Intelligent-based Structural Damage Detection Model
Lee, Eric Wai Ming; Yu, K.F.
2010-05-21
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
Intelligent-based Structural Damage Detection Model
NASA Astrophysics Data System (ADS)
Lee, Eric Wai Ming; Yu, Kin Fung
2010-05-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
NASA Astrophysics Data System (ADS)
Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline
2015-04-01
In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. However, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving
NASA Astrophysics Data System (ADS)
Grelot, Frédéric; Agenais, Anne-Laurence; Brémond, Pauline
2014-05-01
In France, since 2011, it is mandatory for local communities to conduct cost-benefit analysis (CBA) of their flood management projects, to make them eligible for financial support from the State. Meanwhile, as a support, the French Ministry in charge of Environment proposed a methodology to fulfill CBA. Like for many other countries, this methodology is based on the estimation of flood damage. Howerver, existing models to estimate flood damage were judged not convenient for a national-wide use. As a consequence, the French Ministry in charge of Environment launched studies to develop damage models for different sectors, such as: residential sector, public infrastructures, agricultural sector, and commercial and industrial sector. In this presentation, we aim at presenting and discussing methodological choices of those damage models. They all share the same principle: no sufficient data from past events were available to build damage models on a statistical analysis, so modeling was based on expert knowledge. We will focus on the model built for agricultural activities and more precisely for agricultural lands. This model was based on feedback from 30 agricultural experts who experienced floods in their geographical areas. They were selected to have a representative experience of crops and flood conditions in France. The model is composed of: (i) damaging functions, which reveal physiological vulnerability of crops, (ii) action functions, which correspond to farmers' decision rules for carrying on crops after a flood, and (iii) economic agricultural data, which correspond to featured characteristics of crops in the geographical area where the flood management project studied takes place. The two first components are generic and the third one is specific to the area studied. It is, thus, possible to produce flood damage functions adapted to different agronomic and geographical contexts. In the end, the model was applied to obtain a pool of damage functions giving
Distributed Damage Estimation for Prognostics based on Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2011-01-01
Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.
Dynamic brittle material response based on a continuum damage model
Chen, E.P.
1994-12-31
The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.
Model-based damage evaluation of layered CFRP structures
NASA Astrophysics Data System (ADS)
Munoz, Rafael; Bochud, Nicolas; Rus, Guillermo; Peralta, Laura; Melchor, Juan; Chiachío, Juan; Chiachío, Manuel; Bond, Leonard J.
2015-03-01
An ultrasonic evaluation technique for damage identification of layered CFRP structures is presented. This approach relies on a model-based estimation procedure that combines experimental data and simulation of ultrasonic damage-propagation interactions. The CFPR structure, a [0/90]4s lay-up, has been tested in an immersion through transmission experiment, where a scan has been performed on a damaged specimen. Most ultrasonic techniques in industrial practice consider only a few features of the received signals, namely, time of flight, amplitude, attenuation, frequency contents, and so forth. In this case, once signals are captured, an algorithm is used to reconstruct the complete signal waveform and extract the unknown damage parameters by means of modeling procedures. A linear version of the data processing has been performed, where only Young modulus has been monitored and, in a second nonlinear version, the first order nonlinear coefficient β was incorporated to test the possibility of detection of early damage. The aforementioned physical simulation models are solved by the Transfer Matrix formalism, which has been extended from linear to nonlinear harmonic generation technique. The damage parameter search strategy is based on minimizing the mismatch between the captured and simulated signals in the time domain in an automated way using Genetic Algorithms. Processing all scanned locations, a C-scan of the parameter of each layer can be reconstructed, obtaining the information describing the state of each layer and each interface. Damage can be located and quantified in terms of changes in the selected parameter with a measurable extension. In the case of the nonlinear coefficient of first order, evidence of higher sensitivity to damage than imaging the linearly estimated Young Modulus is provided.
Multiple Damage Progression Paths in Model-Based Prognostics
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Goebel, Kai Frank
2011-01-01
Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active
Physics based modeling for time-frequency damage classification
NASA Astrophysics Data System (ADS)
Chakraborty, Debejyo; Soni, Sunilkumar; Wei, Jun; Kovvali, Narayan; Papandreou-Suppappola, Antonia; Cochran, Douglas; Chattopadhyay, Aditi
2008-03-01
We have recently proposed a method for classifying waveforms from healthy and damaged structures in a structural health monitoring framework. This method is based on the use of hidden Markov models with preselected feature vectors obtained from the time-frequency based matching pursuit decomposition. In order to investigate the performance of the classifier for different signal-to-noise ratios (SNR), we simulate the response of a lug joint sample with different crack lengths using finite element modeling (FEM). Unlike experimental noisy data, the modeled data is noise free. As a result, different levels of noise can be added to the modeled data in order to obtain the true performance of the classifier under additive white Gaussian noise. We use the finite element package ABAQUS to simulate a lug joint sample with different crack lengths and piezoelectric sensor signals. A mesoscale internal state variable damage model defines the progressive damage and is incorporated in the macroscale model. We furthermore use a hybrid method (boundary element-finite element method) to model wave reflection as well as mode conversion of the Lamb waves from the free edges and scattering of the waves from the internal defects. The hybrid method simplifies the modeling problem and provides better performance in the analysis of high stress gradient problems.
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Life prediction modeling based on cyclic damage accumulation
NASA Technical Reports Server (NTRS)
Nelson, Richard S.
1988-01-01
A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, where initiation was defined as a 0.030 inch surface length crack. A principal engineering feature of the CDA method is the minimum data base required for implementation. Model constants can be evaluated through a few simple specimen tests such as monotonic loading and rapic cycle fatigue. The method was expanded to account for the effects on creep-fatigue life of complex loadings such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. A significant data base was generated on the behavior of the cast nickel-base superalloy B1900+Hf, including hundreds of specimen tests under such loading conditions. This information is being used to refine and extend the CDA life prediction model, which is now nearing completion. The model is also being verified using additional specimen tests on wrought INCO 718, and the final version of the model is expected to be adaptable to most any high-temperature alloy. The model is currently available in the form of equations and related constants. A proposed contract addition will make the model available in the near future in the form of a computer code to potential users.
A damage model based on singular elastic fields
NASA Astrophysics Data System (ADS)
Leguillon, Dominique
2008-03-01
At re-entrant corners in elastic structures, the stress field is known to increase to infinity following a power law. From the material viewpoint it is paradoxical that it can locally sustain such an overburden. To avoid this paradox we propose a damage model where the Young's modulus of the material decreases (damage) also following a power law and such that the resulting stress field remains bounded. To cite this article: D. Leguillon, C. R. Mecanique 336 (2008).
A relaxation-based approach to damage modeling
NASA Astrophysics Data System (ADS)
Junker, Philipp; Schwarz, Stephan; Makowski, Jerzy; Hackl, Klaus
2016-10-01
Material models, including softening effects due to, for example, damage and localizations, share the problem of ill-posed boundary value problems that yield mesh-dependent finite element results. It is thus necessary to apply regularization techniques that couple local behavior described, for example, by internal variables, at a spatial level. This can take account of the gradient of the internal variable to yield mesh-independent finite element results. In this paper, we present a new approach to damage modeling that does not use common field functions, inclusion of gradients or complex integration techniques: Appropriate modifications of the relaxed (condensed) energy hold the same advantage as other methods, but with much less numerical effort. We start with the theoretical derivation and then discuss the numerical treatment. Finally, we present finite element results that prove empirically how the new approach works.
Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms
NASA Technical Reports Server (NTRS)
Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.
2016-01-01
Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model
A continuous damage model based on stepwise-stress creep rupture tests
NASA Technical Reports Server (NTRS)
Robinson, D. N.
1985-01-01
A creep damage accumulation model is presented that makes use of the Kachanov damage rate concept with a provision accounting for damage that results from a variable stress history. This is accomplished through the introduction of an additional term in the Kachanov rate equation that is linear in the stress rate. Specification of the material functions and parameters in the model requires two types of constituting a data base: (1) standard constant-stress creep rupture tests, and (2) a sequence of two-step creep rupture tests.
Lee, Dock-Jin; Kim, Young-Jin; Kim, Moon-Ki; Choi, Jae-Boong; Chang, Yoon-Suk; Liu, Wing Kam
2011-01-01
New advanced composite materials have recently been of great interest. Especially, many researchers have studied on nano/micro composites based on matrix filled with nano-particles, nano-tubes, nano-wires and so forth, which have outstanding characteristics on thermal, electrical, optical, chemical and mechanical properties. Therefore, the need of numerical approach for design and development of the advanced materials has been recognized. In this paper, finite element analysis based on multi-resolution continuum theory is carried out to predict the anisotropic behavior of nano/micro composites based on damage mechanics with a cell modeling. The cell modeling systematically evaluates constitutive relationships from microstructure of the composite material. Effects of plastic anisotropy on deformation behavior and damage evolution of nano/micro composite are investigated by using Hill's 48 yield function and also compared with those obtained from Gurson-Tvergaard-Needleman isotropic damage model based on von Mises yield function.
Damage evaluation by a guided wave-hidden Markov model based method
NASA Astrophysics Data System (ADS)
Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin
2016-02-01
Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.
Oxidative DNA damage background estimated by a system model of base excision repair
Sokhansanj, B A; Wilson, III, D M
2004-05-13
Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.
Evaluation of Creep-Fatigue Damage Based on Simplified Model Test Approach
Wang, Yanli; Li, Tianlei; Sham, Sam; Jetter, Robert I
2013-01-01
Current methods used in the ASME Code, Subsection NH for the evaluation of creep-fatigue damage are based on the separation of elevated temperature cyclic damage into two parts, creep damage and fatigue damage. This presents difficulties in both evaluation of test data and determination of cyclic damage in design. To avoid these difficulties, an alternative approach was identified, called the Simplified Model Test or SMT approach based on the use of creep-fatigue hold time test data from test specimens with elastic follow-up conservatively designed to bound the response of general structural components of interest. A key feature of the methodology is the use of the results of elastic analysis directly in design evaluation similar to current methods in the ASME Code, Subsection NB. Although originally developed for current material included in Subsection NH, recent interest in the application of Alloy 617 for components operating at very high temperatures has caused renewed interest in the SMT approach because it provides an alternative to the proposed restriction on the use of current Subsection NH simplified methods at very high temperatures. A comprehensive review and assessment of five representative simplified methods for creep-fatigue damage evaluation is presented in Asayama [1]. In this review the SMT methodology was identified as the best long term approach but the need for test data precluded its near term implementation. Asayama and Jetter [2] is a summary of the more comprehensive report by Asayama [1] with a summary of the SMT approach presented by Jetter [3].
NASA Astrophysics Data System (ADS)
Paul, Pijush Kanti
In the fault damage zone modeling study for a field in the Timor Sea, I present a methodology to incorporate geomechanically-based fault damage zones into reservoir simulation. In the studied field, production history suggests that the mismatch between actual production and model prediction is due to preferential fluid flow through the damage zones associated with the reservoir scale faults, which is not included in the baseline petrophysical model. I analyzed well data to estimate stress heterogeneity and fracture distributions in the reservoir. Image logs show that stress orientations are homogenous at the field scale with a strike-slip/normal faulting stress regime and maximum horizontal stress oriented in NE-SW direction. Observed fracture zones in wells are mostly associated with well scale fault and bed boundaries. These zones do not show any anomalies in production logs or well test data, because most of the fractures are not optimally oriented to the present day stress state, and matrix permeability is high enough to mask any small anomalies from the fracture zones. However, I found that fracture density increases towards the reservoir scale faults, indicating high fracture density zones or damage zones close to these faults, which is consistent with the preferred flow direction indicated by interference and tracer test done between the wells. It is well known from geologic studies that there is a concentration of secondary fractures and faults in a damage zone adjacent to larger faults. Because there is usually inadequate data to incorporate damage zone fractures and faults into reservoir simulation models, in this study I utilized the principles of dynamic rupture propagation from earthquake seismology to predict the nature of fractured/damage zones associated with reservoir scale faults. The implemented workflow can be used to more routinely incorporate damage zones into reservoir simulation models. Applying this methodology to a real reservoir utilizing
Damage-based long-term modelling of a large alpine rock slope
NASA Astrophysics Data System (ADS)
Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.
2016-04-01
The morphology and stability of large alpine rock slopes result from the long-term interplay of different factors, following a complex history spanning several glacial cycles over thousands of years in changing morpho-climatic settings. Large rock slopes often experience slow long-term, creep-like movements interpreted as the macroscopic evidence of progressive failure in subcritically stressed rock masses. Slope damage and rock mass weakening associated to deglaciation are considered major triggers of these processes in alpine environments. Depending on rock mass properties, slope topography and removed ice thickness, valley flanks can progressively evolve over time into rockslides showing seasonal displacement trends, interpreted as evidence of hydro-mechanically coupled responses to hydrologic perturbations. The processes linking the long-term evolution of deglaciated rock slopes and their changing sensitivity to hydrologic triggers until rockslide failure, with significant implications in risk management and Early Warning, are not fully understood. We suggest that modelling long-term rock mass damage under changing conditions may provide such a link. We simulated the evolution of the Spriana rock slope (Italian Central Alps). This is affected by a 50 Mm3 rockslide, significantly active since the late 19th century and characterized by massive geological and geotechnical investigations and monitoring during the last decades. Using an improved version of the 2D Finite-Element, damage-based brittle creep model proposed by Amitrano and Helmstetter (2006) and Lacroix and Amitrano (2013), we combined damage and time-to-failure laws to reproduce diffused damage, strain localization and the long-term creep deformation of the slope. The model was implemented for application to real slopes, by accounting for: 1) fractured rock mass properties upscaling based on site characterization data; 2) fluid pressures in a progressive failure context, relating fluid occurrence to
NASA Technical Reports Server (NTRS)
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
NASA Astrophysics Data System (ADS)
Bouchart, Vanessa; Brieu, Mathias; Kondo, Djimedo; Naït-Abdelaziz, Moussa
2008-05-01
The present Note concerns the formulation, implementation and a first application of a micromechanically based hyperelastic damage model. The approach is based on the second order homogenization method proposed by Lopez-Pamies and Ponte Castañeda (2000) for hyperelastic composites and recently developed by Lopez-Pamies and Ponte Castañeda (2007) in the case of porous elastomers. We first implement the method and proceed to its verification by comparison with Finite Element simulations on a unit cell. Taking advantage of this validation and by using standard thermodynamics arguments, we propose an hyperelastic damage model founded on voids growth phenomena. Finally, we provide an example of validation of the model by comparison with experimental data obtained on an EPDM/PP composite. To cite this article: V. Bouchart et al., C. R. Mecanique 336 (2008).
NASA Astrophysics Data System (ADS)
Lee, Jong Jae; Lee, Jong Won; Yi, Jin Hak; Yun, Chung Bang; Jung, Hie Young
2005-02-01
Structural health monitoring has become an important research topic in conjunction with damage assessment and safety evaluation of structures. The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in signal analysis and information processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, a neural networks-based damage detection method using the modal properties is presented, which can effectively consider the modelling errors in the baseline finite element model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modelling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness of the proposed method. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.
Assessment of damage localization based on spatial filters using numerical crack propagation models
NASA Astrophysics Data System (ADS)
Deraemaeker, Arnaud
2011-07-01
This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.
A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates
NASA Technical Reports Server (NTRS)
Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.
2006-01-01
A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Bai, Jie; Paquet, Daniel
2009-07-01
This paper develops an accurate and computationally efficient homogenization-based continuum plasticity-damage (HCPD) model for macroscopic analysis of ductile failure in porous ductile materials containing brittle inclusions. Example of these materials are cast alloys such as aluminum and metal matrix composites. The overall framework of the HCPD model follows the structure of the anisotropic Gurson-Tvergaard-Needleman (GTN) type elasto-plasticity model for porous ductile materials. The HCPD model is assumed to be orthotropic in an evolving material principal coordinate system throughout the deformation history. The GTN model parameters are calibrated from homogenization of evolving variables in representative volume elements (RVE) of the microstructure containing inclusions and voids. Micromechanical analyses for this purpose are conducted by the locally enriched Voronoi cell finite element model (LE-VCFEM) [Hu, C., Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int. J. Numer. Methods Eng. 76(12), 1955-1992]. The model also introduces a novel void nucleation criterion from micromechanical damage evolution due to combined inclusion and matrix cracking. The paper discusses methods for estimating RVE length scales in microstructures with non-uniform dispersions, as well as macroscopic characteristic length scales for non-local constitutive models. Comparison of results from the anisotropic HCPD model with homogenized micromechanics shows excellent agreement. The HCPD model has a huge efficiency advantage over micromechanics models. Hence, it is a very effective tool in predicting macroscopic damage in structures with direct reference to microstructural composition.
Damage evaluation of reinforced concrete frame based on a combined fiber beam model
NASA Astrophysics Data System (ADS)
Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo
2014-04-01
In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.
Gurson-type elastic-plastic damage model based on strain-rate plastic potential
NASA Astrophysics Data System (ADS)
Balan, Tudor; Cazacu, Oana
2013-12-01
Ductile damage is generally described by stress-space analytical potentials. In this contribution, it is shown that strain rate potentials, which are exact conjugate of the stress-based potentials, can be equally used to describe the dilatational response of porous metals. This framework is particularly appropriate for porous materials with matrix described by complex yield criteria for which a closed-form expression of the stress-based potential is not available. Illustration of the new approach is done for porous metals containing randomly distributed spherical voids in a von Mises elasto-plastic matrix. Furthermore, a general time integration algorithm for simulation of the mechanical response using this new formulation is developed and implemented in Abaqus/Standard. The proposed model and algorithm are validated with respect to the Abaqus built-in GTN model, which is based on a stress potential, through the simulation of a tensile test on a round bar.
Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D; Hutchens, Shelby B; Freund, Jonathan B
2016-08-01
A generalized Rayleigh-Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity.
Movahed, Pooya; Kreider, Wayne; Maxwell, Adam D; Hutchens, Shelby B; Freund, Jonathan B
2016-08-01
A generalized Rayleigh-Plesset-type bubble dynamics model with a damage mechanism is developed for cavitation and damage of soft materials by focused ultrasound bursts. This study is linked to recent experimental observations in tissue-mimicking polyacrylamide and agar gel phantoms subjected to bursts of a kind being considered specifically for lithotripsy. These show bubble activation at multiple sites during the initial pulses. More cavities appear continuously through the course of the observations, similar to what is deduced in pig kidney tissues in shock-wave lithotripsy. Two different material models are used to represent the distinct properties of the two gel materials. The polyacrylamide gel is represented with a neo-Hookean elastic model and damaged based upon a maximum-strain criterion; the agar gel is represented with a strain-hardening Fung model and damaged according to the strain-energy-based Griffith's fracture criterion. Estimates based upon independently determined elasticity and viscosity of the two gel materials suggest that bubble confinement should be sufficient to prevent damage in the gels, and presumably injury in some tissues. Damage accumulation is therefore proposed to occur via a material fatigue, which is shown to be consistent with observed delays in widespread cavitation activity. PMID:27586763
Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model
NASA Astrophysics Data System (ADS)
Wang, Rui-ze; Chen, Zhang-hua; Li, Yu-jie; Dong, Chao-fang
2013-12-01
Based on the Gurson-Tvergaard-Needleman (GTN) model and Hill's quadratic anisotropic yield criterion, a combined experimental-numerical study on fracture initiation in the process of thermal stamping of Mg alloy AZ31 sheets was carried out. The aim is to predict the formability of thermal stamping of the Mg alloy sheets at different temperatures. The presented theoretical framework was implemented into a VUMAT subroutine for ABAQUS/EXPLICIT. Internal damage evolution due to void growth and coalescence developed at different temperatures in the Mg alloy sheets was observed by scanning electron microscopy (SEM). Moreover, the thermal effects on the void growth, coalescence, and fracture behavior of the Mg alloy sheets were analyzed by the extended GTN model and forming limit diagrams (FLD). Parameters employed in the GTN model were determined from tensile tests and numerical iterative computation. The distribution of major and minor principal strains in the specimens was determined from the numerical results. Therefore, the corresponding forming limit diagrams at different stress levels and temperatures were drawn. The comparison between the predicted forming limits and the experimental data shows a good agreement.
Repairable-conditionally repairable damage model based on dual Poisson processes.
Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A
2003-09-01
The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
NASA Astrophysics Data System (ADS)
Sakaris, C. S.; Sakellariou, J. S.; Fassois, S. D.
2016-06-01
This study focuses on the problem of vibration-based damage precise localization via data-based, time series type, methods for structures consisting of 1D, 2D, or 3D elements. A Generalized Functional Model Based method is postulated based on an expanded Vector-dependent Functionally Pooled ARX (VFP-ARX) model form, capable of accounting for an arbitrary structural topology. The FP model's operating parameter vector elements are properly constrained to reflect any given topology. Damage localization is based on operating parameter vector estimation within the specified topology, so that the location estimate and its uncertainty bounds are statistically optimal. The method's effectiveness is experimentally demonstrated through damage precise localization on a laboratory spatial truss structure using various damage scenarios and a single pair of random excitation - vibration response signals in a low and limited frequency bandwidth.
Angular velocity-based structural damage detection
NASA Astrophysics Data System (ADS)
Liao, Yizheng; Kiremidjian, Anne S.; Rajagopal, Ram; Loh, Chin-Hsiung
2016-04-01
Damage detection is an important application of structural health monitoring. With the recent development of sensing technology, additional information about structures, angular velocity, has become available. In this paper, the angular velocity signals obtained from gyroscopes are modeled as an autoregressive (AR) model. The damage sensitive features (DSFs) are defined as a function of the AR coefficients. It is found that the mean values of the DSF for the damaged and undamaged signals are different. Also, we show that the angular velocity- based AR model has a linear relationship with the acceleration-based AR model. To test the proposed damage detection method, the algorithm has been tested with the experimental data from a recent shake table test where the damage is introduced systemically. The results indicate that the change of DSF means is statistically significant, and the angular velocity-based DSFs are sensitive to damage.
NASA Astrophysics Data System (ADS)
Avendaño-Valencia, L. D.; Fassois, S. D.
2015-07-01
The problem of damage detection in an operating wind turbine under normal operating conditions is addressed. This is characterized by difficulties associated with the lack of measurable excitation(s), the vibration response non-stationary nature, and its dependence on various types of uncertainties. To overcome these difficulties a stochastic approach based on Random Coefficient (RC) Linear Parameter Varying (LPV) AutoRegressive (AR) models is postulated. These models may effectively represent the non-stationary random vibration response under healthy conditions and subsequently used for damage detection through hypothesis testing. The performance of the method for damage and fault detection in an operating wind turbine is subsequently assessed via Monte Carlo simulations using the FAST simulation package.
NASA Astrophysics Data System (ADS)
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2016-09-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful
Stora, E.; Bary, B.; Deville, E.; Montarnal, P.
2010-08-15
The assessment of the durability of cement-based materials, which could be employed in underground structures for nuclear waste disposal, requires accounting for deterioration factors, such as chemical attacks and damage, and for the interactions between these phenomena. The objective of the present paper consists in investigating the long-term behaviour of cementitious materials by simulating their response to chemical and mechanical solicitations. In a companion paper (Stora et al., submitted to Cem. Concr. Res. 2008), the implementation of a multi-scale homogenization model into an integration platform has allowed for evaluating the evolution of the mineral composition, diffusive and elastic properties inside a concrete material subjected to leaching. To complete this previous work, an orthotropic micromechanical damage model is presently developed and incorporated in this numerical platform to estimate the mechanical and diffusive properties of damaged cement-based materials. Simulations of the chemo-mechanical behaviour of leached cementitious materials are performed with the tool thus obtained and compared with available experiments. The numerical results are insightful about the interactions between damage and chemical deteriorations.
Multivariate pluvial flood damage models
Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom
2015-09-15
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.
Comprehensive model of damage accumulation in silicon
Mok, K. R. C.; Benistant, F.; Jaraiz, M.; Rubio, J. E.; Castrillo, P.; Pinacho, R.; Srinivasan, M. P.
2008-01-01
Ion implantation induced damage accumulation is crucial to the simulation of silicon processing. We present a physically based damage accumulation model, implemented in a nonlattice atomistic kinetic Monte Carlo simulator, that can simulate a diverse range of interesting experimental observations. The model is able to reproduce the ion-mass dependent silicon amorphous-crystalline transition temperature of a range of ions from C to Xe, the amorphous layer thickness for a range of amorphizing implants, the superlinear increase in damage accumulation with dose, and the two-layered damage distribution observed along the path of a high-energy ion. In addition, this model is able to distinguish between dynamic annealing and post-cryogenic implantation annealing, whereby dynamic annealing is more effective in removing damage than post-cryogenic implantation annealing at the same temperature.
Micromechanical modeling of damage growth in titanium based metal-matrix composites
NASA Technical Reports Server (NTRS)
Sherwood, James A.; Quimby, Howard M.
1994-01-01
The thermomechanical behavior of continuous-fiber reinforced titanium based metal-matrix composites (MMC) is studied using the finite element method. A thermoviscoplastic unified state variable constitutive theory is employed to capture inelastic and strain-rate sensitive behavior in the Timetal-21s matrix. The SCS-6 fibers are modeled as thermoplastic. The effects of residual stresses generated during the consolidation process on the tensile response of the composites are investigated. Unidirectional and cross-ply geometries are considered. Differences between the tensile responses in composites with perfectly bonded and completely debonded fiber/matrix interfaces are discussed. Model simulations for the completely debonded-interface condition are shown to correlate well with experimental results.
Modeling of radiation damage recovery in particle detectors based on GaN
NASA Astrophysics Data System (ADS)
Gaubas, E.; Ceponis, T.; Pavlov, J.
2015-12-01
The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.
Improving Flood Damage Assessment Models in Italy
NASA Astrophysics Data System (ADS)
Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.
2015-12-01
The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.
Reji, G; Chander, Subhash; Kamble, Kalpana
2014-09-01
Rice stem borer is an important insect pest causing severe damage to rice crop in India. The relationship between weather parameters such as maximum (T(max)) and minimum temperature (T(min)), morning (RH1) and afternoon relative humidity (RH2) and the severity of stem borer damage (SB) were studied. Multiple linear regression analysis was used for formulating pest-weather models at three sites in southern India namely, Warangal, Coimbatore and Pattambi as SB = -66.849 + 2.102 T(max) + 0.095 RH1, SB = 156.518 - 3.509 T(min) - 0.785 RH1 and SB = 43.483 - 0.418 T(min) - 0.283 RH1 respectively. The pest damage predicted using the model at three sites did not significantly differ from the observed damage (t = 0.442; p > 0.05). The range of weather parameters favourable for stem borer damage at each site were also predicted using the models. Geospatial interpolation (kriging) of the pest-weather models were carried out to predict the zones of stem borer damage in southern India. Maps showing areas with high, medium and low risk of stem borer damage were prepared using geographical information system. The risk maps of rice stem borer would be useful in devising management strategies for the pest in the region.
NASA Astrophysics Data System (ADS)
Abdullah, A. B. M.; Rice, Jennifer A.; Hamilton, H. R.
2014-03-01
Post-tensioned segmental bridges are common throughout the US; however, in recent years, the incidence of tendon failure in bonded post-tensioned bridges has raised questions regarding their design, construction, and maintenance. These failures have led to the investigation of the applicability of using replaceable unbonded tendons in segmental construction and new methods for monitoring their condition. This paper presents a damage detection algorithm to identify strand breakage in unbonded tendons based on the relative variation of strains in the anchorage. In unbonded construction, the anchorage assembly usually undergoes a severe stress-state condition as the entire prestressing force only passes through the deviator and end anchorage locations. The strain distribution in the anchorage mechanism, therefore, goes through significant changes in response to the breakage of an individual wire or an entire strand in a multi-strand arrangement. In this way, breakage of a post-tensioning strand can be identified by observing a non-uniform variation of the strain field over the anchorage region in contrast to a uniform variation of strains due to environmental or traffic loading. A reduced scale laboratory experiment is performed followed by an extensive finite element simulation to conduct a parametric study with wire/strand breakages at different locations on multi-strand anchorages commonly used in industry. Based on the observed strain variations from simulation, a damage detection model is proposed that enables the adoption of an automated monitoring strategy to characterize the breakage programmatically.
A continuum damage model of fatigue-induced damage in laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.
1988-01-01
A model is presented which predicts the stress-strain behavior of continuous fiber reinforced laminated composites in the presence of microstructural damage. The model is based on the concept of continuum damage mechanics and uses internal state variables to characterize the various damage modes. The associated internal state variable growth laws are mathematical models of the loading history induced development of microstructural damage. The model is demonstrated by using it to predict the response of damaged AS-4/3502 graphite/epoxy laminate panels.
NASA Astrophysics Data System (ADS)
Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng
2015-08-01
Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.
A two-scale time-dependent damage model based on non-planar growth of micro-cracks
NASA Astrophysics Data System (ADS)
François, Bertrand; Dascalu, Cristian
2010-11-01
This paper presents the theoretical developments and the numerical applications of a time-dependent damage law. This law is deduced from considerations at the micro-scale where non-planar growth of micro-cracks, following a subcritical propagation criterion, is assumed. The orientation of the crack growth is governed by the maximum energy release rate at the crack tips and the introduction of an equivalent straight crack. The passage from micro-scale to macro-scale is done through an asymptotic homogenization approach. The model is built in two steps. First, the effective coefficients are calculated at the micro-scale in finite periodical cells, with respect to the micro-cracks length and their orientation. Then, a subcritical damage law is developed in order to establish the evolution of damage. This damage law is obtained as a differential equation depending on the microscopic stress intensity factors, which are a priori calculated for different crack lengths and orientations. The developed model enables to reproduce not only the classical short-term stress-strain response of materials (in tension and compression) but also the long-term behavior encountering relaxation and creep effects. Numerical simulations show the ability of the developed model to reproduce this time-dependent damage response of materials.
NASA Astrophysics Data System (ADS)
Kijanka, Piotr; Packo, Pawel; Zhu, Xuan; Staszewski, Wieslaw J.; Lanza di Scalea, Francesco
2015-06-01
The paper presents a three-dimensional temperature-dependent model of surface-bonded, low-profile piezoceramic transducers (PZT) used for Lamb wave propagation. The effect of temperature on Lamb wave actuation, propagation and sensing is investigated. The major focus is on the study of actuation and sensing properties of PZT for various temperature levels. These properties are investigated through the electric field analysis of transducers. The temperature effect on transducer bond layers is also investigated. Numerically simulated amplitude responses are analysed for various temperatures and excitation frequencies. Numerical simulations are validated experimentally. The results demonstrate that temperature-dependent physical properties of PZT, bond layers and particularly host structures significantly affect the amplitude and phase of Lamb wave responses.
NASA Astrophysics Data System (ADS)
Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; Subba Rao, V. V.
2016-08-01
The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
A Thermodynamically Consistent Damage Model for Advanced Composites
NASA Technical Reports Server (NTRS)
Maimi, Pere; Camanho, Pedro P.; Mayugo, Joan-Andreu; Davila, Carlos G.
2006-01-01
A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant's Crack Band Model. To verify the accuracy of the approach, analyses of coupon specimens were performed, and the numerical predictions were compared with experimental data.
Survey of four damage models for concrete.
Leelavanichkul, Seubpong; Brannon, Rebecca Moss
2009-08-01
properties. The RHT model appears to similarly support optional uncertainty and automated settings for scale-dependent material parameters. The K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother prediction of transient effects. During softening, all four models require a certain amount of strain to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.
NASA Astrophysics Data System (ADS)
Bennett, K. C.; Borja, R. I.
2015-12-01
A finite strain ductile damage formulation of Modified Cam-Clay (MCC) plasticity has been developed in order to model the observed elastoplastic behavior of shale at nano- to micro-scales. Nano-indentation combined with both 2D and 3D imaging was performed on a sample of Woodford shale. Significant plastic deformation was observed in the nano-indentation testing, and nano-scale resolution FIB-SEM imaging of the post-indented regions has revealed that the plastic deformation is accompanied by extensive micro-fracture of the shale's highly heterogeneous micro-structure. A spatial tensor that is similar to Eshelby's energy momentum tensor is shown to be energy conjugate to the plastic velocity gradient under large inelastic volume strain. These results are cast in MCC framework drawing on the concept of continuum damage. The resulting formulation provides a connection between density (porosity), elastic (and plastic) moduli, and micro damage/healing. Nonlinear finite element modeling is used for implementation of the constitutive model in simulation of both laboratory-scale and nano- to micro-scale experiments. The results show that the model is able to predict the inception and propagation of micro-fractures around inhomogeneities, as well as capture the resulting behavior observed at the much larger laboratory scale.
NASA Astrophysics Data System (ADS)
Molladavoodi, H.
2013-09-01
Analysis of stresses and displacements around underground openings is necessary in a wide variety of civil, petroleum and mining engineering problems. In addition, an excavation damaged zone (EDZ) is generally formed around underground openings as a result of high stress magnitudes even in the absence of blasting effects. The rock materials surrounding the underground excavations typically demonstrate nonlinear and irreversible mechanical response in particular under high in situ stress states. The dominant cause of irreversible deformations in brittle rocks is damage process. One of the most widely used methods in tunnel design is the convergence-confinement method (CCM) for its practical application. The elastic-plastic models are usually used in the convergence-confinement method as a constitutive model for rock behavior. The plastic models used to simulate the rock behavior, do not consider the important issues such as stiffness degradation and softening. Therefore, the use of damage constitutive models in the convergence-confinement method is essential in the design process of rock structures. In this paper, the basic concepts of continuum damage mechanics are outlined. Then a numerical stepwise procedure for a circular tunnel under hydrostatic stress field, with consideration of a damage model for rock mass has been implemented. The ground response curve and radius of excavation damage zone were calculated based on an isotropic damage model. The convergence-confinement method based on damage model can consider the effects of post-peak rock behavior on the ground response curve and excavation damage zone. The analysis of results show the important effect of brittleness parameter on the tunnel wall convergence, ground response curve and excavation damage radius. Analiza naprężeń i przemieszczeń powstałych wokół otworu podziemnego wymagana jest przy szerokiej gamie projektów z zakresu budownictwa lądowego, inżynierii górniczej oraz naftowej. Ponadto
NASA Astrophysics Data System (ADS)
Kawai, Masayoshi; Kurishita, Hiroaki; Kokawa, Hiroyuki; Watanabe, Seiichi; Sakaguchi, Norihito; Kikuchi, Kenji; Saito, Shigeru; Yoshiie, Toshimasa; Iwase, Hiroshi; Ito, Takahiro; Hashimoto, Satoshi; Kaneko, Yoshihisa; Futakawa, Masatoshi; Ishino, Shiori; JSPS Grant Team
2012-12-01
This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead-bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GBE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.
A two-scale damage model with material length
NASA Astrophysics Data System (ADS)
Dascalu, Cristian
2009-09-01
The Note presents the formulation of a class of two-scale damage models involving a micro-structural length. A homogenization method based on asymptotic developments is employed to deduce the macroscopic damage equations. The damage model completely results from energy-based micro-crack propagation laws, without supplementary phenomenological assumptions. We show that the resulting two-scale model has the property of capturing micro-structural lengths. When damage evolves, the micro-structural length is given by the ratio of the surface density of energy dissipated during the micro-crack growth and the macroscopic damage energy release rate per unit volume of the material. The use of fracture criteria based on resistance curves or power laws for sub-critical growth of micro-cracks leads to quasi-brittle and, respectively, time-dependent damage models. To cite this article: C. Dascalu, C. R. Mecanique 337 (2009).
Interacting damage models mapped onto ising and percolation models
Toussaint, Renaud; Pride, Steven R.
2004-03-23
The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model
Vibration-based damage detection algorithm for WTT structures
NASA Astrophysics Data System (ADS)
Nguyen, Tuan-Cuong; Kim, Tae-Hwan; Choi, Sang-Hoon; Ryu, Joo-Young; Kim, Jeong-Tae
2016-04-01
In this paper, the integrity of a wind turbine tower (WTT) structure is nondestructively estimated using its vibration responses. Firstly, a damage detection algorithm using changes in modal characteristics to predict damage locations and severities in structures is outlined. Secondly, a finite element (FE) model based on a real WTT structure is established by using a commercial software, Midas FEA. Thirdly, forced vibration tests are performed on the FE model of the WTT structure under various damage scenarios. The changes in modal parameters such as natural frequencies and mode shapes are examined for damage monitoring in the structure. Finally, the feasibility of the vibration-based damage detection method is numerically verified by predicting locations and severities of the damage in the FE model of the WTT structure.
NASA Astrophysics Data System (ADS)
He, Jingjing; Wang, Dengjiang; Zhang, Weifang
2015-03-01
This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.
Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates
NASA Astrophysics Data System (ADS)
Meng, Qinghua; Wang, Zhenqing
2016-05-01
Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.
Nonlinear creep damage constitutive model for soft rocks
NASA Astrophysics Data System (ADS)
Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.
2016-06-01
In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.
Plasma model for charging damage
Vella, M.C.; Lukaszek, W.; Current, M.I.; Tripsas, N.H.
1994-07-01
The mechanism responsible for charging damage is treated as beam/plasma driven differences in local floating potentials on the process surface. A cold plasma flood is shown to limit these potential differences. Beam/plasma J-V characteristics obtained with CHARM2 in a high current implanter are fit with the theory. With flood OFF, the fit corresponds to plasma buildup over the target surface.
Saccharomyces cerevisiae-based system for studying clustered DNA damages
Moscariello, M.M.; Sutherland, B.
2010-08-01
DNA-damaging agents can induce clustered lesions or multiply damaged sites (MDSs) on the same or opposing DNA strands. In the latter, attempts to repair MDS can generate closely opposed single-strand break intermediates that may convert non-lethal or mutagenic base damage into double-strand breaks (DSBs). We constructed a diploid S. cerevisiae yeast strain with a chromosomal context targeted by integrative DNA fragments carrying different damages to determine whether closely opposed base damages are converted to DSBs following the outcomes of the homologous recombination repair pathway. As a model of MDS, we studied clustered uracil DNA damages with a known location and a defined distance separating the lesions. The system we describe might well be extended to assessing the repair of MDSs with different compositions, and to most of the complex DNA lesions induced by physical and chemical agents.
Damage modeling and damage detection for structures using a perturbation method
NASA Astrophysics Data System (ADS)
Dixit, Akash
This thesis is about using structural-dynamics based methods to address the existing challenges in the field of Structural Health Monitoring (SHM). Particularly, new structural-dynamics based methods are presented, to model areas of damage, to do damage diagnosis and to estimate and predict the sensitivity of structural vibration properties like natural frequencies to the presence of damage. Towards these objectives, a general analytical procedure, which yields nth-order expressions governing mode shapes and natural frequencies and for damaged elastic structures such as rods, beams, plates and shells of any shape is presented. Features of the procedure include the following: 1. Rather than modeling the damage as a fictitious elastic element or localized or global change in constitutive properties, it is modeled in a mathematically rigorous manner as a geometric discontinuity. 2. The inertia effect (kinetic energy), which, unlike the stiffness effect (strain energy), of the damage has been neglected by researchers, is included in it. 3. The framework is generic and is applicable to wide variety of engineering structures of different shapes with arbitrary boundary conditions which constitute self adjoint systems and also to a wide variety of damage profiles and even multiple areas of damage. To illustrate the ability of the procedure to effectively model the damage, it is applied to beams using Euler-Bernoulli and Timoshenko theories and to plates using Kirchhoff's theory, supported on different types of boundary conditions. Analytical results are compared with experiments using piezoelectric actuators and non-contact Laser-Doppler Vibrometer sensors. To illustrate the ability of the procedure to effectively model the damage, it is applied to beams using Euler-Bernoulli and Timoshenko theories and to plates using Kirchhoff's theory, supported on different types of boundary conditions. Analytical results are compared with experiments using piezoelectric actuators and
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.
2011-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.
NASA Technical Reports Server (NTRS)
Koharchik, Michael; Murphy, Lindsay; Parker, Paul
2012-01-01
An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.
NASA Astrophysics Data System (ADS)
Romo, David Ricardo
Foreign Object Debris/Damage (FOD) has been an issue for military and commercial aircraft manufacturers since the early ages of aviation and aerospace. Currently, aerospace is growing rapidly and the chances of FOD presence are growing as well. One of the principal causes in manufacturing is the human error. The cost associated with human error in commercial and military aircrafts is approximately accountable for 4 billion dollars per year. This problem is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access, restrictions of personal items entering designated areas, tool accountability, and the use of technology such as Radio Frequency Identification (RFID) tags, etc. All of the efforts mentioned before, have not show a significant occurrence reduction in terms of manufacturing processes. On the contrary, a repetitive path of occurrence is present, and the cost associated has not declined in a significant manner. In order to address the problem, this thesis proposes a new approach using statistical analysis. The effort of this thesis is to create a predictive model using historical categorical data from an aircraft manufacturer only focusing in human error causes. The use of contingency tables, natural logarithm of the odds and probability transformation is used in order to provide the predicted probabilities of each aircraft. A case of study is shown in this thesis in order to show the applied methodology. As a result, this approach is able to predict the possible outcomes of FOD by the workstation/area needed, and monthly predictions per workstation. This thesis is intended to be the starting point of statistical data analysis regarding FOD in human factors. The purpose of this thesis is to identify the areas where human error is the primary cause of FOD occurrence in order to design and implement accurate solutions. The advantages of the proposed methodology can go from the reduction of cost
NASA Astrophysics Data System (ADS)
Ochiai, S.; Okuda, H.; Fujimoto, M.; Shin, J.-K.; Sugano, M.; Hojo, M.; Osamura, K.; Oh, S. S.; Ha, D. W.
2012-05-01
The change in n-value and critical current with bending strain and the relation of n-value to critical current of bending-damaged Bi2223 composite tape were studied experimentally and analytically. The n-value of the bending-damaged Bi2223 filamentary composite tape decreased very slightly with increasing bending strain and with decreasing critical current, in comparison with that of tension-damaged tape. To describe the experimental result for bending-damaged tape, a damage evolution model was applied in which the steep tensile-strain variation in the thickness direction, the shape of the core into which the superconducting filaments are bundled and the damage strain parameters obtained from the analysis of the tensile stress-strain curve were incorporated. The measured change in n-value and critical current with bending strain and the relation of n-value to critical current under applied bending strain were described satisfactorily by the present approach.
NASA Astrophysics Data System (ADS)
Iseri, Y.; Iwasaki, A.; Miyazaki, C.; Kanae, S.
2014-12-01
Tropical cyclones (TCs) sometimes cause serious damages to human society and thus possible changes of TC properties in the future have been concerned. In fact, the Fifth Assessment Report (AR5) by IPCC (Intergovernmental Panel on Climate Change) mentions likely increasing in intensity and rain rate of TCs. In addition, future change of socioeconomic condition (e.g. population growth) might worsen TC impacts in the future. Thereby, in this study, we developed regression models to estimate economic damages by TCs (hereafter TC damage model), and employed those models to project TC economic damages under several future climate and socioeconomic scenarios. We developed the TC damage models for each of 4 regions; western North Pacific, North American, North Indian, and Southern Hemisphere. The inputs for TC damage model are tropical cyclone central pressure, populations in the area exposed by tropical cyclone wind, and GDP (Gross Domestic Product) per capita. The TC damage models we firstly developed tended to overestimate very low damages and also underestimate very high damages. Thereby we modified structure of TC damage models to improve model performance, and then executed extensive validation of the model. The modified model presented better performance in estimating very low and high TC damages. After the modification and validation of the model, we determined the structure of TC damage models and projected TC economic damages. The result indicated increase in TC economic damage in global scale, while TC economic damage against world GDP would decrease in the future, which result is consistent with previous study.
Modeling KDP Bulk Damage Curves for Prediction of Large-Area Damage Performance
Runkel, M.; Sharp, R.
1999-12-16
Over the past two years extensive experimentation has been carded out to determine the nature of bulk damage in KDP. Automated damage testing with small beams has made it possible to rapidly investigate damage statistics and its connection to growth parameter Variation. Over this time we have built up an encyclopedia of many damage curves but only relatively few samples have been tested with large beams. The scarcity of data makes it difficult to estimate how future crystals will perform on the NIF, and the campaign nature of large beam testing is not suitable for efficient testing of many samples with rapid turn-around, it is therefore desirable to have analytical tools in place that could make reliable predictions of large-beam performance based on small-beam damage probability measurements. To that end, we discuss the application of exponential and power law damage evolution within the framework of Poisson statistics in this memo. We describe the results of fitting these models to various damage probability curves on KDP including the heavily investigated KDP214 samples. We find that both models are capable of fitting the damage probability S-curves quite well but there are multiple parameter sets for each model that produce comparable {chi}{sup 2} values. In addition, the fit parameters from the exponential model do not agree well with the measured evolution from large-beam OSL experiments where pinpoint density was shown to evolve according to n(F)=n{sub 0}exp(bF). The largest discrepancy is in determination of the b values. For the O'Connell formalism the power law case developed here, we find that the best-fit powers have approximately the same magnitude as the Weibull exponent of Feit's formalism, but it is difficult to extract information about the defect concentration using the O'Connell approach. In addition, we found that the power law case provides slightly better {chi}{sup 2} values in roughly half of the cases. We discuss these results in terms of
Model of flexural fatigue damage accumulation for cortical bone.
Griffin, L V; Gibeling, J C; Martin, R B; Gibson, V A; Stover, S M
1997-07-01
Analytical models that predict modulus degradation in cortical bone subjected to uniaxial fatigue loading in tension and compression are presented. On the basis of experimental observations, damage was modeled as self-limiting for tension but not for compression. These mechanistic uniaxial damage models were then developed into a model for flexural fatigue of cortical bone based on laminated beam theory. The unknown coefficients in the uniaxial damage models were obtained by successfully fitting the resulting equations to uniaxial fatigue data from the literature on human cortical bone in tension and compression. Then, the predictions of the flexural model for the behavior of human cortical bone were compared with experimental results from a small but independent set of specimens tested at three different ranges of load in our laboratory. The behavior of the modulus degradation curves and the flexural fatigue lives of the specimens were in excellent agreement with the predictions of the model.
Progressive Damage Modeling of Notched Composites
NASA Technical Reports Server (NTRS)
Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid; Satyanarayana, Arunkumar; Bogert, Philip
2016-01-01
There is an increased interest in using non-crimp fabric reinforced composites for primary and secondary structural weight savings in high performance automobile applications. However, one of the main challenges in implementing these composites is the lack of understanding of damage progression under a wide variety of loading conditions for general configurations. Towards that end, researchers at GM and NASA are developing new damage models to predict accurately the progressive failure of these composites. In this investigation, the developed progressive failure analysis model was applied to study damage progression in center-notched and open-hole tension specimens for various laminate schemes. The results of a detailed study with respect to the effect of element size on the analysis outcome are presented.
NASA Astrophysics Data System (ADS)
Gao, Dongyue; Wu, Zhanjun; Yang, Lei; Zheng, Yuebin
2016-04-01
Multi-damage identification is an important and challenging task in the research of guide waves-based structural health monitoring. In this paper, a multi-damage identification method is presented using a guide waves-based local probability-based diagnostic imaging (PDI) method. The method includes a path damage judgment stage, a multi-damage judgment stage and a multi-damage imaging stage. First, damage imaging was performed by partition. The damage imaging regions are divided into beside damage signal paths. The difference in guide waves propagation characteristics between cross and beside damage paths is proposed by theoretical analysis of the guide wave signal feature. The time-of-flight difference of paths is used as a factor to distinguish between cross and beside damage paths. Then, a global PDI method (damage identification using all paths in the sensor network) is performed using the beside damage path network. If the global PDI damage zone crosses the beside damage path, it means that the discrete multi-damage model (such as a group of holes or cracks) has been misjudged as a continuum single-damage model (such as a single hole or crack) by the global PDI method. Subsequently, damage imaging regions are separated by beside damage path and local PDI (damage identification using paths in the damage imaging regions) is performed in each damage imaging region. Finally, multi-damage identification results are obtained by superimposing the local damage imaging results and the marked cross damage paths. The method is employed to inspect the multi-damage in an aluminum plate with a surface-mounted piezoelectric ceramic sensors network. The results show that the guide waves-based multi-damage identification method is capable of visualizing the presence, quantity and location of structural damage.
Vibration Based Sun Gear Damage Detection
NASA Technical Reports Server (NTRS)
Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll
2013-01-01
Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.
Quantitative rotor damage detection based on piezoelectric impedance
NASA Astrophysics Data System (ADS)
Qin, Yi; Tao, Yi; Mao, Yongfang; Tang, Baoping
2015-12-01
To realize the quantitative damage detection of a rotor, firstly an impedance analytic model is built. Then the change of bending stiffness is introduced as the damage index. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used. The electro-mechanical (E/M) coupled impedance expression of an undamaged rotor is derived with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection algorithm is proposed. In this paper, a preset damage configuration is used for the numerical simulation and experiment validation. The detection results have shown that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Kizawa, Kenji; Inoue, Takafumi; Yamaguchi, Masahito; Kleinert, Peter; Troxler, Heinz; Heizmann, Claus W; Iwamoto, Yoshimichi
2005-01-01
Hair treatment chemicals induce sudden and severe hair damage. In this study, we examined cuticles from untreated, permed, and bleached hair that were mechanically discriminated by shaking in water. Both perming and bleaching treatments are prone to easily delaminate cuticles. Confocal microscopy revealed that the cuticles of permed hair were delaminated with larger pieces than untreated ones. On the other hand, the cuticles of bleached hair tend to fragment into small peptides. At the minimum concentration of thioglycolate required to elute S100A3 protein from the endocuticle into the reductive permanent waving lotion, enlarged delaminated cuticle fragments were observed. Although S100A3 is retained in bleached hair, S100A3 is irreversibly oxidized upon bleaching treatment. It is likely that the oxidative cleavage of disulfide bonds between cuticle-constituting proteins, including S100A3, results in the fragile property of cuticles. Here we present a more comprehensive model of hair damage based on a diverse mechanism of cuticle delamination.
Virtual Mie particle model of laser damage to optical elements
NASA Astrophysics Data System (ADS)
Hirata, Kazuya; Haraguchi, Koshi
2011-12-01
In recent years, devices being developed for application systems have used laser beams that have high average power, high peak power, short pulse width, and short wavelength. Therefore, optical elements using such application systems require a high laser damage threshold. The laser damage threshold is provided by International Organization for Standardization 11254 (ISO11254). One of the measurement methods of the laser damage threshold provided by ISO11254 is an online method to measure the intensity of light scattering due to a laser damage trace. In this paper, we propose a measurement method for the laser damage threshold that realizes high sensitivity and high accuracy by using polarized light and lock-in detection. Since the scattering light with laser damage is modeled on the asperity of the optical element-surface as Mie particles (virtual Mie particles), we consider the intensity change of scattering light as a change in the radius of a virtual Mie particle. To evaluate this model, the laser damage trace on the optical element-surface was observed by an atomic force microscopy (AFM). Based on the observed AFM image, we analyzed the frequency domain by the Fourier transform, and estimated the dominant virtual Mie particle radius in the AFM measurement area. In addition, we measured the laser damage threshold. The light source was the fifth generation of a Nd:YAG laser (λ =213nm). The specifications of the laser were: repetition frequency 10Hz, pulse width 4ns, linear type polarization, laser pulse energy 4mJ, and laser transverse mode TEM00. The laser specifications were a repetition frequency, pulse width, pulse energy and beam diameter of 10Hz, 4ns, 4mJ and 13mm, respectively. The laser damage thresholds of an aluminum coated mirror and a dielectric multi-layer mirror designed at a wavelength of 213nm as measured by this method were 0.684 J/cm2 and 0.998J/cm2, respectively. These laser damage thresholds were 1/4 the laser damage thresholds measured based
Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.
2011-07-01
This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.
Base Excision Repair of Oxidative DNA Damage
David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita
2010-01-01
Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577
Irreversible entropy model for damage diagnosis in resistors
Cuadras, Angel Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos
2015-10-28
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Damage detection based on acceleration data using artificial immune system
NASA Astrophysics Data System (ADS)
Chartier, Sandra; Mita, Akira
2009-03-01
Nowadays, Structural Health Monitoring (SHM) is essential in order to prevent damages occurrence in civil structures. This is a particularly important issue as the number of aged structures is increasing. Damage detection algorithms are often based on changes in the modal properties like natural frequencies, modal shapes and modal damping. In this paper, damage detection is completed by using Artificial Immune System (AIS) theory directly on acceleration data. Inspired from the biological immune system, AIS is composed of several models like negative selection which has a great potential for this study. The negative selection process relies on the fact that T-cells, after their maturation, are sensitive to non self cells and can not detect self cells. Acceleration data were provided by using the numerical model of a 3-story frame structure. Damages were introduced, at particular times, by reduction of story's stiffness. Based on these acceleration data, undamaged data (equivalent to self data) and damaged data (equivalent to non self data) can be obtained and represented in the Hamming shape-space with a binary representation. From the undamaged encoded data, detectors (equivalent to T-cells) are derived and are able to detect damaged encoded data really efficiently by using the rcontiguous bits matching rule. Indeed, more than 95% of detection can be reached when efficient combinations of parameters are used. According to the number of detected data, the localization of damages can even be determined by using the differences between story's relative accelerations. Thus, the difference which presents the highest detection rate, generally up to 89%, is directly linked to the location of damage.
Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites
NASA Astrophysics Data System (ADS)
Borkowski, Luke; Chattopadhyay, Aditi
2014-03-01
Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.
Parameterization of Damage in Reinforced Concrete Structures Using Model Updating
NASA Astrophysics Data System (ADS)
ABDEL WAHAB, M. M.; DE ROECK, G.; PEETERS, B.
1999-12-01
This paper describes the application of finite element model updating to reinforced concrete beams in order to detect and quantify damage. Three simply supported beams are considered in this study: two of them are subjected to a single concentrated load while the third one to two concentrated loads. The static loading system is applied in different steps up to failure so that dynamic measurements can be carried out after each load step. The measured modal parameters are used afterwards to update a finite element model in order to localize and to quantify the damage. The updating algorithm is based on the sensitivity approach in which the discrepancies between the analytical and experimental modal data are minimized in an iterative manner. A new concept for damage parametrization is introduced. A damage function characterized by three parameters is proposed. In such a function, only three parameters are used to describe the damage pattern of the reinforced concrete beams. These parameters are related to the bending stiffness of the beams and updated so that the measured natural frequencies are reproduced. The results demonstrate the efficiency of the proposed technique to quantify the damage pattern.
Modeling Coal Seam Damage in Cast Blasting
Chung, S.H.; Preece, D.S.
1998-11-23
A discrete element computer program named DMC_BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting (Preece & Taylor, 1989). This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in two dimensions. DMC_BLAST calculations compare favorably with data from actual bench blasts (Preece et al, 1993). Coal seam chilling refers to the shattering of a significant portion of the coal leaving unusable fines. It is also refereed to as coal damage. Chilling is caused during a blast by a combination of explosive shock energy and movement of the adjacent rock. Chilling can be minimized by leaving a buffer zone between the bottom of the blastholes and the coal seam or by changing the blast design to decrease the powder factor or by a combination of both. Blast design in coal mine cast blasting is usually a compromise between coal damage and rock fragmentation and movement (heave). In this paper the damage to coal seams from rock movement is examined using the discrete element computer code DMC_BLAST. A rock material strength option has been incorporated into DMC_BLAST by placing bonds/links between the spherical particles used to model the rock. These bonds tie the particles together but can be broken when the tensile, compressive or shear stress in the bond exceeds the defined strength. This capability has been applied to predict coal seam damage, particularly at the toe of a cast blast where drag forces exerted by movement of the overlying rock can adversely effect the top of the coal at the bench face. A simulation of coal mine cast blasting has been performed with special attention being paid to the strength of the coal and its behavior at t he bench face during movement of the overlying material.
NASA Technical Reports Server (NTRS)
De Carvalho, Nelson V.; Krueger, Ronald
2016-01-01
A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.
Dynamic rupture in a damage-breakage rheology model
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Ilchev, Assen; Mendecki, Aleksander
2016-08-01
We present a thermodynamically based formulation for modelling dynamic rupture processes in the brittle crust using a continuum damage-breakage rheology. The model combines aspects of a continuum viscoelastic damage framework for brittle solids with a continuum breakage mechanics for granular flow within dynamically generated slip zones. The formulation accounts for the density of distributed cracking and other internal flaws in damaged rocks with a scalar damage parameter, and addresses the grain size distribution of a granular phase in the slip zone with a breakage parameter. A dynamic brittle instability is associated with a critical level of damage in the solid, leading to loss of convexity of the solid strain energy, localization and transition to a granular phase associated with lower energy level. The continuum damage-breakage rheology model treats the localization to a slip zone at the onset of dynamic rupture and post-failure recovery process as phase transitions between solid and granular states. The model generates sub- and supershear rupture velocities and pulse-type ruptures seen also in frictional models, and additional important features such as strong dynamic changes of volumetric strain near the rupture front and diversity of nucleation mechanisms. The propagation of rupture front and slip accumulation at a point are correlated with sharp dynamic dilation followed by a gradual decay to a level associated with the final volumetric change associated with the granular phase transition in the slipping zone. The local brittle failure process associated with the solid-granular transition is expected to produce isotropic radiation in addition to the deviatoric terms. The framework significantly extends the ability to model brittle processes in complex geometrical structures and allows analysing the roles of gouge thickness and other parameters on nucleation, rupture and radiation characteristics.
Dynamic rupture in a damage-breakage rheology model
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Ilchev, Assen; Mendecki, Aleksander
2016-05-01
We present a thermodynamically-based formulation for modeling dynamic rupture processes in the brittle crust using a continuum damage-breakage rheology. The model combines aspects of a continuum viscoelastic damage framework for brittle solids with a continuum breakage mechanics for granular flow within dynamically generated slip zones. The formulation accounts for the density of distributed cracking and other internal flaws in damaged rocks with a scalar damage parameter, and addresses the grain size distribution of a granular phase in the slip zone with a breakage parameter. A dynamic brittle instability is associated with a critical level of damage in the solid, leading to loss of convexity of the solid strain energy, localization, and transition to a granular phase associated with lower energy level. The continuum damage-breakage rheology model treats the localization to a slip zone at the onset of dynamic rupture and post-failure recovery process as phase transitions between solid and granular states. The model generates sub- and super-shear rupture velocities and pulse-type ruptures seen also in frictional models, and additional important features such as strong dynamic changes of volumetric strain near the rupture front and diversity of nucleation mechanisms. The propagation of rupture front and slip accumulation at a point are correlated with sharp dynamic dilation followed by a gradual decay to a level associated with the final volumetric change associated with the granular phase transition in the slipping zone. The local brittle failure process associated with the solid-granular transition is expected to produce isotropic radiation in addition to the deviatoric terms. The framework significantly extends the ability to model brittle processes in complex geometrical structures and allows analyzing the roles of gouge thickness and other parameters on nucleation, rupture and radiation characteristics.
Damage Propagation Modeling for Aircraft Engine Prognostics
NASA Technical Reports Server (NTRS)
Saxena, Abhinav; Goebel, Kai; Simon, Don; Eklund, Neil
2008-01-01
This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are generated via a thermo-dynamical simulation model for the engine as a function of variations of flow and efficiency of the modules of interest. An exponential rate of change for flow and efficiency loss was imposed for each data set, starting at a randomly chosen initial deterioration set point. The rate of change of the flow and efficiency denotes an otherwise unspecified fault with increasingly worsening effect. The rates of change of the faults were constrained to an upper threshold but were otherwise chosen randomly. Damage propagation was allowed to continue until a failure criterion was reached. A health index was defined as the minimum of several superimposed operational margins at any given time instant and the failure criterion is reached when health index reaches zero. Output of the model was the time series (cycles) of sensed measurements typically available from aircraft gas turbine engines. The data generated were used as challenge data for the Prognostics and Health Management (PHM) data competition at PHM 08.
Walton, J R
2007-09-01
In Alzheimer's disease (AD), oxidative damage leads to the formation of amyloid plaques while low PP2A activity results in hyperphosphorylated tau that polymerizes to form neurofibrillary tangles. We probed these early events, using brain tissue from a rat model for AD that develops memory deterioration and AD-like behaviors in old age after chronically ingesting 1.6 mg aluminum/kg bodyweight/day, equivalent to the high end of the human dietary aluminum range. A control group consumed 0.4 mg aluminum/kg/day. We stained brain sections from the cognitively-damaged rats for evidence of amyloid plaques, neurofibrillary tangles, aluminum, oxidative damage, and hyperphosphorylated tau. PP2A activity levels measured 238.71+/-17.56 pmol P(i)/microg protein and 580.67+/-111.70 pmol P(i)/microg protein (p<0.05) in neocortical/limbic homogenates prepared from cognitively-damaged and control rat brains, respectively. Thus, PP2A activity in cognitively-damaged brains was 41% of control value. Staining results showed: (1) aluminum-loading occurs in some aged rat neurons as in some aged human neurons; (2) aluminum-loading in rat neurons is accompanied by oxidative damage, hyperphosphorylated tau, neuropil threads, and granulovacuolar degeneration; and (3) amyloid plaques and neurofibrillary tangles were absent from all rat brain sections examined. Known species difference can reasonably explain why plaques and tangles are unable to form in brains of genetically-normal rats despite developing the same pathological changes that lead to their formation in human brain. As neuronal aluminum can account for early stages of plaque and tangle formation in an animal model for AD, neuronal aluminum could also initiate plaque and tangle formation in humans with AD.
A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.
English, Shawn Allen
2014-09-01
A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.
An overview of modal-based damage identification methods
Farrar, C.R.; Doebling, S.W.
1997-09-01
This paper provides an overview of methods that examine changes in measured vibration response to detect, locate, and characterize damage in structural and mechanical systems. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is first provided. The methods are then categorized according to various criteria such as the level of damage detection provided, model-based vs. non-model-based methods and linear vs. nonlinear methods. This overview is limited to methods that can be adapted to a wide range of structures (i.e., are not dependent on a particular assumed model form for the system such as beam-bending behavior and methods and that are not based on updating finite element models). Next, the methods are described in general terms including difficulties associated with their implementation and their fidelity. Past, current and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of modal-based damage identification.
Shell-NASA Vibration-Based Damage Characterization
NASA Technical Reports Server (NTRS)
Rollins, John M.
2014-01-01
This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.
Verification of flood damage modelling using insurance data.
Zhou, Q; Panduro, T E; Thorsen, B J; Arnbjerg-Nielsen, K
2013-01-01
This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, however, feasible for modelling the overall cost per day. The study also shows that in combining the insurance and regional data it is possible to establish clear relationships between occurrences of claims and hazard maps. In particular, the results indicate that with improvements to data collection and analysis, improved prediction of damage costs will be possible, for example based also on socioeconomic variables. Furthermore, the paper concludes that more collaboration between scientific research and insurance agencies is needed to improve inundation modelling and economic assessments for urban drainage designs.
NASA Astrophysics Data System (ADS)
Li, L. C.; Tang, C. A.; Li, G.; Wang, S. Y.; Liang, Z. Z.; Zhang, Y. B.
2012-09-01
The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model considers strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress-axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellbore propagate in the maximum principal stress direction without branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
NASA Astrophysics Data System (ADS)
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
Investigating the Effect of Damage Progression Model Choice on Prognostics Performance
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil; Narasimhan, Sriram; Saha, Sankalita; Saha, Bhaskar; Goebel, Kai
2011-01-01
The success of model-based approaches to systems health management depends largely on the quality of the underlying models. In model-based prognostics, it is especially the quality of the damage progression models, i.e., the models describing how damage evolves as the system operates, that determines the accuracy and precision of remaining useful life predictions. Several common forms of these models are generally assumed in the literature, but are often not supported by physical evidence or physics-based analysis. In this paper, using a centrifugal pump as a case study, we develop different damage progression models. In simulation, we investigate how model changes influence prognostics performance. Results demonstrate that, in some cases, simple damage progression models are sufficient. But, in general, the results show a clear need for damage progression models that are accurate over long time horizons under varied loading conditions.
Structure damage detection based on random forest recursive feature elimination
NASA Astrophysics Data System (ADS)
Zhou, Qifeng; Zhou, Hao; Zhou, Qingqing; Yang, Fan; Luo, Linkai
2014-05-01
Feature extraction is a key former step in structural damage detection. In this paper, a structural damage detection method based on wavelet packet decomposition (WPD) and random forest recursive feature elimination (RF-RFE) is proposed. In order to gain the most effective feature subset and to improve the identification accuracy a two-stage feature selection method is adopted after WPD. First, the damage features are sorted according to original random forest variable importance analysis. Second, using RF-RFE to eliminate the least important feature and reorder the feature list each time, then get the new feature importance sequence. Finally, k-nearest neighbor (KNN) algorithm, as a benchmark classifier, is used to evaluate the extracted feature subset. A four-storey steel shear building model is chosen as an example in method verification. The experimental results show that using the fewer features got from proposed method can achieve higher identification accuracy and reduce the detection time cost.
Magnetic measurement of creep damage: modeling and measurement
NASA Astrophysics Data System (ADS)
Sablik, Martin J.; Jiles, David C.
1996-11-01
Results of inspection of creep damage by magnetic hysteresis measurements on Cr-Mo steel are presented. It is shown that structure-sensitive parameters such as coercivity, remanence and hysteresis loss are sensitive to creep damage. Previous metallurgical studies have shown that creep changes the microstructure of he material by introducing voids, dislocations, and grain boundary cavities. As cavities develop, dislocations and voids move out to grain boundaries; therefore, the total pinning sources for domain wall motion are reduced.This, together with the introduction of a demagnetizing field due to the cavities, results in the decrease of both coercivity, remanence and hence, concomitantly, hysteresis loss. Incorporating these structural effects into a magnetomechanical hysteresis model developed previously by us produces numerical variations of coercivity, remanence and hysteresis loss consistent with what is measured. The magnetic model has therefore been used to obtain appropriately modified magnetization curves for each element of creep-damaged material in a finite element (FE) calculation. The FE calculation has been used to simulate magnetic detection of non-uniform creep damage around a seam weld in a 2.25 Cr 1Mo steam pipe. In particular, in the simulation, a magnetic C-core with primary and secondary coils was placed with its pole pieces flush against the specimen in the vicinity of the weld. The secondary emf was shown to be reduced when creep damage was present inside the pipe wall at the cusp of the weld and in the vicinity of the cusp. The calculation showed that the C- core detected creep damage best if it spanned the weld seam width and if the current in the primary was such that the C- core was not magnetically saturated. Experimental measurements also exhibited the dip predicted in emf, but the measurements are not yet conclusive because the effects of magnetic property changes of weld materials, heat- affected material, and base material have
Theoretical model of impact damage in structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.
1984-01-01
This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.
In vitro model that approximates retinal damage threshold trends.
Denton, Michael L; Foltz, Michael S; Schuster, Kurt J; Noojin, Gary D; Estlack, Larry E; Thomas, Robert J
2008-01-01
Without effective in vitro damage models, advances in our understanding of the physics and biology of laser-tissue interaction would be hampered due to cost and ethical limitations placed on the use of nonhuman primates. We extend our characterization of laser-induced cell death in an existing in vitro retinal model to include damage thresholds at 514 and 413 nm. The new data, when combined with data previously reported for 532 and 458 nm exposures, provide a sufficiently broad range of wavelengths and exposure durations (0.1 to 100 s) to make comparisons with minimum visible lesion (in vivo) data in the literature. Based on similarities between in vivo and in vitro action spectra and temporal action profiles, the cell culture model is found to respond to laser irradiation in a fundamentally similar fashion as the retina of the rhesus animal model. We further show that this response depends on the amount of intracellular melanin pigmentation.
NASA Astrophysics Data System (ADS)
Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.
2016-04-01
The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.
Vadhavkar, Nikhil; Pham, Christopher; Georgescu, Walter; Deschamps, Thomas; Heuskin, Anne-Catherine; Tang, Jonathan; Costes, Sylvain V.
2014-09-01
In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model
A prediction model for ocular damage - Experimental validation.
Heussner, Nico; Vagos, Márcia; Spitzer, Martin S; Stork, Wilhelm
2015-08-01
With the increasing number of laser applications in medicine and technology, accidental as well as intentional exposure of the human eye to laser sources has become a major concern. Therefore, a prediction model for ocular damage (PMOD) is presented within this work and validated for long-term exposure. This model is a combination of a raytracing model with a thermodynamical model of the human and an application which determines the thermal damage by the implementation of the Arrhenius integral. The model is based on our earlier work and is here validated against temperature measurements taken with porcine eye samples. For this validation, three different powers were used: 50mW, 100mW and 200mW with a spot size of 1.9mm. Also, the measurements were taken with two different sensing systems, an infrared camera and a fibre optic probe placed within the tissue. The temperatures were measured up to 60s and then compared against simulations. The measured temperatures were found to be in good agreement with the values predicted by the PMOD-model. To our best knowledge, this is the first model which is validated for both short-term and long-term irradiations in terms of temperature and thus demonstrates that temperatures can be accurately predicted within the thermal damage regime. PMID:26267496
Modeling and characterization of recompressed damaged materials
Becker, R; Cazamias, J U; Kalantar, D H; LeBlanc, M M; Springer, H K
2004-02-11
Experiments have been performed to explore conditions under which spall damage is recompressed with the ultimate goal of developing a predictive model. Spall is introduced through traditional gas gun techniques or with laser ablation. Recompression techniques producing a uniaxial stress state, such as a Hopkinson bar, do not create sufficient confinement to close the porosity. Higher stress triaxialities achieved through a gas gun or laser recompression can close the spall. Characterization of the recompressed samples by optical metallography and electron microscopy reveal a narrow, highly deformed process zone. At the higher pressures achieved in the gas gun, little evidence of spall remains other than differentially etched features in the optical micrographs. With the very high strain rates achieved with laser techniques there is jetting from voids and other signs of turbulent metal flow. Simulations of spall and recompression on micromechanical models containing a single void suggest that it might be possible to represent the recompression using models similar to those employed for void growth. Calculations using multiple, randomly distributed voids are needed to determine if such models will yield the proper behavior for more realistic microstructures.
Sandia/Stanford Unified Creep Plasticity Damage Model for ANSYS
2006-09-03
A unified creep plasticity (UCP) model was developed, based upon the time-dependent and time-independent deformation properties of the 95.5Sn-3.9Ag-0.6Cu (wt.%) soldier that were measured at Sandia. Then, a damage parameter, D, was added to the equation to develop the unified creep plasticity damage (UCPD) model. The parameter, D, was parameterized, using data obtained at Sandia from isothermal fatigue experiments on a double-lap shear test. The softwae was validated against a BGA solder joint exposed tomore » thermal cycling. The UCPD model was put into the ANSYS finite element as a subroutine. So, the softwae is the subroutine for ANSYS 8.1.« less
A stochastic model of radiation-induced bone marrow damage
Cotlet, G.; Blue, T.E.
2000-03-01
A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.
NASA Astrophysics Data System (ADS)
Gou, Xiaofan; Shen, Qiang
2012-05-01
An analysis model of the bending strain dependence of the critical current in multifilamentary Bi2223/Ag composite tapes is presented. To investigate the effect of the mechanical properties of the Bi2223 superconducting filament, the actual part for carrying current, its damage stress and elastic modulus are introduced. The calculated result of the variation of the critical current with the bending strain is well agreed with the experimental one. The further studies find that the mechanical properties of the filament have a remarkable effect on the bending strain dependence of the critical current. Specifically, the larger the damage stress and elastic modulus of the filament are, the higher the critical current is, when the bending strain increases to a larger value beyond the critical one.
CFRP damage identification system based on FBG sensors and ELM method
NASA Astrophysics Data System (ADS)
Lu, Shizeng; Jiang, Mingshun; Jia, Lei; Sui, Qingmei; Sai, Yaozhang
2015-02-01
The identification of the damage state of Carbon fiber-reinforced plastic (CFRP) structure is the necessary information for ensuring the safety of CFRP structure. In this paper, the structural damage identification system using fiber Bragg grating (FBG) sensors and the damage identification method were investigated. FBG sensors were used to detect the structural dynamic response signal, which was generated by an active actuation way. Fourier transform and principal component analysis (PCA) were used to extract the damage characteristic. After that, the structural damage identification model was constructed based on extreme learning machine (ELM), whose input is the damage characteristic and output is the damage state. Finally, the damage identification system was established and verified on a CFRP plate with 160 mm160 mm experiment area. The experimental results showed that the identification accuracy was more than 90 %. This paper provided a reliable method for CFRP structural damage identification.
The study of damage identification based on compressive sampling
NASA Astrophysics Data System (ADS)
Wang, Wentao; Wang, Peng; Zhou, Wensong; Li, Hui
2015-04-01
This paper proposes a novel and effective method to identify the damage in the 2-D beam via Lamb wave. Two problems in the structural damage identification: damage location and damage severity are solved based on the theory of compressive sampling (CS) which indicates that sparse or compressible signals can be reconstructed using just a few measurements. Because of the sparsity nature of the damage, a database of damage features is established via a sparse representation for damage identification and assessing. Specifically, this proposed method consists of two steps: damage database establishing and feature matching. In the first step, the features database of both the healthy structure and the damaged structure are represented by the Lamb wave which propagates in the 2-D beam. Then in the matching step, expressing the test modal feature as a linear combination of the bases of the over-complete reference feature database which is constructed by concatenating all modal features of all candidate damage locations builds a highly underdetermined linear system of equations with an underlying sparse representation, which can be correctly recovered by ℓ1-minimization based on CS theory; the non-zero entry in the recovered sparse representation directly identifies the damage location and severity. In addition, numerical simulation is conducted to verify the method. This method of identifying damage location and assessing damage severity, using limited Lamb wave features, obtains good result.
The relationship between observed fatigue damage and life estimation models
NASA Technical Reports Server (NTRS)
Kurath, Peter; Socie, Darrell F.
1988-01-01
Observations of the surface of laboratory specimens subjected to axial and torsional fatigue loadings has resulted in the identification of three damage fatigue phenomena: crack nucleation, shear crack growth, and tensile crack growth. Material, microstructure, state of stress/strain, and loading amplitude all influence which of the three types of fatigue damage occurs during a dominant fatigue life fraction. Fatigue damage maps are employed to summarize the experimental observations. Appropriate bulk stress/strain damage parameters are suggested to model fatigue damage for the dominant fatigue life fraction. Extension of the damage map concept to more complex loadings is presented.
An empirical modified fatigue damage model for impacted GFRP laminates
NASA Astrophysics Data System (ADS)
Naderi, S.; Hassan, M. A.; Bushroa, A. R.
2014-10-01
The aim of the present paper is to evaluate the residual strength of GFRP laminates following a low-velocity impact event under cyclic loading. The residual strength is calculated using a linear fatigue damage model. According to an investigation into the effect of low-velocity impact on the fatigue behavior of laminates, it seems laminate fatigue life decreases after impact. By normalizing the fatigue stress against undamaged static strength, the Fatigue Damage parameter “FD” is presented with a linear relationship as its slope which is a linear function of the initial impact energy; meanwhile, the constants were attained from experimental data. FD is implemented into a plane-stress continuum damage mechanics based model for GFRP composite laminates, in order to predict damage threshold in composite structures. An S-N curve is implemented to indicate the fatigue behavior for 2 mm thickness encompassing both undamaged and impacted samples. A decline in lifespan is evident when the impact energy level increases. Finally, the FD is intended to capture the unique GFRP composite characteristics.
Frequency Response Function Based Damage Identification for Aerospace Structures
NASA Astrophysics Data System (ADS)
Oliver, Joseph Acton
Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite
Towards Industrial Application of Damage Models for Sheet Metal Forming
NASA Astrophysics Data System (ADS)
Doig, M.; Roll, K.
2011-05-01
Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.
Vibration-Based Damage Detection in Rotating Machinery
Farrar, C.R.; Duffey, T.A.
1999-06-28
Damage detection as determined from changes in the vibration characteristics of a system has been a popular research topic for the last thirty years. Numerous damage identification algorithms have been proposed for detecting and locating damage in structural and mechanical systems. To date, these damage-detection methods have shown mixed results. A particular application of vibration-based damage detection that has perhaps enjoyed the greatest success is that of damage detection in rotating machinery. This paper summarizes the state of technology in vibration-based damage detection applied to rotating machinery. The review interprets the damage detection process in terms of a statistical pattern recognition paradigm that encompasses all vibration-based damage detection methods and applications. The motivation for the study reported herein is to identify the reasons that vibration-based damage detection has been successfully applied to rotating machinery, but has yet to show robust applications to civil engineering infrastructure. The paper concludes by comparing and contrasting the vibration-based damage detection applied to rotating machinery with large civil engineering infrastructure applications.
Optics damage modeling and analysis at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Liao, Z. M.; Raymond, B.; Gaylord, J.; Fallejo, R.; Bude, J.; Wegner, P.
2014-10-01
Comprehensive modeling of laser-induced damage in optics for the National Ignition Facility (NIF) has been performed on fused silica wedge focus lenses with a metric that compares the modeled damage performance to online inspections. The results indicate that damage models are successful in tracking the performance of the fused silica final optics when properly accounting for various optical finishes and mitigation processes. This validates the consistency of the damage models and allows us to further monitor and evaluate different system parameters that potentially can affect optics performance.
Kinetic Modeling of Damage Repair, Genome Instability, and Neoplastic Transformation
Stewart, Robert D
2007-03-17
Inducible repair and pathway interactions may fundamentally alter the shape of dose-response curves because different mechanisms may be important under low- and high-dose exposure conditions. However, the significance of these phenomena for risk assessment purposes is an open question. This project developed new modeling tools to study the putative effects of DNA damage induction and repair on higher-level biological endpoints, including cell killing, neoplastic transformation and cancer. The project scope included (1) the development of new approaches to simulate the induction and base excision repair (BER) of DNA damage using Monte Carlo methods and (2) the integration of data from the Monte Carlo simulations with kinetic models for higher-level biological endpoints. Methods of calibrating and testing such multiscale biological simulations were developed. We also developed models to aid in the analysis and interpretation of data from experimental assays, such as the pulsed-field gel electrophoresis (PFGE) assay used to quantity the amount of DNA damage caused by ionizing radiation.
NASA Astrophysics Data System (ADS)
Aminjikarai Vedagiri, Srinivasa Babu
An active field of research that has developed due to the increasing use of computational techniques like finite element simulations for analysis of highly complex structural mechanics problems and the increasing use of composite laminates in varied industries such as aerospace, automotive, bio-medical, etc. is the development of numerical models to capture the behavior of composite materials. One of the big challenges not yet overcome convincingly in this field is the modeling of delamination failure which is one of the primary modes of damage in composite laminates. Hence, the primary aim of this work is to develop two numerical models for finite element simulations of delamination failure in composite laminates and implement them in the explicit finite element software DYNA3D/LS-DYNA. Dynamic fracture mechanics is an example of a complex structural analysis problem for which finite element simulations seem to be the only possible way to extract detailed information on sophisticated physical quantities of the crack-tip at any instant of time along a highly transient history of fracture. However, general purpose, commercial finite element software which have capabilities to do fracture analyses are still limited in their use to stationary cracks and crack propagation along trajectories known a priori. Therefore, an automated dynamic fracture procedure capable of simulating dynamic propagation of through-thickness cracks in arbitrary directions in linear, isotropic materials without user-intervention is first developed and implemented in DYNA3D for its default 8-node solid (brick) element. Dynamic energy release rate and stress intensity factors are computed in the model using integral expressions particularly well-suited for the finite element method. Energy approach is used to check for crack propagation and the maximum circumferential stress criterion is used to determine the direction of crack growth. Since the re-meshing strategy used to model crack growth
Mitochondrial DNA damage and efficiency of ATP biosynthesis: mathematical model.
Beregovskaya, N; Maiboroda, R
1995-01-21
The role of mitochondrial DNA (mtDNA) damage in ageing processes and in malignant transformation of a cell is discussed. A mathematical model of the mtDNA population in a cell and in tissue is constructed. The model describes the effects of mtDNA damages accumulated during ageing and some features of malignant transformation and regeneration.
Damage identification method based on structural dynamic characteristics and strain measurements
NASA Astrophysics Data System (ADS)
Teng, Jun; Lu, Wei
2009-03-01
More and more large span structures have been built or are being built and their health is concerned about by civil engineers and investors, which arises to the problem of studying on several damage identification methods to give estimation on the health of the structure and the identification on damage location and damage degree. The damage identification methods in civil engineering are mostly based on dynamic characteristics, which have difficulties when applied to practical structures. Meanwhile, the strains of the structural important elements can give more exactly and more directly information for damage identification on damage location and damage degree. The information fusion for acceleration sensors and strain sensors is used for making a strategic decision on damage identification and the Dempster-Shafer evidence theory is used as the information fusion strategic decision, in which the strategic decision information fusion is a method to give the final decision based on the decision made by each kind of sensors according to some principle and some synthesized evaluation, that is, the final damage identification results are given based on the damage identification results using the structural dynamic characteristics and strain measurements. In addition, a finite element model of large span space shell structure is built and several damage cases of it are simulated, in the example, the structural dynamic characteristics damage index and strain measurements damage index are used to give the damage identification results, combining which the final damage identification result by strategic decision fusion is given too, while the method presented in the paper is proofed to be reliable and effective according to comparing the three kinds of damage identification results mentioned above.
Application of time-series-based damage detection algorithms to structures under ambient excitations
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chan, Chuan-Kai; Lee, Chung-Hsien
2016-04-01
Operational modal analysis (OMA) is to extract the dynamic characteristics of structures based on vibration responses of structures without considering the excitation measurement. In this study both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of a test structure ( a 3- story steel frame subjected to a series of earthquake and white noise excitations back to back) using both input and output response data or output only measurement and identify the damage location. For the modal-based identification, the multi-variant autoregressive model (MV-AR model) is used to identify the dynamic characteristics of structure. The MV-AR model parameters are then used to develop the vectors of autoregressive model and Mahalanobis distance, and then to identify the damage features and locate the damage. From the signal-based feature identification two damage features will be discussed: (1) the enhancement of time-frequency analysis of acceleration responses, and (2) WPT based energy damage indices. Discussion on the correlation of the extract local damage features from measurements with the global damage indices, such as null-space and subspace damage indices, is also made.
NASA Astrophysics Data System (ADS)
Ren, W. X.; Lin, Y. Q.; Fang, S. E.
2011-11-01
One of the key issues in vibration-based structural health monitoring is to extract the damage-sensitive but environment-insensitive features from sampled dynamic response measurements and to carry out the statistical analysis of these features for structural damage detection. A new damage feature is proposed in this paper by using the system matrices of the forward innovation model based on the covariance-driven stochastic subspace identification of a vibrating system. To overcome the variations of the system matrices, a non-singularity transposition matrix is introduced so that the system matrices are normalized to their standard forms. For reducing the effects of modeling errors, noise and environmental variations on measured structural responses, a statistical pattern recognition paradigm is incorporated into the proposed method. The Mahalanobis and Euclidean distance decision functions of the damage feature vector are adopted by defining a statistics-based damage index. The proposed structural damage detection method is verified against one numerical signal and two numerical beams. It is demonstrated that the proposed statistics-based damage index is sensitive to damage and shows some robustness to the noise and false estimation of the system ranks. The method is capable of locating damage of the beam structures under different types of excitations. The robustness of the proposed damage detection method to the variations in environmental temperature is further validated in a companion paper by a reinforced concrete beam tested in the laboratory and a full-scale arch bridge tested in the field.
Borg, J.; Bibring, J.P.; Cowsik, G.; Langevin, Y.; Maurette, M.
1983-02-15
In this paper we present our most recent results on ion implantation and erosion effects, intended to reproduce the superficial amorphous layers of radiation damage observed with a high voltage electron microscope on ..mu..m-sized grains extracted from the lunar regolith and which result from the exposure of the grains to the solar wind. We next outline theoretical computations which yield the thickness distribution of such amorphous layers as a function of the exposure time of the grains at the surface of the moon, the He/H ratio, and the speed distribution in the solar wind. From this model, the position of the peak in the solar wind speed distribution is the major parameter controlling the thickness of the amorphous layer.
Dynamic based damage detection in composite structures
NASA Astrophysics Data System (ADS)
Banerjee, Sauvik; Ricci, Fabrizio; Baid, Harsh; Mal, Ajit K.
2009-03-01
Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace structures. In spite of their many advantages, composite materials are highly susceptible to hidden flaws that may occur at any time during the life cycle of a structure, and if undetected, may cause sudden and catastrophic failure of the entire structure. This paper is concerned with the detection and characterization of hidden defects in composite structures before they grow to a critical size. A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data. The structure is assumed to be instrumented with an array of actuators and sensors to excite and record its dynamic response, including vibration and wave propagation effects. A damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced as a determinant of structural damage. The indices are used to identify low velocity impact damages in increasingly complex composite structural components. The potential application of the approach in developing health monitoring systems in defects-critical structures is indicated.
A New Damage Constitutive Model for Thermal Deformation of AA6111 Sheet
NASA Astrophysics Data System (ADS)
Ma, Wenyu; Wang, Baoyu; Bian, Jianhua; Tang, Xuefeng; Yang, Lei; Huo, Yuanming
2015-06-01
Hot tensile tests were conducted using a Gleeble 1500, at the temperature range of 623 K to 823 K (350 °C to 550 °C) and strain rate range of 0.1 to 10 s-1. Flow stress is significantly affected by temperature and strain rate. As strain increases; the flow stress first rapidly increases, subsequently maintains a steady state, and finally drops sharply because of damage evolution. The features and mechanism of the damage were studied utilizing a scanning electron microscope. Micro-void nucleation, growth, and coalescence result in the failure of the hot-formed specimen. A damage equation based on continuum damage mechanics and damage mechanism in hot metal forming was proposed. A unified viscoplastic damage model coupled with strain, strain rate, temperature, dislocation, hardening, damage, damage rate, and so on was developed and calibrated for AA6111 using Genetic Algorism Tool in three steps. This model can be used to describe viscoplastic flow behavior and damage evolution at various temperatures and strain rates. The model was implemented into the finite element (FE) model in ABAQUS platform via the variable user material subroutine. Thus, the FE model could be employed to study the damage distribution and the effects of blank holder force (BHF) and forming velocity on hot cylindrical deep drawing. It is revealed that lower BHF and higher velocity are beneficial for drawability. A good agreement between simulated and experimental results has been achieved.
NASA Astrophysics Data System (ADS)
Xu, Hao; Cheng, Li; Su, Zhongqing; Guyader, Jean-Louis
2013-07-01
Previously, an inverse damage characterization framework was proposed by quantifying the perturbation to local dynamic equilibrium of a beam-like structure, showing advantages in some aspects over the traditional global vibration-based and local guided-wave-based methods. Residing on the plate theory, this framework was expanded to a two-dimensional domain. Inheriting the attributes of localized canvassing using high-order spatial derivatives this approach has proven effectiveness in quantitatively characterizing damage of small dimension, regardless of its number and type. In addition, the approach requires no benchmarks, baseline signals, global models, additional excitation sources, pre-modal analysis nor prior knowledge on structural boundary. A damage imaging algorithm using the quantified dynamic perturbation was further established, enabling presentation of damage characterization results in an intuitive and prompt manner. Integrating the detection capacities in one- and two-dimensional domains, a hybrid damage visualization strategy was developed, for systems comprising structural components of different types, various geometries and diverse boundary conditions. Two independent de-noising techniques (low-pass wavenumber filtering and adjustment of measurement density), together with a hybrid data fusion algorithm, were proposed as auxiliary means to enhance the robustness of the strategy in noisy measurement conditions. The strategy was applied experimentally to the evaluation of multi-damage in a plane structure comprising beam and plate components, showing satisfactory results.
Elastic-plastic models for multi-site damage
NASA Technical Reports Server (NTRS)
Actis, Ricardo L.; Szabo, Barna A.
1994-01-01
This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.
Multiscale modeling of damage in multidirectional composite laminates
NASA Astrophysics Data System (ADS)
Singh, Chandra Veer
90°-plies. The predictions agree well with published experimental data as well as independent FE computations. Limited parametric studies are performed to show usability of SDM for more general laminates. To predict the initiation and growth of intralaminar cracks, an energy based model is proposed in which these cracks initiate and multiply when the work required to form new set of cracks exceeds a laminate dependent critical energy release rate. The approach requires determination of average crack opening and sliding displacements at varying crack spacing. This task is performed through a suitable 3-D FE analysis. In case of off-axis ply cracking, a mixed mode fracture criterion is utilized, where the critical energy release rates in normal and shear modes are determined by fitting the damage model with the experimental data for a reference laminate. The predictions from the model for [0/+/-theta4/01/2]s and [0/90/∓45]s laminates show remarkable agreement with the experimental results. The methodology and the results covered in this dissertation will be of interest to mechanics of materials researchers as well as to engineers in industry where composite materials for structural applications are of interest.
Modeling Fatigue Damage in Long-Fiber Thermoplastics
Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.
2009-10-30
This paper applies a fatigue damage model recently developed for injection-molded long-fiber thermoplastics (LFTs) to predict the modulus reduction and fatigue lifetime of glass/polyamide 6,6 (PA6,6) specimens. The fatigue model uses a multiscale mechanistic approach to describe fatigue damage accumulation in these materials subjected to cyclic loading. Micromechanical modeling using a modified Eshelby-Mori-Tanaka approach combined with averaging techniques for fiber length and orientation distributions is performed to establish the stiffness reduction relation for the composite as a function of the microcrack volume fraction. Next, continuum damage mechanics and a thermodynamic formulation are used to derive the constitutive relations and the damage evolution law. The fatigue damage model has been implemented in the ABAQUS finite element code and has been applied to analyze fatigue of the studied glass/PA6,6 specimens. The predictions agree well with the experimental results.
Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.
2010-01-01
The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.
Continuum damage model for ferroelectric materials and its application to multilayer actuators
NASA Astrophysics Data System (ADS)
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
A damage mechanics based approach to structural deterioration and reliability
Bhattcharya, B.; Ellingwood, B.
1998-02-01
Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions to the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.
Identification of structural damage using wavelet-based data classification
NASA Astrophysics Data System (ADS)
Koh, Bong-Hwan; Jeong, Min-Joong; Jung, Uk
2008-03-01
Predicted time-history responses from a finite-element (FE) model provide a baseline map where damage locations are clustered and classified by extracted damage-sensitive wavelet coefficients such as vertical energy threshold (VET) positions having large silhouette statistics. Likewise, the measured data from damaged structure are also decomposed and rearranged according to the most dominant positions of wavelet coefficients. Having projected the coefficients to the baseline map, the true localization of damage can be identified by investigating the level of closeness between the measurement and predictions. The statistical confidence of baseline map improves as the number of prediction cases increases. The simulation results of damage detection in a truss structure show that the approach proposed in this study can be successfully applied for locating structural damage even in the presence of a considerable amount of process and measurement noise.
NASA Astrophysics Data System (ADS)
Mosavi, Amir A.; Dickey, David; Seracino, Rudolf; Rizkalla, Sami H.
2010-03-01
This paper compares two different approaches to identify damage locations in structural members subjected to ambient vibrations. The concept is demonstrated using a simply supported two span steel beam. An electro-hydraulic actuator was used to simulate ambient loading by applying random loads. The vibration time histories were collected for the undamaged and damaged conditions. The structural damages were introduced by cutting notches of different sizes in the flange at different locations. The two different approaches used time-series models in the context of statistical pattern recognition to extract sensitive damage features. In the first method, the damage features were extracted using the errors from fitting autoregressive models with exogenous inputs (ARX) to the collected time histories. The fitted ARX models had been developed based on the undamaged beam. The calculated damage probability from this method could not clearly discriminate the physical damage locations although the change in the condition of the beam was identified. In the second method, variations in the coefficients of multivariate autoregressive models which had been fitted to the acceleration time histories were investigated, and the damage features were extracted by measuring the magnitude of these variations. The findings showed the sensors close to the physical damage locations are related to the larger damage features.
MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft.
Xu, Xieyu; Yang, Lingyu; Zhang, Jing
2015-01-01
This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839
MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft
Xu, Xieyu; Yang, Lingyu; Zhang, Jing
2015-01-01
This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage. PMID:26180839
MRAC Control with Prior Model Knowledge for Asymmetric Damaged Aircraft.
Xu, Xieyu; Yang, Lingyu; Zhang, Jing
2015-01-01
This paper develops a novel state-tracking multivariable model reference adaptive control (MRAC) technique utilizing prior knowledge of plant models to recover control performance of an asymmetric structural damaged aircraft. A modification of linear model representation is given. With prior knowledge on structural damage, a polytope linear parameter varying (LPV) model is derived to cover all concerned damage conditions. An MRAC method is developed for the polytope model, of which the stability and asymptotic error convergence are theoretically proved. The proposed technique reduces the number of parameters to be adapted and thus decreases computational cost and requires less input information. The method is validated by simulations on NASA generic transport model (GTM) with damage.
Integrated Modelling of Damage and Fracture in Sheet Metal Forming
NASA Astrophysics Data System (ADS)
Peerlings, R. H. J.; Mediavilla, J.; Geers, M. G. D.
2007-05-01
A framework for finite element simulations of ductile damage development and ductile fracture during metal forming is presented. The damage evolution is described by a phenomenological continuum damage model. Crack growth and fracture are treated as the ultimate consequences of the damage process. Computationally, the initiation and growth of cracks is traced by an adaptive remeshing strategy, thereby allowing for opening crack faces. The application of the method to the fabrication of food-can lids demonstrates its capabilities, but also some of its limitations.
Track structure model of cell damage in space flight
NASA Technical Reports Server (NTRS)
Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.
1992-01-01
The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.
Chemically induced intestinal damage models in zebrafish larvae.
Oehlers, Stefan H; Flores, Maria Vega; Hall, Christopher J; Okuda, Kazuhide S; Sison, John Oliver; Crosier, Kathryn E; Crosier, Philip S
2013-06-01
Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.
Micro-mechanical modeling of perforating shock damage
Swift, R.P.; Krogh, K.E.; Behrmann, L.A.; Halleck, P.M.
1997-11-17
Shaped charge jet induced formation damage from perforation treatments hinders productivity. Manifestation of this damage is in the form of grain fragmentation resulting in fines that plug up pore throats along with the breakdown of inter-grain cementation. The authors use the Smooth Particle Hydrodynamic (SPH) computational method as a way to explicitly model, on a grain pore scale, the dynamic interactions of grains and grain/pores to calculate the damage resulting from perforation type stress wave loading. The SPH method is a continuum Lagrangian, meshless approach that features particles. Clusters of particles are used for each grain to provide representation of a grain pore structure that is similar to x-ray synchrotron microtomography images. Numerous damage models are available to portray fracture and fragmentation. In this paper the authors present the results of well defined impact loading on a grain pore structure that illustrate how the heterogeneity affects stress wave behavior and damage evolution. The SPH approach easily accommodates the coupling of multi-materials. Calculations for multi-material conditions with the pore space treated as a void, fluid filled, and/or clay filled show diverse effects on the stress wave propagation behavior and damage. SPH comparisons made with observed damage from recovered impacted sandstone samples in gas gun experiments show qualitatively the influence of stress intensity. The modeling approach presented here offers a unique way in concert with experiments to define a better understanding of formation damage resulting from perforation completion treatments.
Stender, Michael E; Regueiro, Richard A; Klisch, Stephen M; Ferguson, Virginia L
2015-08-01
Traumatic injuries and gradual wear-and-tear of articular cartilage (AC) that can lead to osteoarthritis (OA) have been hypothesized to result from tissue damage to AC. In this study, a previous equilibrium constitutive model of AC was extended to a constitutive damage articular cartilage (CDAC) model. In particular, anisotropic collagen (COL) fibril damage and isotropic glycosaminoglycan (GAG) damage were considered in a 3D formulation. In the CDAC model, time-dependent effects, such as viscoelasticity and poroelasticity, were neglected, and thus all results represent the equilibrium response after all time-dependent effects have dissipated. The resulting CDAC model was implemented in two different finite-element models. The first simulated uniaxial tensile loading to failure, while the second simulated spherical indentation with a rigid indenter displaced into a bilayer AC sample. Uniaxial tension to failure simulations were performed for three COL fibril Lagrangian failure strain (i.e., the maximum elastic COL fibril strain) values of 15%, 30%, and 45%, while spherical indentation simulations were performed with a COL fibril Lagrangian failure strain of 15%. GAG damage parameters were held constant for all simulations. Our results indicated that the equilibrium postyield tensile response of AC and the macroscopic tissue failure strain are highly dependent on COL fibril Lagrangian failure strain. The uniaxial tensile response consisted of an initial nonlinear ramp region due to the recruitment of intact fibrils followed by a rapid decrease in tissue stress at initial COL fibril failure, as a result of COL fibril damage which continued until ultimate tissue failure. In the spherical indentation simulation, damage to both the COL fibril and GAG constituents was located only in the superficial zone (SZ) and near the articular surface with tissue thickening following unloading. Spherical indentation simulation results are in agreement with published experimental
Stender, Michael E; Regueiro, Richard A; Klisch, Stephen M; Ferguson, Virginia L
2015-08-01
Traumatic injuries and gradual wear-and-tear of articular cartilage (AC) that can lead to osteoarthritis (OA) have been hypothesized to result from tissue damage to AC. In this study, a previous equilibrium constitutive model of AC was extended to a constitutive damage articular cartilage (CDAC) model. In particular, anisotropic collagen (COL) fibril damage and isotropic glycosaminoglycan (GAG) damage were considered in a 3D formulation. In the CDAC model, time-dependent effects, such as viscoelasticity and poroelasticity, were neglected, and thus all results represent the equilibrium response after all time-dependent effects have dissipated. The resulting CDAC model was implemented in two different finite-element models. The first simulated uniaxial tensile loading to failure, while the second simulated spherical indentation with a rigid indenter displaced into a bilayer AC sample. Uniaxial tension to failure simulations were performed for three COL fibril Lagrangian failure strain (i.e., the maximum elastic COL fibril strain) values of 15%, 30%, and 45%, while spherical indentation simulations were performed with a COL fibril Lagrangian failure strain of 15%. GAG damage parameters were held constant for all simulations. Our results indicated that the equilibrium postyield tensile response of AC and the macroscopic tissue failure strain are highly dependent on COL fibril Lagrangian failure strain. The uniaxial tensile response consisted of an initial nonlinear ramp region due to the recruitment of intact fibrils followed by a rapid decrease in tissue stress at initial COL fibril failure, as a result of COL fibril damage which continued until ultimate tissue failure. In the spherical indentation simulation, damage to both the COL fibril and GAG constituents was located only in the superficial zone (SZ) and near the articular surface with tissue thickening following unloading. Spherical indentation simulation results are in agreement with published experimental
Damage assessment framework for landslide disaster based on very high-resolution images
NASA Astrophysics Data System (ADS)
Sun, Bo; Xu, Qihua; He, Jun; Liu, Zhen; Wang, Ying; Ge, Fengxiang
2016-04-01
It is well known that rapid building damage assessment is necessary for postdisaster emergency relief and recovery. Based on an analysis of very high-resolution remote-sensing images, we propose an automatic building damage assessment framework for rainfall- or earthquake-induced landslide disasters. The framework consists of two parts that implement landslide detection and the damage classification of buildings, respectively. In this framework, an approach based on modified object-based sparse representation classification and morphological processing is used for automatic landslide detection. Moreover, we propose a building damage classification model, which is a classification strategy designed for affected buildings based on the spectral characteristics of the landslide disaster and the morphological characteristics of building damage. The effectiveness of the proposed framework was verified by applying it to remote-sensing images from Wenchuan County, China, in 2008, in the aftermath of an earthquake. It can be useful for decision makers, disaster management agencies, and scientific research organizations.
Categorizing natural disaster damage assessment using satellite-based geospatial techniques
Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.
2008-01-01
Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.
Categorizing natural disaster damage assessment using satellite-based geospatial techniques
NASA Astrophysics Data System (ADS)
Myint, S. W.; Yuan, M.; Cerveny, R. S.; Giri, C.
2008-07-01
Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.
A procedure for utilization of a damage-dependent constitutive model for laminated composites
NASA Technical Reports Server (NTRS)
Lo, David C.; Allen, David H.; Harris, Charles E.
1992-01-01
Described here is the procedure for utilizing a damage constitutive model to predict progressive damage growth in laminated composites. In this model, the effects of the internal damage are represented by strain-like second order tensorial damage variables and enter the analysis through damage dependent ply level and laminate level constitutive equations. The growth of matrix cracks due to fatigue loading is predicted by an experimentally based damage evolutionary relationship. This model is incorporated into a computer code called FLAMSTR. This code is capable of predicting the constitutive response and matrix crack damage accumulation in fatigue loaded laminated composites. The structure and usage of FLAMSTR are presented along with sample input and output files to assist the code user. As an example problem, an analysis of crossply laminates subjected to two stage fatigue loading was conducted and the resulting damage accumulation and stress redistribution were examined to determine the effect of variations in fatigue load amplitude applied during the first stage of the load history. It was found that the model predicts a significant loading history effect on damage evolution.
Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete
NASA Astrophysics Data System (ADS)
Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad
2014-08-01
This paper outlines the development of a large-area sensing skin for damage detection in concrete structures. The developed sensing skin consists of a thin layer of electrically conductive copper paint that is applied to the surface of the concrete. Cracking of the concrete substrate results in the rupture of the sensing skin, decreasing its electrical conductivity locally. The decrease in conductivity is detected with electrical impedance tomography (EIT) imaging. In previous works, electrically based sensing skins have provided only qualitative information on the damage on the substrate surface. In this paper, we study whether quantitative imaging of the damage is possible. We utilize application-specific models and computational methods in the image reconstruction, including a total variation (TV) prior model for the damage and an approximate correction of the modeling errors caused by the inhomogeneity of the painted sensing skin. The developed damage detection method is tested experimentally by applying the sensing skin to polymeric substrates and a reinforced concrete beam under four-point bending. In all test cases, the EIT-based sensing skin provides quantitative information on cracks and/or other damages on the substrate surface: featuring a very low conductivity in the damage locations, and a reliable indication of the lengths and shapes of the cracks. The results strongly support the applicability of the painted EIT-based sensing skin for damage detection in reinforced concrete elements and other substrates.
A wavelet-based damage detection algorithm based on bridge acceleration response to a vehicle
NASA Astrophysics Data System (ADS)
Hester, D.; González, A.
2012-04-01
Previous research based on theoretical simulations has shown the potential of the wavelet transform to detect damage in a beam by analysing the time-deflection response due to a constant moving load. However, its application to identify damage from the response of a bridge to a vehicle raises a number of questions. Firstly, it may be difficult to record the difference in the deflection signal between a healthy and a slightly damaged structure to the required level of accuracy and high scanning frequencies in the field. Secondly, the bridge is going to have a road profile and it will be loaded by a sprung vehicle and time-varying forces rather than a constant load. Therefore, an algorithm based on a plot of wavelet coefficients versus time to detect damage (a singularity in the plot) appears to be very sensitive to noise. This paper addresses these questions by: (a) using the acceleration signal, instead of the deflection signal, (b) employing a vehicle-bridge finite element interaction model, and (c) developing a novel wavelet-based approach using wavelet energy content at each bridge section, which proves to be more sensitive to damage than a wavelet coefficient line plot at a given scale as employed by others.
Gonzalez-Hunt, Claudia P.; Rooney, John P.; Ryde, Ian T.; Anbalagan, Charumathi; Joglekar, Rashmi
2016-01-01
Because of the role DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332
Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†
Friedman, Joshua I.; Stivers, James T.
2010-01-01
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926
Finite element modeling for validation of structural damage identification experimentation.
Stinemates, D. W.; Bennett, J. G.
2001-01-01
The project described in this report was performed to couple experimental and analytical techniques in the field of structural health monitoring and darnage identification. To do this, a finite dement model was Constructed of a simulated three-story building used for damage identification experiments. The model was used in conjunction with data from thie physical structure to research damage identification algorithms. Of particular interest was modeling slip in joints as a function of bolt torque and predicting the smallest change of torque that could be detected experimentally. After being validated with results from the physical structure, the model was used to produce data to test the capabilities of damage identification algorithms. This report describes the finite element model constructed, the results obtained, and proposed future use of the model.
Continuum Fatigue Damage Modeling for Critical Design, Control, and Fault Prognosis
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1996-01-01
This paper develops a simplified continuum (continuous with respect to time, stress, etc.) fatigue damage model for use in critical design, Life Extending Control and fault prognosis. The work is based on the local strain cyclic damage modeling method. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modelling. Stress based continuum models are derived. Extension to plastic strain-strain rate models is also presented. Progress toward a non-zero mean stress based is presented. Also new nonlinear explicit equation forms in terms of stress amplitude are derived for this case. Application of the various models to design, control, and fault prognosis is considered.
GOALDS--goal based damage ship stability and safety standards.
Papanikolaou, Apostolos; Hamann, Rainer; Lee, Byung Suk; Mains, Christian; Olufsen, Odd; Vassalos, Dracos; Zaraphonitis, George
2013-11-01
The new probabilistic damaged stability regulations for dry cargo and passenger ships (SOLAS 2009), which entered into force on January 1, 2009, represent a major step forward in achieving an improved safety standard through the rationalisation and harmonization of damaged stability requirements. There are, however, serious concerns regarding the adopted formulation for the calculation of the survival probability of passenger ships, particularly for ROPAX and large cruise vessels. The present paper outlines the objectives, the methodology of work and main results of the EU-funded FP7 project GOALDS (Goal Based Damaged Stability, 2009-2012), which aims to address the above shortcomings by state-of-the-art scientific methods and by formulating a rational, goal-based regulatory framework, properly accounting for the damage stability properties of passenger ships and the risk of people onboard.
A mixed damage model for unsaturated porous media
NASA Astrophysics Data System (ADS)
Arson, Chloé; Gatmiri, Behrouz
2009-02-01
The aim of this study is to present a framework for the modeling of damage in continuous unsaturated porous geomaterials. The damage variable is a second-order tensor. The model is formulated in net stress and suction independent state variables. Correspondingly, the strain tensor is split into two independent thermodynamic strain components. The proposed framework mixes micro-mechanical and phenomenological approaches. On the one hand, the effective stress concept of Continuum Damage Mechanics is used in order to compute the damaged rigidities. On the other hand, the concept of equivalent mechanical state is introduced in order to get a simple phenomenological formulation of the behavior laws. Cracking effects are also taken into account in the fluid transfer laws. To cite this article: C. Arson, B. Gatmiri, C. R. Mecanique 337 (2009).
ASPH modeling of Material Damage and Failure
Owen, J M
2010-04-30
We describe our new methodology for Adaptive Smoothed Particle Hydrodynamics (ASPH) and its application to problems in modeling material failure. We find that ASPH is often crucial for properly modeling such experiments, since in most cases the strain placed on materials is non-isotropic (such as a stretching rod), and without the directional adaptability of ASPH numerical failure due to SPH nodes losing contact in the straining direction can compete with or exceed the physical process of failure.
A model for damage of microheterogeneous kidney stones
NASA Astrophysics Data System (ADS)
Szeri, Andrew J.; Zohdi, Tarek I.; Blake, John R.
2005-04-01
In this paper, a theoretical framework is developed for the mechanics of kidney stones with an isotropic, random microstructure-such as those comprised of cystine or struvite. The approach is based on a micromechanical description of kidney stones comprised of crystals in a binding matrix. Stress concentration functions are developed to determine load sharing of the particle phase and the binding matrix phase. As an illustration of the theory, the fatigue of kidney stones subject to shock wave lithotripsy is considered. Stress concentration functions are used to construct fatigue life estimates for each phase, as a function of the volume fraction and of the mechanical properties of the constituents, as well as the loading from SWL. The failure of the binding matrix is determined explicitly in a model for the accumulation of distributed damage. Also considered is the amount of material damaged in a representative non-spherical collapse of a cavitation bubble near the stone surface. The theory can be used to assess the importance of microscale heterogeneity on the comminution of renal calculi and to estimate the number of cycles to failure in terms of measurable material properties.
Models Of Lower Extremity Damage In Mice: Time Course of Organ Damage & Immune Response
Menzel, Christoph L; Pfeifer, Roman; Darwiche, Sophie S; Kobbe, Philipp; Gill, Roop; Shapiro, Richard A; Loughran, Patricia; Vodovotz, Yoram; Scott, Melanie J; Zenati, Mazen S; Billiar, Timothy R; Pape, Hans-Christoph
2011-01-01
Background Posttraumatic inflammatory changes have been identified as major causes of altered organ function and failure. Both hemorrhage and soft tissue damage induce these inflammatory changes. Exposure to heterologous bone in animal models has recently been shown to mimic this inflammatory response in a stable and reproducible fashion. This follow-up study tests the hypothesis that inflammatory responses are comparable between a novel trauma model (“pseudofracture”, PFx) and a bilateral femur fracture (BFF) model. Materials and Methods In C57BL/6 mice, markers for remote organ dysfunction and inflammatory responses were compared in 4 groups (control/sham/BFF/PFx) at the time points 2, 4, and 6 hours. Results Hepatocellular damage in BFF and PFx was highly comparable in extent and evolution, as shown by similar levels of NFκB activation and plasma ALT. Pulmonary inflammatory responses were also comparably elevated in both trauma models as early as 2h after trauma as measured by myeloperoxidase activity (MPO). Muscle damage was provoked in both BFF and PFx mice over the time course, although BFF induced significantly higher AST and CK levels. IL-6 levels were also similar with early and sustained increases over time in both trauma models. Conclusions Both BFF and PFx create similar reproducible inflammatory and remote organ responses. PFx will be a useful model to study longer term inflammatory effects that cannot be studied using BFF. PMID:21276982
Modelling blast induced damage from a fully coupled explosive charge
Onederra, Italo A.; Furtney, Jason K.; Sellers, Ewan; Iverson, Stephen
2015-01-01
This paper presents one of the latest developments in the blasting engineering modelling field—the Hybrid Stress Blasting Model (HSBM). HSBM includes a rock breakage engine to model detonation, wave propagation, rock fragmentation, and muck pile formation. Results from two controlled blasting experiments were used to evaluate the code’s ability to predict the extent of damage. Results indicate that the code is capable of adequately predicting both the extent and shape of the damage zone associated with the influence of point-of-initiation and free-face boundary conditions. Radial fractures extending towards a free face are apparent in the modelling output and matched those mapped after the experiment. In the stage 2 validation experiment, the maximum extent of visible damage was of the order of 1.45 m for the fully coupled 38-mm emulsion charge. Peak radial velocities were predicted within a relative difference of only 1.59% at the nearest history point at 0.3 m from the explosive charge. Discrepancies were larger further away from the charge, with relative differences of −22.4% and −42.9% at distances of 0.46 m and 0.61 m, respectively, meaning that the model overestimated particle velocities at these distances. This attenuation deficiency in the modelling produced an overestimation of the damage zone at the corner of the block due to excessive stress reflections. The extent of visible damage in the immediate vicinity of the blasthole adequately matched the measurements. PMID:26412978
Simulation Based Investigation of Hidden Delamination Damage Detection in CFRP Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Parker, F. Raymond
2013-01-01
Guided wave (GW) based damage detection methods have shown promise in structural health monitoring (SHM) and hybrid SHM-nondestructive evaluation (NDE) techniques. Much previous GW work in the aerospace field has been primarily focused on metallic materials, with a growing focus on composite materials. The work presented in this paper demonstrates how realistic three-dimensional (3D) GW simulations can aid in the development of GW based damage characterization techniques for aerospace composites. 3D elastodynamic finite integration technique is implemented to model GW interaction with realistic delamination damage. A local wavenumber technique is applied to simulation data in order to investigate the detectability of hidden delamination damage to enable accurate characterization of damage extent.
Continuum damage modeling and simulation of hierarchical dental enamel
NASA Astrophysics Data System (ADS)
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-05-01
Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.
Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft
NASA Technical Reports Server (NTRS)
Shah, Gautam H.; Hill, Melissa A.
2012-01-01
A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.
Prostaglandin ethanolamides attenuate damage in a human explant colitis model.
Nicotra, Lauren L; Vu, Megan; Harvey, Benjamin S; Smid, Scott D
2013-01-01
Endocannabinoids are protective in animal colitis models. As endocannabinoids also form novel prostaglandin ethanolamides (prostamides) via COX-2, we investigated the effects of prostamides and other COX-2 mediators on tissue damage in an ex vivo human mucosal explant colitis model. Healthy human colonic mucosae were incubated with pro-inflammatory cytokines TNF-α and IL-1β to elicit colitis-like tissue damage. The PGF-ethanolamide analogue, bimatoprost decreased colitis scores which were reversed by a prostamide-specific antagonist AGN 211334, but not the FP receptor antagonist AL-8810. PGF-ethanolamide and PGE-ethanolamide also reduced cytokine-evoked epithelial damage. Anandamide was protective in the explant colitis model; however COX-2 inhibition did not alter its effects, associated with a lack of COX-2 induction in explant mucosal tissue. These findings support an anti-inflammatory role for prostamides and endocannabinoids in the human colon. PMID:23380599
Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.
Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P
2014-11-17
Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.
Localization of nonlinear damage using state-space-based predictions under stochastic excitation
NASA Astrophysics Data System (ADS)
Liu, Gang; Mao, Zhu; Todd, Michael; Huang, Zongming
2014-02-01
This paper presents a study on localizing damage under stochastic excitation by state-space-based methods, where the damaged response contains some nonlinearity. Two state-space-based modeling algorithms, namely auto- and cross-predictions, are employed in this paper, and the greatest prediction error will be achieved at the sensor pair closest to the actual damage, in terms of localization. To quantify the distinction of prediction error distributions obtained at different sensor locations, the Bhattacharyya distance is adopted as the quantification metric. There are two lab-scale test-beds adopted as validation platforms, including a two-story plane steel frame with bolt loosening damage and a three-story benchmark aluminum frame with a simulated tunable crack. Band-limited Gaussian noise is applied through an electrodynamic shaker to the systems. Testing results indicate that the damage detection capability of the state-space-based method depends on the nonlinearity-induced high frequency responses. Since those high frequency components attenuate quickly in time and space, the results show great capability for damage localization, i.e., the highest deviation of Bhattacharyya distance is coincident with the sensors close to the physical damage location. This work extends the state-space-based damage detection method for localizing damage to a stochastically excited scenario, which provides the advantage of compatibility with ambient excitations. Moreover, results from both experiments indicate that the state-space-based method is only sensitive to nonlinearity-induced damage, thus it can be utilized in parallel with linear classifiers or normalization strategies to insulate the operational and environmental variability, which often affects the system response in a linear fashion.
Progressive Damage Modeling of Durable Bonded Joint Technology
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
Remote sensing detection model of damaged forest by tomicus piniperda in Yunnan Province, China
NASA Astrophysics Data System (ADS)
Dong, Xieqiong; Zhao, Shuhe; Luo, Weijia; Feng, Xuezhi; Yang, Xiaopeng; Liu, Hongping; Xu, Hong
2006-01-01
Remote sensing detection model of damaged forest by tomicus piniperda was studied. It analyzed different detection models using multiple types of remote sensing data, such as TM, CBERS-1, AVHRR and MODIS data. The spectral features of the above remote sensing data (March, 2001) were given. And two detection models were put forward according to the spectral changing characteristics. One was named Difference Rate (DR) model with NIR and VIR data, which applied for TM, CBERS-1, AVHRR and MODIS. If DR was bigger, the forest grew healthier. Based on the typical sample, the different guidelines distinguished healthy and damaged forests were obtained. The other model was named Disaster Index (DI) model with thermal and NIR data, only suitable for MODIS. The guidelines of healthy and damaged forest were determined too. Greater DI was, the forest was stricken more badly. In conclusion, it will help monitor and assess the vermin occurrence and impact by remote sensing detection model.
Probabilistic, multi-variate flood damage modelling using random forests and Bayesian networks
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Schröter, Kai
2015-04-01
Decisions on flood risk management and adaptation are increasingly based on risk analyses. Such analyses are associated with considerable uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention recently, they are hardly applied in flood damage assessments. Most of the damage models usually applied in standard practice have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. This presentation will show approaches for probabilistic, multi-variate flood damage modelling on the micro- and meso-scale and discuss their potential and limitations. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., Merz, B. (2014): How useful are complex flood damage models? - Water Resources Research, 50, 4, p. 3378-3395.
Comparison of damage measures based on fiber Bragg grating spectra
NASA Astrophysics Data System (ADS)
Park, Chun; Peters, Kara
2012-02-01
We compare the performance of four different damage measures based on the full spectral response of fiber Bragg grating (FBG) sensors: spectral bandwidth, number of peaks, cross-correlation coefficient and fractal dimension. These damage measures provide a rapid indication of the extent of damage near the FBG sensor. Each damage measure is applied to data simulating the response of a FBG to a pure strain gradient and experimental data from FBG sensors embedded in a laminate subjected to multiple impacts. The cross-correlation coefficient and number of peaks did not perform well for the experimental data. The spectral bandwidth presented a low sensitivity to noise and a high sensitivity to rapidly increasing strain fields, whereas the fractal dimension was more sensitive to more gradually changing strain fields. Ultimately, the best strategy would be to fuse the results of the spectral bandwidth and fractal dimension damage measures to incorporate the strengths of each approach. At the same time, this study highlighted the challenges in using such spectral data from FBG sensors embedded in structural materials, primarily due to the variability in response between sensors exposed to the same damage states.
NASA Astrophysics Data System (ADS)
de Medeiros, Ricardo; Sartorato, Murilo; Vandepitte, Dirk; Tita, Volnei
2016-11-01
The basic concept of the vibration based damage identification methods is that the dynamic behaviour of a structure can change if damage occurs. Damage in a structure can alter the structural integrity, and therefore, the physical properties like stiffness, mass and/or damping may change. The dynamic behaviour of a structure is a function of these physical properties and will, therefore, directly be affected by the damage. The dynamic behaviour can be described in terms of time, frequency and modal domain parameters. The changes in these parameters (or properties derived from these parameters) are used as indicators of damage. Hence, this work has two main objectives. The first one is to provide an overview of the structural vibration based damage identification methods. For this purpose, a fundamental description of the structural vibration based damage identification problem is given, followed by a short literature overview of the damage features, which are commonly addressed. The second objective is to create a damage identification method for detection of the damage in composite structures. To aid in this process, two basic principles are discussed, namely the effect of the potential damage case on the dynamic behaviour, and the consequences involved with the information reduction in the signal processing. Modal properties from the structural dynamic output response are obtained. In addition, experimental and computational results are presented for the application of modal analysis techniques applied to composite specimens with and without damage. The excitation of the structures is performed using an impact hammer and, for measuring the output data, accelerometers as well as piezoelectric sensors. Finite element models are developed by shell elements, and numerical results are compared to experimental data, showing good correlation for the response of the specimens in some specific frequency range. Finally, FRFs are analysed using suitable metrics, including a
Structural damage identification of the highway bridge Z24 by FE model updating
NASA Astrophysics Data System (ADS)
Teughels, A.; De Roeck, G.
2004-12-01
The development of a methodology for accurate and reliable condition assessment of civil structures has become very important. The finite element (FE) model updating method provides an efficient, non-destructive, global damage identification technique, which is based on the fact that the modal parameters (eigenfrequencies and mode shapes) of the structure are affected by structural damage. In the FE model the damage is represented by a reduction of the stiffness properties of the elements and can be identified by tuning the FE model to the measured modal parameters. This paper describes an iterative sensitivity based FE model updating method in which the discrepancies in both the eigenfrequencies and unscaled mode shape data obtained from ambient tests are minimized. Furthermore, the paper proposes the use of damage functions to approximate the stiffness distribution, as an efficient approach to reduce the number of unknowns. Additionally the optimization process is made more robust by using the trust region strategy in the implementation of the Gauss-Newton method, which is another original contribution of this work. The combination of the damage function approach with the trust region strategy is a practical alternative to the pure mathematical regularization techniques such as Tikhonov approach. Afterwards the updating procedure is validated with a real application to a prestressed concrete bridge. The damage in the highway bridge is identified by updating the Young's and the shear modulus, whose distribution over the FE model are approximated by piecewise linear functions.
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
Thermomechanics of damageable materials under diffusion: modelling and analysis
NASA Astrophysics Data System (ADS)
Roubíček, Tomáš; Tomassetti, Giuseppe
2015-12-01
We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.
Image-based monitoring of structural damage: concrete surface cracks
NASA Astrophysics Data System (ADS)
Chen, ZhiQiang; Chang, Barbara; Hutchinson, Tara C.
2008-03-01
Nondestructive imaging has been a widely used approach for detection of local structural damage in the engineering community. By combining image analysis methods, quantities describing the type, severity and extent of damage can be extracted within the spatial domain of images. However, the current practice of structural health monitoring requires a temporal characterization of structural damage, or some correlation of structural damage with response data. To accomplish this, one needs to consider the time scale in using any of the nondestructive imaging techniques, which in turn demands the use of spatial-temporal image analysis. In this paper, we address the temporal occurrence of cracks on the surface of concrete structural members, and attempt to monitor cracks, including their inception and propagation, using temporal image data. We assume under some conditions for objects in a pair of temporal images that only planar rigid-body motion takes place in the image domain, while cracks are treated as a type of local anomaly. The unknown motion parameters are estimated by means of a manifold-based optimization procedure, and the obtained manifold distance (MD) measure is used as a motion-invariant feature to describe the temporal occurrence of concrete cracks. Numerical analyses are conducted with the use of video clips from two laboratory experiments. It is concluded in this paper that the MD-based spatial-temporal image analysis can be an effective means for monitoring local damage of structural components that occurs and is accompanied by structural motion induced by loading.
The current state of eukaryotic DNA base damage and repair
Bauer, Nicholas C.; Corbett, Anita H.; Doetsch, Paul W.
2015-01-01
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. PMID:26519467
Role of interactions and damage in a cohesive fracture model
NASA Astrophysics Data System (ADS)
Gran, Josesph; Rundle, John; Turcotte, Donald; Klein, William
2012-02-01
We study the influences of local and long range interactions in a numerical model of tensile fracture. Our model simulates fracture events on a 2D square lattice plane with a Metropolis algorithm. We chose a Hamiltonian that is written as a function of the crack separation (offset field) and includes contributions from an external field, interactions, as well as a cohesive energy across the crack surfaces. Included in our study is both a ferromagnetic-type (attractive) and antiferromagnetic-type (repulsive) interactions. We test both of these interactions individually as well as a hybrid interaction in which over a short range the interaction is antiferromagnetic and in the long range the interaction becomes ferromagnetic. This dual interaction approximates a Lennard-Jones potential. We also propose a characterization of damage and investigate the increase of damage in time for fractures occurring by a static-load as well as a time-dependent load. Damaged sites do not interact with neighboring sites and cannot hold any load. We compare our damage model to previous studies of fiber-bundle models.
Homogenization of intergranular fracture towards a transient gradient damage model
NASA Astrophysics Data System (ADS)
Sun, G.; Poh, L. H.
2016-10-01
This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called 'implicit' gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket
NASA Astrophysics Data System (ADS)
El-Ouafi Bahlous, S.; Smaoui, H.; El-Borgi, S.
2009-08-01
For civil engineering structures, ambient vibration tests are preferred over forced vibration ones because the artificially excitation of large structures having low natural frequencies is quite difficult and expensive. In the ambient vibration tests, operation disturbances can be avoided and the measured response is representative of the actual operating conditions of the structures which vibrate due to natural excitation. The proposed damage identification method is intended for moderate degrees of damage and requires vibration data relative to the current and reference states of the structure as well as a parametric finite element model. It is based on a residual generated from a modal filtering approach by the calculation of the error between the measurements at the current state and their projections onto the incomplete modal basis of the structure as identified at reference state. To detect and locate damage, the residual is evaluated by means of global, sensitivity and rejection tests, modified to allow only physically feasible simple and multiple damage scenarios. The mean of the residual, which turns out to be normally distributed, is used in the final phase of damage quantification. The proposed damage diagnosis method is validated experimentally via ambient vibration tests conducted on full-scale reinforced concrete beams and slabs which contain various simple and multiple damage configurations. With damage expressed in terms of loss of flexural stiffness, the damage detection, localization and quantification are found to be successful for degrees of damage less than about 28% of the initial flexural stiffness of the tested specimens. The exception is that, for multiple damage scenarios, the relative quantification errors may be unacceptable in locations where poor accuracy is expected.
Nonlinear ultrasound modelling and validation of fatigue damage
NASA Astrophysics Data System (ADS)
Fierro, G. P. Malfense; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M.
2015-05-01
Nonlinear ultrasound techniques have shown greater sensitivity to microcracks and they can be used to detect structural damages at their early stages. However, there is still a lack of numerical models available in commercial finite element analysis (FEA) tools that are able to simulate the interaction of elastic waves with the materials nonlinear behaviour. In this study, a nonlinear constitutive material model was developed to predict the structural response under continuous harmonic excitation of a fatigued isotropic sample that showed anharmonic effects. Particularly, by means of Landau's theory and Kelvin tensorial representation, this model provided an understanding of the elastic nonlinear phenomena such as the second harmonic generation in three-dimensional solid media. The numerical scheme was implemented and evaluated using a commercially available FEA software LS-DYNA, and it showed a good numerical characterisation of the second harmonic amplitude generated by the damaged region known as the nonlinear response area (NRA). Since this process requires only the experimental second-order nonlinear parameter and rough damage size estimation as an input, it does not need any baseline testing with the undamaged structure or any dynamic modelling of the fatigue crack growth. To validate this numerical model, the second-order nonlinear parameter was experimentally evaluated at various points over the fatigue life of an aluminium (AA6082-T6) coupon and the crack propagation was measured using an optical microscope. A good correlation was achieved between the experimental set-up and the nonlinear constitutive model.
A creep-damage model for mesoscale simulations of concrete expansion-degradation phenomena
Giorla, Alain B; Le Pape, Yann
2015-01-01
Long-term performance of aging concrete in nuclear power plants (NPPs) requires a careful examination of the physical phenomena taking place in the material. Concrete under high neutron irradiation is subjected to large irreversible deformations as well as mechanical damage, caused by a swelling of the aggregates. However, these results, generally obtained in accelerated conditions in test reactors, cannot be directly applied to NPP irradiated structures, i.e., the biological shield, operating conditions due to difference in time scale and environmental conditions (temperature, humidity). Mesoscale numerical simulations are performed to separate the underlying mechanisms and their interactions. The cement paste creep-damage model accounts for the effect of the loading rate on the apparent damage properties of the material and uses an event-based approach to capture the competition between creep and damage. The model is applied to the simulation of irradiation experiments from the literature and shows a good agreement with the experimental data.
Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Borkowski, Luke
Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and
Interpretation of the Superpave IDT strength test using a viscoelastic-damage constitutive model
NASA Astrophysics Data System (ADS)
Onifade, Ibrahim; Balieu, Romain; Birgisson, Bjorn
2016-08-01
This paper presents a new interpretation for the Superpave IDT strength test based on a viscoelastic-damage framework. The framework is based on continuum damage mechanics and the thermodynamics of irreversible processes with an anisotropic damage representation. The new approach introduces considerations for the viscoelastic effects and the damage accumulation that accompanies the fracture process in the interpretation of the Superpave IDT strength test for the identification of the Dissipated Creep Strain Energy (DCSE) limit from the test result. The viscoelastic model is implemented in a Finite Element Method (FEM) program for the simulation of the Superpave IDT strength test. The DCSE values obtained using the new approach is compared with the values obtained using the conventional approach to evaluate the validity of the assumptions made in the conventional interpretation of the test results. The result shows that the conventional approach over-estimates the DCSE value with increasing estimation error at higher deformation rates.
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
Modeling of progressive damage in unidirectional ceramic matrix composites
Solti, J.P.; Mall, S.; Robertson, D.D.
1995-12-31
This paper modifies an existing shear-lag model to analyze the damage progression within unidirectional ceramic matrix composites under a monotonic increasing load. The shear-lag model presented by Kuo and Chou is extended using the concept of a critical strain energy to determine analytical solutions for matrix cracking and fiber failure within these composite systems. In all, the damage mechanisms considered herein are matrix cracking, fiber/matrix interfacial debonding and fiber fracture. A priori knowledge of the composite`s proportional limit yields a complete closed form stress-strain solution. The utility of the proposed model lies in its ability to determine the laminate`s stress-strain response with minimum reliance on empirical data. Further, the proposed approach may offer an alternative means of estimating the interfacial strength through empirical fitting of crack density and stress-strain data.
NASA Astrophysics Data System (ADS)
Fernandez Galarreta, J.; Kerle, N.; Gerke, M.
2015-06-01
Structural damage assessment is critical after disasters but remains a challenge. Many studies have explored the potential of remote sensing data, but limitations of vertical data persist. Oblique imagery has been identified as more useful, though the multi-angle imagery also adds a new dimension of complexity. This paper addresses damage assessment based on multi-perspective, overlapping, very high resolution oblique images obtained with unmanned aerial vehicles (UAVs). 3-D point-cloud assessment for the entire building is combined with detailed object-based image analysis (OBIA) of façades and roofs. This research focuses not on automatic damage assessment, but on creating a methodology that supports the often ambiguous classification of intermediate damage levels, aiming at producing comprehensive per-building damage scores. We identify completely damaged structures in the 3-D point cloud, and for all other cases provide the OBIA-based damage indicators to be used as auxiliary information by damage analysts. The results demonstrate the usability of the 3-D point-cloud data to identify major damage features. Also the UAV-derived and OBIA-processed oblique images are shown to be a suitable basis for the identification of detailed damage features on façades and roofs. Finally, we also demonstrate the possibility of aggregating the multi-perspective damage information at building level.
Structural modal parameter identification and damage diagnosis based on Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Han, Jianping; Zheng, Peijuan; Wang, Hongtao
2014-03-01
Traditional modal parameter identification methods have many disadvantages, especially when used for processing nonlinear and non-stationary signals. In addition, they are usually not able to accurately identify the damping ratio and damage. In this study, methods based on the Hilbert-Huang transform (HHT) are investigated for structural modal parameter identification and damage diagnosis. First, mirror extension and prediction via a radial basis function (RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition (EMD), which is a crucial part of HHT. Then, the approaches based on HHT combined with other techniques, such as the random decrement technique (RDT), natural excitation technique (NExT) and stochastic subspace identification (SSI), are proposed to identify modal parameters of structures. Furthermore, a damage diagnosis method based on the HHT is also proposed. Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure. The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure. Finally, acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches. The results show that the proposed approaches based on HHT for modal parameter identification and damage diagnosis are reliable and practical.
Modeling and Characterization of Damage Processes in Metallic Materials
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.
2011-01-01
This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.
Modeling of two-phase porous flow with damage
NASA Astrophysics Data System (ADS)
Cai, Z.; Bercovici, D.
2009-12-01
Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.
Modeling the Study of DNA Damage Responses in Mice
Specks, Julia; Nieto-Soler, Maria; Lopez-Contreras, Andres J; Fernandez-Capetillo, Oscar
2016-01-01
Summary Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate ageing. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice, and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses. PMID:25636482
Complex network model of the Treatise on Cold Damage Disorders
NASA Astrophysics Data System (ADS)
Shao, Feng-jing; Sui, Yi; Zhou, Yong-hong; Sun, Ren-cheng
2016-10-01
Investigating the underlying principles of the Treatise on Cold Damage Disorder is meaningful and interesting. In this study, we investigated the symptoms, herbal formulae, herbal drugs, and their relationships in this treatise based on a multi-subnet composited complex network model (MCCN). Syndrome subnets were constructed for the symptoms and a formula subnet for herbal drugs. By subnet compounding using MCCN, a composited network was obtained that described the treatment relationships between syndromes and formulae. The results obtained by topological analysis suggested some prescription laws that could be validated in clinics. After subnet reduction using the MCCN, six channel (Tai-yang, Yang-ming, Shao-yang, Tai-yin, Shao-yin, and Jue-yin) subnets were obtained. By analyzing the strengths of the relationships among these six channel subnets, we found that the Tai-yang channel and Yang-ming channel were related most strongly with each other, and we found symptoms that implied pathogen movements and transformations among the six channels. This study could help therapists to obtain a deeper understanding of this ancient treatise.
Damage and Plastic Deformation Modeling of Beishan Granite Under Compressive Stress Conditions
NASA Astrophysics Data System (ADS)
Chen, L.; Wang, C. P.; Liu, J. F.; Liu, J.; Wang, J.; Jia, Y.; Shao, J. F.
2015-07-01
Based on experimental investigations, we propose a coupled elastoplastic damage model to simulate the mechanical behavior of granite under compressive stress conditions. The granite is taken from the Beishan area, a preferable region for China's high-level radioactive waste repository. Using a 3D acoustic emission monitoring system in mechanical tests, we focus on the cracking process and its influence on the macroscopic mechanical behavior of the granite samples. It is verified that the crack propagation coupled with fractional sliding along the cracks is the principal mechanism controlling the failure process and nonlinear mechanical behavior of granite under compressive stress conditions. Based on this understanding, the coupled elastoplastic damage model is formulated in the framework of the thermodynamics theory. In the model, the coupling between damage and plastic deformation is simulated by introducing the independent damage variable in the plastic yield surface. As a preliminary validation of the model, a series of numerical simulations are performed for compressive tests conducted under different confining pressures. Comparisons between the numerical and simulated results show that the proposed model can reproduce the main features of the mechanical behavior of Beishan granite, particularly the damage evolution under compressive stress conditions.
A model for predicting damage dependent response of inelastic media with microstructure
Allen, D.H.; DeVries, K.L.
1997-12-01
This paper presents a model developed for predicting the mechanical response of inelastic media with heterogeneous microstructure. Particular emphasis is given to the development of microstructural damage along grains. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing fracture mechanics-based cohesive zone models. In addition, the grains are assumed to be characterized by nonlinear viscoplastic material behavior. Implementation of the model to a finite element computational algorithm is also briefly described, and example solutions are obtained. Finally, homogenization procedures are discussed for obtaining macroscopic damage dependent mechanical constitutive equations that may then be utilized to construct a well-posed boundary value problem for the macroscopically homogenized damage dependent medium.
Multistage carcinogenesis modeling including cell cycle and DNA damage states
NASA Astrophysics Data System (ADS)
Hazelton, W.; Moolgavkar, S.
The multistage clonal expansion model of carcinogenesis is generalized to include cell cycle states and corresponding DNA damage states with imperfect repair for normal and initiated stem cells. Initiated cells may undergo transformation to a malignant state, eventually leading to cancer incidence or death. The model allows oxidative or radiation induced DNA damage, checkpoint delay, DNA repair, apoptosis, and transformation rates to depend on the cell cycle state or DNA damage state of normal and initiated cells. A probability generating function approach is used to represent the time dependent probability distribution for cells in all states. The continuous time coupled Markov system representing this joint distribution satisfies a partial differential equation (pde). Time dependent survival and hazard functions are found through numerical solution of the characteristic equations for the pde. Although the hazard and survival can be calculated numerically, number and size distributions of pre-malignant lesions from models that are developed will be approximated through simulation. We use the model to explore predictions for hazard and survival as parameters representing cell cycle regulation and arrest are modified. Modification of these parameters may influence rates for cell division, apoptosis and malignant transformation that are important in carcinogenesis. We also explore enhanced repair that may be important for low-dose hypersensitivity and adaptive response, and degradation of repair processes or loss of checkpoint control that may drive genetic instability.
Rastgou Talemi, Soheil; Kollarovic, Gabriel; Lapytsko, Anastasiya; Schaber, Jörg
2015-01-01
Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated those models using extensive data. We subjected different versions of the TLK model to a rigorous model discrimination approach. This enabled us to robustly select a best approximating parsimonious model that can both recapitulate and predict transient and persistent DNA damage after ionizing radiation. Models and data argue for i) nonlinear dose-damage relationships, and ii) negligible saturation of repair kinetics even for high doses. Additionally, we show that simulated radiation-induced persistent telomere-associated DNA damage foci (TAF) can be used to predict excess relative risk (ERR) of developing secondary leukemia after fractionated radiotherapy. We suggest that TAF may serve as an additional measure to predict cancer risk after radiotherapy using high dose rates. This may improve predicting risk-dose dependency of ionizing radiation especially for long-term therapies. PMID:26359627
Rastgou Talemi, Soheil; Kollarovic, Gabriel; Lapytsko, Anastasiya; Schaber, Jörg
2015-01-01
Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated those models using extensive data. We subjected different versions of the TLK model to a rigorous model discrimination approach. This enabled us to robustly select a best approximating parsimonious model that can both recapitulate and predict transient and persistent DNA damage after ionizing radiation. Models and data argue for i) nonlinear dose-damage relationships, and ii) negligible saturation of repair kinetics even for high doses. Additionally, we show that simulated radiation-induced persistent telomere-associated DNA damage foci (TAF) can be used to predict excess relative risk (ERR) of developing secondary leukemia after fractionated radiotherapy. We suggest that TAF may serve as an additional measure to predict cancer risk after radiotherapy using high dose rates. This may improve predicting risk-dose dependency of ionizing radiation especially for long-term therapies. PMID:26359627
NASA Astrophysics Data System (ADS)
Lall, Pradeep; Harsha, Mahendra; Goebel, Kai; Jones, Jim
Field deployed electronics may accrue damage due to environmental exposure and usage after finite period of service but may not often have any o-indicators of failure such as cracks or delamination. A method to interrogate the damage state of field deployed electronics in the pre-failure space may allow insight into the damage initiation, progression, and remaining useful life of the deployed system. Aging has been previously shown to effect the reliability and constitutive behavior of second-level leadfree interconnects. Prognostication of accrued damage and assessment of residual life can provide valuable insight into impending failure. In this paper, field deployed parts have been extracted and prognosticated for accrued damage and remaining useful life in an anticipated future deployment environment. A subset of the field deployed parts have been tested to failure in the anticipated field deployed environment to validate the assessment of remaining useful life. In addition, some parts have been subjected to additional known thermo-mechanical stresses and the incremental damage accrued validated with respect to the amount of additional damage imposed on the assemblies. The presented methodology uses leading indicators of failure based on micro-structural evolution of damage to identify accrued damage in electronic systems subjected to sequential stresses of thermal aging and thermal cycling. Damage equivalency methodologies have been developed to map damage accrued in thermal aging to the reduction in thermo-mechanical cyclic life based on damage proxies. The expected error with interrogation of system state and assessment of residual life has been quantified. Prognostic metrics including α-λmetric, sample standard deviation, mean square error, mean absolute percentage error, average bias, relative accuracy, and cumulative relative accuracy have been used to compare the performance of the damage proxies.
Huot, Y; Jeffrey, W H; Davis, R F; Cullen, J J
2000-07-01
A model of UV-induced DNA damage in oceanic bacterioplankton was developed and tested against previously published and novel measurements of cyclobutane pyrimidine dimers (CPD) in surface layers of the ocean. The model describes the effects of solar irradiance, wind-forced mixing of bacterioplankton and optical properties of the water on net DNA damage in the water column. The biological part includes the induction of CPD by UV radiation and repair of this damage through photoreactivation and excision. The modeled damage is compared with measured variability of CPD in the ocean: diel variation in natural bacterioplankton communities at the surface and in vertical profiles under different wind conditions (net damage as influenced by repair and mixing); in situ incubation of natural assemblages of bacterioplankton (damage and repair, no mixing); and in situ incubation of DNA solutions (no repair, no mixing). The model predictions are generally consistent with the measurements, showing similar patterns with depth, time and wind speed. A sensitivity analysis assesses the effect on net DNA damage of varying ozone thickness, colored dissolved organic matter concentration, chlorophyll concentration, wind speed and mixed layer depth. Ozone thickness and mixed layer depth are the most important factors affecting net DNA damage in the mixed layer. From the model, the total amplification factor (TAF; a relative measure of the increase of damage associated with a decrease in ozone thickness) for net DNA damage in the euphotic zone is 1.7, as compared with 2.1-2.2 for irradiance weighted for damage to DNA at the surface.
Chelyabinsk meteorite entry model and damage on the surface
NASA Astrophysics Data System (ADS)
Artemieva, N.; Shuvalov, V.
2013-09-01
In this paper we model an atmospheric entry of the Chelyabinsk meteorite to show that this event represents a typical behaviour of a large chondritic body in the Earth's atmosphere: it was fragmented, ablated, and decelerated to a free-fall velocity. Atmospheric shock waves reached the surface, caused on overpressure of up to 1500 Pa, and damaged on an area of about 50 km*100 km.
Physics-based damage predictions for simulating testing and evaluation (T and E) experiments
Addessio, F.L.; Schraad, M.W.; Lewis, M.W.
1999-03-01
This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This report addresses the need to develop computational techniques and physics-based material models for simulating damage to weapons systems resulting from ballistic threats. Modern weapons systems, such as fighter aircraft, are becoming more dependent upon composite materials to reduce weight, to increase strength and stiffness, and to resist adverse conditions resulting from high temperatures and corrosion. Unfortunately, damaged components can have severe and detrimental effects, as evidenced by statistics from Desert Storm indicating that 75% of aircraft losses were attributable to fuel system vulnerability with hydrodynamic ram being the primary kill mechanism. Therefore, this project addresses damage predictions for composite systems that are subjected to ballistic threats involving hydrodynamic ram. A computational technique for simulating fluid-solid interaction phenomena and physics-based material models have been developed for this purpose.
NASA Astrophysics Data System (ADS)
Sbarufatti, C.; Manes, A.; Giglio, M.
2013-11-01
The work presented hereafter is about the development of a diagnostic system for crack damage detection, localization and quantification on a typical metallic aeronautical structure (skin stiffened through riveted stringers). Crack detection and characterization are based upon strain field sensitivity to damage. The structural diagnosis is carried out by a dedicated smart algorithm (Artificial Neural Network) which is trained on a database of Finite Element simulations relative to damaged and undamaged conditions, providing the system with an accurate predictor at low overall cost. The algorithm, trained on numerical damage experience, is used in a simulated environment to provide reliable preliminary information concerning the algorithm performances for damage diagnosis, thus further reducing the experimental costs and efforts associated with the development and optimization of such systems. The same algorithm has been tested on real experimental strain patterns acquired during real fatigue crack propagation, thus verifying the capability of the numerically trained algorithm for anomaly detection, damage assessment and localization on a real complex structure. The load variability, the discrepancy between the Finite Element Model and the real structure, and the uncertainty in the algorithm training process have been addressed in order to enhance the robustness of the system inference process. Some further algorithm training strategies are discussed, aimed at minimizing the risk for false alarms while maintaining a high probability of damage detection.
Evolution of damage and plasticity in titanium-based, fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Majumdar, B. S.; Newaz, G. M.; Ellis, J. R.
1993-01-01
The inelastic deformation mechanisms were evaluated for a model titanium-based, fiber-reinforced composite: a beta titanium alloy (Ti-15V-3Al-3Cr-3Sn) reinforced with SiC (SCS-6) fibers. The primary emphasis of this article is to illustrate the sequence in which damage and plasticity evolved for this system. The mechanical responses and the results of detailed microstructural evaluations for the 0(8), 90(8), and +/- 45(2s) line oriented laminates are provided. It is shown that the characteristics of the reaction zone around the fiber play a very important role in the way damage and plasticity evolve, particularly in the microyield regime of deformation, and must be included in any realistic constitutive model. Fiber-matrix debonding was a major damage mode for the off-axis systems. The tension test results are also compared with the predictions of a few constitutive models.
Evolution of damage and plasticity in titanium-based, fiber-reinforced composites
Majumdar, B.S. ); Newaz, G.M. ); Ellis, J.R. . Fatigue and Failure Branch)
1993-07-01
The inelastic deformation mechanisms were evaluated for a model titanium-based, fiber-reinforced composite: a beta titanium alloy (Ti-15V-3Al-3Cr-3Sn) reinforced with SiC (SCS-6) fibers. The primary emphasis of this article is to illustrate the sequence in which damage and plasticity evolved for this system. The mechanical responses and the results of detailed microstructural evaluations for the [0][sub 8], [90][sub 8], and [[plus minus]45][sub 2s] laminates are provided. It is shown that the characteristics of the reaction zone around the fiber play a very important role in the way damage and plasticity evolve, particularly in the microyield regime of deformation, and must be included in any realistic constitutive model. Fiber-matrix debonding was a major damage mode for the off-axis systems. The tension test results are also compared with the predictions of a few constitutive models.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2016-03-01
Data-driven vibration-based damage detection techniques can be competitive because of their lower instrumentation and data analysis costs. The use of autoregressive model coefficients (ARMCs) as damage sensitive features (DSFs) is one such technique. So far, like with other DSFs, either full sets of coefficients or subsets selected by trial-and-error have been used, but this can lead to suboptimal composition of multivariate DSFs and decreased damage detection performance. This study enhances the selection of ARMCs for statistical hypothesis testing for damage presence. Two approaches for systematic ARMC selection, based on either adding or eliminating the coefficients one by one or using a genetic algorithm (GA) are proposed. The methods are applied to a numerical model of an aerodynamically excited large composite wind turbine blade with disbonding damage. The GA out performs the other selection methods and enables building multivariate DSFs that markedly enhance early damage detectability and are insensitive to measurement noise.
Damage In Rock Massives, Evidences From Microseismic Monitoring and Numerical Modelling
NASA Astrophysics Data System (ADS)
Amitrano, D.; Gruber, S.; Girard, L.
2014-12-01
Damage is an active process in rock massives that can progressively lead to their collapse. Microseismic monitoring appears as a powerful tool for detecting damage and identifying the parameters controlling its occurrence parameter. In this presentation, we first present results of seismic monitoring performed on different sites and highlighting different control parameters, including freezing/thawing cycling, long term creeping, rainfall. These observations reveal common features as power-law distribution of the seismic event size and of their temporal distribution. The evolution of these distributions can be used for forecasting the failure, as successfully tested on a cliff that undergone macroscopic failure. In a second part we present numerical modelling of damage that successfully reproduce the major part of the in-situ observations. The simulations based on short or long term damage and taking into account the action of fluids, have been applied to realistic cases and show promising results in good agreements with field observation.
NASA Astrophysics Data System (ADS)
Sharafat, S.; El-Awady, J.; Liu, S.; Diegele, E.; Ghoniem, N. M.
2007-08-01
Large-scale finite element modeling (FEM) of the US Dual Coolant Lead Lithium ITER Test Blanket Module including damage evolution is under development. A comprehensive rate-theory based radiation damage creep deformation code was integrated with the ABACUS FEM code. The advantage of this approach is that time-dependent in-reactor deformations and radiation damage can now be directly coupled with 'material properties' of FEM analyses. The coupled FEM-Creep damage model successfully simulated the simultaneous microstructure and stress evolution in small tensile test-bar structures. Applying the integrated Creep/FEM code to large structures is still computationally prohibitive. Instead, for thermo-structural analysis of the DCLL TBM structure the integrated FEM-creep damage model was used to develop true stress-strain behavior of F82H ferritic steel. Based on this integrated damage evolution-FEM approach it is proposed to use large-scale FEM analysis to identify and isolate critical stress areas for follow up analysis using detailed and fully integrated creep-FEM approach.
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Kruch, S.
1991-01-01
Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.
SHOCK INITIATION EXPERIMENTS PLUS IGNITION AND GROWTH MODELING OF DAMAGED LX-04 CHARGES
Chidester, S K; Garcia, F; Vandersall, K S; Tarver, C M
2009-06-23
Shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX and 15% Viton by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. The LX-04 charges were damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermal damaged LX-04 charges were heated to 190 C for a long enough time for the beta to delta phase transition to occur and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while the thermally damaged LX-04 was much more shock sensitive. The pristine LX-04 Ignition and Growth model, modified only by igniting a larger amount of explosive during shock compression based on the damaged charge density, accurately calculated the increased shock sensitivity of the three damaged charges.
NASA Astrophysics Data System (ADS)
Trifonov, Oleg Vladimirovich
2009-09-01
Following the total Lagrangian approach, an incremental formulation for three-dimensional Timoshenko beam element taking into account large displacements and rotations is developed. For the failure analysis of reinforced concrete structural members, subjected to extreme loads, a new elastoplastic damage constitutive model is proposed on the level of cross-sectional variables. The model is based on the concept of the yield surface and associated flow rule. The effects of softening and strength deterioration are accounted for by the introduction of damage variables. To assure the objectivity of the numerical simulation a non-local treatment of damage variables is implemented. Comparison to different experimental results on biaxial cyclic tests is performed. Numerical results demonstrate that the proposed model effectively reproduces softening, strength deterioration, coupling between different components of the generalized force vector and other nonlinear effects accompanying the inelastic structural response under three-dimensional seismic loading.
Rajendran, A.M.; Cook, W.H.
1988-12-01
This report reviews high-strain-rate experimental and analytical methods available for characterizing ceramic-material behavior. Also, a discussion on the ceramic failure mechanisms upon impact-loading conditions is provided. Theoretical basis for constitutive and failure modeling of ceramic-type brittle material is discussed. Models that are reported in open literature are reviewed and categorized based on their theoretical approaches. The salient features of a few recently reported constitutive/damage theories, which combine either the micromechanics or the continuum-damage mechanics for the stress-strain relationship with fracture mechanics for damage-accumulation description, are described and tabulated. Recent attempts to employ such models in the calculation of armor-penetration problems are briefly discussed.
Unified continuum damage model for matrix cracking in composite rotor blades
Pollayi, Hemaraju; Harursampath, Dineshkumar
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
Forming limits in the hole-flanging process by coupled and uncoupled damage models
NASA Astrophysics Data System (ADS)
Kacem, A.; Jégat, A.; Krichen, A.; Manach, P. Y.
2013-12-01
The aim of this work is to identify the limits of the hole-flanging process under different conditions. A 3D finite element model was developed to predict failure in hole-flanging process for sheet aluminium alloys. The Gurson-Tvergaard-Needleman (GTN) coupled damage model and the Bao-Wierzbicki (BW) uncoupled damage model were used. The parameters of both coupled and uncoupled models were identified by inverse analysis based on uniaxial tensile test. Experiments were conducted to analyse the types of failure that appear during the process. Numerical results were compared with experimental datas to check the validity of both models in predicting failure during the hole-flanging process. The comparative study showed that the GTN model predicts more accurately almost all types of failure while fracture occurrence can be only predicted by the BW model.
Implementation of the TEPLA Damage Model in a 3D Eulerian Hydrocode
NASA Astrophysics Data System (ADS)
Holian, Kathleen S.; Clancy, Sean P.; Maudlin, Paul J.
2007-06-01
A sophisticated damage model (TEPLA) has been implemented into a three-dimensional (Cartesian) computer code (Pagosa) used here at Los Alamos National Laboratory. TEPLA was originally an isotropic damage model based upon the Gurson flow surface (a potential function used in conjunction with the associated flow law) that models damage due to both porosity growth and plastic strain. It has since been modified to model anisotropic elastoplastic material strength as well. Pagosa is an Eulerian hydrodynamics code that has the following special features: a predictor-corrector Lagrangian step that advances the state variables in time, a high-order advection algorithm that remaps the problem back to the original mesh every time step, and a material interface tracking scheme with van Leer monotonic advection. It also includes a variety of equation of state, strength, fracture, and high explosive burn models. We will describe the physics of the TEPLA model (that models both strength and damage) and will show preliminary results of test problems that are used to validate the model. The four test problems (simple shear, stretching rod, Taylor anvil, and plate impact) can be compared with either analytic solutions or with experimental data.
Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach
NASA Astrophysics Data System (ADS)
Shafique, Muhammad; van der Meijde, Mark; Ullah, Saleem
2011-07-01
Regolith thickness is known as a major factor in influencing the intensity of earthquake induced ground shaking and consequently building damages. It is, however, often simplified or ignored due to its variable and complex nature. To evaluate the role of regolith thickness on earthquake induced building damage, a remote sensing based methodology is developed to model the spatial variation of regolith thickness, based on DEM derived topographic attributes and geology. Regolith thickness samples were evenly collected in geological formations at representative sites of topographic attributes. Topographic attributes (elevation, slope, TWI, distance from stream) computed from the ASTER derived DEM and a geology map were used to explore their role in spatial variation of regolith thickness. Stepwise regression was used to model the spatial variation of regolith thickness in erosional landscape of the study area. Topographic attributes and geology, explain 60% of regolith thickness variation in the study area. To test, if the modeled regolith can be used for prediction of seismic induced building damages, it is compared with the 2005 Kashmir earthquake induced building damages derived from high resolution remote sensing images and field data. The comparison shows that the structural damages increase with increasing regolith thickness. The predicted regolith thickness can be used for demarcating site prone to amplified seismic response.
Liu, X.; Civan, F.
1996-03-01
A mathematical model for the analysis of formation damage in laboratory core tests is presented. The model considers filter cake buildup on sand face, invasion of external particles, release of formation fines, migration and retention of external particles and formation fines, interphase transfer of particles, and alteration of porosity and permeability. The effects of wettabilities of fine particles and pore surfaces, relative permeabilities and capillary pressure on formation damage in two-phase flow conditions are also included. Simulation results from the model are in good agreement with experimental results from core tests. This model can be used for the analysis of formation damage due to particulate processes in laboratory core tests.
Measurement and modeling of strength distributions associated with grinding damage
Salem, J.A.; Nemeth, N.N.; Powers, L.M.
1995-08-01
The strength of ceramic material is typically measured in accordance with ASTM C1161 which specifies the machined specimens be ground uniaxially in the longitudinal direction and tested so that the maximum principal stress is longitudinal. Such a grinding process typically induces minimal damage in the transverse direction, but significant damage in the longitudinal direction, resulting in an anisotropic flaw distribution on the surface of the specimen. Additionally, investigations of the strength anisotropy due to grinding may provide a means to measure a materials strength response under mixed mode (I & II) conditions, thereby providing information that can be applied to isotropic cases (e.g. polished or as-processed material). The objective of this work was to measure and model the effects of a typical, uniaxial grinding process on the strength distribution of a ceramic material under various lading conditions. The fast-fracture strength of a sintered alpha silicon carbide was measured in four-point flexure with the principal stress oriented at angles between 0 and 90{degrees} relative to the grinding direction. Also, uniaxially ground plate specimens were loaded biaxial flexure. Finally, flexure specimens were tested in an annealed condition to determine if the machining damage could be healed. Modeling of the strength distributions was done with two and three parameter Weibull models and shear sensitive and insensitive models. Alpha silicon carbide was chosen because it exhibits a very low fracture toughness, no crack growth resistance, high elastic modulus and a very low susceptibility to slow crack growth (static fatigue). Such properties should make this an ideal ceramic for the verification of fast fracture reliability models and codes.
Re-assessment of chronic radio-induced tissue damage in a rat hindlimb model
PHULPIN, BÉRENGÈRE; DOLIVET, GILLES; MARIE, PIERRE-YVES; POUSSIER, SYLVAIN; GALLET, PATRICE; LEROUX, AGNÈS; GRAFF, PIERRE; GROUBACH, FREDERIQUE; BRAVETTI, PIERRE; MERLIN, JEAN-LOUIS; TRAN, NGUYEN
2010-01-01
Radiotherapy is successfully used to treat neoplastic lesions, but may adversely affect normal tissues within the irradiated volume. However, additional clinical and para-clinical data are required for a comprehensive understanding of the pathogenesis of this damage. We assessed a rat model using clinical records and medical imaging to gain a better understanding of irradiation-induced tissue damage. The hindlimbs of the rats in this model were irradiated with a single dose of 30 or 50 Gy. Sequential analysis was based on observation records of stage and planar scintigraphy. Additional radiography, radiohistology and histology studies were performed to detect histological alterations. All animals developed acute and late effects, with an increased severity after a dose of 50 Gy. The bone uptake of 99mTc-HDP was significantly decreased in a dose- and time-dependent manner. Histologically, significant tissue damage was observed. After the 50 Gy irradiation, the animals developed lesions characteristic of osteoradionecrosis (ORN). Radiographic and histological studies provided evidence of lytic bone lesions. Our rat model developed tissue damage characteristic of radiation injury after a single 30 Gy irradiation and tissue degeneration similar to that which occurs during human ORN after a 50 Gy irradiation. The development of this animal model is an essential step in exploring the pathogenesis of irradiation-induced tissue damage, and may be used to test the efficacy of new treatments. PMID:22993575
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
A viscoelastic model of shear-induced blood damage
NASA Astrophysics Data System (ADS)
Arwatz, Gilad; Smits, Alexander
2012-11-01
The mechanisms responsible for blood damage (hemolysis) have been studied since the mid-1960s, and it is now widely accepted that the level of shear stress and exposure time play important roles. Several models for hemolysis have been previously proposed. However, these models are purely empirical and limited to a narrow range of shear stress and exposure time and mostly, they lack any physical basis. In this study, we propose a new non-dimensional model that captures the mechanics of the red blood cells breakdown by taking into account the viscoelastic nature of their membrane. We validate our model against experimental measurements of hemolysis caused by laminar shear stress ranging from 50Pa to 500 Pa and exposure times extending from 60 s to 300 s. Funding provided by Princeton University's Project X.
Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.
Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.
2015-06-01
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
Laser damage threshold measurements of microstructure-based high reflectors
NASA Astrophysics Data System (ADS)
Hobbs, Douglas S.
2008-10-01
In 2007, the pulsed laser induced damage threshold (LIDT) of anti-reflecting (AR) microstructures built in fused silica and glass was shown to be up to three times greater than the LIDT of single-layer thin-film AR coatings, and at least five times greater than multiple-layer thin-film AR coatings. This result suggested that microstructure-based wavelength selective mirrors might also exhibit high LIDT. Efficient light reflection over a narrow spectral range can be produced by an array of sub-wavelength sized surface relief microstructures built in a waveguide configuration. Such surface structure resonant (SSR) filters typically achieve a reflectivity exceeding 99% over a 1-10nm range about the filter center wavelength, making SSR filters useful as laser high reflectors (HR). SSR laser mirrors consist of microstructures that are first etched in the surface of fused silica and borosilicate glass windows and subsequently coated with a thin layer of a non-absorbing high refractive index dielectric material such as tantalum pent-oxide or zinc sulfide. Results of an initial investigation into the LIDT of single layer SSR laser mirrors operating at 532nm, 1064nm and 1573nm are described along with data from SEM analysis of the microstructures, and spectral reflection measurements. None of the twelve samples tested exhibited damage thresholds above 3 J/cm2 when illuminated at the resonant wavelength, indicating that the simple single layer, first order design will need further development to be suitable for high power laser applications. Samples of SSR high reflectors entered in the Thin Film Damage Competition also exhibited low damage thresholds of less than 1 J/cm2 for the ZnS coated SSR, and just over 4 J/cm2 for the Ta2O5 coated SSR.
Damage identification of piles based on vibration characteristics.
Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen
2014-01-01
A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062
Damage Identification of Piles Based on Vibration Characteristics
Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen
2014-01-01
A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062
High-resolution property-based flood damage estimation: how should urban topography be represented?
NASA Astrophysics Data System (ADS)
O'Neill, J.; Yu, D.; Wilby, R. L.; Bosher, L.
2012-12-01
High-resolution property-based flood damage estimation: how should urban topography be represented? The cost of damage caused by flooding to property in the UK has increased by 200% decade on decade, from £1.5 billion (1990 - 2000) to £4.5 billion (2000 - 2010) (ABI 2010). This is widely predicted to increase further in the coming decades (Huntington 2006). Flood damage estimation to residential buildings is typically undertaken by coupling vulnerability curves with flow variables obtained from hydraulic modelling. Recent advances in urban flood inundation modelling provide good estimations of flood depth for damage estimation. However, the approaches to the representation of buildings in urban flood inundation modelling require further investigation as this affects the depth prediction which in turn will determine the accuracy of damage estimation. This study evaluates the effects of different approaches to the representation of buildings in urban topography on damage estimation. A case study was undertaken in Cockermouth of the English Lake District, with primary data collected during the November 2009 event to validate both the hydraulic modelling and damage estimation. A 2D inertia-based hydraulic model was used and the prediction was coupled with the standard vulnerability curves for the UK. Three approaches to the representation of buildings in urban topography were investigated: (i) a bare ground Digital Terrain Model with no explicit representation of buildings (DTM); (ii) explicit representation of buildings with impermeable blocks (BLOCKAGE); and (iii) representation of buildings with threshold levels (THRESHOLD). Results were compared with the observed inundation extent and discrete point depths. In terms of inundation extent, the DTM and THRESHOLD approach produced the best estimate. With the BLOCKAGE approach, the extent of water is less well predicted due to the blockage effect of the buildings which effectively act as flow barriers. Depth was best
A damage-softening statistical constitutive model considering rock residual strength
NASA Astrophysics Data System (ADS)
Wang, Zhi-liang; Li, Yong-chi; Wang, J. G.
2007-01-01
Under stress, the microcracks in rock evolve (initiation, growth and coalescence) from damage to fracture with a continuous process. In order to describe this continuous process, a damage-softening statistical constitutive model for rock was proposed based on the Weibull distribution of mesoscopic element strength. This model usually adopts the Drucker-Prager criterion as its distribution parameter of mesoscopic element strength, which may produce larger damage zone in numerical simulations. This paper mainly studies the effects of strength criteria and residual strength on the performance of this damage-softening statistical constitutive model of rock. Main works include following three aspects: Firstly, the mechanical behaviors of rock are comparatively studied when the Drucker-Prager and the Mohr-Coulomb criteria are employed, respectively, as the distribution parameter. Then, a coefficient is introduced to make this constitutive model be capable of describing the residual strength of rock. Finally, a user-defined subroutine is concisely developed for this model and checked through typical strain paths. The current work lays a good foundation for further application of this model in geotechnics and geosciences.
A radiation damage repair model for normal tissues
NASA Astrophysics Data System (ADS)
Partridge, Mike
2008-07-01
A cellular Monte Carlo model describing radiation damage and repair in normal epithelial tissues is presented. The deliberately simplified model includes cell cycling, cell motility and radiation damage response (cell cycle arrest and cell death) only. Results demonstrate that the model produces a stable equilibrium system for mean cell cycle times in the range 24-96 h. Simulated irradiation of these stable equilibrium systems produced a range of responses that are shown to be consistent with experimental and clinical observation, including (i) re-epithelialization of radiation-induced lesions by a mixture of cell migration into the wound and repopulation at the periphery; (ii) observed radiosensitivity that is quantitatively consistent with both rate of induction of irreparable DNA lesions and, independently, with the observed acute oral and pharyngeal mucosal reactions to radiotherapy; (iii) an observed time between irradiation and maximum toxicity that is consistent with experimental data for skin; (iv) quantitatively accurate predictions of low-dose hyper-radiosensitivity; (v) Gomperzian repopulation for very small lesions (~2000 cells) and (vi) a linear rate of re-epithelialization of 5-10 µm h-1 for large lesions (>15 000 cells).
New insights into continental rifting from a damage rheology modeling
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Segev, Amit; Weinberger, Ram; Schattner, Uri
2010-05-01
Previous studies have discussed how tectonic processes could produce relative tension to initiate and propagate rift zones and estimated the magnitude of the rift-driving forces. Both analytic and semi-analytic models as well as numerical simulations assume that the tectonic force required to initiate rifting is available. However, Buck (2004, 2006) estimated the minimum tectonic force to allow passive rifting and concluded that the available forces are probably not large enough for rifting of thick and strong lithosphere in the absence of basaltic magmatism (the "Tectonic Force" Paradox). The integral of the yielding stress needed for rifting over the thickness of the normal or thicker continental lithosphere are well above the available tectonic forces and tectonic rifting cannot happen (Buck, 2006). This conclusion is based on the assumption that the tectonic stress has to overcome simultaneously the yielding stress over the whole lithosphere thickness and ignore gradual weakening of the brittle rocks under long-term loading. In this study we demonstrate that the rifting process under moderate tectonic stretching is feasible due to gradual weakening and "long-term memory" of the heavily fractured brittle rocks, which makes it significantly weaker than the surrounding intact rock. This process provides a possible solution for the tectonic force paradox. We address these questions utilizing 3-D lithosphere-scale numerical simulations of the plate motion and faulting process base on the damage mechanics. The 3-D modeled volume consists of three main lithospheric layers: an upper layer of weak sediments, middle layer of crystalline crust and lower layer of the lithosphere mantle. Results of the modeling demonstrate gradual formation of the rift zone in the continental lithosphere with the flat layered structure. Successive formation of the rift system and associated seismicity pattern strongly depend not only on the applied tectonic force, but also on the healing
A thermochemical model of radiation damage and annealing applied to GaAs solar cells
NASA Technical Reports Server (NTRS)
Conway, E. J.; Walker, G. H.; Heinbockel, J. H.
1981-01-01
Calculations of the equilibrium conditions for continuous radiation damage and thermal annealing are reported. The calculations are based on a thermochemical model developed to analyze the incorporation of point imperfections in GaAs, and modified by introducing the radiation to produce native lattice defects rather than high-temperature and arsenic atmospheric pressure. The concentration of a set of defects, including vacancies, divacancies, and impurity vacancy complexes, are calculated as a function of temperature. Minority carrier lifetimes, short circuit current, and efficiency are deduced for a range of equilibrium temperatures. The results indicate that GaAs solar cells could have a mission life which is not greatly limited by radiation damage.
Finite element based damage assessment of composite tidal turbine blades
NASA Astrophysics Data System (ADS)
Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie
2015-07-01
With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.
Modeling and simulation for collateral damage estimation in combat
NASA Astrophysics Data System (ADS)
Gordon, Steven C.; Martin, Douglas D.
2005-05-01
Modeling and simulation (M&S) is increasingly used for decision support during combat operations: M&S is going to war! One of the key operational uses of M&S in combat is collateral damage estimation (CDE). Reducing undesired collateral damage (CD) in war and in operations other than war is important to the United States of America. Injuries to noncombatants and damage to protected sites are uniformly avoided by our forces whenever possible in planning and executing combat operations. This desire to limit unwanted CD presents unique challenges to command and control (C2), especially for time-sensitive targeting (TST). The challenges begin the moment a target is identified because CD estimates must meet specified criteria before target approval is granted. Therefore, CDE tools must be accurate, responsive, and human-factored, with graphics that aid C2 decisions. This paper will describe how CDE tools are used to build three-dimensional models of potential target areas and select appropriate munitions, fusing, and delivery in order to minimize predicted CD. The paper will cover the evolution of CDE from using only range rings around the target to improvements through Operation Allied Force, Operation Enduring Freedom, and Operation Iraqi Freedom. Positive CDE feedback from various sources, including the Secretary of Defense, lessons learned, and warfighters will be presented. Current CDE tools in the field and CDE tools used in reachback are being improved, and short-term and long-term improvements in those tools and in the CDE methodology will be described in this paper.
NASA Astrophysics Data System (ADS)
Treutenaere, S.; Lauro, F.; Bennani, B.; Matsumoto, T.; Mottola, E.
2015-09-01
The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.
MEMS-based sensors for post-earthquake damage assessment
NASA Astrophysics Data System (ADS)
Pozzi, M.; Zonta, D.; Trapani, D.; Athanasopoulos, N.; Amditis, A. J.; Bimpas, M.; Garetsos, A.; Stratakos, Y. E.; Ulieru, D.
2011-07-01
The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings and will transmit data using a wireless interface. During the first phase of the project completed so far, sensor prototypes were produced by assembling preexisting components. This paper outlines the device operating principles, production scheme and operation at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The performance of the sensors developed for the project and their applicability to long-term seismic monitoring are discussed.
Modeling of Indentation Damage in Single and Multilayer Coatings
NASA Astrophysics Data System (ADS)
Chen, J.; Bull, S. J.
In many coating applications damage resistance is controlled by the mechanical properties of the coating, interface and substrate. As coatings become thinner and more complex, with multilayer and graded architectures now in widespread use, it is very important to obtain the mechanical properties (such as hardness, elastic modulus, fracture toughness, etc.) of individual coating layers for use in design calculations and have failure-related design criteria which are valid for such multilayer systems. Nanoindentation testing is often the only viable approach to assess the damage mechanisms and properties of very thin coatings (< 1 µm) since it can operate at the required scale and provides fingerprint of the indentation response of the coating/substrate system. Finite element analysis of indentation load displacement curves can be used to extract materials properties for design; as coating thicknesses decrease it is observed that the yield strength required to fit the curves increases and scale-dependent materials properties are essential for design. Similarly the assessment of fracture response of very thin coatings requires modeling of the indentation stress field and how it is modified by plasticity during the indentation cycle. An FE approach using a cohesive zone model has been used to assess the locus of failure and demonstrates the complexity of adhesive failure around indentations for multilayer coatings.
A visco-poroelastic damage model for modelling compaction and brittle failure of porous rocks
NASA Astrophysics Data System (ADS)
Jacquey, Antoine B.; Cacace, Mauro; Blöcher, Guido; Milsch, Harald; Scheck-Wenderoth, Magdalena
2016-04-01
Hydraulic stimulation of geothermal wells is often used to increase heat extraction from deep geothermal reservoirs. Initiation and propagation of fractures due to pore pressure build-up increase the effective permeability of the porous medium. Understanding the processes controlling the initiation of fractures, the evolution of their geometries and the hydro-mechanical impact on transport properties of the porous medium is therefore of great interest for geothermal energy production. In this contribution, we will present a thermodynamically consistent visco-poroelastic damage model which can deal with the multi-scale and multi-physics nature of the physical processes occurring during deformation of a porous rock. Deformation of a porous medium is crucially influenced by the changes in the effective stress. Considering a strain-formulated yield cap and the compaction-dilation transition, three different regimes can be identified: quasi-elastic deformation, cataclastic compaction with microcracking (damage accumulation) and macroscopic brittle failure with dilation. The governing equations for deformation, damage accumulation/healing and fluid flow have been implemented in a fully-coupled finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for such non-linear context. To validate and illustrate the model, simulations of the deformation behaviour of cylindrical porous Bentheimer sandstone samples under different confining pressures are compared to experiments. The first experiment under low confining pressure leads to shear failure, the second for high confining pressure leads to cataclastic compaction and the third one with intermediate confining pressure correspond to a transitional regime between the two firsts. Finally, we will demonstrate that this approach can also be used at the field
A matter of life or death: modeling DNA damage and repair in bacteria.
Karschau, Jens; de Almeida, Camila; Richard, Morgiane C; Miller, Samantha; Booth, Ian R; Grebogi, Celso; de Moura, Alessandro P S
2011-02-16
DNA damage is a hazard all cells must face, and evolution has created a number of mechanisms to repair damaged bases in the chromosome. Paradoxically, many of these repair mechanisms can create double-strand breaks in the DNA molecule which are fatal to the cell. This indicates that the connection between DNA repair and death is far from straightforward, and suggests that the repair mechanisms can be a double-edged sword. In this report, we formulate a mathematical model of the dynamics of DNA damage and repair, and we obtain analytical expressions for the death rate. We predict a counterintuitive relationship between survival and repair. We can discriminate between two phases: below a critical threshold in the number of repair enzymes, the half-life decreases with the number of repair enzymes, but becomes independent of the number of repair enzymes above the threshold. We are able to predict quantitatively the dependence of the death rate on the damage rate and other relevant parameters. We verify our analytical results by simulating the stochastic dynamics of DNA damage and repair. Finally, we also perform an experiment with Escherichia coli cells to test one of the predictions of our model. PMID:21320424
Validation of a Model for Prediction of Host Damage by Two Nematode Species
Duncan, Larry W.; Ferris, Howard
1983-01-01
Plant roots were mechanically injured or subjected to nematode parasitism to test the model of host damage by two nematode species: y = m' + (l - m')c'z₁P₁₁z₂P₁₂ for y ≤ 1.0 and y = 1.0 for y > 1.0, where m' = m₁ + (m₂ - m₁) (1 - y₂)/[(1 - y₁) + (l - y₂)] and c' = (z₁-T₁ + z₂-T₂)/2. Damage functions for greenhouse-grown radish plants (cv. Cherry Belle) mechanically injured with small or large steel needles were used to predict growth of plants injured by both needles. Growth predictions accounted for 94%, 87%, and 82% of mean treatment variation in plant height, stem weight, and root weight, respectively. Cowpea (cv. California Blackeye No. 5) damage functions, based on preplant population levels of Meloidogyne incognita and M. javanica, were used to predict seed yield of plants concomitantly infected with various levels of each species. Single species damage functions and population growth curves indicated significant host resistance to M. incognita and significantly lower virulence of that species compared to M. javanica. Model predictions accounted for 88% of mean seed yield variation in two-species treatments. In a separate experiment, mean top weights of 30-day-old cowpea plants, nniformly inoculated with 20,000 M. javanica eggs, increased with increasing levels of concomitantly inoculated M. incognita eggs. It is speculated that competitive interactions between M. incognita and M. javanica mitigated host damage by the more virulent species. PMID:19295796
Manifold learning-based subspace distance for machinery damage assessment
NASA Astrophysics Data System (ADS)
Sun, Chuang; Zhang, Zhousuo; He, Zhengjia; Shen, Zhongjie; Chen, Binqiang
2016-03-01
Damage assessment is very meaningful to keep safety and reliability of machinery components, and vibration analysis is an effective way to carry out the damage assessment. In this paper, a damage index is designed by performing manifold distance analysis on vibration signal. To calculate the index, vibration signal is collected firstly, and feature extraction is carried out to obtain statistical features that can capture signal characteristics comprehensively. Then, manifold learning algorithm is utilized to decompose feature matrix to be a subspace, that is, manifold subspace. The manifold learning algorithm seeks to keep local relationship of the feature matrix, which is more meaningful for damage assessment. Finally, Grassmann distance between manifold subspaces is defined as a damage index. The Grassmann distance reflecting manifold structure is a suitable metric to measure distance between subspaces in the manifold. The defined damage index is applied to damage assessment of a rotor and the bearing, and the result validates its effectiveness for damage assessment of machinery component.
A Bayesian Prediction Framework of Weather Based Power Line Damages in the Northeast
NASA Astrophysics Data System (ADS)
frediani, M.; Anagnostou, E. N.; Wanik, D.; Scerbo, D.
2012-12-01
This study aims to evaluate the predictability of damages to overhead power distribution lines from severe weather events in the New England area. During storms, trees and branches can come down and interact with power lines that results in significant interruptions to electricity distribution, causing major interruptions to residents and monetary losses to the utility company. In Connecticut, a densely forested state, severe winds and precipitation (in the form of rain and snow) from storms are key weather factors that challenge the power grid infrastructure vulnerability. Evaluating the local predictability of these impacts may aid local power utilities with crew allocation and preparedness during an event. A probabilistic approach to damage prediction caused by trees subjected to severe weather is being investigated in the region. This study specifically, explores the feasibility of applying Bayesian inversion technique to weather parameters by developing a damage decision tree composed of various meteorological and static parameters, like wind gust, precipitation (rain and snow accumulation and rates), high canopy forest density and tree trimming history for the power distribution lines. The resulting decision tree can be used as a Bayesian inversion database to predict the probability distribution of damages given a storm forecast. The Bayesian database is based on a historical data source provided by The Connecticut Light & Power Company (Connecticut's primary power utility) containing geographical information of trouble spots caused by thunderstorm and winter/snow-storm events; power line specifications and trimming history; and high-resolution model analysis of those storms. The analysis is based on a 2-sqkm model grid cropped over the state of Connecticut comprising a database of 3,307 pixels per storm. Each storm pixel is flagged to contain power line damages or no-damages. A total of 50 storm simulations is used to build the database. Pairs of
HF-based etching processes for improving laser damage resistance of fused silica optical surfaces
Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L
2010-02-23
The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical
A Rate-Dependent Viscoelastic Damage Model for Simulation of Solid Propellant Impacts
NASA Astrophysics Data System (ADS)
Matheson, Erik
2005-07-01
A viscoelastic deformation and damage model (VED) for solid rocket propellants has been developed based on an extensive set of mechanical properties experiments. Monotonic tensile tests performed at several strain rates showed rate and dilatation effects. During cyclic tensile tests, hysteresis and a rate-dependent shear modulus were observed. A tensile relaxation experiment showed significant stress decay in the sample. Taylor impact tests exhibited large dilatations without significant crack growth. Extensive modifications to a viscoelastic-viscoplastic model (VEP) necessary to capture these experimental results have led to development of the VED model. In particular, plasticity has been eliminated in the model, and the multiple Maxwell viscoelastic formulation has been replaced with a time-dependent shear modulus. Furthermore, the loading and unloading behaviors of the material are modeled independently. To characterize the damage and dilatation behavior, the Tensile Damage and Distention (TDD) model is run in conjunction with VED. The VED model is connected to a single-cell driver as well as to the CTH shock physics code. Simulations of tests show good comparisons with tensile tests and some aspects of the Taylor tests.
A Rate-Dependent Viscoelastic Damage Model for Simulation of Solid Propellant Impacts
NASA Astrophysics Data System (ADS)
Matheson, E. R.; Nguyen, D. Q.
2006-07-01
A viscoelastic deformation and damage model (VED) for solid rocket propellants has been developed based on an extensive set of mechanical properties experiments. Monotonic tensile tests performed at several strain rates showed rate and dilatation effects. During cyclic tensile tests, hysteresis and a rate-dependent shear modulus were observed. A tensile relaxation experiment showed significant stress decay in the sample. Taylor impact tests exhibited large dilatations without significant crack growth. Extensive modifications to a viscoelastic-viscoplastic model (VEP) necessary to capture these experimental results have led to development of the VED model. In particular, plasticity has been eliminated in the model, and the multiple Maxwell viscoelastic formulation has been replaced with a time-dependent shear modulus. Furthermore, the loading and unloading behaviors of the material are modeled independently. To characterize the damage and dilatation behavior, the Tensile Damage and Distention (TDD) model is run in conjunction with VED. The VED model is connected to a single-cell driver as well as to the CTH shock physics code. Simulations of tests show good comparisons with tensile tests and some aspects of the Taylor tests.
Extended Kalman filter based structural damage detection for MR damper controlled structures
NASA Astrophysics Data System (ADS)
Jin, Chenhao; Jang, Shinae; Sun, Xiaorong; Jiang, Zhaoshuo; Christenson, Richard
2016-04-01
The Magneto-rheological (MR) dampers have been widely used in many building and bridge structures against earthquake and wind loadings due to its advantages including mechanical simplicity, high dynamic range, low power requirements, large force capacity, and robustness. However, research about structural damage detection methods for MR damper controlled structures is limited. This paper aims to develop a real-time structural damage detection method for MR damper controlled structures. A novel state space model of MR damper controlled structure is first built by combining the structure's equation of motion and MR damper's hyperbolic tangent model. In this way, the state parameters of both the structure and MR damper are added in the state vector of the state space model. Extended Kalman filter is then used to provide prediction for state variables from measurement data. The two techniques are synergistically combined to identify parameters and track the changes of both structure and MR damper in real time. The proposed method is tested using response data of a three-floor MR damper controlled linear building structure under earthquake excitation. The testing results show that the adaptive extended Kalman filter based approach is capable to estimate not only structural parameters such as stiffness and damping of each floor, but also the parameters of MR damper, so that more insights and understanding of the damage can be obtained. The developed method also demonstrates high damage detection accuracy and light computation, as well as the potential to implement in a structural health monitoring system.
A Computationally-Efficient Inverse Approach to Probabilistic Strain-Based Damage Diagnosis
NASA Technical Reports Server (NTRS)
Warner, James E.; Hochhalter, Jacob D.; Leser, William P.; Leser, Patrick E.; Newman, John A
2016-01-01
This work presents a computationally-efficient inverse approach to probabilistic damage diagnosis. Given strain data at a limited number of measurement locations, Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling are used to estimate probability distributions of the unknown location, size, and orientation of damage. Substantial computational speedup is obtained by replacing a three-dimensional finite element (FE) model with an efficient surrogate model. The approach is experimentally validated on cracked test specimens where full field strains are determined using digital image correlation (DIC). Access to full field DIC data allows for testing of different hypothetical sensor arrangements, facilitating the study of strain-based diagnosis effectiveness as the distance between damage and measurement locations increases. The ability of the framework to effectively perform both probabilistic damage localization and characterization in cracked plates is demonstrated and the impact of measurement location on uncertainty in the predictions is shown. Furthermore, the analysis time to produce these predictions is orders of magnitude less than a baseline Bayesian approach with the FE method by utilizing surrogate modeling and effective numerical sampling approaches.
NASA Astrophysics Data System (ADS)
Kerschbaum, M.; Hopmann, C.
2016-06-01
The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.
Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A.
2006-01-01
In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.
2011-01-01
Background Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating. Methods We developed numerical simulations of typical protocols based on a previously published computed tomographic (CT) guided in vivo procedure. These models were adapted to assess the effects of temperature, electroporation, pulse duration, and repetition rate on the volumes of tissue undergoing IRE alone or in superposition with thermal damage. Results Nine different combinations of voltage and pulse frequency were investigated, five of which resulted in IRE alone while four produced IRE in superposition with thermal damage. Conclusions The parametric study evaluated the influence of pulse frequency and applied voltage on treatment volumes, and refined a proposed method to delineate IRE from thermal damage. We confirm that determining an IRE treatment protocol requires incorporating all the physical effects of electroporation, and that these effects may have significant implications in treatment planning and outcome assessment. The goal of the manuscript is to provide the reader with the numerical methods to assess multiple-pulse electroporation treatment protocols in order to isolate IRE from thermal damage and capitalize on the benefits of a non-thermal mode of tissue ablation. PMID:21529373
Improvements in Modeling Thruster Plume Erosion Damage to Spacecraft Surfaces
NASA Technical Reports Server (NTRS)
Soares, Carlos; Olsen, Randy; Steagall, Courtney; Huang, Alvin; Mikatarian, Ron; Myers, Brandon; Koontz, Steven; Worthy, Erica
2015-01-01
Spacecraft bipropellant thrusters impact spacecraft surfaces with high speed droplets of unburned and partially burned propellant. These impacts can produce erosion damage to optically sensitive hardware and systems (e.g., windows, camera lenses, solar cells and protective coatings). On the International Space Station (ISS), operational constraints are levied on the position and orientation of the solar arrays to mitigate erosion effects during thruster operations. In 2007, the ISS Program requested evaluation of erosion constraint relief to alleviate operational impacts due to an impaired Solar Alpha Rotary Joint (SARJ). Boeing Space Environments initiated an activity to identify and remove sources of conservatism in the plume induced erosion model to support an expanded range of acceptable solar array positions ? The original plume erosion model over-predicted plume erosion and was adjusted to better correlate with flight experiment results. This paper discusses findings from flight experiments and the methodology employed in modifying the original plume erosion model for better correlation of predictions with flight experiment data. The updated model has been successful employed in reducing conservatism and allowing for enhanced flexibility in ISS solar array operations.
Phase field modeling of damage in glassy polymers
NASA Astrophysics Data System (ADS)
Xie, Yuesong; Kravchenko, Oleksandr G.; Pipes, R. Byron; Koslowski, Marisol
2016-08-01
Failure mechanisms in amorphous polymers are usually separated into two types, shear yielding and crazing due to the differences in the yield surface. Experiments show that the yield surface follows a pressure modified von Mises relation for shear yielding but this relation does not hold during crazing failure. In the past different yield conditions were used to represent each type of failure. Here, we show that the same damage model can be used to study failure under shear yielding and crazing conditions. The simulations show that different yield surfaces are obtained for craze and shear yielding if the microstructure is included explicitly in the simulations. In particular the breakdown of the pressure modified von Mises relation during crazing can be related to the presence of voids and other defects in the sample.
Micromechanical Modeling of Anisotropic Damage-Induced Permeability Variation in Crystalline Rocks
NASA Astrophysics Data System (ADS)
Chen, Yifeng; Hu, Shaohua; Zhou, Chuangbing; Jing, Lanru
2014-09-01
This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited's (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.
A robust operational model for predicting where tropical cyclone waves damage coral reefs
NASA Astrophysics Data System (ADS)
Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.
2016-05-01
Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985–2015 using three models – including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985–2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.
A robust operational model for predicting where tropical cyclone waves damage coral reefs.
Puotinen, Marji; Maynard, Jeffrey A; Beeden, Roger; Radford, Ben; Williams, Gareth J
2016-01-01
Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the 'damage zone') enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia's Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur. PMID:27184607
A robust operational model for predicting where tropical cyclone waves damage coral reefs
Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.
2016-01-01
Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985–2015 using three models – including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985–2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur. PMID:27184607
A robust operational model for predicting where tropical cyclone waves damage coral reefs.
Puotinen, Marji; Maynard, Jeffrey A; Beeden, Roger; Radford, Ben; Williams, Gareth J
2016-05-17
Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the 'damage zone') enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia's Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.
Farrar, Charles; Figueiredo, Eloi; Todd, Michael; Flynn, Eric
2010-01-01
A nonlinear time series approach is presented to detect damage in systems by using a state-space reconstruction to infer the geometrical structure of a deterministic dynamical system from observed time series response at multiple locations. The unique contribution of this approach is using a Multivariate Autoregressive (MAR) model of a baseline condition to predict the state space, where the model encodes the embedding vectors rather than scalar time series. A hypothesis test is established that the MAR model will fail to predict future response if damage is present in the test condition, and this test is investigated for robustness in the context of operational and environmental variability. The applicability of this approach is demonstrated using acceleration time series from a base-excited 3-story frame structure.
Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties
NASA Astrophysics Data System (ADS)
Georgiou, G.; Manan, A.; Cooper, J. E.
2012-10-01
The effect of uncertain material properties and severity of damage on the aeroelastic behavior of a finite element composite wing model are predicted by applying the Polynomial Chaos Expansion method (PCE). Different damage modes, including the transverse matrix cracking and broken fibers, are induced into pre-defined locations in the laminates and the aeroelastic stability and dynamic response of the wing due to "1-cosine" vertical gusts are evaluated. For this purpose, PCE models that predict the variation due to uncertainty of the flutter speed and an "Interesting Quantity" (root shear force) of the wing box are developed based upon a small sample of observations, exploiting the efficient Latin Hypercube sampling technique. The uncertainty propagation on the output responses, in the form of probability density functions, is evaluated at low computational cost, implementing the PCE models and verified successfully against the actual results.
NASA Astrophysics Data System (ADS)
Bamford, David Jennings
A general methodology for determining and tracking progressive damage in woven fabric laminated composite plates subjected to dynamic loads has been developed and experimentally validated. The progressive damage theory is based on three-dimensional rate-dependent elasticity and nonlinear anisotropic plasticity which utilizes distinct in-plane and transverse failure criteria and post failure behavior. Delamination is accounted for using two different methods (shear degradation and cohesive layer modeling) and the relative merits of these two approaches are evaluated. The progressive damage theory and delamination modeling capability are implemented in a commercial finite element (FE) code and used to perform validation simulations. Results from off-axis tension tests at different loading rates were used to determine the in-plane material properties for the progressive damage theory. FE simulations of the off-axis tension tests demonstrate that the theory is able to reproduce the observed test results very well over two orders of magnitude of strain rate and at high strains (up to 15%). This includes tracking of the nonlinear stress-strain behavior, prediction of failure load and prediction of the failure mechanism. Results from short beam shear tests are used to determine the transverse material properties for the progressive damage theory and to provide experimental validation of the three-dimensional theory with delamination modeling included. A novel method to determine transverse shear properties based on a 0° short beam shear test is developed and used. Simulations of additional off-axis short beam shear tests with delamination modeling are performed and compared to experimental results for validation. Excellent agreement between the test and simulation results is obtained. Additional validation of the progressive damage theory with delamination modeling was conducted using transversely loaded thick composite disk specimens. The loading rate was adjusted to
Simple model of laser damage initiation and conditioning in frequency conversion crystals
Feit, M D; Rubenchik, A M; Trenholme, J B
2005-10-28
Laser conditioning, i.e. pre-exposure to less than damaging laser fluence, has been shown to improve the damage resistance of KDP/DKDP frequency conversion crystals. We have extended our damage model, small absorbing precursors with a distribution of sizes, to describe various damage related properties such as damage density and effects of laser conditioning in crystals. The model assumes the rate limiting process for both initiation and conditioning depends on temperature and that separate threshold temperatures exist for either conditioning or damage initiation to occur. This is reasonable in KDP/DKDP since the melting temperature is far below the temperatures associated with plasma formation and damage events. This model is capable of accounting for some recently observed damage-conditioning behaviors.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed.
A procedure for damage detection and localization of framed buildings based on curvature variation
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Carlo Ponzo, Felice; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Domenico; Nigro, Antonella
2014-05-01
Structural Health Monitoring and Damage Detection are topics of current interest in civil, mechanical and aerospace engineering. Damage Detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature of the last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Structural damage exhibits its main effects in terms of stiffness and damping variation. As a consequence, a permanent dynamic monitoring system makes it possible to detect and, if suitably concentrated on the structure, to localize structural and non-structural damage occurred on the structure during a strong earthquake. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation (NDE) based on the variation of the dynamic behaviour of structures under seismic loads. Pandey et al. (1991) highlighted on the possibility to use the structural mode shapes to extract useful information for structural damage localization. In this paper a new procedure for damage detection on framed structures based on changes in modal curvature is proposed. The proposed approach is based on the use of Stockwell Transform, a special kind of integral transformation that become a powerful tool for nonlinear signal analysis and then to analyse the nonlinear behaviour of a general structure. Using this kind of approach, it is possible to use a band-variable filter (Ditommaso et al., 2012) to extract from a signal recorded on a structure (excited by an earthquake) the response related to a single mode of vibration for which the related frequency changes over time (if the structure is being damaged). İn general, by acting simultaneously in both frequency and
NASA Astrophysics Data System (ADS)
Zare Hosseinzadeh, A.; Ghodrati Amiri, G.; Seyed Razzaghi, S. A.; Koo, K. Y.; Sung, S. H.
2016-10-01
This paper is aimed at presenting a novel and effective method to detect and estimate structural damage by introducing an efficient objective function which is based on Modal Assurance Criterion (MAC) and modal flexibility matrix. The main strategy in the proposed objective function relies on searching a geometrical correlation between two vectors. Democratic Particle Swarm Optimization (DPSO) algorithm, a modified version of original PSO approach, is used to minimize the objective function resulting in the assessment of damage in different structure types. Finally, the presented method is generalized for a condition in which a limited number of sensors are installed on the structure using Neumann Series Expansion-based Model Reduction (NSEMR) approach. To evaluate the efficiency of the proposed method, different damage patterns in three numerical examples of engineering structures are simulated and the proposed method is employed for damage identification. Moreover, the stability of the method is investigated by considering the effects of a number of important challenges such as effects of different locations for sensor installation, prevalent modeling errors and presence of random noises in the input data. It is followed by different comparative studies to evaluate not only the robustness of the proposed method, but also the necessity of using introduced techniques for problem solution. Finally, the applicability of the presented method in real conditions is also verified by an experimental study of a five-story shear frame on a shaking table utilizing only three sensors. All of the obtained results demonstrate that the proposed method precisely identifies damages by using only the first several modes' data, even when incomplete noisy modal data are considered as input data.
NASA Astrophysics Data System (ADS)
Bodeux, J. B.; Golinval, J. C.
2001-06-01
In this paper, the application of auto-regressive moving average vector models to system identification and damage detection is investigated. These parametric models have already been applied for the analysis of multiple input-output systems under ambient excitation. Their main advantage consists in the capability of extracting modal parameters from the recorded time signals, without the requirement of excitation measurement. The excitation is supposed to be a stationary Gaussian white noise. The method also allows the estimation of modal parameter uncertainties. On the basis of these uncertainties, a statistically based damage detection scheme is performed and it becomes possible to assess whether changes of modal parameters are caused by, e.g. some damage or simply by estimation inaccuracies. The paper reports first an example of identification and damage detection applied to a simulated system under random excitation. The `Steel-Quake' benchmark proposed in the framework of COST Action F3 `Structural Dynamics' is also analysed. This structure was defined by the Joint Research Centre in Ispra (Italy) to test steel building performance during earthquakes. The proposed method gives an excellent identification of frequencies and mode shapes, while damping ratios are estimated with less accuracy.
Modeling of Laser Induced Damage in NIF UV Optics
Feit, M D; Rubenchik, A M
2001-02-21
Controlling damage to nominally transparent optical elements such as lenses, windows and frequency conversion crystals on high power lasers is a continuing technical problem. Scientific understanding of the underlying mechanisms of laser energy absorption, material heating and vaporization and resultant mechanical damage is especially important for UV lasers with large apertures such as NIF. This LDRD project was a single year effort, in coordination with associated experimental projects, to initiate theoretical descriptions of several of the relevant processes. In understanding laser damage, we distinguish between damage initiation and the growth of existent damage upon subsequent laser irradiation. In general, the effect of damage could be ameliorated by either preventing its initiation or by mitigating its growth. The distinction comes about because initiation is generally due to extrinsic factors such as contaminants, which provide a means of local laser energy absorption. Thus, initiation tends to be local and stochastic in nature. On the other hand, the initial damaging event appears to modify the surrounding material in such a way that multiple pulse damage grows more or less regularly. More exactly, three ingredients are necessary for visible laser induced damage. These are adequate laser energy, a mechanism of laser energy absorption and mechanical weakness. For damage growth, the material surrounding a damage site is already mechanically weakened by cracks and probably chemically modified as well. The mechanical damage can also lead to electric field intensification due to interference effects, thus increasing the available laser energy density. In this project, we successfully accounted for the pulselength dependence of damage threshold in bulk DKDP crystals with the hypothesis of small absorbers with a distribution of sizes. We theoretically investigated expected scaling of damage initiation craters both to baseline detailed numerical simulations
Damage detection technique by measuring laser-based mechanical impedance
Lee, Hyeonseok; Sohn, Hoon
2014-02-18
This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.
NASA Astrophysics Data System (ADS)
Wang, Kai; Su, Zhongqing
2016-04-01
Targeting quantitative estimate of fatigue damage, a dedicated analytical model was developed based on the modal decomposition method and the variational principle. The model well interprets the contact acoustic nonlinearity induced by a "breathing" crack in a two-dimensional scenario, and the nonlinear characteristics of guided ultrasonic waves (GUWs) (e.g., reflection, transmission, mode conversion and high-order generation) when GUWs traversing the crack. Based on the model, a second-order reflection index was defined. Using the index, a fatigue damage evaluation framework was established, showing demonstrated capacity of estimating the severity of fatigue damage in a quantitative manner. The approach, in principle, does not entail a benchmarking process against baseline signals pre-acquired from pristine counterparts. The results obtained using the analytical modeling were compared with those from finite element simulation, showing good coincidence. Limitations of the model were also discussed.
Mechanical damage to Escherichia coli cells in a model of amino-acid crystal fermentation.
Okutani, Satoshi; Iwai, Takayoshi; Iwatani, Shintaro; Kondo, Kazuya; Osumi, Tsuyoshi; Tsujimoto, Nobuharu; Matsuno, Kiyoshi
2012-04-01
We investigated the mechanical damage to the Escherichia coli cell caused by polyvinyl chloride particles as a model of amino-acid crystal fermentation. Our results indicated that the glucose-consumption rate and the intracellular ATP concentration temporarily increased by the mechanical damage, and decreased after considerable damage had occurred on cell membrane. PMID:22153714
Nucleation phenomena in an annealed damage model: statistics of times to failure.
Abaimov, S G; Cusumano, J P
2014-12-01
In this paper we investigate the statistical behavior of an annealed continuous damage model. For different model variations we study distributions of times to failure and compare these results with the classical case of metastable nucleation in statistical physics. We show that our model has a tuning parameter, related to the degree of damage reversibility, that determines the model's behavior. Depending on the value of this parameter, our model exhibits statistical behavior either similar to classical reversible nucleation phenomena in statistical physics or to an absolutely different type of behavior intrinsic to systems with damage. This comparison allows us to investigate possible similarities and differences between damage phenomena and reversible nucleation.
On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection
Krishnan, Ashwati; Kelly, Shawn K.
2016-01-01
Current technology has enabled a significant increase in the number of electrodes for electrical stimulation. For large arrays of electrodes, it becomes increasingly difficult to monitor and detect failures at the stimulation site. In this paper, we propose the idea that the residual voltage from a biphasic electrical stimulation pulse can serve to recognize damage at the electrode-tissue interface. We use a simple switch circuit approach to estimate the relaxation time constant of the electrode model, which essentially models the residual voltage in biphasic electrical stimulation, and compare it with standard electrode characterization techniques. Out of 15 electrodes in a polyimide-based SIROF array, our approach highlights 3 damaged electrodes, consistent with measurements made using cyclic voltammetry and electrode impedance spectroscopy. PMID:27231725
Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.
1991-01-01
The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.
De Schryver, An M; Brakkee, Karin W; Goedkoop, Mark J; Huijbregts, Mark A J
2009-03-15
Human and ecosystem health damage due to greenhouse gas (GHG) emissions is generally poorly quantified in the life cycle assessment of products, preventing an integrated comparison of the importance of GHGs with other stressor types, such as ozone depletion and acidifying emissions. In this study, we derived new characterization factors for 63 GHGs that quantify the impact of an emission change on human and ecosystem health damage. For human health damage, the Disability Adjusted Life Years (DALYs) per unit emission related to malaria, diarrhea, malnutrition, drowning, and cardiovascular diseases were quantified. For ecosystem health damage, the Potentially Disappeared Fraction (PDF) over space and time of various species groups, including plants, butterflies, birds, and mammals, per unit emission was calculated. The influence of value choices in the modeling procedure was analyzed by defining three coherent scenarios, based on Cultural theory perspectives. It was found that the characterization factor for human health damage by carbon dioxide (CO2) ranges from 1.1 x 10(-2) to 1.8 x 10(+1) DALY per kton of emission, while the characterization factor for ecosystem damage by CO2 ranges from 5.4 x 10(-2) to 1.2 x 10(+1) disappeared fraction of species over space and time ((km2 x year)/kton), depending on the scenario chosen. The characterization factor of a GHG can change up to 4 orders of magnitude, depending on the scenario. The scenario-specific differences are mainly explained by the choice for a specific time horizon and stresses the importance of dealing with value choices in the life cycle impact assessment of GHG emissions.
NASA Astrophysics Data System (ADS)
Maresca, F.; Kouznetsova, V. G.; Geers, M. G. D.
2016-02-01
Metallic composite phases, like martensite present in conventional steels and new generation high strength steels exhibit microscale, locally lamellar microstructures characterized by alternating layers of phases or crystallographic variants. The layers can be sub-micron down to a few nanometers thick, and they are often characterized by high contrasts in plastic properties. As a consequence, fracture in these lamellar microstructures generally occurs along the layer interfaces or within one of the layers, typically parallel to the interface. This paper presents a computational framework that addresses the lamellar nature of these microstructures, by homogenizing the plastic deformation at the mesoscale by using the microscale response of the laminates. Failure is accounted for by introducing a family of damaging planes that are parallel to the layer interface. Mode I, mode II and mixed-mode opening are incorporated. The planes along which failure occurs are captured using a smeared damage approach. Coupling of damage with isotropic or anisotropic plasticity models, like crystal plasticity, is straightforward. The damaging planes and directions do not need to correspond to crystalline slip planes, and normal opening is also included. Focus is given on rate-dependent formulations of plasticity and damage, i.e. converged results can be obtained without further regularization techniques. The validation of the model using experimental observations in martensite-austenite lamellar microstructures in steels reveals that the model correctly predicts the main features of the onset of failure, e.g. the necking point, the failure initiation region and the failure mode. Finally, based on the qualitative results obtained, some material design guidelines are provided for martensitic and multi-phase steels.
NASA Technical Reports Server (NTRS)
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
Application of cyclic damage accumulation life prediction model to high temperature components
NASA Technical Reports Server (NTRS)
Nelson, Richard S.
1989-01-01
A high temperature, low cycle fatigue life prediction method was developed. This method, Cyclic Damage Accumulation (CDA), was developed for use in predicting the crack initiation lifetime of gas turbine engine materials, but it can be applied to other materials as well. The method is designed to account for the effects on creep-fatigue life of complex loading such as thermomechanical fatigue, hold periods, waveshapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several features of this model were developed to make it practical for application to actual component analysis, such as the ability to handle nonisothermal loading (including TMF), arbitrary cycle paths, and multiple damage modes. The CDA life prediction model was derived from extensive specimen tests conducted on cast nickel-base superalloy B1900 + Hf. These included both monotonic tests (tensile and creep) and strain-controlled fatigue experiments (uniaxial, biaxial, TMF, mixed creep-fatigue, and controlled mean stress). Additional specimen tests were conducted on wrought INCO 718 to verify the applicability of the final CDA model to other high-temperature alloys. The model will be available to potential users in the near future in the form of a FORTRAN-77 computer program.
Insights into the damage zones in fault-bend folds from geomechanical models and field data
NASA Astrophysics Data System (ADS)
Ju, Wei; Hou, Guiting; Zhang, Bo
2014-01-01
Understanding the rock mass deformation and stress states, the fracture development and distribution are critical to a range of endeavors including oil and gas exploration and development, and geothermal reservoir characterization and management. Geomechanical modeling can be used to simulate the forming processes of faults and folds, and predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables the development of forward models that incorporate realistic mechanical stratigraphy (e.g., the bed thickness, bedding planes and competence contrasts), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the geometry of the fold structures, and allow tracking strain and stress through the whole deformation process. In this present study, we combine field observations and finite element models to calibrate the development and distribution of fractures in the fault-bend folds, and discuss the mechanical controls (e.g., the slip displacement, ramp cutoff angle, frictional coefficient of interlayers and faults) that are able to influence the development and distribution of fractures during fault-bend folding. A linear relationship between the slip displacement and the fracture damage zone, the ramp cutoff angle and the fracture damage zone, and the frictional coefficient of interlayers and faults and the fracture damage zone was established respectively based on the geomechanical modeling results. These mechanical controls mentioned above altogether contribute to influence and control the development and distribution of fractures in the fault-bend folds.
Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter
NASA Technical Reports Server (NTRS)
Belknap, Shannon; Zhang, Michael
2013-01-01
The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.
NASA Technical Reports Server (NTRS)
Lo, David C.; Coats, Timothy W.; Harris, Charles E.; Allen, David H.
1996-01-01
A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete list of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occur during the load history. Residual strength predictions made with this information compared favorably with experimental measurements.
NASA Astrophysics Data System (ADS)
Taşkin Kaya, Gülşen
2013-10-01
Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input
Multi-variate flood damage assessment: a tree-based data-mining approach
NASA Astrophysics Data System (ADS)
Merz, B.; Kreibich, H.; Lall, U.
2013-01-01
The usual approach for flood damage assessment consists of stage-damage functions which relate the relative or absolute damage for a certain class of objects to the inundation depth. Other characteristics of the flooding situation and of the flooded object are rarely taken into account, although flood damage is influenced by a variety of factors. We apply a group of data-mining techniques, known as tree-structured models, to flood damage assessment. A very comprehensive data set of more than 1000 records of direct building damage of private households in Germany is used. Each record contains details about a large variety of potential damage-influencing characteristics, such as hydrological and hydraulic aspects of the flooding situation, early warning and emergency measures undertaken, state of precaution of the household, building characteristics and socio-economic status of the household. Regression trees and bagging decision trees are used to select the more important damage-influencing variables and to derive multi-variate flood damage models. It is shown that these models outperform existing models, and that tree-structured models are a promising alternative to traditional damage models.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Jun; Yang, Chen; Qiu, Zhi-Ping
2013-04-01
Based on measured natural frequencies and acceleration responses, a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification (SMI) and two-step model updating procedure. Due to the insufficiency and uncertainty of information obtained from measurements, the uncertain problem of damage identification is addressed with interval variables in this paper. Based on the first-order Taylor series expansion, the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated, respectively. The possibility of damage existence (PoDE) in elements is proposed as the quantitative measure of structural damage probability, which is more reasonable in the condition of insufficient measurement data. In comparison with the identification method based on a single kind of information, the SMI method will improve the accuracy in damage identification, which reflects the information fusion concept based on the non-probabilistic set. A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.
A role for WRN in telomere-based DNA damage responses.
Eller, Mark S; Liao, Xiaodong; Liu, SuiYang; Hanna, Kendra; Bäckvall, Helena; Opresko, Patricia L; Bohr, Vilhelm A; Gilchrest, Barbara A
2006-10-10
Telomeres cap the ends of eukaryotic chromosomes and prevent them from being recognized as DNA breaks. We have shown that certain DNA damage responses induced during senescence and, at times of telomere uncapping, also can be induced by treatment of cells with small DNA oligonucleotides homologous to the telomere 3' single-strand overhang (T-oligos), implicating this overhang in generation of these telomere-based damage responses. Here, we show that T-oligo-treated fibroblasts contain gammaH2AX foci and that these foci colocalize with telomeres. T-oligos with nuclease-resistant 3' ends are inactive, suggesting that a nuclease initiates T-oligo responses. We therefore examined WRN, a 3'-->5' exonuclease and helicase mutated in Werner syndrome, a disorder characterized by aberrant telomere maintenance, premature aging, chromosomal rearrangements, and predisposition to malignancy. Normal fibroblasts and U20S osteosarcoma cells rendered deficient in WRN showed reduced phosphorylation of p53 and histone H2AX in response to T-oligo treatment. Together, these data demonstrate a role for WRN in processing of telomeric DNA and subsequent activation of DNA damage responses. The T-oligo model helps define the role of WRN in telomere maintenance and initiation of DNA damage responses after telomere disruption.
Rate sensitive continuum damage models and mesh dependence in finite element analyses.
Ljustina, Goran; Fagerström, Martin; Larsson, Ragnar
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the "damage" does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994
NASA Astrophysics Data System (ADS)
Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard
2016-08-01
Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
Free radical mediated x-ray damage of model membranes.
Cheng, A; Caffrey, M
1996-01-01
The damaging effects of synchrotron-derived x rays on aqueous phospholipid dispersions have been evaluated. The effect of degree of lipid hydration, phospholipid chemical structure, mesophase identity, aqueous medium composition, and incident flux on the severity and progress of damage was quantified using time-resolved x-ray diffraction and chromatographic analysis of damage products. Electron spin resonance measurements of spin-trapped intermediates generated during irradiation suggest a free radical-mediated process. Surprisingly, radiation damage effects revealed by x-ray diffraction were imperceptible when the lamellar phases were prepared under water-stressed conditions, despite the fact that x-ray-induced chemical breakdown of the lipid occurred regardless of hydration level. Of the fully hydrated lipid systems studied, saturated diacyl-phosphatidylcholines were most sensitive to radiation damage compared to the ester- and ether-linked phosphatidylethanolamines and the ether-linked phosphatidylcholines. The inclusion of buffers or inorganic salts in the dispersing medium had only a minor effect in reducing damage development. A small inverse dose-rate effect was found when the x-ray beam intensity was changed 15-fold. These results contribute to our understanding of the mechanism of radiation damage, to our appreciation of the importance of monitoring both structure and composition when evaluating biomaterials radiation sensitivity, and to the development of strategies for eliminating or reducing the severity of damage due to an increasingly important source of x rays, synchrotron radiation. Because damage is shown to be free radical mediated, these results have an important bearing on age-related accumulation of free radicals in cells and how these might compromise membrane integrity, culminating in cell death. Images FIGURE 3 FIGURE 6 PMID:9172745
A computer toolbox for damage identification based on changes in vibration characteristics
Doebling, S.W.; Farrar, C.R.; Cornwell, P.J.
1997-09-01
This paper introduces a new toolbox of graphical-interface software algorithms for the numerical simulation of vibration tests, analysis of modal data, finite element model correlation, and the comparison of both linear and nonlinear damage identification techniques. This toolbox is unique because it contains several different vibration-based damage identification algorithms, categorized as those which use only measured response and sensor location information ({open_quotes}non-model-based{close_quotes} techniques) and those which use finite element model correlation ({open_quotes}model-based{close_quotes} techniques). Another unique feature of this toolbox is the wide range of algorithms for experimental modal analysis. The toolbox also contains a unique capability that utilizes the measured coherence functions and Monte Carlo analysis to perform statistical uncertainty analysis on the modal correlation capabilities of toolbox, and also shows a sample application which uses the toolbox to analyze the statistical uncertainties on the results of a series of modal tests performed on a highway bridge.
Watanabe, Ritsuko; Rahmanian, Shirin; Nikjoo, Hooshang
2015-05-01
The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular
NASA Astrophysics Data System (ADS)
Mosavi, A. A.; Dickey, D.; Seracino, R.; Rizkalla, S.
2012-01-01
This paper presents a study for identifying damage locations in an idealized steel bridge girder using the ambient vibration measurements. A sensitive damage feature is proposed in the context of statistical pattern recognition to address the damage detection problem. The study utilizes an experimental program that consists of a two-span continuous steel beam subjected to ambient vibrations. The vibration responses of the beam are measured along its length under simulated ambient vibrations and different healthy/damage conditions of the beam. The ambient vibration is simulated using a hydraulic actuator, and damages are induced by cutting portions of the flange at two locations. Multivariate vector autoregressive models were fitted to the vibration response time histories measured at the multiple sensor locations. A sensitive damage feature is proposed for identifying the damage location by applying Mahalanobis distances to the coefficients of the vector autoregressive models. A linear discriminant criterion was used to evaluate the amount of variations in the damage features obtained for different sensor locations with respect to the healthy condition of the beam. The analyses indicate that the highest variations in the damage features were coincident with the sensors closely located to the damages. The presented method showed a promising sensitivity to identify the damage location even when the induced damage was very small.
An automatic damage detection algorithm based on the Short Time Impulse Response Function
NASA Astrophysics Data System (ADS)
Auletta, Gianluca; Carlo Ponzo, Felice; Ditommaso, Rocco; Iacovino, Chiara
2016-04-01
Structural Health Monitoring together with all the dynamic identification techniques and damage detection techniques are increasing in popularity in both scientific and civil community in last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Damage detection techniques traditionally consist in visual inspection and/or non-destructive testing. A different approach consists in vibration based methods detecting changes of feature related to damage. Structural damage exhibits its main effects in terms of stiffness and damping variation. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. We focused the attention on the structural damage localization and detection after an earthquake, from the evaluation of the mode curvature difference. The methodology is based on the acquisition of the structural dynamic response through a three-directional accelerometer installed on the top floor of the structure. It is able to assess the presence of any damage on the structure providing also information about the related position and severity of the damage. The procedure is based on a Band-Variable Filter, (Ditommaso et al., 2012), used to extract the dynamic characteristics of systems that evolve over time by acting simultaneously in both time and frequency domain. In this paper using a combined approach based on the Fourier Transform and on the seismic interferometric analysis, an useful tool for the automatic fundamental frequency evaluation of nonlinear structures has been proposed. Moreover, using this kind of approach it is possible to improve some of the existing methods for the automatic damage detection providing stable results
NASA Astrophysics Data System (ADS)
Schumacher, Shane Christian
2002-01-01
A conventional composite material for structural applications is composed of stiff reinforcing fibers embedded in a relatively soft polymer matrix, e.g. glass fibers in an epoxy matrix. Although composites have numerous advantages over traditional materials, the presence of two vastly different constituent materials has confounded analysts trying to predict failure. The inability to accurately predict the inelastic response of polymer based composites along with their ultimate failure is a significant barrier to their introduction to new applications. Polymer based composite materials also tend to exhibit rate and time dependent failure characteristics. Lack of knowledge about the rate dependent response and progressive failure of composite structures has led to the current practice of designing these structures with static properties. However, high strain rate mechanical properties can vary greatly from the static properties. The objective of this research is to develop a finite element based failure analysis tool for composite materials that incorporates strain rate hardening effects in the material failure model. The analysis method, referred to as multicontinuum theory (MCT) retains the identity of individual constituents by treating them as separate but linked continua. Retaining the constituent identities allows one to extract continuum phase averaged stress/strain fields for the constituents in a routine structural analysis. Time dependent failure is incorporated in MCT by introducing a continuum damage model into MCT. In addition to modeling time and rate dependent failure, the damage model is capable of capturing the nonlinear stress-strain response observed in composite materials.
Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data
NASA Astrophysics Data System (ADS)
Ogawa, Y.; Akiyama, Y.; Kanasugi, H.; Shibasaki, R.; Kaneda, H.
2016-06-01
Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3) to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.
Tridimensional modelling of damage and fracture in woven composite materials
Chafra, M.; Baltov, A.; Vinh, T.
1995-12-31
Woven composite materials extensively used in industry has given rise to an abundant literature. Elastic homogenization computational method and other aspects have been investigated. Elastic degradation and damage of the material in general have also been extensively studied. This paper presents an attempt to formulate the problem of the reduction of elastic stiffness on one hand and damage and fracture at macrolevel of such materials on the other hand.
Case-based damage assessment of storm events in near real-time
NASA Astrophysics Data System (ADS)
Möhrle, Stella; Mühr, Bernhard
2015-04-01
Damage assessment in times of crisis is complex due to a highly dynamic environment and uncertainty in respect of available information. In order to assess the extent of a disaster in near real-time, historic events and their consequences may facilitate first estimations. Events of the past, which are in the same category or which have similar frame conditions like imminent or just occurring storms, might give preliminary information about possible damages. The challenge here is to identify useful historic events based on little information regarding the current event. This work investigates the potential of drawing conclusions about a current event based on similar historic disasters, exemplarily for storm events in Germany. Predicted wind speed and area affected can be used for roughly classifying a storm event. For this purpose, a grid of equidistant points can be used to split up the area of Germany. In combination with predicted wind speed at these points and the predicted number of points affected, respectively, a storm can be categorized in a fast manner. In contrast to investigate only data taken by the observation network, the grid approach is more objective, since stations are not equally distributed. Based on model data, the determined storm class provides one key factor for identifying similar historic events. Further aspects, such as region or specific event characteristics, complete knowledge about the potential storm scale and result in a similarity function, which automatically identifies useful events from the past. This work presents a case-based approach to estimate damages in the event of an extreme storm event in Germany. The focus in on the similarity function, which is based on model storm classes, particularly wind speed and area affected. In order to determine possible damages more precisely, event specific characteristics and region will be included. In the frame of determining similar storm events, neighboring storm classes will be
NASA Astrophysics Data System (ADS)
Xin, Qiang; Su, Xing; Wang, Bo
2016-09-01
Plasma processing has been widely reported as an effective tool in relieving or removing surface/subsurface damage induced by previous mechanical machining process. However, the surface morphology evolution during removing the damage using plasma processing is rarely reported. In this research, this procedure is studied based on experiments and robust numerical models developed on the basis of Level Set Method (LSM). Even if some unique properties of plasma etching are observed, such as particle redistribution, the dominant role of isotropic etching of plasma processing is verified based on experiments and 2D LSM simulations. With 2D LSM models, the damage removal process under various damage characteristics is explored in detail. Corresponding peak-to-valley roughness evolution is investigated as well. Study on morphology evolution is also conducted through the comparison between experiments and 3D LSM computations. The modeling results and experiments show good agreement with each other. The trends of simulated roughness evolution agree with the experiments as well. It is revealed that the plasma processing may end up with a planar surface depending on the damage characteristics. The planarization procedure can be divided into four parts: crack opening and pit formation; pit coalescing and shallow pits subsumed by deep ones; morphology duplicate etching; and finally a planar and damage free surface.
NASA Astrophysics Data System (ADS)
Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Vosselman, George
2015-07-01
Point clouds generated from airborne oblique images have become a suitable source for detailed building damage assessment after a disaster event, since they provide the essential geometric and radiometric features of both roof and façades of the building. However, they often contain gaps that result either from physical damage or from a range of image artefacts or data acquisition conditions. A clear understanding of those reasons, and accurate classification of gap-type, are critical for 3D geometry-based damage assessment. In this study, a methodology was developed to delineate buildings from a point cloud and classify the present gaps. The building delineation process was carried out by identifying and merging the roof segments of single buildings from the pre-segmented 3D point cloud. This approach detected 96% of the buildings from a point cloud generated using airborne oblique images. The gap detection and classification methods were tested using two other data sets obtained with Unmanned Aerial Vehicle (UAV) images with a ground resolution of around 1-2 cm. The methods detected all significant gaps and correctly identified the gaps due to damage. The gaps due to damage were identified based on the surrounding damage pattern, applying Gabor wavelets and a histogram of gradient orientation features. Two learning algorithms - SVM and Random Forests were tested for mapping the damaged regions based on radiometric descriptors. The learning model based on Gabor features with Random Forests performed best, identifying 95% of the damaged regions. The generalization performance of the supervised model, however, was less successful: quality measures decreased by around 15-30%.
NASA Astrophysics Data System (ADS)
Saksala, Timo
2016-10-01
This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.
Early state damage detection of aluminum 7075-T6 plate based on acoustic emission
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Li, Zhong; Heidary, Zahra
2011-04-01
Aluminum alloy 7075-T6 is a commonly used material in aircraft industry. A crack usually initiates at the edge of a fastener hole, and it can affect the maintenance schedule and reduce the life of an aircraft structure significantly. The fatigue property of the material has been researched widely to develop methods and models for predicting fatigue crack growth under random loading. From the point of damage tolerance design, the inspection technique of a crack for an aircraft structure is very important because it can be used to determine the inspection period of the aircraft structure. The acoustic emission (AE) technique is a nondestructive testing (NDT) method that is able to monitor damage initiation and progression in real time. Understanding the early stage of AE signature due to the damage progression using small scale laboratory samples requires non-traditional data analysis approaches. In this study, 1mm thick Al-7075-T6 plates were tested under monotonic and fatigue loading. The initiation of damage progression using AE data was identified based on improved linear location algorithm and the result was verified using elasto-plastic finite element model. The improved location algorithm integrates dispersive characteristics of flexural waves and threshold independent approach to pick up the wave arrival time. In this paper, AE results in comparison with FE model under monotonic and fatigue loading will be presented. The comparison of traditional and improved location approaches will be shown. The approach for implementing the laboratory scale results in the large scale field testing will be discussed.
Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses
Fagerström, Martin
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the “damage” does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation. PMID:25530994
Test analysis of detection of damage to a complicated spatial model structure
NASA Astrophysics Data System (ADS)
Xu, Long-He; Li, Zhong-Xian; Qian, Jia-Ru
2011-06-01
A two-stage damage detection approach is proposed and experimentally demonstrated on a complicated spatial model structure with a limited number of measurements. In the experiment, five known damage patterns, including 3 brace damage cases and 2 joint damage cases, were simulated by removing braces and weakening beam-column connections in the structure. The limited acceleration response data generated by hammer impact were used for system identification, and modal parameters were extracted by using the eigensystem realization algorithm. In the first stage, the possible damaged locations are determined by using the damage index and the characteristics of the analytical model itself, and the extent of damage for those substructures identified at stage I is estimated in the second stage by using a second-order eigen-sensitivity approximation method. The main contribution of this paper is to test the two-stage method by using the real dynamic data of a complicated spatial model structure with limited sensors. The analysis results indicate that the two-stage approach is able to detect the location of both damage cases, only the severity of brace damage cases can be assessed, and the reasonable analytical model is critical for successful damage detection.
A biophysical model of cell evolution after cytotoxic treatments: Damage, repair and cell response.
Tomezak, M; Abbadie, C; Lartigau, E; Cleri, F
2016-01-21
We present a theoretical agent-based model of cell evolution under the action of cytotoxic treatments, such as radiotherapy or chemotherapy. The major features of cell cycle and proliferation, cell damage and repair, and chemical diffusion are included. Cell evolution is based on a discrete Markov chain, with cells stepping along a sequence of discrete internal states from 'normal' to 'inactive'. Probabilistic laws are introduced for each type of event a cell can undergo during its life: duplication, arrest, senescence, damage, reparation, or death. We adjust the model parameters on a series of cell irradiation experiments, carried out in a clinical LINAC, in which the damage and repair kinetics of single- and double-strand breaks are followed. Two showcase applications of the model are then presented. In the first one, we reconstruct the cell survival curves from a number of published low- and high-dose irradiation experiments. We reobtain a very good description of the data without assuming the well-known linear-quadratic model, but instead including a variable DSB repair probability. The repair capability of the model spontaneously saturates to an exponential decay at increasingly high doses. As a second test, we attempt to simulate the two extreme possibilities of the so-called 'bystander' effect in radiotherapy: the 'local' effect versus a 'global' effect, respectively activated by the short-range or long-range diffusion of some factor, presumably secreted by the irradiated cells. Even with an oversimplified simulation, we could demonstrate a sizeable difference in the proliferation rate of non-irradiated cells, the proliferation acceleration being much larger for the global than the local effect, for relatively small fractions of irradiated cells in the colony.
Autonomous Structural Health MONITORING—PART II: Vibration-Based In-Operation Damage Assessment
NASA Astrophysics Data System (ADS)
Parloo, E.; Verboven, P.; Guillaume, P.; van Overmeire, M.
2002-07-01
Monitoring structural health of civil and industrial structures, based on in-operation modal testing, has become an important issue. Recently, a sensitivity-based damage assessment technique was presented and successfully tested on both civil and more academic structures. As shown in literature, these sensitivities can be experimentally calculated (without the use of a finite element model) on a basis of the estimated natural frequencies and mass-normalised mode shapes of the test structure in its reference condition. Since a driving point measurement is required for an easy scaling (e.g. mass-normalisation) of the mode shapes, the applicability of the method was restricted to forced-vibration tests only. In this contribution, the applicability of the sensitivity-based method is extended to the domain of operational modal analysis (output-only measurements). In a first step, a new method is used for the correct re-scaling of operational mode shape estimates that neither requires forced vibration testing nor finite element modelling. Secondly, two innovative sensitivity-based in-operation damage assessment schemes are introduced. Both methods were experimentally tested on an academic frame structure as well as a slat track of an Airbus A320 commercial aeroplane.
Naderi, Saeideh; Nikdel, Ali; Meshram, Mukesh; McConkey, Brendan; Ingalls, Brian; Budman, Hector; Scharer, Jeno
2014-09-01
The development of an efficient and productive cell-culture process requires a deep understanding of intracellular mechanisms and extracellular conditions for optimal product synthesis. Mathematical modeling provides an effective strategy to predict, control, and optimize cell performance under a range of culture conditions. In this study, a mathematical model is proposed for the investigation of cell damage of a Chinese hamster ovary cell culture secreting recombinant anti-RhD monoclonal antibody (mAb). Irreversible cell damage was found to be correlated with a reduction in pH. This irreversible damage to cellular function is described mathematically by a Tessier-based model, in which the actively growing fraction of cells is dependent on an intracellular metabolic product acting as a growth inhibitor. To further verify the model, an offline model-based optimization of mAb production in the cell culture was carried out, with the goal of minimizing cell damage and thereby enhancing productivity through intermittent refreshment of the culture medium. An experimental implementation of this model-based strategy resulted in a doubling of the yield as compared to the batch operation and the resulting biomass and productivity profiles agreed with the model predictions.
Methodology for a GIS-based damage assessment for researchers following large scale disasters
NASA Astrophysics Data System (ADS)
Crawford, Patrick Shane
The 1990s were designated the International Decade for Natural Disaster Reduction by the United Nations General Assembly. This push for decrease of loss of life, property destruction, and social and economic disruption brought advancements in disaster management, including damage assessment. Damage assessment in the wake of natural and manmade disasters is a useful tool for government agencies, insurance companies, and researchers. As technologies evolve damage assessment processes constantly evolve as well. Alongside the advances in Geographic Information Systems (GIS), remote sensing, and Global Positioning System (GPS) technology, as well as the growing awareness of the needs of a standard operating procedure for GIS-based damage assessment and a need to make the damage assessment process as quick and accurate as possible, damage assessment procedures are becoming easier to execute and the results are becoming more accurate and robust. With these technological breakthroughs, multi-disciplinary damage assessment reconnaissance teams have become more efficient in their assessment methods through better organization and more robust through addition of new datasets. Damage assessment personnel are aided by software tools that offer high-level analysis and increasingly rapid damage assessment methods. GIS software has advanced the damage assessment methods of these teams by combining remotely sensed aerial imagery, GPS, and other technologies to expand the uses of the data. GIS allows researchers to use aerial imagery to show field collected data in the geographic location that it was collected so that information can be revisited, measurements can be taken, and data can be disseminated to other researchers and the public. The GIS-based data available to the reconnaissance team includes photographs of damage, worksheets, calculations, voice messages collected while studying the affected area, and many other datasets which are based on the type of disaster and the
Experimental study and numerical modelling of the irradiation damage recovery in zirconium alloys
NASA Astrophysics Data System (ADS)
Ribis, J.; Onimus, F.; Béchade, J.-L.; Doriot, S.; Barbu, A.; Cappelaere, C.; Lemaignan, C.
2010-08-01
Neutron irradiation damage in zirconium alloys used as fuel cladding tubes for Pressurized Water Reactors in the nuclear industry consists mainly in a high density of small prismatic dislocation loops. During post-irradiation heat treatment thermal annealing of loops occurs. This phenomenon has been investigated by transmission electron microscopy and microhardness tests. It has been shown that the loop density decreases while their mean size increases. Furthermore it was demonstrated that only vacancy loops remain present in the material after a long term annealing at high temperature. A mechanism based on vacancies diffusion has been proposed to explain the loop evolution during annealing. A cluster dynamic model, originally developed to compute the evolution of the microstructure under irradiation, has been adapted to the modelling of the annealing for zirconium alloys. This physically based model reproduces the loop size and density evolution during a large variety of heat treatments and also provides a better understanding of the mechanisms involved in the loop recovery.
Vertebrate POLQ and POLβ Cooperate in Base Excision Repair of Oxidative DNA Damage
Yoshimura, Michio; Kohzaki, Masaoki; Nakamura, Jun; Asagoshi, Kenjiro; Sonoda, Eiichiro; Hou, Esther; Prasad, Rajendra; Wilson, Samuel H.; Tano, Keizo; Yasui, Akira; Lan, Li; Seki, Mineaki; Wood, Richard D.; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hochegger, Helfrid; Okada, Takashi; Hiraoka, Masahiro; Takeda, Shunichi
2007-01-01
Summary Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage induced by H2O2, but not to UV or cisplatin. Surprisingly, this phenotype was synergistically increased by concomitant deletion of the major BER polymerase, POLβ. Moreover, extracts from a polq null mutant cell line show reduced BER activity, and POLQ, like POLβ, accumulated rapidly at sites of base damage. Accordingly, POLQ and POLβ share an overlapping function in the repair of oxidative base damage. Taken together, these results suggest a role for vertebrate POLQ in BER. PMID:17018297
Fatigue damage modeling for coated single crystal superalloys
NASA Technical Reports Server (NTRS)
Nissley, David M.
1988-01-01
A high temperature, low-cycle fatigue life prediction method for coated single crystal nickel-base superalloys is being developed. The method is being developed for use in predicting crack initiation life of coated single crystal turbine airfoils. Although the models are being developed using coated single crystal PWA 1480, they should be readily adaptable to other coated nickel-base single crystal materials. The coatings choosen for this effort were of two generic types: a low pressure plasma sprayed NiCoCrAlY overlay, designated PWA 286, and an aluminide diffusion, designated PWA 273. In order to predict the useful crack initiation life of airfoils, the constitutive and failure behavior of the coating/substrate combination must be taken into account. Coatings alter the airfoil surface microstructure and are a primary source from which cracks originate. The adopted life prediction approach addresses this complexity by separating the coating and single crystal crack initiation regimes. This provides a flexible means for using different life model formulations for the coating and single crystal materials. At the completion of this program, all constitutive and life model formulations will be available in equation form and as software. The software will use the MARC general purpose finite element code to drive the constitutive models and calculate life parameters.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S>
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
High-energy radiation damage in zirconia: modeling results
Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya
2014-02-28
Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.
Online damage diagnosis for civil infrastructure employing a flexibility-based approach
NASA Astrophysics Data System (ADS)
Gao, Y.; Spencer, B. F., Jr.
2006-02-01
Structural health monitoring (SHM) and damage detection have recently emerged as a new research area in civil engineering. Continuous and long-term monitoring of civil infrastructure is desirable, because it allows the damage in the structure to be detected at an early stage so that necessary measures can be carried out to prolong and optimize the associated service life and cost. In this paper, an approach which extends a flexibility-based damage detection technique, the damage locating vector (DLV) method, for continuous online SHM is presented. The essence of the proposed approach is to construct an approximate flexibility matrix for the damaged structure utilizing the modal normalization constants from the undamaged structure. This extended DLV method can then be applied for online damage diagnosis. Numerical simulation has been conducted using a 14-bay planar truss structure, with the results showing that the proposed approach works well for both single- and multiple-damage scenarios.
Discrete fracture modeling of hydro-mechanical damage processes in geological systems
NASA Astrophysics Data System (ADS)
Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.
2014-12-01
This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively
A two-temperature model of radiation damage in α-quartz.
Phillips, Carolyn L; Magyar, Rudolph J; Crozier, Paul S
2010-10-14
Two-temperature models are used to represent the physics of the interaction between atoms and electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature model applied to an insulator, α-quartz, to model heat deposition in a SiO(2) lattice. Our model of the SiO(2) electronic subsystem is based on quantum simulations of the electronic response in a SiO(2) repeat cell. We observe how the parametrization of the electronic subsystem impacts the degree of permanent amorphization of the lattice, especially compared to a metallic electronic subsystem. The parametrization of the insulator electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 ps. While recognizing that more development in the application of two-temperature models to insulators is needed, we argue that the inclusion of a simple electronic subsystem substantially improves the realism of such radiation damage simulations. PMID:20950034
Chen, Z.; Schreyer, H.L.
1995-09-01
The response of underground structures and transportation facilities under various external loadings and environments is critical for human safety as well as environmental protection. Since quasi-brittle materials such as concrete and rock are commonly used for underground construction, the constitutive modeling of these engineering materials, including post-limit behaviors, is one of the most important aspects in safety assessment. From experimental, theoretical, and computational points of view, this report considers the constitutive modeling of quasi-brittle materials in general and concentrates on concrete in particular. Based on the internal variable theory of thermodynamics, the general formulations of plasticity and damage models are given to simulate two distinct modes of microstructural changes, inelastic flow and degradation of material strength and stiffness, that identify the phenomenological nonlinear behaviors of quasi-brittle materials. The computational aspects of plasticity and damage models are explored with respect to their effects on structural analyses. Specific constitutive models are then developed in a systematic manner according to the degree of completeness. A comprehensive literature survey is made to provide the up-to-date information on prediction of structural failures, which can serve as a reference for future research.
A two-temperature model of radiation damage in {alpha}-quartz
Phillips, Carolyn L.; Magyar, Rudolph J.; Crozier, Paul S.
2010-10-14
Two-temperature models are used to represent the physics of the interaction between atoms and electrons during thermal transients such as radiation damage, laser heating, and cascade simulations. We introduce a two-temperature model applied to an insulator, {alpha}-quartz, to model heat deposition in a SiO{sub 2} lattice. Our model of the SiO{sub 2} electronic subsystem is based on quantum simulations of the electronic response in a SiO{sub 2} repeat cell. We observe how the parametrization of the electronic subsystem impacts the degree of permanent amorphization of the lattice, especially compared to a metallic electronic subsystem. The parametrization of the insulator electronic subsystem has a significant effect on the amount of residual defects in the crystal after 10 ps. While recognizing that more development in the application of two-temperature models to insulators is needed, we argue that the inclusion of a simple electronic subsystem substantially improves the realism of such radiation damage simulations.
Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition
Kuznetsov, Nikita A.; Bergonzo, Christina; Campbell, Arthur J.; Li, Haoquan; Mechetin, Grigory V.; de los Santos, Carlos; Grollman, Arthur P.; Fedorova, Olga S.; Zharkov, Dmitry O.; Simmerling, Carlos
2015-01-01
Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination. PMID:25520195
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
NASA Technical Reports Server (NTRS)
Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2014-01-01
Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these
Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform
Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping
2014-01-01
The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647
Damage detection on sudden stiffness reduction based on discrete wavelet transform.
Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping
2014-01-01
The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited.
Damage detection on sudden stiffness reduction based on discrete wavelet transform.
Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping
2014-01-01
The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647
Multi-physics modeling of multifunctional composite materials for damage detection
NASA Astrophysics Data System (ADS)
Sujidkul, Thanyawalai
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to
An Assessment of Radiation Damage Models and Methods
Stoller, Roger E; Mansur, Louis K
2005-05-01
The current state of development of the primary models used for investigating and simulating irradiation effects in structural alloys of interest to the U.S. DOE's Generation-IV reactor program are discussed. The underlying theory that supports model development is also described where appropriate. First, the key processes that underlie radiation-induced changes in material properties are summarized, and the types of radiation effects that subsequently arise are described. Future development work needed in order for theory, modeling, and computational materials science to support and add value to the Gen IV reactor materials program are then outlined. The expected specific outcomes and overall benefits of the required effort are: the knowledge to extrapolate material behavior to conditions for which there are no experimental data; systematic understanding of mechanisms and processes to enable confident interpolation between point-by-point experimental observations; acceleration of the development, selection, and qualification of materials for reactor service; and prediction of material response to real-world operating load histories which often involve a complicated superposition of time, temperature, radiation dose rate, and mechanical loading conditions. Opportunities for international collaboration to accelerate progress in all of the required research areas are briefly discussed, particularly in the context of two well coordinated, broad-based research projects on modeling and simulation of radiation effects on materials that are currently funded in Europe. In addition to providing the opportunity for substantial leveraging of the DOE-funded activities in this area, these projects may serve as models for future development within the Gen-IV program. The larger of these two projects, which involves 12 European research laboratories and 16 universities, is called PERFECT and is funded by the European Union. A smaller effort focusing on developing predictive
Vibration-based damage detection for filament wound pressure vessel filled with fluid
NASA Astrophysics Data System (ADS)
Zhou, W.; Wu, Z.; Li, H.
2008-03-01
Filament wound pressure vessels have been extensively used in industry and engineering. The existing damage detection and health monitoring methods for these vessels, such as X-ray and ultrasonic scan, can not meet the requirement of online damage detection; moreover optical grating fibre can only sense the local damage, but not the damage far away from the location of sensors. Vibration-based damage detection methods have the potential to meet such requirements. There methods are based on the fact that damages in a structure results in a change in structural dynamic characteristics. A damage detection method based on a residual associated with output-only subspace-based modal identification and global or focused chi^2-tests built on that residual has been proposed and successfully experimented on a variety of test cases. The purpose of this work is to describe the damage detection method and apply this method to assess the composite structure filled with fluid. The results of identification and damage detection will be presented.
Modal macro-strain vector based damage detection methodology with long-gauge FBG sensors
NASA Astrophysics Data System (ADS)
Xu, Bin; Liu, Chongwu W.; Masri, Sami F.
2009-07-01
Advances in optic fiber sensing technology provide easy and reliable way for the vibration-based strain measurement of engineering structures. As a typical optic fiber sensing techniques with high accuracy and resolution, long-gauge Fiber Bragg Grating (FBG) sensors have been widely employed in health monitoring of civil engineering structures. Therefore, the development of macro strain-based identification methods is crucial for damage detection and structural condition evaluation. In the previous study by the authors, a damage detection algorithm for a beam structure with the direct use of vibration-based macro-strain measurement time history with neural networks had been proposed and validated with experimental measurements. In this paper, a damage locating and quantifying method was proposed using modal macrostrain vectors (MMSVs) which can be extracted from vibration induced macro-strain response measurement time series from long-gage FBG sensors. The performance of the proposed methodology for damage detection of a beam with different damage scenario was studied with numerical simulation firstly. Then, dynamic tests on a simply-supported steel beam with different damage scenarios were carried out and macro-strain measurements were employed to detect the damage severity. Results show that the proposed MMSV based structural identification and damage detection methodology can locate and identify the structural damage severity with acceptable accuracy.
NASA Astrophysics Data System (ADS)
Wiebe, D. M.; Cox, D. T.; Chen, Y.; Weber, B. A.; Chen, Y.
2012-12-01
Building damage from a hypothetical Cascadia Subduction Zone tsunami was estimated using two methods and applied at the community scale. The first method applies proposed guidelines for a new ASCE 7 standard to calculate the flow depth, flow velocity, and momentum flux from a known runup limit and estimate of the total tsunami energy at the shoreline. This procedure is based on a potential energy budget, uses the energy grade line, and accounts for frictional losses. The second method utilized numerical model results from previous studies to determine maximum flow depth, velocity, and momentum flux throughout the inundation zone. The towns of Seaside and Canon Beach, Oregon, were selected for analysis due to the availability of existing data from previously published works. Fragility curves, based on the hydrodynamic features of the tsunami flow (inundation depth, flow velocity, and momentum flux) and proposed design standards from ASCE 7 were used to estimate the probability of damage to structures located within the inundations zone. The analysis proceeded at the parcel level, using tax-lot data to identify construction type (wood, steel, and reinforced-concrete) and age, which was used as a performance measure when applying the fragility curves and design standards. The overall probability of damage to civil buildings was integrated for comparison between the two methods, and also analyzed spatially for damage patterns, which could be controlled by local bathymetric features. The two methods were compared to assess the sensitivity of the results to the uncertainty in the input hydrodynamic conditions and fragility curves, and the potential advantages of each method discussed. On-going work includes coupling the results of building damage and vulnerability to an economic input output model. This model assesses trade between business sectors located inside and outside the induction zone, and is used to measure the impact to the regional economy. Results highlight
An existence result for a model of complete damage in elastic materials with reversible evolution
NASA Astrophysics Data System (ADS)
Bonetti, Elena; Freddi, Francesco; Segatti, Antonio
2016-07-01
In this paper, we consider a model describing evolution of damage in elastic materials, in which stiffness completely degenerates once the material is fully damaged. The model is written by using a phase transition approach, with respect to the damage parameter. In particular, a source of damage is represented by a quadratic form involving deformations, which vanishes in the case of complete damage. Hence, an internal constraint is ensured by a maximal monotone operator. The evolution of damage is considered "reversible", in the sense that the material may repair itself. We can prove an existence result for a suitable weak formulation of the problem, rewritten in terms of a new variable (an internal stress). Some numerical simulations are presented in agreement with the mathematical analysis of the system.
Comparative study of performance of neutral axis tracking based damage detection
NASA Astrophysics Data System (ADS)
Soman, R.; Malinowski, P.; Ostachowicz, W.
2015-07-01
This paper presents a comparative study of a novel SHM technique for damage isolation. The performance of the Neutral Axis (NA) tracking based damage detection strategy is compared to other popularly used vibration based damage detection methods viz. ECOMAC, Mode Shape Curvature Method and Strain Flexibility Index Method. The sensitivity of the novel method is compared under changing ambient temperature conditions and in the presence of measurement noise. Finite Element Analysis (FEA) of the DTU 10 MW Wind Turbine was conducted to compare the local damage identification capability of each method and the results are presented. Under the conditions examined, the proposed method was found to be robust to ambient condition changes and measurement noise. The damage identification in some is either at par with the methods mentioned in the literature or better under the investigated damage scenarios.
NASA Astrophysics Data System (ADS)
Shalev, Eyal; Calò, Marco; Lyakhovsky, Vladimir
2013-11-01
During hydraulic stimulations, a complex interaction is observed between the injected flux and pressure, number and magnitude of induced seismic events, and changes in seismic velocities. In this paper, we model formation and propagation of damage zones and seismicity patterns induced by wellbore fluid injection. The model includes the coupling of poroelastic deformation and groundwater flow with damage evolution (weakening and healing) and its effect on the elastic and hydrologic parameters of crystalline rocks. Results show that three subsequent interactions occur during stimulation. (1) Injected flux-pressure interaction: typically, after a flux increase, the wellbore pressure also rises to satisfy the flux conditions. Thereafter, the elevated pore pressure triggers damage accumulation and seismic activity, that is, accompanied by permeability increase. As a result, wellbore pressure decreases retaining the target injected flux. (2) Wellbore pressure-seismicity interaction: damage processes create an elongated damage zone in the direction close to the main principal stress. The rocks within the damage zone go through partial healing and remain in a medium damage state. Damage that originates around the injection well propagates within the damage zone away from the well, raising the damage state of the already damaged rocks, and is followed by compaction and fast partial healing back to a medium damage state. This `damage wave' behaviour is associated with the injected flux changes only in early stages while fracture's height (h) is larger than its length (l). The ratio h/l controls the deformation process that is responsible for several key features of the damage zone. (3) Stress- and damage-induced variations of the seismic P-wave velocities (Vp). Vp gradually decreases as damage is accumulated and increases after rock failure as the shear stress is released and healing and compaction are dominant. Typically, Vp decreases within the damage zone and increases in
Moore, John R; Watt, Michael S
2015-08-01
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.
Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F
2012-12-17
The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.
A New In Vitro Model to Study Cellular Responses after Thermomechanical Damage in Monolayer Cultures
Hettler, Alice; Werner, Simon; Eick, Stefan; Laufer, Stefan; Weise, Frank
2013-01-01
Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the
Optimal ozone reduction policy design using adjoint-based NOx marginal damage information.
Mesbah, S Morteza; Hakami, Amir; Schott, Stephan
2013-01-01
Despite substantial reductions in nitrogen oxide (NOx) emissions in the United States, the success of emission control programs in optimal ozone reduction is disputable because they do not consider the spatial and temporal differences in health and environmental damages caused by NOx emissions. This shortcoming in the current U.S. NOx control policy is explored, and various methodologies for identifying optimal NOx emission control strategies are evaluated. The proposed approach combines an optimization platform with an adjoint (or backward) sensitivity analysis model and is able to examine the environmental performance of the current cap-and-trade policy and two damage-based emissions-differentiated policies. Using the proposed methodology, a 2007 case study of 218 U.S. electricity generation units participating in the NOx trading program is examined. The results indicate that inclusion of damage information can significantly enhance public health performance of an economic instrument. The net benefit under the policy that minimizes the social cost (i.e., health costs plus abatement costs) is six times larger than that of an exchange rate cap-and-trade policy.
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Thorne, B.J.
1990-10-01
Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried to late times. An improved damage model allows finite element calculations which remain stable at late times. Reasonable agreement between crater profiles calculated with this model using the PRONTO finite element program and excavated crater profiles from blasting experiments in granite demonstrate a successful application of this model. Detailed instructions for use of this new damage model with the PRONTO finite element programs are included. 18 refs., 16 figs.
Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.
Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S
2015-03-01
Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account.
Modelling electron distributions within ESA's Gaia satellite CCD pixels to mitigate radiation damage
NASA Astrophysics Data System (ADS)
Seabroke, G. M.; Holland, A. D.; Burt, D.; Robbins, M. S.
2009-08-01
The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented positional accuracy requirements with detailed calibration and correction for radiation damage. At L2, protons cause displacement damage in the silicon of CCDs. The resulting traps capture and emit electrons from passing charge packets in the CCD pixel, distorting the image PSF and biasing its centroid. Microscopic models of Gaia's CCDs are being developed to simulate this effect. The key to calculating the probability of an electron being captured by a trap is the 3D electron density within each CCD pixel. However, this has not been physically modelled for the Gaia CCD pixels. In Seabroke, Holland & Cropper (2008), the first paper of this series, we motivated the need for such specialised 3D device modelling and outlined how its future results will fit into Gaia's overall radiation calibration strategy. In this paper, the second of the series, we present our first results using Silvaco's physics-based, engineering software: the ATLAS device simulation framework. Inputting a doping profile, pixel geometry and materials into ATLAS and comparing the results to other simulations reveals that ATLAS has a free parameter, fixed oxide charge, that needs to be calibrated. ATLAS is successfully benchmarked against other simulations and measurements of a test device, identifying how to use it to model Gaia pixels and highlighting the affect of different doping approximations.
Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li; Qing, Xinlin
2014-03-01
A dedicated modeling technique for comprehending nonlinear characteristics of ultrasonic waves traversing in a fatigued medium was developed, based on a retrofitted constitutive relation of the medium by considering the nonlinearities originated from material, fatigue damage, as well as the "breathing" motion of fatigue cracks. Piezoelectric wafers, for exciting and acquiring ultrasonic waves, were integrated in the model. The extracted nonlinearities were calibrated by virtue of an acoustic nonlinearity parameter. The modeling technique was validated experimentally, and the results showed satisfactory consistency in between, both revealing: the developed modeling approach is able to faithfully simulate fatigue crack-incurred nonlinearities manifested in ultrasonic waves; a cumulative growth of the acoustic nonlinearity parameter with increasing wave propagation distance exists; such a parameter acquired via a sensing path is nonlinearly related to the offset distance from the fatigue crack to that sensing path; and neither the incidence angle of the probing wave nor the length of the sensing path impacts on the parameter significantly. This study has yielded a quantitative characterization strategy for fatigue cracks using embeddable piezoelectric sensor networks, facilitating deployment of structural health monitoring which is capable of identifying small-scale damage at an embryo stage and surveilling its growth continuously.
NASA Astrophysics Data System (ADS)
Revil-Baudard, Benoit; Cazacu, Oana; Flater, Philip; Chandola, Nitin; Alves, J. L.
2016-03-01
In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.
1995-12-31
The Stand-Damage Model (a component of the Gypsy Moth Life System Model) simulates the growth of a mixed hardwood forest and incorporates the effects of defoliation by gypsy moth or tree harvesting as prescribed by the user. It can be used to assess the damage from expected defoliation, view the differences between various degrees of defoliation, and describe the effects of defoliation on a standard under user-defined silvicultural prescriptions and defoliation scenarios. The user`s guide provides the information necessary to install and use the model software on DOS microcomputers. A reference section provides a more experienced user with a structure map of the system.
Crack softening damage model for ceramic impact and its application within a hydrocode
Hazell, P.J.; Iremonger, M.J.
1997-08-01
A physically based crack softening damage model has been developed and used in a non-linear transient dynamic computer code (AUTODYN-2D). It is assumed that there is a finite number of orientated pre-existing flaws within the ceramic target. The mode I and mode II stress intensity factors are calculated in compression and tension and the strain energy release rate is then estimated and compared to a critical dynamic strain energy release rate. At initiation, a tension crack propagates at a velocity dependent on the mode I stress intensity factor and failure occurs in a computational cell when two neighbouring microcracks coalesce. The model was used to simulate two different plate impact experiments of alumina on alumina with encouraging results. The model was also used to analyze the impact of a steel sphere on alumina and shows strong correlation between experimental and predicted results. {copyright} {ital 1997 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Magalhães, F.; Cunha, A.; Caetano, E.
2012-04-01
In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.
DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS
Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.
2009-10-30
This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Gaitan, Santiago; ten Veldhuis, Marie-Claire; van de Giesen, Nick
2013-04-01
Extreme weather events such as floods and storms are expected to cause severe economic losses in The Netherlands. Cumulative damage due to pluvial flooding can be considerable, especially in lowland areas where this type of floods occurs relatively frequently. Currently, in The Netherlands, water-related damages to property and contents are covered through private insurance. As pluvial flooding is becoming heavier and more likely to occur, sound modelling of damages is required to ensure that insurance systems are able to stand as an adaptation measure. Current damage models based on rainfall intensity, registries of insurance claims, and classifications of building types are unable to fully explain damage variability. Further developments assessing additional explanatory factors and reducing uncertainties, are required in order to significantly explain damage. In this study, urban topography is used as an explanatory factor for modelling of urban pluvial flooding. Flood damage is evaluated based on complaints data, a valuable resource for assessing vulnerability to urban pluvial flooding. Though previous research has shown coincidences between the localization of high complaint counts and large size catchments areas in Rotterdam, additional research is needed to establish the precise spatial relationship of those two variables. This additional task is the focus of the presented work. To that end a data base of complaints, that was made available by the Municipality Administration of the City, will be analysed. It comprises close to 36800 complaints from 2004 to 2011. The geographical position of the registries is aggregated into 4 to 6-digit Postal Code zones, which represents entire streets or relative positions along a street, respectively. The Municipality also provided the DEM, characterized by a spatial resolution of 0.5 m × 0.5 m, a vertical precision of 5 cm, and an accuracy better than two standard deviations of 15 cm. First the localization of complaints
Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments
Thorne, B.J.
1991-09-01
Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.
Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model
Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.
2015-01-01
Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623
NASA Astrophysics Data System (ADS)
Lee, Keejoo
2005-11-01
A damage model for ceramic materials is developed and incorporated into the geometrically nonlinear solid shell element formulation for dynamic analyses of multi-layered ceramic armor panels under blast wave pressure loading. The damage model takes into account material behaviors observed from multi-axial dynamic tests on Aluminum Nitride (AlN) ceramic. The ceramic fails in a brittle or gradual fashion, depending upon the hydrostatic pressure and applied strain-rate. In the model, the gradual failure is represented by two states: the initial and final failure states. These states are described by two separate failure surfaces that are pressure-dependent and strain-rate-dependent. A scalar damage parameter is defined via using the two failure surfaces, based on the assumption that the local stress state determines material damage and its level. In addition, the damage model accounts for the effect of existing material damage on the new damage. The multi-layered armor panel of interest is comprised of an AlN-core sandwich with unidirectional composite skins and a woven composite back-plate. To accommodate the material damage effect of composite layers, a composite failure model in the open literature is adopted and modified into two separate failure models to address different failure mechanisms of the unidirectional and woven composites. In addition, the effect of strain-rates on the material strengths is incorporated into the composite failure models. For finite element modeling, multiple eighteen-node elements are used in the thickness direction to properly describe mechanics of the multi-layered panel. Dynamic analyses of a multi-layered armor panel are conducted under blast wave pressure loadings. The resulting dynamic responses of the panel demonstrate that dynamic analyses that do not take into account material damage and failure significantly under-predict the peak displacement. The under-prediction becomes more pronounced as the blast load level increases
Bailey, Aaron D; Zhang, Guiru; Murphy, Bryan P
2014-01-01
The number of Level 3 hair color products that substitute 2-aminoethanol [monoethanolamine (MEA)] for ammonia is increasing. There is some anecdotal evidence that higher levels of MEA can be more damaging to hair and more irritating than a corresponding equivalent level of the typical alkalizer, ammonia (in the form of ammonium hydroxide). Our interest was to understand in more quantitative terms the relative hair damage from the two alkalizers, particularly at the upper limits of MEA on-head use. Limiting investigations of oxidative hair damage to increases in cysteic acid content (from cystine oxidation) can underreport the extent of total damage. Hence, we complemented Fourier transform infrared spectroscopy (FTIR) cysteic acid level measurement with scanning electron microscopy (SEM) photomicrographs to visualize cuticle damage, and protein loss to understand not only the oxidative damage but also the damage caused by other damage pathways, e.g., reaction of the more nucleophilic (than ammonia) MEA with hair protein. In fact, all methods show an increase in damage from MEA-based formulations, up to 85% versus ammonia in the most extreme case. Hence, if the odor of ammonia is a concern, a better approach may be to minimize the volatility of ammonia in specific chassis rather than replacing it with high levels of a potentially more damaging alkalizer such as MEA.
NASA Astrophysics Data System (ADS)
Vanli, O. Arda; Jung, Sungmoon
2014-01-01
Health monitoring of large structures with embedded, distributed sensor systems is gaining importance. This study proposes a new probabilistic model updating method in order to improve the damage prediction capability of a finite element analysis (FEA) model with experimental observations from a Lamb-wave sensing system. The approach statistically calibrates unknown parameters of the FEA model and estimates a bias-correcting function to achieve a good match between the model predictions and sensor observations. An experimental validation study is presented in which a set of controlled damages are generated on a composite panel. Time-series signals are collected with the damage condition using a Lamb-wave sensing system and a one dimensional FEA model of the panel is constructed to quantify the damages. The damage indices from both the experiments and the computational model are used to calibrate assumed parameters of the FEA model and to estimate a bias-correction function. The updated model is used to predict the size (extent) and location of damage. It is shown that the proposed model updating approach achieves a prediction accuracy that is superior to a purely statistical approach or a deterministic model calibration approach.
Validating finite element models of composite aerospace structures for damage detection applications
NASA Astrophysics Data System (ADS)
Oliver, J. A.; Kosmatka, J. B.; Hemez, François M.; Farrar, Charles R.
2006-03-01
Carbon-fiber-reinforced-polymer (CFRP) composites represent the future for advanced lightweight aerospace structures. However, reliable and cost-effective techniques for structural health monitoring (SHM) are needed. Modal and vibration-based analysis, when combined with validated finite element (FE) models, can provide a key tool for SHM. Finite element models, however, can easily give spurious and misleading results if not finely tuned and validated. These problems are amplified in complex structures with numerous joints and interfaces. A small series of all-composite test pieces emulating wings from a lightweight all-composite Unmanned Aerial Vehicle (UAV) have been developed to support damage detection and SHM research. Each wing comprises two CFRP prepreg and Nomex honeycomb co-cured skins and two CFRP prepreg spars bonded together in a secondary process using a structural adhesive to form the complete wings. The first of the set is fully healthy while the rest have damage in the form of disbonds built into the main spar-skin bondline. Detailed FE models were created of the four structural components and the assembled structure. Each wing component piece was subjected to modal characterization via vibration testing using a shaker and scanning laser Doppler vibrometer before assembly. These results were then used to correlate the FE model on a component-basis, through fitting and optimization of polynomial meta-models. Assembling and testing the full wing provided subsequent data that was used to validate the numerical model of the entire structure, assembled from the correlated component models. The correlation process led to the following average percent improvement between experimental and FE frequencies of the first 20 modes for each piece: top skin 10.98%, bottom skin 45.62%, main spar 25.56%, aft spar 10.79%. The assembled wing model with no further correlation showed an improvement of 32.60%.
Schmidt, Thomas; Balzani, Daniel
2016-05-01
In this paper, a three-dimensional relaxed incremental variational damage model is proposed, which enables the description of complex softening hysteresis as observed in supra-physiologically loaded arterial tissues, and which thereby avoids a loss of convexity of the underlying formulation. The proposed model extends the relaxed formulation of Balzani and Ortiz [2012. Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures. Int. J. Numer. Methods Eng. 92, 551-570], such that the typical stress-hysteresis observed in arterial tissues under cyclic loading can be described. This is mainly achieved by constructing a modified one-dimensional model accounting for cyclic loading in the individual fiber direction and numerically homogenizing the response taking into account a fiber orientation distribution function. A new solution strategy for the identification of the convexified stress potential is proposed based on an evolutionary algorithm which leads to an improved robustness compared to solely Newton-based optimization schemes. In order to enable an efficient adjustment of the new model to experimentally observed softening hysteresis, an adjustment scheme using a surrogate model is proposed. Therewith, the relaxed formulation is adjusted to experimental data in the supra-physiological domain of the media and adventitia of a human carotid artery. The performance of the model is then demonstrated in a finite element example of an overstretched artery. Although here three-dimensional thick-walled atherosclerotic arteries are considered, it is emphasized that the formulation can also directly be applied to thin-walled simulations of arteries using shell elements or other fiber-reinforced biomembranes.
Airframe structural damage detection: a non-linear structural surface intensity based technique.
Semperlotti, Fabio; Conlon, Stephen C; Barnard, Andrew R
2011-04-01
The non-linear structural surface intensity (NSSI) based damage detection technique is extended to airframe applications. The selected test structure is an upper cabin airframe section from a UH-60 Blackhawk helicopter (Sikorsky Aircraft, Stratford, CT). Structural damage is simulated through an impact resonator device, designed to simulate the induced vibration effects typical of non-linear behaving damage. An experimental study is conducted to prove the applicability of NSSI on complex mechanical systems as well as to evaluate the minimum sensor and actuator requirements. The NSSI technique is shown to have high damage detection sensitivity, covering an extended substructure with a single sensing location.
Airframe structural damage detection: a non-linear structural surface intensity based technique.
Semperlotti, Fabio; Conlon, Stephen C; Barnard, Andrew R
2011-04-01
The non-linear structural surface intensity (NSSI) based damage detection technique is extended to airframe applications. The selected test structure is an upper cabin airframe section from a UH-60 Blackhawk helicopter (Sikorsky Aircraft, Stratford, CT). Structural damage is simulated through an impact resonator device, designed to simulate the induced vibration effects typical of non-linear behaving damage. An experimental study is conducted to prove the applicability of NSSI on complex mechanical systems as well as to evaluate the minimum sensor and actuator requirements. The NSSI technique is shown to have high damage detection sensitivity, covering an extended substructure with a single sensing location. PMID:21476618
Some remarks on a model for rate-independent damage in thermo-visco-elastodynamics
NASA Astrophysics Data System (ADS)
Lazzaroni, Giuliano; Rossi, Riccarda; Thomas, Marita; Toader, Rodica
2016-06-01
This note deals with the analysis of a model for partial damage, where the rate- independent, unidirectional flow rule for the damage variable is coupled with the rate-dependent heat equation, and with the momentum balance featuring inertia and viscosity according to Kelvin-Voigt rheology. The results presented here combine the approach from Roubicek [1, 2] with the methods from Lazzaroni/Rossi/Thomas/Toader [3]. The present analysis encompasses, differently from [2], the monotonicity in time of damage and the dependence of the viscous tensor on damage and temperature, and, unlike [3], a nonconstant heat capacity and a time-dependent Dirichlet loading.
Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management
NASA Technical Reports Server (NTRS)
Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.
2016-01-01
A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES
A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES
A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...
A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE
A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...
A damage-based approach for the fatigue design of composite structures
NASA Astrophysics Data System (ADS)
Quaresimin, Marino
2016-07-01
The paper illustrates a fatigue design strategy, based on the physics of the damage evolution, under development by the Composite Group at DTG-University of Padova. After a brief introduction, where the motivations of the work are analysed, examples of damage mechanisms at the microscopic scale are discussed. Then the procedures for the quantitative description of these mechanisms are illustrated.
49 CFR 1133.2 - Statement of claimed damages based on Board findings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... claims only on shipments covered by the findings in the docket above described and contains no claim for... findings. 1133.2 Section 1133.2 Transportation Other Regulations Relating to Transportation (Continued... Statement of claimed damages based on Board findings. (a) When the Board finds that damages are due,...
49 CFR 1133.2 - Statement of claimed damages based on Board findings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... shipments covered by the findings in the docket above described and contains no claim for reparation... findings. 1133.2 Section 1133.2 Transportation Other Regulations Relating to Transportation (Continued... Statement of claimed damages based on Board findings. (a) When the Board finds that damages are due,...
L.H. Toburen, Principal Investigator; J.L. Shinpaugh; M. Dingfelder; and G. Lapicki; Co-Investigators
2007-01-07
Modern tools of radiobiology are leading to many new discoveries regarding how cells and tissues respond to radiation exposure. We can now irradiate single cells and observe responses in adjacent cells. We can also measure clusters of radiation damage produced in DNA. Our primary objective has been to understand the underling physics associated with these new biological responses. The primary tools available to describe the initial spatial pattern of damage formed by the absorption of ionizing radiation are based on Monte Carlo simulation of the structure of charged particle tracks. Although many Monte Carlo codes exist and considerable progress is being made in the incorporation of detailed macromolecular target structures into these codes, much of the interaction physics is still based on gas phase measurements and/or untested theoretical calculations that focus on water as the transport medium. Our objectives were threefold, (1) to expand the applicability of Monte Carlo track structure simulation to tissue-like material beyond the current focus on water, (2) to incorporate the most recent experimental information on electron interactions in biologically relevant material, and (3) to compare recent measurements of electron emissions induced by charged particles in thin foils with Monte Carlo predictions. We addressed these research objectives in three ways. First we applied theoretical techniques, similar to those used to derive data for water, to obtain cross sections for other condensed phase materials. This served two purposes. One was to provide testability of the theoretical technique by comparison to existing experimental data for electron transport (similar data does not exist for water), and the other was to expand the target database for use in modeling tissue. Second, we carefully reviewed published data, and ongoing experiments, for electron interaction cross-sections in biologically relevant condensed phase material. Results for low-energy electron
Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model
Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.
2007-05-17
The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths.
Ratigan, J.L.; Nieland, J.D.; Devries, K.L.
1998-12-31
Geomechanical analyses were made to determine the minimum gas pressure allowable based on an existing stress-based criterion (Damage Potential) and an advanced constitutive model (MDCF model) capable of quantifying the level of damage and healing in rock salt. The MDCF model is a constitutive model developed for the WIPP to provide a continuum description of the dislocation and damage deformation of salt. The purpose of this study was to determine if the MDCF model is applicable for evaluating the minimum gas pressure of CNG storage caverns. Specifically, it was to be determined if this model would predict that the minimum gas pressure in the caverns could be lowered without compromising the stability of the cavern. Additionally, the healing behavior of the salt was analyzed to determine if complete healing of the damaged rock zone would occur during the period the cavern was at maximum gas pressure. Significant findings of this study are reported.
Structural kinematics based damage zone prediction in gradient structures using vibration database
NASA Astrophysics Data System (ADS)
Talha, Mohammad; Ashokkumar, Chimpalthradi R.
2014-05-01
To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.
Modeling crater formation in femtosecond-pulse laser damage from basic principles.
Mitchell, Robert A; Schumacher, Douglass W; Chowdhury, Enam A
2015-05-15
We present the first fundamental simulation method for the determination of crater morphology due to femtosecond-pulse laser damage. To this end we have adapted the particle-in-cell (PIC) method commonly used in plasma physics for use in the study of laser damage and developed the first implementation of a pair potential for PIC codes. We find that the PIC method is a complementary approach to modeling laser damage, bridging the gap between fully ab-initio molecular dynamics approaches and empirical models. We demonstrate our method by modeling a femtosecond-pulse laser incident on a flat copper slab for a range of intensities. PMID:26393696
Modeling crater formation in femtosecond-pulse laser damage from basic principles.
Mitchell, Robert A; Schumacher, Douglass W; Chowdhury, Enam A
2015-05-15
We present the first fundamental simulation method for the determination of crater morphology due to femtosecond-pulse laser damage. To this end we have adapted the particle-in-cell (PIC) method commonly used in plasma physics for use in the study of laser damage and developed the first implementation of a pair potential for PIC codes. We find that the PIC method is a complementary approach to modeling laser damage, bridging the gap between fully ab-initio molecular dynamics approaches and empirical models. We demonstrate our method by modeling a femtosecond-pulse laser incident on a flat copper slab for a range of intensities.
Age-related differences in post-yield damage in human cortical bone. Experiment and model.
Courtney, A C; Hayes, W C; Gibson, L J
1996-11-01
Very few quantitative comparisons between mechanical test behavior of cortical bone and microscopic evidence of damage have been reported. In this study, the hypothesis that age-related degradation of mechanical properties in human cortical bone is associated with increases in damage in the form of microcracks was investigated. The initial modulus and yield stress were 6% (not significant) and 10% (p = 0.05) lower, respectively, in specimens from elderly femora than in specimens from young adult femora. However, both groups showed a 34% decrease in modulus after being loaded to 1% strain. Microcracks were observed in cement lines and between lamellae and were parallel to the loading direction. There were 50% more cracks in longitudinal sections of tested specimens than in controls from elderly femora; however, there were no more cracks in tested specimens than in controls from young adult femora. In addition, there were twice as many cracks in controls and three times as many cracks in tested specimens from elderly femora than in those from young adult femora (p < 0.01). A microstructurally based model was developed which supported the mechanical test results and indicated that damage began to develop at about 1500 mu epsilon. The results suggest that older bone may have reduced mechanical properties due to the presence of more microcracks, and that older bone is more susceptible to developing microcracks at a given strain level. However, the mechanical test data indicate that specimens from young adult femora also sustained some king of damage as a result of mechanical loading, which requires further investigation.
Burnett, G.C.
2000-04-28
Until recently, attempts to update Finite Element Models (FEM) of large structures based upon recording structural motions were mostly ad hoc, requiring a large amount of engineering experience and skill. Studies have been undertaken at LLNL to use state-space based signal processing techniques to locate the existence and type of model mismatches common in FEM. Two different methods (Gauss-Newton gradient search and extended Kalman filter) have been explored, and the progress made in each type of algorithm as well as the results from several simulated and one actual building model will be discussed. The algorithms will be examined in detail, and the computer programs written to implement the algorithms will be documented.
NASA Astrophysics Data System (ADS)
Wang, Yanfeng; Liang, Ming; Xiang, Jiawei
2014-10-01
Blades are among the key components of wind turbines. Blade damage is one of the most common types of structural defects and can cause catastrophic structural failure. Therefore, it is highly desirable to detect and diagnose blade damage as early as possible. In this paper, we propose a method for blade damage detection and diagnosis. This method incorporates finite element method (FEM) for dynamics analysis (modal analysis and response analysis) and the mode shape difference curvature (MSDC) information for damage detection/diagnosis. Finite element models of wind turbine blades have been built and modified via frequency comparison with experimental data and the formula for the model updating technique. Our numerical simulation results have demonstrated that the proposed technique can detect the spatial locations of damages for wind turbine blades. Changes in natural frequencies and modes for smaller size blades with damage are found to occur at lower frequencies and lower modes than in the larger sized blade case. The relationship between modal parameters and damage information (location, size) is very complicated especially for larger size blades. Moreover, structure and dynamic characters for larger size blades are different from those for smaller sized blades. Therefore, dynamic response analysis for a larger sized wind turbine blade with a multi-layer composite material based on aerodynamic loads’ (including lift forces and drag forces) calculation has been carried out and improved the efficiency and precision to damage detection by combining (MSDC) information. This method provides a low cost and efficient non-destructive tool for wind turbine blade condition monitoring.
A Rate-Dependent Damage Model and its Application to Uniaxial Strain
NASA Astrophysics Data System (ADS)
Raftenberg, Martin N.
2005-07-01
Our analysis is based on a damage model discussed in [1] in which the internal energy density W depends on strain E and damage κ : W(E,κ)=φ(κ)1pt1pt1ptμ1pt1pt1pt( ν1-2νEkkEll+EijEij ); μ is elastic shear modulus, ν is Poisson's ratio. The factor φ(κ)=1-( 1-φ )κκ describes degradation of elastic modulus due to damage; φmin and κmax are material constants. The system of evolution includes [ ρ^2ut^2=∇WE,;κt=-KWκ ] where K is (for now) a material constant. The above model was installed into LS-DYNA using the User Material Interface. The model was applied to a finite-element simulation of a rod under uniaxial strain, with a prescribed-velocity boundary condition at one end and a stress-free condition at the other. The resulting initial-value boundary-value problem was scaled to reveal the presence of the dimensionless group π=ρ02√(1-2ν)ρ021pt1pt1pt(1-ν)μ .( 1-φ )Kκ ^2.L.u0^2, where ρ0 is the material density, L is the length of the rod, and u0is the prescribed velocity. Solutions were obtained for a range of π values. The progression of contours of κ(x,t) was observed. [1] Grinfeld, M.A., and Wright, T.W., Metallurgical and Materials Transactions A, Vol. 35A, 2651-2661, 2004.
Modeling of thermal wave propagation in damaged composites with internal source
NASA Astrophysics Data System (ADS)
Ciampa, Francesco; Angioni, Stefano L.; Pinto, Fulvio; Scarselli, Gennaro; Almond, Darrel P.; Meo, Michele
2015-04-01
SMArt Thermography exploits the electrothermal properties of multifunctional smart structures, which are created by embedding shape memory alloy (SMA) wires in traditional carbon fibre reinforced composite laminates (known as SMArt composites), in order to detect the structural flaws using an embedded source. Such a system enables a built-in, fast, cost-effective and in-depth assessment of the structural damage as it overcomes the limitations of standard thermography techniques. However, a theoretical background of the thermal wave propagation behaviour, especially in the presence of internal structural defects, is needed to better interpret the observations/data acquired during the experiments and to optimise those critical parameters such as the mechanical and thermal properties of the composite laminate, the depth of the SMA wires and the intensity of the excitation energy. This information is essential to enhance the sensitivity of the system, thus to evaluate the integrity of the medium with different types of damage. For this purpose, this paper aims at developing an analytical model for SMArt composites, which is able to predict the temperature contrast on the surface of the laminate in the presence of in-plane internal damage (delamination-like) using pulsed thermography. Such a model, based on the Green's function formalism for one-dimensional heat equation, takes into account the thermal lateral diffusion around the defect and it can be used to compute the defect depth within the laminate. The results showed good agreement between the analytical model and the measured thermal waves using an infrared (IR) camera. Particularly, the contrast temperature curves were found to change significantly depending on the defect opening.
Modeling continuous-fiber reinforced polymer composites for exploration of damage tolerant concepts
NASA Astrophysics Data System (ADS)
Matthews, Peter J.
This work aims to improve the predictive capability for fiber-reinforced polymer matrix composite laminates using the finite element method. A new tool for modeling composite damage was developed which considers important modes of failure. Well-known micromechanical models were implemented to predict material values for material systems of interest to aerospace applications. These generated material values served as input to intralaminar and interlaminar damage models. A three-dimensional in-plane damage material model was implemented and behavior verified. Deficiencies in current state-of-the-art interlaminar capabilities were explored using the virtual crack closure technique and the cohesive zone model. A user-defined cohesive element was implemented to discover the importance of traction-separation material constitutive behavior. A novel method for correlation of traction-separation parameters was created. This new damage modeling tool was used for evaluation of novel material systems to improve damage tolerance. Classical laminate plate theory was used in a full-factorial study of layerwise-hybrid laminates. Filament-wound laminated composite cylindrical shells were subjected to quasi-static loading to validate the finite element computational composite damage model. The new tool for modeling provides sufficient accuracy and generality for use on a wide-range of problems.
An Elastic-Plastic Damage Model for Long-Fiber Thermoplastics
Nguyen, Ba Nghiep; Kunc, Vlastimil
2009-08-11
This article proposes an elastic-plastic damage model that combines micromechanical modeling with continuum damage mechanics to predict the stress-strain response of injection-molded long-fiber thermoplastics. The model accounts for distributions of orientation and length of elastic fibers embedded in a thermoplastic matrix whose behavior is elastic-plastic and damageable. The elastic-plastic damage behavior of the matrix is described by the modified Ramberg-Osgood relation and the three-dimensional damage model in deformation assuming isotropic hardening. Fiber/matrix debonding is accounted for using a parameter that governs the fiber/matrix interface compliance. A linear relationship between this parameter and the matrix damage variable is assumed. First, the elastic-plastic damage behavior of the reference aligned-fiber composite containing the same fiber volume fraction and length distribution as the actual composite is computed using an incremental Eshelby-Mori-Tanaka mean field approach. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.
A simple 2-D inundation model for incorporating flood damage in urban drainage planning
NASA Astrophysics Data System (ADS)
Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.
2008-11-01
In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.
Brain damage in a new hemorrhagic shock model in the rat using long-term recovery
Yamauchi, Y.; Kato, H.; Kogure, K. )
1990-03-01
A new shock model in the rat using hemorrhagic hypotension for production of brain damage is described. Hemorrhagic shock was induced by lowering arterial blood pressure with bleeding. The MABP was maintained at approximately 25 mm Hg, accompanied by isoelectric EEG, and then shed blood was retransfused. At 1 week of recovery, morphological and 45Ca autoradiographic changes were examined. No brain damage was observed in rats after 1 min of isoelectric EEG. Mild neuronal damage in the hippocampal CA1 subfield was seen in some animals after 2 min of isoelectric EEG. Severe and consistent neuronal loss in the hippocampal CA1 subfield was recognized after 3 min of isoelectric EEG. Additional damage was also seen in the dentate hilus and the thalamus in some animals. This model can be used to study the pathophysiology of postshock brain damage and to assess new therapies following shock.
Assessment of crop damage and hail risk based on radar hail signature information
NASA Astrophysics Data System (ADS)
Tani, Satyanarayana; Paulitsch, Helmut; Teschl, Reinhard; Süsser-Rechberger, Barbara
2016-04-01
Hail storm damage is a major concern to the farmers in the province of Styria, Austria. Each year severe hail storms are causing damages to crops, resulting in losses of millions of euros. High spatiotemporal resolution data are essential to properly assess crop damage information for the insurance sector and also for the better risk assessment. Radar data offer high spatial and temporal resolutions, resulting in very promising option for crop damage assessment and hail risk analysis. This study focuses on the combined analysis of hail signature information from radar and ground measurements for crop hail damage assessment. The days with the high crop hail damage claims were selected for the investigation. Total 16 hail days were assigned to examine the relation between radar-derived products and damages produced by hail in Styria during 2015. 3D single polarization C-band weather radar data and radiosonde freezing level data were used to derive hail kinetic energy flux as well as flux integrated over the whole event. Hail events from ESWD (European Severe Weather Database) and crop damage reports from the Austrian Hail Insurance System were allotted for validation. The spatial distribution maps of total hail kinetic energy were developed to capture the swath and intensity of the hail storms to identify potential hail damage areas. The results show that in most cases radar-based hail signature information well corresponds to the areas where hail events and damage footprints were reported. The radar-based hail signature information is a useful detection option for the assessment of crop damage and hail risk.
Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Misra, Vikram; Cryan, Paul M; Blehert, David S; Wibbelt, Gudrun; Willis, Craig K R
2013-08-23
White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid-base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid-base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality. PMID:23720520
Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality
Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Misra, Vikram; Cryan, Paul M.; Blehert, David S.; Wibbelt, Gudrun; Willis, Craig K.R.
2013-01-01
White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid–base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid–base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.
Tissue specific response to DNA damage: C. elegans as role model.
Lans, Hannes; Vermeulen, Wim
2015-08-01
The various symptoms associated with hereditary defects in the DNA damage response (DDR), which range from developmental and neurological abnormalities and immunodeficiency to tissue-specific cancers and accelerated aging, suggest that DNA damage affects tissues differently. Mechanistic DDR studies are, however, mostly performed in vitro, in unicellular model systems or cultured cells, precluding a clear and comprehensive view of the DNA damage response of multicellular organisms. Studies performed in intact, multicellular animals models suggest that DDR can vary according to the type, proliferation and differentiation status of a cell. The nematode Caenorhabditis elegans has become an important DDR model and appears to be especially well suited to understand in vivo tissue-specific responses to DNA damage as well as the impact of DNA damage on development, reproduction and health of an entire multicellular organism. C. elegans germ cells are highly sensitive to DNA damage induction and respond via classical, evolutionary conserved DDR pathways aimed at efficient and error-free maintenance of the entire genome. Somatic tissues, however, respond differently to DNA damage and prioritize DDR mechanisms that promote growth and function. In this mini-review, we describe tissue-specific differences in DDR mechanisms that have been uncovered utilizing C. elegans as role model. PMID:25957488
Modeling of laser-induced damage and optic usage at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Liao, Zhi M.; Nostrand, Mike; Carr, Wren; Bude, Jeff; Suratwala, Tayyab I.
2016-07-01
Modeling of laser-induced optics damage has been introduced to benchmark existing optic usage at the National Ignition Facility (NIF) which includes the number of optics exchanged for damage repair. NIF has pioneered an optics recycle strategy to allow it to run the laser at capacity since fully commissioned in 2009 while keeping the cost of optics usage manageable. We will show how the damage model is being used to evaluate strategies to streamline our optics loop efficiency, as we strive to increase the laser shot rate without increasing operating costs.
Empirical modeling of the cross section of damage formation in ion implanted III-V semiconductors
Wendler, E.; Wendler, L.
2012-05-07
In this letter, the cross section of damage formation per individual ion is measured for III-V compound semiconductors ion implanted at 15 K, applying Rutherford backscattering spectrometry. An empirical model is proposed that explains the measured cross sections in terms of quantities representing the primary energies deposited in the displacement of lattice atoms and in electronic interactions. The resulting formula allows the prediction of damage formation for low temperatures and low ion fluences in these materials and can be taken as a starting point for further quantitative modeling of damage formation including secondary effects such as temperature and ion flux.
Experimental research on crack damage detection of concrete beam based on PZT wave method
NASA Astrophysics Data System (ADS)
Meng, Yanyu; Yan, Shi; Sun, Wei; Zhao, Naizhi; Qiu, Gong
2010-04-01
Concrete cracks which are gradually extended, damaged and destructed by the load have become difficult to be solved in engineering. Due to the advantages of convenient production, high sensitivity, reasonable performance-price ratio, selfsensing, piezoelectric ceramic (such as PZT) smart aggregates used as sensor and actuator are embedded in the reinforced concrete beams to generate sin-sweep excitation signals on-line and detect real-time signals with digital oscilloscope before and after damage. The optimal extraction damage signals are extracted and statistical pattern recognition algorithm of wavelet decomposition about the detection signals is established by wavelet analysis and statistical characteristics analysis. The statistical distribution of signal amplitude and the relevant damage indicators are proposed for the use of active health monitoring and energy damage principles. The results of loading tests show that the amplitude of active monitoring signal produced a larger attenuation after damage and sweep wave signals used in active health monitoring are effective in identifying the different health status of structure. The statistical pattern recognition algorithm based on wavelet packet decomposition can effectively detect crack damages of concrete structure. This technology may open a new road for active and permanent monitoring and damage detection on line as well as development of active health monitoring system based on probability statistics of piezoelectric concrete.
Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
Hadi, Mohammad F.; Sander, Edward A.; Barocas, Victor H.
2013-01-01
Excessive tissue-level forces communicated to the microstructure and extracellular matrix of soft tissues can lead to damage and failure through poorly understood physical processes that are multiscale in nature. In this work, we propose a multiscale mechanical model for the failure of collagenous soft tissues that incorporates spatial heterogeneity in the microstructure and links the failure of discrete collagen fibers to the material response of the tissue. The model, which is based on experimental failure data derived from different collagen gel geometries, was able to predict the mechanical response and failure of type I collagen gels, and it demonstrated that a fiber-based rule (at the micrometer scale) for discrete failure can strongly shape the macroscale failure response of the gel (at the millimeter scale). The model may be a useful tool in predicting the macroscale failure conditions for soft tissues and engineered tissue analogs. In addition, the multiscale model provides a framework for the study of failure in complex fiber-based mechanical systems in general. PMID:22938372
NASA Technical Reports Server (NTRS)
Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.
2011-01-01
Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.
Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu
2014-01-01
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".
A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage.
Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E; Rex, Tonia S
2012-06-01
We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4 psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions.
Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation
NASA Astrophysics Data System (ADS)
Khorsandi, Behrooz
There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.
Validation of formability of laminated sheet metal for deep drawing process using GTN damage model
NASA Astrophysics Data System (ADS)
Lim, Yongbin; Cha, Wan-gi; Ko, Sangjin; Kim, Naksoo
2013-12-01
In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.
Validation of formability of laminated sheet metal for deep drawing process using GTN damage model
Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo; Ko, Sangjin
2013-12-16
In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.
The study of target damage assessment system based on image change detection
NASA Astrophysics Data System (ADS)
Zhao, Ping; Yang, Fan; Feng, Xinxi
2009-10-01
Target Damage Assessment (TDA) system is an important component of the intelligent command and control system. The method of building TDA based on Image Change Detection can greatly improve the system efficiency and accuracy, thus get a fast and precise assessment results. This paper firstly analyzes the structure of TDA system. Then studies the key technology in this system. Finally, gives an evaluation criteria based on image change detection of the target damage assessment system.
A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction
Pignatelli, Rossella; Comi, Claudia; Monteiro, Paulo J.M.
2013-11-15
To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.
A new conceptual model for damage zone evolution with fault growth
NASA Astrophysics Data System (ADS)
de Joussineau, G.; Aydin, A.
2006-12-01
Faults may either impede or enhance fluid flow in the subsurface, which is relevant to a number of economic issues (hydrocarbon migration and entrapment, formation and distribution of mineral deposits) and environmental problems (movement of contaminants). Fault zones typically comprise a low-permeability core made up of intensely deformed fault rock and a high-permeability damage zone defined by fault-related fractures. The geometry, petrophysical properties and continuity of both the fault core and the damage zone have an important influence on the mechanical properties of the fault systems and on subsurface fluid flow. Information about fault components from remote seismic methods is limited and is available only for large faults (slip larger than 20-100m). It is therefore essential to characterize faults and associated damage zones in field analogues, and to develop conceptual models of how faults and related structures form and evolve. Here we present such an attempt to better understand the evolution of fault damage zones in the Jurassic Aztec Sandstone of the Valley of Fire State Park (SE Nevada). We document the formation and evolution of the damage zone associated with strike-slip faults through detailed field studies of faults of increasing slip magnitudes. The faults initiate as sheared joints with discontinuous pockets of damage zone located at fault tips and fault surface irregularities. With increasing slip (slip >5m), the damage zone becomes longer and wider by progressive fracture infilling, and is organized into two distinct components with different geometrical and statistical characteristics. The first component of the damage zone is the inner damage zone, directly flanking the fault core, with a relatively high fracture frequency and a thickness that scales with the amount of fault slip. Parts of this inner zone are integrated into the fault core by the development of the fault rock, contributing to the core's progressive widening. The second
A micro to macro approach to polymer matrix composites damage modeling : final LDRD report.
English, Shawn Allen; Brown, Arthur A.; Briggs, Timothy M.
2013-12-01
Capabilities are developed, verified and validated to generate constitutive responses using material and geometric measurements with representative volume elements (RVE). The geometrically accurate RVEs are used for determining elastic properties and damage initiation and propagation analysis. Finite element modeling of the meso-structure over the distribution of characterizing measurements is automated and various boundary conditions are applied. Plain and harness weave composites are investigated. Continuum yarn damage, softening behavior and an elastic-plastic matrix are combined with known materials and geometries in order to estimate the macroscopic response as characterized by a set of orthotropic material parameters. Damage mechanics and coupling effects are investigated and macroscopic material models are demonstrated and discussed. Prediction of the elastic, damage, and failure behavior of woven composites will aid in macroscopic constitutive characterization for modeling and optimizing advanced composite systems.
Furda, Amy; Santos, Janine H; Meyer, Joel N; Van Houten, Bennett
2014-01-01
In this chapter, we describe a gene-specific quantitative PCR (QPCR)-based assay for the measurement of DNA damage, using amplification of long DNA targets. This assay has been used extensively to measure the integrity of both nuclear and mitochondrial genomes exposed to different genotoxins and has proven to be particularly valuable in identifying reactive oxygen species-mediated mitochondrial DNA damage. QPCR can be used to quantify both the formation of DNA damage as well as the kinetics of damage removal. One of the main strengths of the assay is that it permits monitoring the integrity of mtDNA directly from total cellular DNA without the need for isolating mitochondria or a separate step of mitochondrial DNA purification. Here we discuss advantages and limitations of using QPCR to assay DNA damage in mammalian cells. In addition, we give a detailed protocol of the QPCR assay that helps facilitate its successful deployment in any molecular biology laboratory.
NASA Astrophysics Data System (ADS)
Sabuncu, A.; Uca Avci, Z. D.; Sunar, F.
2016-06-01
Earthquakes are the most destructive natural disasters, which result in massive loss of life, infrastructure damages and financial losses. Earthquake-induced building damage detection is a very important step after earthquakes since earthquake-induced building damage is one of the most critical threats to cities and countries in terms of the area of damage, rate of collapsed buildings, the damage grade near the epicenters and also building damage types for all constructions. Van-Ercis (Turkey) earthquake (Mw= 7.1) was occurred on October 23th, 2011; at 10:41 UTC (13:41 local time) centered at 38.75 N 43.36 E that places the epicenter about 30 kilometers northern part of the city of Van. It is recorded that, 604 people died and approximately 4000 buildings collapsed or seriously damaged by the earthquake. In this study, high-resolution satellite images of Van-Ercis, acquired by Quickbird-2 (Digital Globe Inc.) after the earthquake, were used to detect the debris areas using an object-based image classification. Two different land surfaces, having homogeneous and heterogeneous land covers, were selected as case study areas. As a first step of the object-based image processing, segmentation was applied with a convenient scale parameter and homogeneity criterion parameters. As a next step, condition based classification was used. In the final step of this preliminary study, outputs were compared with streetview/ortophotos for the verification and evaluation of the classification accuracy.
Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms
NASA Technical Reports Server (NTRS)
Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.
2008-01-01
This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale
Structural damage identification based on change in geometric modal strain energy-eigenvalue ratio
NASA Astrophysics Data System (ADS)
Nguyen, Khac-Duy; Chan, Tommy HT; Thambiratnam, David P.
2016-07-01
This study presents a new damage identification method to locate and quantify damage using measured mode shapes and natural frequencies. A new vibration parameter, ratio of geometric modal strain energy to eigenvalue (GMSEE), has been developed and its change due to stiffness reduction has been formulated using a sensitivity matrix. This sensitivity matrix is estimated with measured modal parameters and basic information of the structure. For damage identification, firstly, the locations of damage and the correlative damage extents are identified by maximizing the correlation level between an analytical GMSEE change vector and a measured one. Herein, the genetic algorithm, which is a powerful evolutionary optimization algorithm, is utilized to solve this optimization problem. Secondly, the size of damage can be estimated using the proposed GMSEE technique and compared with a conventional technique using frequency change. A numerical 2D Truss bridge is used to demonstrate the performance of the proposed method in identifying single and multiple damage cases. Also, practicality of the method is tested with a laboratory eight degree-of-freedom system and a real bridge. Results illustrate the high capability of the method to identify structural damage with less modeling efforts.
NASA Astrophysics Data System (ADS)
Zhu, Cheng; Pouya, Ahmad; Arson, Chloé
2015-11-01
This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Waas, Anthony M.
2013-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.
Relations between a micro-mechanical model and a damage model for ductile failure in shear
NASA Astrophysics Data System (ADS)
Tvergaard, Viggo; Nielsen, Kim Lau
2010-09-01
Gurson type constitutive models that account for void growth to coalescence are not able to describe ductile fracture in simple shear, where there is no hydrostatic tension in the material. But recent micro-mechanical studies have shown that in shear the voids are flattened out to micro-cracks, which rotate and elongate until interaction with neighbouring micro-cracks gives coalescence. Thus, the failure mechanism is very different from that under tensile loading. Also, the Gurson model has recently been extended to describe failure in shear, by adding a damage term to the expression for the growth of the void volume fraction, and it has been shown that this extended model can represent experimental observations. Here, numerical studies are carried out to compare predictions of the shear-extended Gurson model with the shear failures predicted by the micro-mechanical cell model. Both models show a strong dependence on the level of hydrostatic tension. Even though the reason for this pressure dependence is different in the two models, as the shear-extended Gurson model does not describe voids flattening out and the associated failure mechanism by micro-cracks interacting with neighbouring micro-cracks, it is shown that the trends of the predictions are in good agreement.
Rapid Pupil-Based Assessment of Glaucomatous Damage
Chen, Yanjun; Wyatt, Harry J.; Swanson, William H.; Dul, Mitchell W.
2010-01-01
Purpose To investigate the ability of a technique employing pupillometry and functionally-shaped stimuli to assess loss of visual function due to glaucomatous optic neuropathy. Methods Pairs of large stimuli, mirror images about the horizontal meridian, were displayed alternately in the upper and lower visual field. Pupil diameter was recorded and analyzed in terms of the “contrast balance” (relative sensitivity to the upper and lower stimuli), and the pupil constriction amplitude to upper and lower stimuli separately. A group of 40 patients with glaucoma was tested twice in a first session, and twice more in a second session, 1 to 3 weeks later. A group of 40 normal subjects was tested with the same protocol. Results Results for the normal subjects indicated functional symmetry in upper/lower retina, on average. Contrast balance results for the patients with glaucoma differed from normal: half the normal subjects had contrast balance within 0.06 log unit of equality and 80% had contrast balance within 0.1 log unit. Half the patients had contrast balances more than 0.1 log unit from equality. Patient contrast balances were moderately correlated with predictions from perimetric data (r = 0.37, p < 0.00001). Contrast balances correctly classified visual field damage in 28 patients (70%), and response amplitudes correctly classified 24 patients (60%). When contrast balance and response amplitude were combined, receiver operating characteristic area for discriminating glaucoma from normal was 0.83. Conclusions Pupillary evaluation of retinal asymmetry provides a rapid method for detecting and classifying visual field defects. In this patient population, classification agreed with perimetry in 70% of eyes. PMID:18521026
Huang, Hong-Zhong; Yuan, Rong
2014-01-01
Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866
NASA Astrophysics Data System (ADS)
Burkett, Michael W.; Clancy, Sean P.; Maudlin, Paul J.; Holian, Kathleen S.
2004-07-01
Previously developed constitutive models and solution algorithms for continuum-level anisotropic elastoplastic material strength and an isotropic damage model TEPLA have been implemented in the three-dimensional Eulerian hydrodynamics code known as CONEJO. The anisotropic constitutive modeling is posed in an unrotated material frame of reference using the theorem of polar decomposition to compute rigid-body rotation. TEPLA is based upon the Gurson flow surface (a potential function used in conjunction with the associated flow law). The original TEPLA equation set has been extended to include anisotropic elastoplasticity and has been recast into a new implicit solution algorithm based upon an eigenvalue scheme to accommodate the anisotropy. This algorithm solves a two-by-two system of nonlinear equations using a Newton-Raphson iteration scheme. Simulations of a shaped-charge jet formation, a Taylor cylinder impact, and an explosively loaded hemishell were selected to demonstrate the utility of this modeling capability. The predicted deformation topology, plastic strain, and porosity distributions are shown for the three simulations.
Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications
NASA Astrophysics Data System (ADS)
Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna
2013-07-01
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.
Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna
2013-07-31
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show how this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.
Vogel, Nicolas; Belisle, Rebecca A.; Hatton, Benjamin; Wong, Tak-Sing; Aizenberg, Joanna
2013-07-31
A transparent coating that repels a wide variety of liquids, prevents staining, is capable of self-repair and is robust towards mechanical damage can have a broad technological impact, from solar cell coatings to self-cleaning optical devices. Here we employ colloidal templating to design transparent, nanoporous surface structures. A lubricant can be firmly locked into the structures and, owing to its fluidic nature, forms a defect-free, self-healing interface that eliminates the pinning of a second liquid applied to its surface, leading to efficient liquid repellency, prevention of adsorption of liquid-borne contaminants, and reduction of ice adhesion strength. We further show howmore » this method can be applied to locally pattern the repellent character of the substrate, thus opening opportunities to spatially confine any simple or complex fluids. The coating is highly defect-tolerant due to its interconnected, honeycomb wall structure, and repellency prevails after the application of strong shear forces and mechanical damage. The regularity of the coating allows us to understand and predict the stability or failure of repellency as a function of lubricant layer thickness and defect distribution based on a simple geometric model.« less
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.; Lo, David C.; Allen, David H.
1998-01-01
A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged damage variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete listing of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occurs during the loading history. Residual strength predictions made with this information compared favorably with experimental measurements.
Modeling extreme hurricane damage in the United States using generalized Pareto distribution
NASA Astrophysics Data System (ADS)
Dey, Asim Kumer
Extreme value distributions are used to understand and model natural calamities, man made catastrophes and financial collapses. Extreme value theory has been developed to study the frequency of such events and to construct a predictive model so that one can attempt to forecast the frequency of a disaster and the amount of damage from such a disaster. In this study, hurricane damages in the United States from 1900-2012 have been studied. The aim of the paper is three-fold. First, normalizing hurricane damage and fitting an appropriate model for the normalized damage data. Secondly, predicting the maximum economic damage from a hurricane in future by using the concept of return period. Finally, quantifying the uncertainty in the inference of extreme return levels of hurricane losses by using a simulated hurricane series, generated by bootstrap sampling. Normalized hurricane damage data are found to follow a generalized Pareto distribution. tion. It is demonstrated that standard deviation and coecient of variation increase with the return period which indicates an increase in uncertainty with model extrapolation.
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel.
Evaluation of microcrack thermal shock damage in ceramics: Modeling and experiment
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.
1992-01-01
In this paper we present an experimental and theoretical study of the effect of microcrack damage on ceramic properties. For the experimental investigation, ceramic samples of aluminum oxide and reaction bonded silicon nitride (RBSN) are used. Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. For the theoretical investigation, damage mechanics, which relates microstructural damage to material service life and mechanical failure, is used. The change in elastic properties due to microcrack damage calculated from the theoretical model is compared with the experimental results for determination of the applicability of damage theory. It is shown that two independent experimental methods (bulk wave and surface wave) give the same results for shear moduli of damaged ceramics. The experimental results aagree reasonably well with the moduli predicted from the cracked solid model.
NASA Astrophysics Data System (ADS)
Chaabane, Makram; Chaabane, Makram; Dalverny, Olivier; Deramecourt, Arnaud; Mistou, Sébastien
The super-pressure balloons developed by CNES are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding to the flight level and the lifespan of the balloon. It appears during the working stages of the super pressure balloons that these last can exploded prematurely in the course of the first hours of flight. For this reason CNES and LGP are carrying out research programs about experimentations and modelling in order to predict a good stability of the balloons flight and guarantee a life time in adequacy with the technical requirement. This study deals with multilayered polymeric film damage which induce balloons failure. These experimental and numerical study aims, are a better understanding and predicting of the damage mechanisms bringing the premature explosion of balloons. The following damages phenomena have different origins. The firsts are simple and triple wrinkles owed during the process and the stocking stages of the balloons. The second damage phenomenon is associated to the creep of the polymeric film during the flight of the balloon. The first experimental results we present in this paper, concern the mechanical characterization of three different damage phenomena. The severe damage induced by the wrinkles of the film involves a significant loss of mechanical properties. In a second part the theoretical study, concerns the choice and the development of a non linear viscoelastic coupled damage behavior model in a finite element code.
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. PMID:27294283
A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards
BAER,MELVIN R.; DRUMHELLER,D.S.; MATHESON,E.R.
1999-09-01
The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample.
Calculation of Forming Limits for Sheet Metal using an Enhanced Continuous Damage Fracture Model
NASA Astrophysics Data System (ADS)
Nguyen, Ngoc-Trung; Kim, Dae-Young; Kim, Heon Young
2011-08-01
An enhanced continuous damage fracture model was introduced in this paper to calculate forming limits of sheet metal. The fracture model is a combination of a fracture criterion and a continuum damage constitutive law. A modified McClintock void growth fracture criterion was incorporated with a coupled damage-plasticity Gurson-type constitutive law. Also, by introducing a Lode angle dependent parameter to define the loading asymmetry condition, the shear effect was phenomenologically taken into account. The proposed fracture model was implemented using user-subroutines in commercial finite element software. The model was calibrated and correlated by the uniaxial tension, shear and notched specimens tests. Application of the fracture model for the LDH tests was discussed and the simulation results were compared with the experimental data.
Creep crack growth predictions in INCO 718 using a continuum damage model
NASA Technical Reports Server (NTRS)
Walker, K. P.; Wilson, D. A.
1985-01-01
Creep crack growth tests have been carried out in compact type specimens of INCO 718 at 1200 F (649 C). Theoretical creep crack growth predictions have been carried out by incorporating a unified viscoplastic constitutive model and a continuum damage model into the ARAQUS nonlinear finite element program. Material constants for both the viscoplastic model and the creep continuum damage model were determined from tests carried out on uniaxial bar specimens of INCO 718 at 1200 F (649 C). A comparison of the theoretical creep crack growth rates obtained from the finite element predictions with the experimentally observed creep crack growth rates indicates that the viscoplastic/continuum damage model can be used to successfully predict creep crack growth in compact type specimens using material constants obtained from uniaxial bar specimens of INCO 718 at 1200 F (649 C).
Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee Y.; Wu, Honglu; Hada, Megumi; Cucinotta, Francis
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET g or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ‘‘biological Bragg curve’’ is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called “overkill”. F. A. Cucinotta, I. Plante, A. L. Ponomarev, and M. Y. Kim, Nuclear Interactions in Heavy Ion Transport and Event-based
Reduced-order modeling for mistuned centrifugal impellers with crack damages
NASA Astrophysics Data System (ADS)
Wang, Shuai; Zi, Yanyang; Li, Bing; Zhang, Chunlin; He, Zhengjia
2014-12-01
An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.
A multi-stage approach for damage detection in structural systems based on flexibility
NASA Astrophysics Data System (ADS)
Grande, E.; Imbimbo, M.
2016-08-01
The paper proposes a fusion approach for damage detection in structural applications in the case of multiple damage locations and three-dimensional systems. Based on the Dempster-Shafer evidence theory, a multi-stage approach is proposed with the mode shapes assumed as primary sources and local decisions based on a flexibility method. The proposed approach has been applied to two case studies, a a fixed end beam analyzed in other papers and a three dimensional structures codified in a Benchmark problem. Both the case studies have shown the ability and the efficiency of the proposed approach to detect damage also in the case of multiple damage, limited number of identified parameters and noise measurements.
Gyekenyesi, A.L.
2000-01-01
This study focuses on the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed greater reductions due to the elevated temperature. The stiffness degradation as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment covering the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.
Optimum seismic structural design based on random vibration and fuzzy graded damages
NASA Technical Reports Server (NTRS)
Cheng, Franklin Y.; Ou, Jin-Ping
1990-01-01
This paper presents the fuzzy dynamical reliability and failure probability as well as the basic principles and the analytical method of loss assessment for nonlinear seismic steel structures. Also presented is the optimization formulation and a numerical example for double objectives, initial construction cost and expected failure loss, and dynamical reliability constraints. The earthquake ground motion is based on a stationary filtered non-white noise and the fuzzy damage grade is described by damage index.
NASA Astrophysics Data System (ADS)
Lafon, Jose J.
(FOD) Foreign Object Debris/Damage has been a costly issue for the commercial and military aircraft manufacturers at their production lines every day. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality standards. Nowadays, FOD is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access to FOD areas, restrictions of personal items entering designated areas, tool accountability, etc. All of the efforts mentioned before, have not shown a significant reduction in FOD occurrence in the manufacturing processes. This research presents a Decision Making Model approach based on a logistic regression predictive model that was previously made by other researchers. With a general idea of the FOD expected, elimination plans can be put in place and start eradicating the problem minimizing the cost and time spend on the prediction, detection and/or removal of FOD.
Munson, D.E.; Jensen, A.L.; Webb, S.W.; DeVries, K.L.
1996-02-01
In a large in situ experimntal circular room, brine inflow was measured over 5 years. After correcting for evaporation losses into mine ventilation air, the measurements gave data for a period of nearly 3 years. Predicted brine accumulation based on a mechanical ``snow plow`` model of the volume swept by creep-induced damage as calculated with the Multimechanism Deformation Coupled Fracture model was found to agree with experiment. Calculation suggests the damage zone at 5 years effectively exends only some 0.7 m into the salt around the room. Also, because the mecahnical model of brine release gives an adequate explanation of the measured data, the hydrological process of brine flow appears to be rapid compared to the mechanical process of brine release.
Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.
1996-01-01
The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.
NASA Astrophysics Data System (ADS)
Urrutia, J. D.; Bautista, L. A.; Baccay, E. B.
2014-04-01
The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. The mathematical models made are as follows: This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reductionin the Philippines, which is an earthquake-prone country.
An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.
Baker, Graham; de Borst, René
2005-11-15
The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics. PMID:16243703
NASA Astrophysics Data System (ADS)
Uprety, Bibhisha
Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.
NASA Astrophysics Data System (ADS)
Arrieta, Albert Joseph
2001-07-01
Damage tolerance analysis (DTA) was considered in the global design optimization of an aircraft wing structure. Residual strength and fatigue life requirements, based on the damage tolerance philosophy, were investigated as new design constraints. In general, accurate fatigue prediction is difficult if the load environment is not known with a high degree of certainty. To address this issue, a probabilistic approach was used to describe the uncertain load environment. Probabilistic load spectra models were developed from flight recorder data. The global/local finite element approach allowed local fatigue requirements to be considered in the global design optimization. AFGROW fatigue crack growth analysis provided a new strength criterion for satisfying damage tolerance requirements within a global optimization environment. Initial research with the ASTROS program used the probabilistic load model and this damage tolerance constraint to optimize cracked skin panels on the lower wing of a fighter/attack aircraft. For an aerodynamic and structural model similar to an F-16, ASTROS simulated symmetric and asymmetric maneuvers during the optimization. Symmetric maneuvers, without underwing stores, produced the highest stresses and drove the optimization of the inboard lower wing skin. Asymmetric maneuvers, with underwing stores, affected the optimum thickness of the outboard hard points. Subsequent design optimizations included von Mises stress, aileron effectiveness, and lift effectiveness constraints simultaneously. This optimization was driven by the DTA and von Mises stress constraints and, therefore, DTA requirements can have an active role to play in preliminary aircraft design.
NASA Astrophysics Data System (ADS)
Zhang, Ray Ruichong; King, Robert; Olson, Larry; Xu, You-Lin
2005-08-01
This paper presents the implementation of a method for nonlinear, nonstationary data processing, namely the Hilbert-Huang transform (HHT) in traditional vibration-based approaches to characterizing structural damage and shows the frequency signature of local structural damage in nonstationary vibration recordings. In particular, following the review of traditional approaches to characterizing structural damage from nonstationary vibration recordings, this study first offers the justifications of the HHT as an alternative and complementary data process in addressing the nonstationarity of the vibration. With the use of recordings from controlled field vibration tests of substructures in the Trinity River Relief Bridge in Texas in its intact, minor- and severe-damage pile states, this study then shows that the HHT-based approach can single out some natural frequencies of the structure from a mixed frequency content in recordings that also contain the time-dependent excitation and noise frequencies. Subsequently, this study exposes that the frequency downshift for the damaged pile relative to the undamaged one is an indicative index for the damage extent. The above results are also validated by an ANSYS model-based analysis. Finally, a comprehensive HHT-based characterization of structural damage is discussed, and the potential use for cost-effective, efficient structural damage diagnosis procedures and health-monitoring systems is provided.
A bone remodelling model including the effect of damage on the steering of BMUs.
Martínez-Reina, J; Reina, I; Domínguez, J; García-Aznar, J M
2014-04-01
Bone remodelling in cortical bone is performed by the so-called basic multicellular units (BMUs), which produce osteons after completing the remodelling sequence. Burger et al. (2003) hypothesized that BMUs follow the direction of the prevalent local stress in the bone. More recently, Martin (2007) has shown that BMUs must be somehow guided by microstructural damage as well. The interaction of both variables, strain and damage, in the guidance of BMUs has been incorporated into a bone remodelling model for cortical bone. This model accounts for variations in porosity, anisotropy and damage level. The bone remodelling model has been applied to a finite element model of the diaphysis of a human femur. The trajectories of the BMUs have been analysed throughout the diaphysis and compared with the orientation of osteons measured experimentally. Some interesting observations, like the typical fan arrangement of osteons near the periosteum, can be explained with the proposed remodelling model. Moreover, the efficiency of BMUs in damage repairing has been shown to be greater if BMUs are guided by damage.
Crash Simulation of Roll Formed Parts by Damage Modelling Taking Into Account Preforming Effects
NASA Astrophysics Data System (ADS)
Till, Edwin T.; Hackl, Benjamin; Schauer, Hermann
2011-08-01
Complex phase steels of strength levels up to 1200 MPa are suitable to roll forming. These may be applied in automotive structures for enhancing the crashworthiness, e. g. as stiffeners in doors. Even though the strain hardening of the material is low there is considerable bending formability. However ductility decreases with the strength level. Higher strength requires more focus to the structural integrity of the part during the process planning stage and with respect to the crash behavior. Nowadays numerical simulation is used as a process design tool for roll-forming in a production environment. The assessment of the stability of a roll forming process is quite challenging for AHSS grades. There are two objectives of the present work. First to provide a reliable assessment tool to the roll forming analyst for failure prediction. Second to establish simulation procedures in order to predict the part's behavior in crash applications taking into account damage and failure. Today adequate ductile fracture models are available which can be used in forming and crash applications. These continuum models are based on failure strain curves or surfaces which depend on the stress triaxiality (e. g. Crach or GISSMO) and may additionally include the Lode angle (extended Mohr Coulomb or extended GISSMO model). A challenging task is to obtain the respective failure strain curves. In the paper the procedure is described in detail how these failure strain curves are obtained using small scale tests within voestalpine Stahl, notch tensile-, bulge and shear tests. It is shown that capturing the surface strains is not sufficient for obtaining reliable material failure parameters. The simulation tool for roll-forming at the site of voestalpine Krems is Copra® FEA RF, which is a 3D continuum finite element solver based on MSC.Marc. The simulation environment for crash applications is LS-DYNA. Shell elements are used for this type of analyses. A major task is to provide results of
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother's old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother's old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington's genetic assimilation
Chao, Lin; Rang, Camilla Ulla; Proenca, Audrey Menegaz; Chao, Jasper Ubirajara
2016-01-01
Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control. Genetic assimilation is an important evolutionary transition, but it is poorly understood because the fitness costs and benefits of variation are often unknown. Here we show that the partitioning of damage by a mother bacterium to its two daughters can evolve through genetic assimilation. Bacterial phenotypes are also highly variable. Because gene-regulating elements can have low copy numbers, the variation is attributed to stochastic sampling. Extant Escherichia coli partition asymmetrically and deterministically more damage to the old daughter, the one receiving the mother’s old pole. By modeling in silico damage partitioning in a population, we show that deterministic asymmetry is advantageous because it increases fitness variance and hence the efficiency of natural selection. However, we find that symmetrical but stochastic partitioning can be similarly beneficial. To examine why bacteria evolved deterministic asymmetry, we modeled the effect of damage anchored to the mother’s old pole. While anchored damage strengthens selection for asymmetry by creating additional fitness variance, it has the opposite effect on symmetry. The difference results because anchored damage reinforces the polarization of partitioning in asymmetric bacteria. In symmetric bacteria, it dilutes the polarization. Thus, stochasticity alone may have protected early bacteria from damage, but deterministic asymmetry has evolved to be equally important in extant bacteria. We estimate that 47% of damage partitioning is deterministic in E. coli. We suggest that the evolution of deterministic asymmetry from stochasticity offers an example of Waddington’s genetic
Model-Trained Neural Networks and Electronic Holography Demonstrated to Detect Damage in Blades
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1998-01-01
Detect Damage in Blades Electronic holography can show damaged regions in fan blades at 30 frames/sec. The electronic holograms are transformed by finite-element-model-trained artificial neural networks to visualize the damage. The trained neural networks are linked with video and graphics to visualize the bending-induced strain distribution, which is very sensitive to damage. By contrast, it is very difficult to detect damage by viewing the raw, speckled, characteristic fringe patterns. For neural-network visualization of damage, 2 frames or 2 fields are used, rather than the 12 frames normally used to compute the displacement distribution from electronic holograms. At the NASA Lewis Research Center, finite element models are used to compute displacement and strain distributions for the vibration modes of undamaged and cracked blades. A model of electronic time-averaged holography is used to transform the displacement distributions into finite-element-resolution characteristic fringe patterns. Then, a feedforward neural network is trained with the fringe-pattern/strain-pattern pairs, and the neural network, electronic holography, and video are implemented on a workstation. Now that the neural networks have been tested successfully at 30 frames/sec on undamaged and cracked cantilevers, the electronic holography and neural-network processing are being adapted for onsite damage inspection of twisted fan blades and rotormounted blades. Our conclusion is that model-trained neural nets are effective when they are trained with good models whose application is well understood. This work supports the aeromechanical testing portion of the Advanced Subsonic Technology Project.
The EST Model for Predicting Progressive Damage and Failure of Open Hole Bending Specimens
NASA Technical Reports Server (NTRS)
Joseph, Ashith P. K.; Waas, Anthony M.; Pineda, Evan J.
2016-01-01
Progressive damage and failure in open hole composite laminate coupons subjected to flexural loading is modeled using Enhanced Schapery Theory (EST). Previous studies have demonstrated that EST can accurately predict the strength of open hole coupons under remote tensile and compressive loading states. This homogenized modeling approach uses single composite shell elements to represent the entire laminate in the thickness direction and significantly reduces computational cost. Therefore, when delaminations are not of concern or are active in the post-peak regime, the version of EST presented here is a good engineering tool for predicting deformation response. Standard coupon level tests provides all the input data needed for the model and they are interpreted in conjunction with finite element (FE) based simulations. Open hole bending test results of three different IM7/8552 carbon fiber composite layups agree well with EST predictions. The model is able to accurately capture the curvature change and deformation localization in the specimen at and during the post catastrophic load drop event.
Damage Prediction Models for Advanced Materials and Composites
NASA Technical Reports Server (NTRS)
Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)
2005-01-01
In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.
NASA Astrophysics Data System (ADS)
Girolamo, D.; Girolamo, L.; Yuan, F. G.
2015-03-01
Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.
Girolamo, D. Yuan, F. G.; Girolamo, L.
2015-03-31
Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.
NASA Technical Reports Server (NTRS)
Gould, Kevin E.; Satyanarayana, Arunkumar; Bogert, Philip B.
2016-01-01
Analysis performed in this study substantiates the need for high fidelity vehicle level progressive damage analyses (PDA) structural models for use in the verification and validation of proposed sub-scale structural models and to support required full-scale vehicle level testing. PDA results are presented that capture and correlate the responses of sub-scale 3-stringer and 7-stringer panel models and an idealized 8-ft diameter fuselage model, which provides a vehicle level environment for the 7-stringer sub-scale panel model. Two unique skin-stringer attachment assumptions are considered and correlated in the models analyzed: the TIE constraint interface versus the cohesive element (COH3D8) interface. Evaluating different interfaces allows for assessing a range of predicted damage modes, including delamination and crack propagation responses. Damage models considered in this study are the ABAQUS built-in Hashin procedure and the COmplete STress Reduction (COSTR) damage procedure implemented through a VUMAT user subroutine using the ABAQUS/Explicit code.
Lim, Ji Hwan; Kim, Joo-Hyun; Lee, Byoung Hwan; Seo, Pyoung Ju; Kang, Jung Mook; Jo, So Young; Park, Ji Hyun; Nam, Ryoung Hee; Chang, Hyun; Kwon, Jin-Won; Lee, Dong Ho
2014-01-01
Background/Aims The major compounds of Cochinchina momordica seed extract (SK-MS10) include momordica saponins. We report that the gastroprotective effect of SK-MS10 in an ethanol-induced gastric damage rat model is mediated by suppressing proinflammatory cytokines and downregulating cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase (5-LOX), and the activation of calcitonin gene-related peptide. In this study, we evaluated the gastroprotective effects of SK-MS10 in the nonsteroidal anti-inflammatory drug (NSAID)-induced gastric damage rat model. Methods The pretreatment effect of SK-MS10 was evaluated in the NSAID-induced gastric damage rat model using aspirin, indomethacin, and diclofenac in 7-week-old rats. Gastric damage was evaluated based on the gross ulcer index by gastroenterologists, and the damage area (%) was measured using the MetaMorph 7.0 video image analysis system. Myeloperoxidase (MPO) was measured by enzyme-linked immunosorbent assay, and Western blotting was used to analyze the levels of cyclooxygenase (COX)-1, COX-2, cPLA2, and 5-LOX. Results All NSAIDs induced gastric damage based on the gross ulcer index and damage area (p<0.05). Gastric damage was significantly attenuated by SK-MS10 pretreatment compared with NSAID treatment alone (p<0.05). The SK-MS10 pretreatment group exhibited lower MPO levels than the diclofenac group. The expression of cPLA2 and 5-LOX was decreased by SK-MS10 pretreatment in each of the three NSAID treatment groups. Conclusions SK-MS10 exhibited a gastroprotective effect against NSAID-induced acute gastric damage in rats. However, its protective mechanism may be different across the three types of NSAID-induced gastric damage models in rats. PMID:24516701
Damage evaluation based on a wave energy flow map using multiple PZT sensors.
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi, Emptyyn Y; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-23
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Multiple damage assessment in composite laminates using a Doppler-effect-based fiber-optic sensor
NASA Astrophysics Data System (ADS)
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Ohsawa, Isamu
2009-11-01
In this paper, carbon fiber-reinforced plastic (CFRP) laminates are addressed for the purpose of multiple damage assessment. Doppler-effect-based fiber-optic (FOD) sensors were used to capture guided waves propagating in the CFRP laminates. Characteristics of the fundamental symmetric (S0) and anti-symmetric (A0) Lamb waves in captured guided-wave signals were extracted by taking advantage of linear-phase finite impulse response filter and Hilbert transform, so as to systematically investigate the influence of delaminations on guided-wave propagation. Both dispersive characteristics of multi-mode Lamb waves and features of the Lamb wave-excited fundamental shear horizontal (SH0) guided wave were applied for damage evaluation and multiple damage identification. Results demonstrate that the FOD sensor is effective in multiple damage identification for composite laminates because it is omnidirectional in ultrasonic detection.
Flexibility-based structural damage identification using Gauss-Newton method
NASA Astrophysics Data System (ADS)
Chen, Bilei; Nagarajaiah, Satish
2007-04-01
Structural damage will change the dynamic characteristics, including natural frequencies, modal shapes, damping ratios and modal flexibility matrix of the structure. Modal flexibility matrix is a function of natural frequencies and mode shapes and can be used for structural damage detection and health monitoring. In this paper, experimental modal flexibility matrix is obtained from the first few lower measured natural frequencies and incomplete modal shapes. The optimization problem is then constructed by minimizing Frobenius norm of the change of flexibility matrix. Gauss- Newton method is used to solve the optimization problem, where the sensitivity of flexibility matrix with respect to structural parameters is calculated iteratively by only using the first few lower modes. The optimal solution corresponds to structural parameters which can be used to identify damage sites and extent. Numerical results show that flexibility-based method can be successfully applied to identify the damage elements and is robust to measurement noise.
Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors
Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke
2014-01-01
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1995-01-01
The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.
Kinetic Modeling of the X-ray-induced Damage to a Metalloprotein
Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.; Seidler, Gerald T.; Pushkar, Yulia
2013-01-01
It is well known that biological samples undergo x-ray-induced degradation. One of the fastest occurring x-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room temperature data on the photoreduction of Mn ions in the oxygen evolving complex (OEC) of photosystem II, one of the most radiation damage sensitive proteins and a key constituent of natural photosynthesis in plants, green algae and cyanobacteria. Time-resolved x-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of x-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC MnIII/IV ions by solvated electrons was determined. From this model, the possible kinetics of x-ray-induced damage at variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of x-ray-induced damage with increasing rates of damage deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and x-ray FEL sources. PMID:23815809
NASA Astrophysics Data System (ADS)
Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.
2015-11-01
The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.
Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Oommen, Thomas
2011-01-01
On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.
Multiscale Modeling and Analysis of an Ultra-Precision Damage Free Machining Method
NASA Astrophysics Data System (ADS)
Guan, Chaoliang; Peng, Wenqiang
2016-06-01
Under the condition of high laser flux, laser induced damage of optical element does not occur is the key to success of laser fusion ignition system. US government survey showed that the processing defects caused the laser induced damage threshold (LIDT) to decrease is one of the three major challenges. Cracks and scratches caused by brittle and plastic removal machining are fatal flaws. Using hydrodynamic effect polishing method can obtain damage free surface on quartz glass. The material removal mechanism of this typical ultra-precision machining process was modeled in multiscale. In atomic scale, chemical modeling illustrated the weakening and breaking of chemical bond energy. In particle scale, micro contact modeling given the elastic remove mode boundary of materials. In slurry scale, hydrodynamic flow modeling showed the dynamic pressure and shear stress distribution which are relations with machining effect. Experiment was conducted on a numerically controlled system, and one quartz glass optical component was polished in the elastic mode. Results show that the damages are removed away layer by layer as the removal depth increases due to the high damage free machining ability of the HEP. And the LIDT of sample was greatly improved.
Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.
1997-01-01
As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed
Modeling femtosecond pulse laser damage using particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Mitchell, Robert A.; Schumacher, Douglass; Chowdhury, Enam
2014-12-01
We present, to our knowledge, the first adaptation of the particle-in-cell (PIC) simulation method for use in the study of femtosecond pulse laser damage, including the first implementation of the Morse pair-potential for PIC codes. We compare the PIC method to a wide variety of currently used modeling schemes, ranging from purely ab initio molecular dynamics simulations to semi-empirical models with many fitting parameters and show how PIC simulations can provide a complementary approach by filling the gap in theoretical methodology between the two cases. We detail the necessity and implementation of an interatomic pair-potential in PIC studies of laser damage. Finally, we use our model to treat the full laser damage process of a copper target and show that our results compare well to simple scaling laws for crater size.
Modeling femtosecond pulse laser damage on conductors using Particle-In-Cell simulations
NASA Astrophysics Data System (ADS)
Mitchell, Robert A.; Schumacher, Douglass; Chowdhury, Enam
2013-11-01
We present, to our knowledge, the first adaptation of the Particle-In-Cell (PIC) simulation method for use in the study of femtosecond pulse laser damage, including the first implementation of the Morse potential for PIC codes. We compare the PIC method to a wide variety of currently used modeling schemes, ranging from purely ab-initio molecular dynamics simulations to semi-empirical models with many fitting parameters, and show how PIC simulations can provide a complementary approach by filling the gap in theoretical methodology between the two cases. We detail the necessity and implementation of an inter-atomic pair-potential in PIC studies of laser damage. Lastly, we use our model to treat the full laser damage process of a copper target, and show that our results compare well to simple scaling laws for crater size.
Mesoscale modeling of solute precipitation and radiation damage
Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin; Bai, Xianming; Hales, Jason
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.
Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage
NASA Technical Reports Server (NTRS)
Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.
2005-01-01
Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.
NASA Astrophysics Data System (ADS)
Escalona, Luis; Díaz-Montiel, Paulina; Venkataraman, Satchi
2016-04-01
Laminated carbon fiber reinforced polymer (CFRP) composite materials are increasingly used in aerospace structures due to their superior mechanical properties and reduced weight. Assessing the health and integrity of these structures requires non-destructive evaluation (NDE) techniques to detect and measure interlaminar delamination and intralaminar matrix cracking damage. The electrical resistance change (ERC) based NDE technique uses the inherent changes in conductive properties of the composite to characterize internal damage. Several works that have explored the ERC technique have been limited to thin cross-ply laminates with simple linear or circular electrode arrangements. This paper investigates a method of optimum selection of electrode configurations for delamination detection in thick cross-ply laminates using ERC. Inverse identification of damage requires numerical optimization of the measured response with a model predicted response. Here, the electrical voltage field in the CFRP composite laminate is calculated using finite element analysis (FEA) models for different specified delamination size and locations, and location of ground and current electrodes. Reducing the number of sensor locations and measurements is needed to reduce hardware requirements, and computational effort needed for inverse identification. This paper explores the use of effective independence (EI) measure originally proposed for sensor location optimization in experimental vibration modal analysis. The EI measure is used for selecting the minimum set of resistance measurements among all possible combinations of selecting a pair of electrodes among the n electrodes. To enable use of EI to ERC required, it is proposed in this research a singular value decomposition SVD to obtain a spectral representation of the resistance measurements in the laminate. The effectiveness of EI measure in eliminating redundant electrode pairs is demonstrated by performing inverse identification of
DDT modeling and shock compression experiments of porous or damaged energetic materials
Baer, M.R.; Anderson, M.U.; Graham, R.A.
1994-05-01
In this presentation, we present modeling of DDT in porous energetic materials and experimental studies of a time-resolved, shock compression of highly porous inert and reactive materials. This combined theoretical and experimental studies explore the nature of the microscale processes of consolidation, deformation and reaction which are key features of the shock response of porous or damaged energetic materials. The theoretical modeling is based on the theory of mixtures in which multiphase mixtures are treated in complete nonequilibrium allowing for internal boundary effects associated mass/momentum and energy exchange between phases, relative flow, rate-dependent compaction behavior, multistage chemistry and interphase boundary effects. Numerous studies of low-velocity impacts using a high resolution adaptive finite element method are presented which replicate experimental observations. The incorporation of this model into multi-material hydrocode analysis will be discussed to address the effects of confinement and its influence on accelerated combustion behavior. The experimental studies will focus on the use of PVDF piezoelectric polymer stress-rate gauge to precisely measure the input and propagating shock stress response of porous materials. In addition to single constituent porous materials, such as granular HMX, we have resolved shock waves in porous composite intermetallic powders that confirm a dispersive wave nature which is highly morphologically and material dependent. This document consists of viewgraphs from the poster session.
Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair.
Vieira, André C; Guedes, Rui M; Tita, Volnei
2015-09-18
The use of biodegradable synthetic grafts to repair injured ligaments may overcome the disadvantages of other solutions. Apart from biological compatibility, these devices shall also be functionally compatible and temporarily displayed, during the healing process, adequate mechanical support. Laxity of these devices is an important concern. This can cause failure since it may result in joint instability. Laxity results from a progressive accumulation of plastic strain during the cyclic loading. The functional compatibility of a biodegradable synthetic graft and, therefore, the global mechanical properties of the scaffold during degradation, can be optimised using computer-aiding and numerical tools. Therefore, in this work, the ability of numerical tools to predict the mechanical behaviour of the device during its degradation is discussed. Computational approaches based on elastoplastic and viscoplastic constitutive models are also presented. These models enable to simulate the plastic strain accumulation. These computational approaches, where the material model parameters depend on the hydrolytic degradation damage, are calibrated using experimental data measured from biodegradable suture fibres at different degradation steps. Due to durability requirements the selected materials are polydioxone (PDO) and polylactic acid and poly-caprolactone blend (PLA-PCL). Computational approaches investigated are able to predict well the experimental results for both materials, in full strain range until rupture and for different degradation steps. These approaches can be further used in more complex fibrous structures, to predict its global mechanical behaviour during degradation process.
Deformation-induced damage and recovery in model hydrogels - A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Zidek, Jan; Milchev, Andrey; Jancar, Josef; Vilgis, Thomas A.
2016-09-01
Using molecular dynamics simulation of a model hybrid cross-link hydrogel, we investigate the network damage evolution and the related structure transformations. We model the hydrogel structure as a network-connected assembly of crosslinked clusters whereby deformation-induced damage is considered along with network recovery. The two principal mechanisms involved in hydrogel recovery from deformation include segment hops of the building structure units (segments) between clusters and cluster shape modification. These mechanisms act either instantaneously, or with a certain time delay after the onset of deformation. By elucidating the conditions under which one of the mechanisms prevails, one may design hydrogel materials with a desired response to deformation.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
NASA Astrophysics Data System (ADS)
Amezquita-Sanchez, Juan P.; Adeli, Hojjat
2015-06-01
A new methodology is presented for (a) detecting, (b) locating, and (c) quantifying the damage severity in a smart highrise building structure. The methodology consists of three steps: In step 1, the synchrosqueezed wavelet transform is used to eliminate the noise in the signals. In step 2, a nonlinear dynamics measure based on the chaos theory, fractality dimension (FD), is employed to detect features to be used for damage detection. In step 3, a new structural damage index, based on the estimated FD values, is proposed as a measure of the condition of the structure. Further, the damage location is obtained using the changes of the estimated FD values. Three different FD algorithms for computing the fractality of time series signals are investigated. They are Katz’s FD, Higuchi’s FD, and box dimension. The usefulness and effectiveness of the proposed methodology are validated using the sensed data obtained experimentally for the 1:20 scaled model of a 38-storey concrete building structure.
Ma, Bin; Lu, Menglei; Wang, Ke; Zhang, Li; Jiao, Hongfei; Cheng, Xinbin; Wang, Zhanshan
2016-08-01
Even absorptive defects or inner cracks hiding several micrometers to a few dozen micrometers beneath the top surface can induce damage to transmission elements in the ultraviolet band. The extremely small size and disordered state of such defects or cracks hinder their detection using conventional methods. Therefore, the diagnosis of factors that limit damage resistance performance is a key technique for improving the fabrication technology of optical elements. With a focus on laser damage to third-harmonic transmission elements, this study establishes a micron space-resolved and nanosecond time-resolved imaging system on the basis of the pump-probe detection technique. The changes in the properties of defect-induced laser damage in the time domain are clarified. A diagnostic method for original damage depth in micron precision is proposed according to damage behaviors. This method can retrieve initial information on damage inducement and depth position. The recognition and diagnostic capabilities of such a technique are calibrated with artificial samples and then used to analyze real samples. PMID:27505738
Damage assessment for wind turbine blades based on a multivariate statistical approach
NASA Astrophysics Data System (ADS)
García, David; Tcherniak, Dmitri; Trendafilova, Irina
2015-07-01
This paper presents a vibration based structural health monitoring methodology for damage assessment on wind turbine blades made of composite laminates. Normally, wind turbine blades are manufactured by two half shells made by composite laminates which are glued together. This connection must be carefully controlled due to its high probability to disbond which might result in collapse of the whole structure. The delamination between both parts must be monitored not only for detection but also for localisation and severity determination. This investigation consists in a real time monitoring methodology which is based on singular spectrum analysis (SSA) for damage and delamination detection. SSA is able to decompose the vibratory response in a certain number of components based on their covariance distribution. These components, known as Principal Components (PCs), contain information about of the oscillatory patterns of the vibratory response. The PCs are used to create a new space where the data can be projected for better visualization and interpretation. The method suggested is applied herein for a wind turbine blade where the free-vibration responses were recorded and processed by the methodology. Damage for different scenarios viz different sizes and locations was introduced on the blade. The results demonstrate a clear damage detection and localization for all damage scenarios and for the different sizes.
Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.
Tian, Shaohua; Yang, Zhibo; Chen, Xuefeng; Xie, Yong
2015-08-14
The damage detection of a wind turbine blade enables better operation of the turbines, and provides an early alert to the destroyed events of the blade in order to avoid catastrophic losses. A new non-baseline damage detection method based on the Fiber Bragg grating (FBG) in a wind turbine blade is developed in this paper. Firstly, the Chi-square distribution is proven to be an effective damage-sensitive feature which is adopted as the individual information source for the local decision. In order to obtain the global and optimal decision for the damage detection, the feature information fusion (FIF) method is proposed to fuse and optimize information in above individual information sources, and the damage is detected accurately through of the global decision. Then a 13.2 m wind turbine blade with the distributed strain sensor system is adopted to describe the feasibility of the proposed method, and the strain energy method (SEM) is used to describe the advantage of the proposed method. Finally results show that the proposed method can deliver encouraging results of the damage detection in the wind turbine blade.
Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade
Tian, Shaohua; Yang, Zhibo; Chen, Xuefeng; Xie, Yong
2015-01-01
The damage detection of a wind turbine blade enables better operation of the turbines, and provides an early alert to the destroyed events of the blade in order to avoid catastrophic losses. A new non-baseline damage detection method based on the Fiber Bragg grating (FBG) in a wind turbine blade is developed in this paper. Firstly, the Chi-square distribution is proven to be an effective damage-sensitive feature which is adopted as the individual information source for the local decision. In order to obtain the global and optimal decision for the damage detection, the feature information fusion (FIF) method is proposed to fuse and optimize information in above individual information sources, and the damage is detected accurately through of the global decision. Then a 13.2 m wind turbine blade with the distributed strain sensor system is adopted to describe the feasibility of the proposed method, and the strain energy method (SEM) is used to describe the advantage of the proposed method. Finally results show that the proposed method can deliver encouraging results of the damage detection in the wind turbine blade. PMID:26287200
Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair
Scott, Timothy L.; Rangaswamy, Suganya; Wicker, Christina A.
2014-01-01
Abstract Significance: Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. Recent Advances: In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. Critical Issues: The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. Future Directions: Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation. Antioxid. Redox Signal. 20, 708–726. PMID:23901781
Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.
Tian, Shaohua; Yang, Zhibo; Chen, Xuefeng; Xie, Yong
2015-01-01
The damage detection of a wind turbine blade enables better operation of the turbines, and provides an early alert to the destroyed events of the blade in order to avoid catastrophic losses. A new non-baseline damage detection method based on the Fiber Bragg grating (FBG) in a wind turbine blade is developed in this paper. Firstly, the Chi-square distribution is proven to be an effective damage-sensitive feature which is adopted as the individual information source for the local decision. In order to obtain the global and optimal decision for the damage detection, the feature information fusion (FIF) method is proposed to fuse and optimize information in above individual information sources, and the damage is detected accurately through of the global decision. Then a 13.2 m wind turbine blade with the distributed strain sensor system is adopted to describe the feasibility of the proposed method, and the strain energy method (SEM) is used to describe the advantage of the proposed method. Finally results show that the proposed method can deliver encouraging results of the damage detection in the wind turbine blade. PMID:26287200
Krishnan, Kapil; Brown, Andrew; Wayne, Leda; Vo, Johnathan; Opie, Saul; Lim, Harn; Peralta, Pedro; Luo, Sheng-Nian; Byler, Darrin; McClellan, Kenneth J.; Koskelo, Aaron; Dickerson, Robert
2014-11-25
Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumes using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.
Krishnan, Kapil; Brown, Andrew; Wayne, Leda; Vo, Johnathan; Opie, Saul; Lim, Harn; Peralta, Pedro; Luo, Sheng-Nian; Byler, Darrin; McClellan, Kenneth J.; et al
2014-11-25
Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples