Further studies analyzing renal damage secondary to bowel cleaning should consider these two different patterns of injury. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants.

    PubMed

    Roubicek, Deborah A; Souza-Pinto, Nadja C de

    2017-11-01

    The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance.

    PubMed

    Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M

    2006-12-08

    Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.

  17. High spatial resolution imaging for structural health monitoring based on virtual time reversal

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Shi, Lihua; Yuan, Shenfang; Shao, Zhixue

    2011-05-01

    Lamb waves are widely used in structural health monitoring (SHM) of plate-like structures. Due to the dispersion effect, Lamb wavepackets will be elongated and the resolution for damage identification will be strongly affected. This effect can be automatically compensated by the time reversal process (TRP). However, the time information of the compensated waves is also removed at the same time. To improve the spatial resolution of Lamb wave detection, virtual time reversal (VTR) is presented in this paper. In VTR, a changing-element excitation and reception mechanism (CERM) rather than the traditional fixed excitation and reception mechanism (FERM) is adopted for time information conservation. Furthermore, the complicated TRP procedure is replaced by simple signal operations which can make savings in the hardware cost for recording and generating the time-reversed Lamb waves. After the effects of VTR for dispersive damage scattered signals are theoretically analyzed, the realization of VTR involving the acquisition of the transfer functions of damage detecting paths under step pulse excitation is discussed. Then, a VTR-based imaging method is developed to improve the spatial resolution of the delay-and-sum imaging with a sparse piezoelectric (PZT) wafer array. Experimental validation indicates that the damage scattered wavepackets of A0 mode in an aluminum plate are partly recompressed and focalized with their time information preserved by VTR. Both the single damage and the dual adjacent damages in the plate can be clearly displayed with high spatial resolution by the proposed VTR-based imaging method.

  18. A damage mechanics based approach to structural deterioration and reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattcharya, B.; Ellingwood, B.

    1998-02-01

    Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions tomore » the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.« less

  19. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    PubMed

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 49 CFR 1242.78 - Employees performing clerical and accounting functions, and loss and damage claims processing...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... functions, and loss and damage claims processing (accounts XX-55-76 and XX-55-78). 1242.78 Section 1242.78... Employees performing clerical and accounting functions, and loss and damage claims processing (accounts XX-55-76 and XX-55-78). If the sum of the direct freight and the direct passenger expenses is more than...

  1. [Spontaneous and induced sterility by ethyl methanesulfonate (EMS) in Nigella damascena L].

    PubMed

    Gilot-Delhalle, J

    1976-01-01

    EMS-induced sterility could be very partially due to chromosomal aberrations appearing during male and female meiosis or even to mechanical abnormalities of the double fertilization. The sterility could be also related to diplontic origin (lethal factors or small deficiencies appearing in homozygous state on account of self-pollinization). Owing to our histological and genetical data, a female gametophytic origin could be mainly ascribed to EMS induced sterility. It could arise from a damage of the feeding function of the nucellus.

  2. Integrated numerical modeling of a landslide early warning system in a context of adaptation to future climatic pressures

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel

    2010-05-01

    Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We applied this model to a landslide EWS in Colombia that is currently being implemented within a disaster prevention project. We evaluated the EWS against rainfall data with artificially introduced error and computed with multiple model runs the probabilistic damage functions depending on rainfall error. Then we modified the original precipitation pattern to reflect possible climatic changes e.g. change in annual precipitation as well as change in precipitation intensity with annual values remaining constant. We let the EWS model adapt for changed conditions to function optimally. Our results show that for the same errors in rainfall measurements the system's performance degrades with expected changing climatic conditions. The obtained results suggest that EWS cannot internally adapt to climate change and require exogenous adaptive measures to avoid increase in overall damage. The model represents a first attempt to integrally simulate and evaluate EWS under future possible climatic pressures. Future work will concentrate on refining model components and spatially explicit climate scenarios.

  3. Residual strength of GFR/POM as a function of damage

    NASA Astrophysics Data System (ADS)

    Zachariev, G.; Rudolph, H.-V.; Ivers, H.

    2010-07-01

    A relation between the residual strength and the dispersed damage accumulated in a short fiber reinforced polyoximethylene (GFR/POM) samples under tension is found. For that purpose dependencies of damage and residual strength on loading percentage are used. Damage as a function of loading percentage is known for the material under study. To find the dependency of residual strength on loading percentage a subsidiary function is introduced and a method is proposed for determination of the parameters in the dependency on the basis of the experimental data. Both damage and residual strength are measured after unloading samples that have been loaded applying different loading percentages. Damage is the accumulation of new internal surfaces that arise under mechanical loading in the whole volume of the material. They are registered by a new original method of X-ray refraction. The analytical relation between the residual strength and damage accumulated is compared to the experimental results found for the residual strength under different damage degrees.

  4. The Researches on Damage Detection Method for Truss Structures

    NASA Astrophysics Data System (ADS)

    Wang, Meng Hong; Cao, Xiao Nan

    2018-06-01

    This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.

  5. A robust damage-detection technique with environmental variability combining time-series models with principal components

    NASA Astrophysics Data System (ADS)

    Lakshmi, K.; Rama Mohan Rao, A.

    2014-10-01

    In this paper, a novel output-only damage-detection technique based on time-series models for structural health monitoring in the presence of environmental variability and measurement noise is presented. The large amount of data obtained in the form of time-history response is transformed using principal component analysis, in order to reduce the data size and thereby improve the computational efficiency of the proposed algorithm. The time instant of damage is obtained by fitting the acceleration time-history data from the structure using autoregressive (AR) and AR with exogenous inputs time-series prediction models. The probability density functions (PDFs) of damage features obtained from the variances of prediction errors corresponding to references and healthy current data are found to be shifting from each other due to the presence of various uncertainties such as environmental variability and measurement noise. Control limits using novelty index are obtained using the distances of the peaks of the PDF curves in healthy condition and used later for determining the current condition of the structure. Numerical simulation studies have been carried out using a simply supported beam and also validated using an experimental benchmark data corresponding to a three-storey-framed bookshelf structure proposed by Los Alamos National Laboratory. Studies carried out in this paper clearly indicate the efficiency of the proposed algorithm for damage detection in the presence of measurement noise and environmental variability.

  6. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  7. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    2016-11-09

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  8. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats.

    PubMed

    García-Arroyo, Fernando E; Tapia, Edilia; Blas-Marron, Mónica G; Gonzaga, Guillermo; Silverio, Octaviano; Cristóbal, Magdalena; Osorio, Horacio; Arellano-Buendía, Abraham S; Zazueta, Cecilia; Aparicio-Trejo, Omar Emiliano; Reyes-García, Juan G; Pedraza-Chaverri, José; Soto, Virgilia; Roncal-Jiménez, Carlos; Johnson, Richard J; Sánchez-Lozada, Laura G

    2017-01-01

    Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.

  9. Impairments in Precision, Rather than Spatial Strategy, Characterize Performance on the Virtual Morris Water Maze: A Case Study

    PubMed Central

    Kolarik, Branden S.; Shahlaie, Kiarash; Hassan, Abdul; Borders, Alyssa A.; Kaufman, Kyle C.; Gurkoff, Gene; Yonelinas, Andy P.; Ekstrom, Arne D.

    2015-01-01

    Damage to the medial temporal lobes produces profound amnesia, greatly impairing the ability of patients to learn about new associations and events. While studies in rodents suggest a strong link between damage to the hippocampus and the ability to navigate using distal landmarks in a spatial environment, the connection between navigation and memory in humans remains less clear. Past studies on human navigation have provided mixed findings about whether patients with damage to the medial temporal lobes can successfully acquire and navigate new spatial environments, possibly due, in part, to issues related to patient demographics and characterization of medial temporal lobe damage. Here, we report findings from a young, high functioning patient who suffered severe medial temporal lobe damage. Although the patient is densely amnestic, her ability to acquire and utilize new, but coarse, spatial “maps” appears largely intact. Specifically, a novel computational analysis focused on the precision of her spatial search revealed a significant deficit in spatial precision rather than spatial search strategy. These findings argue that an intact hippocampus in humans is not necessary for representing multiple external landmarks during spatial navigation of new environments. We suggest instead that the human hippocampus may store and represent complex high-resolution bindings of features in the environment as part of a larger role in perception, memory, and navigation. PMID:26593960

  10. Radiation damage in WC studied with MD simulations

    NASA Astrophysics Data System (ADS)

    Träskelin, P.; Björkas, C.; Juslin, N.; Vörtler, K.; Nordlund, K.

    2007-04-01

    Studying radiation damage in tungsten carbide (WC) is of importance due to its applications in fusion reactors. We have used molecular dynamics to study both deuterium induced sputtering and modification of WC surfaces and collision cascades in bulk WC. For collision cascades in bulk WC we note a massive recombination and major elemental asymmetry for the damage. Studying the erosion of WC surfaces, we find that C can erode through swift chemical sputtering, while W does not sputter more easily than from pure W. The amorphization of the surface and the D-content due to the D bombardment is important for the damage production and sputtering process.

  11. Characterization of impact damage in woven fiber composites using fiber Bragg grating sensing and NDE

    NASA Astrophysics Data System (ADS)

    Hiche, Cristobal; Liu, Kuang C.; Seaver, Mark; Wei, Jun; Chattopadhyay, Aditi

    2009-03-01

    Woven fiber composites are currently being investigated due to their advantages over other materials, making them suitable for low weight, high stiffness, and high interlaminar fracture toughness applications such as missiles, body armor, satellites, and many other aerospace applications. Damage characterization of woven fabrics is a complex task due to their tendency to exhibit different failure modes based on the weave configuration, orientation, ply stacking and other variables. A multiscale model is necessary to accurately predict progressive damage. The present research is an experimental study on damage characterization of three different woven fiber laminates under low energy impact using Fiber Bragg Grating (FBG) sensors and flash thermography. A correlation between the measured strain from FBG sensors and the damaged area obtained from flash thermography imaging has been developed. It was observed that the peak strain in the fabrics were strongly dependent on the weave geometry and decreased at different rates as damage area increased due to dissimilar failure modes. Experimental observations were validated with the development of a multiscale model. A FBG sensor placement model was developed which showed that FBG sensor location and orientation plays a key role in the sensing capabilities of strain on the samples.

  12. The Clinical Test of Nano gold Cosmetic for Recovering Skin Damage Due to Chemicals: Special Case

    NASA Astrophysics Data System (ADS)

    Taufikurohmah, T.; Wardana, A. P.; Tjahjani, S.; Sanjaya, I. G. M.; Baktir, A.; Syahrani, A.

    2018-01-01

    Manufacturing of Nano gold cosmetics was done at PT. Gizi Indonesia. Clinical trials to cosmetics data supported that cosmetics are able to treat skin health which has been reported partially. For special cases, the recovery process of facial skin damage should also receive attention including cases of facial skin damage caused by chemicals such as phenol, HCl, aqua regia or other harsh chemicals. The problem determined whether the Nano gold is able to recover skin damage due to the harsh chemicals. This clinical trial data on the forms of early skin damage caused by phenol was delivered in the forms of facial photos patients. The recovery progress of facial skin condition was obtained every week for two months. The data included the forms of widespread wounds during the recovery process. This statement supported by anova statistical analysis of the widespread wound changing every week for 8 times. The conclusion is skin damage due to Phenol impregnation can be recovered with the use of Nano gold cosmetics for 8 weeks. This results support the manufacturing of Nano gold cosmetics for the needs of society. It also suggest that Nano gold material can be used for medicine manufacturing in the future.

  13. Additive effects of electronic and nuclear energy losses in irradiation-induced amorphization of zircon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-28

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reducedmore » damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less

  14. Additive effects of electronic and nuclear energy loss in irradiation-induced amorphization of zircon

    DOE PAGES

    Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.

    2015-12-29

    We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a frictionmore » term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less

  15. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2014-03-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  16. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    NASA Astrophysics Data System (ADS)

    Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.

    2013-09-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.

  17. Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gursharn; Chaturvedi, S.

    2011-06-15

    We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due tomore » the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of {approx}2 cm/{mu}s reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to {approx}40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.« less

  18. Effectiveness of fly ash replacement in the reduction of damage due to alkali-aggregate reaction in concrete.

    DOT National Transportation Integrated Search

    1986-05-01

    The concrete industry is faced with the urgent need of improving its knowledge : about the mechanism by which fly ash helps in the reduction of damage due to : alkali-aggregate reaction in concrete to acceptable levels. : The main objective of this r...

  19. Liver damage with the amoxicillin-clavulanate combination.

    PubMed

    2008-02-01

    Liver damage associated with the amoxicillin-clavulanate combination is more frequent in patients over the age of 50 and during long-term treatment. It is mainly due to the clavulanic acid component of the drug. It is better to reserve this combination for infections due to bacteria that are resistant to amoxicillin.

  20. EMPOWERING ADULT STEM CELLS FOR MYOCARDIAL REGENERATION

    PubMed Central

    Mohsin, Sadia; Siddiqi, Sailay; Collins, Brett; Sussman, Mark A.

    2012-01-01

    Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches needs to be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review will highlight biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells prior to reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease or aging. PMID:22158649

  1. Disease course and long-term outcome of juvenile localized scleroderma: Experience from a single pediatric rheumatology Centre and literature review.

    PubMed

    Martini, Giorgia; Fadanelli, Gloria; Agazzi, Anna; Vittadello, Fabio; Meneghel, Alessandra; Zulian, Francesco

    2018-05-03

    Juvenile Localized Scleroderma (JLS) is a rare disorder that may cause severe aesthetic sequelae and functional disability. To date, data on natural history and long-term outcome are discordant and difficult to compare due to the heterogeneity of clinical subtypes, treatments and methods to evaluate activity and outcome in previous studies. A retrospective and cross-sectional study including 133 patients followed between January 1991 and December 2016 was conducted at our Pediatric Rheumatology Centre. Disease course was drawn by retrospective analysis of patients' clinical features, treatment, disease course and outcome at the last evaluation. Disease activity and severity of tissue damage were assessed by using parameters derived from the Localized Scleroderma Cutaneous Assessment Tool (LoSCAT) and thermography. Most patients achieved complete remission, as only 12.5%, all with the linear subtype, had still active disease after over 10 years of follow-up. At least one disease relapse occurred in 22.2% of patients and first flare was observed 20 months after first treatment discontinuation. Mild tissue damage was observed in more than half of patients, in 25.4% was moderate and in 23.0% severe; 19.8% presented a functional limitation. The entity of skin and subcutaneous fat loss established at the early stages of the disease as 27.8% of patients with shorter disease duration had severe damage and the rates remained constant in patients with longer follow-up. The delay in start of systemic treatment was associated with longer disease activity and higher relapse rate. Patients with linear scleroderma (LS), pansclerotic morphea (PM) and mixed subtype (MS) presented more severe aesthetic and functional damage but did not differ from other subtypes as for rate of complete remission. JLS in some patients can be a very aggressive disease with persistent activity after >10 years and/or several disease relapses. As tissue damage establishes early in disease course a prompt diagnosis and start of appropriate treatment is crucial to control inflammation, to limit and stabilize damage, before it become irreversible. Clinicians must be aware that children with JLS may present disease reactivation so it is important to closely follow-up patients, particularly in the first 2 years after discontinuation of treatment when disease relapses may occur more frequently. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens.

    PubMed

    Morgens, David W; Wainberg, Michael; Boyle, Evan A; Ursu, Oana; Araya, Carlos L; Tsui, C Kimberly; Haney, Michael S; Hess, Gaelen T; Han, Kyuho; Jeng, Edwin E; Li, Amy; Snyder, Michael P; Greenleaf, William J; Kundaje, Anshul; Bassik, Michael C

    2017-05-05

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.

  3. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens

    PubMed Central

    Morgens, David W.; Wainberg, Michael; Boyle, Evan A.; Ursu, Oana; Araya, Carlos L.; Tsui, C. Kimberly; Haney, Michael S.; Hess, Gaelen T.; Han, Kyuho; Jeng, Edwin E.; Li, Amy; Snyder, Michael P.; Greenleaf, William J.; Kundaje, Anshul; Bassik, Michael C.

    2017-01-01

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens. PMID:28474669

  4. Clinical characterization of bvFTD due to FUS neuropathology

    PubMed Central

    Lee, Suzee E.; Seeley, William W.; Poorzand, Pardis; Rademakers, Rosa; Karydas, Anna; Stanley, Christine M.; Miller, Bruce L.; Rankin, Katherine P.

    2011-01-01

    In 2009, inclusions containing the fused in sarcoma (FUS) protein were identified as a third major molecular class of pathology underlying the behavioral variant frontotemporal dementia (bvFTD) syndrome. Due to the low prevalence of FUS pathology, few clinical descriptions have been published and none provides information about specific social-emotional deficits despite evidence for severe behavioral manifestations in this disorder. We evaluated a patient with bvFTD due to FUS pathology using a comprehensive battery of cognitive and social-emotional tests. A structural MRI scan and genetic tests for tau, progranulin, and FUS mutations were also performed. The patient showed preserved general cognitive functioning and superior working memory, but severe deficits in emotion attribution, sensitivity to punishment, and the capacity for interpersonal warmth and empathy. The gray matter atrophy pattern corresponded to this focal deficit profile, with preservation of dorsolateral fronto-parietal regions associated with executive functioning but severe damage to right worse than left frontoinsula, temporal pole, subgenual anterior cingulate, medial orbitofrontal cortex, amygdala, and caudate. This patient demonstrates the striking focality associated with FUS neuropathology in patients with bvFTD. PMID:22060063

  5. EXPERIMENTAL STUDIES ON DIFFICULTY OF EVACUATION FROM UNDERGROUND SPACES UNDER INUNDATED SITUATIONS USING REAL SCALE MODELS

    NASA Astrophysics Data System (ADS)

    Baba, Yasuyuki; Ishigaki, Taisuke; Toda, Keiichi; Nakagawa, Hajime

    Many urbanized cities in Japan are located in alluvial plains, and the vulnerability of urbanized areas to flood disaster is highlighted by flood attacks due to heavy rain fall or typhoons. Underground spaces located in the urbanized area are flood-prone areas, and the intrusion of flood watar into underground space inflicted severe damages on urban functions and infrastructures. In a similar way, low-lying areas like "bowl-shaped" depression and underpasses under highway and railroad bridges are also prone to floods. The underpasses are common sites of accidents of submerged vehicles, and severe damage including human damage occasionally occurs under flooding conditions. To reduce the damage due to inundation in underground space, needless to say, early evacuation is one of the most important countermeasures. This paper shows some experimental results of evacuation tests from underground spaces under inundated situations. The difficulities of the evacuation from underground space has been investigated by using real scale models (door, staircase and vehicle), and the limit for safety evacuation is discussed. From the results, it is found that water depth of 0.3 - 0.4m would be a critical situation for the evacuation from underground space through staircases and door and that 0.7 - 0.8m deep on the ground would be also a critical situation for safety evacuation though the doors of the vehicle. These criteria have some possibility to vary according to different inundated situations, and they are also influenced by the individual variation like the difference of physical strength. This means that these criteria requires cautious stance to use although they show a sort of an index of the limitation for saftty evacuation from underground space.

  6. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  7. Differential responses to acoustic damage and furosemide in auditory brainstem and otoacoustic emission measures

    NASA Astrophysics Data System (ADS)

    Mills, David M.

    2003-02-01

    Characteristics of distortion product otoacoustic emissions (DPOAEs) and auditory brainstem responses (ABRs) were measured in Mongolian gerbil before and after the introduction of two different auditory dysfunctions: (1) acoustic damage with a high-intensity tone, or (2) furosemide intoxication. The goal was to find emission parameters and measures that best differentiated between the two dysfunctions, e.g., at a given ABR threshold elevation. Emission input-output or ``growth'' functions were used (frequencies f1 and f2, f2/f1=1.21) with equal levels, L1=L2, and unequal levels, with L1=L2+20 dB. The best parametric choice was found to be unequal stimulus levels, and the best measure was found to be the change in the emission threshold level, Δx. The emission threshold was defined as the stimulus level required to reach a criterion emission amplitude, in this case -10 dB SPL. (The next best measure was the change in emission amplitude at high stimulus levels, specifically that measured at L1×L2=90×70 dB SPL.) For an ABR threshold shift of 20 dB or more, there was essentially no overlap in the emission threshold measures for the two conditions, sound damage or furosemide. The dividing line between the two distributions increased slowly with the change in ABR threshold, ΔABR, and was given by Δxt=0.6 ΔABR+8 dB. For a given ΔABR, if the shift in emission threshold was more than the calculated dividing line value, Δxt, the auditory dysfunction was due to acoustic damage, if less, it was due to furosemide.

  8. Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage

    PubMed Central

    Royce, Liam A.; Boggess, Erin; Fu, Yao; Liu, Ping; Shanks, Jacqueline V.; Dickerson, Julie; Jarboe, Laura R.

    2014-01-01

    Carboxylic acids are an attractive biorenewable chemical. Enormous progress has been made in engineering microbes for production of these compounds though titers remain lower than desired. Here we used transcriptome analysis of Escherichia coli during exogenous challenge with octanoic acid (C8) at pH 7.0 to probe mechanisms of toxicity. This analysis highlights the intracellular acidification and membrane damage caused by C8 challenge. Network component analysis identified transcription factors with altered activity including GadE, the activator of the glutamate-dependent acid resistance system (AR2) and Lrp, the amino acid biosynthesis regulator. The intracellular acidification was quantified during exogenous challenge, but was not observed in a carboxylic acid producing strain, though this may be due to lower titers than those used in our exogenous challenge studies. We developed a framework for predicting the proton motive force during adaptation to strong inorganic acids and carboxylic acids. This model predicts that inorganic acid challenge is mitigated by cation accumulation, but that carboxylic acid challenge inverts the proton motive force and requires anion accumulation. Utilization of native acid resistance systems was not useful in terms of supporting growth or alleviating intracellular acidification. AR2 was found to be non-functional, possibly due to membrane damage. We proposed that interaction of Lrp and C8 resulted in repression of amino acid biosynthesis. However, this hypothesis was not supported by perturbation of lrp expression or amino acid supplementation. E. coli strains were also engineered for altered cyclopropane fatty acid content in the membrane, which had a dramatic effect on membrane properties, though C8 tolerance was not increased. We conclude that achieving higher production titers requires circumventing the membrane damage. As higher titers are achieved, acidification may become problematic. PMID:24586888

  9. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin

    2017-05-01

    Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 filmmore » amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less

  10. Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function.

    PubMed

    Kundu, Rakesh; Dasgupta, Suman; Biswas, Anindita; Bhattacharya, Anirban; Pal, Bikas C; Bandyopadhyay, Debashis; Bhattacharya, Shelley; Bhattacharya, Samir

    2008-08-13

    Cajanus cajan Linn. (Leguminosae) is a nontoxic edible herb, widely used in Indian folk medicine for the prevention of various liver disorders. In the present study we have demonstrated that methanol-aqueous fraction (MAF2) of Cajanus cajan leaf extract could prevent the chronically treated alcohol induced rat liver damage. Chronic doses of alcohol (3.7 g/ kg) orally administered to rats for 28 days and liver function marker enzymes such as GPT, GOT, ALP and anti-oxidant enzyme activities were determined. Effect of MAF2 at a dose of 50mg/kg body weight on alcohol treated rats was noted. Alcohol effected significant increase in liver marker enzyme activities and reduced the activities of anti-oxidant enzymes. Co-administration of MAF2 reversed the liver damage due to alcohol; it decreased the activities of liver marker enzymes and augmented antioxidant enzyme activities. We also demonstrate significant decrease of the phase II detoxifying enzyme, UDP-glucuronosyl transferase (UGT) activity along with a three- and two-fold decrease of UGT2B gene and protein expression respectively. MAF2 co-administration normalized UGT activity and revived the expression of UGT2B with a concomitant expression and nuclear translocation of Nrf2, a transcription factor that regulates the expression of many cytoprotective genes. Cajanus cajan extract therefore shows a promise in therapeutic use in alcohol induced liver dysfunction.

  11. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    DOE PAGES

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; ...

    2017-05-01

    Pyrochlore-structure oxides, A 2B 2O 7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. In this paper, the mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La 2Zr 2O 7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr + at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopymore » (STEM). At lower doses, the surface of the La 2Zr 2O 7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La 2Zr 2O 7, the bandgap of a thick La 2Zr 2O 7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less

  12. Selective Cognitive Dysfunction Is Related to a Specific Pattern of Cerebral Damage in Persons With Severe Traumatic Brain Injury.

    PubMed

    Di Paola, Margherita; Phillips, Owen; Costa, Alberto; Ciurli, Paola; Bivona, Umberto; Catani, Sheila; Formisano, Rita; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2015-01-01

    Cognitive dysfunction is a common sequela of traumatic brain injury (TBI); indeed, patients show a heterogeneous pattern of cognitive deficits. This study was aimed at investigating whether patients who show selective cognitive dysfunction after TBI present a selective pattern of cerebral damage. Post-Coma Unit, IRCCS Santa Lucia Foundation, Rome, Italy. We collected data from 8 TBI patients with episodic memory disorder and without executive deficits, 7 patients with executive function impairment and preserved episodic memory capacities, and 16 healthy controls. We used 2 complementary analyses: (1) an exploratory and qualitative approach in which we investigated the distribution of lesions in the TBI groups, and (2) a hypothesis-driven and quantitative approach in which we calculated the volume of hippocampi of individuals in the TBI and control groups. Neuropsychological scores and hippocampal volumes. We found that patients with TBI and executive functions impairment presented focal lesions involving the frontal lobes, whereas patients with TBI and episodic memory disorders showed atrophic changes of the mesial temporal structure (hippocampus). The complexity of TBI is due to several heterogeneous factors. Indeed, studying patients with TBI and selective cognitive dysfunction should lead to a better understanding of correlations with specific brain impairment and damage, better follow-up of long-term outcome scenarios, and better planning of selective and focused rehabilitation programs.

  13. Understanding a reference-free impedance method using collocated piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Kim, Eun Jin; Kim, Min Koo; Sohn, Hoon; Park, Hyun Woo

    2010-03-01

    A new concept of a reference-free impedance method, which does not require direct comparison with a baseline impedance signal, is proposed for damage detection in a plate-like structure. A single pair of piezoelectric (PZT) wafers collocated on both surfaces of a plate are utilized for extracting electro-mechanical signatures (EMS) associated with mode conversion due to damage. A numerical simulation is conducted to investigate the EMS of collocated PZT wafers in the frequency domain at the presence of damage through spectral element analysis. Then, the EMS due to mode conversion induced by damage are extracted using the signal decomposition technique based on the polarization characteristics of the collocated PZT wafers. The effects of the size and the location of damage on the decomposed EMS are investigated as well. Finally, the applicability of the decomposed EMS to the reference-free damage diagnosis is discussed.

  14. Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model

    PubMed Central

    Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.

    2015-01-01

    Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623

  15. Cartilage tissue engineering approaches applicable in orthopaedic surgery: the past, the present, and the future.

    PubMed

    Khan, Wasim S; Hardingham, Timothy E

    2012-01-01

    Tissue is frequently damaged or lost in injury and disease. There has been an increasing interest in stem cell applications and tissue engineering approaches in surgical practice to deal with damaged or lost tissue. Although there have been developments in almost all surgical disciplines, the greatest advances are being made in orthopaedics, especially in cartilage repair. This is due to many factors including the familiarity with bone marrow derived mesenchymal stem cells and cartilage being a relatively simpler tissue to engineer. Unfortunately significant hurdles remain to be overcome in many areas before tissue engineering becomes more routinely used in clinical practice. In this paper we discuss the structure, function and embryology of cartilage and osteoarthritis. This is followed by a review of current treatment strategies for the repair of cartilage and the use of tissue engineering.

  16. Current Concepts in Treatment of Patellofemoral Osteochondritis Dissecans

    PubMed Central

    Paine, Russ; Chicas, Eric; Gardner, Emily; Bailey, Lane; McDermott, James

    2016-01-01

    Identification, protection, and management of patellofemoral articular cartilage lesions continue to remain on the forefront of sports medicine rehabilitation. Due to high-level compression forces that are applied through the patellofemoral (PF) joint, managing articular cartilage lesions is challenging for sports medicine specialists. Articular cartilage damage may exist in a wide spectrum of injuries ranging from small, single areas of focal damage to wide spread osteoarthritis involving large chondral regions. Management of these conditions has evolved over the last two centuries, most recently using biogenetic materials and cartilage replacement modalities. The purpose of this clinical commentary is to discuss PF articular cartilage injuries, etiological variables, and investigate the evolution in management of articular cartilage lesions. Rehabilitation of these lesions will also be discussed with a focus on current trends and return to function criteria. Level of Evidence 5 PMID:27904793

  17. Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases

    PubMed Central

    Numan, Mohamed Saber; Brown, Jacques P.; Michou, Laëtitia

    2015-01-01

    Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s, disease, as well as Paget’s disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur. PMID:25690002

  18. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  19. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    NASA Astrophysics Data System (ADS)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  20. Developing fragility functions for aquaculture rafts and eelgrass in the case of the 2011 Great East Japan tsunami

    NASA Astrophysics Data System (ADS)

    Suppasri, Anawat; Fukui, Kentaro; Yamashita, Kei; Leelawat, Natt; Ohira, Hiroyuki; Imamura, Fumihiko

    2018-01-01

    Since the two devastating tsunamis in 2004 (Indian Ocean) and 2011 (Great East Japan), new findings have emerged on the relationship between tsunami characteristics and damage in terms of fragility functions. Human loss and damage to buildings and infrastructures are the primary target of recovery and reconstruction; thus, such relationships for offshore properties and marine ecosystems remain unclear. To overcome this lack of knowledge, this study used the available data from two possible target areas (Mangokuura Lake and Matsushima Bay) from the 2011 Japan tsunami. This study has three main components: (1) reproduction of the 2011 tsunami, (2) damage investigation, and (3) fragility function development. First, the source models of the 2011 tsunami were verified and adjusted to reproduce the tsunami characteristics in the target areas. Second, the damage ratio (complete damage) of the aquaculture raft and eelgrass was investigated using satellite images taken before and after the 2011 tsunami through visual inspection and binarization. Third, the tsunami fragility functions were developed using the relationship between the simulated tsunami characteristics and the estimated damage ratio. Based on the statistical analysis results, fragility functions were developed for Mangokuura Lake, and the flow velocity was the main contributor to the damage instead of the wave amplitude. For example, the damage ratio above 0.9 was found to be equal to the maximum flow velocities of 1.3 m s-1 (aquaculture raft) and 3.0 m s-1 (eelgrass). This finding is consistent with the previously proposed damage criterion of 1 m s-1 for the aquaculture raft. This study is the first step in the development of damage assessment and planning for marine products and environmental factors to mitigate the effects of future tsunamis.

  1. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    PubMed

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery in cancer therapy and the sanitation of potable water supplies.

  2. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  3. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  4. Characterization of Ultrasound Energy Diffusion Due to Small-Size Damage on an Aluminum Plate Using Piezoceramic Transducers

    PubMed Central

    Lu, Guangtao; Feng, Qian; Li, Yourong; Wang, Hao; Song, Gangbing

    2017-01-01

    During the propagation of ultrasonic waves in structures, there is usually energy loss due to ultrasound energy diffusion and dissipation. The aim of this research is to characterize the ultrasound energy diffusion that occurs due to small-size damage on an aluminum plate using piezoceramic transducers, for the future purpose of developing a damage detection algorithm. The ultrasonic energy diffusion coefficient is related to the damage distributed in the medium. Meanwhile, the ultrasonic energy dissipation coefficient is related to the inhomogeneity of the medium. Both are usually employed to describe the characteristics of ultrasound energy diffusion. The existence of multimodes of Lamb waves in metallic plate structures results in the asynchronous energy transport of different modes. The mode of Lamb waves has a great influence on ultrasound energy diffusion as a result, and thus has to be chosen appropriately. In order to study the characteristics of ultrasound energy diffusion in metallic plate structures, an experimental setup of an aluminum plate with a through-hole, whose diameter varies from 0.6 mm to 1.2 mm, is used as the test specimen with the help of piezoceramic transducers. The experimental results of two categories of damages at different locations reveal that the existence of damage changes the energy transport between the actuator and the sensor. Also, when there is only one dominate mode of Lamb wave excited in the structure, the ultrasound energy diffusion coefficient decreases approximately linearly with the diameter of the simulated damage. Meanwhile, the ultrasonic energy dissipation coefficient increases approximately linearly with the diameter of the simulated damage. However, when two or more modes of Lamb waves are excited, due to the existence of different group velocities between the different modes, the energy transport of the different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear with the size of the damage. Therefore, it is recommended that only one dominant mode of Lamb wave should be excited during the characterization process, in order to ensure that the linear relationship between the damage size and the characteristic parameters is maintained. In addition, the findings from this paper demonstrate the potential of developing future damage detection algorithms using the linear relationships between damage size and the ultrasound energy diffusion coefficient or ultrasonic energy dissipation coefficient when a single dominant mode is excited. PMID:29207530

  5. Economic valuation of landslide damage in hilly regions: a case study from Flanders, Belgium.

    PubMed

    Vranken, Liesbet; Van Turnhout, Pieter; Van Den Eeckhaut, Miet; Vandekerckhove, Liesbeth; Poesen, Jean

    2013-03-01

    Several regions around the globe are at risk of incurring damage from landslides, but only few studies have concentrated on a quantitative estimate of the overall damage caused by landslides at a regional scale. This study therefore starts with a quantitative economic assessment of the direct and indirect damage caused by landslides in a 2,910 km study area located west of Brussels, a low-relief region susceptible to landslides. Based on focus interviews as well as on semi-structured interviews with homeowners, civil servants and the owners and providers of lifelines such as electricity and sewage, a quantitative damage assessment is provided. For private properties (houses, forest and pasture land) we estimate the real estate and production value losses for different damage scenarios, while for public infrastructure the costs of measures to repair and prevent landslide induced damage are estimated. In addition, the increase in amenity value of forests and grasslands due to the occurrence of landslides is also calculated. The study illustrates that a minority of land (only 2.3%) within the study area is used for dwellings, roads and railway lines, but that these land use types are responsible for the vast majority of the economic damage due to the occurrence of landslides. The annual cost of direct damage due to landsliding amounts to 688,148 €/year out of which 550,740 €/year for direct damage to houses, while the annual indirect damage augments to 3,020,049 €/year out of which 2,007,375 €/year for indirect damage to real estate. Next, the study illustrates that the increase of the amenity value of forests and grasslands outweighs the production value loss. As such the study does not only provide quantitative input data for the estimation of future risks, but also important information for government officials as it clearly informs about the costs associated with certain land use types in landslide areas. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Analysis of cracked RC beams under vibration

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Magagnini, E.

    2017-05-01

    Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.

  7. Analysis of frequency shifting in seismic signals using Gabor-Wigner transform

    NASA Astrophysics Data System (ADS)

    Kumar, Roshan; Sumathi, P.; Kumar, Ashok

    2015-12-01

    A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.

  8. Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage.

    PubMed

    Begović, Lidija; Mlinarić, Selma; Antunović Dunić, Jasenka; Katanić, Zorana; Lončarić, Zdenko; Lepeduš, Hrvoje; Cesar, Vera

    2016-06-01

    The effect of two concentrations of cobalt (Co(2+)) on photosynthetic activity and antioxidative response in Lemna minor L. were assessed 24, 48 and 72h after the start of the exposure. Higher concentration of cobalt (1mM) induced growth inhibition while lower concentration (0.01mM) increased photosynthetic pigments content. Analysis of chlorophyll a fluorescence transients revealed high sensitivity of photosystem II primary photochemistry to excess of Co(2+) especially at the higher concentration where decreased electron transport beyond primary quinone acceptor QA(-) and impaired function of oxygen evolving complex (OEC) was observed. Due to impairment of OEC, oxygen production was decreased at higher Co(2+) concentration. Activity of superoxide dismutase was mainly inhibited while lipid peroxidation increased, at both concentrations, indicating that cobalt-induced oxidative damage after short exposure and moreover, susceptibility of the membranes in the cell to cobalt toxicity. Results obtained in this study suggest possible application of used parameters as tools in assessment of early damage caused by metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  10. Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study.

    PubMed

    Tewarie, Prejaas; Steenwijk, Martijn D; Brookes, Matthew J; Uitdehaag, Bernard M J; Geurts, Jeroen J G; Stam, Cornelis J; Schoonheim, Menno M

    2018-06-01

    To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  11. Longitudinal assessment of stereotypic, proto-injurious, and self-injurious behavior exhibited by young children with developmental delays.

    PubMed

    Richman, David M; Lindauer, Steven E

    2005-11-01

    Twelve children (CA, 12 to 32 months) with developmental delay were observed in their homes during monthly analogue functional analysis probes to document patterns of emerging self-injurious behavior. Two patterns of emerging self-injury were observed for 5 participants: (a) The topography and functional analysis pattern remained the same, but the behavior eventually caused tissue damage; or (b) a new topography emerged that was similar to an established stereotypic motor behavior. Functional analysis results were inconclusive for the majority of target behaviors across participants due to undifferentiated responding across conditions. One participant exhibited two topographies that appeared to become sensitive to positive reinforcement over time. Results are discussed in terms of implications for future research on early intervention and prevention of self-injury.

  12. Flexible, multi-measurement guided wave damage detection under varying temperatures

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander C. S.; Harley, Joel B.

    2018-04-01

    Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).

  13. An extended diffraction tomography method for quantifying structural damage using numerical Green's functions.

    PubMed

    Chan, Eugene; Rose, L R Francis; Wang, Chun H

    2015-05-01

    Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  15. Immune response is required for the control of in vivo translocation and chronic toxicity of graphene oxide

    NASA Astrophysics Data System (ADS)

    Wu, Qiuli; Zhao, Yunli; Fang, Jianpeng; Wang, Dayong

    2014-05-01

    Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals.Graphene oxide (GO) shows great promise as a nanomaterial for medical applications; however, the mechanism for its long-term adverse effects is still largely unclear. Here, we show that chronic GO exposure not only caused damage on the function of both primary and secondary targeted organs but also induced severe accumulation of pathogenic microbial food (OP50) in the intestine of Caenorhabditis elegans, a non-mammalian alternative toxicity assay system. GO accumulated in the intestine could be largely co-localized with OP50 and induced decreased immune response of animals. In contrast, feeding with UV-treated OP50 suppressed GO toxicity and accumulation in the intestine and maintained the relatively normal immune response of animals. The severe accumulation of OP50 in the intestine might be partially due to the damage by GO on the development and function of AVL and DVB neurons controlling defecation behavior. Reduction of chronic GO toxicity by PEG surface modification largely resulted from the inhibition of OP50 accumulation in the intestine and the maintenance of normal immune response. Our results highlight the key role of innate immunity in regulating in vivo chronic GO toxicity, which will be helpful for our understanding of the interactions between nanomaterials and biological systems during the long-term development of animals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00699b

  16. [Possible changes in energy-minimizer mechanisms of locomotion due to chronic low back pain - a literature review].

    PubMed

    de Carvalho, Alberito Rodrigo; Andrade, Alexandro; Peyré-Tartaruga, Leonardo Alexandre

    2015-01-01

    One goal of the locomotion is to move the body in the space at the most economical way possible. However, little is known about the mechanical and energetic aspects of locomotion that are affected by low back pain. And in case of occurring some damage, little is known about how the mechanical and energetic characteristics of the locomotion are manifested in functional activities, especially with respect to the energy-minimizer mechanisms during locomotion. This study aimed: a) to describe the main energy-minimizer mechanisms of locomotion; b) to check if there are signs of damage on the mechanical and energetic characteristics of the locomotion due to chronic low back pain (CLBP) which may endanger the energy-minimizer mechanisms. This study is characterized as a narrative literature review. The main theory that explains the minimization of energy expenditure during the locomotion is the inverted pendulum mechanism, by which the energy-minimizer mechanism converts kinetic energy into potential energy of the center of mass and vice-versa during the step. This mechanism is strongly influenced by spatio-temporal gait (locomotion) parameters such as step length and preferred walking speed, which, in turn, may be severely altered in patients with chronic low back pain. However, much remains to be understood about the effects of chronic low back pain on the individual's ability to practice an economic locomotion, because functional impairment may compromise the mechanical and energetic characteristics of this type of gait, making it more costly. Thus, there are indications that such changes may compromise the functional energy-minimizer mechanisms. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  17. Mirror neuron system as the joint from action to language.

    PubMed

    Chen, Wei; Yuan, Ti-Fei

    2008-08-01

    Mirror neuron system (MNS) represents one of the most important discoveries of cognitive neuroscience in the past decade, and it has been found to involve in multiple aspects of brain functions including action understanding, imitation, language understanding, empathy, action prediction and speech evolution. This manuscript reviewed the function of MNS in action understanding as well as language evolution, and specifically assessed its roles as the bridge from body language to fluent speeches. Then we discussed the speech defects of autism patients due to the disruption of MNS. Finally, given that MNS is plastic in adult brain, we proposed MNS targeted therapy provides an efficient rehabilitation approach for brain damages conditions as well as autism patients.

  18. Regulation of age-related macular degeneration-like pathology by complement factor H

    PubMed Central

    Toomey, Christopher B.; Kelly, Una; Saban, Daniel R.; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD. PMID:25991857

  19. Mitochondrial Dysfunction in Retinal Diseases

    PubMed Central

    Barot, Megha; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases. PMID:21978133

  20. Mitochondrial dysfunction in retinal diseases.

    PubMed

    Barot, Megha; Gokulgandhi, Mitan R; Mitra, Ashim K

    2011-12-01

    The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.

  1. Dynamics of laser-induced damage of spherical nanoparticles by high-intensity ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Komolov, Vladimir L.; Gruzdev, Vitaly E.; Przhibelskii, Sergey G.; Smirnov, Dmitry S.

    2012-12-01

    Damage of a metal spherical nanoparticle by femtosecond laser pulses is analyzed by splitting the overall process into two steps. The fast step includes electron photoemission from a nanoparticle. It takes place during direct action of a laser pulse and its rate is evaluated as a function of laser and particle parameters by two approaches. Obtained results suggest the formation of significant positive charge of the nanoparticles due to the photoemission. The next step includes ion emission that removes the excessive positive charge and modifies particle structure. It is delayed with respect to the photo-emission and is analyzed by a simple analytical model and modified molecular dynamics. Obtained energy distribution suggests generation of fast ions capable of penetrating into surrounding material and generating defects next to the nanoparticle. The modeling is extended to the case of a nanoparticle on a solid surface to understand the basic mechanism of surface laser damage initiated by nano-contamination. Simulations predict embedding the emitted ions into substrate within a spot with size significantly exceeding the original particle size. We discuss the relation of those effects to the problem of bulk and surface laser-induced damage of optical materials by single and multiple ultrashort laser pulses.

  2. Macromolecular Expression and Function: A New Paradigm for NASA Risk Assessment

    NASA Technical Reports Server (NTRS)

    Richmond, Robert

    2003-01-01

    Predicting risks in humans of either acute effects such as bone loss or muscle wasting, or late effects such as cancer, is challenging. To an approximation, this is because uncertainties of exposure to stress factors or toxic agents and the uniformity of processing subsequent damage at the cellular level within a complex set of biological variables degrade the confidence of predicting pathologic outcome. A cellular biodosimeter that simultaneously reports 1) the type of damage due to that exposure, 2) the quantity of damage incurred by that exposure, and 3) the dataset used to assess risk of developing pathologic outcome caused by that exposure would therefore be useful for predicting ultimate risks faced by an individual, such as an astronaut. It is suggested that such a biodosimeter can be based upon analyses of gene-expression and protein expression whereby large datasets of cellular response to damage are obtained and analyzed for expression-profiles correlated with established end points and molecular markers predictive for risks being assessed. The usefulness of multiparametric cellular biodosimeters could be realized by quantitatively profiling these datasets using techniques of bioinformatics. Such an approach contributes to the foundation of molecular epidemiology as a new scientific discipline, and represents a new paradigm of risk assessment.

  3. CPTAC Develops Fit-for-Purpose Multiplex Immuno-MRM Assay for Profiling the DNA Damage Response Pathway | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Ionizing radiation (IR) is a commonly employed cancer treatment that kills cancer cells by damaging their DNA. While the DNA damage response (DDR) pathway may be key to determining tumor responses, radiochemical damage due to IR can target the patients’ healthy dividing cells, leading to the formation of secondary hematologic and solid tumors after DNA-damaging therapy.

  4. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  5. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I Interferons*

    PubMed Central

    Denny, Michael F.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Thacker, Seth G.; Anderson, Marc; Sandy, Ashley R.; McCune, W. Joseph; Kaplan, Mariana J.

    2010-01-01

    Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients due to presence of low density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils and healthy control neutrophils were compared in their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-α and IFN-γ, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. Further, LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in SLE by simultaneously mediating enhanced vascular damage while inhibiting vascular repair. PMID:20164424

  6. Patients referred to an indoor air health clinic: exposure to water-damaged buildings causes an increase of lymphocytes in bronchoalveolar lavage and a decrease of CD19 leucocytes in peripheral blood.

    PubMed

    Wolff, Henrik; Mussalo-Rauhamaa, Helena; Raitio, Hanna; Elg, Peter; Orpana, Arto; Piilonen, Anneli; Haahtela, Tari

    2009-01-01

    Respiratory and other symptoms are often associated with exposure to microbes present in water-damaged buildings. We examined 82 consecutive patients referred to the Indoor Air Clinic, Helsinki University Hospital, due to symptoms suspected of having been caused by long-term exposure to water damage in the home or workplace. Exposure to water damage was assessed by building inspections and microbial analyses as needed. Bronchoalveolar lavage, lung function measurements, skin prick tests to inhalant allergens and radiological examinations were performed in all patients. Leucocyte subsets in peripheral blood were analysed in 35 patients. Marked water damage was detected in the homes or workplaces of 47 (59%) patients; the remaining 34 patients formed the control group. The exposed group expressed more symptoms in total than the control group: fatigue, conjunctival symptoms, rhinitis with sinusitis, recurrent bronchitis and asthma were more common in the exposed group, but a significant difference was seen only for headache. In BAL (bronchoalveolar lavage) samples, lymphocytes represented 25% of the total cell population in non-smoking-exposed patients compared with 12% in control patients (p=0.004). In peripheral blood, CD19 leucocytes were significantly decreased in the exposed group (7.5% versus 12.3%; p<0.01). Confirmed exposure to water damage was associated with an increase in symptoms. Exposure to water damage caused a significant change in the cellular composition in BAL fluid (lymphocytosis) and blood (decrease of CD19 cells). The depletion of CD19 leucocytes in peripheral blood may indicate an active immune response in the lungs.

  7. Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Mitchell, T. M.

    2017-12-01

    Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively large distances along a fault. Also, a relatively small threshold could potentially increase permeability in a large volume of rock, given that previous earthquakes already damaged these rocks.

  8. Chronic predation risk reduces escape speed by increasing oxidative damage: a deadly cost of an adaptive antipredator response.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.

  9. Chronic Predation Risk Reduces Escape Speed by Increasing Oxidative Damage: A Deadly Cost of an Adaptive Antipredator Response

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2014-01-01

    Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tetsuya; Matsuoka, Takaaki; Ohmi, Tadahiro

    Novel magnetron-sputtering equipment, called rotation magnet sputtering (ROT-MS), was developed to overcome various disadvantages of current magnetron-sputtering equipment. Disadvantages include (1) very low target utilization of less than 20%, (2) difficulty in obtaining uniform deposition on the substrate, and (3) charge-up damages and ion-bombardment-induced damages resulting from very high electron temperature (>3 eV) and that the substrate is set at the plasma excitation region. In ROT-MS, a number of moving high-density plasma loops are excited on the target surface by rotating helical magnets, resulting in very high target utilization with uniform target erosion and uniform deposition on the substrate. Thismore » excellent performance can be principally maintained even if equipment size increases for very large-substrate deposition. Because strong horizontal magnetic fields (>0.05 T) are produced within a very limited region just at the target surface, very low electron-temperature plasmas (<2.5 eV for Ar plasma and <1 eV for direct-current-excited Xe plasma) are excited at the very limited region adjacent to the target surface with a combination of grounded plate closely mounted on the strong magnetic field region. Consequently, the authors can establish charge-up damage-free and ion-bombardment-induced damage-free processes. ROT-MS has been applied for thin-film formation of LaB{sub 6}, which is well known as a stable, low-work-function bulk-crystal material for electron emissions. The work function of the LaB{sub 6} film decreased to 2.8 eV due to enhanced (100)-orientation crystallinity and reduced resistivity realized by adjusting the flux of low-energy bombarding ions impinging on the depositing surface, which work very efficiently, improving the performance of the electron emission devices.« less

  11. Shearography NDE of NASA COPV

    NASA Technical Reports Server (NTRS)

    Newman, John W.; Santos, Fernando; Saulsbury, Regor; Koshti, Ajay; Russell, Rick; Regez, Brad

    2006-01-01

    1. 21 Composite Over-wrapped Pressure Vessels (COPV) consisting of Kevlar Space Shuttle Fleet Leaders and Graphite COPV were inspected at NASA WSTF, NM from Sept. 12 through Sept 16. 2. The inspection technique was Pressurization Shearography, tests designed to image composite material damage, degradation or design flaws leading to stress concentrations in the axial or hoop strain load path. 3. The defect types detected consisted of the following: a) Intentional impact damage with known energy. b) Un-intentional impact damage. c) Manufacturing defects. 4. COPV design features leading to strain concentrations detected include: a) Strain concentrations at bosses due to fiber closure pattern. b) Strain concentrations in body of COPV due to fiber wrap pattern. c) Strain concentrations at equator due to liner weld/fiber lay-up.

  12. Uncertainty in flood damage estimates and its potential effect on investment decisions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Dennis; de Bruijn, Karin; Bouwer, Laurens; de Moel, Hans

    2015-04-01

    This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. This Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. This uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.

  13. Uncertainty in flood damage estimates and its potential effect on investment decisions

    NASA Astrophysics Data System (ADS)

    Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; De Moel, H.

    2015-01-01

    This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. As input the Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. The resulting uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.

  14. A Thermodynamically Consistent Damage Model for Advanced Composites

    NASA Technical Reports Server (NTRS)

    Maimi, Pere; Camanho, Pedro P.; Mayugo, Joan-Andreu; Davila, Carlos G.

    2006-01-01

    A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant's Crack Band Model. To verify the accuracy of the approach, analyses of coupon specimens were performed, and the numerical predictions were compared with experimental data.

  15. Allograft replacement for absent native tissue.

    PubMed

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J; Warren, Russell F; Doyle, Maureen; Rodeo, Scott A

    2013-03-01

    Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs.

  16. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  17. Toxicity of nano- and micro-sized silver particles in human hepatocyte cell line L02

    NASA Astrophysics Data System (ADS)

    Liu, Pengpeng; Guan, Rongfa; Ye, Xingqian; Jiang, Jiaxin; Liu, Mingqi; Huang, Guangrong; Chen, Xiaoting

    2011-07-01

    Silver nanoparticles (Ag NPs) previously classified as antimicrobial agents have been widely used in consumers and industrial products, especially food storage material. Ag NPs used as antimicrobial agents may be found in liver. Thus, examination of the ability of Ag NPs to penetrate the liver is warranted. The aim of the study was to determine the optimal viability assay for using with Ag NPs in order to assess their toxicity to liver cells. For toxicity evaluations, cellular morphology, mitochondrial function (3-(4, 5-dimethylazol-2-yl)-2, 5-diphenyl-tetrazolium bromide, MTT assay), membrane leakage of lactate dehydrogenase (lactate dehydrogenase, LDH release assay), Oxidative stress markers (malonaldehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)), DNA damage (single cell gel eletrophoresis, SCGE assay), and protein damage were assessed under control and exposed conditions (24 h of exposure). The results showed that mitochondrial function decreased significantly in cells exposed to Ag NPs at 25 μg·mL-1. LDH leakage significantly increased in cells exposed to Ag NPs (>= 25 μg mL-1) while micro-sized silver particles tested displayed LDH leakage only at higher doses (100 μg·mL-1). The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, increase in SOD levels and lead to lipid peroxidation, which suggested that cytotoxicity of Ag NPs in liver cells might be mediated through oxidative stress. The results demonstrates that Ag NPs lead to cellular morphological modifications, LDH leakage, mitochondrial dysfunction, and cause increased generation of ROS, depletion of GSH, lipid peroxidation, oxidative DNA damage and protein damage. Though the exact mechanism behind Ag NPs toxicity is suggested oxidative stress and lipid peroxidation playing an important role in Ag NPs elicited cell membrane disruption, DNA damage, protein damage and subsequent cell death. Our preliminary data suggest that oxidative stress might contribute to Ag NPs cytotoxicity. To reveal whether apoptosis involved in Ag NPs toxicity, further studies are underway.

  18. An analysis of European riverine flood risk and adaptation measures under projected climate change

    NASA Astrophysics Data System (ADS)

    Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind

    2015-04-01

    There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major uncertainties in both future flood hazards as well as damage costs and adaptation effects and costs.

  19. Changing rooster sperm membranes to facilitate cryopreservation

    USDA-ARS?s Scientific Manuscript database

    Cryopreservation damages rooster sperm membranes. Part of this damage is due to membrane transitioning from the fluid to the gel state as temperature is reduced. This damage may be prevented by increasing membrane fluidity at low temperatures by incorporating cholesterol or unsaturated lipids into t...

  20. Damage and recovery of skin barrier function after glycolic acid chemical peeling and crystal microdermabrasion.

    PubMed

    Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok

    2004-03-01

    Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.

  1. Nonstructural damages of reinforced concrete buildings due to 2015 Ranau earthquake

    NASA Astrophysics Data System (ADS)

    Adiyanto, Mohd Irwan; Majid, Taksiah A.; Nazri, Fadzli Mohamed

    2017-07-01

    On 15th June 2016 a moderate earthquake with magnitude Mw5.9 was occurred in Sabah, Malaysia. Specifically, the epicentre was located at 16 km northwest of Ranau. Less than two days after the first event, a reconnaissance mission took action to investigate the damages on buildings. Since the reinforced concrete buildings in Ranau were designed based on gravity and wind load only, a lot of minor to severe damages was occurred. This paper presents the damages on the nonstructural elements of reinforced concrete buildings due to Ranau earthquake. The assessment was conducted via in-situ field investigation covering the visual observation, taking photo, and interview with local resident. Based on in-situ field investigation, there was a lot of damages occurred on the nonstructural elements like the brick walls. Such damages cannot be neglected since it can cause injury and fatality to the victims. Therefore, it can be concluded that the installation of nonstructural elements should be reviewed for the sake of safety.

  2. Damage-mitigating control of a reusable rocket engine for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Dai, Xiaowen

    1995-01-01

    The goal of damage mitigating control in reusable rocket engines is to achieve high performance with increased durability of mechanical structures such that functional lives of the critical components are increased. The major benefit is an increase in structural durability with no significant loss of performance. This report investigates the feasibility of damage mitigating control of reusable rocket engines. Phenomenological models of creep and thermo-mechanical fatigue damage have been formulated in the state-variable setting such that these models can be combined with the plant model of a reusable rocket engine, such as the Space Shuttle Main Engine (SSME), for synthesizing an optimal control policy. Specifically, a creep damage model of the main thrust chamber wall is analytically derived based on the theories of sandwich beam and viscoplasticity. This model characterizes progressive bulging-out and incremental thinning of the coolant channel ligament leading to its eventual failure by tensile rupture. The objective is to generate a closed form solution of the wall thin-out phenomenon in real time where the ligament geometry is continuously updated to account for the resulting deformation. The results are in agreement with those obtained from the finite element analyses and experimental observation for both Oxygen Free High Conductivity (OFHC) copper and a copper-zerconium-silver alloy called NARloy-Z. Due to its computational efficiency, this damage model is suitable for on-line applications of life prediction and damage mitigating control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The results are presented to demonstrate the potential of life extension of reusable rocket engines via damage mitigating control. The control system has also been simulated on a testbed to observe how the damage at different critical points can be traded off without any significant loss of engine performance. The research work reported here is built upon concepts derived from the disciplines of Controls, Thermo-fluids, Structures, and Materials. The concept of damage mitigation, as presented in this report, is not restricted to control of rocket engines. It can be applied to any system where structural durability is an important issue.

  3. Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants

    NASA Astrophysics Data System (ADS)

    Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver

    2017-01-01

    On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.

  4. A linearized microstructural model for hydraulic conductivity evolution due to brittle damage: application to Hydraulic Fracturing treatments

    NASA Astrophysics Data System (ADS)

    Caramiello, G.; Montanino, A.; Della Vecchia, G., Sr.; Pandolfi, A., Sr.

    2017-12-01

    Among the features of geological structures, fractures and discontinuities play a dominant role, due to their significant influence on both the hydraulic and the mechanical behavior of the rock mass. Despite the current availability of fault and fracture mappings, the understanding of the influence of faults on fluid flow is nowadays not satisfactory, in particular when hydro-mechanical coupling is significant. In engineering technology fracture processes are often exploited. Hydraulic fracturing is one of the most important example. Hydraulic fracturing is a process characterized by the inception and propagation of fractures as a consequence of a hydraulic driven solicitation and it is used to improve the production and optimize well stimulation in low permeability reservoirs. Due to the coupling of several different phenomena (hydro-thermo-chemical coupling) there is not a reliable complete mathematical model able to simulate in a proper way the process. To design hydraulic fracturing treatments, it is necessary to predict the growth of fracture geometry as a function of treatment parameters. In this contribution we present a recently developed model of brittle damage of confined rock masses, with particular emphasis on the influence of mechanical damage on the evolution of porosity and permeability. The model is based on an explicit micromechanical construction of connected patterns of parallel equi-spaced cracks. A relevant feature of the model is that the fracture patterns are not arbitrary, but their inception, orientation and spacing follow from energetic consideration. The model, based on the Terzaghi effective stress concepts, has been then implemented into a coupled hydro-mechanical finite element code, where the linear momentum and the fluid mass balance equations are numerically solved via a staggered approach. The coupled code is used to simulate fracturing processes induced by an increase in pore pressure. The examples show the capability of the model in reproducing three-dimensional multiscale complex fracture patterns and permeability enhancement in the damaged porous medium. The numerical code, has been used to verify the influence of the distance between the different perforation slots as well of the wellbore-deviation from the minimum stress axis on the propagation of multiple.

  5. Thiamine Deficiency Induced Neurochemical, Neuroanatomical, and Neuropsychological Alterations: A Reappraisal

    PubMed Central

    Höller, Yvonne; Storti, Monica; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2013-01-01

    Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans. PMID:24235882

  6. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  7. Biomaterial-based delivery for skeletal muscle repair

    PubMed Central

    Cezar, Christine A.; Mooney, David J.

    2015-01-01

    Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  9. Management of complications of cosmetic iris implants in a phakic eye: a case report and literature review.

    PubMed

    Bore, Millicent; Choudhari, Nikhil; Chaurasia, Sunita

    2018-03-21

    To report the intricacies of managing complications that arose out of cosmetic iris implants (BrightOcular) placement. Interventional case report. A thirty-year-old gentleman presented with complaint of progressive loss of vision after having cosmetic iris implant surgery to change his eye colour. He then developed raised intraocular pressures and had a right eye trabeculectomy conducted with the implants in situ. Subsequently, he had implant removal surgery because of persistent implant-associated complications. The vision was impaired due to progressive corneal oedema and glaucoma. Various considerations were taken while planning for surgical intervention because of the extensive structural damage to the anterior segment of the eye. This case report highlights that cosmetic iris implants are dangerous intraocular devices and management of the associated complications is also challenging. As these devices cause irreversible structural and functional damage, their use should be discouraged in normal eyes.

  10. Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    PubMed

    Horton, Sarah J; Giotopoulos, George; Yun, Haiyang; Vohra, Shabana; Sheppard, Olivia; Bashford-Rogers, Rachael; Rashid, Mamunur; Clipson, Alexandra; Chan, Wai-In; Sasca, Daniel; Yiangou, Loukia; Osaki, Hikari; Basheer, Faisal; Gallipoli, Paolo; Burrows, Natalie; Erdem, Ayşegül; Sybirna, Anastasiya; Foerster, Sarah; Zhao, Wanfeng; Sustic, Tonci; Petrunkina Harrison, Anna; Laurenti, Elisa; Okosun, Jessica; Hodson, Daniel; Wright, Penny; Smith, Ken G; Maxwell, Patrick; Fitzgibbon, Jude; Du, Ming Q; Adams, David J; Huntly, Brian J P

    2017-09-01

    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.

  11. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function.

    PubMed

    Shinomol, George Kunnel; Raghunath, Narayanareddy; Bharath, Muchukunte Mukunda Srinivas; Muralidhara

    2013-03-01

    Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.

  12. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  13. Massive bone allograft: a salvage procedure for complex bone loss due to high-velocity missiles--a long-term follow-up.

    PubMed

    Salai, M; Volks, S; Blankstein, A; Chechik, A; Amit, Y; Horosowski, H

    1990-07-01

    The treatment of high-velocity missile injury to the limbs is often associated with segmental bone loss, as well as damage to neurovascular and soft tissue. In such "limb threatening" cases, massive bone allograft can fill the bone defect and offer stability to the soft tissue reconstruction. The return of function in the affected limb is relatively rapid when using this method as a primary procedure. The indications for use of this technique and illustrative case reports are presented and discussed.

  14. A MATLAB/Simulink based GUI for the CERES Simulator

    NASA Technical Reports Server (NTRS)

    Valencia, Luis H.

    1995-01-01

    The Clouds and The Earth's Radiant Energy System (CERES) simulator will allow flight operational familiarity with the CERES instrument prior to launch. It will provide a CERES instrument simulation facility for NASA Langley Research Center. NASA Goddard Space Flight Center and TRW. One of the objectives of building this simulator would be for use as a testbed for functionality checking of atypical memory uploads and for anomaly investigation. For instance, instrument malfunction due to memory damage requires troubleshooting on a simulator to determine the nature of the problem and to find a solution.

  15. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  16. High-speed imaging and small-scale explosive characterization techniques to understand effects of primary blast-induced injury on nerve cell structure and function

    NASA Astrophysics Data System (ADS)

    Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.

    2018-01-01

    Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.

  17. Diffuse vascular damage in a transplanted kidney: an indication for nuclear magnetic resonance?

    PubMed

    Burdese, M; Consiglio, V; Mezza, E; Savio, D; Guarena, C; Rossetti, M; Messina, M; Soragna, G; Suriani, C; Rabbia, C; Segoloni, G P; Piccoli, G B

    2005-06-01

    Vascular lesions are an increasing challenge after renal transplantation due to the wider indications for recipients and acceptance criteria for donors. Diagnostic approach and prognostic interpretation are still matter of controversy. The case reported herein may summarize some of the issues in this regard. A 54-year-old woman, on renal replacement therapy since 1974, and a kidney graft recipient from 1975 to 1999, received a second graft in 2001. The donor age was 65 years (cold ischemia 22 hours; two mismatches). The early posttransplant follow-up was characterized by delayed graft function, hypertension, and diabetes. During the initial hypertension workup, renal graft ultrasound (US) Doppler demonstrated increased vascular resistances, stable over time (resistance index 0.74 to 0.77); renal scintiscan displayed homogeneously parenchymoa and angio-magnetic resonance imaging (MRI), an homogeneous parenchymal vascularization. Initial immunosuppression with tacrolimus and steroids was modulated by adding mycophenolate mofetil to taper tacrolimus (to reduce nephrotoxicity and hypertension). Despite this, kidney function slowly deteriorated; serum creatinine reached 3 to 3.5 mg/dL by the second year. After a severe hypertensive crisis with unchanged scintiscan and US doppler examinations, angio-MRI revealed the almost complete disappearance of parenchymal enhancement beyond the lobar arteries. A renal biopsy confirmed the severe vascular damage. The patient was switched to rapamycine and a low-dose of an angiotension converting enzyme (ACE) inhibitor. She did relatively well (serum creatinine 2.2 to 3 mg/dL) for 6 months, when rapid functional impairment forced her to restart hemodialysis. This case, almost paradigmatic of the problems occurring when the rigid vasculature of long-term dialysis patients is matched with "marginal kidneys," suggests that MRI may be a sensible good to define vascular damage in the grafted kidney.

  18. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia.

    PubMed

    Zendedel, Adib; Habib, Pardes; Dang, Jon; Lammerding, Leoni; Hoffmann, Stefanie; Beyer, Cordian; Slowik, Alexander

    2015-01-15

    Omega-3 polyunsaturated fatty acids (PUFA n3) provide neuroprotection due to their anti-inflammatory and anti-apoptotic properties as well as their regulatory function on growth factors and neuronal plasticity. These qualities enable PUFA n3 to ameliorate stroke outcome and limit neuronal damage. Young adult male rats received transient middle cerebral artery occlusion (tMCAO). PUFA n3 were intravenously administered into the jugular vein immediately after stroke and 12h later. We analyzed stroke volume and behavioral performance as well as the regulation of functionally-relevant genes in the penumbra. The extent of ischemic damage was reduced and behavioral performance improved subject to applied PUFA n3. Expression of Tau and growth-associated protein-43 genes were likewise restored. Ischemia-induced increase of cytokine mRNA levels was abated by PUFA n3. Using an in vitro approach, we demonstrate that cultured astroglial and microglia directly respond to PUFA n3 administration by preventing ischemia-induced increase of cyclooxygenase 2, hypoxia-inducible factor 1alpha, inducible nitric oxide synthase, and interleukin 1beta. Cultured cortical neurons also appeared as direct targets, since PUFA n3 shifted the Bcl-2-like protein 4 (Bax)/B-cell lymphoma 2 (Bcl 2) ratio towards an anti-apoptotic constellation. Thus, PUFA n3 reveal a high neuroprotective and anti-inflammatory potential in an acute ischemic stroke model by targeting astroglial and microglial function as well as improving neuronal survival strategies. Our findings signify the potential clinical feasibility of PUFA n3 therapeutic treatment in stroke and other acute neurological diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Damaged Object: A "Strange Attractor" in the Dynamical System of the Mind

    ERIC Educational Resources Information Center

    Shulman, Graham

    2010-01-01

    This article discusses the impact of the damaged object on the development and functioning of psychic life with particular reference to the sense of reality. The damaged object is of pivotal significance in Klein's and Winnicott's models of psychic development and experience in early infancy. A key dimension of the development and functioning of…

  20. An overview of road damages due to flooding: Case study in Kedah state, Malaysia

    NASA Astrophysics Data System (ADS)

    Ismail, Muhd Shahril Nizam; Ghani, Abdul Naser Abdul

    2017-10-01

    Flooding occurs frequently in many countries including Malaysia. Floods in Malaysia are usually due to heavy and prolonged rainfall, uncontrolled development, and drainage systems that are not being monitored. Road damage due to flooding event can cause huge expenditures for the post-flooding rehabilitation and maintenance. The required maintenance and rehabilitation could upset the original life cycle cost estimations. Data on road statistics were obtained from the Highway Planning Division, Ministry of Works Malaysia and data on flooding was collected from the Department of Irrigation and Drainage Malaysia for events between 2012 and 2015. The pilot sites were selected based on its historical cases of floods that caused road damages in Kedah. The pilot site indicated that the impact of flooding on road infrastructures systems can be used to plan better road design and maintenances. It also revealed that it costs more than RM 1 million to reinstate roads damaged by flooding in a typical district annually.

  1. ANSI/AIAA S-081A, Pressure Vessel Standards Implementation Guidelines

    NASA Technical Reports Server (NTRS)

    Greene, Nathanael J.

    2009-01-01

    The stress rupture specification for Composite Overwrapped Pressure Vessels (COPV) is discussed. The composite shell of the COPV shall be designed to meet the design life considering the time it is under sustained load. A Mechcanical Damage Control Plan (MDCP) shall be created and implemented that assures the COPV will not fail due to mechanical damage due to manufacturing, testing, shipping, installation, or flight. Proven processes and procedures for fabrication and repair shall be used to preclude damage or material degradation during material processing, manufacturing operations, and refurbushment.Selected NDI techniques for the liner and/or boss(es) shall be performed before overwrapping with composite. When visual inspection reveals mechanical damage or defects exceeding manufacturing specification levels (and standard repair procedures), the damaged COPV shall be submitted to a material review board (MRB) for disposition. Every COPV shall be subjected to visual and other non-destructive inspection (NDI), per the inspection plan.

  2. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  3. Mitochondria damage checkpoint in apoptosis and genome stability.

    PubMed

    Singh, Keshav K

    2004-11-01

    Mitochondria perform multiple cellular functions including energy production, cell proliferation and apoptosis. Studies described in this paper suggest a role for mitochondria in maintaining genomic stability. Genomic stability appears to be dependent on mitochondrial functions involved in maintenance of proper intracellular redox status, ATP-dependent transcription, DNA replication, DNA repair and DNA recombination. To further elucidate the role of mitochondria in genomic stability, I propose a mitochondria damage checkpoint (mitocheckpoint) that monitors and responds to damaged mitochondria. Mitocheckpoint can coordinate and maintain proper balance between apoptotic and anti-apoptotic signals. When mitochondria are damaged, mitocheckpoint can be activated to help cells repair damaged mitochondria, to restore normal mitochondrial function and avoid production of mitochondria-defective cells. If mitochondria are severely damaged, mitocheckpoint may not be able to repair the damage and protect cells. Such an event triggers apoptosis. If damage to mitochondria is continuous or persistent such as damage to mitochondrial DNA resulting in mutations, mitocheckpoint may fail which can lead to genomic instability and increased cell survival in yeast. In human it can cause cancer. In support of this proposal we provide evidence that mitochondrial genetic defects in both yeast and mammalian systems lead to impaired DNA repair, increased genomic instability and increased cell survival. This study reveals molecular genetic mechanisms underlying a role for mitochondria in carcinogenesis in humans.

  4. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress*

    PubMed Central

    Kemp, Michael G.; Sancar, Aziz

    2016-01-01

    ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens. PMID:26940878

  5. [Meniscal lesion. A pre-osteoarthritic condition of the knee joint].

    PubMed

    Goebel, L; Reinhard, J; Madry, H

    2017-10-01

    A close relationship between meniscal damage and articular cartilage exist. Likewise, (partial) meniscectomy may lead to the development of osteoarthritis (OA). With a special emphasis on therapeutic consequences for orthopaedic surgeons, the structural and functional relationship between meniscal tears/extrusion and cartilage loss, and/or the effect of meniscectomy or meniscal repair on the development of OA, are emphasized. A selective literature review with implementation of own research findings. The close topographical and functional interplay between the menisci and the tibiofemoral cartilage is the basis for the clinically important relationship between meniscal damage and cartilage degeneration. In particular, due to its close connection to tibiofemoral OA, a degenerative meniscal lesion represents a pre-osteoarthritic condition. Meniscus extrusion is also often associated with tibiofemoral OA. Even large cartilage defects can cause meniscus lesions. Partial meniscectomy is strongly associated with the incidence and risk of progression of OA. Clinical results are particularly problematic after partial resection of the lateral meniscus. Although the use of arthroscopic partial resection for degenerative meniscal lesions has been controversially discussed, no long-term studies are available. A large number of studies emphasize the medium-term value of meniscus reconstruction compared to partial meniscus resection. Combined meniscus and cartilage damage are complex cases, and the value of a simultaneous therapy remains unclear. Preserving the meniscus is the first step towards cartilage repair. Randomized and controlled studies will provide better information on the long-term outcomes of meniscal resection and repair with regard to OA development.

  6. A unified phase-field theory for the mechanics of damage and quasi-brittle failure

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying

    2017-06-01

    Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young's modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement curve and crack paths both agree well with the experimental data, showing validity of the proposed phase-field theory for the modeling of damage and quasi-brittle failure in solids.

  7. 32 CFR 751.7 - Claims not payable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Loss or damage to property to the extent of any available insurance coverage. Except for claims for loss or damage to household goods or privately-owned vehicles (POVS) while shipped or stored at... quality. (h) Loss or damage to property due to negligence of the claimant. Negligence is a failure to...

  8. 32 CFR 751.7 - Claims not payable.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Loss or damage to property to the extent of any available insurance coverage. Except for claims for loss or damage to household goods or privately-owned vehicles (POVS) while shipped or stored at... quality. (h) Loss or damage to property due to negligence of the claimant. Negligence is a failure to...

  9. 32 CFR 751.7 - Claims not payable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Loss or damage to property to the extent of any available insurance coverage. Except for claims for loss or damage to household goods or privately-owned vehicles (POVS) while shipped or stored at... quality. (h) Loss or damage to property due to negligence of the claimant. Negligence is a failure to...

  10. 32 CFR 751.7 - Claims not payable.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Loss or damage to property to the extent of any available insurance coverage. Except for claims for loss or damage to household goods or privately-owned vehicles (POVS) while shipped or stored at... quality. (h) Loss or damage to property due to negligence of the claimant. Negligence is a failure to...

  11. 32 CFR 751.7 - Claims not payable.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Loss or damage to property to the extent of any available insurance coverage. Except for claims for loss or damage to household goods or privately-owned vehicles (POVS) while shipped or stored at... quality. (h) Loss or damage to property due to negligence of the claimant. Negligence is a failure to...

  12. 77 FR 4646 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ...), damage due to sharp bends and kinking or deterioration, insulation cracking, evidence of heat damage to the insulation, and chafing. The unsafe condition is the loss of ice protection systems for the angle... heat damage to the insulation, and chafing) and do all applicable repairs, in accordance with the...

  13. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of priority air pollutants.

  14. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  15. Two-dimensional nonlinear finite element analysis of well damage due to reservoir compaction, well-to-well interactions, and localization on weak layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.

    1996-05-01

    In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less

  16. Radioresistance of GGG Sequences to Prompt Strand Break Formation from Direct-Type Radiation Damage

    PubMed Central

    Black, Paul J.; Miller, Adam S.; Hayes, Jeffrey J.

    2016-01-01

    Purpose As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. Materials and methods To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. Results We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines, and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. Conclusions These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation. PMID:27349757

  17. Damaging effects of visible light. Comprehensive progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-01-01

    Research progress is reported on studies of retinal light damage. A myriad of variables effect the production of light damage. These include age, prior light history, body temperature, vitamin A status, intensity, wavelength and duration of light. The intensity-duration function and the age function have been studied in detail in rats. Studies have been begun on the wavelength variable. (ACR)

  18. Safety of statins.

    PubMed

    Brown, William Virgil

    2008-12-01

    To examine the evidence for the adverse effects that have been reported during the use of statins. We now have over twenty years of prescription use and many large well controlled trials with statin therapy for hypercholesterolemia. There is only one significant and well documented adverse effect with this group of drugs, rhabdomyolysis. Significant muscle damage is very rare when statin therapy is used in patients carefully screened for concomitant use of other drugs which may interfere with statin catabolism and excretion. Patients with severely impaired liver function are also at risk due to the importance of hepatic excretion of all statins. Chronic myalgias or other pain syndromes have not been confirmed by blinded placebo controlled trials. A significant and reproducible rise in liver enzymes (alanine and aspartate aminotransferases) is observed in 1 to 3% of patients but actual liver damage may not occur at all. Benign and transient proteinuria occurs without evidence of altered renal function. Creatinine clearance is usually increased by statins. Peripheral neuropathy may be a rare adverse effect and this needs further study. Statins are very effective at reducing the incidence of myocardial infarction, stroke and other manifestations of vascular disease. The adverse event rates are very uncommon and the benefit risk ratio is extremely high.

  19. Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes.

    PubMed

    Zou, Ying; Zhao, Mouming; Yang, Kun; Lin, Lianzhu; Wang, Yong

    2017-08-15

    The black garlic juice is popular for its nutritive value. Enrichment of antioxidants is needed to make black garlic extract an effective functional ingredient. Five macroporous resins were evaluated for their capacity in adsorbing antioxidants in black garlic juice. XAD-16 resin was chosen for further study due to its high adsorption and desorption ratios. Pseudo-second-order kinetics (q e =625μmol Trolox equiv/g dry resin, k 2 =0.0001463) and Freundlich isotherm models (ΔH=-10.1547kJ/mol) were suitable for describing the whole exothermic and physical adsorption processes of the antioxidants from black garlic juice on XAD-16 resin. The antioxidants and phenolics were mostly enriched in 40% ethanol fraction by XAD-16 resin column chromatography. The black garlic extract and its fractions could protect erythrocytes against AAPH-induced hemolysis in dose-dependent manners. The pretreatment of AAPH-damaged erythrocytes with 40% ethanol fractions (2.5mg/mL) significantly decreased the hemolysis ratios from 53.58% to 3.79%. The 40% ethanol fraction possessing strong intracellular antioxidant activity could be used as a functional food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 3

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chin-Yere; Onyebueke, Landon

    1996-01-01

    Structural failure is rarely a "sudden death" type of event, such sudden failures may occur only under abnormal loadings like bomb or gas explosions and very strong earthquakes. In most cases, structures fail due to damage accumulated under normal loadings such as wind loads, dead and live loads. The consequence of cumulative damage will affect the reliability of surviving components and finally causes collapse of the system. The cumulative damage effects on system reliability under time-invariant loadings are of practical interest in structural design and therefore will be investigated in this study. The scope of this study is, however, restricted to the consideration of damage accumulation as the increase in the number of failed components due to the violation of their strength limits.

  1. Flood damage estimation of companies: A comparison of Stage-Damage-Functions and Random Forests

    NASA Astrophysics Data System (ADS)

    Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno

    2017-04-01

    The development of appropriate flood damage models plays an important role not only for the damage assessment after an event but also to develop adaptation and risk mitigation strategies. So called Stage-Damage-Functions (SDFs) are often applied as a standard approach to estimate flood damage. These functions assign a certain damage to the water depth depending on the use or other characteristics of the exposed objects. Recent studies apply machine learning algorithms like Random Forests (RFs) to model flood damage. These algorithms usually consider more influencing variables and promise to depict a more detailed insight into the damage processes. In addition they provide an inherent validation scheme. Our study focuses on direct, tangible damage of single companies. The objective is to model and validate the flood damage suffered by single companies with SDFs and RFs. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The model outputs are validated via a comparison with the actual flood damage acquired by the surveys and subsequently compared with each other. This study investigates the gain in model performance with the use of additional data and the advantages and disadvantages of the RFs compared to SDFs. RFs show an increase in model performance with an increasing amount of data records over a comparatively large range, while the model performance of the SDFs is already saturated for a small set of records. In addition, the RFs are able to identify damage influencing variables, which improves the understanding of damage processes. Hence, RFs can slightly improve flood damage predictions and provide additional insight into the underlying mechanisms compared to SDFs.

  2. Some dissociating factors in the analysis of structural and functional progressive damage in open-angle glaucoma.

    PubMed

    Hudson, C J W; Kim, L S; Hancock, S A; Cunliffe, I A; Wild, J M

    2007-05-01

    To identify the presence, and origin, of any "dissociating factors" inherent to the techniques for evaluating progression that mask the relationship between structural and functional progression in open-angle glaucoma (OAG). 23 patients (14 with OAG and 9 with ocular hypertension (OHT)) who had received serial Heidelberg Retina Tomograph (HRT II) and Humphrey Field Analyser (HFA) examinations for >or=5 years (mean 78.4 months (SD 9.5), range 60-101 months) were identified. Evidence of progressive disease was retrospectively evaluated in one eye of each patient using the Topographic Change Analysis (TCA) and Glaucoma Progression Analysis (GPA) for the HRT II and HFA, respectively. Six patients were stable by both techniques; four exhibited both structural and functional progression; seven exhibited structural progression, only, and six showed functional progression, only. Three types of dissociating factors were identified. TCA failed to identify progressive structural damage in the presence of advanced optic nerve head damage. GPA failed to identify progressive functional damage at stimulus locations, with sensitivities exhibiting test-retest variability beyond the maximum stimulus luminance of the perimeter, and where a perimetric learning effect was apparent. The three dissociating factors accounted for nine of the 13 patients who exhibited a lack of concordance between structural and functional progressive damage.

  3. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2018-05-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  4. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2017-11-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  5. Re-examining the cause of the "Damage Belt" during the 1995 Kobe Earthquake

    NASA Astrophysics Data System (ADS)

    Matsushima, S.; Miyake, H.

    2017-12-01

    The 1995 Kobe earthquake caused devastating disaster which killed 6434 people and collapsed more than 1 million houses. The heavy damage was concentrated in a belt-like area, which was called the "Damage Belt". The cause of the "Damage Belt" was investigated by various researchers and it was found that it was a result of "The Basin-Edge Effect", which is the constructive interference of the direct S-wave with the basin-induced diffracted Rayleigh waves (Kawase, 1996). Matsushima and Kawase (2009) estimated the rupture model of the 1995 Kobe Earthquake by using 3-D reciprocal Green's functions and searching for the best fitting case by grid-search technique assuming plural rectangular strong motion generation areas (SMGAs) and succeeded to reproduce the high PGV area that corresponds to the "Damage Belt". In this study, we re-examine the cause of the "Damage Belt" by combining the estimated rupture model with the up-to-date 3-D velocity structure. The velocity structure of whole Japan has been modeled and is being modified occasionally by the Headquarters for Earthquake Research Promotion using the geological surveys conducted thoroughly by local governments as well as by large research projects since 1995. The very detailed velocity structure of the Osaka basin has been modeled by the Geological Survey of Japan, AIST (Horikawa et al., 2003; Sekiguchi et al., 2008). The aim of this study is to take in account of the different amplification characteristics due to the different velocity structure of the sediment from the seismic bedrock to the surface in Kobe, and investigate its effect to the results of the distribution of PGVs of the simulated ground motions.

  6. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

    DOE PAGES

    Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...

    2014-11-25

    Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less

  7. Detection of damage in welded structure using experimental modal data

    NASA Astrophysics Data System (ADS)

    Abu Husain, N.; Ouyang, H.

    2011-07-01

    A typical automotive structure could contain thousands of spot weld joints that contribute significantly to the vehicle's structural stiffness and dynamic characteristics. However, some of these joints may be imperfect or even absent during the manufacturing process and they are also highly susceptible to damage due to operational and environmental conditions during the vehicle lifetime. Therefore, early detection and estimation of damage are important so necessary actions can be taken to avoid further problems. Changes in physical parameters due to existence of damage in a structure often leads to alteration of vibration modes; thus demonstrating the dependency between the vibration characteristics and the physical properties of structures. A sensitivity-based model updating method, performed using a combination of MATLAB and NASTRAN, has been selected for the purpose of this work. The updating procedure is regarded as parameter identification which aims to bring the numerical prediction to be as closely as possible to the measured natural frequencies and mode shapes data of the damaged structure in order to identify the damage parameters (characterised by the reductions in the Young's modulus of the weld patches to indicate the loss of material/stiffness at the damage region).

  8. Sex estimation in a modern American osteological sample using a discriminant function analysis from the calcaneus.

    PubMed

    DiMichele, Daniel L; Spradley, M Katherine

    2012-09-10

    Reliable methods for sex estimation during the development of a biological profile are important to the forensic community in instances when the common skeletal elements used to assess sex are absent or damaged. Sex estimation from the calcaneus has potentially significant importance for the forensic community. Specifically, measurements of the calcaneus provide an additional reliable method for sex estimation via discriminant function analysis based on a North American forensic population. Research on a modern American sample was chosen in order to develop up-to-date population specific discriminant functions for sex estimation. The current study addresses this matter, building upon previous research and introduces a new measurement, posterior circumference that promises to advance the accuracy of use of this single, highly resistant bone in future instances of sex determination from partial skeletal remains. Data were collected from The William Bass Skeletal Collection, housed at The University of Tennessee. Sample size includes 320 adult individuals born between the years 1900 and 1985. The sample was comprised of 136 females and 184 males. Skeletons used for measurements were confined to those with fused diaphyses showing no signs of pathology or damage that may have altered measurements, and that also had accompanying records that included information on ancestry, age, and sex. Measurements collected and analyzed include maximum length, load-arm length, load-arm width, and posterior circumference. The sample was used to compute a discriminant function, based on all four variables, and was performed in SAS 9.1.3. The discriminant function obtained an overall cross-validated classification rate of 86.69%. Females were classified correctly in 88.64% of the cases and males were correctly classified in 84.75% of the cases. Due to the increasing heterogeneity of current populations further discussion on this topic will include the importance that the re-evaluation of past studies has on modern forensic populations. Due to secular and micro evolutionary changes among populations, the near future must include additional methods being updated, and new methods being examined, both which should cover a wide population spectrum. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    PubMed

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  10. [A comparative study of the renal damage produced after the extracorporeal shock wave lithotripsy according to the lithiasis location].

    PubMed

    Cancho Gil, Ma J; Díz Rodríguez, R; Vírseda Chamorro, M; Alpuente Román, C; Cabrera Cabrera, J A; Paños Lozano, P

    2005-04-01

    The Extracorporeal shock waves lithotripsy (ESWL) is fundamental in the treatment of lithiasis. However, there are evidences that it can produce renal damage. The objective of our study is to determine the degree of affectation of the glomerular and tubular function after ESWL, and the influence of the lithiasis location on the type of renal damage. A prospective longitudinal study was carried out in 14 patients with normal renal function subjected to ESWL. We determined the basal level, and the levels at the 24 hours, at the 4th and the 10th day post ESWL of: microalbuminuria (MA) (that values the glomerular function), and N-acetyl glucosamide (NAG) and alanine aminopeptidase (AAP), (that value the tubular function). The basal levels of of MA, NAG and AAP didn't show significant differences in connection with the localization of the stones. A significant increase was observed of the three parameters only 24 hours post ESWL. No significant differences were observed between the variation of the microalbuminuria levels, AAP and NAG and the treatment in relation to the localization of the stones. It exists a glomerular and tubular damage after ESWL. This damage is not related with the pelvic or calicial location of the stones. In patient with previous normal renal function, the renal damage recovers at the 4th day post ESWL.

  11. Functional and Physical Outcomes following Use of a Flexible CO2 Laser Fiber and Bipolar Electrocautery in Close Proximity to the Rat Sciatic Nerve with Correlation to an In Vitro Thermal Profile Model

    PubMed Central

    Robinson, A. M.; Fishman, A. J.; Bendok, B. R.; Richter, C.-P.

    2015-01-01

    This study compared functional and physical collateral damage to a nerve when operating a Codman MALIS Bipolar Electrosurgical System CMC-III or a CO2 laser coupled to a laser, with correlation to an in vitro model of heating profiles created by the devices in thermochromic ink agarose. Functional damage of the rat sciatic nerve after operating the MALIS or CO2 laser at various power settings and proximities to the nerve was measured by electrically evoked nerve action potentials, and histology of the nerve was used to assess physical damage. Thermochromic ink dissolved in agarose was used to model the spatial and temporal profile of the collateral heating zone of the electrosurgical system and the laser ablation cone. We found that this laser can be operated at 2 W directly above the nerve with minimal damage, while power settings of 5 W and 10 W resulted in acute functional and physical nerve damage, correlating with the maximal heating cone in the thermochromic ink model. MALIS settings up to 40 (11 W) did not result in major functional or physical nerve damage until the nerve was between the forceps tips, correlating with the hottest zone, localized discretely between the tips. PMID:25699266

  12. Field and airborne spectral characterization of suspected damage in red spruce (picea rubens) from Vermont

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Vogelmann, J. E.; Williams, D. L.

    1985-01-01

    The utilization of remote sensing to monitor forest damage due to acid deposition is investigated. Spectral and water measurements and aircraft radiance data of red spruce and balsam fir, collected in Camels Hump Mountain and Ripton, Vermont between August 13-20, 1984, are analyzed to evaluate the damage levels of the trees. Variations in reflectance features and canopy moisture content are studied. It is observed that damage correlates with elevation (greater damage at higher elevations); xylem water column tension is greater at higher damage sites; and a 'blue shift' is indicated in the spectral data at high damage sites.

  13. Study on the Aging Behaviors of Rubber Materials in Tension and Compression Loads

    NASA Astrophysics Data System (ADS)

    Jiang, Can; Wang, Hongyu; Ma, Xiaobing

    Rubber materials are widely used in aviation, aerospace, shipbuilding, automobile and other military field. However, rubber materials are easy to aging, which largely restricts its using life. In working environment, due to the combined effect of heat and oxygen, vulcanized rubber will undergo degradation and crosslinking reaction which will cause elasticity decease and permanent deformation, so mostly rubber products are used under stress state. Due to the asymmetric structure and asymmetric stress distribution, mechanical stress may cause serious damage to molecular structure; therefore, this paper is aimed to analyze the aging behavior of rubber materials under tensile and compressive loadings, through analyzing experiment data, and adopting Gauss function to describe stress relaxation coefficient, to build an aging equation containing compression ratio parameter and aging time.

  14. Damage detection and isolation via autocorrelation: a step toward passive sensing

    NASA Astrophysics Data System (ADS)

    Chang, Y. S.; Yuan, F. G.

    2018-03-01

    Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into passive sensing applied on the aircraft during operation.

  15. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors.

    PubMed

    Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio

    2015-08-24

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..

  16. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury.

    PubMed

    Shi, Hong; Wang, Hai-Lian; Pu, Hong-Jian; Shi, Ye-Jie; Zhang, Jia; Zhang, Wen-Ting; Wang, Guo-Hua; Hu, Xiao-Ming; Leak, Rehana K; Chen, Jun; Gao, Yan-Qin

    2015-04-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity, and neuroinflammation were assessed. Ethyl pyruvate improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 day post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent antiinflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Ethyl pyruvate confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation, and long-lasting brain damage. © 2014 John Wiley & Sons Ltd.

  17. The Effects of Aging on Pulmonary Oxidative Damage, Protein Nitration and Extracellular Superoxide Dismutase Down-Regulation During Systemic Inflammation

    PubMed Central

    Starr, Marlene E; Ueda, Junji; Yamamoto, Shoji; Evers, B. Mark; Saito, Hiroshi

    2011-01-01

    Systemic inflammatory response syndrome (SIRS), a serious clinical condition characterized by whole body inflammation, is particularly threatening for elderly patients who suffer much higher mortality rates than the young. A major pathological consequence of SIRS is acute lung injury caused by neutrophil-mediated oxidative damage. Previously, we reported an increase in protein tyrosine nitration (a marker of oxidative/nitrosative damage), and a decrease in antioxidant enzyme, extra-cellular superoxide dismutase (EC-SOD), in the lungs of young mice during endotoxemia-induced SIRS. Here we demonstrate that during endotoxemia, down-regulation of EC-SOD is significantly more profound and prolonged, while up-regulation of iNOS is augmented in aged compared to young mice. Aged mice also showed 2.5-fold higher protein nitration levels, compared to young mice, with particularly strong nitration in the pulmonary vascular endothelium during SIRS. Additionally, by 2-dimensional gel electrophoresis, Western blotting and mass spectrometry, we identified proteins which show increased tyrosine nitration in age- and SIRS-dependent manners; these proteins (profilin-1, transgelin-2, LASP 1, tropomyosin and myosin) include components of the actin cytoskeleton responsible for maintaining pulmonary vascular permeability. Reduced EC-SOD in combination with increased oxidative/nitrosative damage and altered cytoskeletal protein function due to tyrosine nitration may contribute to augmented lung injury in the aged with SIRS. PMID:21092756

  18. Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice.

    PubMed

    Chen, Yulin; Yang, Runan; Guo, Peng; Ju, Zhenyu

    2014-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM(-/-)) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM(-/-) HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM(-/-) mice. Instead, ATM and Gadd45a double knockout (ATM(-/-) Gadd45a(-/-)) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM(-/-) HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM(-/-) Gadd45a(-/-) HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM(-/-) Gadd45a(-/-) mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM(-/-) mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM(-/-) HSCs.

  19. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  20. On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material

    PubMed Central

    Momeni Shahraki, Narjes; Fatemi, Ali; Goel, Vijay K.; Agarwal, Anand

    2015-01-01

    Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions. PMID:26090359

  1. Brain heating induced by near-infrared lasers during multiphoton microscopy

    PubMed Central

    Ranganathan, Gayathri

    2016-01-01

    Two-photon imaging and optogenetic stimulation rely on high illumination powers, particularly for state-of-the-art applications that target deeper structures, achieve faster measurements, or probe larger brain areas. However, little information is available on heating and resulting damage induced by high-power illumination in the brain. In the current study we used thermocouple probes and quantum dot nanothermometers to measure temperature changes induced by two-photon microscopy in the neocortex of awake and anaesthetized mice. We characterized heating as a function of wavelength, exposure time, and distance from the center of illumination. Although total power is highest near the surface of the brain, heating was most severe hundreds of micrometers below the focal plane, due to heat dissipation through the cranial window. Continuous illumination of a 1-mm2 area produced a peak temperature increase of ∼1.8°C/100 mW. Continuous illumination with powers above 250 mW induced lasting damage, detected with immunohistochemistry against Iba1, glial fibrillary acidic protein, heat shock proteins, and activated caspase-3. Higher powers were usable in experiments with limited duty ratios, suggesting an approach to mitigate damage in high-power microscopy experiments. PMID:27281749

  2. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers

    DOE PAGES

    Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; ...

    2013-07-31

    A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore » this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less

  3. Vitamin C prevents zidovudine-induced NAD(P)H oxidase activation and hypertension in the rat.

    PubMed

    Papparella, Italia; Ceolotto, Giulio; Berto, Laura; Cavalli, Maurizio; Bova, Sergio; Cargnelli, Gabriella; Ruga, Ezia; Milanesi, Ornella; Franco, Lorenzo; Mazzoni, Martina; Petrelli, Lucia; Nussdorfer, Gastone G; Semplicini, Andrea

    2007-01-15

    Cardiovascular risk is increased among HIV-infected patients receiving antiretroviral therapy due to the development of hypertension and metabolic abnormalities. In this study, we investigated the effects of long-term treatment with zidovudine (AZT) and vitamin C, alone and in combination, on blood pressure and on the chain of events linking oxidative stress to cardiac damage in the rat. Six adult Wistar Kyoto rats received AZT (1 mg/ml) in the drinking water for 8 months, six vitamin C (10 g/kg of food) and AZT, six vitamin C alone, and six served as controls. AZT increased systolic blood pressure, expression of gp91(phox) and p47(phox) subunits of NAD(P)H oxidase, and protein kinase C (PKC) delta activation and reduced antioxidant power of plasma and cardiac homogenates. AZT also caused morphological alterations in cardiac myocyte mitochondria, indicative of functional damage. All of these effects were prevented by vitamin C. Chronic AZT administration increases blood pressure and promotes cardiovascular damage through a NAD(P)H oxidase-dependent mechanism that involves PKC delta. Vitamin C antagonizes these adverse effects of AZT in the cardiovascular system.

  4. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    PubMed

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  5. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in bending using dynamic mechanical analysis (DMA). Simple, theory-based analyses indicate that numerous cracks are present before testing due to thermal expansion mismatches, and during testing, these cracks must be healing. Extending healable composites to include healable fiber-matrix interfaces is discussed as future work and interfacial healing characterization approaches are considered.

  6. Correlation of Particle-Induced Displacement Damage in Silicon

    NASA Astrophysics Data System (ADS)

    Summers, G. P.; Burke, E. A.; Dale, C. J.; Wolicki, E. A.; Marshall, P. W.; Gehlhausen, M. A.

    1987-12-01

    Correlation is made between the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons. These measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7 - 175 MeV protons, 4.3 - 37 MeV deuterons, and 16.8 - 65 MeV helium ions. Long term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered. The main conclusions of the work are as follows: 1) The ratio of the displacement damage factors for a given charged particle to the 1 MeV equivalent neutron damage factor, as a function of energy, falls on a common curve which is independent of collector current. 2) Deuterons of a given energy are about twice as damaging as protons and helium ions are about eighteen times as damaging as protons.

  7. Analysis of linear elasticity and non-linearity due to plasticity and material damage in woven and biaxial braided composites

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak

    Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.

  8. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    PubMed

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing.

    PubMed

    Wedel, Sophia; Manola, Maria; Cavinato, Maria; Trougakos, Ioannis P; Jansen-Dürr, Pidder

    2018-05-19

    Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.

  10. Applying stochastic small-scale damage functions to German winter storms

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-03-01

    Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes.

  11. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses.

    PubMed

    Takada, Saeko; Collins, Eric R; Kurahashi, Kayo

    2015-05-15

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. © 2015 Takada et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M

    2016-03-31

    Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.

  13. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein

    PubMed Central

    Ng, Jessica M.Y.; Vermeulen, Wim; van der Horst, Gijsbertus T.J.; Bergink, Steven; Sugasawa, Kaoru; Vrieling, Harry; Hoeijmakers, Jan H.J.

    2003-01-01

    Primary DNA damage sensing in mammalian global genome nucleotide excision repair (GG-NER) is performed by the xeroderma pigmentosum group C (XPC)/HR23B protein complex. HR23B and HR23A are human homologs of the yeast ubiquitin-domain repair factor RAD23, the function of which is unknown. Knockout mice revealed that mHR23A and mHR23B have a fully redundant role in NER, and a partially redundant function in embryonic development. Inactivation of both genes causes embryonic lethality, but appeared still compatible with cellular viability. Analysis of mHR23A/B double-mutant cells showed that HR23 proteins function in NER by governing XPC stability via partial protection against proteasomal degradation. Interestingly, NER-type DNA damage further stabilizes XPC and thereby enhances repair. These findings resolve the primary function of RAD23 in repair and reveal a novel DNA-damage-dependent regulation mechanism of DNA repair in eukaryotes, which may be part of a more global damage-response circuitry. PMID:12815074

  14. Permeability recovery of damaged water sensitive core using ultrasonic waves.

    PubMed

    Khan, Nasir; Pu, Chunsheng; Li, Xu; He, Yanlong; Zhang, Lei; Jing, Cheng

    2017-09-01

    It is imperative to recover the well productivity lose due to formation damage nearby wellbore during variant well operations. Some indispensable issues in conventional techniques make ultrasonic technology more attractive due to simple, reliable, favorable, cost-effective, and environment friendly nature. This study proposes the independent and combined use of ultrasonic waves and chemical agents for the treatment of already damaged core samples caused by exposure to distilled water. Results elucidate that ultrasonic waves with optimum (20kHz, 1000W) instead of maximum frequency and power worked well in the recovery owing to peristaltic transport caused by matching of natural frequency with acoustic waves frequency. In addition, hundred minutes was investigated as optimum irradiation time which provided ample time span to detach fine loosely suspended particles. However, further irradiation adversely affected the damaged permeability recovery. Moreover, permeability improvement attributes to cavitation due to ultrasonic waves propagation through fluid contained in porous medium and thermal energy generated by three different ways. Eventually, experimental outcomes indicated that maximum (25.3%) damaged permeability recovery was witnessed by applying ultrasonic waves with transducer #2 (20kHz and 1000W) and optimum irradiation timeframe (100min). This recovery was further increased to 45.8% by applying chemical agent and optimum ultrasonic waves simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Effects of Brain Damage on Visual Functioning in Children.

    ERIC Educational Resources Information Center

    Alexander, P. K.

    1990-01-01

    The review of research concluded that, although brain damage affects visual functioning, the prognosis for good functional vision after remedial intervention is better than previously thought. Although electrodiagnostic testing was found to be valuable, use of a combination of tests is recommended to obtain the most complete picture of brain…

  16. Defective motion processing in children with cerebral visual impairment due to periventricular white matter damage.

    PubMed

    Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D

    2012-07-01

    We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.

  17. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase--effect of food matrix and processing on efficacy.

    PubMed

    Lavelli, V; Sri Harsha, P S C; Ferranti, P; Scarafoni, A; Iametti, S

    2016-03-01

    Type-2 diabetes is continuously increasing worldwide. Hence, there is a need to develop functional foods that efficiently alleviate damage due to hyperglycaemia complications while meeting the criteria for a sustainable food processing technology. Inhibition of mammalian α-amylase and α-glucosidase was studied for white grape skin samples recovered from wineries and found to be higher than that of the drug acarbose. In white grape skins, quercetin and kaempferol derivatives, analysed by UPLC-DAD-MS, and the oligomeric series of catechin/epicatechin units and their gallic acid ester derivatives up to nonamers, analysed by MALDI-TOF-MS were identified. White grape skin was then used for enrichment of a tomato puree (3%) and a flat bread (10%). White grape skin phenolics were found in the extract obtained from the enriched foods, except for the higher mass proanthocyanidin oligomers, mainly due to their binding to the matrix and to a lesser extent to heat degradation. Proanthocyanidin solubility was lower in bread, most probably due to formation of binary proanthocyanin/protein complexes, than in tomato puree where possible formation of ternary proanthocyanidin/protein/pectin complexes can enhance solubility. Enzyme inhibition by the enriched foods was significantly higher than for unfortified foods. Hence, this in vitro approach provided a platform to study potential dietary agents to alleviate hyperglycaemia damage and suggested that grape skin phenolics could be effective even if the higher mass proanthocyanidins are bound to the food matrix.

  18. Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in-situ electrical resistivity

    NASA Astrophysics Data System (ADS)

    Hubert, Christian; Voss, Kay Obbe; Bender, Markus; Kupka, Katharina; Romanenko, Anton; Severin, Daniel; Trautmann, Christina; Tomut, Marilena

    2015-12-01

    Due to its excellent thermo-physical properties and radiation hardness, isotropic graphite is presently the most promising material candidate for new high-power ion accelerators which will provide highest beam intensities and energies. Under these extreme conditions, specific accelerator components including production targets and beam protection modules are facing the risk of degradation due to radiation damage. Ion-beam induced damage effects were tested by irradiating polycrystalline, isotropic graphite samples at the UNILAC (GSI, Darmstadt) with 4.8 MeV per nucleon 132Xe, 150Sm, 197Au, and 238U ions applying fluences between 1 × 1011 and 1 × 1014 ions/cm2. The overall damage accumulation and its dependence on energy loss of the ions were studied by in situ 4-point resistivity measurements. With increasing fluence, the electric resistivity increases due to disordering of the graphitic structure. Irradiated samples were also analyzed off-line by means of micro-indentation in order to characterize mesoscale effects such as beam-induced hardening and stress fields within the specimen. With increasing fluence and energy loss, hardening becomes more pronounced.

  19. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    PubMed

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-05-01

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers.

    PubMed

    Del Bó, Cristian; Riso, Patrizia; Campolo, Jonica; Møller, Peter; Loft, Steffen; Klimis-Zacas, Dorothy; Brambilla, Ada; Rizzolo, Anna; Porrini, Marisa

    2013-03-01

    It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation.

    PubMed

    Gurley, Kay E; Ashley, Amanda K; Moser, Russell D; Kemp, Christopher J

    2017-11-01

    Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdc scid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdc scid/scid /Trp53 -/- mice died earliest due to severe GI-ARS. While both Prkdc scid/scid and Prkdc scid/scid /Trp53 -/- mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdc scid/scid /Trp53 -/- mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.

  2. Landslide risk analysis: a multi-disciplinary methodological approach

    NASA Astrophysics Data System (ADS)

    Sterlacchini, S.; Frigerio, S.; Giacomelli, P.; Brambilla, M.

    2007-11-01

    This study describes an analysis carried out within the European community project "ALARM" (Assessment of Landslide Risk and Mitigation in Mountain Areas, 2004) on landslide risk assessment in the municipality of Corvara in Badia, Italy. This mountainous area, located in the central Dolomites (Italian Alps), poses a significant landslide hazard to several man-made and natural objects. Three parameters for determining risk were analysed as an aid to preparedness and mitigation planning: event occurrence probability, elements at risk, and the vulnerability of these elements. Initially, a landslide hazard scenario was defined; this step was followed by the identification of the potential vulnerable elements, by the estimation of the expected physical effects, due to the occurrence of a damaging phenomenon, and by the analysis of social and economic features of the area. Finally, a potential risk scenario was defined, where the relationships between the event, its physical effects, and its economic consequences were investigated. People and public administrators with training and experience in local landsliding and slope processes were involved in each step of the analysis. A "cause-effect" correlation was applied, derived from the "dose-response" equation initially used in the biological sciences and then adapted by economists for the assessment of environmental risks. The relationship was analysed from a physical point of view and the cause (the natural event) was correlated to the physical effects, i.e. the aesthetic, functional, and structural damage. An economic evaluation of direct and indirect damage was carried out considering the assets in the affected area (i.e., tourist flows, goods, transport and the effect on other social and economic activities). This study shows the importance of indirect damage, which is as significant as direct damage. The total amount of direct damage was estimated in 8 913 000 €; on the contrary, indirect damage ranged considerably from 2 840 000 to 9 350 000 €, depending on the selected temporal scenario and the expected closing time of the potentially affected structures. The multi-disciplinary approach discussed in this study may assist local decision makers in determining the nature and magnitude of the expected losses due to a dangerous event, which can be anticipated in a given study area, during a specified time period. Besides, a preventive knowledge of the prospective physical effects and economic consequences may help local decision makers to choose the best prevention and mitigation options and to decide how to allocate resources properly, so that potential benefits are maximised at an acceptable cost.

  3. Scalable Algorithms for Global Scale Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Vatsavai, R. R.; Bhaduri, B. L.; Singh, N.

    2015-12-01

    Recent decade has witnessed major changes on the Earth, for example, deforestation, varying cropping and human settlement patterns, and crippling damages due to disasters. Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to the growing population, as well as human migration to the disaster prone regions of the world. Rapid assessment of these changes and dissemination of accurate information is critical for creating an effective emergency response. Change detection using high-resolution satellite images is a primary tool in assessing damages, monitoring biomass and critical infrastructures, and identifying new settlements. Existing change detection methods suffer from registration errors and often based on pixel (location) wise comparison of spectral observations from single sensor. In this paper we present a novel probabilistic change detection framework based on patch comparison and a GPU implementation that supports near real-time rapid damage exploration capability.

  4. Damage accumulation of bovine bone under variable amplitude loads.

    PubMed

    Campbell, Abbey M; Cler, Michelle L; Skurla, Carolyn P; Kuehl, Joseph J

    2016-12-01

    Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μ ϵ ), brittle due to high cyclic amplitude loading (> 9000 μ ϵ ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μ ϵ ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.

  5. Effects of moisture, residual thermal curing stresses and mechanical load on the damage development in quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Kriz, R. D.; Stinchcomb, W. W.; Tenney, D. R.

    1980-01-01

    Classical laminate theory and a finite element model were used to predict stress states prior to the first formation of damage in laminates fabricated from T/300/5208. Crack patterns characteristic of the laminate in a wet or dry condition were also predicted using a shear lag model. Development of edge damage was recorded and observed during the test by transferring an image of the damage from the edge surface on to a thin acetate sheet such that the damage imprinted could be immediately viewed on a microfiche card reader. Moisture was shown to significantly alter the interior and edge dry stress states due to swelling and a reduction of elastic properties and to reduce the transverse strength in 90 deg plies. A model was developed in order to predict changes in first ply failure laminate loads due to differences in stacking sequence together with a wet or dry environmental condition.

  6. Biological damage of UV radiation in environments of F-type stars

    NASA Astrophysics Data System (ADS)

    Sato, Satoko

    I investigate the general astrobiological significance of F-type main-sequence stars with special consideration to stellar evolutionary aspects due to nuclear evolution. DNA is taken as a proxy for carbon-based macromolecules following the assumption that exobiology is most likely based on hydrocarbons. The DNA action spectrum is utilized to represent the relative damage of the stellar UV radiation. Planetary atmospheric attenuation is taken into account in the form of parameterized attenuation functions. My work is motivated by previous studies indicating that the UV environment of solar-like stars is one of the most critical elements in determining the habitability of exoplanets and exomoons. It contributes further to the exploration of the exobiological suitability of stars that are hotter and emit much higher photospheric UV fluxes than the Sun. I found that the damage inflicted on DNA for planets at Earth-equivalent positions is between 2.5 and 7.1 times higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If atmospheric attenuation is included, however, less damage is obtained in alignment to the attenuation parameters. Also, the outer part of late F-type stars have similar UV conditions to Earth. Therefore, F-type circumstellar environments should not be excluded from candidates for habitable places on the grounds of higher stellar UV emission than the Sun. Besides the extensive theoretical component of this study, emphasis is furthermore placed on applications to observed planetary systems including CoRoT-3, WASP-14, HD 197286, HD 179949, upsilon And, and HD 86264.

  7. Prevention of DNA damage by L-carnitine induced by metabolites accumulated in maple syrup urine disease in human peripheral leukocytes in vitro.

    PubMed

    Mescka, Caroline Paula; Wayhs, Carlos Alberto Yasin; Guerreiro, Gilian; Manfredini, Vanusa; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2014-09-15

    Maple syrup urine disease (MSUD) is an inherited aminoacidopathy caused by a deficiency in branched-chain α-keto acid dehydrogenase complex activity that leads to the accumulation of the branched-chain amino acids (BCAAs) leucine (Leu), isoleucine, and valine and their respective α-keto-acids, α-ketoisocaproic acid (KIC), α keto-β-methylvaleric acid, and α-ketoisovaleric acid. The major clinical features presented by MSUD patients include ketoacidosis, failure to thrive, poor feeding, apnea, ataxia, seizures, coma, psychomotor delay, and mental retardation; however, the pathophysiology of this disease is poorly understood. MSUD treatment consists of a low protein diet supplemented with a mixture containing micronutrients and essential amino acids but excluding BCAAs. Studies have shown that oxidative stress may be involved in the neuropathology of MSUD, with the existence of lipid and protein oxidative damage in affected patients. In recent years, studies have demonstrated the antioxidant role of L-carnitine (L-Car), which plays a central function in cellular energy metabolism and for which MSUD patients have a deficiency. In this work, we investigated the in vitro effect of Leu and KIC in the presence or absence of L-Car on DNA damage in peripheral whole blood leukocytes using the alkaline comet assay with silver staining and visual scoring. Leu and KIC resulted in a DNA damage index that was significantly higher than that of the control group, and L-Car was able to significantly prevent this damage, mainly that due to KIC. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 48 CFR 422.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Contract Work Hours and Safety... authorized to review determinations of liquidated damages due under section 104(c) of the Contract Work Hours...

  9. 48 CFR 422.302 - Liquidated damages and overtime pay.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SOCIOECONOMIC PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Contract Work Hours and Safety... authorized to review determinations of liquidated damages due under section 104(c) of the Contract Work Hours...

  10. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  11. Inducing amnesia through systemic suppression

    PubMed Central

    Hulbert, Justin C.; Henson, Richard N.; Anderson, Michael C.

    2016-01-01

    Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589

  12. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    PubMed Central

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function. PMID:26413126

  13. Telomeres and Mitochondria in the Aging Heart

    PubMed Central

    Moslehi, Javid; DePinho, Ronald A.; Sahin, Ergün

    2013-01-01

    Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1β in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging. PMID:22539756

  14. Normalized coffin-manson plot in terms of a new life function based on stress relaxation under creep-fatigue conditions

    NASA Astrophysics Data System (ADS)

    Jeong, Chang Yeol; Nam, Soo Woo; Lim, Jong Dae

    2003-04-01

    A new life prediction function based on a model formulated in terms of stress relaxation during hold time under creep-fatigue conditions is proposed. From the idea that reduction in fatigue life with hold is due to the creep effect of stress relaxation that results in additional energy dissipation in the hysteresis loop, it is suggested that the relaxed stress range may be a creep-fatigue damage function. Creep-fatigue data from the present and other investigators are used to check the validity of the proposed life prediction equation. It is shown that the data satisfy the applicability of the life relation model. Accordingly, using this life prediction model, one may realize that all the Coffin-Manson plots at various levels of hold time in strain-controlled creep-fatigue tests can be normalized to make one straight line.

  15. Determinants of respiratory pump function in patients with cystic fibrosis.

    PubMed

    Dassios, Theodore

    2015-01-01

    Respiratory failure constitutes the major cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Respiratory failure could either be due to lung parenchyma damage or to insufficiency of the respiratory pump which consists of the respiratory muscles, the rib cage and the neuromuscular transmission pathways. Airway obstruction, hyperinflation and malnutrition have been historically recognised as the major determinants of respiratory pump dysfunction in CF. Recent research has identified chronic infection, genetic predisposition, dietary and pharmaceutical interventions as possible additional determinants of this impairment. Furthermore, new methodological approaches in assessing respiratory pump function have led to a better understanding of the pathogenesis of respiratory pump failure in CF. Finally, respiratory muscle function could be partially preserved in CF patients with structured interventions such as aerobic exercise, inspiratory muscle training and non-invasive ventilation and CF patients could consequently be relatively protected from respiratory fatigue and respiratory failure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The economics and ethics of aerosol geoengineering strategies

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with the rate of change. Second, the relative contribution of aerosol geoengineering to an economically optimal portfolio hinges critically on deeply uncertain estimates of the damages due to aerosol forcing. Even if we assume that aerosol forcing could be deployed continuously, the aerosol geoengineering does not considerably displace the reduction of greenhouse gas emissions in the simple economic optimal growth model until the damages due to the aerosol forcing are rather low. Third, deploying aerosol geoengineering may also fail an ethical test regarding issues of intergenerational justice. Substituting aerosol geoengineering for reducing greenhouse gas emissions constitutes a conscious risk transfer to future generations, for example due to the increased risk of future abrupt climate change. This risk transfer is in tension with the requirement of intergenerational justice that present generations should not create benefits for themselves in exchange for burdens on future generations.

  17. Research study on high energy radiation effect and environment solar cell degradation methods

    NASA Technical Reports Server (NTRS)

    Horne, W. E.; Wilkinson, M. C.

    1974-01-01

    The most detailed and comprehensively verified analytical model was used to evaluate the effects of simplifying assumptions on the accuracy of predictions made by the external damage coefficient method. It was found that the most serious discrepancies were present in heavily damaged cells, particularly proton damaged cells, in which a gradient in damage across the cell existed. In general, it was found that the current damage coefficient method tends to underestimate damage at high fluences. An exception to this rule was thick cover-slipped cells experiencing heavy degradation due to omnidirectional electrons. In such cases, the damage coefficient method overestimates the damage. Comparisons of degradation predictions made by the two methods and measured flight data confirmed the above findings.

  18. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building

    PubMed Central

    Wang, Xiang; Hutchinson, Tara C.; Astroza, Rodrigo; Conte, Joel P.; Restrepo, José I.; Hoehler, Matthew S.; Ribeiro, Waldir

    2016-01-01

    SUMMARY This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design. PMID:28242957

  19. Impacts of climate change on coastal flood risk in England and Wales: 2030-2100.

    PubMed

    Hall, Jim W; Sayers, Paul B; Walkden, Mike J A; Panzeri, Mike

    2006-04-15

    Coastal flood risk is a function of the probability of coastal flooding and the consequential damage. Scenarios of potential changes in coastal flood risk due to changes in climate, society and the economy over the twenty-first century have been analysed using a national-scale quantified flood risk analysis methodology. If it is assumed that there will be no adaptation to increasing coastal flood risk, the expected annual damage in England and Wales due to coastal flooding is predicted to increase from the current 0.5 billion pounds to between 1.0 pound and 13.5 billion pounds, depending on the scenario of climate and socio-economic change. The proportion of national flood risk that is attributable to coastal flooding is projected to increase from roughly 50% to between 60 and 70%. Scenarios of adaptation to increasing risk, by construction of coastal dikes or retreat from coastal floodplains, are analysed. These adaptations are shown to be able to reduce coastal flood risk to between 0.2 pounds and 0.8 billion pounds. The capital cost of the associated coastal engineering works is estimated to be between 12 pounds and 40 billion pounds. Non-structural measures to reduce risk can make a major contribution to reducing the cost and environmental impact of engineering measures.

  20. The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree.

    PubMed

    de la Fuente, Marie Ann S; Marquis, Robert J

    1999-02-01

    One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack.

  1. Quantification of the degradation of Ni-YSZ anodes upon redox cycling

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.

    2018-01-01

    Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.

  2. Shake Table Testing of an Elevator System in a Full-Scale Five-Story Building.

    PubMed

    Wang, Xiang; Hutchinson, Tara C; Astroza, Rodrigo; Conte, Joel P; Restrepo, José I; Hoehler, Matthew S; Ribeiro, Waldir

    2017-03-01

    This paper investigates the seismic performance of a functional traction elevator as part of a full-scale five-story building shake table test program. The test building was subjected to a suite of earthquake input motions of increasing intensity, first while the building was isolated at its base, and subsequently while it was fixed to the shake table platen. In addition, low-amplitude white noise base excitation tests were conducted while the elevator system was placed in three different configurations, namely, by varying the vertical location of its cabin and counterweight, to study the acceleration amplifications of the elevator components due to dynamic excitations. During the earthquake tests, detailed observation of the physical damage and operability of the elevator as well as its measured response are reported. Although the cabin and counterweight sustained large accelerations due to impact during these tests, the use of well-restrained guide shoes demonstrated its effectiveness in preventing the cabin and counterweight from derailment during high-intensity earthquake shaking. However, differential displacements induced by the building imposed undesirable distortion of the elevator components and their surrounding support structure, which caused damage and inoperability of the elevator doors. It is recommended that these aspects be explicitly considered in elevator seismic design.

  3. BK virus associated pronounced hemorrhagic cystoureteritis after bone marrow transplantation.

    PubMed

    Haab, Alexander C; Keller, Isabelle S; Padevit, Christian; John, Hubert

    2015-10-01

    Ureteral stenosis due to reactivation of the BK virus (BKV) in a state of immunodeficiency is very rare. More common is the appearance of a hemorrhagic cystitis. This report not only shows bilateral ureteral stenosis after bone marrow transplantation, but also presents severe complications as chronic pelvic pain and impaired kidney function as well as irreparable damage to the whole urinary tract leading to nephroureterectomy, subtrigonal cystectomy and orthotopic ileal neobladder. Finally renal transplantation was required. To our knowledge this is the first case in the literature where such a severe course of BKV associated hemorrhagic cystoureteritis is described.

  4. Optical sensor for heat conduction measurement in biological tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez-Arroyo, A.; Sanchez-Perez, C.; Aleman-Garcia, N.

    2013-06-01

    This paper presents the design of a heat flux sensor using an optical fiber system to measure heat conduction in biological tissues. This optoelectronic device is based on the photothermal beam deflection of a laser beam travelling in an acrylic slab this deflection is measured with a fiber optic angle sensor. We measure heat conduction in biological samples with high repeatability and sensitivity enough to detect differences in tissues from three chicken organs. This technique could provide important information of vital organ function as well as the detect modifications due to degenerative diseases or physical damage caused by medications or therapies.

  5. Strength and failure of a damaged material

    DOE PAGES

    Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.; ...

    2015-09-07

    Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less

  6. Strength and failure of a damaged material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.

    Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less

  7. Docosahexaenoic acid augments hypothermic neuroprotection in a neonatal rat asphyxia model.

    PubMed

    Berman, Deborah R; Mozurkewich, Ellen; Liu, Yiqing; Shangguan, Yu; Barks, John D; Silverstein, Faye S

    2013-01-01

    In neonatal rats, early post-hypoxia-ischemia (HI) administration of the omega-3 fatty acid docosahexaenoic acid (DHA) improves sensorimotor function, but does not attenuate brain damage. To determine if DHA administration in addition to hypothermia, now standard care for neonatal asphyxial brain injury, attenuates post-HI damage and sensorimotor deficits. Seven-day-old (P7) rats underwent right carotid ligation followed by 90 min of 8% O2 exposure. Fifteen minutes later, pups received injections of DHA 2.5 mg/kg (complexed to 25% albumin) or equal volumes of albumin. After a 1-hour recovery, pups were cooled (3 h, 30°C). Sensorimotor and pathology outcomes were initially evaluated on P14. In subsequent experiments, sensorimotor function was evaluated on P14, P21, and P28; histopathology was assessed on P28. At P14, left forepaw function scores (normal: 20/20) were near normal in DHA + hypothermia-treated animals (mean ± SD 19.7 ± 0.7 DHA + hypothermia vs. 12.7 ± 3.5 albumin + hypothermia, p < 0.0001) and brain damage was reduced (mean ± SD right hemisphere damage 38 ± 17% with DHA + hypothermia vs. 56 ± 15% with albumin + hypothermia, p = 0.003). Substantial improvements on three sensorimotor function measures and reduced brain damage were evident up to P28. Unlike post-HI treatment with DHA alone, treatment with DHA + hypothermia produced both sustained functional improvement and reduced brain damage after neonatal HI. Copyright © 2013 S. Karger AG, Basel.

  8. MDC1: The art of keeping things in focus.

    PubMed

    Jungmichel, Stephanie; Stucki, Manuel

    2010-08-01

    The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.

  9. Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats.

    PubMed

    Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K; Razdan, Rema; Inamdar, Mohammed N; Rizwan, Mohammed; Mathew, Jubin; Inceoglu, Bora; Stephen Lee, Kin S; Hwang, Sung H; Hammock, Bruce D

    2017-06-01

    We designed a study to evaluate the cardioprotective effect of two soluble epoxide hydrolase (sEH) inhibitors, 1-(1-propanoylpiperidin-4-yl)-3-(4-trifluoromethoxy)phenyl)urea (TPPU) and trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB), in ischemia-reperfusion (IR) model. Cardioprotective effects of the sEH inhibitors were evaluated against IR-induced myocardial damage in hearts from normal, hypertensive, and diabetic rats using Langendorff's apparatus. In addition, the effect of sEH inhibitors on endothelial function was evaluated in vitro and ex vivo using isolated rat thoracic aorta. Ischemia-reperfusion (IR) increased the myocardial damage in hearts from normal rats. IR-induced myocardial damage was augmented in hearts isolated from hypertensive and diabetic rats. Myocardial damage as evident from increase in the activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in heart perfusate was associated with significant decrease in the heart rate and developed tension, and increase in the resting tension in isolated heart. Both sEH inhibitors protected the heart in normal, hypertensive, and diabetic rats subjected to IR injury. The sEH inhibitor t-TUCB relaxed phenylephrine precontracted aorta from normal rats. Relaxant effect of acetylcholine (ACh) was reduced in aortas from diabetic and hypertensive rats compared to normal rats. Pretreatment of sEH inhibitors to diabetic and hypertensive rats increased relaxant effect of ACh on aortas isolated from these rats. Prophylactic treatment with sEH inhibitors decreased myocardial damage due to IR, hypertension and diabetes, and decreased endothelial dysfunction created by diabetes and hypertension. Therefore, inhibitors of sEH are useful probes to study cardiovascular pathology, and inhibition of the sEH is a potential approach in the management of IR-induced cardiac damage and endothelial dysfunction-related cardiovascular disorders. © 2017 John Wiley & Sons Ltd.

  10. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo.

    PubMed

    Giacci, Marcus K; Bartlett, Carole A; Smith, Nicole M; Iyer, K Swaminathan; Toomey, Lillian M; Jiang, Haibo; Guagliardo, Paul; Kilburn, Matt R; Fitzgerald, Melinda

    2018-06-18

    Loss of function following injury to the central nervous system is worsened by secondary degeneration of neurons and glia surrounding the injury and initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semi-quantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 days after injury. Injury led to increases in DNA, protein and lipid damage in OPCs and mature oligodendrocytes at 3 days, regardless of proliferative state, associated with a decline in the numbers of OPCs at 7 days. O4+ pre-oligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8OHdG immunoreactivity were more likely to be caspase3+. By day 28, newly derived mature oligodendrocytes had significantly reduced MYRF mRNA indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridisation have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivo. SIGNIFICANCE STATEMENT Injury to the central nervous system is characterised by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridisation investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced MYRF mRNA, yet pre-existing oligodendrocytes are more likely to die. Copyright © 2018 the authors.

  11. An association of cocoa consumption with improved physical fitness and decreased muscle damage and oxidative stress in athletes.

    PubMed

    González-Garrido, José A; García-Sánchez, José R; Garrido-Llanos, Silvia; Olivares-Corichi, Ivonne M

    2017-04-01

    Several studies have demonstrated the protective effects of cocoa consumption, due to its anti-inflammatory and antioxidant properties. Acute exercise induces oxidative stress and causes muscular damage during training. This study was designed to examine the effect of cocoa consumption on the markers of muscle damage, oxidative stress and physical fitness in professional soccer players. Fifteen players (15-18 years old) were included in the study. Biochemical parameters, markers of muscle damage and oxidative stress, and physical performance were evaluated before and after cocoa consumption. Biochemical parameters determined the healthy metabolic status of the study group; biomarkers of muscle and oxidative damage were measured in blood to establish muscle and redox status. However, high levels of biomarkers of muscle damage were detected. Interestingly, cocoa consumption decreased the muscle damage biomarkers of CK and LDH by 39.4% and 23.03%, respectively. The redox status was modified by a decrease in oxidative damage (carbonyl groups, 26.31%; thiol groups, 27.52%; MDA, 32.42%) and an increase in total antioxidant capacity (15.98%) and GSH-Px activity (26.37%). In addition, we observed an increase in physical performance by 4% in the Cooper Test. Our findings suggest that a short period of cocoa consumption could be useful in maintaining a good physical fitness, due to the favourable effects on muscle and redox status in athletes during exhaustive exercise.

  12. 30 CFR 281.47 - Cancellation of leases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cause serious harm or damage to life (including fish and other aquatic life), to property, to any... partners to exercise due diligence, the innocent parties shall have the right to seek damages for such loss...

  13. Smart Coatings for Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  14. Corrosion Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  15. RNF168 forms a functional complex with RAD6 during the DNA damage response

    PubMed Central

    Liu, Chao; Wang, Degui; Wu, Jiaxue; Keller, Jennifer; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Summary Protein ubiquitination plays an important role in initiating the DNA damage response. Following DNA damage, E2 ubiquitin conjugating enzymes are crucial for catalyzing substrate ubiquitination that recruits downstream DNA repair factors to DNA lesions. To identify novel E2 conjugating enzymes important for initiating the DNA-damage-induced ubiquitination cascade, we screened most of the known E2 enzymes and found that RAD6A and RAD6B function together with RNF168 in the ionizing radiation (IR)-induced DNA damage response. Similarly to RNF168-deficient cells, RAD6A- or RAD6B-deficient cells exhibit a reduction in DNA-damage-induced protein ubiquitination. Correspondingly, DNA-damage-induced foci formation of DNA damage repair proteins, such as BRCA1 and 53BP1, is impaired in the absence of RAD6A or RAD6B. Moreover, the RNF168–RAD6 complex targeted histone H1.2 for ubiquitination in vitro and regulated DNA-damage-induced histone H1.2 ubiquitination in vivo. Collectively, these data demonstrate that RNF168, in complex with RAD6A or RAD6B, is activated in the DNA-damage-induced protein ubiquitination cascade. PMID:23525009

  16. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    NASA Astrophysics Data System (ADS)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  17. Hypercaloric Diet Establishes Erectile Dysfunction in Rat: Mechanisms Underlying the Endothelial Damage

    PubMed Central

    de Souza, Iara L. L.; Barros, Bárbara C.; de Oliveira, Giuliana A.; Queiroga, Fernando R.; Toscano, Lydiane T.; Silva, Alexandre S.; Silva, Patrícia M.; Interaminense, Leylliane F. L.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.

    2017-01-01

    Obesity is characterized by an excessive increase in body mass, leading to endothelial damage that may favor the development of erectile dysfunction (ED). ED is defined as the inability to achieve or maintain a penile erection long enough to have a sexual intercourse. In this context, different ED models were developed, however the high price of special animals or the long period to establish the disease has limited studies in this field. Therefore, this study proposed to establish and characterize a novel model of ED in rats associated to a hypercaloric diet consumption. Animals were randomly divided into control group (CG), which received a standard diet, and obese group (OG), fed with a hypercaloric diet during 8 weeks. Rat's erectile function was evaluated in vivo and in vitro. Food and caloric intake of OG were reduced compared to CG, due to an increased diet energy efficiency. However, OG presented an increased body mass, inguinal, retroperitoneal and epididymal adipose tissues, as well as body adiposity index at the end of experimental protocol. In erectile function analysis, there was a decrease in the number and the latency of penile erections in OG. Additionally, the contractile reactivity of corpus cavernosum was increased in OG, favoring penile detumescence and related to a reduced nitric oxide bioavailability and an increased in contractile prostaglandins levels as a consequence of endothelial damage. Moreover, the endothelium-relaxation reactivity of corpus cavernosum was attenuated in OG associated to the oxidative stress. Thus, it was provided a model for advances in sexual dysfunction field and drug discovery for ED treatment. PMID:29085300

  18. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair

    PubMed Central

    Olszewska-Pazdrak, Barbara; McVicar, Scott D.; Rayavara, Kempaiah; Moya, Stephanie M.; Kantara, Carla; Gammarano, Chris; Olszewska, Paulina; Fuller, Gerald M.; Sower, Laurie E.; Carney, Darrell H.

    2016-01-01

    There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation. PMID:27388041

  19. Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress.

    PubMed

    Shi, Wei; Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K; Straube, Jasmin; Boyle, Glen M; Al-Ejeh, Fares; Nag, Purba; Jeffery, Jessie; Harris, Janelle L; Bain, Amanda L; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J; Finnie, John; Skaar, Jeffrey R; Walkley, Carl R; Pandita, Tej K; Rowicka, Maga; Ginalski, Krzysztof; Lane, Steven W; Khanna, Kum Kum

    2017-05-04

    Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R -loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. © 2017 by The American Society of Hematology.

  20. Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress

    PubMed Central

    Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K.; Straube, Jasmin; Boyle, Glen M.; Al-Ejeh, Fares; Jeffery, Jessie; Harris, Janelle L.; Bain, Amanda L.; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J.; Finnie, John; Skaar, Jeffrey R.; Walkley, Carl R.; Pandita, Tej K.; Rowicka, Maga; Ginalski, Krzysztof

    2017-01-01

    Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2. Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. PMID:28270450

  1. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress.

    PubMed

    van Galen, Peter; Kreso, Antonija; Mbong, Nathan; Kent, David G; Fitzmaurice, Timothy; Chambers, Joseph E; Xie, Stephanie; Laurenti, Elisa; Hermans, Karin; Eppert, Kolja; Marciniak, Stefan J; Goodall, Jane C; Green, Anthony R; Wouters, Bradly G; Wienholds, Erno; Dick, John E

    2014-06-12

    The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.

  2. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    PubMed

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  3. The Cell's Sophisticated Army to Defend Against Assaults on DNAThe Cell's Sophisticated Army to Defend Against Assaults on DNA | Center for Cancer Research

    Cancer.gov

    The maintenance of genome integrity and function is essen-tial for the survival of cells and organisms. Any damage to our genetic material must be immediately sensed and repaired to preserve a cell’s func-tional integrity. Cells are constantly faced with the challenge of protecting their DNA from assaults by damaging chemicals and ultraviolet light. DNA damage that escapes

  4. Quantifying Damage at Multiple Loading Rates to Kevlar KM2 Fibers Due to Weaving and Finishing

    DTIC Science & Technology

    2013-06-01

    ARL-TR-6465 June 2013 Approved for public release; distribution is unlimited. NOTICES...ARL-TR-6465 June 2013 Quantifying Damage at Multiple Loading Rates to Kevlar KM2 Fibers Due to Weaving and Finishing Brett D. Sanborn...OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) June 2013 2. REPORT TYPE Final 3. DATES

  5. 76 FR 18960 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... unsafe condition is damage to wiring in the wing, center, and trim fuel tanks, due to failed P-clips used..., center, or trim fuel tanks. The proposed AD would require actions that are intended to address the unsafe..., 2009]. The unsafe condition is damage to wiring in the wing, center, and trim fuel tanks, due to failed...

  6. Imperfection and radiation damage in protein crystals studied with coherent radiation

    PubMed Central

    Nave, Colin; Sutton, Geoff; Evans, Gwyndaf; Owen, Robin; Rau, Christoph; Robinson, Ian; Stuart, David Ian

    2016-01-01

    Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage. PMID:26698068

  7. Investigation of shear damage considering the evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Kweon, S.

    2013-12-01

    The damage that occurs in shear deformations in view of anisotropy evolution is investigated. It is widely believed in the mechanics research community that damage (or porosity) does not evolve (increase) in shear deformations since the hydrostatic stress in shear is zero. This paper proves that the above statement can be false in large deformations of simple shear. The simulation using the proposed anisotropic ductile fracture model (macro-scale) in this study indicates that hydrostatic stress becomes nonzero and (thus) porosity evolves (increases or decreases) in the simple shear deformation of anisotropic (orthotropic) materials. The simple shear simulation using a crystal plasticity based damage model (meso-scale) shows the same physics as manifested in the above macro-scale model that porosity evolves due to the grain-to-grain interaction, i.e., due to the evolution of anisotropy. Through a series of simple shear simulations, this study investigates the effect of the evolution of anisotropy, i.e., the rotation of the orthotropic axes onto the damage (porosity) evolution. The effect of the evolutions of void orientation and void shape onto the damage (porosity) evolution is investigated as well. It is found out that the interaction among porosity, the matrix anisotropy and void orientation/shape plays a crucial role in the ductile damage of porous materials.

  8. Wireless and embedded carbon nanotube networks for damage detection in concrete structures

    NASA Astrophysics Data System (ADS)

    Saafi, Mohamed

    2009-09-01

    Concrete structures undergo an uncontrollable damage process manifesting in the form of cracks due to the coupling of fatigue loading and environmental effects. In order to achieve long-term durability and performance, continuous health monitoring systems are needed to make critical decisions regarding operation, maintenance and repairs. Recent advances in nanostructured materials such as carbon nanotubes have opened the door for new smart and advanced sensing materials that could effectively be used in health monitoring of structures where wireless and real time sensing could provide information on damage development. In this paper, carbon nanotube networks were embedded into a cement matrix to develop an in situ wireless and embedded sensor for damage detection in concrete structures. By wirelessly measuring the change in the electrical resistance of the carbon nanotube networks, the progress of damage can be detected and monitored. As a proof of concept, wireless cement-carbon nanotube sensors were embedded into concrete beams and subjected to monotonic and cyclic loading to evaluate the effect of damage on their response. Experimental results showed that the wireless response of the embedded nanotube sensors changes due to the formation of cracks during loading. In addition, the nanotube sensors were able to detect the initiation of damage at an early stage of loading.

  9. Multi-physics modeling of multifunctional composite materials for damage detection

    NASA Astrophysics Data System (ADS)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to predict the mechanical damage behavior with electrical properties and thermal properties.

  10. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    PubMed

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.

  11. A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis

    NASA Astrophysics Data System (ADS)

    Chillara, Vamshi Krishna

    2017-11-01

    We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.

  12. [Comparison of surgical patients with gastroesophageal reflux disease and Barrett's esophagus].

    PubMed

    Zsolt, Simonka; Paszt, Attila; Géczi, Tibor; Abrahám, Szabolcs; Tóth, Illés; Horváth, Zoltán; Pieler, József; Tajti, János; Varga, Akos; Tiszlavicz, László; Németh, István; Izbéki, Ferenc; Rosztóczy, András; Wittmann, Tibor; Lázár, György

    2014-10-01

    Barrett's esophagus (BE) is the only known precursor of adenocarcinoma occuring in the lower third of the esophagus. According to statistics, severity and elapsed time of gastroesophageal reflux disease (GERD) are major pathogenetic factors in the development of Barrett's esophagus. In a retrospective study between 2001 and 2008, we compared the preoperative results (signs and sympthoms, 24 hour pH manometry, esophageal manometry, Bilitec) and treatment efficacy of 176 GERD patients and 78 BE patients, who have undergone laparoscopic Nissen procedure for reflux disease. The two groups of patients had similar demographic features, and elapsed time of reflux sympthoms were also equal. Both groups were admitted for surgery after a median time of 1.5 years (19.87 vs. 19.20 months) of ineffective medical (proton pump inhibitors) treatment. Preoperative functional tests showed a more severe presence of acid reflux in the BE group (DeMeester score 18.9 versus 41.9, p < 0.001). On the other hand, mano-metry - despite confirming lower esophageal sphincter (LES) damage - did not show difference between the two groups (12.10 vs. 12.57 mmHg, p = 0.892). We did not experience any mortality cases with laparoscopic antireflux procedures, although in two cases we had to convert during the operation (1 due to extensive adhesions, and 1 due to injury to the spleen). 3 months after the procedure - according to Visick score - both groups experienced a significant decrease, or lapse in reflux complaints (group I: 73%, group II: 81% of patients), LES functions improved (17.58 vs.18.70 mmHg), and the frequency and exposition of acid reflux decreased (DeMeester score 7.73 vs. 12.72). The severity of abnormal acid reflux occuring parallel with the incompetent function of the damaged LES triggers not only inflammation in the gastroesophageal junction (GEJ), but also metaplastic process, and the development of Barrett's esophagus. Laparoscopic Nissen procedure for reflux disease can further improve outcome among patients with GERD not responding to conservative therapy.

  13. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial.

    PubMed

    Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael

    2013-01-14

    Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. NCT01702597.

  14. Household water demand and welfare loss for future Europe

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; Lanzanova, Denis; de Roo, Ad

    2015-04-01

    Matching the availability of water to its demand in Europe is a major challenge for the future due to expected economic and demographic developments and climate change. This means there is a growing need to estimate future water demand and to optimize the water allocation to all end users to counteract welfare loss. At the European scale it is currently not possible to assess the impact of social and economic changes on future water demand or to prioritize water allocation amongst different sectors based on economic damage without extensive use of assumptions and generalizations. Indeed, our review of existing regional optimization models for Europe reveals that the social-economic component of the water use system needs to be improved by complementing them with detailed water use estimates and cost/benefit functions in order to determine the optimal situation. Our study contributes to closing this knowledge gap for the European household sector by quantifying future water demand and the effect of water pricing, as well as providing a method for the calculation of monetary damage due to unmet demand at the highest spatial resolution possible. We used a water demand function approach in which household water consumption depends upon some exogenous drivers including water price, household income, population and household characteristics and climate conditions. For each European country, the annual water consumption per capita was calculated at regional level (NUTS3) and subsequently disaggregated to five kilometer grid level based on a population density map. In order to produce estimates of water demand, the evolution of the explanatory variables of the water demand functions and population density map were simulated until 2050 based on related variables such as GDP and demographic projections. The results of this study will be integrated into the JRC hydro-economic modelling framework for an assessment of the Water-Agriculture-Energy-Ecosystems Nexus.

  15. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial

    PubMed Central

    2013-01-01

    Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. Trial registration NCT01702597 PMID:23316791

  16. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing.

    PubMed

    Zhou, Xin; Wang, He; Zhang, Jimin; Li, Xuemei; Wu, Yifan; Wei, Yongzhen; Ji, Shenglu; Kong, Deling; Zhao, Qiang

    2017-05-01

    Wound healing dressings are increasingly needed clinically due to the large number of skin damage annually. Nitric oxide (NO) plays a key role in promoting wound healing, thus biomaterials with NO-releasing property receive increasing attention as ideal wound dressing. In present study, we prepared a novel functional wound dressing by combining electrospun poly(ε-caprolactone) (PCL) nonwoven mat with chitosan-based NO-releasing biomaterials (CS-NO). As-prepared PCL/CS-NO dressing released NO sustainably under the physiological conditions, which was controlled by the catalysis of β-galactosidase. In vivo wound healing characteristics were further evaluated on full-thickness cutaneous wounds in mice. Results showed that PCL/CS-NO wound dressings remarkably accelerated wound healing process through enhancing re-epithelialization and granulation formation and effectively improved the organization of regenerated tissues including epidermal-dermal junction, which could be ascribed to the pro-angiogenesis, immunomodulation, and enhanced collagen synthesis provided by the sustained release of NO. Therefore, PCL/CS-NO may be a promising candidate for wound dressings, especially for the chronic wound caused by the ischemia. Serious skin damage caused by trauma, surgery, burn or chronic disease has become one of the most serious clinical problems. Therefore, there is an increasing demand for ideal wound dressing that can improve wound healing. Due to the vital role of nitric oxide (NO), we developed a novel functional wound dressing by combining electrospun polycaprolactone (PCL) mat with NO-releasing biomaterial (CS-NO). The sustained release of NO from PCL/CS-NO demonstrated positive effects on wound healing, including pro-angiogenesis, immunomodulation, and enhanced collagen synthesis. Hence, wound healing process was remarkably accelerated and the organization of regenerated tissues was effectively improved as well. Taken together, PCL/CS-NO dressing may be a promising candidate for wound treatment, especially for the chronic wound caused by the ischemia. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Damage tolerance in filament-wound graphite/epoxy pressure vessels

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Ngueyen, Vinh D.; Chenna, Ravi K.

    1995-01-01

    Graphite/epoxy composites are extensively used in the aerospace and sporting goods industries due to their superior engineering properties compared to those of metals. However, graphite/epoxy is extremely susceptible to impact damage which can cause considerable and sometimes undetected reduction in strength. An inelastic impact model was developed to predict damage due to low-velocity impact. A transient dynamic finite element formulation was used in conjunction with the 3D Tsai-Wu failure criterion to determine and incorporate failure in the materials during impact. Material degradation can be adjusted from no degradation to partial degradation to full degradation. The developed software is based on an object-oriented implementation framework called Extensible Implementation Framework for Finite Elements (EIFFE).

  18. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents

    PubMed Central

    Proctor, Michael; Flaherty, Patrick; Jordan, Michael I; Arkin, Adam P; Davis, Ronald W; Nislow, Corey; Giaever, Guri

    2005-01-01

    The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups. PMID:16121259

  19. Windstorm damage in Boundary Waters Canoe Area Wilderness (Minnesota, USA): Evaluating landscape-level risk factors

    Treesearch

    W. Keith Moser; Mark D. Nelson

    2009-01-01

    Ecosystem management requires an understanding of disturbance processes and their influence on forests. One of these disturbances is damage due to severe wind events. In an ideal model, assessing risk of windstorm damage to a forested ecosystem entails defining tree-, stand-, and landscape-level factors that influence response and recovery. Data are not always...

  20. Nanocrystal ghosting: Extensive radiation damage in MgO induced by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Frankenfield, Zackery; Kane, Kenneth; Sawyer, William H.

    2017-03-01

    We report direct evidence of extensive radiation damage in MgO nanocrystals due to intense bombardment (2 × 10 electrons/nm sec) by electrons with beam energies between 60 keV and 120 keV. Based upon a minimum intensity necessary to produce the observed damage, we present an explanation based on the Knotek-Feibelman process.

Top