Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.
Gildemeister, Otto S; Sage, Jay M; Knight, Kendall L
2009-11-13
Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.
Belin, Brittany J; Lee, Terri; Mullins, R Dyche
2015-08-19
Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.
75 FR 43945 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... emitted by any source of radiation inside a nuclear installation, provided that such application does not... facilities, equipment, fuel, services, technology, or transport of nuclear materials related to any step... DEPARTMENT OF ENERGY Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala
2010-08-27
Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an eventmore » that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.« less
Missile’s Guidance Head Anti-Nuclear Electromagnetic Pulse Reinforcement,
1996-11-18
electromagnetic pulse bomb is one of them. This kind of nuclear bomb is mainly used to interfere or damage un-reinforced electric and electronic... electromagnetic pulse , the damaging mechanism of the nuclear electromagnetic pulse to the guidance head, and the response of electronic devices to...the nuclear electromagnetic pulse , at last introduces the guidance heads defense method to the nuclear electromagnetic pulse .
Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit
2017-01-01
The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.
2006-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.
2007-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107
Jagot-Lacoussiere, Léonard; Faye, Audrey; Bruzzoni-Giovanelli, Heriberto; Villoutreix, Bruno O; Rain, Jean-Christophe; Poyet, Jean-Luc
2015-01-01
Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response. PMID:25695197
2014-06-01
had reached over 500,000. Another important aspect of this disaster was the damage sustained by several Fukushima Daiichi Nuclear plant reactors.3...The damage, resulting from the constant battering of tsunami waves, affected the cooling systems of the nuclear plant and resulted in several ... Nuclear Regulatory Commission & DoE nuclear expertise to help with the emerging Fukushima crisis. All branches of the US armed forces actively
10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...
10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...
10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...
10 CFR 840.5 - Criterion II-Substantial damages to persons offsite or property offsite.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Criterion II-Substantial damages to persons offsite or property offsite. 840.5 Section 840.5 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.5... nuclear, or byproduct material; or (2) DOE finds that $2,500,000 or more of damage offsite has been or...
Watson, Nicholas B.; Nelson, Eric; Digman, Michelle; Thornburg, Joshua A.; Alphenaar, Bruce W.; McGregor, W. Glenn
2008-01-01
Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or polη only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm. PMID:18926833
NASA Astrophysics Data System (ADS)
Holcomb, David E.; Miller, Don W.
1993-08-01
A study of the relative damage effects of neutrons and gamma rays on silica glass in a nuclear reactor radiation environment is reported. The neutron and gamma energy spectra of the Ohio State University Research Reactor beam port #1 were applied to silica glass to obtain primary knock-on charged particle energy spectra. The resultant charged particle spectra were then applied to the polyatomic forms of the Lindhard et al. integrodifferential equation for damage energy and the Parkin and Coulter integrodifferential equation for net atomic displacement. The results show that near a nuclear reactor core the vast majority of the dose to silica is due to gamma rays (factor of roughly 40) and that neutrons cause much more displacement damage than gamma rays (35 times the oxygen displacement rate and 500 times the silicon displacement rate). However, pure silica core optical fibers irradiated in a nuclear reactor's mixed neutron/gamma environment exhibit little difference in transmission loss on an equal dose basis compared to fibers irradiated in a gamma only environment, indicating that atomic displacement is not a significant damage mechanism.
The Cell Nucleus Serves as a Mechanotransducer of Tissue Damage-Induced Inflammation.
Enyedi, Balázs; Jelcic, Mark; Niethammer, Philipp
2016-05-19
Tissue damage activates cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (AA), which is oxidized to proinflammatory eicosanoids by 5-lipoxygenase (5-LOX) on the nuclear envelope. How tissue damage is sensed to activate cPLA2 is unknown. We investigated this by live imaging in wounded zebrafish larvae, where damage of the fin tissue causes osmotic cell swelling at the wound margin and the generation of a chemotactic eicosanoid signal. Osmotic swelling of cells and their nuclei activates cPla2 by translocating it from the nucleoplasm to the nuclear envelope. Elevated cytosolic Ca(2+) was necessary but not sufficient for cPla2 translocation, and nuclear swelling was required in parallel. cPla2 translocation upon nuclear swelling was reconstituted in isolated nuclei and appears to be a simple physical process mediated by tension in the nuclear envelope. Our data suggest that the nucleus plays a mechanosensory role in inflammation by transducing cell swelling and lysis into proinflammatory eicosanoid signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Nuclear Targeting Terms for Engineers and Scientists
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, John W.
The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less
Cohen, Sarah; Panté, Nelly
2005-12-01
Parvoviruses are small DNA viruses that replicate in the nucleus of their host cells. It has been largely assumed that parvoviruses enter the nucleus through the nuclear pore complex (NPC). However, the details of this mechanism remain undefined. To study this problem, the parvovirus Minute virus of mice (MVM) was microinjected into the cytoplasm of Xenopus oocytes and a transmission electron microscope was used to visualize the effect of the virus on the host cell. It was found that MVM caused damage to the nuclear envelope (NE) in a time- and concentration-dependent manner. Damage was predominantly to the outer nuclear membrane and was often near the NPCs. However, microinjection experiments in which the NPCs were blocked showed that NE damage induced by MVM was independent of the NPC. To address the question of whether this effect of MVM is specific to the NE, purified organelles were incubated with MVM. Visualization by electron microscopy revealed that MVM did not affect all intracellular membranes. These data represent a novel form of virus-induced damage to host cell nuclear structure and suggest that MVM is imported into the nucleus using a unique mechanism that is independent of the NPC, and involves disruption of the NE and import through the resulting breaks.
The United States should forego a damage-limitation capability against China
NASA Astrophysics Data System (ADS)
Glaser, Charles L.
2017-11-01
Bottom Lines • THE KEY STRATEGIC NUCLEAR CHOICE. Whether to attempt to preserve its damage-limitation capability against China is the key strategic nuclear choice facing the United States. The answer is much less clear-cut than when the United States faced the Soviet Union during the Cold War. • FEASIBILITY OF DAMAGE LIMITATION. Although technology has advanced significantly over the past three decades, future military competition between the U.S. and Chinese forces will favor large-scale nuclear retaliation over significant damage limitation. • BENEFITS AND RISKS OF A DAMAGE-LIMITATION CAPABILITY. The benefits provided by a modest damage-limitation capability would be small, because the United States can meet its most important regional deterrent requirements without one. In comparison, the risks, which include an increased probability of accidental and unauthorized Chinese attacks, as well as strained U.S.—China relations, would be large. • FOREGO DAMAGE LIMITATION. These twin findings—the poor prospects for prevailing in the military competition, and the small benefits and likely overall decrease in U.S. security—call for a U.S. policy that foregoes efforts to preserve or enhance its damage-limitation capability.
Planning guidance for emergency response to a hypothetical nuclear attack on Riyadh, Saudi Arabia
NASA Astrophysics Data System (ADS)
Shubayr, Nasser Ali M.
The threat of nuclear attack will remain imminent in an ever-advancing society. Saudi Arabia is not immune to this threat. This dissertation establishes planning guidance for response to a nuclear attack on Riyadh, the capital of Saudi Arabia, based on a hypothetical scenario of a nuclear detonation. A case scenario of a one-megaton thermonuclear bomb detonated at ground level over Riyadh is used to support the thesis. Previous nuclear tests and the Hiroshima and Nagasaki bombings have been used to present possible effects on Riyadh. US planning guidance and lessons learned from the Chernobyl and Fukushima nuclear plants accidents have been used to develop the emergency response guidance. The planning guidance outlines a rapid response to the nuclear detonation. Four damage zones have been identified; severe damage zone, moderate damage zone, light damage zone and dangerous fallout zone. Actions that are recommended, and those that should be avoided, have been determined for each zone. Shelter/ evacuation evaluation for blast-affected and fallout-affected areas is the basis for the recommendation that shelter in place is the best decision for the first hours to days after the attack. Guidelines for medical care response and population monitoring and decontamination are included to reduce the early and long-term effects of the attack. Recommendations to the Saudi Arabian authorities have been made to facilitate suitable preparedness and response for such an event.
Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.
Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R
2017-03-01
In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response. Copyright © 2017 Elsevier B.V. All rights reserved.
Vizkelethy, G.; King, M. P.; Aktas, O.; ...
2016-12-02
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, G.; King, M. P.; Aktas, O.
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
NASA Astrophysics Data System (ADS)
Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.
2018-04-01
The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.
Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves
2013-01-01
Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789
Electromagnetic pulse (EMP), Part I: Effects on field medical equipment.
Vandre, R H; Klebers, J; Tesche, F M; Blanchard, J P
1993-04-01
The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.
The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress.
Lee, Ming-Hsiang; Wang, Liya; Chang, Zee-Fen
2014-04-01
In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state.
Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu
2018-05-18
Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.
Around and beyond 53BP1 Nuclear Bodies.
Fernandez-Vidal, Anne; Vignard, Julien; Mirey, Gladys
2017-12-05
Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.
Impact of nuclear transmutations on the primary damage production: The example of Ni based steels
NASA Astrophysics Data System (ADS)
Luneville, Laurence; Sublet, Jean Christphe; Simeone, David
2018-07-01
The recent nuclear evaluations describe more accurately the elastic and inelastic neutron-atoms interactions and allow calculating more realistically primary damage induced by nuclear reactions. Even if these calculations do not take into account relaxation processes occurring at the end of the displacement cascade (calculations are performed within the Binary Collision Approximation), they can accurately describe primary and recoil spectra in different reactors opening the door for simulating aging of nuclear materials with Ion Beam facilities. Since neutrons are only sensitive to isotopes, these spectra must be calculated weighting isotope spectra by the isotopic composition of materials under investigation. To highlight such a point, primary damage are calculated in pure Ni exhibiting a meta-stable isotope produced under neutron flux by inelastic neutron-isotope processes. These calculations clearly point out that the instantaneous primary damage production, the displacement per atom rate (dpa/s), responsible for the micro-structure evolution, strongly depends on the 59N i isotopic fractions closely related to the inelastic neutron isotope processes. Since the isotopic composition of the meta-stable isotope vanishes for large fluences, the long term impact of this isotope does not largely modify drastically the total dpa number in Ni based steels materials irradiate in nuclear plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preta, Giulio; Klark, Rainier de; Glas, Rickard, E-mail: rickard.glas@ki.se
2009-11-27
Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used amore » panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.« less
Preta, Giulio; de Klark, Rainier; Glas, Rickard
2009-11-27
Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to gamma-irradiation, and that nuclear expression of TPPII was present in most gamma-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after gamma-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following gamma-irradiation (at 1-4h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in gamma-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.
Nakamura, Asako J.; Suzuki, Masatoshi; Redon, Christophe E.; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M.; Fukumoto, Manabu
2017-01-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocyto-fluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident. PMID:28240558
Nakamura, Asako J; Suzuki, Masatoshi; Redon, Christophe E; Kuwahara, Yoshikazu; Yamashiro, Hideaki; Abe, Yasuyuki; Takahashi, Shintaro; Fukuda, Tomokazu; Isogai, Emiko; Bonner, William M; Fukumoto, Manabu
2017-05-01
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocytofluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident.
Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model
NASA Astrophysics Data System (ADS)
Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.
2017-12-01
This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.
Salazar, J J; Van Houten, B
1997-11-01
To test the hypothesis that mitochondrial DNA (mtDNA) is more prone to reactive oxygen species (ROS) damage than nuclear DNA, a continuous flux of hydrogen peroxide (H2O2) was produced with the glucose/glucose oxidase system. Using a horse radish peroxidase (HRPO)-based colorimetric assay to detect H2O2, glucose oxidase (GO; 12 mU/ml) produced 95 microM of H2O2 in 1 h, whereas only 46 microM of hydrogen peroxide accumulated in the presence of SV40-transformed human fibroblasts ( approximately 1 x 10(6). DNA damage was assessed in the mitochondira and three nuclear regions using a quantitative PCR assay. GO (12 mU/ml) resulted in more damage to the mitochondrial DNA (2.250 +/- 0.045 lesions/10 kb) than in any one of three nuclear targets, which included the non-expressed beta-globin locus (0.436 +/- 0.029 lesions/10 kb); and the active DNA polymerase b gene (0.442 +/- 0.037 lesions/10 kb); and the active hprt gene (0.310 +/- 0.025). Damage to the mtDNA occurred within 15 min of GO treatment, whereas nuclear damage did not appear until after 30 min, and reached a maximum after 60 min. Repair of mitochondrial damage after a 15 min GO (6 mU/ml) treatment was examined. Mitochondria repaired 50% of the damage after 1 h, and by 6 h all the damage was repaired. Higher doses of GO-generated H202, or more extended treatment periods, lead to mitochondrial DNA damage which was not repaired. Mitochondrial function was monitored using the MTT (3,(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay. A 15 min treatment with 6 mU/ml of GO decreased mitochondrial activity to 80% of the control; the activity recovered completely within 1 h after damage. These data show that GO-generated H202 causes acute damage to mtDNA and function, and demonstrate that this organelle is an important site for the cellular toxicity of ROS.
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2010-10-01
In 1988 the science historian Spencer Weart published a groundbreaking book called Nuclear Fear: A History of Images, which examined visions of radiation damage and nuclear disaster in newspapers, television, film, literature, advertisements and popular culture.
The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress
Lee, Ming-Hsiang; Wang, Liya; Chang, Zee-Fen
2014-01-01
In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state. PMID:24561807
Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram
ABSTRACT We have performed classical molecular dynamics simulations of swift heavy ion damage, typical of fission fragments, in nuclear fuel (UO 2) for energy deposition per unit length of 3.9 keV/nm. We did not observe amorphization. The damage mainly consisted of isolated point defects. Only about 1% of the displacements occur on the uranium sublattice. Oxygen Frenkel pairs are an order of magnitude more numerous than uranium Frenkel pairs in the primary damage state. In contrast, previous results show that the ratio of Frenkel pairs on the two sublattices is close to the stoichiometric ratio in ceria. These differences inmore » the primary damage state may lead to differences in radiation response of UO 2and CeO 2.« less
"What--me worry?" "Why so serious?": a personal view on the Fukushima nuclear reactor accidents.
Gallucci, Raymond
2012-09-01
Infrequently, it seems that a significant accident precursor or, worse, an actual accident, involving a commercial nuclear power reactor occurs to remind us of the need to reexamine the safety of this important electrical power technology from a risk perspective. Twenty-five years since the major core damage accident at Chernobyl in the Ukraine, the Fukushima reactor complex in Japan experienced multiple core damages as a result of an earthquake-induced tsunami beyond either the earthquake or tsunami design basis for the site. Although the tsunami itself killed tens of thousands of people and left the area devastated and virtually uninhabitable, much concern still arose from the potential radioactive releases from the damaged reactors, even though there was little population left in the area to be affected. As a lifelong probabilistic safety analyst in nuclear engineering, even I must admit to a recurrence of the doubt regarding nuclear power safety after Fukushima that I had experienced after Three Mile Island and Chernobyl. This article is my attempt to "recover" my personal perspective on acceptable risk by examining both the domestic and worldwide history of commercial nuclear power plant accidents and attempting to quantify the risk in terms of the frequency of core damage that one might glean from a review of operational history. © 2012 Society for Risk Analysis.
Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; ...
2015-05-01
The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 10 15 cm -2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less
Around and beyond 53BP1 Nuclear Bodies
Fernandez-Vidal, Anne; Vignard, Julien
2017-01-01
Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction. PMID:29206178
The use of the SRIM code for calculation of radiation damage induced by neutrons
NASA Astrophysics Data System (ADS)
Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi
2017-12-01
Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.
Navy Safety Center data on the effects of fire protection systems on electrical equipment
NASA Astrophysics Data System (ADS)
Levine, Robert S.
1991-04-01
Records of the Navy Safety Center, Norfolk, VA were reviewed to find data relevant to inadvertant operation of installed fire extinguishing systems in civilian nuclear power plants. Navy data show the incidence of collateral fire or other damage by fresh water on operating electrical equipment in submarines and in shore facilities is about the same as the civilian experience, about 30 percent. Aboard surface ships, however, the collateral damage incidence in much lower, about 15 percent. With sea water, the collateral damage incidence is at least 75 percent. It is concluded that the fire extinguisher water has to be contaminated, as by rust in sprinkler systems or deposited salt spray, for most collateral damage to occur. Reasons for inadvertant operation (or advertant operation) of firex systems at shore facilities, submarines, and surface ships resemble those for nuclear power plants. Mechanical or electrical failures lead the list, followed by mishaps during maintenance. Detector and alarm system failures are significant problems at Navy shore facilities, and significant at nuclear power plants. Fixed halon and CO2 systems in shore facilities cause no collateral damage. Lists of individual Navy incidents with water and with halon and carbon dioxide are included as appendices.
Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae.
Tuite, M F; Cox, B S
1980-07-01
UV mutagenesis was used to probe the molecular nature of [psi], a nonmitochondrial cytoplasmic determinant of Saccharomyces cerevisiae involved in the control of nonsense suppression. The UV-induced mutation from [psi+] to [psi-] showed characteristics of forward nuclear gene mutation in terms of frequency, induction kinetics, occurrence of whole and sectored mutant clones and the effect of the stage in the growth cycle on mutation frequency. The involvement of pyrimidine dimers in the premutational lesion giving the [psi-] mutation was demonstrated by photoreactivation. UV-induced damage to the [psi] genetic determinant was shown to be repaired by nuclear-coded repair enzymes that are responsible for the repair of nuclear DNA damage. UV-induced damage to mitochondrial DNA appeared to be, at least partly, under the control of different repair processes. The evidence obtained suggests that the [psi] determinant is DNA.
Preta, Giulio; de Klark, Rainier; Chakraborti, Shankhamala; Glas, Rickard
2010-08-27
Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to gamma-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer gamma-hexa-chloro-cyclohexane (gamma-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon gamma-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of gamma-H2AX in gamma-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling. Copyright 2010 Elsevier Inc. All rights reserved.
2012-11-01
laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing...damaged nuclear reactor at Chernobyl , which are constantly exposed to ionizing radiation, harbor large of amounts of microorganisms, including fungal...species [3,4]. Furthermore, Zhdanova et al. reported that beta and gamma radiation promoted directional growth of fungi isolated from the Chernobyl
An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism.
Hodroj, Dana; Recolin, Bénédicte; Serhal, Kamar; Martinez, Susan; Tsanov, Nikolay; Abou Merhi, Raghida; Maiorano, Domenico
2017-05-02
Coordination between transcription and replication is crucial in the maintenance of genome integrity. Disturbance of these processes leads to accumulation of aberrant DNA:RNA hybrids (R-loops) that, if unresolved, generate DNA damage and genomic instability. Here we report a novel, unexpected role for the nucleopore-associated mRNA export factor Ddx19 in removing nuclear R-loops formed upon replication stress or DNA damage. We show, in live cells, that Ddx19 transiently relocalizes from the nucleopore to the nucleus upon DNA damage, in an ATR/Chk1-dependent manner, and that Ddx19 nuclear relocalization is required to clear R-loops. Ddx19 depletion induces R-loop accumulation, proliferation-dependent DNA damage and defects in replication fork progression. Further, we show that Ddx19 resolves R-loops in vitro via its helicase activity. Furthermore, mutation of a residue phosphorylated by Chk1 in Ddx19 disrupts its interaction with Nup214 and allows its nuclear relocalization. Finally, we show that Ddx19 operates in resolving R-loops independently of the RNA helicase senataxin. Altogether these observations put forward a novel, ATR-dependent function for Ddx19 in R-loop metabolism to preserve genome integrity in mammalian cells. © 2017 The Authors.
Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E
2011-10-30
Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.
Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.
Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine
2009-06-17
P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.
Heavy ion linear accelerator for radiation damage studies of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less
Heavy ion linear accelerator for radiation damage studies of materials
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif
2017-03-01
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Studying Radiation Damage in Structural Materials by Using Ion Accelerators
NASA Astrophysics Data System (ADS)
Hosemann, Peter
2011-02-01
Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.
NASA Astrophysics Data System (ADS)
Kalita, Parswajit; Ghosh, Santanu; Sattonnay, Gaël; Singh, Udai B.; Grover, Vinita; Shukla, Rakesh; Amirthapandian, S.; Meena, Ramcharan; Tyagi, A. K.; Avasthi, Devesh K.
2017-07-01
The search for materials that can withstand the harsh radiation environments of the nuclear industry has become an urgent challenge in the face of ever-increasing demands for nuclear energy. To this end, polycrystalline yttria stabilized zirconia (YSZ) pellets were irradiated with 80 MeV Ag6+ ions to investigate their radiation tolerance against fission fragments. To better simulate a nuclear reactor environment, the irradiations were carried out at the typical nuclear reactor temperature (850 °C). For comparison, irradiations were also performed at room temperature. Grazing incidence X-ray diffraction and Raman spectroscopy measurements reveal degradation in crystallinity for the room temperature irradiated samples. No bulk structural amorphization was however observed, whereas defect clusters were formed as indicated by transmission electron microscopy and supported by thermal spike simulation results. A significant reduction of the irradiation induced defects/damage, i.e., improvement in the radiation tolerance, was seen under irradiation at 850 °C. This is attributed to the fact that the rapid thermal quenching of the localized hot molten zones (arising from spike in the lattice temperature upon irradiation) is confined to 850 °C (i.e., attributed to the resistance inflicted on the rapid thermal quenching of the localized hot molten zones by the high temperature of the environment) thereby resulting in the reduction of the defects/damage produced. Our results present strong evidence for the applicability of YSZ as an inert matrix fuel in nuclear reactors, where competitive effects of radiation damage and dynamic thermal healing mechanisms may lead to a strong reduction in the damage production and thus sustain its physical integrity.
Valero, Jorge; Berciano, Maria T; Weruaga, Eduardo; Lafarga, Miguel; Alonso, José R
2006-11-01
DNA damage and impairment of its repair underlie several neurodegenerative diseases. The Purkinje cell degeneration (pcd) mutation causes the loss of Nna1 expression and is associated with a selective and progressive degeneration of specific neuronal populations, including mitral cells in the olfactory bulb. Using an in situ transcription assay, molecular markers for both nuclear compartments and components of the DNA damage/repair pathway, and ultrastructural analysis, here we demonstrate that the pcd mutation induces the formation of DNA damage/repair foci in mitral cells. Furthermore, this effect is associated with transcriptional inhibition, heterochromatinization, nucleolar segregation and the reorganization of nuclear speckles of splicing factors and Cajal bodies. The most significant cytoplasmic alteration observed was a partial replacement of rough endoplasmic reticulum cisternae by a larger amount of free ribosomes, while other organelles were structurally preserved. The tools employed in this work may be of use for the early detection of predegenerative processes in neurodegenerative disorders and for validating rescue strategies.
Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito
2004-12-01
We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.
Antonczak, A K; Mullee, L I; Wang, Y; Comartin, D; Inoue, T; Pelletier, L; Morrison, C G
2016-04-14
Genotoxic stresses lead to centrosome amplification, a frequently-observed feature in cancer that may contribute to genome instability and to tumour cell invasion. Here we have explored how the centrosome controls DNA damage responses. For most of the cell cycle, centrosomes consist of two centrioles embedded in the proteinaceous pericentriolar material (PCM). Recent data indicate that the PCM is not an amorphous assembly of proteins, but actually a highly organised scaffold around the centrioles. The large coiled-coil protein, pericentrin, participates in PCM assembly and has been implicated in the control of DNA damage responses (DDRs) through its interactions with checkpoint kinase 1 (CHK1) and microcephalin (MCPH1). CHK1 is required for DNA damage-induced centrosome amplification, whereas MCPH1 deficiency greatly increases the amplification seen after DNA damage. We found that the PCM showed a marked expansion in volume and a noticeable change in higher-order organisation after ionising radiation treatment. PCM expansion was dependent on CHK1 kinase activity and was potentiated by MCPH1 deficiency. Furthermore, pericentrin deficiency or mutation of a separase cleavage site blocked DNA damage-induced PCM expansion. The extent of nuclear CHK1 activation after DNA damage reflected the level of PCM expansion, with a reduction in pericentrin-deficient or separase cleavage site mutant-expressing cells, and an increase in MCPH1-deficient cells that was suppressed by the loss of pericentrin. Deletion of the nuclear export signal of CHK1 led to its hyperphosphorylation after irradiation and reduced centrosome amplification. Deletion of the nuclear localisation signal led to low CHK1 activation and low centrosome amplification. From these data, we propose a feedback loop from the PCM to the nuclear DDR in which CHK1 regulates pericentrin-dependent PCM expansion to control its own activation.
The role of electronic energy loss in ion beam modification of materials
Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...
2014-10-05
The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less
HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism
Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G
2016-01-01
Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041
Radiation effects in cubic zirconia: A model system for ceramic oxides
NASA Astrophysics Data System (ADS)
Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.
2009-06-01
Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.
Nuclear ferritin: A new role for ferritin in cell biology.
Alkhateeb, Ahmed A; Connor, James R
2010-08-01
Ferritin has been traditionally considered a cytoplasmic iron storage protein. However, several studies over the last two decades have reported the nuclear localization of ferritin, specifically H-ferritin, in developing neurons, hepatocytes, corneal epithelial cells, and some cancer cells. These observations encouraged a new perspective on ferritin beyond iron storage, such as a role in the regulation of iron accessibility to nuclear components, DNA protection from iron-induced oxidative damage, and transcriptional regulation. This review will address the translocation and functional significance of nuclear ferritin in the context of human development and disease. The nuclear translocation of ferritin is a selective energy-dependent process that does not seem to require a consensus nuclear localization signal. It is still unclear what regulates the nuclear import/export of ferritin. Some reports have implicated the phosphorylation and O-glycosylation of the ferritin protein in nuclear transport; others suggested the existence of a specific nuclear chaperone for ferritin. The data argue strongly for nuclear ferritin as a factor in human development and disease. Ferritin can bind and protect DNA from oxidative damage. It also has the potential of playing a regulatory role in transcription. Nuclear ferritin represents a novel new outlook on ferritin functionality beyond its classical role as an iron storage molecule. Copyright 2010 Elsevier B.V. All rights reserved.
Blood micronutrients and DNA damage in children.
Milne, Elizabeth; Greenop, Kathryn R; Ramankutty, Padmaja; Miller, Margaret; de Klerk, Nicholas H; Armstrong, Bruce K; Almond, Theodora; O'Callaghan, Nathan J; Fenech, Michael
2015-10-01
Maintenance of normal cellular phenotype depends largely on accurate DNA replication and repair. DNA damage causes gene mutations and predisposes to cancer and other chronic diseases. Growing evidence indicates that nutritional factors are associated with DNA damage in adults; here, we investigate these associations in children. We conducted a cross-sectional study among 462 healthy children 3, 6, and 9 years of age. Blood was collected and micronutrient levels were measured. The cytokinesis-block micronucleus cytome assay was used to measure chromosomal DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds) in lymphocytes. Cell apoptosis, necrosis, and the nuclear division index were also measured. Nine loci in genes involved in folate metabolism and DNA repair were genotyped. Data were analyzed using linear regression with adjustment for potential confounders. Plasma calcium was positively associated with micronuclei and necrosis, and α-tocopherol negatively associated with apoptosis, nuclear division index, and nucleoplasmic bridges; lutein was positively associated with nucleoplasmic bridges. α-tocopherol was positively associated with necrosis. DNA damage in healthy children may be influenced by blood micronutrient levels and certain genotypes. Further investigation of associations between nutritional status and genomic integrity in children is needed to shed additional light on potential mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture.
Saad, Hicham; Cobb, Jennifer A
2016-10-01
The nucleus is a hub for gene expression and is a highly organized entity. The nucleoplasm is heterogeneous, owing to the preferential localization of specific metabolic factors, which lead to the definition of nuclear compartments or bodies. The genome is organized into chromosome territories, as well as heterochromatin and euchromatin domains. Recent observations have indicated that nuclear organization is important for maintaining genomic stability. For example, nuclear organization has been implicated in stabilizing damaged DNA, repair-pathway choice, and in preventing chromosomal rearrangements. Over the past decade, several studies have revealed that dynamic changes in the nuclear architecture are important during double-strand break repair. Stemming from work in yeast, relocation of a damaged site prior to repair appears to be at least partially conserved in multicellular eukaryotes. In this review, we will discuss genome and nucleoplasm architecture, particularly the importance of the nuclear periphery in genome stability. We will also discuss how the site of relocation regulates repair-pathway choice.
Heude, M; Chanet, R; Moustacchi, E
1975-04-01
The contribution of nuclear-directed protein synthesis in the repair of lethal and mitochondrial genetic damage after UV-irradiation of exponential and stationary phage haploid yeast cells was examined. This was carried out using cycloheximide (CH), a specific inhibitor of nuclear protein synthesis. It appears that nuclear protein synthesis is required for the increase in survival seen after the liquid holding of cells at both stages, as well as for the "petite" recovery seen after the liquid holding of exponential phase cells. The characteristic negative liquid holding effect observed for the UV induction of "petites" in stationary phase cells (increase of the frequency of "petites" during storage) remained following all the treatments which inhibited nuclear protein synthesis. However, the application of photoreactivating light following dark holding with cycloheximide indicates that some steps of the repair of both nuclear and mitochondrial damage are performed in the absence of a synthesis of proteins.
Chen, Zhenchuan; Zhang, Wei; Yun, Zhimin; Zhang, Xue; Gong, Feng; Wang, Yunfang; Ji, Shouping; Leng, Ling
2018-06-01
In response to DNA damage, proliferating cell nuclear antigen (PCNA) has an important role as a positive regulator and as a scaffold protein associated with DNA damage bypass and repair pathways by serving as a platform for the recruitment of associated components. As demonstrated in the present study, the ubiquitin‑like modifier human leukocyte antigen F locus adjacent transcript 10 (FAT10), which binds to PCNA but has not previously been demonstrated to be associated with the DNA damage response (DDR), is induced by ultraviolet/ionizing radiation and VP‑16 treatment in HeLa cells. Furthermore, DNA damage enhances FAT10 expression. Immunoprecipitation analysis suggested PCNA is modified by FAT10, and the degradation of FATylated PCNA located in the cytoplasm is regulated by the 26S proteasome, which is also responsible for the upregulation of nuclear foci formation. Furthermore, immunofluorescence experiment suggested FAT10 co‑localizes with PCNA in nuclear foci, thus suggesting that FATylation of PCNA may affect DDR via the induction of PCNA degradation in the cytoplasm or nucleus. In addition, immunohistochemistry experiment suggested the expression levels of FAT10 and PCNA are enhanced in HCC tissues compared with healthy liver tissues; however, the expression of FAT10 is suppressed in regenerated liver tissues, which express high levels of PCNA, thus suggesting that the association between FAT10 and PCNA expression is only exhibited in tumor tissues. In conclusion, the results of the present study suggest that FAT10 may be involved in DDR and therefore the progression of tumorigenesis.
Follow-up studies on genome damage in children after Chernobyl nuclear power plant accident.
Fucic, Aleksandra; Aghajanyan, Anna; Druzhinin, Vladimir; Minina, Varvara; Neronova, Elizaveta
2016-09-01
As children are more susceptible to ionizing radiation than adults, each nuclear accident demands special attention and care of this vulnerable population. The Chernobyl nuclear disaster occurred in a region populated with a large number of children, but despite all efforts and expertise of nuclear specialists, it was not possible to avoid casualties. As vast regions of Ukraine, Belarus and Russia were exposed to doses of ionizing radiation, which are known to be related with different diseases, shortly after the accident medical surveillance was launched, which also included analysis of genome damage. Child population affected by internal and external radiation consisted of subjects exposed prenatally, postnatally (both evacuated and non-evacuated), born by irradiated fathers who worked as liquidators, and parents exposed environmentally. In all groups of children during the last 30 years who were exposed to doses which were significantly higher than that recommended for general population of 1 mSv per year, increased genome damage was detected. Increased genome damage includes statistically higher frequency of dicentric and ring chromosomes, chromated and chromosome breaks, acentric fragments, translocations, and micronuclei. The presence of rogue cells confirmed internal contamination. Genome instability and radiosensitivity in children was detected both in evacuated and continuously exposed children. Today the population exposed to ionizing radiation in 1986 is in reproductive period of life and follow-up of this population and their offspring is of great importance. This review aims to give insight in results of studies, which reported genome damage in children in journals without language restrictions.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degui; Yu, Tianyu; Liu, Yongqiang
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less
... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...
JPRS Report, Nuclear Developments
1988-06-03
arranged according to degree of severity, and action plans will be developed for necessary measures appropriate to each level. Nuclear Disaster Chief...For the purpose of shielding the country as much as possible from the damages of nuclear accidents, first, a " Nuclear Disaster Headquarters" will be...formed within TAEC to oversee operations called for by the " Nuclear Disaster Guidelines," and coordination of the activities designed to meet an
Systems approach to the study of brain damage in the very preterm newborn
Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf
2015-01-01
Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780
Vanyagina, Veronica; Malutina, Ludmila; Cornette, Richard; Sakashita, Tetsuya; Hamada, Nobuyuki; Kikawada, Takahiro; Kobayashi, Yasuhiko; Okuda, Takashi
2010-01-01
Anhydrobiotic chironomid larvae can withstand prolonged complete desiccation as well as other external stresses including ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We found that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. Furthermore, while the larvae had restored physiological activity within an hour following rehydration, nuclear DNA restoration typically took 72 to 96 h. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated larvae after anhydrobiosis were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He). In contrast, low-LET radiation (gamma-rays) of the same dose caused less initial damage to the larvae, and DNA was completely repaired within within 24 h. The expression of genes encoding the DNA repair enzymes occurred upon entering anhydrobiosis and exposure to high- and low-LET radiations, indicative of DNA damage that includes double-strand breaks and their subsequent repair. The expression of antioxidant enzymes-coding genes was also elevated in the anhydrobiotic and the gamma-ray-irradiated larvae that probably functions to reduce the negative effect of reactive oxygen species upon exposure to these stresses. Indeed the mature antioxidant proteins accumulated in the dry larvae and the total activity of antioxidants increased by a 3–4 fold in association with anhydrobiosis. We conclude that one of the factors explaining the relationship between radioresistance and the ability to undergo anhydrobiosis in the sleeping chironomid could be an adaptation to desiccation-inflicted nuclear DNA damage. There were also similarities in the molecular response of the larvae to damage caused by desiccation and ionizing radiation. PMID:21103355
Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter
NASA Astrophysics Data System (ADS)
Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.
2017-01-01
Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Mattie, Patrick D.
Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. The model used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). That study focused on reconstructing the accident progressions, as postulated by the limited plant data. This work was focused evaluation of uncertainty in core damage progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, reactor damage state, fraction of intact fuel, vessel lower head failure). The primary intent of this studymore » was to characterize the range of predicted damage states in the 1F1 reactor considering state of knowledge uncertainties associated with MELCOR modeling of core damage progression and to generate information that may be useful in informing the decommissioning activities that will be employed to defuel the damaged reactors at the Fukushima Daiichi Nuclear Power Plant. Additionally, core damage progression variability inherent in MELCOR modeling numerics is investigated.« less
Monitoring the excavation damaged zone by three-dimensional reconstruction of electrical resistivity
NASA Astrophysics Data System (ADS)
Lesparre, Nolwenn; Gibert, Dominique; Nicollin, Florence; Nussbaum, Christophe; Adler, Andy
2013-11-01
A damaged zone is formed during the excavation of underground galleries, altering the rock properties. From a perspective of nuclear waste storage in deep geological sites, there is a clear interest to monitor the rock properties in such zones. We constructed electrical resistivity tomograms as a function of time to monitor the damaged area in gallery 04 of the Mont Terri underground rock laboratory (Switzerland). Measurements were performed using electrode rings surrounding the gallery. The experience showed a heterogeneous distribution of damages around the gallery and their fast formation after the excavation. Two main areas were concerned by damage formation, located in regions where the bedding was tangential to the excavated gallery. Such regions represented an extension of about 2 m along the gallery walls and reached a depth of 1.5 m. Main damages were created during the next months following the excavation process. Slight variations were still observed 3 yr after the excavation that may be related to the gallery environmental condition fluctuation. The method applied here demonstrates the interest to monitor the whole region surrounding excavated galleries dedicated to host nuclear wastes.
Nuclear Containment Inspection Using AN Array of Guided Wave Sensors for Damage Localization
NASA Astrophysics Data System (ADS)
Cobb, A. C.; Fisher, J. L.
2010-02-01
Nuclear power plant containments are typically both the last line of defense against the release of radioactivity to the environment and the first line of defense to protect against intrusion from external objects. As such, it is important to be able to locate any damage that would limit the integrity of the containment itself. Typically, a portion of the containment consists of a metallic pressure boundary that encloses the reactor primary circuit. It is made of thick steel plates welded together, lined with concrete and partially buried, limiting areas that can be visually inspected for corrosion damage. This study presents a strategy using low frequency (<50 kHz) guided waves to find corrosion-like damage several meters from the probe in a mock-up of the containment vessel. A magnetostrictive sensor (MsS) is scanned across the width of the vessel, acquiring waveforms at a fixed interval. A beam forming strategy is used to localize the defects. Experimental results are presented for a variety of damage configurations, demonstrating the efficacy of this technique for detecting damage smaller than the ultrasonic wavelength.
Physics From the News -- Fukushima Daiichi: Radiation Doses and Dose Rates
NASA Astrophysics Data System (ADS)
Bartlett, A. A.
2011-09-01
The nuclear disaster that was triggered by the Japanese earthquake and the following tsunami of March 11, 2011, continues to be the subject of a great deal of news coverage. The tsunami caused severe damage to the nuclear power reactors at Fukushima Daiichi, and this led to the escape of unknown quantities of radioactive material from the damaged fuel rods in the reactors and from the associated storage facilities for the fuel rods that had been removed from the reactors.
Radiation and Thermal Ageing of Nuclear Waste Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J
2014-01-01
The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less
Damage-plasticity model of the host rock in a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz
The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less
Model Calculations with Excited Nuclear Fragmentations and Implications of Current GCR Spectra
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
As a result of the fragmentation process in nuclei, energy from the excited states may also contribute to the radiation damage on the cell structure. Radiation induced damage to the human body from the excited states of oxygen and several other nuclei and its fragments are of a concern in the context of the measured abundance of the current galactic cosmic rays (GCR) environment. Nuclear Shell model based calculations of the Selective-Core (Saganti-Cucinotta) approach are being expanded for O-16 nuclei fragments into N-15 with a proton knockout and O-15 with a neutron knockout are very promising. In our on going expansions of these nuclear fragmentation model calculations and assessments, we present some of the prominent nuclei interactions from a total of 190 isotopes that were identified for the current model expansion based on the Quantum Multiple Scattering Fragmentation Model (QMSFRG) of Cucinotta. Radiation transport model calculations with the implementation of these energy level spectral characteristics are expected to enhance the understanding of radiation damage at the cellular level. Implications of these excited energy spectral calculations in the assessment of radiation damage to the human body may provide enhanced understanding of the space radiation risk assessment.
Campione, Elena; Medda, Emanuela; Paternò, Evelin J; Diluvio, Laura; Ricozzi, Ilaria; Carboni, Isabella; Costanza, Gaetana; Rossi, Piero; Rapanotti, Cristina; Di Stefani, Alessandro; Chimenti, Sergio; Bianchi, Luca; Orlandi, Augusto
2015-01-01
The detoxifying enzyme glutathione-s-transferase pi (GST-π) is present in keratinocytes and melanocytes and exerts a protective role against tumour progression. Melanomas close to melanocytic naevus remnants occur less frequently on sun-exposed areas, whereas solar dermal elastosis, hallmark of chronic sun-damage, characterise melanomas on sun-exposed skin. We evaluated the expression of GST-π in 113 melanomas associated to melanocytic naevus remnants or to solar dermal elastosis, classified according to clinical characteristics, history of sun exposure, histological subtypes and AJCC staging. Chronically sun-damaged melanomas, identified by moderate-severe solar dermal elastosis, showed a lower nuclear GST-π expression and a higher thickness than those related to melanocytic naevus remnants (p < 0.03). Multivariate logistic regression analysis demonstrated that male gender and chronic sun-exposure are independent risk factors significantly associated to melanomas localised on the trunk (OR = 3.36, 95% CI: 1.31-8.65; OR = 5.97, 95% CI: 1.71-20.87). If confirmed on a larger series, lower expression of nuclear GST-π in melanoma cells could represent a possible marker of chronically sun-damaged melanoma pathogenesis.
A Random Variable Approach to Nuclear Targeting and Survivability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Undem, Halvor A.
We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate themore » case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.« less
Japan-U.S. Relations: Issues for Congress
2014-09-24
disasters and meltdowns at the Fukushima Daiichi nuclear power plant. Public trust in the safety of nuclear power collapsed, and a vocal anti- nuclear ...to half a million Japanese were displaced. Damage to several reactors at the Fukushima Dai-ichi nuclear power plant complex led the government to...of Japan’s power generation capacity, and the 2006 “New National Energy Strategy” had set out a goal of significantly increasing Japan’s nuclear power
Star-PAP Control of BIK Expression and Apoptosis Is Regulated by Nuclear PIPKIα and PKCδ Signaling
Li, Weimin; Laishram, Rakesh S.; Ji, Zhe; Barlow, Christy A.; Tian, Bin; Anderson, Richard A.
2012-01-01
SUMMARY BIK protein is an initiator of mitochondrial apoptosis and BIK expression is induced by pro-apoptotic signals including DNA damage. Here we demonstrate that 3′-end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P2-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P2-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex and PKCδ activity is directly stimulated by PI4,5P2. Features in the BIK 3′-UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P2 and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3′-end processing. PMID:22244330
Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young
Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas whilemore » the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)« less
Correlation of Particle-Induced Displacement Damage in Silicon
NASA Astrophysics Data System (ADS)
Summers, G. P.; Burke, E. A.; Dale, C. J.; Wolicki, E. A.; Marshall, P. W.; Gehlhausen, M. A.
1987-12-01
Correlation is made between the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons. These measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7 - 175 MeV protons, 4.3 - 37 MeV deuterons, and 16.8 - 65 MeV helium ions. Long term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered. The main conclusions of the work are as follows: 1) The ratio of the displacement damage factors for a given charged particle to the 1 MeV equivalent neutron damage factor, as a function of energy, falls on a common curve which is independent of collector current. 2) Deuterons of a given energy are about twice as damaging as protons and helium ions are about eighteen times as damaging as protons.
Vogel, H
2007-08-01
Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.
Hodroj, Dana; Serhal, Kamar; Maiorano, Domenico
2017-09-03
The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.
Damage tolerance of nuclear graphite at elevated temperatures
Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; ...
2017-06-30
Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp 2-bonded graphene layers atmore » higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing.« less
Damage tolerance of nuclear graphite at elevated temperatures
Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.
2017-01-01
Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing. PMID:28665405
Nuclear Deterrence in Cyber-ia: Challenges and Controversies
2016-09-01
acceptance of possible opponents. In short, the task of managing a nuclear crisis demands clear thinking and good information. But the employment of...economy, and social infrastructure. (Stuxnet was an exceptional, purpose-built destroyer of targeted nuclear facilities.) Failure of deterrence can...lead to historically unprecedented and socially catastrophic damage even in the case of a “limited” nuclear war by Cold War standards. 58 | Air
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
NASA Astrophysics Data System (ADS)
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-11-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
Correlation of particle-induced displacement damage in silicon
NASA Astrophysics Data System (ADS)
Summers, G. P.; Dale, C. J.; Burke, E. A.; Wolicki, E. A.; Marshall, P. W.
1987-12-01
The effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1-MeV-equivalent neutrons are considered. Measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7-175-MeV protons, 4.3-37-MeV deuterons, and 16.8-65-MeV helium ions. Long-term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...
2015-11-03
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, F.; Mason, D. R.; Eliason, J. K.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-01-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099
Evolution of spent nuclear fuel in dry storage conditions for millennia and beyond
NASA Astrophysics Data System (ADS)
Wiss, Thierry; Hiernaut, Jean-Pol; Roudil, Danièle; Colle, Jean-Yves; Maugeri, Emilio; Talip, Zeynep; Janssen, Arne; Rondinella, Vincenzo; Konings, Rudy J. M.; Matzke, Hans-Joachim; Weber, William J.
2014-08-01
Significant amounts of spent uranium dioxide nuclear fuel are accumulating worldwide from decades of commercial nuclear power production. While such spent fuel is intended to be reprocessed or disposed in geologic repositories, out-of-reactor radiation damage from alpha decay can be detrimental to its structural stability. Here we report on an experimental study in which radiation damage in plutonium dioxide, uranium dioxide samples doped with short-lived alpha-emitters and urano-thorianite minerals have been characterized by XRD, transmission electron microscopy, thermal desorption spectrometry and hardness measurements to assess the long-term stability of spent nuclear fuel to substantial alpha-decay doses. Defect accumulation is predicted to result in swelling of the atomic structure and decrease in fracture toughness; whereas, the accumulation of helium will produce bubbles that result in much larger gaseous-induced swelling that substantially increases the stresses in the constrained spent fuel. Based on these results, the radiation-ageing of highly-aged spent nuclear fuel over more than 10,000 years is predicted.
Kulms, D; Pöppelmann, B; Schwarz, T
2000-05-19
Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.
Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John
2008-01-01
Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425
A novel class of Saccharomyces cerevisiae mutants specifically UV-sensitive to "petite" induction.
Moustacchi, E; Perlman, P S; Mahler, H R
1976-11-17
A mutant of Saccharomyces cerevisiae has been isolated which, though exhibiting a normal response to nuclear genetic damage by ultraviolet light (UV), is more sensitive than its wild type specifically in the production of the cytoplasmic (rho-) mutation by this agent. Some of the features of this mutation which has been designated uvsrho 5 are: i) The mutation is recessive, it exhibits a Mendelian, and hence presumably nuclear, pattern of segregation, but manifests its effects specifically and pleiotropically on mitochondrial functions. ii) Mutant cells resemble their wild type parents in a) growth characteristics on glucose; b) in their UV induced dose response to lethality or nuclear mutation and c) the ability of their mitochondrial genome, upon mating with appropriate testers, of transmitting and recombining various markers, albeit with enhanced efficiency. Similarly, d) they are able to modulate the expression of mitochondrial mutagenesis by ethidium bromide. Thus their mitochondrial DNA appears genetically as competent as that of the wild type. iii) Mutant cells differ from their wild type parents in a) growth characteristics on glycerol; b) susceptibility to induction of the mitochondrial (rho-) mutation by various mutagens, in that the rate of spontaneous mutation is slightly and that by UV is significantly enhanced, whild that by ethidium bromide is greatly diminished. Conversely, c) modulating influences resulting in the repair of initial damage are diminished fro UV and stimulated in the case of Berenil. iv) The amount of mitochondrial DNA per cell appears elevated in the mutant, relative to wild type, and its rate of degradation subsequent to a mutagenic exposure to either UV or ethidium bromide is diminished. v) A self-consistent scheme to account for this and all other information so far available for the induction and modulation of the (rho-) mutation is presented. In a previous study it was shown that some nuclear mutants of Saccharomyces cerevisiae, more sensitive to lethal damage induced by ultraviolet light (rad) than their parent wild type (RAD), also exhibit a concomitant modification in sensitivity to both nuclear and cytoplasmic genetic damage (Moustacchi, 1971). However, another class of rad mutants respond to the induction of the cytoplasmic "petite" also designated as rho- (or rho-) mutation by UV in a manner indistinguishable from that of the RAD strain. One possible interpretation of this last observation is that some of the steps in the expression of the UV damage on mitochondrial (mt)DNA may be governed by other nuclear and cytoplasmic genetic determinants, the products of which may then act specifically on mitochondrial lesions. If this assumption is correct, it should be possible to find mutants with a normal response to nuclear damage but specifically UV-sensitive towards induction of (rho-)...
Tomas, Alejandra; Jones, Sylwia; Vaughan, Simon O; Hochhauser, Daniel; Futter, Clare E
2017-08-01
EGF receptor (EGFR) endocytosis is induced by stress in a manner dependent on the p38 MAPK family. Ligand and stresses such as X-rays, reportedly promote nuclear trafficking of endocytosed EGFR for regulation of gene transcription and DNA repair. We fail to detect EGFR endocytosis or nuclear transport following X-ray treatment of HeLa or head and neck cancer cells, despite extensive DNA damage induction. Apparent nuclear staining with EGFR extracellular domain antibody remained present despite reduced/absent EGFR expression, and so did not represent nuclear EGFR. UVB and UVC, but not X-ray or UVA, treatment induced p38 activation and EGFR endocytosis, although all of these stresses induced DNA damage, indicating that DNA damage alone is not sufficient to induce EGFR endocytosis. Increased reactive oxygen species (ROS) levels following UVB treatment, compared to that seen with X-rays, do not alone explain differences in p38 activation. UVB, like UVC, induced EGFR accumulation predominantly in perinuclear endosomes, rather than in the nucleus. Our morphological techniques identifying major changes in receptor distribution do not exclude the possibility that small but biologically relevant amounts of EGFR enter the nucleus. This study highlights the importance and limitations of morphological analyses of receptor distribution in understanding signaling outcome. © 2017. Published by The Company of Biologists Ltd.
Zlopasa, Livija; Brachner, Andreas; Foisner, Roland
2016-06-01
Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.
High-intensity power-resolved radiation imaging of an operational nuclear reactor.
Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J
2015-10-09
Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.
Spent fuel cask handling at an operating nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, A.C.
1988-01-01
The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices atmore » all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant.« less
High-intensity power-resolved radiation imaging of an operational nuclear reactor
Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.
2015-01-01
Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669
Japan-U.S. Relations: Issues for Congress
2013-02-15
million Japanese were displaced. Damage to several reactors at the Fukushima Dai-ichi nuclear power plant complex led the government to declare a state of...the March 11, 2011, natural disasters and meltdowns at the Fukushima Daiichi nuclear power plant. Public trust in the safety of nuclear power...aircraft’s safety record may be connected to widespread distrust of the government stemming from the nuclear disaster at the Fukushima Daichi
Pulmonary disorder and present nuclear denotation: A brief summary
Wiwanitkit, Viroj
2011-01-01
There are many health effects caused by leaked radiation from damaged reactors of a nuclear power plant. However, the effect on pulmonary system is not reported much. Focusing on the present nuclear denotation crisis in Japan, it is wise to review on the specific issue of pulmonary disorder and nuclear denotation. Several disorders of interest, including malignancy and non-malignancy disorders, are mentioned in the literature. PMID:21760839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajo, J.J.
1995-12-31
This study compares results obtained with two U.S. Nuclear Regulatory Commission (NRC)-sponsored codes, MELCOR version 1.8.3 (1.8PQ) and SCDAP/RELAP5 Mod3.1 release C, for the same transient - a low-pressure, short-term station blackout accident at the Browns Ferry nuclear plant. This work is part of MELCOR assessment activities to compare core damage progression calculations of MELCOR against SCDAP/RELAP5 since the two codes model core damage progression very differently.
Ren, Xiang; Sun, Hong; Zhang, Chenghong; Li, Chen; Wang, Jinlei; Shen, Jie; Yu, Dong; Kong, Li
2016-07-01
The present study aimed to investigate the mechanisms that mediate the protective effects of pyridoxamine (PM) on light‑damaged retinal photoreceptor cells in diabetic mice. A high‑fat diet and streptozotocin were used to induce a mouse model of type II diabetes. During the experiment, mice were divided the mice into three types of group, as follows: Control groups (negative control and light‑damaged groups); experimental groups (diabetic and diabetic light‑damaged groups); and treatment groups (25, 50 and 100 mg/kg PM‑treated groups). Using hematoxylin‑eosin staining, the number of nuclear layer cells were counted. Western blotting and immunohistochemistry were performed to measure the levels of thioredoxin (Trx), phospho‑extracellular signal‑regulated kinase 1/2 (p‑Erk1/2), nuclear factor erythroid 2‑related factor 2 (Nrf2) and apoptosis signal‑regulating kinase 1 (ASK1). The photoreceptor cell count in the outer nuclear layer of the light‑damaged, diabetic control and diabetic light‑damaged groups were significantly reduced compared with the negative control group (P<0.001). The cell counts in the PM‑treated groups were significantly increased compared with the diabetic group (P<0.001). Compared with the negative control group, the light‑damaged, diabetic and diabetic light‑damaged groups exhibited significantly decreased Trx, p‑Erk1/2 and Nrf2 expression levels (P<0.001), and significantly increased ASK1 expression levels (P<0.001). However, in the PM‑treated groups, Trx, p‑Erk1/2 and Nrf2 expression levels were significantly increased (P<0.001), and ASK1 expression was significantly decreased (P<0.001). The results of the present study demonstrate that PM protects retinal photoreceptor cells against light damage in diabetic mice, and that its mechanism may be associated with the upregulation of Trx, p‑Erk1/2 and Nrf2 expression, and the downregulation of ASK1 expression.
NASA Technical Reports Server (NTRS)
1972-01-01
Potential advantages of fusion power reactors are discussed together with the protection of the public from radioactivity produced in nuclear power reactors, and the significance of tritium releases to the environment. Other subjects considered are biomedical instrumentation, radiation damage problems, low level environmental radionuclide analysis systems, nuclear techniques in environmental research, nuclear instrumentation, and space and plasma instrumentation. Individual items are abstracted in this issue.
Reduced deuterium retention in simultaneously damaged and annealed tungsten
NASA Astrophysics Data System (ADS)
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; Baldwin, M. J.; Yu, J. H.; Doerner, R. P.; Tynan, G. R.
2017-10-01
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D2 plasma ion fluence of 1024 D+/m2. Nuclear reaction analysis (NRA), utilizing the D(3He,p)4He nuclear reaction, is used to probe the D concentration in the near surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
Aerial pesticide application causes DNA damage in pilots from Sinaloa, Mexico.
Martínez-Valenzuela, C; Waliszewski, S M; Amador-Muñoz, O; Meza, E; Calderón-Segura, M E; Zenteno, E; Huichapan-Martínez, J; Caba, M; Félix-Gastélum, R; Longoria-Espinoza, R
2017-01-01
The use of pesticides in agricultural production originates residues in the environment where they are applied. Pesticide aerial application is a frequent source of exposure to pesticides by persons dedicated to agricultural practices and those living in neighboring communities of sprayed fields. The aim of the study was to assess the genotoxic effects of pesticides in workers occupationally exposed to these chemicals during their aerial application to agricultural fields of Sinaloa, Mexico. The study involved 30 pilots of airplanes used to apply pesticides via aerial application and 30 unexposed controls. Damage was evaluated through the micronucleus assay and by other nuclear abnormalities in epithelial cells of oral mucosa. The highest frequency ratios (FR) equal to 269.5 corresponded to binucleated cells followed by 54.2, corresponding to cells with pyknotic nuclei, 45.2 of cells with chromatin condensation, 3.7 of cells with broken-egg, 3.6 of cells with micronucleus, and 2.0 of karyolytic cells. Age, worked time, smoking, and alcohol consumption did not have significant influence on nuclear abnormalities in the pilots studied. Pesticide exposure was the main factor for nuclear abnormality results and DNA damage. Marked genotoxic damage was developed even in younger pilots with 2 years of short working period, caused by their daily occupational exposure to pesticides.
Matusiak, Katarzyna; Gałęcki, Remigiusz; Borowski, Sebastian; Gutarowska, Beata
2017-01-01
Animal breeding and management of organic wastes pose a serious problem to the health of livestock and workers, as well as the nearby residents. The aim of the present study was to determine the mechanisms of toxicity of selected common odorous compounds from poultry manure, including ammonia, dimethylamine (DMA), trimethylamine (TMA), butyric acid, phenol, and indole. We measured their genotoxic and cytotoxic activity in the model chicken cell line (LMH), in vitro, by comet assay and lactate dehydrogenase assay, respectively. We also made microscopic observations of any morphological changes in these cells by DAPI staining. Four compounds, namely ammonia, DMA, TMA, and butyric acid increased DNA damage in a dose-dependent manner (p < 0.05), reaching genotoxicity as high as 73.2 ± 1.9%. Phenol and indole induced extensive DNA damage independent of the concentration used. Ammonia, DMA, and TMA caused a dose-dependent release of lactate dehydrogenase (p < 0.05). The IC50 values were 0.02%, 0.05%, and 0.1% for DMA, ammonia and TMA, respectively. These compounds also induced nuclear morphological changes, such as chromatin condensation, shrinkage, nuclear fragmentation (apoptotic bodies), and chromatin lysis. Our study exhibited the damaging effects of odorous compounds in chick LMH cell line. PMID:28820500
Ishii, Takashi; Shiomi, Yasushi; Takami, Toshihiro; Murakami, Yusuke; Ohnishi, Naho; Nishitani, Hideo
2010-01-01
The licensing factor Cdt1 is degraded by CRL4Cdt2 ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G1 phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G1 phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4Cdt2, before DNA damage repair is completed. PMID:20929861
Develop an piezoelectric sensing based on SHM system for nuclear dry storage system
NASA Astrophysics Data System (ADS)
Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu
2016-04-01
In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.
Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response.
Salton, Maayan; Lerenthal, Yaniv; Wang, Shih-Ya; Chen, David J; Shiloh, Yosef
2010-04-15
The DNA damage response (DDR) is a complex signaling network that is induced by DNA lesions and vigorously activated by double strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which phosphorylates key players in its various branches. SFPQ (PSF) and NONO (p54) are nuclear proteins that interact with each other and have diverse roles in nucleic acids metabolism. The SFPQ/NONO heterodimer was previously found to enhance DNA strand break rejoining in vitro. Our attention was drawn to these two proteins as they interact with the nuclear matrix protein Matrin 3 (MATR3), which we found to be a novel ATM target. We asked whether SFPQ and NONO too are involved in the DSB response. Proteins that function at the early phase of this response are often recruited to the damaged sites. We observed rapid recruitment of SFPQ/NONO to sites of DNA damage induced by laser microbeam. In MATR3 knockdown cells SFPQ/NONO retention at DNA damage sites was prolonged. SFPQ and MATR3 depletion led to abnormal accumulation of cells at the S-phase of the cell cycle following treatment with the radiomimetic chemical neocarzinostatin. Notably, proteins involved in DSB repair via nonhomologous end-joining co-immunoprecipitated with NONO; SFPQ depletion delayed DSB repair. Collectively the data suggest that SFPQ, NONO and MATR3 are involved in the early stage of the DSB response, setting the scene for DSB repair.
The influence of neutron radiation damage on the optical properties of plastic scintillator UPS 923A
NASA Astrophysics Data System (ADS)
Mthembu, Skhathisomusa; Davydov, Yuri; Baranov, Vladimir; Mellado Garcia, Bruce; Mdhluli, Joyful; Sideras-Haddad, Elias
2017-09-01
Plastic scintillators are vital in the reconstruction of hadronic particle energy and tracks resulting from the collision of high energy particles in the Large Hadron Collider (LHC) at CERN. These plastic scintillators are exposed to harsh radiation environments and are susceptible to radiation damage. The effects of radiation damage on the transmittance, luminescence and light yield of Ukraine polystyrene-based scintillator UPS 923A were studied. Samples were irradiated with fast neutrons, of varying energies and fluences, using the IBR-2 reactor FLNP (Frank Laboratory for Nuclear Problems) at the Joint Institute for Nuclear Research. Results show a small change in the transmittance of the higher energy visible spectrum, and a noticeable change in the light yield of the samples as a result of the damage. There is no change observed on the luminescence as a result of radiation damage at studied fluences. The doses and uences of the neutrons shall be increased and changes in optical properties as a result of the radiation shall be further studied.
NASA Astrophysics Data System (ADS)
Min, Jiyoung; Shim, Hyojin; Yun, Chung-Bang
2012-04-01
For a nuclear containment structure, the structural health monitoring is essential because of its high potential risk and grave social impact. In particular, the tendon and anchorage zone are to be monitored because they are under high tensile or compressive stress. In this paper, a method to monitor the tendon force and the condition of the anchorage zone is presented by using the impedance-based health diagnosis system. First, numerical simulations were conducted for cases with various loose tensile forces on the tendon as well as damages on the bearing plate and concrete structure. Then, experimental studies were carried out on a scaled model of the anchorage system. The relationship between the loose tensile force and the impedance-based damage index was analyzed by a regression analysis. When a structure gets damaged, the damage index increases so that the status of damage can be identified. The results of the numerical and experimental studies indicate a big potential of the proposed impedance-based method for monitoring the tendon and anchorage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.
2015-12-28
We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. We found that taking the electronic energy loss out as a friction term results in reducedmore » damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less
Zarkadoula, Eva; Toulemonde, Marcel; Weber, William J.
2015-12-29
We used a combination of ion cascades and the unified thermal spike model to study the electronic effects from 800 keV Kr and Xe ion irradiation in zircon. We compared the damage production for four cases: (a) due to ion cascades alone, (b) due to ion cascades with the electronic energy loss activated as a friction term, (c) due to the thermal spike from the combined electronic and nuclear energy losses, and (d) due to ion cascades with electronic stopping and the electron-phonon interactions superimposed. As a result, we found that taking the electronic energy loss out as a frictionmore » term results in reduced damage, while the electronic electron-phonon interactions have additive impact on the final damage created per ion.« less
Somatic Rearrangement in B Cells: It's (Mostly) Nuclear Physics.
Aiden, Erez Lieberman; Casellas, Rafael
2015-08-13
We discuss how principles of nuclear architecture drive typical gene rearrangements in B lymphocytes, whereas translocation hot spots and recurrent lesions reflect the extent of AID-mediated DNA damage and selection. Copyright © 2015 Elsevier Inc. All rights reserved.
Schwantes, Jon M; Orton, Christopher R; Clark, Richard A
2012-08-21
Researchers evaluated radionuclide measurements of environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Co. Website following the 2011 tsunami-initiated catastrophe. This effort identified Units 1 and 3 as the major source of radioactive contamination to the surface soil near the facility. Radionuclide trends identified in the soils suggested that: (1) chemical volatility driven by temperature and reduction potential within the vented reactors' primary containment vessels dictated the extent of release of radiation; (2) all coolant had likely evaporated by the time of venting; and (3) physical migration through the fuel matrix and across the cladding wall were minimally effective at containing volatile species, suggesting damage to fuel bundles was extensive. Plutonium isotopic ratios and their distance from the source indicated that the damaged reactors were the major contributor of plutonium to surface soil at the source, decreasing rapidly with distance from the facility. Two independent evaluations estimated the fraction of the total plutonium inventory released to the environment relative to cesium from venting Units 1 and 3 to be ∼0.002-0.004%. This study suggests significant volatile radionuclides within the spent fuel at the time of venting, but not as yet observed and reported within environmental samples, as potential analytes of concern for future environmental surveys around the site. The majority of the reactor inventories of isotopes of less volatile elements like Pu, Nb, and Sr were likely contained within the damaged reactors during venting.
Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes
Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske
2006-01-01
To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392
Safi Oz, Zehra; Dogan Gun, Banu; Ozdamar, Sukru Oguz
2015-01-01
Candida is the most common cause of fungal infections. The aim of this study was to fill the gaps in the current knowledge on the frequencies of micronuclei and nuclear anomalies, and the nucleus/cytoplasmic ratio in genital candidiasis. A total of 88 Papanicolaou- stained cervical smears, which comprised Candida spp. (n = 44) and control cases with no infectious agent (n = 44), were studied. In each smear, cells with micronuclei and nuclear anomalies were counted in 1,000 epithelial cells and also nuclear and cellular areas were evaluated using image analysis software at a magnification of ×400. The frequencies of micronucleated and binucleated cells and cells with perinuclear halos, and the nucleus/cytoplasmic ratio of epithelial cells were higher in the Candida-infected group compared with the control group (p < 0.05). Genital candidiasis is able to induce changes in the size and shape of epithelial cells. The nuclear/cytoplasmic ratio and the frequency of micronuclei may reflect the DNA damage in the cervical epithelium. Micronucleus scoring could be used to screen the genomic damage profile of epithelial cells in candidiasis. © 2015 S. Karger AG, Basel.
Evaluation of external hazards to nuclear power plants in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, C.Y.; Budnitz, R.J.
1987-12-01
The Lawrence Livermore National Laboratory (LLNL) has performed a study of the risk of core damage to nuclear power plants in the United States due to externally initiated events. The broad objective has been to gain an understanding of whether or not each external initiator is among the major potential accident initiators that may pose a threat of severe reactor core damage or of large radioactive release to the environment from the reactor. Four external hazards were investigated in this report. These external hazards are internal fires, high winds/tornadoes, external floods, and transportation accidents. Analysis was based on two figures-of-merit,more » one based on core damage frequency and the other based on the frequency of large radioactive releases. Using these two figures-of-merit as evaluation criteria, it has been feasible to ascertain whether the risk from externally initiated accidents is, or is not, an important contributor to overall risk for the US nuclear power plants studied. This has been accomplished for each initiator separately. 208 refs., 17 figs., 45 tabs.« less
Chitale, Shalaka; Richly, Holger
2017-01-01
One of the major cellular DNA repair pathways is nucleotide excision repair (NER). It is the primary pathway for repair of various DNA lesions caused by exposure to ultraviolet (UV) light, such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts. Although lesion-containing DNA associates with the nuclear matrix after UV irradiation it is still not understood how nuclear organization affects NER. Analyzing unscheduled DNA synthesis (UDS) indicates that NER preferentially occurs in specific nuclear areas, viz the nucleolus. Upon inducing localized damage, we observe migration of damaged DNA towards the nucleolus. Employing a LacR-based tethering system we demonstrate that H2A-ubiquitylation via the UV-RING1B complex localizes chromatin close to the nucleolus. We further show that the H2A-ubiquitin binding protein ZRF1 resides in the nucleolus, and that it anchors ubiquitylated chromatin along with XPC. Our data thus provide insight into the sub-nuclear organization of NER and reveal a novel role for histone H2A-ubiquitylation. PMID:28416769
2015-06-09
mi) northeast of Tokyo off the coast of Honshu Island. The tsunami triggered by the earthquake damaged the Fukushima Daiichi Nuclear Power Station...Concentration Data Collected in the Kanto Plain, Japan, following the 2011 Fukushima Daiichi Nuclear Accident 5a. CONTRACT NUMBER 5b. GRANT NUMBER...collected at three locations following the release of radioactive materials from the Fukushima Daiichi Nuclear Power Station. The time series at
Enol tautomers of Watson-Crick base pair models are metastable because of nuclear quantum effects.
Pérez, Alejandro; Tuckerman, Mark E; Hjalmarson, Harold P; von Lilienfeld, O Anatole
2010-08-25
Intermolecular enol tautomers of Watson-Crick base pairs could emerge spontaneously via interbase double proton transfer. It has been hypothesized that their formation could be facilitated by thermal fluctuations and proton tunneling, and possibly be relevant to DNA damage. Theoretical and computational studies, assuming classical nuclei, have confirmed the dynamic stability of these rare tautomers. However, by accounting for nuclear quantum effects explicitly through Car-Parrinello path integral molecular dynamics calculations, we find the tautomeric enol form to be dynamically metastable, with lifetimes too insignificant to be implicated in DNA damage.
Nuclear Radiation Damages Minds!
ERIC Educational Resources Information Center
Blai, Boris, Jr.
Professors Ernest Sternglass (University of Pittsburgh) and Steven Bell (Berry College) have assembled cogent, conclusive evidence indicating that nuclear radiation is associated with impaired cognition. They suggest that Scholastic Aptitude Scores (SATs), which have declined steadily for 19 years, will begin to rise. Their prediction is based on…
Investigation of materials for fusion power reactors
NASA Astrophysics Data System (ADS)
Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.
2014-06-01
The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.
Japans Defense Program Guidelines
2013-03-01
matters worse, the tsunami damaged the nuclear reactors at the Tokyo Electric Power Company’s Fukushima 10 Daiichi Nuclear Power Station, causing...response to the nuclear disaster with maximum personnel numbers exceeding 100,000. In order to strengthen those activities, the SDF established the...that prohibits some kinds of military activity.1 After the outbreak of the Korean War, Prime Minister Shigeru Yoshida’s government created a heavily
Structural integrity of materials in nuclear service: a bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heddleson, F.A.
This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.
Atmospheric Science Data Center
2013-04-16
... includes the area around the damaged Fukushima Dai-ichi nuclear power facility and extends northward along the coast. The ... of the Abukuma River to south of the Fukushima Dai-ichi nuclear power facility, and covers an area of 41 kilometers (25 miles) by 89 ... 2 kilometers (1.2 miles) inland is visible just north of the nuclear power plant. Further up the coast, to the south of Matsukawa-ura Bay, ...
Reduced deuterium retention in simultaneously damaged and annealed tungsten
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; ...
2017-06-24
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated in this paper. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D 2 plasma ion fluence of 10 24 D +/m 2. Nuclear reaction analysis (NRA), utilizing the D( 3He,p) 4He nuclear reaction, is used to probe the D concentration in the nearmore » surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D 2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Finally, analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.« less
Reduced deuterium retention in simultaneously damaged and annealed tungsten
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated in this paper. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D 2 plasma ion fluence of 10 24 D +/m 2. Nuclear reaction analysis (NRA), utilizing the D( 3He,p) 4He nuclear reaction, is used to probe the D concentration in the nearmore » surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D 2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Finally, analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.« less
Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng
2015-01-01
During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. PMID:25631046
Nuclear terrorism - Threat or not?
NASA Astrophysics Data System (ADS)
Pomper, Miles A.; Tarini, Gabrielle
2017-11-01
A terrorist attack using nuclear or radiological materials is a low-probability event, but if executed, would lead to unprecedented socio-economic, material, and psychological disruption and damage. This chapter seeks to provide a sound assessment of the scope and nature of the threat by examining the different types of nuclear terrorism, each of which poses different risks, involves different barriers to success, and requires different terrorist capabilities. In addition, the chapter aims to provide an overview of the sources and nature of terrorists' motivations to employ a nuclear attack.
Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John
2003-09-26
The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.
Firat, Elke; Tsurumi, Chizuko; Gaedicke, Simone; Huai, Jisen; Niedermann, Gabriele
2009-04-15
The giant cytosolic protease tripeptidyl peptidase II (TPPII) was recently proposed to play a role in the DNA damage response. Shown were nuclear translocation of TPPII after gamma-irradiation, lack of radiation-induced p53 stabilization in TPPII-siRNA-treated cells, and complete tumor regression in mice after gamma-irradiation when combined with TPPII-siRNA silencing or a protease inhibitor reported to inhibit TPPII. This suggested that TPPII could be a novel target for tumor radiosensitization and prompted us to study radiation responses using TPPII-knockout mice. Neither the sensitivity to total body irradiation nor the radiosensitivity of resting lymphoid cells, which both strongly depend on p53, was altered in the absence of TPPII. Functional integrity of p53 in TPPII-knockout cells is further shown by a proper G(1) arrest and by the accumulation of p53 and its transcriptional targets, p21, Bax, and Fas, on gamma-irradiation. Furthermore, we could not confirm radiation-induced nuclear translocation of TPPII. Nevertheless, after gamma-irradiation, we found slightly increased mitotic catastrophe of TPPII-deficient primary fibroblasts and increased apoptosis of TPPII-deficient activated CD8(+) T cells. The latter was accompanied by delayed resolution of the DNA double-strand break marker gammaH2AX. This could, however, be due to increased apoptotic DNA damage rather than reduced DNA damage repair. Our data do not confirm a role for TPPII in the DNA damage response based on nuclear TPPII translocation and p53 stabilization but nevertheless do show increased radiation-induced cell death of selected nontransformed cell types in the absence of the TPPII protease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
The Supreme Court rendered its decision in PG&E in April 1983. The decision involved a challenge by a nuclear utility to a California state moratorium on the construction of new commercial nuclear power plants until the State Energy Resources Conservation and Development Commission could determine that there is a demonstrated and federally approved solution for the permanent disposal of high-level nuclear waste. The moratorium was based not on a state concern with the radiological hazards associated with new nuclear plants but, ostensibly on a state concern with the economics of new nuclear plants. In particular, the state had concluded thatmore » a new nuclear plant, in the absence of a solution for the permanent disposal of the high-level nuclear waste it would generate, would be an uneconomical and uncertain source of electric power. The nuclear utility that challenged the moratorium argued that its prohibition to new nuclear plant construction was in fact based on a state concern with radiation hazards. However, the Court accepted California`s {open_quotes}avowed economic purpose{close_quotes} and declined to second-guess the basis for the moratorium. The Court rendered its decision in Silkwood in January 1984. The decision involved an action brought by the administrator of the estate for a deceased employee of a nuclear fuel facility regulated by the NRC. Brought under Oklahoma state common law of torts, the action was for damages for radiological injuries suffered as a result of alleged plutonium contamination. A jury returned a verdict for the administrator as well as an award of actual and punitive damages.« less
Background of Civil Defense and Current Damage Limiting Studies.
ERIC Educational Resources Information Center
Romm, Joseph
A brief history of civil defense administration precedes analysis of nuclear attack conditions and the influence of protective measures. Damage limitation procedure is explained in terms of--(1) blast effects, (2) radiation doses, (3) geographical fallout distribution patterns, and (4) national shelter needs. Major concept emphasis relates to--(1)…
Fallout and SAT Scores: Evidence for Cognitive Damage during Early Infancy.
ERIC Educational Resources Information Center
Sternglass, Ernest J.; Bell, Steven
1983-01-01
Presents new evidence to show that nuclear radiation is associated with impaired cognitive functions. Links changing levels of radiation from U.S. nuclear bomb testing to the long decline--and now the beginnings of a rise--in Scholastic Aptitude Test scores. (Author/RW)
Glasnost and Secrecy in the Soviet Military
1990-12-21
important event was the Chernobyl’ nuclear disaster , when the regime’s clumsy silence and disinformation were responsible for damage to the Soviet...always been treated as at. extralegal matter. A very important c, se of bureaucratic deception has been the nuclear disaster in Chernobyl and its
75 FR 51986 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... period also supports DOE's interest in obtaining detailed and comprehensive commentary from nuclear suppliers and other interested stakeholders. DOE is hereby extending the comment period to October 27, 2010...- Anderson Act indemnification. The NOI requested public comment from interested persons regarding specific...
Developing a structural health monitoring system for nuclear dry cask storage canister
NASA Astrophysics Data System (ADS)
Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu
2015-03-01
Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.
NASA Astrophysics Data System (ADS)
Liu, Y.; Crespillo, M. L.; Huang, Q.; Wang, T. J.; Liu, P.; Wang, X. L.
2017-02-01
As one of the representative ABO3 perovskite-structured oxides, lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and has attracted plenty of fundamental research and promising applications in recent years. Electronic, magnetic, optical and other properties of LaAlO3 strongly depend on its crystal structure, which could be strongly modified owing to the nuclear or electronic energy loss deposited in an ion irradiation environment and, therefore, significantly affecting the performance of LaAlO3-based devices. In this work, utilizing swift (tens of MeV) Si-ion irradiation, the damage behavior of LaAlO3 crystal induced by nuclear or electronic energy loss has been studied in detail utilizing complementary characterization techniques. Differing from other perovskite-structured crystals in which the electronic energy loss could lead to the formation of an amorphous region based on the thermal spike mechanism, in this case, intense electronic energy loss in LaAlO3 will not induce any obvious structural damage. The effects of ion irradiation on the mechanical properties, including hardness increase and elastic modulus decrease, have been confirmed. On the other hand, considering the potential applications of LaAlO3 in the field of integrated optoelectronics, the optical-waveguide properties of the irradiation region have been studied. The significant correspondence (symmetrical inversion) between the iWKB-reconstructed refractive-index profile and SRIM-simulated dpa profile further proves the effects (irradiation-damage production and refractive-index decrease) of nuclear energy loss during the swift-ion penetration process in LaAlO3 crystal. In the case of the rather-thick damage layer produced by swift-ion irradiation, obtaining a damage profile will be constrained owing to the analysis-depth limitation of the characterization techniques (RBS/channeling), and our analysis process (optical guided-mode measurement and subsequent refractive-index-profile reconstruction) also provides a new approach to study the damage behavior (damage profile) once the functional relationship between the refractive index and lattice disorder for the specific material could be determined.
Phosphorylation of human INO80 is involved in DNA damage tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Dai; Waki, Mayumi; Umezawa, Masaki
Highlights: Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced PCNA ubiquitination. Black-Right-Pointing-Pointer Depletion of hINO80 significantly reduced nuclear dots intensity of RAD18 after UV irradiation. Black-Right-Pointing-Pointer Western blot analyses showed phosphorylated hINO80 C-terminus. Black-Right-Pointing-Pointer Overexpression of phosphorylation mutant hINO80 reduced PCNA ubiquitination. -- Abstract: Double strand breaks (DSBs) are the most serious type of DNA damage. DSBs can be generated directly by exposure to ionizing radiation or indirectly by replication fork collapse. The DNA damage tolerance pathway, which is conserved from bacteria to humans, prevents this collapse by overcoming replication blockages. The INO80 chromatin remodeling complex plays an important role in themore » DNA damage response. The yeast INO80 complex participates in the DNA damage tolerance pathway. The mechanisms regulating yINO80 complex are not fully understood, but yeast INO80 complex are necessary for efficient proliferating cell nuclear antigen (PCNA) ubiquitination and for recruitment of Rad18 to replication forks. In contrast, the function of the mammalian INO80 complex in DNA damage tolerance is less clear. Here, we show that human INO80 was necessary for PCNA ubiquitination and recruitment of Rad18 to DNA damage sites. Moreover, the C-terminal region of human INO80 was phosphorylated, and overexpression of a phosphorylation-deficient mutant of human INO80 resulted in decreased ubiquitination of PCNA during DNA replication. These results suggest that the human INO80 complex, like the yeast complex, was involved in the DNA damage tolerance pathway and that phosphorylation of human INO80 was involved in the DNA damage tolerance pathway. These findings provide new insights into the DNA damage tolerance pathway in mammalian cells.« less
Propellant actuated nuclear reactor steam depressurization valve
Ehrke, Alan C.; Knepp, John B.; Skoda, George I.
1992-01-01
A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.
Gomes, Juliana M M; Ribeiro, Heder J; Procópio, Marcela S; Alvarenga, Betânia M; Castro, Antônio C S; Dutra, Walderez O; da Silva, José B B; Corrêa Junior, José D
2015-01-01
Erythrocytic nuclear alterations have been considered as an indicative of organism's exposure to genotoxic agents. Due to their close relationship among their frequencies and DNA damages, they are considered excellent markers of exposure in eukaryotes. However, poor data has been found in literature concerning their genesis, differential occurrence and their life span. In this study, we use markers of cell viability; genotoxicity and cellular turn over in order to shed light to these events. Tilapia and their blood were exposed to cadmium in acute exposure and in vitro assays. They were analyzed using flow cytometry for oxidative stress and membrane disruption, optical microscopy for erythrocytic nuclear alteration, graphite furnace atomic absorption spectrometry for cadmium content in aquaria water, blood and cytochemical and analytical electron microscopy techniques for the hemocateretic aspects. The results showed a close relationship among the total nuclear alterations and cadmium content in the total blood and melanomacrophage centres area, mismatching reactive oxygen species and membrane damages. Moreover, nuclear alterations frequencies (vacuolated, condensed and blebbed) showed to be associated to cadmium exposure whereas others (lobed and bud) were associated to depuration period. Decrease on nuclear alterations frequencies was also associated with hemosiderin increase inside spleen and head kidney macrophages mainly during depurative processes. These data disclosure in temporal fashion the main processes that drive the nuclear alterations frequencies and their relationship with some cellular and systemic biomarkers.
Gomes, Juliana M. M.; Ribeiro, Heder J.; Procópio, Marcela S.; Alvarenga, Betânia M.; Castro, Antônio C. S.; Dutra, Walderez O.; da Silva, José B. B.; Corrêa Junior, José D.
2015-01-01
Erythrocytic nuclear alterations have been considered as an indicative of organism’s exposure to genotoxic agents. Due to their close relationship among their frequencies and DNA damages, they are considered excellent markers of exposure in eukaryotes. However, poor data has been found in literature concerning their genesis, differential occurrence and their life span. In this study, we use markers of cell viability; genotoxicity and cellular turn over in order to shed light to these events. Tilapia and their blood were exposed to cadmium in acute exposure and in vitro assays. They were analyzed using flow cytometry for oxidative stress and membrane disruption, optical microscopy for erythrocytic nuclear alteration, graphite furnace atomic absorption spectrometry for cadmium content in aquaria water, blood and cytochemical and analytical electron microscopy techniques for the hemocateretic aspects. The results showed a close relationship among the total nuclear alterations and cadmium content in the total blood and melanomacrophage centres area, mismatching reactive oxygen species and membrane damages. Moreover, nuclear alterations frequencies (vacuolated, condensed and blebbed) showed to be associated to cadmium exposure whereas others (lobed and bud) were associated to depuration period. Decrease on nuclear alterations frequencies was also associated with hemosiderin increase inside spleen and head kidney macrophages mainly during depurative processes. These data disclosure in temporal fashion the main processes that drive the nuclear alterations frequencies and their relationship with some cellular and systemic biomarkers. PMID:26619141
Numerical Modeling of S-Wave Generation by Fracture Damage in Underground Nuclear Explosions
2009-09-30
Element Package, ABAQUS. A user -defined subroutine , VUMAT, was written that incorporates the micro-mechanics based damage constitutive law described...dynamic damage evolution on the elastic and anelastic response. 2) whereas the Ashby/Sammis model was only applicable to the case where the initial cracks ...are all parallel and the same size, we can now include a specified distribution of initial crack sizes with random azimuthal orientation about the
ERIC Educational Resources Information Center
Reader, Mark
1979-01-01
Author believes that the nuclear fuel cycle is damaging to our health, physical system, ecosystem, and social system. He recommends reversing the trend toward nuclear power and solving the energy crisis by creating a global society able to live in balance with its physical environment. Journal available from 7 Harwood Drive, Amherst, New York…
Nuclear aggregates of polyamines in a radiation-induced DNA damage model.
Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano
2014-02-01
Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; ...
2017-11-16
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
Genomic biomarkers and clinical outcomes of physical activity.
Izzotti, Alberto
2011-07-01
Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms. © 2011 New York Academy of Sciences.
Statistical analysis of low-rise building damage caused by the San Fernando earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholl, R.E.
1974-02-01
An empirical investigation of damage to low-rise buildings in two selected control areas within Glendale, California, caused by the ground motion precipitated by the San Fernando earthquake of February 9, 1971 is summarized. The procedures for obtaining the appropriate data and the methodology used in deriving ground motion-damage relationships are described. Motion-damage relationships are derived for overall damage and for the most frequently damaged building components. Overall motion-damage relationships are expressed in terms of damage incidence (damage ratio) and damage cost (damage cost factor). The motion-damage relationships derived from the earthquake data are compared with similar data obtained for lou-risemore » buildings subjected to ground motion generated by an underground nuclear explosion. Overall comparison results show that for the same spectral acceleration, the earthquake caused slightly more damage. Differences in ground-motion characteristics for the two types of disturbances provide the most probable explanation for this discrepancy. (auth)« less
NASA Astrophysics Data System (ADS)
Drinkwater, Bruce; Malkin, Rob
2018-01-01
Nearly seven years after a powerful tsunami caused catastrophic damage to Japan's Fukushima Daiichi nuclear-power plant, the clean-up and recovery is still ongoing. Bruce Drinkwater and Rob Malkin recently visited the disaster site and the undamaged Tsuruga plant to see if they can pinpoint the true extent of the damage in the dangerously radioactive reactors
NASA Astrophysics Data System (ADS)
Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.
2016-01-01
The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.
Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja
2008-08-15
To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Huang, Shaoyan; Liu, Minbo
The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic rangemore » (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.« less
State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.
Grambow, B; Mostafavi, M
2014-11-01
It is still difficult to assess the risk originating from the radioactivity inventory remaining in the damaged Fukushima nuclear reactors. Here we show that cooling water analyses provide a means to assess source terms for potential future releases. Until now already about 34% of the inventories of (137)Cs of three reactors has been released into water. We found that the release rate of (137)Cs has been constant for 2 years at about 1.8% of the inventory per year indicating ongoing dissolution of the fuel debris. Compared to laboratory studies on spent nuclear fuel behavior in water, (137)Cs release rates are on the higher end, caused by the strong radiation field and oxidant production by water radiolysis and by impacts of accessible grain boundaries. It is concluded that radionuclide analyses in cooling water allow tracking of the conditions of the damaged fuel and the associated risks.
Concerns over modeling and warning capabilities in wake of Tohoku Earthquake and Tsunami
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-04-01
Improved earthquake models, better tsunami modeling and warning capabilities, and a review of nuclear power plant safety are all greatly needed following the 11 March Tohoku earthquake and tsunami, according to scientists at the European Geosciences Union's (EGU) General Assembly, held 3-8 April in Vienna, Austria. EGU quickly organized a morning session of oral presentations and an afternoon panel discussion less than 1 month after the earthquake and the tsunami and the resulting crisis at Japan's Fukushima nuclear power plant, which has now been identified as having reached the same level of severity as the 1986 Chernobyl disaster. Many of the scientists at the EGU sessions expressed concern about the inability to have anticipated the size of the earthquake and the resulting tsunami, which appears likely to have caused most of the fatalities and damage, including damage to the nuclear plant.
Ohnishi, Takeo
2012-01-01
On March 11, 2011 eastern Japan was struck by a magnitude 9.0 earthquake and an enormous tsunami, over 13 m in height, which together killed over 20,500 people and resulted in the evacuation of over 320,000 people from the devastated areas. This paper describes the damage sustained by the Fukushima-Daiichi nuclear power plant during this unpredicted major natural disaster and the events that happened in the months after this accident. The events occurring at the Fukushima-Daiichi nuclear power plant, the actions taken to minimize the effects of the damage to the plant and to protect the public, and the points at which the responses proved to be inadequate all offer lessons that will be of value to those planning for and responding to future natural disasters and accidents in Japan and around the world.
NASA Technical Reports Server (NTRS)
Long, D. M.
1982-01-01
The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.
NASA Astrophysics Data System (ADS)
Farnan, I.; Trachenko, K.
2003-04-01
29Si nuclear magnetic resonance (NMR) is a one of the most useful probes of the local structure of silicates. One of the results of recent studies of naturally radiation damaged zircons is that there is an evolution of the local structure in both crystalline and amorphous fractions of partially metamict zircon as a function of accumulated α-dose. We have examined the evolution of this local structure within the framework of several models of damage accumulation. The total number of displaced atoms produced per α-decay as function of accumulated dose, as measured by NMR, is not consistent with the idea of multiple overlap events being responsible for the evolution of the total damaged fraction. However, increased connectivity in the damaged region as the number of α-events increases is correlated to the degree of cascade overlap. The results of large scale atomistic (MD) simulations of heavy nuclei recoils at realistic energies (70keV) are consistent with the NMR quantification and also with TEM estimates of the diameters of damaged regions. The local heterogeneity (density and bonding) in the damaged area in the simulations is consistent with the existence of connected silicate tetrahedra. Detailed experiments on the annealing of damaged zircons at 500 and 600^oC have been performed. These show that a significant energetic barrier to the recrystallisation exists at these temperatures once a small fraction of damaged material has been recrystallised. This correlates well with the degree of cascade overlap. Indicating that the more connected SiO_4 tetrahedra present this barrier. A sample with very little cascade overlap can be annealed to ˜97% crystallinity at these temperatures.
NASA Technical Reports Server (NTRS)
Lett, J. T.; Peters, E. L.
1992-01-01
Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.
Mixed-Initiative Human-Robot Interaction: Definition, Taxonomy, and Survey
2015-01-01
response situations (i.e., harmful for human lives) that range from natural disasters (e.g., Fukushima nuclear plant meltdown [1]) to terrorist attacks... Fukushima Daiichi Nuclear Power Plants using mobile rescue robots," Journal of Field Robotics, vol. 30, pp. 44-63, 2013. [2] A. Davids, "Urban search...operating environment can be uncertain, unstructured, and hostile. The damaged Fukushima nuclear plant‟s high radiation level not only posed danger to
Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S.; Furusawa, Yoshiya; Uchihori, Yukio
2015-01-01
Abstract The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538
WHEN MODEL MEETS REALITY – A REVIEW OF SPAR LEVEL 2 MODEL AGAINST FUKUSHIMA ACCIDENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhegang Ma
The Standardized Plant Analysis Risk (SPAR) models are a set of probabilistic risk assessment (PRA) models used by the Nuclear Regulatory Commission (NRC) to evaluate the risk of operations at U.S. nuclear power plants and provide inputs to risk informed regulatory process. A small number of SPAR Level 2 models have been developed mostly for feasibility study purpose. They extend the Level 1 models to include containment systems, group plant damage states, and model containment phenomenology and accident progression in containment event trees. A severe earthquake and tsunami hit the eastern coast of Japan in March 2011 and caused significantmore » damages on the reactors in Fukushima Daiichi site. Station blackout (SBO), core damage, containment damage, hydrogen explosion, and intensive radioactivity release, which have been previous analyzed and assumed as postulated accident progression in PRA models, now occurred with various degrees in the multi-units Fukushima Daiichi site. This paper reviews and compares a typical BWR SPAR Level 2 model with the “real” accident progressions and sequences occurred in Fukushima Daiichi Units 1, 2, and 3. It shows that the SPAR Level 2 model is a robust PRA model that could very reasonably describe the accident progression for a real and complicated nuclear accident in the world. On the other hand, the comparison shows that the SPAR model could be enhanced by incorporating some accident characteristics for better representation of severe accident progression.« less
PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiese, Claudia; Rudolph, Jeanette Heede; Jakob, Burkhard
2012-03-26
The cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing radiation CDKN1A rapidly is recruited to the sites of particle traversal, and that CDKN1A foci formation in response to heavy ions is independent of its transactivation by TP53. In this paper, we show that exposure of normal human fibroblasts to X-rays or to H 2O 2 also induces nuclear accumulations of CDKN1A. We find that CDKN1A foci formation inmore » response to radiation damage is dependent on its dephosphorylation and on its direct physical interaction with PCNA. Live cell imaging analyses of ectopically expressed EGFP-CDKN1A and dsRed-PCNA show rapid recruitment of both proteins into foci after radiation damage. Detailed dynamic measurements reveal a slightly delayed recruitment of CDKN1A compared to PCNA, which is best described by bi-exponential curve fitting, taking the preceding binding of PCNA to DNA into account. Finally, we propose a regulatory role for CDKN1A in mediating PCNA function after radiation damage, and provide evidence that this role is distinct from its involvement in nucleotide excision repair and unrelated to double-strand break repair.« less
Vijaya Bharathi, B; Jaya Prakash, G; Krishna, K M; Ravi Krishna, C H; Sivanarayana, T; Madan, K; Rama Raju, G A; Annapurna, A
2015-06-01
The study was conducted to evaluate the vanadium-induced testicular toxicity and its effect on sperm parameters, sperm nuclear DNA damage and histological alterations in Sprague Dawley rats and to assess the protective effect of G-hesperidin against this damage. Treatment of rats with vanadium at a dose of 1 mg kg bw(-1) for 90 days resulted in significant reduction in serum testosterone levels, sperm count and motility. Further, a parallel increase in abnormal sperm morphology and adverse histopathological changes in testis was also associated with vanadium administration when compared to normal control. Moreover, sperm chromatin dispersion assay revealed that vanadium induces sperm nuclear DNA fragmentation. A marked increase in testicular malondialdehyde levels and decreased activity of antioxidant enzymes such as superoxide dismutase and catalase indicates vanadium-induced oxidative stress. Co-administration of G-hesperidin at a dose of 25 and 50 mg kg bw(-1) significantly attenuated the sperm parameters and histological changes by restoring the antioxidant levels in rat testis. These results suggested that vanadium exposure caused reduced bioavailability of androgens to the tissue and increased free radical formation, thereby causing structural and functional changes in spermatozoa. G-hesperidin exhibited antioxidant effect by protecting the rat testis against vanadium-induced oxidative damage, further ensures antioxidant potential of bioflavonoids. © 2014 Blackwell Verlag GmbH.
A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...
75 FR 64717 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... development of regulations pertaining to section 934, of the Energy Independence and Security Act of 2007... international supplementary fund in the event of certain nuclear incidents. The NOI provided a September 27... particular, its obligation to contribute to an international supplementary fund in the event of certain...
Mukherjee, Ananda; Patterson, Amanda L; George, Jitu W; Carpenter, Tyler J; Madaj, Zachary B; Hostetter, Galen; Risinger, John I; Teixeira, Jose M
2018-06-13
Endometrial adenocarcinoma (EndoCA) is the most common gynecological cancer type in the US, and its incidence is increasing. The majority of patients are disease-free after surgical resection of stage I tumors, which is often followed by radiation therapy, but most patients with advanced disease recur and have a poor prognosis, largely because the tumors become refractory to cytotoxic chemotherapies. PTEN, a commonly mutated tumor suppressor in EndoCAs, is well known for its ability to inhibit the AKT/mTOR signaling pathway. Nuclear functions for PTEN have been proposed as well, but whether those affect EndoCA development, progression, or outcomes is not well understood. Using immunohistochemistry, nuclear PTEN expression was observed in approximately half of EndoCA patient tumors, independent of grade and cytoplasmic PTEN expression. Higher levels of the DNA damage response (DDR) marker, yH2AX, were observed by immunohistochemistry and immunofluorescence in human EndoCA tumor sections that were PTEN-negative, in murine EndoCA tissues that were genetically modified to be PTEN-null, and in Ishikawa EndoCA cells, which do not express endogenous PTEN. Over-expression of exogenous PTEN-WT or PTEN-NLS, a modified PTEN with an added nuclear localization signal, significantly improved both DDR and G2/M transition in Ishikawa cells treated with a DNA damaging agent. Whereas PARP inhibition with Olaparib was not as effective in Ishikawa cells expressing native or PTEN-NLS, inhibition with Talazoparib was not affected by PTEN overexpression. These results suggest that nuclear PTEN subcellular localization in human EndoCA could be diagnostic when considering DDR therapeutic intervention. Copyright ©2018, American Association for Cancer Research.
Colombani, Juliette; Chauvet, Elodie; Amat, Sandrine; Dupuy, Nathalie; Gigmes, Didier
2017-04-01
The effects of radiation on polymeric materials are a topic of concern in a wide range of industries including the sterilization, and the nuclear power industry. While much work has concentrated on systems like polyolefins that are radiation sterilized, some work has been done on epoxy systems. The epoxy system studied is an epoxy/amine paint which is representative of the paint that covers the inner surfaces of the French nuclear reactor containment buildings. In case of a severe accident on a Nuclear Power Plant, fission products can be released from the nuclear fuel to the reactor containment building. Among them, volatile iodine (I 2 ) can be produced and can interact with the epoxy-paint. This paint is also subjected to gamma radiation damages (due to the high dose in the containment coming from radionuclides released from the fuel). So the epoxy-paint studied was exposed to gamma radiation under air atmosphere after being loaded with I 2 or not. The aim of this study is to characterize by FTIR spectroscopy the iodine-paint interactions, then to identify the radiation damages on the epoxy-paint, and to check their effects on these iodine-paint interactions. This work shows the potential of multi-block analysis method (ANOVA-PCA and COMDIM = AComDim) for such a study as it allows to identify the nature of iodine/epoxy-paint interactions and to characterize the gamma radiation damages on the epoxy-paint. AComDim method conduces to the extraction of Common Components to different tables and highlights factors of influence and their interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle
2017-11-03
We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Nuclear anomalies in the buccal cells of calcite factory workers
2010-01-01
The micronucleus (MN) assay on exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. To determine the genotoxic effects of calcite dust that forms during processing, MN assay was carried out in exfoliated buccal cells of 50 (25 smokers and 25 non-smokers) calcite factory workers and 50 (25 smokers and 25 non-smokers) age- and sex-matched control subjects. Frequencies of nuclear abnormalities (NA) other than micronuclei, such as binucleates, karyorrhexis, karyolysis and ‘broken eggs', were also evaluated. Micronuclei and the other aforementioned anomalies were analysed by two way analysis of covariance. The linear correlations between the types of micronucleus and nuclear abnormalities were determined by Spearman's Rho. There was a positive correlation between micronuclei and other types of nuclear abnormalities in accordance with the Spearman's Rho test. Results showed statistically significant difference between calcite fabric workers and control groups. MN and NA frequencies in calcite fabric workers were significantly higher than those in control groups (p < 0.05). The results of this study indicate that calcite fabric workers are under risk of significant cytogenetic damage. PMID:21637497
Root causes and impacts of severe accidents at large nuclear power plants.
Högberg, Lars
2013-04-01
The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.
NASA Astrophysics Data System (ADS)
Omoto, Akira
2012-02-01
Tsunami that followed M9.0 earthquake on March 11^th left the Fukushima-Daiichi Nuclear Power Plants without power and heat sink. While water makeup continued by AC-independent systems to keep the fuel core covered by coolant, operating team tried to depressurize and enable low pressure injection to the reactor to avoid overheating but was not successful enough primarily due to limited available resources. This resulted in core melt, hydrogen explosion and release of radioactivity to the environment. Key lessons learned are; 1) safety regulation and safety culture, 2) workable/executable severe accident management procedure, 3) crisis management and 4) design. Implications on security include revealed vulnerability and the nexus of safety and security. Given the scale of damage to the environmental, attention must be paid to defense against it and to societal safety goal of nuclear power by considering offsite remedial costs, compensation to damage, energy replacement cost etc. A sort of root cause analysis first by asking ``Why nuclear community failed to prevent this accident?'' was initiated by the University of Tokyo.
MDC1: The art of keeping things in focus.
Jungmichel, Stephanie; Stucki, Manuel
2010-08-01
The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures-usually termed DNA damage foci-is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.
NASA Astrophysics Data System (ADS)
Ismaila, Aminu; Md Kasmani, Rafiziana; Meng-Hock, Koh; Termizi Ramli, Ahmad
2017-10-01
This paper deals with the assessment of external explosion, resulting from accidental release of jet fuel from the large commercial airliner in the nuclear power plant (NPP). The study used three widely prediction methods such as Trinitrotoluene (TNT), multi energy (TNO) and Baker-strehow (BST) to determine the unconfined vapour cloud explosion (UVCE) overpressure within the distances of 100-1400 m from the first impact location. The containment building was taken as the reference position. The fatalities of persons and damage of structures was estimated using probit methodology. Analysis of the results shows that both reactor building and control-room will be highly damaged with risk consequences and probability, depending on the assumed position of the crash. The structures at the radial distance of 600 m may suffer major structural damage with probability ranging from 25 to 100%. The minor structural damage was observed throughout the bounds of the plant complex. The people working within 250 m radius may get affected with different fatality ranging from 28 to 100%. The findings of this study is valuable to evaluate the safety improvement needed on the NPP site and on the risk and consequences associated with the hydrocarbon fuel release/fires due to external hazards.
A-Type Lamins Maintain the Positional Stability of DNA Damage Repair Foci in Mammalian Nuclei
Mahen, Robert; Hattori, Hiroyoshi; Lee, Miyoung; Sharma, Pooja; Jeyasekharan, Anand D.; Venkitaraman, Ashok R.
2013-01-01
A-type lamins encoded by LMNA form a structural fibrillar meshwork within the mammalian nucleus. How this nuclear organization may influence the execution of biological processes involving DNA transactions remains unclear. Here, we characterize changes in the dynamics and biochemical interactions of lamin A/C after DNA damage. We find that DNA breakage reduces the mobility of nucleoplasmic GFP-lamin A throughout the nucleus as measured by dynamic fluorescence imaging and spectroscopy in living cells, suggestive of incorporation into stable macromolecular complexes, but does not induce the focal accumulation of GFP-lamin A at damage sites. Using a proximity ligation assay and biochemical analyses, we show that lamin A engages chromatin via histone H2AX and its phosphorylated form (γH2AX) induced by DNA damage, and that these interactions are enhanced after DNA damage. Finally, we use three-dimensional time-lapse imaging to show that LMNA inactivation significantly reduces the positional stability of DNA repair foci in living cells. This defect is partially rescued by the stable expression of GFP-lamin A. Thus collectively, our findings suggest that the dynamic structural meshwork formed by A-type lamins anchors sites of DNA repair in mammalian nuclei, providing fresh insight into the control of DNA transactions by nuclear structural organization. PMID:23658700
Teixeira, Erico S; Uppulury, Karthik; Privett, Austin J; Stopera, Christopher; McLaurin, Patrick M; Morales, Jorge A
2018-05-06
Proton cancer therapy (PCT) utilizes high-energy proton projectiles to obliterate cancerous tumors with low damage to healthy tissues and without the side effects of X-ray therapy. The healing action of the protons results from their damage on cancerous cell DNA. Despite established clinical use, the chemical mechanisms of PCT reactions at the molecular level remain elusive. This situation prevents a rational design of PCT that can maximize its therapeutic power and minimize its side effects. The incomplete characterization of PCT reactions is partially due to the health risks associated with experimental/clinical techniques applied to human subjects. To overcome this situation, we are conducting time-dependent and non-adiabatic computer simulations of PCT reactions with the electron nuclear dynamics (END) method. Herein, we present a review of our previous and new END research on three fundamental types of PCT reactions: water radiolysis reactions, proton-induced DNA damage and electron-induced DNA damage. These studies are performed on the computational prototypes: proton + H₂O clusters, proton + DNA/RNA bases and + cytosine nucleotide, and electron + cytosine nucleotide + H₂O. These simulations provide chemical mechanisms and dynamical properties of the selected PCT reactions in comparison with available experimental and alternative computational results.
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
Regulation of ATM-Dependent DNA Damage Responses in Breast Cancer by the RhoGEF Net1
2013-04-01
Science 279: 509-514. 5. Jaffe AB. et al., (2010) RhoGTPases: Biochemistry and Biology. Annu. Rev. Cell Dev. Biol. 21:247-269. 6. Rossman KL, et al...exchange factor Net1 is regulated by nuclear sequestration. J. Biol. Chem. 277:17, 14581-14588. 17. Harper JW, et al., (2007) The DNA Damage Response: Ten...Research (AACR) Annual Meeting and 2013 Annual Cancer Research Biochemistry Retreat Regulation of ATM-dependent DNA damage signaling in human breast
Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola
2018-03-24
Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Li, Yi; Zhu, Hong; Zhang, Huajun; Chen, Zhangran; Tian, Yun; Xu, Hong; Zheng, Tianling; Zheng, Wei
2014-08-15
Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on Alexandrium tamarense were measured through studying the algicidal procedure, nuclear damage and transcription of related genes. Medium components were optimized to improve algicidal activity, and characteristics of algicidal extracts were determined. Transmission electron microscope analysis revealed that the cell structure was broken. Cell membrane integrity destruction and nuclear structure degradation were monitored using confocal laser scanning microscope, and the rbcS, hsp and proliferating cell nuclear antigen (PCNA) gene expressions were studied. Results showed that 1.0% tryptone, 0.4% glucose and 0.8% MgCl2 were the optimal nutrient sources. The algicidal extracts were heat and pH stable, non-protein and less than 1kD. Cell membrane and nuclear structure integrity were lost, and the transcription of the rbcS and PCNA genes were significantly inhibited and there was up-regulation of hsp gene expression during the exposure procedure. The algicidal extracts destroyed the cell membrane and nuclear structure integrity, inhibited related gene expression and, eventually, lead to the inhibition of algal growth. All the results may elaborate firstly the cell death process and nuclear damage in A. tamarense which was induced by algicidal extracts, and the algicidal extracts could be potentially used as bacterial control of HABs in future. Copyright © 2014 Elsevier B.V. All rights reserved.
Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability.
Takaki, Tohru; Montagner, Marco; Serres, Murielle P; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J; Sahai, Erik; Petronczki, Mark
2017-07-24
Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability.
Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability
Takaki, Tohru; Montagner, Marco; Serres, Murielle P.; Le Berre, Maël; Russell, Matt; Collinson, Lucy; Szuhai, Karoly; Howell, Michael; Boulton, Simon J.; Sahai, Erik; Petronczki, Mark
2017-01-01
Altered nuclear shape is a defining feature of cancer cells. The mechanisms underlying nuclear dysmorphia in cancer remain poorly understood. Here we identify PPP1R12A and PPP1CB, two subunits of the myosin phosphatase complex that antagonizes actomyosin contractility, as proteins safeguarding nuclear integrity. Loss of PPP1R12A or PPP1CB causes nuclear fragmentation, nuclear envelope rupture, nuclear compartment breakdown and genome instability. Pharmacological or genetic inhibition of actomyosin contractility restores nuclear architecture and genome integrity in cells lacking PPP1R12A or PPP1CB. We detect actin filaments at nuclear envelope rupture sites and define the Rho-ROCK pathway as the driver of nuclear damage. Lamin A protects nuclei from the impact of actomyosin activity. Blocking contractility increases nuclear circularity in cultured cancer cells and suppresses deformations of xenograft nuclei in vivo. We conclude that actomyosin contractility is a major determinant of nuclear shape and that unrestrained contractility causes nuclear dysmorphia, nuclear envelope rupture and genome instability. PMID:28737169
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures
NASA Astrophysics Data System (ADS)
Tahir, Fraaz
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate
Liu, Peng; Zhang, Yanwen; Xue, Haizhou; ...
2016-01-09
Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO 3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss,more » the velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO 3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less
Koller, Verena J; Fürhacker, Maria; Nersesyan, Armen; Mišík, Miroslav; Eisenbauer, Maria; Knasmueller, Siegfried
2012-05-01
Glyphosate (G) is the largest selling herbicide worldwide; the most common formulations (Roundup, R) contain polyoxyethyleneamine as main surfactant. Recent findings indicate that G exposure may cause DNA damage and cancer in humans. Aim of this investigation was to study the cytotoxic and genotoxic properties of G and R (UltraMax) in a buccal epithelial cell line (TR146), as workers are exposed via inhalation to the herbicide. R induced acute cytotoxic effects at concentrations > 40 mg/l after 20 min, which were due to membrane damage and impairment of mitochondrial functions. With G, increased release of extracellular lactate dehydrogenase indicative for membrane damage was observed at doses > 80 mg/l. Both G and R induced DNA migration in single-cell gel electrophoresis assays at doses > 20 mg/l. Furthermore, an increase of nuclear aberrations that reflect DNA damage was observed. The frequencies of micronuclei and nuclear buds were elevated after 20-min exposure to 10-20 mg/l, while nucleoplasmatic bridges were only enhanced by R at the highest dose (20 mg/l). R was under all conditions more active than its active principle (G). Comparisons with results of earlier studies with lymphocytes and cells from internal organs indicate that epithelial cells are more susceptible to the cytotoxic and DNA-damaging properties of the herbicide and its formulation. Since we found genotoxic effects after short exposure to concentrations that correspond to a 450-fold dilution of spraying used in agriculture, our findings indicate that inhalation may cause DNA damage in exposed individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja
2008-08-15
To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay andmore » Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.« less
Particle filtering based structural assessment with acoustic emission sensing
NASA Astrophysics Data System (ADS)
Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul
2017-02-01
Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.
Tsubokura, Masaharu; Hara, Kazuo; Matsumura, Tomoko; Sugimoto, Amina; Nomura, Shuhei; Hinata, Masamitsu; Shibuya, Kenji; Kami, Masahiro
2014-02-01
The 2011 earthquake and Fukushima nuclear disaster in Japan have had devastating effects on residents near the damaged nuclear power plant, but quantifying its effect on their health has been difficult. Among the 564 residents of Iitate Village and Soma City who enrolled in this study, we evaluated the changes of clinical parameters in 155 participants who underwent annual health evaluations in the previous year and after the earthquake. Psychological distress was also measured by using patient health questionnaire 9 (PHQ-9). Participants (median age, 64 years) showed significant post-disaster increases in body weight, body mass index, systolic and diastolic blood pressure, blood glucose levels, and triglyceride levels. PHQ-9 scores of 10 or greater were found in 12% of the subjects, indicating that a substantial number had major depression. The findings in this study showed substantial deterioration in clinical parameters related to lifestyle diseases and the presence of general psychological distress among residents living near the damaged nuclear power plant after the Fukushima Daiichi disaster. In addition to controlling the levels of radiation exposure, aggressive management of immediate physical and mental health crisis for residents may be necessary in future nuclear accidents.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... high wind conditions pass, wind damage to the plant and surrounding area might preclude a sufficient... Power Station, Units 1, 2 and 3, Dominion Nuclear Connecticut, Inc.; Exemption 1.0 Background Dominion..., DPR-65 and NPF-49, which authorize operation of the Millstone Power Station, Unit Nos. 1, 2 and 3...
Commentary from Westminster. Medical effects of nuclear war.
Deitch, R
1983-03-12
A British Medical Association report on the medical consequences of nuclear war, scheduled for commercial publication in April 1983, could damage the Government's arguments for maintaining a nuclear deterrent. The gist of the BMA's findings is that Britain could not possibly cope with the aftermath of nuclear attack. Although Prime Minister Thatcher has made no comment, both the Home Office and the Department of Health and Social Security have criticized the report's negative conclusions. The BMA is expected to take up the issue at its annual meeting, and the Labour party has called for a Parliamentary debate on the report and its implications.
1977-06-01
determined experimentally) and the distribution of energy deposited into nuclear processes by the boron ions. Damage is a product of this energy distri...energy deposited into nuclear processes, k is a constant adjusted to produce the total number of vacancies calculated in Fig. 11, and Tda m in the...profile computed from the energy depos- ited into nuclear processes = time constant for the release of vacancies fr( ,-, vacancy 1.- t ers C (liilibriul
Parvoviral nuclear import: bypassing the host nuclear-transport machinery.
Cohen, Sarah; Behzad, Ali R; Carroll, Jeffrey B; Panté, Nelly
2006-11-01
The parvovirus Minute virus of mice (MVM) is a small DNA virus that replicates in the nucleus of its host cells. However, very little is known about the mechanisms underlying parvovirus' nuclear import. Recently, it was found that microinjection of MVM into the cytoplasm of Xenopus oocytes causes damage to the nuclear envelope (NE), suggesting that the nuclear-import mechanism of MVM involves disruption of the NE and import through the resulting breaks. Here, fluorescence microscopy and electron microscopy were used to examine the effect of MVM on host-cell nuclear structure during infection of mouse fibroblast cells. It was found that MVM caused dramatic changes in nuclear shape and morphology, alterations of nuclear lamin immunostaining and breaks in the NE of infected cells. Thus, it seems that the unusual nuclear-import mechanism observed in Xenopus oocytes is in fact used by MVM during infection of host cells.
Diagnosis of condensation-induced waterhammer: Case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Rothe, P.H.; Wallis, G.B.
1988-10-01
This guidebook provides reference material and diagnostic procedures concerning condensation-induced waterhammer in nuclear power plants. Condensation-induced waterhammer is the most damaging form of waterhammer, and its diagnosis is complicated by the complex nature of the underlying phenomena. In Volume 1, the guidebook groups condensation-induced waterhammers into five event classes which have similar phenomena and levels of damage. Diagnostic guidelines focus on locating the event center where condensation and slug acceleration take place. Diagnosis is described in three stages: an initial assessment, detailed evaluation and final confirmation. Graphical scoping analyses are provided to evaluate whether an event from one of themore » event classes could have occurred at the event center. Examples are provided for each type of waterhammer. Special instructions are provided for walking down damaged piping and evaluating damage due to waterhammer. To illustrate the diagnostic methods and document past experience, six case studies have been compiled in Volume 2. These case studies, based on actual condensation-induced waterhammer events at nuclear plants, present detailed data and work through the event diagnosis using the tools introduced in the first volume. 20 refs., 21 figs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolaczkowski, A.M.; Lambright, J.A.; Ferrell, W.L.
This document contains the internal event initiated accident sequence analyses for Peach Bottom, Unit 2; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Peach Bottom, Unit 2, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provided additional insights regarding the dominant contributors to the Peach Bottom core damage frequency estimate. The mean core damage frequency at Peach Bottom wasmore » calculated to be 8.2E-6. Station blackout type accidents (loss of all ac power) were found to dominate the overall results. Anticipated Transient Without Scram accidents were also found to be non-negligible contributors. The numerical results are largely driven by common mode failure probability estimates and to some extent, human error. Because of significant data and analysis uncertainties in these two areas (important, for instance, to the most dominant scenario in this study), it is recommended that the results of the uncertainty and sensitivity analyses be considered before any actions are taken based on this analysis.« less
Diagnosis of condensation-induced waterhammer: Methods and background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Rothe, P.H.; Wallis, G.B.
This guidebook provides reference material and diagnostic procedures concerning condensation-induced waterhammer in nuclear power plants. Condensation-induced waterhammer is the most damaging form of waterhammer and its diagnosis is complicated by the complex nature of the underlying phenomena. In Volume 1, the guidebook groups condensation-induced waterhammers into five event classes which have similar phenomena and levels of damage. Diagnostic guidelines focus on locating the event center where condensation and slug acceleration take place. Diagnosis is described in three stages: an initial assessment, detailed evaluation and final confirmation. Graphical scoping analyses are provided to evaluate whether an event from one of themore » event classes could have occurred at the event center. Examples are provided for each type of waterhammer. Special instructions are provided for walking down damaged piping and evaluating damage due to waterhammer. To illustrate the diagnostic methods and document past experience, six case studies have been compiled in Volume 2. These case studies, based on actual condensation-induced waterhammer events at nuclear plants, present detailed data and work through the event diagnosis using the tools introduced in the first volume. 65 figs., 8 tabs.« less
Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh
2015-01-01
The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms. PMID:25756782
Ioannou, Dimitrios; Kandukuri, Lakshmi; Quadri, Ameer; Becerra, Victor; Simpson, Joe Leigh; Tempest, Helen G
2015-01-01
The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1) More peripheral radial organization; 2) Alterations in the global distribution of chromosomes; and 3) More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively). Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms.
NASA Astrophysics Data System (ADS)
Griffin, Patrick; Rochman, Dimitri; Koning, Arjan
2017-09-01
A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.
Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak
2018-02-01
Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint.
Ghavidel, Ata; Kislinger, Thomas; Pogoutse, Oxana; Sopko, Richelle; Jurisica, Igor; Emili, Andrew
2007-11-30
In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Fifield, Leonard S.; Jones, Anthony M.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and NDE is conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locatemore » and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. This work examines a physics-based model of a cable system and relates it to FDR measurements for a better understanding of specific damage influences on defect detectability.« less
Sirini, Matias A; Anchordoquy, Juan Mateo; Anchordoquy, Juan Patricio; Pascua, Ana M; Nikoloff, Noelia; Carranza, Ana; Relling, Alejandro E; Furnus, Cecilia C
2017-10-01
The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.
2009-09-15
DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histonemore » H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.« less
Olszewska-Pazdrak, Barbara; McVicar, Scott D.; Rayavara, Kempaiah; Moya, Stephanie M.; Kantara, Carla; Gammarano, Chris; Olszewska, Paulina; Fuller, Gerald M.; Sower, Laurie E.; Carney, Darrell H.
2016-01-01
There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation. PMID:27388041
Analytic barrage attack model. Final report, January 1986-January 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.
An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for themore » analytic model and for a numerical model used to check the analytic results.« less
Global Reprogramming of Host SUMOylation during Influenza Virus Infection
Domingues, Patricia; Golebiowski, Filip; Tatham, Michael H.; Lopes, Antonio M.; Taggart, Aislynn; Hay, Ronald T.; Hale, Benjamin G.
2015-01-01
Summary Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection. PMID:26549460
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis
1986-01-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis
1986-07-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Facility Targeting, Protection and Mission Decision Making Using the VISAC Code
NASA Technical Reports Server (NTRS)
Morris, Robert H.; Sulfredge, C. David
2011-01-01
The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly
Hiyama, Atsuki; Nohara, Chiyo; Kinjo, Seira; Taira, Wataru; Gima, Shinichi; Tanahara, Akira; Otaki, Joji M.
2012-01-01
The collapse of the Fukushima Dai-ichi Nuclear Power Plant caused a massive release of radioactive materials to the environment. A prompt and reliable system for evaluating the biological impacts of this accident on animals has not been available. Here we show that the accident caused physiological and genetic damage to the pale grass blue Zizeeria maha, a common lycaenid butterfly in Japan. We collected the first-voltine adults in the Fukushima area in May 2011, some of which showed relatively mild abnormalities. The F1 offspring from the first-voltine females showed more severe abnormalities, which were inherited by the F2 generation. Adult butterflies collected in September 2011 showed more severe abnormalities than those collected in May. Similar abnormalities were experimentally reproduced in individuals from a non-contaminated area by external and internal low-dose exposures. We conclude that artificial radionuclides from the Fukushima Nuclear Power Plant caused physiological and genetic damage to this species. PMID:22880161
The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly.
Hiyama, Atsuki; Nohara, Chiyo; Kinjo, Seira; Taira, Wataru; Gima, Shinichi; Tanahara, Akira; Otaki, Joji M
2012-01-01
The collapse of the Fukushima Dai-ichi Nuclear Power Plant caused a massive release of radioactive materials to the environment. A prompt and reliable system for evaluating the biological impacts of this accident on animals has not been available. Here we show that the accident caused physiological and genetic damage to the pale grass blue Zizeeria maha, a common lycaenid butterfly in Japan. We collected the first-voltine adults in the Fukushima area in May 2011, some of which showed relatively mild abnormalities. The F₁ offspring from the first-voltine females showed more severe abnormalities, which were inherited by the F₂ generation. Adult butterflies collected in September 2011 showed more severe abnormalities than those collected in May. Similar abnormalities were experimentally reproduced in individuals from a non-contaminated area by external and internal low-dose exposures. We conclude that artificial radionuclides from the Fukushima Nuclear Power Plant caused physiological and genetic damage to this species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Three Mile Island (TMI) Unit 2 accident on March 28, 1979 was and is of great concern to the nuclear industry; electric power generating companies and their customers, regulatory and other government agencies, the entire nuclear community, and to the country as a whole. While the accident resulted in only limited external plant radiation exposure, the plant itself suffered extensive damage with high radiation contamination within the reactor and auxiliary system facilities. The GEND Planning Report for cleanup activities at TMI-2 covers the areas of: instrumentation and electrical equipment survivability; fission product transport; decontamination/radiation dose reduction technology; data bankmore » organization and sample archive facility; characterization of primary system pressure boundary and mechanical components; core damage assessment; and fuel handling, removal, examination and disposal.« less
Three-dimensional NDE of VHTR core components via simulation-based testing. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzina, Bojan; Kunerth, Dennis
2014-09-30
A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensionalmore » Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all existing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform measurements. Outlook. The next stage in the development of this technology includes items such as (a) non-contact generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain information on the certainty of obtained images; and (e) optimization of the computational scheme toward real-time, model-based imaging of damage in VHTR core components.« less
Physics from the News--Fukushima Daiichi: Radiation Doses and Dose Rates
ERIC Educational Resources Information Center
Bartlett, A. A.
2011-01-01
The nuclear disaster that was triggered by the Japanese earthquake and the following tsunami of March 11, 2011, continues to be the subject of a great deal of news coverage. The tsunami caused severe damage to the nuclear power reactors at Fukushima Daiichi, and this led to the escape of unknown quantities of radioactive material from the damaged…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joerissen, G.; Zuend, H.
From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). The probability and the consequences of an aircraft crash on a nuclear power plant incorporating a light water reactor are estimated considering the probabilities of an aircraft strike, missile penetration through walls and damage of structures and systems important for safety. The estimated risks are presented in a Farmer diagram and compared with tolerable risk limits. (6 references) (auth)
R.A. Progar; M.J. Rinella; D. Fekedulegn; L. Butler
2010-01-01
In addition to damaging trees, the eastern tent caterpillar is implicated in early fetal loss and late-term abortion in horses. In a field study, we evaluated the potential biological control of the caterpillar using eastern tent caterpillar nuclear polyhedrosis virus (ETNPV), a naturally occurring virus that is nearly species-specific. Egg masses were hatched and...
Lessons Learned for Space Safety from the Fukushima Nuclear Power Plant Accident
NASA Astrophysics Data System (ADS)
Nogami, Manami; Miki, Masami; Mitsui, Masami; Kawada, Ysuhiro; Takeuchi, Nobuo
2013-09-01
On March 11 2011, Tohoku Region Pacific Coast Earthquake hit Japan and caused the devastating damage. The Fukushima Nuclear Power Station (NPS) was also severely damaged.The Japanese NPSs are designed based on the detailed safety requirements and have multiple-folds of hazard controls to the catastrophic hazards as in space system. However, according to the initial information from the Tokyo Electric Power Company (TEPCO) and the Japanese government, the larger-than-expected tsunami and subsequent events lost the all hazard controls to the release of radioactive materials.At the 5th IAASS, Lessons Learned from this disaster was reported [1] mainly based on the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [2] published by Nuclear Emergency Response Headquarters in June 2011, three months after the earthquake.Up to 2012 summer, the major investigation boards, including the Japanese Diet, the Japanese Cabinet and TEPCO, published their final reports, in which detailed causes of this accident and several recommendations are assessed from each perspective.In this paper, the authors examine to introduce the lessons learned to be applied to the space safety as findings from these reports.
Induced cytotoxic damage by exposure to gasoline vapors: a study in Sinaloa, Mexico.
Martinez-Valenzuela, Carmen; Soto, Fernanda Balderrama; Waliszewski, Stefan M; Meza, Enrique; Arroyo, Sandra Gómez; Martínez, Luis Daniel Ortega; Meraz, Eliakym Arambula; Caba, Mario
2017-01-01
Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls. In addition, we explored if factors such as smoking habits, alcohol consumption, and worked years exert an additional synergistic cytotoxic effect. There were statistically significant higher frequencies (p < 0.05) of nuclear abnormalities among exposed attendants compared to the controls. No statistical significant (p > 0.05) additional effect of lifestyle habits such as smoking and alcohol consumption or worked years on the cytotoxicity was observed. The results showed that from the beginning exposure to gasoline vapors increased the frequency of nuclear abnormalities in buccal epithelial cells. Our results provide valuable information on cytotoxic damage for an early pre-symptomatic diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, Peter
2013-09-30
The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied bymore » significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV materials. Through the results obtained from this integrated materials behavior and NDE study, new insight will be gained into the best nondestructive creep and microstructure monitoring methods for the particular mechanisms identified in these materials. The proposed project includes collaboration with a national laboratory partner and the results will also serve as a foundation to guide the efforts of scientists in the DOE laboratory, university, and industrial communities concerned with the technological challenges of monitoring creep and microstructural evolution in materials planned to be used in Generation IV Nuclear Energy Systems.« less
NASA Astrophysics Data System (ADS)
Bonner, J. L.; Stump, B. W.
2011-12-01
On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial confinement. The Frozen Rock Experiment in 2006 found only minor differences in seismic coupling for explosions in frozen and unfrozen rock. The seismo-acoustic source function was the focus of the above- and below-ground Humble Redwood explosions (2007, 2009 ) in New Mexico and detonations of rocket motor explosions in Utah. Acoustic travel time calibration for the IMS was accomplished with the 2009 and 2011 100-ton surface explosions in southern Israel. The New England Damage Experiment in 2009 correlated increased shear wave generation with increased rock damage from explosions. Damage from explosions continues to be an important research topic at Nevada's National Center for Nuclear Security with the ongoing Source Physics Experiment. A number of exciting experiments are already planned for the future and thus continue the effort to improve global detection, location, and identification of nuclear explosions.
Lessons Learned from the Fukushima Nuclear Accident due to Tohoku Region Pacific Coast Earthquake
NASA Astrophysics Data System (ADS)
Miki, M.; Wada, M.; Takeuchi, N.
2012-01-01
On March 11 2011, Great Eastern Japan Earthquake hit Japan and caused the devastating damage. Fukushima Nuclear Power Station (NPS) also suffered damages and provided the environmental effect with radioactive products. The situation has been settled to some extent about two months after the accidents, and currently, the cooling of reactor is continuing towards settling the situation. Japanese NPSs are designed based on safety requirements and have multiple-folds of hazard controls. However, according to publicly available information, due to the lager-than-anticipated Tsunami, all the power supply were lost, which resulted in loss of hazard controls. Also, although nuclear power plants are equipped with system/procedure in case of loss of all controls, recovery was not made as planned in Fukushima NPSs because assumptions for hazard controls became impractical or found insufficient. In consequence, a state of emergency was declared. Through this accident, many lessons learned have been obtained from the several perspectives. There are many commonality between nuclear safety and space safety. Both industries perform thorough hazard assessments because hazards in both industries can result in loss of life. Therefore, space industry must learn from this accident and reconsider more robust space safety. This paper will introduce lessons learned from Fukushima nuclear accident described in the "Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety" [1], and discuss the considerations to establish more robust safety in the space systems. Detailed information of Fukushima Dai-ichi NPS are referred to this report.
Modeling property evolution of container materials used in nuclear waste storage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin
2010-03-01
Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.
A new perspective on severe nuclear accidents.
Lee, Jaiki
2012-03-01
The reactions of the public in Korea to the nuclear accident at the Fukushima Daiichi plants in Japan, particularly over-reactions, are reviewed, with the conclusion that significant radioactive contamination of a small country could lead to a severe national crisis. The most important factor is the socio-economic damage caused by stigma, which in turn is caused by a misunderstanding of the radiation risk. Given that nuclear power is an important choice in the face of the threat of climate change, the public's perceptions need to be changed at any cost, not only in those countries operating nuclear power plants but globally as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paknahad, Elham; Grosvenor, Andrew P.
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigatemore » the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.« less
NASA Astrophysics Data System (ADS)
Paknahad, Elham; Grosvenor, Andrew P.
2017-12-01
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
NASA Astrophysics Data System (ADS)
Johns, Steve; Shin, Wontak; Kane, Joshua J.; Windes, William E.; Ubic, Rick; Karthik, Chinnathambi
2018-07-01
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. To ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ∼60 μm. Discs 3 mm in diameter were then oxidized at temperatures between 575 °C and 625 °C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575 °C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.
Carbajal-López, Yolanda; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Calderón-Segura, María Elena; Martínez-Arroyo, Amparo
2016-02-01
The aim of this study was to evaluate the genotoxic effect of pesticides in exfoliated buccal cells of workers occupationally exposed in Guerrero, Mexico, using the comet assay and the micronucleus test. The study compared 111 agricultural workers in three rural communities (Arcelia 62, Ajuchitlan 13, and Tlapehuala 36), with 60 non-exposed individuals. All the participants were males. The presence of DNA damage was investigated in the exfoliated buccal cells of study participants with the comet assay and the micronucleus (MN) test; comet tail length was evaluated in 100 nuclei and 3000 epithelial cells of each individual, respectively; other nuclear anomalies such as nuclear buds, karyolysis, karyorrhexis, and binucleate cells were also evaluated. Study results revealed that the tail migration of DNA and the frequency of MN increased significantly in the exposed group, which also showed nuclear anomalies associated with cytotoxic or genotoxic effect. No positive correlation was noted between exposure time and tail length and micronuclei frequencies. No significant effect on genetic damage was observed as a result of age, smoking, and alcohol consumption. The MN and comet assay in exfoliated buccal cells are useful and minimally invasive methods for monitoring genetic damage in individuals exposed to pesticides. This study provided valuable data for establishing the possible risk to human health associated with pesticide exposure.
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, Steve; Shin, Wontak; Kane, Joshua J.
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
Johns, Steve; Shin, Wontak; Kane, Joshua J.; ...
2018-04-03
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less
Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru
2014-01-01
Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842
Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru; Hara, Hideaki
2014-01-01
Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina.
The transition to a deterrence posture more reliant on strategic defenses
NASA Astrophysics Data System (ADS)
Chrzanowski, Paul L.
1988-12-01
Strategic nuclear deterrence is currently based on the overwhelming capability of the arsenals of the two superpowers. Massive damage would be inflicted upon the military forces and industrial capacity of both sides should nuclear war occur and escalation of conflict not be controlled. Nuclear deterrence has fostered a condition of peace in central Europe and an absence of direct conflict between the U.S. and the Soviet Union. However, some question whether deterrence will remain effective into the indefinite future, and should deterrence fail the consequences are grave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taslitt, N.
1985-09-01
The objectives of this project were to (1) determine whether the radiation from a nuclear weapon can disable various arming and fuzing components by causing permanent damage; (2) determine whether transient nuclear radiation can induce an operating fuze to malfunction; and (3) compare nuclear weapon radiation effects with those produced by various radiation simulators. Data obtained revealed that none of the inertial components were detrimentally affected. The electronic components were severely degraded but would have satisfactorily accomplished their tactical functions. No electromagnetic effects were detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A
2008-10-09
The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, F.R.
1962-12-01
An arrangement is described for nuclear power plants including a reactor and at least one heat exchanger having primary and secondary circuits through which are passed heat-conveying fluids. Pressure-resisting walls about the heat exchangers and the reactor are either integral with or rigidly connected to one another. The heat exchangers are arranged so that their casings tend to shield withdrawn control rods from damage by radiation. (R.J.S.)
Ukraine: Current Issues and U.S. Policy
2012-05-10
the Chernobyl nuclear reactor site. In total, the United States has contributed almost $240 million to Chernobyl cleanup effort. At an international...pledging conference for Chernobyl in April 2011, the United States pledged another $123 million.9 The two countries are cooperating on other...dedicated to improving the safety of the Chernobyl nuclear facility, including finishing the construction of the containment structure over the damaged
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... (Effective Immediately) I The Licensee identified in this Order holds licenses issued by the U.S. Nuclear... fuel pool. This caused concerns that the pool may have boiled dry, resulting in fuel damage.\\1... shall be whether this Order should be sustained. Pursuant to 10 CFR 2.202(c)(2)(i), the Licensee, or any...
Conventional Expeditionary Forces: A 21st Century Triad for Strategic Deterrence
2009-05-27
testing and transfers of nuclear materials, the ability to effectively monitor and track all such activities 100% of the time does not exist at present nor...Limited Test Ban Treaty of 1963 sought to stabilize the arms race and reduce environmental damage by banning atmospheric, sea-based, and space-based...nuclear weapons tests , thereby limiting future testing to underground conditions, and was signed 139
Targets for the production of radioisotopes and method of assembly
Quinby, Thomas C.
1976-01-01
A target for preparation of radioisotopes by nuclear bombardment, and a method for its assembly are provided. A metallic sample to be bombarded is enclosed within a metallic support structure and the resulting target subjected to heat and pressure to effect diffusion bonds therebetween. The bonded target is capable of withstanding prolonged exposure to nuclear bombardment without thermal damage to the sample.
Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata
2012-09-15
Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.
Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.
Bakkali, F; Averbeck, S; Averbeck, D; Zhiri, A; Idaomar, M
2005-08-01
In order to get an insight into the possible genotoxicity of essential oils (EOs) used in traditional pharmacological applications we tested five different oils extracted from the medicinal plants Origanum compactum, Coriandrum sativum, Artemisia herba alba, Cinnamomum camphora (Ravintsara aromatica) and Helichrysum italicum (Calendula officinalis) for genotoxic effects using the yeast Saccharomyces cerevisiae. Clear cytotoxic effects were observed in the diploid yeast strain D7, with the cells being more sensitive to EOs in exponential than in stationary growth phase. The cytotoxicity decreased in the following order: Origanum compactum>Coriandrum sativum>Artemisia herba alba>Cinnamomum camphora>Helichrysum italicum. In the same order, all EOs, except that derived from Helichrysum italicum, clearly induced cytoplasmic petite mutations indicating damage to mitochondrial DNA. However, no nuclear genetic events such as point mutations or mitotic intragenic or intergenic recombination were induced. The capacity of EOs to induce nuclear DNA damage-responsive genes was tested using suitable Lac-Z fusion strains for RNR3 and RAD51, which are genes involved in DNA metabolism and DNA repair, respectively. At equitoxic doses, all EOs demonstrated significant gene induction, approximately the same as that caused by hydrogen peroxide, but much lower than that caused by methyl methanesulfonate (MMS). EOs affect mitochondrial structure and function and can stimulate the transcriptional expression of DNA damage-responsive genes. The induction of mitochondrial damage by EOs appears to be closely linked to overall cellular cytotoxicity and appears to mask the occurrence of nuclear genetic events. EO-induced cytotoxicity involves oxidative stress, as is evident from the protection observed in the presence of ROS inhibitors such as glutathione, catalase or the iron-chelating agent deferoxamine.
Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA
NASA Astrophysics Data System (ADS)
Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio
2016-07-01
Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data and SRIM calculations. Preliminary studies regarding the biological endpoints DSB (cluster) and chromosomal aberrations have been performed for selected light ions up to neon. Validation with experimental data as well as further calculations are underway and final results will be presented at the meeting. Mitochondrial alterations have been implicated in radiation-induced cardiovascular effects. To extend the applicability of PARTRAC biophysical tool towards effects on mitochondria, the nuclear DNA and chromatin as the primary target of radiation has been complemented by a model of mitochondrial DNA (mtDNA) to mimic a coronary cell with thousand mitochondria contained in the cytoplasm. Induced mtDNA damage (SSB, DSB) has been scored for 60Co photons and 5 MeV alpha-particle irradiation, assuming alternative radical scavenging capacities within the mitochondria. While direct radiation effects in mtDNA are identical to nuclear DNA, indirect effects in mtDNA are in general larger due to lower scavenging and the lack of DNA-protecting histones. These simulations complement the scarce experimental data on radiation-induced mtDNA damage and help elucidate the relative roles of initial mtDNA versus nuclear DNA damage and of pathways that amplify their respective effects. Ongoing and planned developments of PARTRAC include coupling with a radiation transport code and track-structure based calculations of cell killing for RBE studies on macroscopic scales within a mixed ion field. [1] Friedland, Dingfelder et al. (2011): "Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC", Mutat. Res. 711, 28-40 [2] Friedland et al. (2013): "Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation", Mutat. Res. 756, 213-223 [3] Schmid, Friedland et al. (2015): "Sub-micrometer 20 MeV protons or 45 MeV lithium spot irradiation enhances yields of dicentric chromosomes due to clustering of DNA double-strand breaks", Mutat. Res. 793, 30-40 [4] Friedland, Schmitt, Kundrat (2015): "Modelling Proton bunches focussed to submicrometre scales: Low-LET Radiation damage in high-LET-like spatial structure", Radiat. Prot. Dosim. 166, 34-37 [5] Schmitt, Friedland, Kundrat, Dingfelder, Ottolenghi (2015): "Cross section scaling for track structure simulations of low-energy ions in liquid water", Radiat. Prot. Dosim. 166, 15-18} Supported by the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 249689 "DoReMi" and the German Federal Ministry on Education and Research (KVSF-Projekt "LET-Verbund").
The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage.
Douiev, Liza; Saada, Ann
2018-06-07
Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50 μM KCN for 24 h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD + ) deficit combined with a replicative state, rather than oxidative stress and energy depletion. Copyright © 2018 Elsevier B.V. All rights reserved.
Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann
License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflectmore » typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.« less
NASA Astrophysics Data System (ADS)
Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.
2015-12-01
Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2016-09-30
Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.
Linear Array Ultrasonic Test Results from Alkali-Silica Reaction (ASR) Specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Dwight A; Khazanovich, Dr. Lev; Salles, Lucio
2016-04-01
The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the variousmore » nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.This report presents results of the ultrasound evaluation of four concrete slabs with varying levels of ASR damage present. This included an investigation of the experimental results, as well as a supplemental simulation considering the effect of ASR damage by elasto-dynamic wave propagation using a finite integration technique method. It was found that the Hilbert Transform Indicator (HTI), developed for quantification of freeze/thaw damage in concrete structures, could also be successfully utilized for quantification of ASR damage. internal microstructure flaws, and reinforcement locations.« less
Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanwen; Xue, Haizhou; Zarkadoula, Eva
Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (S e/S n), nuclear stopping powers ( dE/dx nucl), electronic stopping powers ( dE/dx ele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing S e/S nmore » slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dx ele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition« less
Ruiz-Guzmán, Javier Alonso; Gómez-Corrales, Pamela; Cruz-Esquivel, Ángel; Marrugo-Negrete, José Luis
2017-12-01
Pesticides offer benefits, like optimization of agricultural production and disease control; however, these toxic substances can contaminate the environment and pose risks to human health. The aim of this study was to assess pesticide exposure and frequency of cytogenetic damage in infant populations in agricultural areas of the department of Córdoba, Colombia. Urine and peripheral blood samples were taken from children living in the villages of La Ceibita (municipality of Cereté), Cabuya (municipality of San Carlos), Aguas Negras (municipality of Montería), Pelayito (municipality of San Pelayo), and the city of Monteria (control group). The work evaluated biomarkers of exposure to pesticides (atrazine urinary concentrations (ATZ) and its metabolites) and biomarkers of cytogenetic damage (micronucleus frequency (MN), nuclear buds, and apoptotic cells in peripheral blood lymphocytes). Measurable ATZ concentrations and/or its metabolites were recorded in the Pelayito, Aguas Negras, and Cabuya zones, which had higher MN frequencies, nuclear buds, and apoptotic cells than the control. Infant exposure to one of the more-often used pesticides in the agricultural areas evaluated and an increasing trend in the frequency of markers of cytogenetic damage in the groups of the agricultural areas, as compared to the control group, were evident. Copyright © 2017 Elsevier B.V. All rights reserved.
McGill, Mitchell R.; Jaeschke, Hartmut
2015-01-01
SUMMARY Introduction Drug hepatotoxicity is a major clinical issue. Acetaminophen (APAP) overdose is especially common. Serum biomarkers used to follow patient progress reflect either liver injury or function, but focus on biomarkers that can provide insight into the basic mechanisms of hepatotoxicity is increasing and enabling us to translate mechanisms of toxicity from animal models to humans. Areas covered We review recent advances in mechanistic serum biomarker research in drug hepatotoxicity. Specifically, biomarkers for reactive drug intermdiates, mitochondrial dysfunction, nuclear DNA damage, mode of cell death and inflammation are discussed, as well as microRNAs. Emphasis is placed on APAP-induced liver injury. Expert Opinion Several serum biomarkers of reactive drug intermediates, mitochondrial damage, nuclear DNA damage, apoptosis and necrosis, and inflammation have been described. These studies have provided evidence that mitochondrial damage is critical in APAP hepatotoxicity in humans, while apoptosis has only a minor role, and inflammation is important for recovery and regeneration after APAP overdose. Additionally, mechanistic serum biomarkers have been shown to predict outcome as well as, or better than, some clinical scores. In the future, such biomarkers will help determine the need for liver transplantation and, with improved understanding of the human pathophysiology, identify novel therapeutic targets. PMID:24836926
The estimation of electrical cable fire-induced damage limits
NASA Astrophysics Data System (ADS)
Nowlen, S. P.; Jacobus, M. J.
Sandia National Laboratories has, for several years, been engaged in the performance of both fire safety and electrical equipment qualification research under independent programs sponsored by the US Nuclear Regulatory Commission. Recent comparisons between electrical cable thermal damageability data gathered independently in these two efforts indicate that a direct correlation exists between certain of the recent cable thermal vulnerability information gathered under equipment qualification conditions and thermal damageability in a fire environment. This direct correlation allows for a significant expansion of the data base on estimated cable thermal vulnerability limits in a fire environment because of the wide range of cable types and products that have been evaluated as a part of the equipment qualification research. This paper provides a discussion of the basis for the derived correlation, and presents estimated cable thermal damage limits for a wide range of generic cable types and specific cable products. The supposition that a direct correlation exists is supported through direct comparisons of the test results for certain specific cable products. The proposed supplemental cable fire vulnerability data gained from examination of the equipment qualification results is presented. These results should be of particular interest to those engaged in the evaluation of fire risk for industrial facilities, including nuclear power plants.
Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage
Svilar, David; Goellner, Eva M.; Almeida, Karen H.
2011-01-01
Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466
Storr, Helen L.; Kind, Barbara; Parfitt, David A.; Chapple, J. Paul; Lorenz, M.; Koehler, Katrin; Huebner, Angela; Clark, Adrian J. L.
2009-01-01
Triple A syndrome is a rare autosomal recessive disorder characterized by ACTH-resistant adrenal failure, alacrima, achalasia, and progressive neurological manifestations. The majority of cases are associated with mutations in the AAAS gene, which encodes a novel, 60-kDa WD-repeat nuclear pore protein, alacrima-achalasia-adrenal insufficiency neurological disorder (ALADIN) of unknown function. Our aim was to elucidate the functional role of ALADIN by determining its interacting protein partners using the bacterial two-hybrid (B2-H) technique. Nonidentical cDNA fragments were identified from both a HeLa S-3 cell and human cerebellar cDNA library that encoded the full-length ferritin heavy chain protein (FTH1). This interaction was confirmed by both co-immunoprecipitation and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. Immunoblotting showed that fibroblasts from triple A patients (with known AAAS mutations) lack nuclear FTH1, suggesting that the nuclear translocation of FTH1 is defective. Cells transfected with FTH1 and visualized by confocal microscopy had very little nuclear FTH1, but when cotransfected with AAAS, FTH1 is readily visible in the nuclei. Therefore, FTH1 nuclear translocation is enhanced when ALADIN is coexpressed in these cells. In addition to its well known iron storage role, FTH1 has been shown to protect the nucleus from oxidative damage. Apoptosis of neuronal cells induced by hydrogen peroxide was significantly reduced by transfection of AAAS or by FTH1 or maximally by both genes together. Taken together, this work offers a plausible mechanism for the progressive clinical features of triple A syndrome. PMID:19855093
Zhai, Qingfeng; Duan, Huawei; Wang, Yadong; Huang, Chuanfeng; Niu, Yong; Dai, Yufei; Bin, Ping; Liu, Qingjun; Chen, Wen; Ma, Junxiang; Zheng, Yuxin
2012-08-01
Coke oven emissions are known as human carcinogen, which is a complex mixture of polycyclic aromatic hydrocarbon. In this study, we aimed to clarify the mechanism of action of coke oven emissions induced carcinogenesis and to identify biomarkers of early biological effects in a human bronchial epithelial cell line with CYP1A1 activity (HBE-CYP1A1). Particulate matter was collected in the oven area on glass filter, extracted and analyzed by GC/MS. DNA breaks and oxidative damage were evaluated by alkaline and endonucleases (FPG, hOGG1 and ENDO III)-modified comet assays. Cytotoxicity and chromosomal damage were assessed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The cells were treated with organic extract of coke oven emissions (OE-COE) representing 5, 10, 20, 40μg/mL extract for 24h. We found that there was a dose-effect relationship between the OE-COE and the direct DNA damage presented by tail length, tail intensity and Olive tail moment in the comet assay. The presence of lesion-specific endonucleases in the assays increased DNA migration after OE-COE treatment when compared to those without enzymes, which indicated that OE-COE produced oxidative damage at the level of pyrimidine and purine bases. The dose-dependent increase of micronuclei, nucleoplasmic bridges and nuclear buds in exposed cells was significant, indicating chromosomal and genomic damage induced by OE-COE. Based on the cytotoxic biomarkers in CBMN-Cyt assay, OE-COE may inhibit nuclear division, interfere with apoptosis, or induce cell necrosis. This study indicates that OE-COE exposure can induce DNA breaks/oxidative damage and genomic instability in HBE-CYP1A1 cells. The FPG-comet assay appears more specific for detecting oxidative DNA damage induced by complex mixtures of genotoxic substances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Crohns, Marika; Saarelainen, Seppo; Erhola, Marina; Alho, Hannu; Kellokumpu-Lehtinen, Pirkko
2009-07-01
To assess oxidative damage to DNA during lung cancer (LC) treatments. Urinary levels of 8-oxoguanine (8-oxoGua) and levels of 8-oxo-2'-deoxyguanosine (8-oxodG) from urine and whole blood were determined in 36 non-cancer controls and 65 LC patients before any treatments. Samples were also obtained of LC patients during and after radiotherapy (RT, n=33) and chemotherapy (CT, n=16). Stage IV LC patients had higher urinary 8-oxoGua and 8-oxodG levels than patients with stage I-III disease (p=0.044 and p=0.034, respectively). Urinary 8-oxodG levels increased during the first week of RT (p<0.001). Nuclear 8-oxodG increased during RT and 3 months after start of RT. Nuclear 8-oxodG levels also rose between the first two CT cycles (p=0.043), and urinary 8-oxodG levels during the sixth CT cycle (p=0.009). Urinary DNA damage biomarker levels may be associated with LC stage. Both RT and CT increase the parameters of DNA oxidation.
Kozaki, Tatsuya; Komano, Jun; Kanbayashi, Daiki; Takahama, Michihiro; Misawa, Takuma; Satoh, Takashi; Takeuchi, Osamu; Kawai, Taro; Shimizu, Shigeomi; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya
2017-01-01
The innate immune system senses RNA viruses by pattern recognition receptors (PRRs) and protects the host from virus infection. PRRs mediate the production of immune modulatory factors and direct the elimination of RNA viruses. Here, we show a unique PRR that mediates antiviral response. Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP ribose) polymerase (TIPARP), a Cysteine3 Histidine (CCCH)-type zinc finger-containing protein, binds to Sindbis virus (SINV) RNA via its zinc finger domain and recruits an exosome to induce viral RNA degradation. TIPARP typically localizes in the nucleus, but it accumulates in the cytoplasm after SINV infection, allowing targeting of cytoplasmic SINV RNA. Redistribution of TIPARP is induced by reactive oxygen species (ROS)-dependent oxidization of the nuclear pore that affects cytoplasmic-nuclear transport. BCL2-associated X protein (BAX) and BCL2 antagonist/killer 1 (BAK1), B-cell leukemia/lymphoma 2 (BCL2) family members, mediate mitochondrial damage to generate ROS after SINV infection. Thus, TIPARP is a viral RNA-sensing PRR that mediates antiviral responses triggered by BAX- and BAK1-dependent mitochondrial damage. PMID:28213497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, S.; Habicht, P.; Chexal, B.
1995-12-01
A large amount of piping in a typical nuclear power plant is susceptible to Flow-Accelerated Corrosion (FAC) wall thinning to varying degrees. A typical PAC monitoring program includes the wall thickness measurement of a select number of components in order to judge the structural integrity of entire systems. In order to appropriately allocate resources and maintain an adequate FAC program, it is necessary to optimize the selection of components for inspection by focusing on those components which provide the best indication of system susceptibility to FAC. A better understanding of system FAC predictability and the types of FAC damage encounteredmore » can provide some of the insight needed to better focus and optimize the inspection plan for an upcoming refueling outage. Laboratory examination of FAC damaged components removed from service at Northeast Utilities` (NU) nuclear power plants provides a better understanding of the damage mechanisms involved and contributing causes. Selected results of this ongoing study are presented with specific conclusions which will help NU to better focus inspections and thus optimize the ongoing FAC inspection program.« less
NASA Astrophysics Data System (ADS)
Popel, A. J.; Le Solliec, S.; Lampronti, G. I.; Day, J.; Petrov, P. K.; Farnan, I.
2017-02-01
This work considers the effect of fission fragment damage on the structural integrity and dissolution of the CeO2 matrix in water, as a simulant for the UO2 matrix of spent nuclear fuel. For this purpose, thin films of CeO2 on Si substrates were produced and irradiated by 92 MeV 129Xe23+ ions to a fluence of 4.8 × 1015 ions/cm2 to simulate fission damage that occurs within nuclear fuels along with bulk CeO2 samples. The irradiated and unirradiated samples were characterised and a static batch dissolution experiment was conducted to study the effect of the induced irradiation damage on dissolution of the CeO2 matrix. Complex restructuring took place in the irradiated films and the irradiated samples showed an increase in the amount of dissolved cerium, as compared to the corresponding unirradiated samples. Secondary phases were also observed on the surface of the irradiated CeO2 films after the dissolution experiment.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
Chromosome territories reposition during DNA damage-repair response
2013-01-01
Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859
Nuclear reactor melt arrest and coolability device
Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.
2016-06-14
Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.
Displacement damage calculations in PHITS for copper irradiated with charged particles and neutrons
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke; Niita, Koji; Sawai, Tomotsugu; Ronningen, R. M.; Baumann, Thomas
2013-05-01
The radiation damage model in the Particle and Heavy Ion Transport code System (PHITS) uses screened Coulomb scattering to evaluate the energy of the target primary knock-on atom (PKA) created by the projectile and the “secondary particles,” which include all particles created from the sequential nuclear reactions. We investigated the effect of nuclear reactions on displacement per atom (DPA) values for the following cases using a copper target: (1) 14 and 200 MeV proton incidences, (2) 14 and 200 MeV/nucleon 48Ca incidences, and (3) 14 and 200 MeV and reactor neutrons incidences. For the proton incidences, the ratio of partial DPA created by protons to total decreased with incident proton energy and that by the secondary particles increased with proton energy. For 48Ca beams, DPA created by 48Ca is dominant over the 48Ca range. For the 14 and 200 MeV neutron incidences, the ratio of partial DPA created by the secondary particles increases with incident neutron energy. For the reactor neutrons, copper created by neutron-copper nuclear elastic scattering contributes to the total DPA. These results indicate that inclusion of nuclear reactions and Coulomb scattering are necessary for DPA estimation over a wide energy range from eV to GeV.
Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi
2012-06-22
Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.
Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi
2012-01-01
Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to SN2 alkylating agents. We show that after treatment of cells with the SN2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by SN2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage. PMID:22544757
Nemmar, Abderrahim; Al-Salam, Suhail; Beegam, Sumaya; Yuvaraju, Priya; Ali, Badreldin H
2018-05-01
Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particle-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEPs) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1 h before intratracheal instillation of DEPs (30 μg/mouse). Twenty-four hours after the intratracheal administration of DEPs, various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEPs in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEPs. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6, and lipid peroxidation induced by DEPs. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 expression by cardiac myocytes and endothelial cells after DEP exposure, and these effects were enhanced in mice treated with nootkatone + DEPs. Likewise, heme oxygenase-1 was increased in mice treated with nootkatone + DEPs compared with those treated with DEPs or nootkatone + saline. The DNA damage caused by DEPs was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation. NEW & NOTEWORTHY Nootkatoone, a sesquiterpenoid found in grapefruit, alleviates the thrombogenicity and systemic and cardiac oxidative stress and DNA damage in mice exposed to diesel exhaust particles. Nootkatone-induced boosting of nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 levels in the heart of mice exposed to diesel exhaust particles suggests that its protective effect is, at least partly, mediated through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation.
Intelligent Modeling for Nuclear Power Plant Accident Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Michael Christropher; Luger, George F.; Jones, Thomas B.
This study explores the viability of using counterfactual reasoning for impact analyses when understanding and responding to “beyond-design-basis” nuclear power plant accidents. Currently, when a severe nuclear power plant accident occurs, plant operators rely on Severe Accident Management Guidelines. However, the current guidelines are limited in scope and depth: for certain types of accidents, plant operators would have to work to mitigate the damage with limited experience and guidance for the particular situation. We aim to fill the need for comprehensive accident support by using a dynamic Bayesian network to aid in the diagnosis of a nuclear reactor’s state andmore » to analyze the impact of possible response measures.« less
Accident at the Fukushima Dai-ichi nuclear power stations of TEPCO--outline & lessons learned.
Tanaka, Shun-ichi
2012-01-01
The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others.
Intelligent Modeling for Nuclear Power Plant Accident Management
Darling, Michael Christropher; Luger, George F.; Jones, Thomas B.; ...
2018-03-29
This study explores the viability of using counterfactual reasoning for impact analyses when understanding and responding to “beyond-design-basis” nuclear power plant accidents. Currently, when a severe nuclear power plant accident occurs, plant operators rely on Severe Accident Management Guidelines. However, the current guidelines are limited in scope and depth: for certain types of accidents, plant operators would have to work to mitigate the damage with limited experience and guidance for the particular situation. We aim to fill the need for comprehensive accident support by using a dynamic Bayesian network to aid in the diagnosis of a nuclear reactor’s state andmore » to analyze the impact of possible response measures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji Young; Kim, Hee Suk; Kim, Joo Young
2009-12-25
We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis.more » These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time.« less
FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses
Zhang, Fan; Fan, Qiang; Ren, Keqin; Auerbach, Arleen D.; Andreassen, Paul R.
2016-01-01
FANCJ/BRIP1 encodes a helicase that has been implicated in the maintenance of genomic stability. Here, to better understand FANCJ function in DNA damage responses, we have examined the regulation of its cellular localization. FANCJ nuclear foci assemble spontaneously during S phase and are induced by various stresses. FANCJ foci colocalize with the replication fork following treatment with hydroxyurea, but not spontaneously. Using FANCJ mutants, we find that FANCJ helicase activity and the capacity to bind BRCA1 are both involved in FANCJ recruitment. Given similarities to the recruitment of another Fanconi anemia protein, FANCD2, we tested for colocalization of FANCJ and FANCD2. Importantly, these proteins show substantial colocalization, and FANCJ promotes the assembly of FANCD2 nuclear foci. This process is linked to the proper localization of FANCJ itself since both FANCJ and FANCD2 nuclear foci are compromised by FANCJ mutants that abrogate its helicase activity or interaction with BRCA1. Our results suggest that FANCJ is recruited in response to replication stress and that FANCJ/BRIP1 may serve to link FANCD2 to BRCA1. PMID:20676667
The Fukushima Nuclear Event and its Implications for Nuclear Power
NASA Astrophysics Data System (ADS)
Golay, Michael
2011-11-01
The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Reexamination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely; particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.
Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation.
Sonzogni, Silvina V; Ogara, María F; Castillo, Daniela S; Sirkin, Pablo F; Radicella, J Pablo; Cánepa, Eduardo T
2015-01-01
DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.
Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, Conor H.; Hallacy, Timothy M.; Department of Physics and Astronomy, Rice University, Houston, Texas
2016-09-01
Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particlemore » track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.« less
The Warning System in Disaster Situations: A Selective Analysis.
DISASTERS, *WARNING SYSTEMS), CIVIL DEFENSE, SOCIAL PSYCHOLOGY, REACTION(PSYCHOLOGY), FACTOR ANALYSIS, CLASSIFICATION, STATISTICAL DATA, TIME ... MANAGEMENT PLANNING AND CONTROL, DAMAGE, CONTROL SYSTEMS, THREAT EVALUATION, DECISION MAKING, DATA PROCESSING, COMMUNICATION SYSTEMS, NUCLEAR EXPLOSIONS
Hong, G H; Hernández-Ceballos, M A; Lozano, R L; Kim, Y I; Lee, H M; Kim, S H; Yeh, S-W; Bolívar, J P; Baskaran, M
2012-12-01
Traces of long-lived fallout-derived radioisotopes ((134)Cs and (137)Cs) were found in wet and dry deposition samples collected from the west and east coasts of South Korea from March to May 2011 following the release of radionuclides from the damaged nuclear power plants in Fukushima, Japan. The analysis of air mass back trajectory and atmospheric pressure systems indicated that the Fukushima-derived radiocaesium had predominantly reached South Korea from the west by surface westerlies from 11 March to 5 April; however, after 6 April, air masses arrived from Japan directly due to a high pressure system that developed to the east of Japan. Spatial variation of deposition fluxes of radiocaesium in South Korea was partly attributed to the presence of local longitudinal orography.
Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants.
López-Jornet, Pía; Perrez, Francisco Parra; Calvo-Guirado, José Luis; Ros-Llor, Irene; LLor-Ros, Irene; Ramírez-Fernández, Piedad
2014-07-01
The aim of this study was to assess the potential genotoxicity of dental implants, evaluating biomarkers of DNA damage (micronuclei and/or nuclear buds), cytokinetic defects (binucleated cells) and the presence of trace metals in gingival cells of patients with implants, comparing these with a control group. A total of 60 healthy adults (30 patients with dental implants and 30 control patients without) were included in the study. Medical and dental histories were made for each including life-style factors. Genotoxicity effects were assessed by micronucleus assays in the gingival epithelial cells of each patient; 1,000 epithelial cells were analyzed, evaluating the frequency of micronucleated cells and other nuclear anomalies. The concentration of metals (Al(27), Ag(107), Co (59), Cr (52), Cu(63), Fe(56), Sn(118), Mn(55), Mo(92), Ni(60), Pb(208), Ti(47)) were assayed by means of coupled plasma-mass spectrophotometry (ICP-MS). The frequency of micronuclei in the patient group with implants was higher than in the control group but without statistically significant differences (P > 0.05). Similar results were found for binucleated cells and nuclear buds (P > 0.05). For metals assayed by ICP-MS, significant differences were found for Ti(47) (P ≤ 0.045). Univariate analysis identified a significant association between the presence of micronuclei and age. Dental implants do not induce DNA damage in gingival cells, the slight effects observed cannot be indicated as biologically relevant.
Ghaoui, Roula; Sallustio, Benedetta C; Burcham, Philip C; Fontaine, Frank R
2003-05-06
Glucuronidation of a number of carboxyl-containing drugs generates reactive acyl glucuronide metabolites. These electrophilic species alkylate cell proteins and may be implicated in the pathogenesis of a number of toxic syndromes seen in patients receiving the parent aglycones. Whether acyl glucuronides also attack nuclear DNA is unknown, although the acyl glucuronide formed from clofibric acid was recently found to decrease the transfection efficiency of phage DNA and generate strand breaks in plasmid DNA in vitro. To determine if such a DNA damage occurs within a cellular environment, the comet assay (i.e. single-cell gel electrophoresis) was used to detect DNA lesions in the nuclear genome of isolated mouse hepatocytes cultured with clofibric acid. Overnight exposure to 50 microM and higher concentrations of clofibric acid produced concentration-dependent increases in the comet areas of hepatocyte nuclei, with 1 mM clofibrate producing a 3.6-fold elevation over controls. These effects closely coincided with culture medium concentrations of the glucuronide metabolite formed from clofibric acid, 1-O-beta-clofibryl glucuronide. Consistent with a role for glucuronidation in the DNA damage observed, the glucuronidation inhibitor borneol diminished glucuronide formation from 100 microM clofibrate by 98% and returned comet areas to baseline levels. Collectively, these results suggest that the acyl glucuronide formed from clofibric acid is capable of migrating from its site of formation within the endoplasmic reticulum to generate strand nicks in nuclear DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgievskiy, Vladimir
2007-07-01
It is considered the efficacy of decisions concerning remedial actions when of-site radiological monitoring in the early and (or) in the intermediate phases was absent or was not informative. There are examples of such situations in the former Soviet Union where many people have been exposed: releases of radioactive materials from 'Krasnoyarsk-26' into Enisey River, releases of radioactive materials from 'Chelabinsk-65' (the Kishtim accident), nuclear tests at the Semipalatinsk Test Site, the Chernobyl nuclear accident etc. If monitoring in the early and (or) in the intermediate phases is absent the decisions concerning remedial actions are usually developed on the basemore » of permanent monitoring. However decisions of this kind may be essentially erroneous. For these cases it is proposed to make retrospection of radiological data of the early and intermediate phases of nuclear accident and to project decisions concerning remedial actions on the base of both retrospective data and permanent monitoring data. In this Report the indicated problem is considered by the example of the Chernobyl accident for Ukraine. Their of-site radiological monitoring in the early and intermediate phases was unsatisfactory. In particular, the pasture-cow-milk monitoring had not been made. All official decisions concerning dose estimations had been made on the base of measurements of {sup 137}Cs in body (40 measurements in 135 days and 55 measurements in 229 days after the Chernobyl accident). For the retrospection of radiological data of the Chernobyl accident dynamic model has been developed. This model has structure similar to the structure of Pathway model and Farmland model. Parameters of the developed model have been identified for agricultural conditions of Russia and Ukraine. By means of this model dynamics of 20 radionuclides in pathways and dynamics of doses have been estimated for the early, intermediate and late phases of the Chernobyl accident. The main results are following: - During the first year after the Chernobyl accident 75-93% of Commitment Effective Dose had been formed; - During the first year after the Chernobyl accident 85-90% of damage from radiation exposure had been formed. During the next 50 years (the late phase of accident) only 10-15% of damage from radiation exposure will have been formed; - Remedial actions (agricultural remedial actions as most effective) in Ukraine are intended for reduction of the damage from consumption of production which is contaminated in the late phase of accident. I.e. agricultural remedial actions have been intended for minimization only 10 % of the total damage from radiation exposure; - Medical countermeasures can minimize radiation exposure damage by an order of magnitude greater than agricultural countermeasures. - Thus, retrospection of nuclear accident has essentially changed type of remedial actions and has given a chance to increase effectiveness of spending by an order of magnitude. This example illustrates that in order to optimize remedial actions it is required to use data of retrospection of nuclear accidents in all cases when monitoring in the early and (or) intermediate phases is unsatisfactory. (author)« less
Nuclear Shield: A Multi-Enzyme Task-Force for Nucleus Protection
Pallottini, Valentina; Canuti, Lorena; De Canio, Michele; Urbani, Andrea; Marzano, Valeria; Cornetta, Tommaso; Stano, Pasquale; Giovanetti, Anna; Stella, Lorenzo; Canini, Antonella; Federici, Giorgio; Ricci, Giorgio
2010-01-01
Background In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane and promoted by electrostatic interactions. Methodology/Principal Findings Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat tissues examined (liver, kidney, heart, lung and brain), and that behaves as a “nuclear shield”. In hepatocytes, this hyper-crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the shield formation and stabilization. Conclusions/Significance The characterization of this previously unrecognized nuclear shield in different tissues opens a new interesting scenario for physiological and protection processes in eukaryotic cells. Selection and accumulation of protection enzymes near sensitive targets represents a new safeguard modality which deeply differs from the adaptive response which is based on expression of specific enzymes. PMID:21170318
Solar power. [comparison of costs to wind, nuclear, coal, oil and gas
NASA Technical Reports Server (NTRS)
Walton, A. L.; Hall, Darwin C.
1990-01-01
This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.
Mammalian autophagy degrades nuclear constituents in response to tumorigenic stress.
Dou, Zhixun; Ivanov, Andrejs; Adams, Peter D; Berger, Shelley L
2016-08-02
During autophagy, double-membrane autophagosomes are observed in the cytoplasm. Thus, extensive studies have focused on autophagic turnover of cytoplasmic material. Whether autophagy has a role in degrading nuclear constituents is poorly understood. We reveal that the autophagy protein LC3/Atg8 directly interacts with the nuclear lamina protein LMNB1 (lamin B1), and binds to LMN/lamin-associated chromatin domains (LADs). Through these interactions, autophagy specifically mediates destruction of nuclear lamina during tumorigenic stress, such as by activated oncogenes and DNA damage. This nuclear lamina degradation upon aberrant cellular stress impairs cell proliferation by inducing cellular senescence, a stable form of cell-cycle arrest and a tumor-suppressive mechanism. Our findings thus suggest that, in response to cancer-promoting stress, autophagy degrades nuclear material to drive cellular senescence, as a means to restrain tumorigenesis. Our work provokes a new direction in studying the role of autophagy in the nucleus and in tumor suppression.
Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro
2018-01-01
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O-glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. Highlights: The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut (Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms. PMID:29748512
Ishihara, Tomoe; Kaidzu, Sachiko; Kimura, Hideto; Koyama, Yasurou; Matsuoka, Yotaro; Ohira, Akihiro
2018-05-10
Retinal tissue is exposed to oxidative stress caused by visible light. Light-damaged rat used in age-related macular degeneration (AMD) studies clarified that antioxidants decrease retinal light damage. Albino rats were exposed to 5000 Lux light for 12 h with oral administration of the polyphenolic compounds fraction (PF) from the seed shells of Japanese horse chestnut (30 mg/kg, 100 mg/kg, and 300 mg/kg body weight: BW). To evaluate the protective effects against light damage, electroretinograms (ERGs), the outer nuclear layer (ONL) thickness, the antioxidant activity of plasma, oxidized retinal lipids, and the detection of apoptosis were examined. To reveal their active compounds, PF were separated into an A-type proanthocyanidin (PAF) and a flavonol O -glycosides fraction. The protective effects of these fractions against light damage were compared by measuring the thickness of the ERGs and ONL. Compared with the negative control, the PF group (100 mg/kg and 300 mg/kg BW) significantly suppressed the decrease of the ERG amplitudes and ONL thickness. PF (300 mg/kg BW) induced the elevation of in vivo antioxidant activity, and the suppression of retinal lipid oxidation. PF administration also suppressed apoptotic cell death. The protective effects against light damage were attributable to the antioxidant activity of PAF. The light-induced damage of retinas was protected by oral administration of PF and PAF. Taken together, these compounds are potentially useful for the prevention of the disease caused by light exposure. The protective effects of retinal damage by light exposure were evaluated using polyphenolic compounds from the seed shells of Japanese horse chestnut ( Aesculus turbinata BLUME) as an antioxidant. Decreases in the electroretinographic amplitude and outer nuclear layer thickness were suppressed by the polyphenolic compounds of the seed shells. Polyphenolic compounds from the seed shells of Japanese horse chestnut inhibited the oxidation of retinal lipids. Highly polymeric A-type proanthocyanidin from the seed shells protected the rat retina from light exposure damage by inhibiting oxidative stress and apoptotic mechanisms.
2012-06-01
severed the Fukushima Daichi nuclear power plant’s power grid connections, causing overheating. The flooding and earthquake damage in the surrounding...Future Research Recommendations Conduct an in-depth analysis of the Fukushima nuclear disaster that occurred as a result of the March 2011 Tohoku...Japan (From Lonely Planet, 2012) ........................................................6 Figure 3. Vessels on Station by Days After the Disaster
Conceptual design considerations and neutronics of lithium fall laser fusion target chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Thomson, W.B.
1978-05-31
Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.
Mitochondrial DNA repair and damage tolerance.
Stein, Alexis; Sia, Elaine A
2017-01-01
The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair and damage tolerance mechanisms in order to ensure the proper maintenance of the mitochondrial genome. This review focuses on our current understanding of mtDNA repair and damage tolerance pathways including base excision repair, mismatch repair, homologous recombination, non-homologous end joining, translesion synthesis and mtDNA degradation in both yeast and mammalian systems.
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
2013-01-01
Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway. PMID:23347679
Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika
2013-01-24
In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway.
Differential Gene Susceptibility to Sperm DNA Damage: Analysis of Developmental Key Genes in Trout
González-Rojo, Silvia; Fernández-Díez, Cristina; Guerra, Susana M.; Robles, Vanesa; Herraez, Maria Paz
2014-01-01
Sperm chromatin in mammals is packaged in different blocks associated to protamines (PDNA), histones (HDNA), or nuclear matrix proteins. Differential packaging has been related to early or late transcription and also to differential susceptibility to genotoxic damage. Genes located in the more accessible HDNA could be more susceptible to injuries than those located in PDNA, being potential biomarkers of paternal DNA damage. Fish sperm chromatin organization is much diversified, some species lacking protamines and some others totally depleted of histones. Analyzing genotoxic damage in a species homogeneously compacted with some sperm nuclear basic protein type, could help in deciphering the clues of differential susceptibility to damage. In the present study we analyzed in rainbow trout the differential susceptibility of nine genes to UV irradiation and H2O2 treatment. The absence of histones in the sperm nuclei was confirmed by Western blot. The chromatin fractionation in sensitive and resistant regions to PvuII (presumably HDNA-like and PDNA-like, respectively) revealed that the nine genes locate in the same resistant region. The number of lesions promoted was quantified using a qPCR approach. Location of 8-hydroxyguanosine (8-OHdG) was analyzed by immunocytochemistry and confocal microscopy. UV irradiation promoted similar number of lesions in all the analyzed genes and a homogenous distribution of 8-OHdG within the nuclei. 8-OHdG was located in the peripheral area of the nucleus after H2O2 treatment, which promoted a significantly higher number of lesions in developmental-related genes (8.76–10.95 lesions/10 kb) than in rDNA genes (1.05–1.67 lesions/10 kb). We showed for the first time, that differential susceptibility to damage is dependent on the genotoxic mechanism and relies on positional differences between genes. Sensitive genes were also analyzed in cryopreserved sperm showing a lower number of lesions than the previous treatments and a predominant peripheral distribution of oxidative damage (8-OHdG). PMID:25479606
Imidacloprid Causes DNA Damage in Fish: Clastogenesis as a Mechanism of Genotoxicity.
Iturburu, Fernando G; Simoniello, María F; Medici, Sandra; Panzeri, Ana M; Menone, Mirta L
2018-06-01
Neonicotinoids are one of the most widely used insecticides in the world. DNA damage is considered an early biological effect which could lead to reproductive and carcinogenic effects. The present study aimed to evaluate DNA damage and bases oxidation as a mechanism of genotoxicity, on the freshwater fish Australoheros facetus acutely exposed to imidacloprid (IMI). The Comet assay with the nuclease ENDO III enzyme was performed for detecting pyrimidine bases oxidation using blood samples. Micronucleus and other nuclear abnormalities frequencies were also quantified. A significant increase of damage index at 100 and 1000 µg/L IMI was detected; while ENDO III score increased from 1 to 1000 µg/L IMI; varying both in a linear concentration-response manner. MN frequency increased in fish exposed to 1000 µg/L IMI. These results show that short-term exposures to environmentally relevant concentrations of IMI could affect the genetic integrity of fishes through oxidative damage.
What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity
Weitzman, Matthew D.; Weitzman, Jonathan B.
2014-01-01
Maintaining genome integrity and transmission of intact genomes is critical for cellular, organismal, and species survival. Cells can detect damaged DNA, activate checkpoints, and either enable DNA repair or trigger apoptosis to eliminate the damaged cell. Aberrations in these mechanisms lead to somatic mutations and genetic instability, which are hallmarks of cancer. Considering the long history of host-microbe coevolution, an impact of microbial infection on host genome integrity is not unexpected, and emerging links between microbial infections and oncogenesis further reinforce this idea. In this review, we compare strategies employed by viruses, bacteria, and parasites to alter, subvert, or otherwise manipulate host DNA damage and repair pathways. We highlight how microbes contribute to tumorigenesis by directly inducing DNA damage, inactivating checkpoint controls, or manipulating repair processes. We also discuss indirect effects resulting from inflammatory responses, changes in cellular metabolism, nuclear architecture, and epigenome integrity, and the associated evolutionary tradeoffs. PMID:24629335
Modulation of Pathogenic B Cells through Inhibition of Phosphatidylinositol 3-Kinases
2016-03-01
of the antibodies bound to the proteins can lodge in the kidneys resulting in damage to the filtering capacity of the kidney . The disease is most...such as nuclear proteins and DNA. These antibodies can cause additional pathologic changes because immune complexes lodge in the kidney which...secreting B cells in a mouse model for lupus, which results in less kidney damage and increased lifespan. 2. KEYWORDS: Lupus, PI3K, B cell, signal
Tornado damage risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhold, T.A.; Ellingwood, B.
1982-09-01
Several proposed models were evaluated for predicting tornado wind speed probabilities at nuclear plant sites as part of a program to develop statistical data on tornadoes needed for probability-based load combination analysis. A unified model was developed which synthesized the desired aspects of tornado occurrence and damage potential. The sensitivity of wind speed probability estimates to various tornado modeling assumptions are examined, and the probability distributions of tornado wind speed that are needed for load combination studies are presented.
Development of testing and training simulator for CEDMCS in KSNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, C. H.; Park, C. Y.; Nam, J. I.
2006-07-01
This paper presents a newly developed testing and training simulator (TTS) for automatically diagnosing and tuning the Control Element Drive Mechanism Control System (CEDMCS). TTS includes a new automatic, diagnostic, method for logic control cards and a new tuning method for phase synchronous pulse cards. In Korea Standard Nuclear Power Plants (KSNP). reactor trips occasionally occur due to a damaged logic control card in CEDMCS. However, there is no pre-diagnostic tester available to detect a damaged card in CEDMCS before it causes a reactor trip. Even after the reactor trip occurs, it is difficult to find the damaged card. Tomore » find the damaged card. ICT is usually used. ICT is an automated, computer-controlled testing system with measurement capabilities for testing active and passive components, or clusters of components, on printed circuit boards (PCB) and/or assemblies. However, ICT cannot detect a time dependent fault correctly and requires removal of the waterproof mating to perform the test. Therefore, the additional procedure of re-coating the PCB card is required after the test. TTS for CEDMCS is designed based on real plant conditions, both electrically and mechanically. Therefore, the operator can operate the Control Element Drive Mechanism (CEDM), which is mounted on the closure head of the reactor vessel (RV) using the soft control panel in ITS, which duplicates the Main Control Board (MCB) in the Main Control Room (MCR). However, during the generation of electric power in a nuclear power plant, it is difficult to operate the CEDM so a CEDM and Control Element Assembly (CEA) mock-up facility was developed to simulate a real plant CEDM. ITS was used for diagnosing and tuning control logic cards in CEDMCS in the Ulchin Nuclear Power Plant No. 4 during the plant overhaul period. It exhibited good performance in detecting the damaged cards and tuning the phase synchronous pulse cards. In addition, TTS was useful in training the CEDMCS operator by supplying detail signal information from the logic cards. (authors)« less
Witte, Otto W.; Grosskreutz, Julian
2017-01-01
Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations. PMID:28832631
Probabilistic models to estimate fire-induced cable damage at nuclear power plants
NASA Astrophysics Data System (ADS)
Valbuena, Genebelin R.
Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into account the properties and characteristics of the cables and cable materials, and the characteristics of the thermal insult. This model can be used to estimate the probability of cable damage under different thermal conditions.
Santos, Cátia S A; Brandão, Ricardo; Monteiro, Marta S; Bastos, Ana C; Soares, Amadeu M V M; Loureiro, Susana
2017-02-01
Over the past decades, the presence of micronucleated blood cells has been used to detect genotoxic effects of xenobiotics in fish, amphibians and birds. This study assessed the frequency of micronuclei (MN) and other nuclear abnormalities in erythrocytes of individuals of Ardea cinerea and Ciconia ciconia retrieved for rehabilitation in order to evaluate the influence of age, temporal and spatial factors on the occurrence of DNA damage in Portuguese wild birds. Blood smears from 65 birds with different life-history backgrounds (e.g. geographic origin, age) were collected between 2007 and 2011 and the frequency of erythrocyte nuclear abnormalities (ENAs) was analysed. Differences in DNA damage between ages were observed to occur in C. ciconia, with chicks displaying significantly higher frequencies of ENAs (both when looking at total ENAs or only MN frequency) than juveniles and adults. Additionally, significant differences in ENAs frequencies were observed between different years and geographic origins, whereas MN frequency alone did not show significant alterations concerning spatial and temporal variations. These results suggest that the assessment of ENAs rather than MN frequency alone may be a useful and valuable tool to complement the evaluation of DNA damage in populations of birds, as prompted by individual life-history traits and environmental factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Proceedings of the fifteenth DOE nuclear air cleaning conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1979-02-01
Papers presented are grouped under the following topics: noble gas separation, damage control, aerosols, test methods, new air cleaning technology from Europe, open-end, and filtration. A separate abstract was prepared for each paper.
NASA Astrophysics Data System (ADS)
Sugimoto, M.
2015-12-01
The 2004 Indian Ocean tsunami killed around 220,000 people and startled the world. North of Chennai (Madras), the Indian plant nearly affected by tsunami in 2004. The local residents really did not get any warning in India. "On December 26, the Madras Atomic Power Station looked like a desolate place with no power, no phones, no water, no security arrangement and no hindrance whatsoever for outsiders to enter any part of the plant," said S.P. Udaykumar of SACCER. Nuclear issues hide behind such big tsunami damaged. Few media reported outside India. As for US, San Francisco Chronicle reported scientists had to rethink about nuclear power plants by the 2004 tsunami in 11th July 2005. Few tsunami scientsts did not pay attention to nucler power plants nearly affected by tsunami in US. On the other hand, US government noticed the Indian plant nearly affected in 2004. US Goverment supported nucler disaster management in several countries. As for Japan, Japanese goverment mainly concentrated reconstrucation in affected areas and tsunami early warning system. I worked in Japanese embassy in Jakarta Indonesia at that time. I did not receive the information about the Indian plant nearly affected by tsunami and US supported nucler safety to the other coutries. The 2011 Tohoku earthquake and tsunami damaged society and nuclear power stations. The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident resulted in the largest release of radioactive material since the 1986 Chernobyl accident. Why did not Japanese tsunami scientists learn from warning signs from the nuclear plant in India by the 2004 Indian Ocean tsunami to the 2011 Fukushima accident? I would like to clarify the reason few tsunami scientist notice this point in my presentation.
Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.
2013-01-01
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749
Accident at the Fukushima Dai-ichi Nuclear Power Stations of TEPCO —Outline & lessons learned—
TANAKA, Shun-ichi
2012-01-01
The severe accident that broke out at Fukushima Dai-ichi nuclear power stations on March 11, 2011, caused seemingly infinite damage to the daily life of residents. Serious and wide-spread contamination of the environment occurred due to radioactive materials discharged from nuclear power stations (NPSs). At the same time, many issues were highlighted concerning countermeasures to severe nuclear accidents. The accident is outlined, and lessons learned are extracted with respect to the safety of NPSs, as well as radiation protection of residents under the emergency involving the accident. The materials of the current paper are those released by governmental agencies, academic societies, interim reports of committees under the government, and others. PMID:23138450
Nuclear fuel in a reactor accident.
Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra
2012-03-09
Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.
Fukushima nuclear incident: the challenges of risk communication.
Robertson, Andrew G; Pengilley, Andrew
2012-07-01
On March 11, 2011, a magnitude 9.0 earthquake occurred off the Sanriku coast of Japan, which resulted in multiple tsunamis. The earthquake and tsunami damaged several nuclear power stations, with the Fukushima Dai-ichi Nuclear Power Plant being the worst affected, which led Japan to declare a State of Nuclear Emergency. As of November 9, 2011, the National Police Agency of Japan reported a death toll of 15 836 people, with 3664 people still reported missing, following the earthquake and tsunami. Australian radiation health advisers were deployed to Tokyo early in the nuclear emergency to assist the Australian Embassy in assessing the radiological threat, to provide risk advice to Embassy staff and Australian citizens in Japan, and to plan for any further deterioration in the nuclear situation. This article explores the challenges of risk assessment, risk communication, and contingency planning for expatriate staff in the worst nuclear incident since Chernobyl, outlines what measures were successful in addressing heightened perceived risks, and identifies areas where further research is required, particularly in a radiological context.
Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage
Albi, Elisabetta; Perrella, Giuseppina; Lazzarini, Andrea; Cataldi, Samuela; Lazzarini, Remo; Floridi, Alessandro; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco
2014-01-01
Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein. PMID:24979136
The Fukushima Dai-ichi Accident and its implications for the safety of nuclear power
NASA Astrophysics Data System (ADS)
Barletta, William
2016-05-01
Five years ago the dramatic events in Fukushima that followed the massive earthquake and subsequent tsunami that struck Japan on March 11, 2011 sharpened the focus of scientists, engineers and general public on the broad range of technical, environmental and societal issues involved in assuring the safety of the world's nuclear power complex. They also called into question the potential of nuclear power to provide a growing, sustainable resource of CO2-free energy. The issues raised by Fukushima Dai-ichi have provoked urgent concern, not only because of the potential harm that could result from severe accidents or from intentional damage to nuclear reactors or to facilities involved in the nuclear fuel cycle, but also because of the extensive economic impact of those accidents and of the measures taken to avoid them.
Lee, Ji-Hyun; Song, Mi-Young; Song, Eun-Kyung; Kim, Eun-Kyung; Moon, Woo Sung; Han, Myung-Kwan; Park, Jin-Woo; Kwon, Kang-Beom; Park, Byung-Hyun
2009-01-01
OBJECTIVE—SIRT1, a class III histone/protein deacetylase, is known to interfere with the nuclear factor-κB (NF-κB) signaling pathway and thereby has an anti-inflammatory function. Because of the central role of NF-κB in cytokine-mediated pancreatic β-cell damage, we postulated that SIRT1 might work in pancreatic β-cell damage models. RESEARCH DESIGN AND METHODS—RINm5F (RIN) cells or isolated rat islets were treated with interleukin-1β and interferon-γ. SIRT1 was activated by resveratrol, a pharmacological activator, or ectopic overexpression. The underlying mechanisms of SIRT1 against cytokine toxicity were further explored. RESULTS—Treatment of RIN cells with cytokines induced cell damage, and this damage was well correlated with the expression of the inducible form of nitric oxide (NO) synthase (iNOS) and NO production. However, SIRT1 overexpression completely prevented cytokine-mediated cytotoxicity, NO production, and iNOS expression. The molecular mechanism by which SIRT1 inhibits iNOS expression appeared to involve the inhibition of the NF-κB signaling pathway through deacetylation of p65. In addition, SIRT1 activation by either resveratrol or adenoviral-directed overexpression of SIRT1 could prevent cytokine toxicity and maintain normal insulin-secreting responses to glucose in isolated rat islets. CONCLUSIONS—This study will provide valuable information not only into the mechanisms underlying β-cell destruction but also into the regulation of SIRT1 as a possible target to attenuate cytokine-induced β-cell damage. PMID:19008341
Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.
Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E
2016-06-01
Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hashem, Joseph; Schneider, Erich; Pryor, Mitch; ...
2017-01-01
Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashem, Joseph; Schneider, Erich; Pryor, Mitch
Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less
An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.
Baker, Graham; de Borst, René
2005-11-15
The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.
Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su
2016-09-01
The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.
2012-06-01
2010). The first several hours after a major natural disaster constitute a period of incomplete situational awareness (United States Department of... disasters caused a catastrophic crisis at the Fukushima Dai-ichi Nuclear Power Plant in Honshu, Japan. 5 Once both USGS and Japanese...However, the massive tsunami hit Iwate, Miyagi, and Fukushima the hardest. Nuclear reactors were severely damaged, and utilities such as gas, water
Survey of Codes Employing Nuclear Damage Assessment
1977-10-01
surveyed codes were com- DO 73Mu 1473 ETN OF 1NOVSSSOLETE UNCLASSIFIED 1 SECURITY CLASSIFICATION OF THIS f AGE (Wh*11 Date Efntered)S<>-~C. I UNCLASSIFIED...level and above) TALLEY/TOTEM not nuclear TARTARUS too highly aggregated (battalion level and above) UNICORN highly aggregated force allocation code...vulnerability data can bq input by the user as he receives them, and there is the abil ’ity to replay any situation using hindsight. The age of target
Whittle, K. R.; Edmondson, P. D.
2015-07-01
The development of nuclear materials for the next generation of reactor technology, e.g. GenIV and fusion, is at a critical juncture, with an increasing body of research into the long-term effects of radiation damage on materials being examined. As it is hopefully evident from the papers in this journal issue, there are many pertinent and challenging topics for research in this exciting and challenging area of research, driving forward the development of new materials and the next generation of nuclear reactor technologies.
Method for improving performance of irradiated structural materials
Megusar, Janez; Harling, Otto K.; Grant, Nicholas J.
1989-01-01
Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.
NASA Astrophysics Data System (ADS)
Perez, C. L.; Johnson, J. O.
Rapidly changing world events, the increased number of nations with inter-continental ballistic missile capability, and the proliferation of nuclear weapon technology will increase the number of nuclear threats facing the world today. Monitoring these nation's activities and providing an early warning and/or intercept system via reconnaissance and surveillance satellites and space based weapon platforms is a viable deterrent against a surprise nuclear attack. However, the deployment of satellite and weapon platform assets in space will subject the sensitive electronic equipment to a variety of natural and man-made radiation environments. These include Van Allen Belt protons and electrons; galactic and solar flare protons; and neutrons, gamma rays, and x-rays from intentionally detonated fission and fusion weapons. In this paper, the MASH vl.0 code system is used to estimate the dose to the critical electronics components of an idealized space based weapon platform from neutron and gamma-ray radiation emitted from a thermonuclear weapon detonation in space. Fluence and dose assessments were performed for the platform fully loaded, and in several stages representing limited engagement scenarios. The results indicate vulnerabilities to the Command, Control, and Communication bay instruments from radiation damage for a nuclear weapon detonation for certain source/platform orientations. The distance at which damage occurs will depend on the weapon yield (n,(gamma)/kiloton) and size (kilotons).
NASA Astrophysics Data System (ADS)
Abraham, Odile; Legland, Jean-Baptiste; Durand, Olivier; Hénault, Jean-Marie; Garnier, Vincent
2018-04-01
The maintenance and evaluation of concrete nuclear containment walls is a major concern as they must, in case of an accident, ensure the confinement of the nuclear radiations and resist to the loads. A homemade multi-receiver multi-source dry contact linear probe to record ultrasonic surface waves on concrete in the frequency range [60 kHz - 200 kHz] has been used in this context. The measurement protocol includes the summation of up to 50 spatially distributed seismograms and the determination of the surface waves phase velocity dispersion curve. The probe has been tested against several concrete states under no loading (water saturation level, temperature damage). Then, the same measurements have been performed on sound and fire damaged slabs submitted to uniaxial loading (stress up to 30 % of the concrete compression resistance). It is shown that the robustness and precision of the surface waves measurement protocol make it possible to follow the stress level. In March 2017 a first experiment with this surface wave probe has been conducted on a reduced 1:3 scale nuclear containment plant (EDF VeRCoRs mock-up) under loading conditions that replicates that of decennial inspection. The surface wave phase velocity dispersion curves of each state are compared and cross-validated with other NDT results.
Yeh, Chung-Hsin; Kuo, Pao-Lin; Wang, Ya-Yun; Wu, Ying-Yu; Chen, Mei-Feng; Lin, Ding-Yen; Lai, Tsung-Hsuan; Chiang, Han-Sun; Lin, Ying-Hung
2015-01-01
Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.
Method for storing spent nuclear fuel in repositories
Schweitzer, Donald G.; Sastre, Cesar; Winsche, Warren
1981-01-01
A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.
Method for storing spent nuclear fuel in repositories
Schweitzer, D.G.; Sastre, C.; Winsche, W.
A method for storing radioactive spent fuel in repositories containing sulfur as the storage medium is disclosed. Sulfur is non-corrosive and not subject to radiation damage. Thus, storage periods of up to 100 years are possible.
The Role of Free Radicals in the Aging Brain and Parkinson’s Disease: Convergence and Parallelism
Kumar, Hemant; Lim, Hyung-Woo; More, Sandeep Vasant; Kim, Byung-Wook; Koppula, Sushruta; Kim, In Su; Choi, Dong-Kug
2012-01-01
Free radical production and their targeted action on biomolecules have roles in aging and age-related disorders such as Parkinson’s disease (PD). There is an age-associated increase in oxidative damage to the brain, and aging is considered a risk factor for PD. Dopaminergic neurons show linear fallout of 5–10% per decade with aging; however, the rate and intensity of neuronal loss in patients with PD is more marked than that of aging. Here, we enumerate the common link between aging and PD at the cellular level with special reference to oxidative damage caused by free radicals. Oxidative damage includes mitochondrial dysfunction, dopamine auto-oxidation, α-synuclein aggregation, glial cell activation, alterations in calcium signaling, and excess free iron. Moreover, neurons encounter more oxidative stress as a counteracting mechanism with advancing age does not function properly. Alterations in transcriptional activity of various pathways, including nuclear factor erythroid 2-related factor 2, glycogen synthase kinase 3β, mitogen activated protein kinase, nuclear factor kappa B, and reduced activity of superoxide dismutase, catalase and glutathione with aging might be correlated with the increased incidence of PD. PMID:22949875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endo, T.; Sato, S.; Yamamoto, A.
2012-07-01
Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost themore » same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)« less
McKenna, T; Kutkov, V; Vilar Welter, P; Dodd, B; Buglova, E
2013-05-01
Experience and studies show that for an emergency at a nuclear power plant involving severe core damage or damage to the fuel in spent fuel pools, the following actions may need to be taken in order to prevent severe deterministic health effects and reduce stochastic health effects: (1) precautionary protective actions and other response actions for those near the facility (i.e., within the zones identified by the International Atomic Energy Agency) taken immediately upon detection of facility conditions indicating possible severe damage to the fuel in the core or in the spent fuel pool; and (2) protective actions and other response actions taken based on environmental monitoring and sampling results following a release. This paper addresses the second item by providing default operational intervention levels [OILs, which are similar to the U.S. derived response levels (DRLs)] for promptly assessing radioactive material deposition, as well as skin, food, milk and drinking water contamination, following a major release of fission products from the core or spent fuel pool of a light water reactor (LWR) or a high power channel reactor (RBMK), based on the International Atomic Energy Agency's guidance.
Emulation of reactor irradiation damage using ion beams
Was, G. S.; Jiao, Z.; Getto, E.; ...
2014-06-14
The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less
Radiation damage characterization in reactor pressure vessel steels with nonlinear ultrasound
NASA Astrophysics Data System (ADS)
Matlack, K. H.; Kim, J.-Y.; Wall, J. J.; Qu, J.; Jacobs, L. J.
2014-02-01
Nuclear generation currently accounts for roughly 20% of the US baseload power generation. Yet, many US nuclear plants are entering their first period of life extension and older plants are currently undergoing assessment of technical basis to operate beyond 60 years. This means that critical components, such as the reactor pressure vessel (RPV), will be exposed to higher levels of radiation than they were originally intended to withstand. Radiation damage in reactor pressure vessel steels causes microstructural changes such as vacancy clusters, precipitates, dislocations, and interstitial loops that leave the material in an embrittled state. The development of a nondestructive evaluation technique to characterize the effect of radiation exposure on the properties of the RPV would allow estimation of the remaining integrity of the RPV with time. Recent research has shown that nonlinear ultrasound is sensitive to radiation damage. The physical effect monitored by nonlinear ultrasonic techniques is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave, arising from the interaction of the ultrasonic wave with microstructural features such as dislocations, precipitates, and their combinations. Current findings relating the measured acoustic nonlinearity parameter to increasing levels of neutron fluence for different representative RPV materials are presented.
A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690
NASA Astrophysics Data System (ADS)
Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong
The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.
The effects on γ-LiAlO2 induced by nuclear energy losses during Ga ions implantation
NASA Astrophysics Data System (ADS)
Zhang, Jing; Song, Hong-Lian; Qiao, Mei; Yu, Xiao-Fei; Wang, Tie-Jun; Wang, Xue-Lin
2017-09-01
To explore the evolution of γ-LiAlO2 under ion irradiation at low energy, we implanted Ga ions of 30, 80 and 150 keV at fluences of 1 × 1014 and 1 × 1015 ions/cm2 in z-cut γ-LiAlO2 samples, respectively. The implantation resulted in damage regions dominated by nuclear energy losses at depth of 232 Å, 514 Å, and 911 Å beneath the surface, respectively, which was simulated by the Stopping and Range of Ions in Matter program. The irradiated γ-LiAlO2 were characterized with atomic force microscope, Raman spectroscopy, X-ray diffraction and Rutherford backscattering in a channeling mode for morphology evolution, structure information and damage profiles. The interesting and partly abnormal results showed the various behaviors in modification of surface by Ga ions implantation.
Mycobacterium tuberculosis promotes genomic instability in macrophages.
Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene
2018-03-01
Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection.
Jaczko to resign as chair of Nuclear Regulatory Commission
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-05-01
Gregory Jaczko, chair of the U.S. Nuclear Regulatory Commission (NRC), announced on 21 May that he will resign once his successor is appointed. His resignation will end a stormy 3-year chairmanship during which he was accused of bullying NRC staff, lying to Congress, and being too close to the political process. Jaczko formerly served as science advisor to Sen. Harry Reid (D-Nev.). As NRC chair, Jaczko halted the commission's license application review for storing nuclear waste at Nevada's Yucca Mountain. In addition, during his NRC tenure the commission focused on identifying and implementing lessons from Japan's Fukushima Daiichi reactors damaged by the 2011 tsunami.
Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji
2012-01-01
On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed.
Chiu, Huang-Sheng; Huang, Ping-Ji; Wuu, Jyi-Lan; Wang, Jeng-Jong
2013-11-01
The 3-11 Earthquake occurred in Japan last year had greatly damaged the lives and properties and also caused the core meltdown accident in the Fukushima nuclear power plant followed by the leakage of radioactive materials into biosphere. In order to protect against the detriment of radiation from foods which were imported from Japan, the Institute of Nuclear Energy Research (INER) in Taiwan started to conduct radioactivity inspection of food products from Japan after the accident. A total of about 20,000 samples had been tested from March 24 2011 to March 31 2012. Copyright © 2013 Elsevier Ltd. All rights reserved.
Main, Penelope A E; Thomas, Philip; Esterman, Adrian; Fenech, Michael F
2013-07-01
Autism spectrum disorders are a heterogeneous group of neurodevelopmental conditions characterised by impairments in reciprocal social interaction, communication and stereotyped behaviours. As increased DNA damage events have been observed in a range of other neurological disorders, it was hypothesised that they would be elevated in lymphoblastoid cell lines (LCLs) obtained from children with autism compared with their non-autistic siblings. Six case-sibling pairs of LCLs from children with autistic disorder and their non-autistic siblings were obtained from the Autism Genetic Resource Exchange (AGRE) and cultured in standard RPMI-1640 tissue culture medium. Cells were exposed to medium containing either 0, 25, 50, 100 and 200 µM hydrogen peroxide (an oxidative stressor) or 0, 5, 10, 20 and 40 µM s-nitroprusside (a nitric oxide producer) for 1h. Following exposure, the cells were microscopically scored for DNA damage, cytostasis and cytotoxicity biomarkers as measured using the cytokinesis-block micronucleus cytome assay. Necrosis was significantly increased in cases relative to controls when exposed to oxidative and nitrosative stress (P = 0.001 and 0.01, respectively). Nuclear division index was significantly lower in LCLs from children with autistic disorder than their non-autistic siblings when exposed to hydrogen peroxide (P = 0.016), but there was no difference in apoptosis, micronucleus frequency, nucleoplasmic bridges or nuclear buds. Exposure to s-nitroprusside significantly increased the number of micronuclei in non-autistic siblings compared with cases (P = 0.003); however, other DNA damage biomarkers, apoptosis and nuclear division did not differ significantly between groups. The findings of this study show (i) that LCLs from children with autism are more sensitive to necrosis under conditions of oxidative and nitrosative stress than their non-autistic siblings and (ii) refutes the hypothesis that children with autistic disorder are abnormally susceptible to DNA damage.
Fenech, Michael F.
2013-01-01
Autism spectrum disorders are a heterogeneous group of neurodevelopmental conditions characterised by impairments in reciprocal social interaction, communication and stereotyped behaviours. As increased DNA damage events have been observed in a range of other neurological disorders, it was hypothesised that they would be elevated in lymphoblastoid cell lines (LCLs) obtained from children with autism compared with their non-autistic siblings. Six case–sibling pairs of LCLs from children with autistic disorder and their non-autistic siblings were obtained from the Autism Genetic Resource Exchange (AGRE) and cultured in standard RPMI-1640 tissue culture medium. Cells were exposed to medium containing either 0, 25, 50, 100 and 200 µM hydrogen peroxide (an oxidative stressor) or 0, 5, 10, 20 and 40 µM s-nitroprusside (a nitric oxide producer) for 1h. Following exposure, the cells were microscopically scored for DNA damage, cytostasis and cytotoxicity biomarkers as measured using the cytokinesis-block micronucleus cytome assay. Necrosis was significantly increased in cases relative to controls when exposed to oxidative and nitrosative stress (P = 0.001 and 0.01, respectively). Nuclear division index was significantly lower in LCLs from children with autistic disorder than their non-autistic siblings when exposed to hydrogen peroxide (P = 0.016), but there was no difference in apoptosis, micronucleus frequency, nucleoplasmic bridges or nuclear buds. Exposure to s-nitroprusside significantly increased the number of micronuclei in non-autistic siblings compared with cases (P = 0.003); however, other DNA damage biomarkers, apoptosis and nuclear division did not differ significantly between groups. The findings of this study show (i) that LCLs from children with autism are more sensitive to necrosis under conditions of oxidative and nitrosative stress than their non-autistic siblings and (ii) refutes the hypothesis that children with autistic disorder are abnormally susceptible to DNA damage. PMID:23766106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, Daniel P.; Gronier, Serge; Heriot, Ian D.
2005-08-08
Chornobyl Nuclear Power Plant ? An Overview of the Current Efforts to Stabilize the Chornobyl Shelter and Establish an Environmentally Safe Site Abstract?The 1986 accident at the Chornobyl Nuclear Power Plant in Ukraine resulted in the destruction of the reactor core and most of the reactor building. The Chornobyl accident released an enormous quantity of radionuclides into the environment, significantly contaminating a large region around the plant. Within seven months of the accident, the damaged Unit 4 was encased in a massive concrete and steel enclosure known as the Shelter. Deterioration of the Shelter over time poses increasing risks. Themore » Shelter is subject to structural damage or collapse due to wind, snow loading, or seismic activity. Collapse could lead to the release of radioactive fallout. Leakage of rainwater into the Shelter has caused the accumulation of a large quantity of highly radioactive liquid, corrosion of extremely contaminated nuclear fuel debris, and creation of hazardous radioactive dust. To address these concerns, the government of Ukraine, the G7 nations, and additional donor countries adopted the Shelter Implementation Plan (SIP) in 1997. The SIP's objectives are to reduce the risk and potential consequences of accidental collapse of the Shelter; improve nuclear, industrial and environmental safety; and develop a long-term strategy for conversion to an environmentally safe site. Implementation of the SIP has made significant progress that will lead to the construction of a new confinement facility by 2009. (Full paper available by contacting lead author, Dan Couch)« less
1990-02-01
ELECTRONICS IN ARMOURED VEHICLES byo0 T. Cousins and TJ. Jamieson co N OTIC L , k .. •, ’" DEFENCE RESEARCH ESTABLISHMENT OTTAWA REPORT NO.1032 February...DISPLACEMENT DAMAGE TO ELECTRONICS IN ARMOURED VEHICLES by T. Cousins Nuclear Effects Section EAectronics Divsion and TJ. Jamkson Science Applications...The degree of protection from neutron irradiation afforded to electronics by armoured vehicles is most correctly defined by the outside-to-inside ratio
Horigome, Chihiro; Bustard, Denise E.; Marcomini, Isabella; Delgoshaie, Neda; Tsai-Pflugfelder, Monika; Cobb, Jennifer A.; Gasser, Susan M.
2016-01-01
High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6–Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining. PMID:27056668
Kunz, Alexander; Abe, Takato; Hochrainer, Karin; Shimamura, Munehisa; Anrather, Josef; Racchumi, Gianfranco; Zhou, Ping; Iadecola, Costantino
2008-02-13
CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-kappaB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1beta were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-kappaB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.
Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.
Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan
2017-02-01
Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.
Dauer, Lawrence T; Zanzonico, Pat; Tuttle, R Michael; Quinn, Dennis M; Strauss, H William
2011-09-01
The Fukushima Daiichi nuclear power facility, in the Futaba District of the Fukushima Prefecture in Japan, was severely damaged by the earthquake and ensuing tsunami that struck off the northern coast of the island of Honshu on March 11, 2011. The resulting structural damage to the plant disabled the reactor's cooling systems and led to significant, ongoing environmental releases of radioactivity, triggering a mandatory evacuation of a large area surrounding the plant. The status of the facility continues to change, and permanent control of its radioactive inventory has not yet been achieved. The purpose of this educational article is to summarize the short-term chronology, radiologic consequences, emergency responses, and long-term challenges associated with this event. Although there is ongoing debate on preparedness before the event and the candor of responsible entities in recognizing and disclosing its severity, it largely appears that appropriate key actions were taken by the Japanese authorities during the event that should mitigate any radiologic health impact. These actions include an organized evacuation of over 200,000 inhabitants from the vicinity of the site and areas early in the emergency; monitoring of food and water and placement of radiation limits on such foodstuffs; distribution of stable potassium iodide; and systematic scanning of evacuees. However, the risk of additional fuel damage and of further, perhaps substantial, releases persists. The situation at the Fukushima Daiichi nuclear facility remains fluid, and the long-term environmental and health impact will likely take years to fully delineate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Taichi; Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521; Takahashi, Akihisa
2011-01-07
The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-}more » cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.« less
Garaj-Vrhovac, V; Gajski, G; Ravlić, S
2008-06-01
The cytokinesis-block micronucleus (CBMN) assay is one of the standard cytogenetic tools employed to assess chromosomal damage subsequent to exposure to genotoxic/cytotoxic agents, and is widely applicable to plant, animal and human cells. In the present study, the CBMN assay was used to assess the baseline damage in binuclear human peripheral blood lymphocytes exposed to 25 microg/L p,p'-DDT for 1, 2, 24, and 48 h by measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. These new scoring criteria facilitated the detection of different types of clastogenic and aneugenic effects induced by this type of pollutant. With these criteria, CBMN can also be used to measure nucleoplasmic bridges which are considered to be consequences of chromosome rearrangements and nuclear buds which are biomarkers of altered gene amplification and gene dosage. The total number of micronuclei observed in binuclear human peripheral blood lymphocytes of the exposed samples (ranging from 32 to 47) was significantly greater (P < 0.05) than that detected in the unexposed (0 time) control sample, where the total number of micronuclei was 7. The number of nucleoplasmic bridges and nuclear buds obtained after 24 and 48 h was also significantly (P < 0.05) greater in the samples treated with p,p'-DDT than in the unexposed control samples. Thus, our results confirmed the usefulness of the new criteria applicable for the CBMN assay employed in measuring the DNA damage and its role of a sensitive cytogenetic biomarker.
Micronuclei and nuclear anomalies in Mexico's indigenous population.
Lazalde-Ramos, Blanca Patricia; Zamora-Pérez, Ana Lourdes; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Zúñiga-González, Guillermo Moisés
2017-01-01
To determine the number of micronuclei and nuclear anomalies in Mexico's indigenous population. One hundred twenty indigenous individuals were evaluated, including thirty from the ethnicities Cora, Huichol, Tarahumara and Tepehuano. The number of micronuclei (MN) and any nuclear abnormality (NA) in oral mucosa cells, including cells with nuclear buds, binucleated cells, cells with karyolysis, karyorrhetic, condensed chromatin and pyknotic cells were determined for each participant. Tepehuano and Tarahumaras showed the greatest damage to DNA. The Tepehuano group presented the highest number of MN and NA, this being a significant difference (p < 0.05) compared with the rest of the studied groups. This group also presented the highest herbicide exposure (46.7%). In relation to the smoking and drinking habits, these were more frequent in the Tarahumara group (33.3 and 50% respectively). The ethnic diversity, habits and customs may influence the DNA nuclear integrity in the Amerindian groups.
Wang, Teng; Shi, Qibin; Nikkhoo, Mehdi; Wei, Shengji; Barbot, Sylvain; Dreger, Douglas; Bürgmann, Roland; Motagh, Mahdi; Chen, Qi-Fu
2018-05-10
Surveillance of clandestine nuclear tests relies on a global seismic network, but the potential of spaceborne monitoring has been underexploited. Here, we determined the complete surface displacement field of up to 3.5 m of divergent horizontal motion with 0.5 m of subsidence associated with North Korea's largest underground nuclear test using satellite radar imagery. Combining insight from geodetic and seismological remote sensing, we found that the aftermath of the initial explosive deformation involved subsidence associated with sub-surface collapse and aseismic compaction of the damaged rocks of the test site. The explosive yield from the nuclear detonation with seismic modeling for 450m depth was between 120-304 kt of TNT equivalent. Our results demonstrate the capability of spaceborne remote sensing to help characterize large underground nuclear tests. Copyright © 2018, American Association for the Advancement of Science.
He and Au ion radiation damage in sodalite, Na4Al3Si3O12Cl
NASA Astrophysics Data System (ADS)
Vance, Eric R.; Gregg, Daniel J.; Karatchevtseva, Inna; Davis, Joel; Ionescu, Mihail
2014-10-01
Sodalite, a candidate ceramic for the immobilisation of pyroprocessing nuclear waste, showed no observable lattice dilatation in grazing incidence X-ray diffraction when irradiated with up to 1017 5 MeV He ions/cm2. However micro-Raman scattering showed considerable spectral broadening characteristic of radiation damage near the end of the ∼22 μm He range. Partial amorphism plus nepheline formation was observed in grazing incidence X-ray diffraction when sodalite was irradiated by 1016 12 MeV Au ions/cm2. Nepheline appeared less susceptible to 12 MeV Au ion damage than sodalite, with ∼25% less amorphous fraction at 1016 ions/cm2.
Simon, L; Liu, L; Murphy, K; Ge, S; Hotaling, J; Aston, K I; Emery, B; Carrell, D T
2014-05-01
Is there an association between sperm DNA damage, measured by three different assays, sperm nuclear protein content and clinical outcomes in assisted reproduction treatment (ART)? Sperm DNA damage measured by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) and the Comet assay were significantly associated with ART outcomes in our single institution study. Abnormal protamine expression is known to be associated with sperm DNA damage and male infertility. A number of studies have shown a significant relationship between sperm DNA damage and ART outcomes. To date, there are no large studies providing direct comparisons of DNA damage tests within the same study population. Thus, the prognostic value for each method remains unknown. Cross-sectional study of 238 men from infertile couples undergoing ART at the University Center for Reproductive Medicine, Utah, USA, between April 2011 and March 2013. Sperm from men undergoing ART were tested for DNA damage using the alkaline Comet assay, TUNEL and flow cytometric chromatin evaluation (FCCE) assays. Histone retention was analysed using the aniline blue staining method, whereas protamine content (proteins P1 and P2) and ratio were analysed using acid urea gel electrophoresis. The prognostic value of each sperm DNA test to predict clinical pregnancy was calculated. Histone retention was associated with sperm DNA damage (P < 0.001), reduced embryo quality (P = 0.005) and clinical pregnancies (P < 0.001). The mean percentage of sperm with DNA damage was significantly higher in sperm from non-pregnant couples compared with that from pregnant couples, as measured by TUNEL assay (15.04 ± 1.16% versus 8.79 ± 0.56%; P < 0.001) and alkaline Comet assay (72.79 ± 2.49% versus 55.86 ± 2.29%; P < 0.001). There was no association between clinical pregnancies and DNA fragmentation index measured by FCCE (12.97 ± 1.46 versus 14.93 ± 1.65; P = 0.379). Of the protamine parameters analysed, only the P1/P2 ratio was associated with sperm count (P = 0.013), men's age (P = 0.037), maturity (P = 0.049) and blastocyst quality (P = 0.012). Histone retention and sperm DNA damage measured by Comet and TUNEL assays were associated with fertilization rate (P < 0.05), embryo quality (P < 0.05) and implantation rate (P < 0.05). A potential drawback of this study is that it is cross-sectional. Generally in such studies there is more than one variable that could cause the effect. Analysing sperm is one part of the equation; there are also a number of female factors that have the potential to influence ART outcomes. Therefore, given the large and well-established role of female factors in infertility, normal sperm DNA integrity and protamination do not necessarily ensure clinical pregnancy in ART. Thus, female factors can reduce the prognostic value of sperm DNA tests. Further, our use of native semen instead of prepared sperm may have iatrogenically increased the DNA damage. Alteration in sperm nuclear protein affects sperm DNA integrity. Further, with the current dataset, TUNEL and Comet assays appeared more predictive of ART success than FCCE. No personal or direct financial support has been received for any of this work. The authors declare no competing interests. N/A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, G.N.; Postol, T.A.
Long-range nuclear-armed cruise missiles are highly accurate and are capable of reaching most targets within the United States and the Commonwealth of Independent States (CIS) from launch points beyond their borders. Neither the United States nor the CIS has air surveillance systems capable of providing reliable warning against cruise missiles. Thus it is possible that a small-scale cruise missile attack could go entirely undetected until the nuclear weapons arrived over their targets. Such an attack could destroy the other country's entire strategic bomber force on the ground and severely damage its strategic command and control system, perhaps to the pointmore » of endangering the ability of its ICBM force to be launched on warning. This capability makes long-range nuclear cruise missiles potentially one of the most destabilizing of all nuclear weapons.« less
Horizontal baffle for nuclear reactors
Rylatt, John A.
1978-01-01
A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.
Waters, R; Moustacchi, E
1975-01-01
The photoreactivability of UV-induced pyrimidine dimers in the nuclear and mitochondrial DNAs of Saccharomyces cerevisiae has been investigated in conjunction with the fate of these photoproducts following postirradiation dark incubation in saline and nutrient media. In all instances, survival and "petite" induction were measured. An attempt has been made to relate these results to present ideas on the repair of UV damages in DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakamp, M.A.
The United States has adopted a policy of calculated ambiguity regarding the role of nuclear weapons in response to a potential chemical or biological weapons (CBW) attack. Many factors affect decisions about the role nuclear weapons play in US counterproliferation strategy. This thesis describes the policy of calculated ambiguity and offers some observations about its prospects and pitfalls. The thesis presents evidence that suggests nuclear weapons could play a positive role in the US counterproliferation strategy, at least in some circumstances. It also explains how such a role could conflict with the US nonproliferation strategy. Such a role would alsomore » violate the nuclear taboo and be seen by a majority of countries as illegal and immoral. The United States has chosen a policy of calculated ambiguity in an attempt to retain the deterrent value of nuclear weapons without paying the political, legal, and moral costs of explicit reliance on nuclear weapons to deter the use of CBW. This may have short-term benefits, but ultimately may damage the national interest.« less
Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.
Gredilla, R; Barja, G; López-Torres, M
2001-10-01
Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.
Lee, Bom-Lee; Kang, Jung-Hwan; Kim, Hye-Mi; Jeong, Se-Hee; Jang, Dae-Sik; Jang, Young-Pyo; Choung, Se-Young
2016-12-01
Polyphenols exert beneficial effects on vision. We hypothesized that polyphenol components of Vaccinium uliginosum L. (V.U.) extract protect retinal pigment epithelial (RPE) cells against blue light-induced damage. Our aim was to test extracts containing polyphenol components to ascertain effects to reduce damage against blue light in RPEs. We measured the activity in fractions eluted from water, ethanol, and HP20 resin (FH), and found that the FH fraction had the highest beneficial activity. We isolated the individual active compounds from the FH fraction using chromatographic techniques, and found that FH contained flavonoids, anthocyanins, phenyl propanoids, and iridoids. Cell cultures of A2E-laden ARPE-19 exposed to blue light after treatment with V.U. extract fractions and their individual constituents indicated improvement. V uliginosum L extract fractions and constituent compounds significantly reduced A2E photo-oxidation-induced RPE cell death and inhibited intracellular A2E accumulation. Furthermore, Balb/c male mice were exposed to blue light at 10000 lux for 1 h/d for 2 weeks to induce retinal damage. One week after the final blue light exposure, retinal damage evaluated revealed that the outer nuclear layer thickness and nuclei count were improved. Histologic examination of murine photoreceptor cells demonstrated that FH, rich in polyphenols, inhibited the loss of outer nuclear layer thickness and nuclei. Our findings suggest that V.U. extract and eluted fractions are a potential source of bioactive compounds that potentially serve a therapeutic approach for age-related macular degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.
DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells
Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng
2014-01-01
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP-depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP-depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. PMID:24726884
Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C
2014-01-01
The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090
Recruitment of TRF2 to laser-induced DNA damage sites.
Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David
2012-09-01
Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.
Solid State Nuclear Track Detectors--I: Track Characteristics and Formation Mechanisms.
ERIC Educational Resources Information Center
Lal, Nand
1991-01-01
Heavily ionizing charged particles produce radiation damage tracks in a wide variety of insulating materials. The experimental properties of these tracks and track recorders are described. The mechanisms by which the tracks are produced are discussed. (Author/KR)
Alterations in nuclear structure promote lupus autoimmunity in a mouse model
Singh, Namrata; Johnstone, Duncan B.; Martin, Kayla A.; Tempera, Italo; Kaplan, Mariana J.
2016-01-01
ABSTRACT Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the development of autoantibodies that recognize components of the cell nucleus. The vast majority of lupus research has focused on either the contributions of immune cell dysfunction or the genetics of the disease. Because granulocytes isolated from human SLE patients had alterations in neutrophil nuclear morphology that resembled the Pelger–Huet anomaly, and had prominent mis-splicing of mRNA encoding the nuclear membrane protein lamin B receptor (LBR), consistent with their Pelger–Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes to the development of lupus autoimmunity. The lupus-prone mouse strain New Zealand White (NZW) was crossed with c57Bl/6 mice harboring a heterozygous autosomal dominant mutation in Lbr (B6.Lbric/+), and the (NZW×B6.Lbric)F1 offspring were evaluated for induction of lupus autoimmunity. Only female (NZW×B6.Lbric)F1 mice developed lupus autoimmunity, which included splenomegaly, kidney damage and autoantibodies. Kidney damage was accompanied by immune complex deposition, and perivascular and tubule infiltration of mononuclear cells. The titers of anti-chromatin antibodies exceeded those of aged female MRL-Faslpr mice, and were predominantly of the IgG2 subclasses. The anti-nuclear antibody staining profile of female (NZW×B6.Lbric)F1 sera was complex, and consisted of an anti-nuclear membrane reactivity that colocalized with the A-type lamina, in combination with a homogeneous pattern that was related to the recognition of histones with covalent modifications that are associated with gene activation. An anti-neutrophil IgM recognizing calreticulin, but not myeloperoxidase (MPO) or proteinase 3 (PR3), was also identified. Thus, alterations in nuclear structure contribute to lupus autoimmunity when expressed in the context of a lupus-prone genetic background, suggesting a mechanism for the development of lupus autoimmunity in genetically predisposed individuals that is induced by the disruption of nuclear architecture. PMID:27483354
A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors
NASA Astrophysics Data System (ADS)
Brown, P. G.; Assink, J. D.; Astiz, L.; Blaauw, R.; Boslough, M. B.; Borovička, J.; Brachet, N.; Brown, D.; Campbell-Brown, M.; Ceranna, L.; Cooke, W.; de Groot-Hedlin, C.; Drob, D. P.; Edwards, W.; Evers, L. G.; Garces, M.; Gill, J.; Hedlin, M.; Kingery, A.; Laske, G.; Le Pichon, A.; Mialle, P.; Moser, D. E.; Saffer, A.; Silber, E.; Smets, P.; Spalding, R. E.; Spurný, P.; Tagliaferri, E.; Uren, D.; Weryk, R. J.; Whitaker, R.; Krzeminski, Z.
2013-11-01
Most large (over a kilometre in diameter) near-Earth asteroids are now known, but recognition that airbursts (or fireballs resulting from nuclear-weapon-sized detonations of meteoroids in the atmosphere) have the potential to do greater damage than previously thought has shifted an increasing portion of the residual impact risk (the risk of impact from an unknown object) to smaller objects. Above the threshold size of impactor at which the atmosphere absorbs sufficient energy to prevent a ground impact, most of the damage is thought to be caused by the airburst shock wave, but owing to lack of observations this is uncertain. Here we report an analysis of the damage from the airburst of an asteroid about 19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk, Russia, on 15 February 2013, estimated to have an energy equivalent of approximately 500 (+/-100) kilotons of trinitrotoluene (TNT, where 1 kiloton of TNT = 4.185×1012 joules). We show that a widely referenced technique of estimating airburst damage does not reproduce the observations, and that the mathematical relations based on the effects of nuclear weapons--almost always used with this technique--overestimate blast damage. This suggests that earlier damage estimates near the threshold impactor size are too high. We performed a global survey of airbursts of a kiloton or more (including Chelyabinsk), and find that the number of impactors with diameters of tens of metres may be an order of magnitude higher than estimates based on other techniques. This suggests a non-equilibrium (if the population were in a long-term collisional steady state the size-frequency distribution would either follow a single power law or there must be a size-dependent bias in other surveys) in the near-Earth asteroid population for objects 10 to 50 metres in diameter, and shifts more of the residual impact risk to these sizes.
Zhang, Ying; Chen, Guangpei; Gu, Zhen; Sun, Haijian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun
2018-01-01
We previously demonstrated that parathyroid hormone-related peptide (PTHrP) 1-84 knockin ( Pthrp KI) mice, which lacked a PTHrP nuclear localization sequence (NLS) and C-terminus, displayed early senescence, defective osteoblastic bone formation, and skeletal growth retardation. However, the mechanism of action of the PTHrP NLS and C-terminus in regulating development of skeleton is still unclear. In this study, we examined alterations of oxidative stress and DNA damage response-related molecules in Pthrp KI skeletal tissue. We found that ROS levels, protein expression levels of γ-H2AX, a DNA damage marker, and the DNA damage response markers p-Chk2 and p53 were up-regulated, whereas gene expression levels of anti-oxidative enzymes were down-regulated significantly. We therefore further disrupted the DNA damage response pathway by deleting the Chk2 in Pthrp KI (Chk2 -/- KI) mice and did comparison with WT, Chk2 -/- and Pthrp KI littermates. The Pthrp KI mice with Chk2 deletion exhibited a longer lifespan, improvement in osteoblastic bone formation and skeletal growth including width of growth plates and length of long bones, trabecular and epiphyseal bone volume, BMD, osteoblast numbers, type I collagen and ALP positive bone areas, the numbers of total colony-forming unit fibroblasts (CFU-f), ALP + CFU-f and the expression levels of osteogenic genes. In addition, the genes associated with anti-oxidative enzymes were up-regulated significantly, whereas the tumor suppressor genes related to senescence were down-regulated in Chk2 -/- KI mice compared to Pthrp KI mice. Our results suggest that Chk2 deletion in Pthrp KI mice can somewhat rescue defects in osteoblastic bone formation and skeletal growth by enhancing endochondral bone formation and osteogenesis. These studies therefore indicate that the DNA damage checkpoint pathway may be a target for the nuclear action of PTHrP to regulate skeletal development and growth.
Revealing ionization-induced dynamic recovery in ion-irradiated SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisa, Gihan; Wendler, Elke; Xue, Haizhou
The lack of fundamental understanding on the coupled effects of energy deposition to electrons and atomic nuclei on defect processes and irradiation response poses a significant roadblock for the design and control of material properties. In this work, SrTiO 3 has been irradiated with various ion species over a wide range of ion fluences at room temperature with a goal to deposit different amounts of energy to target electrons and atomic nuclei by varying the ratio of electronic to nuclear energy loss. Here, the results unambiguously show a dramatic difference in behavior of SrTiO 3 irradiated with light ions (Ne,more » O) compared to heavy ions (Ar). While the damage accumulation and amorphization under Ar ion irradiation are consistent with previous observations and existing models, the damage accumulation under Ne irradiation reveals a quasi-saturation state at a fractional disorder of 0.54 at the damage peak for an ion fluence corresponding to a dose of 0.5 dpa; this is followed by further increases in disorder with increasing ion fluence. In the case of O ion irradiation, the damage accumulation at the damage peak closely follows that for Ne ion irradiation up to a fluence corresponding to a dose of 0.5 dpa, where a quasi-saturation of fractional disorder level occurs at about 0.48; however, in this case, the disorder at the damage peak decreases slightly with further increases in fluence. This behavior is associated with changes in kinetics due to irradiation-enhanced diffusional processes that are dependent on electronic energy loss and the ratio of electronic to nuclear energy dissipation. Lastly, these findings are critical for advancing the fundamental understanding of ion-solid interactions and for a large number of applications in oxide electronics where SrTiO 3 is a foundational material.« less
Patton, Howard John
2016-04-11
Surface wave magnitude M s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an M s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rockmore » explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where Ms scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Howard John
Surface wave magnitude M s for a compilation of 72 nuclear tests detonated in hard rock media for which yields and burial depths have been reported in the literature is shown to scale with yield W as a + b × log[W], where a = 2.50 ± 0.08 and b = 0.80 ± 0.05. While the exponent b is consistent with an M s scaling model for fully coupled, normal containment-depth explosions, the intercept a is offset 0.45 magnitude units lower than the model. The cause of offset is important to understand in terms of the explosion source. Hard rockmore » explosions conducted in extensional and compressional stress regimes show similar offsets, an indication that the tectonic setting in which an explosion occurs plays no role causing the offset. The scaling model accounts for the effects of source medium material properties on the generation of 20-s period Rayleigh wave amplitudes. Aided by thorough characterizations of the explosion and tectonic release sources, an extensive analysis of the 1963 October 26 Shoal nuclear test detonated in granite 27 miles southeast of Fallon NV shows that the offset is consistent with the predictions of a material damage source model related to non-linear stress wave interactions with the free surface. This source emits Rayleigh waves with polarity opposite to waves emitted by the explosion. The Shoal results were extended to analyse surface waves from the 1962 February 15 Hardhat nuclear test, the 1988 September 14 Soviet Joint Verification Experiment, and the anomalous 1979 August 18 northeast Balapan explosion which exhibits opposite polarity, azimuth-independent source component U1 compared to an explosion. Modelling these tests shows that Rayleigh wave amplitudes generated by the damage source are nearly as large as or larger than amplitudes from the explosion. As such, destructive interference can be drastic, introducing metastable conditions due to the sensitivity of reduced amplitudes to Rayleigh wave initial phase angles of the explosion and damage sources. This meta-stability is a likely source of scatter in M s-yield scaling observations. The agreement of observed scaling exponent b with the model suggests that the damage source strength does not vary much with yield, in contrast to explosions conducted in weak media where Ms scaling rates are greater than the model predicts, and the yield dependence of the damage source strength is significant. This difference in scaling behaviour is a consequence of source medium material properties.« less
DNA Damage, DNA Repair, Aging, and Neurodegeneration
Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.
2015-01-01
Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091
Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.
Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S
2013-10-01
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
Reactive oxygen-mediated damage to a human DNA replication and repair protein.
Montaner, Beatriz; O'Donovan, Peter; Reelfs, Olivier; Perrett, Conal M; Zhang, Xiaohong; Xu, Yao-Zhong; Ren, Xiaolin; Macpherson, Peter; Frith, David; Karran, Peter
2007-11-01
Ultraviolet A (UVA) makes up more than 90% of incident terrestrial ultraviolet radiation. Unlike shorter wavelength UVB, which damages DNA directly, UVA is absorbed poorly by DNA and is therefore considered to be less hazardous. Organ transplant patients treated with the immunosuppressant azathioprine frequently develop skin cancer. Their DNA contains 6-thioguanine-a base analogue that generates DNA-damaging singlet oxygen ((1)O(2)) when exposed to UVA. Here, we show that this (1)O(2) damages proliferating cell nuclear antigen (PCNA), the homotrimeric DNA polymerase sliding clamp. It causes covalent oxidative crosslinking between the PCNA subunits through a histidine residue in the intersubunit domain. Crosslinking also occurs after treatment with higher-although still moderate-doses of UVA alone or with chemical oxidants. Chronic accumulation of oxidized proteins is linked to neurodegenerative disorders and ageing. Our findings identify oxidative damage to an important DNA replication and repair protein as a previously unrecognized hazard of acute oxidative stress.
Eichenfield, Dawn Z; Troutman, Ty Dale; Link, Verena M; Lam, Michael T; Cho, Han; Gosselin, David; Spann, Nathanael J; Lesch, Hanna P; Tao, Jenhan; Muto, Jun; Gallo, Richard L; Evans, Ronald M; Glass, Christopher K
2016-01-01
Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype. DOI: http://dx.doi.org/10.7554/eLife.13024.001 PMID:27462873
Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.
2009-01-01
Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071
Anzai, Kazunori; Ban, Nobuhiko; Ozawa, Toshihiko; Tokonami, Shinji
2012-01-01
On March 11, 2011, an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed. PMID:22247595
Muon trackers for imaging a nuclear reactor
NASA Astrophysics Data System (ADS)
Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.
2016-09-01
A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.
Upgrading the fuel-handling machine of the Novovoronezh nuclear power plant unit no. 5
NASA Astrophysics Data System (ADS)
Terekhov, D. V.; Dunaev, V. I.
2014-02-01
The calculation of safety parameters was carried out in the process of upgrading the fuel-handling machine (FHM) of the Novovoronezh nuclear power plant (NPP) unit no. 5 based on the results of quantitative safety analysis of nuclear fuel transfer operations using a dynamic logical-and-probabilistic model of the processing procedure. Specific engineering and design concepts that made it possible to reduce the probability of damaging the fuel assemblies (FAs) when performing various technological operations by an order of magnitude and introduce more flexible algorithms into the modernized FHM control system were developed. The results of pilot operation during two refueling campaigns prove that the total reactor shutdown time is lowered.
Neutronic Calculation Analysis for CN HCCB TBM-Set
NASA Astrophysics Data System (ADS)
Cao, Qixiang; Zhao, Fengchao; Zhao, Zhou; Wu, Xinghua; Li, Zaixin; Wang, Xiaoyu; Feng, Kaiming
2015-07-01
Using the Monte Carlo transport code MCNP, neutronic calculation analysis for China helium cooled ceramic breeder test blanket module (CN HCCB TBM) and the associated shield block (together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model. Key nuclear responses of HCCB TBM-set, such as the neutron flux, tritium production rate, nuclear heating and radiation damage, have been obtained and discussed. These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set, such as thermal-hydraulics, thermal-mechanics and safety analysis. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)
Fukushima nuclear accident: preliminary assessment of the risks to non-human biota.
Aliyu, Abubakar Sadiq; Ramli, Ahmad Termizi; Garba, Nuraddeen Nasiru; Saleh, Muneer Aziz; Gabdo, Hamman Tukur; Liman, Muhammad Sanusi
2015-02-01
This study assesses the 'radio-ecological' impacts of Fukushima nuclear accident on non-human biota using the ERICA Tool, which adopts an internationally verified methodology. The paper estimates the impacts of the accident on terrestrial and marine biota based on the environmental data reported in literature for Japan, China, South Korea and the USA. Discernible impacts have been detected in the marine biota around Fukushima Daiichi nuclear power plant. This study confirms that the Fukushima accident had caused heavier damage to marine bionts compared with terrestrial flora and fauna, in Japan. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.
Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki
2017-01-01
The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.
Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression
Cline, Susan D.
2012-01-01
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831
Luo, Dexian; Bernard, Delphine G.; Balk, Janneke; Hai, Huang; Cui, Xiaofeng
2012-01-01
Eukaryotic organisms have evolved a set of strategies to safeguard genome integrity, but the underlying mechanisms remain poorly understood. Here, we report that ASYMMETRIC LEAVES1/2 ENHANCER7 (AE7), an Arabidopsis thaliana gene encoding a protein in the evolutionarily conserved Domain of Unknown Function 59 family, participates in the cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway to maintain genome integrity. The severe ae7-2 allele is embryo lethal, whereas plants with the weak ae7 (ae7-1) allele are viable but exhibit highly accumulated DNA damage that activates the DNA damage response to arrest the cell cycle. AE7 is part of a protein complex with CIA1, NAR1, and MET18, which are highly conserved in eukaryotes and are involved in the biogenesis of cytosolic and nuclear Fe-S proteins. ae7-1 plants have lower activities of the cytosolic [4Fe-4S] enzyme aconitase and the nuclear [4Fe-4S] enzyme DNA glycosylase ROS1. Additionally, mutations in the gene encoding the mitochondrial ATP binding cassette transporter ATM3/ABCB25, which is required for the activity of cytosolic Fe-S enzymes in Arabidopsis, also result in defective genome integrity similar to that of ae7-1. These results indicate that AE7 is a central member of the CIA pathway, linking plant mitochondria to nuclear genome integrity through assembly of Fe-S proteins. PMID:23104832
Electromagnetic Dissociation and Spacecraft Electronics Damage
NASA Technical Reports Server (NTRS)
Norbury, John W.
2016-01-01
When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.
Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie
2004-04-02
Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.
Singh, Shilpee; Englander, Ella W
2012-11-01
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is a multifunctional protein critical for cellular survival. Its involvement in adaptive survival responses includes key roles in redox sensing, transcriptional regulation, and repair of DNA damage via the base excision repair (BER) pathway. Ape1 is abundant in most cell types and central in integrating the first BER step catalyzed by different DNA glycosylases. BER is the main process for removal of oxidative DNA lesions in postmitotic brain cells, and after ischemic brain injury preservation of Ape1 coincides with neuronal survival, while its loss has been associated with neuronal death. Here, we report that in cultured primary neurons, diminution of cellular ATP by either oligomycin or H(2)O(2) is accompanied by depletion of nuclear Ape1, while other BER proteins are unaffected and retain their nuclear localization under these conditions. Importantly, while H(2)O(2) induces γH2AX phosphorylation, indicative of chromatin rearrangements in response to DNA damage, oligomycin does not. Furthermore, despite comparable diminution of ATP content, H(2)O(2) and oligomycin differentially affect critical parameters of mitochondrial respiration that ultimately determine cellular ATP content. Taken together, our findings demonstrate that in neurons, nuclear compartmentalization of Ape1 depends on ATP and loss of nuclear Ape1 reflects disruption of neuronal energy homeostasis. Energy crisis is a hallmark of stroke and other ischemic/hypoxic brain injuries. In vivo studies have shown that Ape1 deficit precedes neuronal loss in injured brain regions. Thus, our findings bring to light the possibility that energy failure-induced Ape1 depletion triggers neuronal death in ischemic brain injuries. Copyright © 2012 Elsevier Inc. All rights reserved.
Swiss Armed Forces Conscription and Militia System: Must They Change?
2013-12-13
anthropogenic disasters, we list industrial accidents of the Chernobyl type (radioactive leaks) or of the...a nuclear accident, with a damage scale comparable to Chernobyl , happening on Helvetic soil or close by, or the direct or indirect risk given by
Method for storing nuclear fuel in respositories
Schweitzer, D.G.; Sastre, C.
A method for storing radioactive spent fuel in repositories containing polyphenyl or silicon oil as the storage medium is disclosed. Polyphenyls and silicon oils are non-corrosive and are not subject to radiation damage. Thus, storage periods of up to 100 years are possible.
NASA Astrophysics Data System (ADS)
Townsend, M.; Huckins-Gang, H.; Prothro, L.; Reed, D.
2012-12-01
The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE N1) test was conducted in May 2011, using 0.1 ton of explosives at the depth of 54.9 m in the U 15n source hole. SPE N2 was conducted in October 2011, using 1.0 ton of explosives at the depth of 45.7 m in the same source hole. The SPE N3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE N2, and at the same depth as SPE N2, within the damage zone created by the SPE N2 explosion to investigate damage effects on seismic wave propagation. Following the SPE N2 shot and prior to the SPE N3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE N2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE N2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a "fresh," mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
Toward understanding dynamic annealing processes in irradiated ceramics
NASA Astrophysics Data System (ADS)
Myers, Michael Thomas
High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic an- nealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the "radiation tolerance" of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temper- ature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic an- nealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects during the dynamic annealing process play a vital role in damage accumulation. We demonstrate that these parameters dominate the formation of stable post-irradiation disorder. In Si, a defect lifetime of ˜ 6 ms and a characteristic defect diffusion length of ˜ 30 nm are measured. These results should nucleate future pulsed-beam studies of dynamic defect interaction processes in technologically relevant materials. In particular, un- derstanding length- and time-scales of defect interactions are essential for extending laboratory findings to nuclear material lifetimes and to the time-scales of geological storage of nuclear waste.
NASA Astrophysics Data System (ADS)
McKenna, Alice
One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures which simulations have been performed on. The difference between the two is at the grain boundaries with one having dangling bonds and the other one being bonded. The cascade showed the grain boundaries acting as a trap for the knock-on atoms which produces more damage compared with the single crystal. Finally the effects of turbostratic disorder on damage is considered. Density functional theory (DFT) was used to look at interstitials in (002) twist boundaries and how they act compared to AB stacked graphite. The results of these calculations show that the spiro interstitial is more stable in these grain boundaries, so at temperatures where the interstitial can migrate along the c direction they will segregate to (002) twist boundaries.
[The morphofunctional state of the bone marrow in lead and zinc intoxication].
Vladimtseva, T M; Pashkevich, I A; Salmina, A B
2006-01-01
The nucleolus is a compulsory nuclear structure of all cells of eukaryotes. The quantitative and qualitative characteristics of nuclei show the functional activity of a cell, the rate of its synthesis of RNA and portents, and its metabolic state. Heavy metals (zinc chloride and lead acetate) were comparatively investigated for their effects on the nucleolar apparatus of bone marrow cells in in vivo experiments. Zinc chloride and lead acetate were ascertained to damage the nucleolar apparatus of cells, thus decreasing their transcriptional activity or irreversibly damaging them.
Track structure model for damage to mammalian cell cultures during solar proton events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.; Shinn, J. L.; Katz, R.
1992-01-01
Solar proton events (SPEs) occur infrequently and unpredictably, thus representing a potential hazard to interplanetary space missions. Biological damage from SPEs will be produced principally through secondary electron production in tissue, including important contributions due to delta rays from nuclear reaction products. We review methods for estimating the biological effectiveness of SPEs using a high energy proton model and the parametric cellular track model. Results of the model are presented for several of the historically largest flares using typical levels and body shielding.
Nonlinear analysis of NPP safety against the aircraft attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk; Králik, Juraj, E-mail: kralik@fa.stuba.sk
The paper presents the nonlinear probabilistic analysis of the reinforced concrete buildings of nuclear power plant under the aircraft attack. The dynamic load is defined in time on base of the airplane impact simulations considering the real stiffness, masses, direction and velocity of the flight. The dynamic response is calculated in the system ANSYS using the transient nonlinear analysis solution method. The damage of the concrete wall is evaluated in accordance with the standard NDRC considering the spalling, scabbing and perforation effects. The simple and detailed calculations of the wall damage are compared.
ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma.
Marchesini, Matteo; Ogoti, Yamini; Fiorini, Elena; Aktas Samur, Anil; Nezi, Luigi; D'Anca, Marianna; Storti, Paola; Samur, Mehmet Kemal; Ganan-Gomez, Irene; Fulciniti, Maria Teresa; Mistry, Nipun; Jiang, Shan; Bao, Naran; Marchica, Valentina; Neri, Antonino; Bueso-Ramos, Carlos; Wu, Chang-Jiun; Zhang, Li; Liang, Han; Peng, Xinxin; Giuliani, Nicola; Draetta, Giulio; Clise-Dwyer, Karen; Kantarjian, Hagop; Munshi, Nikhil; Orlowski, Robert; Garcia-Manero, Guillermo; DePinho, Ronald A; Colla, Simona
2017-07-10
Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM. Copyright © 2017 Elsevier Inc. All rights reserved.
p21 Activated kinase 1: Nuclear activity and its role during DNA damage repair.
Pérez-Yépez, Eloy Andrés; Saldívar-Cerón, Héctor Iván; Villamar-Cruz, Olga; Pérez-Plasencia, Carlos; Arias-Romero, Luis Enrique
2018-05-01
p21-activated kinase 1 (PAK1) is a serine/threonine kinase activated by the small GTPases Rac1 and Cdc42. It is located in the chromosome 11q13 and is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme plays a pivotal role in the control of a number of fundamental cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, it is well documented that PAK1 also plays crucial roles in the nucleus participating in mitotic events and gene expression through its association and/or phosphorylation of several transcription factors, transcriptional co-regulators and cell cycle-related proteins, including Aurora kinase A (AURKA), polo-like kinase 1 (PLK1), the forkhead transcription factor (FKHR), estrogen receptor α (ERα), and Snail. More recently, PAK signaling has emerged as a component of the DNA damage response (DDR) as PAK1 activity influences the cellular sensitivity to ionizing radiation and promotes the expression of several genes involved in the Fanconi Anemia/BRCA pathway. This review will focus on the nuclear functions of PAK1 and its role in the regulation of DNA damage repair. Copyright © 2018 Elsevier B.V. All rights reserved.
Balasuriya, A; Serhal, P; Doshi, A; Harper, J C
2014-03-01
Sperm preparation techniques in assisted reproduction technologies (ART) are potential generators of exogenous stresses that cause additional DNA damage. DNA fragmentation tests, such as the sperm chromatin structure assay, involve freezing sperm samples in the absence of cryoprotectant. Thermal, oxidative stress (OS) and freezing are detrimental to sperm DNA fragmentation and phosphatidylserine (PS) translocation. The primary aim of this study was to subject mature sperm to environmental insults that normally occur during ART. We tested the hypotheses that OS, thermal stress and freeze-thawing caused sperm nuclear and membrane damage and that a positive correlation exists between PS translocation and DNA fragmentation. Sperm DNA integrity deteriorates in semen samples from men with advancing age and a sperm concentration of <15 m ml(-1) . The significant increase in sperm DNA fragmentation at 37 °C after merely 1 h is important clinically as semen liquefaction and short-term sperm storage in an ART cycle involve incubating samples at this temperature. Freezing without a cryoprotectant significantly increases the level of sperm nuclear damage, so it is important not to freeze neat semen prior to DNA fragmentation testing. This study highlights the importance of minimising the production of exogenous stresses during sperm preparation in ART. © 2012 Blackwell Verlag GmbH.
Air pollution and brain damage.
Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry
2002-01-01
Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.
Rhoads, Shannon N; Monahan, Zachary T; Yee, Debra S; Leung, Andrew Y; Newcombe, Cameron G; O'Meally, Robert N; Cole, Robert N; Shewmaker, Frank P
2018-06-13
FUS is an abundant, predominantly nuclear protein involved in RNA processing. Under various conditions, FUS functionally associates with RNA and other macromolecules to form distinct, reversible phase-separated liquid structures. Persistence of the phase-separated state and increased cytoplasmic localization are both hypothesized to predispose FUS to irreversible aggregation, which is a pathological hallmark of subtypes of amyotrophic lateral sclerosis and frontotemporal dementia. We previously showed that phosphorylation of FUS's prion-like domain suppressed phase separation and toxic aggregation, proportionally to the number of added phosphates. However, phosphorylation of FUS's prion-like domain was previously reported to promote its cytoplasmic localization, potentially favoring pathological behavior. Here, we used mass spectrometry and human cell models to further identify phosphorylation sites within FUS's prion-like domain, specifically following DNA-damaging stress. In total, 28 putative sites have been identified, about half of which are DNA-dependent protein kinase (DNA-PK) consensus sites. Custom antibodies were developed to confirm the phosphorylation of two of these sites (Ser26 and Ser30). Both sites were usually phosphorylated in a sub-population of cellular FUS following a variety of DNA-damaging stresses, but not necessarily equally or simultaneously. Importantly, we found DNA-PK-dependent multi-phosphorylation of FUS's prion-like domain does not cause cytoplasmic localization.
Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity
Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.
2009-01-01
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691
Ilg, Patrick; Gabbert, Silke; Weikard, Hans-Peter
2017-07-01
This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has resulted in the identification of three possible so-called decommissioning options: complete backfilling, relocation of the waste to deeper levels in the mine, and retrieval. The selection of a decommissioning strategy must compare expected investment costs with expected social damage costs (economic, environmental, and health damage costs) caused by flooding and subsequent groundwater contamination. We apply a cost minimization approach that accounts for the uncertainty regarding the stability of the rock formation and the risk of an uncontrollable brine intrusion. Since economic and health impacts stretch out into the far future, we examine the impact of different discounting methods and rates. Due to parameter uncertainty, we conduct a sensitivity analysis concerning key assumptions. We find that retrieval, the currently preferred option by policymakers, has the lowest expected social damage costs for low discount rates. However, this advantage is overcompensated by higher expected investment costs. Considering all costs, backfilling is the best option for all discounting scenarios considered. © 2016 Society for Risk Analysis.
Experimental studies of irradiated and hydrogen implantation damaged reactor steels
NASA Astrophysics Data System (ADS)
Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav
2016-01-01
Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).
NASA Technical Reports Server (NTRS)
Awerbuch, J.; Perkinson, H. E.; Kamel, I. L.
1980-01-01
The fracture behavior in graphite/polyimide (Gr/PI) Celion 6000/PMR-15 composites was characterized. Emphasis was placed on the correlation between the observed failure modes and the deformation characteristics of center-notched Gr/Pl laminates. Crack tip damage growth, fracture strength and notch sensitivity, and the associated characterization methods were also examined. Special attention was given to nondestructive evaluation of internal damage and damage growth, techniques such as acoustic emission, X-ray radiography, and ultrasonic C-scan. Microstructural studies using scanning electron microscopy, photomicrography, and the pulsed nuclear magnetic resonance technique were employed as well. All experimental procedures and techniques are described and a summary of representative results for Gr/Pl laminates is given.
Damage of hippocampal neurons in rats with chronic alcoholism.
Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling
2014-09-01
Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear membrane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.
Optimised detection of mitochondrial DNA strand breaks.
Hanna, Rebecca; Crowther, Jonathan M; Bulsara, Pallav A; Wang, Xuying; Moore, David J; Birch-Machin, Mark A
2018-05-04
Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number. An application is demonstrated by detecting 16-36-fold mtDNA damage in human skin cells induced by hydrogen peroxide and solar simulated radiation. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Khan, Mohammed Rafiq; Sudha, Sellappa
2012-01-01
Background Occupational and environmental exposures mostly represent mixtures of genotoxic agents, whereas the specificity of biomarker measurements varies widely. Exploration of correlations among biomarkers contributes to the further progress of molecular cancer epidemiology and to the selection of the optimal biomarkers for the investigation of human exposure to carcinogens. The aim of this study was to assess the potential cytogenetic damage associated with occupational exposure to Polycyclic Aromatic Hydrocarbons (PAHs) among automobile mechanics by using Micronuclei (MN) and other Nuclear Abnormalities (NA) as a biomarker. Methods The study population composed of 110 occupationally exposed automobile mechanics and 100 unexposed controls. All the study participants were males. Both the exposed and control individuals were selected from automobile garages located in the urban area of Coimbatore City, South India. Exfoliated buccal cells were collected from 110 automobile mechanics and 100 age and sex matched controls. Further, cells were examined for MN frequency and Nuclear Abnormalities (NA) other than micronuclei, such as binucleates, broken eggs and karyolysis. Results Results showed a statistically significant difference between occupationally exposed automobile mechanics and control groups. MN and NA frequencies in automobile mechanics were significantly higher than those in control groups (p < 0.05) and also significantly related to smoking habit (p < 0.05). In addition, a higher degree of NA was observed among the exposed subjects with smoking, drinking, tobacco chewing, which is an indicative of cytogenetic damage in these individuals. Conclusion MN and other NA reflect genetic changes, events associated with carcinogenesis. Therefore, the results of this study indicate that automobile mechanics exposed to PAHs are under risk of significant cytogenetic damage. Therefore, it is important to provide and offer better awareness of occupational hazards among these workers to promote occupational safety. PMID:25628826
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
[Mystery and problems of cloning].
Nikitin, V A
2010-01-01
The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.
Loreille, Odile; Ratnayake, Shashikala; Stockwell, Timothy B.; Mallick, Swapan; Skoglund, Pontus; Onorato, Anthony J.; Bergman, Nicholas H.; Reich, David; Irwin, Jodi A.
2018-01-01
High throughput sequencing (HTS) has been used for a number of years in the field of paleogenomics to facilitate the recovery of small DNA fragments from ancient specimens. Recently, these techniques have also been applied in forensics, where they have been used for the recovery of mitochondrial DNA sequences from samples where traditional PCR-based assays fail because of the very short length of endogenous DNA molecules. Here, we describe the biological sexing of a ~4000-year-old Egyptian mummy using shotgun sequencing and two established methods of biological sex determination (RX and RY), by way of mitochondrial genome analysis as a means of sequence data authentication. This particular case of historical interest increases the potential utility of HTS techniques for forensic purposes by demonstrating that data from the more discriminatory nuclear genome can be recovered from the most damaged specimens, even in cases where mitochondrial DNA cannot be recovered with current PCR-based forensic technologies. Although additional work remains to be done before nuclear DNA recovered via these methods can be used routinely in operational casework for individual identification purposes, these results indicate substantial promise for the retrieval of probative individually identifying DNA data from the most limited and degraded forensic specimens. PMID:29494531
NASA Astrophysics Data System (ADS)
Chang, C.; Burr, G. S.; Jull, A. T.; Pandey, A.; Thiemens, M. H.; Biddulph, D.; Russell, J. L.
2012-12-01
The long-lived radionuclide Iodine-129 is well known as a useful environmental tracer. At present, the global I-129 in surface water is about 1-2 orders of magnitude higher than pre-1990 levels. The anthropogenic I-129 signal produced from industrial nuclear fuel reprocessing plants is known to be the primary source of I-129 in marine surface waters of the Atlantic, and elevated I-129 values are found globally. On March 11, 2011, the Great East Japan Earthquake produced a devastating tsunami that severely damaged the Fukushima Daiichi Nuclear Power Plant. The damage caused a substantial release of radionuclides into the atmosphere and ocean in the weeks following the catastrophe. We expect to be able to identify I-129 from surface seawater in the Pacific Ocean. We will present I-129 results of water samples collected weekly near Scripps Institution of Oceanography, San Diego, CA for a year. We also have a pair of measurements collected a year apart from Kaohsiung, Taiwan. By establishing I-129 time series, we can observe the spread of I-129 in the surface waters of the Pacific Ocean that resulted from the accidental releases. This information can also be used to better understand surface ocean circulation.
2009-01-01
Lake Paranoá is a tropical reservoir for the City of Brasilia, which became eutrophic due to inadequate sewage treatment associated with intensive population growth. At present, two wastewater treatment plants are capable of processing up to 95% of the domestic sewage, thereby successfully reducing eutrophization. We evaluated both genotoxic and cytotoxic parameters in several fish species (Geophagus brasiliensis, Cichla temensis, Hoplias malabaricus, Astyanax bimaculatus lacustres, Oreochromis niloticus, Cyprinus carpio and Steindachnerina insculpita) by using the micronucleus (MN) test, the comet assay and nuclear abnormality assessment in peripheral erythrocytes. The highest frequencies of MN were found in Cichla temensis and Hoplias malabaricus, which were statistically significant when compared to the other species. However, Steindachnerina insculpita (a detritivorous and lake-floor feeder species) showed the highest index of DNA damage in the comet assay, followed by C. temensis (piscivorous). Nuclear abnormalities, such as binucleated, blebbed, lobed and notched cells, were used as evidence of cytotoxicity. Oreochromis niloticus followed by Hoplias malaricus, ominivorous/detritivotous and piscivorous species, respectively, presented the highest frequency of nuclear abnormalities, especially notched cells, while the herbivorous Astyanax bimaculatus lacustres showed the lowest frequency compared to the other species studied. Thus, for biomonitoring aquatic genotoxins under field conditions, the food web should also be considered. PMID:21637659
Numerical analysis of nuclear power plant structure subjected to aircraft crash
NASA Astrophysics Data System (ADS)
Saberi, Reza; Alinejad, Majid; Mahdavi, Mir Omid; Sepanloo, Kamran
2017-12-01
An aircraft crashing into a nuclear containment may induce a series of disasters related to containment capacity, including local penetration and perforation of the containment, intensive vibrations, and fire ignited after jet fuel leakage. In this study, structural safety of a reinforced concrete containment vessel (RCCV) has been studied against the direct hit of Airbus A320, Boeing 707-320 and Phantom F4 aircrafts. ABAQUS/explicit finite element code has been used to carry out the three-dimensional numerical simulations. The impact locations identified on the nuclear containment structure are mid height of containment, center of the cylindrical portion, junction of dome and cylinder, and over the cylindrical portion close to the foundation level. The loading of the aircraft has been assigned through the corresponding reaction-time response curve. The concrete damaged plasticity model was predicted to simulate the behavior of concrete while the behavior of steel reinforcement was incorporated using elastoplastic material model. Dynamic loading conditions were considered using dynamic increase factor. The mid height of containment and center of cylindrical portion have been found to experience most severe deformation against each aircraft crash. It has also been found that compression damage in concrete is not critical at none of the impact locations.
Marconi, G; Quintana, R
1998-12-01
The Fallopian tube can be damaged by different noxious substances that may change cellular ultrastructure and function. Alteration of the cell membrane allows the passage of certain aniline dyes, which can stain the nucleus. A total of 310 Fallopian tubes from 163 patients who underwent a surgical or diagnostic laparoscopy during fertility studies was analysed by salpingoscopy. Cellular nuclei were stained by injection of 20 ml of a 10% solution of methylene blue in saline solution (NaCl 10%) through the cervical cannula prior to salpingoscopy. Evaluation of nuclear staining with methylene blue, adhesions, vascular alterations, and the flattening of folds in relation to pregnancy outcome was undertaken. Quantification of salpingoscopic findings was carried out according to a score. Flattening of folds and vascular alterations showed no difference in the pregnant and non-pregnant groups. On the other hand, adhesions and nuclear dyeing were significantly greater in the non-pregnant group (adhesions 13.6 versus 26.8%, P < 0.004, and nuclear dyeing: 25 versus 41.7%, P < 0.009, pregnant versus non-pregnant). Methylene blue dye is a new tool to evaluate in vivo cyto-histological tubal damage, and is a useful and simple method to provide a prognosis of salpingean function.
Priority List of Research Areas for Radiological Nuclear Threat Countermeasures
2005-01-01
promote recovery in animal models (1, 4, 15). G-CSF ( Filgrastim , Neupogent), pegylated G-CSF (pegfilgrastim, Neulastat), GM-CSF (sargramostim, Leukinet...tools to carefully assess mechanisms of radiation damage, biomark- ers for biodosimetry, etc. Primates, dogs , ferrets, mice and non-mammalian species
Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-01-03
In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less
Fatakia, Sarosh N; Kulashreshtha, Mugdha; Mehta, Ishita S; Rao, Basuthkar J
2017-09-03
Among the many facets of DNA damage response (DDR), relocation of chromosome territories (CTs) is most intriguing. We have previously reported that cisplatin induced DDR in human dermal fibroblasts led to relocation of CTs 12, 15 from the nuclear periphery to its interior while CTs 19, 17 repositioned from the interior to its periphery. Studies of CT relocation remain nascent as we begin unraveling the role of key players in DDR to demonstrate its mechanistic basis. Consolidating our recent reports, we argue that γH2AX-signaling leads to enhanced recruitment of nuclear myosin 1 (NM1) to chromatin, which via its motor function, results in CT repositioning. Next, we invoke a novel systems-level theory that subsumed CTs as pairs, not solo entities, to present the physical basis for plasticity in interphase CT arrangement. Subsequently, we posited that our systems-level theory describes a unified physical basis for non-random positioning of CTs in interphase nuclei across disparate eukaryotes.
Le Pape, Yann; Field, Kevin G.; Remec, Igor
2014-11-15
The need to understand and characterize the effects of neutron irradiation on concrete has become urgent because of the possible extension of service life of many nuclear power generating stations. Current knowledge is primarily based on a collection of data obtained in test reactors. These results are inherently difficult to interpret because materials and testing conditions are inconsistent. A micromechanical approach based on the Hashin composite sphere model is presented to derive a first-order separation of the effects of radiation on cement paste and aggregate, and, also, on their interaction. Although the scarcity of available data limits the validation ofmore » the model, it appears that, without negating a possible gamma-ray induced effect, the neutron-induced damage and swelling of aggregate plays a predominant role on the overall concrete expansion and the damage of the cement paste. Finally, the radiation-induced volumetric expansion (RIVE) effects can also be aided by temperature elevation and shrinkage in the cement paste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, M.; Ohta, Y.; Nakamura, N.
1995-08-01
Positron annihilation (PA) lineshape analysis is sensitive to detect microstructural defects such as vacancies and dislocations. The authors are developing a portable system and applying this technique to nuclear power plant material evaluations; fatigue damage in type 316 stainless steel and SA508 low alloy steel, and thermal embrittlement in duplex stainless steel. The PA technique was found to be sensitive in the early fatigue life (up to 10%), but showed a little sensitivity for later stages of the fatigue life in both type 316 stainless steel and SA508 ferritic steel. Type 316 steel showed a higher PA sensitivity than SA508more » since the initial SA508 microstructure already contained a high dislocation density in the as-received state. The PA parameter increased as a fraction of aging time in CF8M samples aged at 350 C and 400 C, but didn`t change much in CF8 samples.« less
Satellite change detection of forest damage near the Chernobyl accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClellan, G.E.; Anno, G.H.
1992-01-01
A substantial amount of forest within a few kilometers of the Chernobyl nuclear reactor station was badly contaminated with radionuclides by the April 26, 1986, explosion and ensuing fire at reactor No. 4. Radiation doses to conifers in some areas were sufficient to cause discoloration of needles within a few weeks. Other areas, receiving smaller doses, showed foliage changes beginning 6 months to a year later. Multispectral imagery available from Landsat sensors is especially suited for monitoring such changes in vegetation. A series of Landsat Thematic Mapper images was developed that span the 2 yr following the accident. Quantitative dosemore » estimation for the exposed conifers requires an objective change detection algorithm and knowledge of the dose-time response of conifers to ionizing radiation. Pacific-Sierra Research Corporation's Hyperscout{trademark} algorithm is based on an advanced, sensitive technique for change detection particularly suited for multispectral images. The Hyperscout algorithm has been used to assess radiation damage to the forested areas around the Chernobyl nuclear power plant.« less
Mycobacterium tuberculosis promotes genomic instability in macrophages
Castro-Garza, Jorge; Luévano-Martínez, Miriam Lorena; Villarreal-Treviño, Licet; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha Imelda; García-Vielma, Catalina; González-Hernández, Silvia; Cortés-Gutiérrez, Elva Irene
2018-01-01
BACKGROUND Mycobacterium tuberculosis is an intracellular pathogen, which may either block cellular defensive mechanisms and survive inside the host cell or induce cell death. Several studies are still exploring the mechanisms involved in these processes. OBJECTIVES To evaluate the genomic instability of M. tuberculosis-infected macrophages and compare it with that of uninfected macrophages. METHODS We analysed the possible variations in the genomic instability of Mycobacterium-infected macrophages using the DNA breakage detection fluorescence in situ hybridisation (DBD-FISH) technique with a whole human genome DNA probe. FINDINGS Quantitative image analyses showed a significant increase in DNA damage in infected macrophages as compared with uninfected cells. DNA breaks were localised in nuclear membrane blebs, as confirmed with DNA fragmentation assay. Furthermore, a significant increase in micronuclei and nuclear abnormalities were observed in infected macrophages versus uninfected cells. MAIN CONCLUSIONS Genomic instability occurs during mycobacterial infection and these data may be seminal for future research on host cell DNA damage in M. tuberculosis infection. PMID:29412354
Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C
2011-01-01
There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.
Formation of nanometer-size wires using infiltration into latent nuclear tracks
Musket, Ronald G.; Felter, Thomas E.
2002-01-01
Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.
2005-08-12
productivity of the islands in producing copra or fish, was not considered. The assumption is also inconsistent with the capitalization model that the value of...David Barker and Jay Wa-Aadu, “Is Real Estate Becoming Important Again? A Neo Ricardian Model of Land Rent.” Real Estate Economics, Spring, 2004, pp...the model explicit, it avoids shortcomings of the NCT methodology, by using available data from RMI’s national income and product accounts that is
Fatehi, A N; Bevers, M M; Schoevers, E; Roelen, B A J; Colenbrander, B; Gadella, B M
2006-01-01
The main goal of this study was to investigate whether and at what level damage of paternal DNA influences fertilization of oocytes and early embryonic development. We hypothesized that posttesticular sperm DNA damage will only marginally affect sperm physiology due to the lack of gene expression, but that it will affect embryo development at the stage that embryo genome (including the paternal damaged DNA) expression is initiated. To test this, we artificially induced sperm DNA damage by irradiation with x- or gamma rays (doses of 0-300 Gy). Remarkably, sperm cells survived the irradiation quite well and, when compared with nonirradiated cells, sperm motility and integrity of plasma membrane, acrosome, and mitochondria were not altered by this irradiation treatment. In contrast, a highly significant logarithmic relation between irradiation dose and induced DNA damage to sperm cells was found by both terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and the acridin orange assay. Despite the DNA damage, irradiated sperm cells did not show any sign of apoptosis (nuclear fragmentation, depolarization of inner mitochondrial membranes, or phospholipid scrambling) and were normally capable of fertilizing oocytes, as there was no reduction in cleavage rates when compared with nonirradiated sperm samples up to irradiation doses of less than 10 Gy. Further embryonic development was completely blocked as the blastocyst rates at days 7 and 9 dropped from 28% (nonirradiated sperm) to less than 3% by greater than 2.5-Gy-irradiated sperm. This block in embryonic development was accompanied with the initiation of apoptosis after the second or third cleavage. Specific signs of apoptosis, such as nuclear fragmentation and aberrations in spindle formation, were observed in all embryos resulting from in vitro fertilization with irradiated sperm (irradiation doses >1.25 Gy). The results show that sperm DNA damage does not impair fertilization of the oocyte or completion of the first 2-3 cleavages, but blocks blastocyst formation by inducing apoptosis. Embryos produced by assisted reproductive techniques (ART) could have incorporated aberrant paternal DNA (frequently detected in sperm of sub/infertile males). Analogously, in the present work, we discuss the possibility of following embryo development of oocytes fertilized by ART through the blastocyst stage before embryo transfer into the uterus in order to reduce risks of reproductive failure.
Nuclear Physics in High School: what are the previous knowledge?
NASA Astrophysics Data System (ADS)
Pombo, F. de O.
2017-11-01
Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.
Zim17/Tim15 links mitochondrial iron-sulfur cluster biosynthesis to nuclear genome stability.
Díaz de la Loza, María Del Carmen; Gallardo, Mercedes; García-Rubio, María Luisa; Izquierdo, Alicia; Herrero, Enrique; Aguilera, Andrés; Wellinger, Ralf Erik
2011-08-01
Genomic instability is related to a wide-range of human diseases. Here, we show that mitochondrial iron-sulfur cluster biosynthesis is important for the maintenance of nuclear genome stability in Saccharomyces cerevisiae. Cells lacking the mitochondrial chaperone Zim17 (Tim15/Hep1), a component of the iron-sulfur biosynthesis machinery, have limited respiration activity, mimic the metabolic response to iron starvation and suffer a dramatic increase in nuclear genome recombination. Increased oxidative damage or deficient DNA repair do not account for the observed genomic hyperrecombination. Impaired cell-cycle progression and genetic interactions of ZIM17 with components of the RFC-like complex involved in mitotic checkpoints indicate that replicative stress causes hyperrecombination in zim17Δ mutants. Furthermore, nuclear accumulation of pre-ribosomal particles in zim17Δ mutants reinforces the importance of iron-sulfur clusters in normal ribosome biosynthesis. We propose that compromised ribosome biosynthesis and cell-cycle progression are interconnected, together contributing to replicative stress and nuclear genome instability in zim17Δ mutants.
dos Santos, G.C.; Parra, E.R.; Stegun, F.W.; Cirqueira, C.S.; Capelozzi, V.L.
2013-01-01
Idiopathic interstitial pneumonias include complex diseases that have a strong interaction between genetic makeup and environmental factors. However, in many cases, no infectious agent can be demonstrated, and these clinical diseases rapidly progress to death. Theoretically, idiopathic interstitial pneumonias could be caused by the Epstein-Barr virus, cytomegalovirus, adenovirus, hepatitis C virus, respiratory syncytial virus, and herpesvirus, which may be present in such small amounts or such configuration that routine histopathological analysis or viral culture techniques cannot detect them. To test the hypothesis that immunohistochemistry provides more accurate results than the mere histological demonstration of viral inclusions, this method was applied to 37 open lung biopsies obtained from patients with idiopathic interstitial pneumonias. As a result, immunohistochemistry detected measles virus and cytomegalovirus in diffuse alveolar damage-related histological patterns of acute exacerbation of idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia in 38 and 10% of the cases, respectively. Alveolar epithelium infection by cytomegalovirus was observed in 25% of organizing pneumonia patterns. These findings were coincident with nuclear cytopathic effects but without demonstration of cytomegalovirus inclusions. These data indicate that diffuse alveolar damage-related cytomegalovirus or measles virus infections enhance lung injury, and a direct involvement of these viruses in diffuse alveolar damage-related histological patterns is likely. Immunohistochemistry was more sensitive than the histological demonstration of cytomegalovirus or measles virus inclusions. We concluded that all patients with diffuse alveolar damage-related histological patterns should be investigated for cytomegalovirus and measles virus using sensitive immunohistochemistry in conjunction with routine procedures. PMID:24270907
NASA Astrophysics Data System (ADS)
Schmidt, E.; Ritter, K.; Gärtner, K.; Wendler, E.
2017-10-01
Differently oriented LiNbO3 crystals were implanted at room temperature with 1 MeV iodine ions to fluences between 2 × 1013 and 1 × 1014 cm-2, which cover the transition from a low damage level up to complete amorphisation. The aim of this work was to explore the use of nuclear reaction analysis (NRA) in combination with Rutherford backscattering spectrometry (RBS) in channelling configuration for studying the damage evolution as a function of the ion fluence in both the Li and Nb sublattice. Protons with energies between 1.4 and 1.6 MeV and a standard RBS setup were used. Scattering events detected at low energies result from Rutherford backscattering of protons on Nb and O atoms. At high energies alpha particles are registered, which result from the nuclear reaction between protons and Li atoms. Along different low-index crystallographic directions channelling effects within both the RBS and NRA part of the spectra are observed. However, the strength of channeling within the NRA part depends on the crystallographic direction investigated. These effects are explained by the nature of ion-channelling with respect to the small atomic number of Li and is supported by calculations of minimum yields (ratio of scattering yield in aligned and random direction) applying the computer code DICADA. The consequence is that damage studies with NRA can be only performed in Z-direction of LiNbO3. In this case, the Li and Nb sublattice were found to be similarly damaged after 1 MeV iodine implantation.
Fu, Jingqi; Zheng, Hongzhi; Wang, Huihui; Yang, Bei; Zhao, Rui; Lu, Chunwei; Liu, Zhiyuan; Hou, Yongyong; Xu, Yuanyuan; Zhang, Qiang; Qu, Weidong; Pi, Jingbo
2015-01-01
Oxidative stress is implicated in the pathogenesis of pancreatic β-cell dysfunction that occurs in both type 1 and type 2 diabetes. Nuclear factor E2-related factor 2 (NRF2) is a master regulator in the cellular adaptive response to oxidative stress. The present study found that MIN6 β-cells with stable knockdown of Nrf2 (Nrf2-KD) and islets isolated from Nrf2-knockout mice expressed substantially reduced levels of antioxidant enzymes in response to a variety of stressors. In scramble MIN6 cells or wild-type islets, acute exposure to oxidative stressors, including hydrogen peroxide (H2O2) and S-nitroso-N-acetylpenicillamine, resulted in cell damage as determined by decrease in cell viability, reduced ATP content, morphology changes of islets, and/or alterations of apoptotic biomarkers in a concentration- and/or time-dependent manner. In contrast, silencing of Nrf2 sensitized MIN6 cells or islets to the damage. In addition, pretreatment of MIN6 β-cells with NRF2 activators, including CDDO-Im, dimethyl fumarate (DMF), and tert-butylhydroquinone (tBHQ), protected the cells from high levels of H2O2-induced cell damage. Given that reactive oxygen species (ROS) are involved in regulating glucose-stimulated insulin secretion (GSIS) and persistent activation of NRF2 blunts glucose-triggered ROS signaling and GSIS, the present study highlights the distinct roles that NRF2 may play in pancreatic β-cell dysfunction that occurs in different stages of diabetes. PMID:25949772
Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest
Singh, Mayank; Hunt, Clayton R.; Pandita, Raj K.; Kumar, Rakesh; Yang, Chin-Rang; Horikoshi, Nobuo; Bachoo, Robert; Serag, Sara; Story, Michael D.; Shay, Jerry W.; Powell, Simon N.; Gupta, Arun; Jeffery, Jessie; Pandita, Shruti; Chen, Benjamin P. C.; Deckbar, Dorothee; Löbrich, Markus; Yang, Qin; Khanna, Kum Kum; Worman, Howard J.
2013-01-01
The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair. PMID:23319047
Muon trackers for imaging a nuclear reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kume, N.; Miyadera, H.; Morris, C. L.
A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less
Muon trackers for imaging a nuclear reactor
Kume, N.; Miyadera, H.; Morris, C. L.; ...
2016-09-21
A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-01-01
The Panel finds that the first criterion, pertaining to whether the accident caused a discharge of radioactive material or levels of radiation offsite as defined in 10 CFR 140.84, has not been met. It further finds that there is presently insufficient information to support any definitive finding as to whether or not the second criterion, relating to damage to persons or property offsite as defined in 10 CFR 140.85, has been met. Since the Panel has not found that both criteria have been met, it recommends that the Commission determine that the accident at Three Mile Island did not constitutemore » an extraordinary nuclear occurrence.« less
Nuclear reactor safety research since three mile island.
Mynatt, F R
1982-04-09
The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Ramya; Singh, Vikram Jeet; Salian, Sujith Raj
Methyl parathion (MP) is one of the most commonly used and extremely toxic organophosphorous group of pesticide. A large number of studies in the literature suggest that it has adverse effects on the male reproductive system. However, there is limited information about its toxicity to the female reproductive system. In the present study we report the toxic effects of methyl parathion on the female reproductive system using Swiss albino mice as the experimental model. The female mice were administered orally with 5, 10 and 20 mg/kg of MP. One week later, the mice were superovulated with pregnant mare serum gonadotrophinmore » (PMSG) and human chorionic gonadotrophin (hCG) to study the quality of the oocytes, spindle organization, developmental potential of early embryos and the DNA integrity in blastocysts. MP exposure resulted in a non-significant decrease in the number of primordial follicles and increased DNA damage in granulosa cells. Though MP did not have any effect on the ovulation it had a significant inhibitory effect on the nuclear maturity of oocytes which was associated with spindle deformity. In addition, the oocytes had higher cytoplasmic abnormalities with depleted glutathione level. Even though it did not have any effect on the fertilization and blastocyst rate at lower doses, at 20 mg/kg MP it resulted in a significant decrease in blastocyst hatching, decrease in cell number and high DNA damage. While low body weight gain was observed in F1 generation from 5 mg/kg group, at higher dose, the body weight in F1 generation was marginally higher than control. Post-natal death in F1 generation was observed only in mice treated with 20 mg/kg MP. In conclusion, we report that MP has adverse effects on the oocyte quality, developmental potential of the embryo and reproductive outcome. - Highlights: • Methyl parathion induces severe cytoplasmic abnormalities in oocytes. • Inhibits nuclear maturation and spindle damage • Poor blastocyst quality and high DNA damage.« less
Do Environmental and Energy Goals Clash?
ERIC Educational Resources Information Center
Environmental Science and Technology, 1974
1974-01-01
To meet energy needs, the World's energy base must be broadly diversified. This diversification, including such possibilities as fossil fuels, nuclear, solar, geothermal, tidal and aeolian energy, must proceed without undue environmental damage and be economically feasible. Compromises between energy, economics and the environment will have to be…
Silkwood vs. Kerr-McGee Corporation: unpredicted fallout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silvestrini, L.V.F.
1985-01-01
The Silkwood suit is extolled as important precedent because it arguably gives states and private citizens acting as jurors the right to establish de facto nuclear regulatory policy. The Court's rationale in allowing punitive damages based on state tort law principles to be awarded against a private nuclear developer for injuries caused by the release of hazardous radioactive material from its plant is inconsistent with that used in a case involving Pacific Gas and Electric the year before. The author reviews the doctrine of preemption, discusses the legal and factural setting of the Silkwood case, and concludes that the Courtmore » could have provided a test similar to that invoked in labor law disputes to determine the available exceptions to total federal preemption of nuclear safety. Without such a test, the results of future litigation over nuclear safety concerns are unpredictable.« less
Legal Implications of Nuclear Propulsion for Space Objects
NASA Astrophysics Data System (ADS)
Pop, V.
2002-01-01
This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".
Assessing potential radiological harm to fukushima recovery workers.
Scott, Bobby R
2011-01-01
A radiological emergency exists at the Fukushima Daiichi (Fukushima I) nuclear power plant in Japan as a result of the March 11, 2011 magnitude 9.0 earthquake and the massive tsunami that arrived later. News media misinformation related to the emergency triggered enormous social fear worldwide of the radioactivity that is being released from damaged fuel rods. The heroic recovery workers are a major concern because they are being exposed to mostly gamma radiation during their work shifts and life-threatening damage to the radiosensitive bone marrow could occur over time. This paper presents a way in which the bone marrow equivalent dose (in millisieverts), as estimated per work shift, could be used along with the hazard function model previously developed for radiological risk assessment to repeatedly check for potential life-threatening harm (hematopoietic system damage) to workers. Three categories of radiation hazard indication are proposed: 1, life-threatening damage unlikely; 2, life-threatening damage possible; 3, life-threatening damage likely. Categories 2 and 3 would be avoided if the whole body effective dose did not exceed the annual effective dose limit of 250 mSv. For down-wind populations, hormetic effects (activated natural protective processes) are much more likely than are deleterious effects.
A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage
Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève
2000-01-01
Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606
NASA Astrophysics Data System (ADS)
Rogers-Martinez, M. A.; Sammis, C. G.; Ezzedine, S. M.
2017-12-01
As part of the New England Damage Experiment (NEDE) a 122.7 kg Heavy ANFO charge was detonated at a depth of 13 m in a granite quarry in Barre Vt. Subsequent drill cores from the source region revealed that most of the resultant fracturing was concentrated in the rift plane of the highly anisotropic Barre granite. We simulated this explosion using a dynamic damage mechanics model embedded in the ABAQUS 3D finite element code. The damage mechanics was made anisotropic by taking the critical stress intensity factor to be a function of azimuth in concert with the physics of interacting parallel fractures and laboratory studies of anisotropic granite. In order to identify the effects of anisotropy, the explosion was also simulated assuming 1) no initial damage (pure elasticity) and 2) isotropic initial damage. For the anisotropic case, the calculated fracture pattern simulated that observed in NEDE. The simulated seismic radiation looked very much like that from a tensile fracture oriented in the rift plane, and similar to the crack-like moment tensor observed in the far field of many nuclear explosions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfister, A.; Goossen, C.; Coogler, K.
2012-07-01
Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less
NASA Astrophysics Data System (ADS)
Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Shibin; Lin, Jiajie; Zhang, Runchun; Zhou, Min; Yu, Wenjie; Zhang, Bo; Ou, Xin; Wang, Xi
2017-09-01
Cross-sectional Raman spectroscopy is used to characterize the defect formation and the defect recovery in MeV H+ implanted bulk GaN and 4H-SiC in the high energy MeV ion-cut process. The Raman intensity decreases but the forbidden modes are activated at the damage region, and the intensity decrease is proportional to the damage level. The Raman spectrum is quite sensitive to detect the damage recovery after annealing. The main peak intensity increases and the forbidden mode disappears in both annealed GaN and 4H-SiC samples. The Raman spectra of GaN samples annealed at different temperatures suggest that higher annealing temperature is more efficient for damage recovery. While, the Raman spectra of SiC indicate that higher implantation temperature results in heavier lattice damage and other polytype clusters might be generated by high annealing temperature in the annealed SiC samples. The cross-sectional Raman spectroscopy is a straightforward method to characterize lattice damage and damage recovery in high energy ion-cut process. It can serve as a fast supplementary measurement technique to Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and transmission electron microscope (TEM) for the defect characterizations.
Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.
2017-01-01
Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421
Predicting, examining, and evaluating FAC in US power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohn, M.J.; Garud, Y.S.; Raad, J. de
1999-11-01
There have been many pipe failures in fossil and nuclear power plant piping systems caused by flow-accelerated corrosion (FAC). In some piping systems, this failure mechanism maybe the most important type of damage to mitigate because FAC damage has led to catastrophic failures and fatalities. Detecting the damage and mitigating the problem can significantly reduce future forced outages and increase personnel safety. This article discusses the implementation of recent developments to select FAC inspection locations, perform cost-effective examinations, evaluate results, and mitigate FAC failures. These advances include implementing the combination of software to assist in selecting examination locations and anmore » improved pulsed eddy current technique to scan for wall thinning without removing insulation. The use of statistical evaluation methodology and possible mitigation strategies also are discussed.« less
Dioxins and cytogenetic status of villagers after 40 years of agent Orange application in Vietnam.
Sycheva, Lyudmila P; Umnova, Nataliya V; Kovalenko, Maria A; Zhurkov, Vjacheslav S; Shelepchikov, Andrey A; Roumak, Vladimir S
2016-02-01
We have examined cytogenetic status of the rural population living on dioxin-contaminated territories (DCT, TCDD in soil 2.6 ng/kg) compared to the villagers of the control area (TCDD in soil 0.18 ng kg(-1)). The examination took place almost 40 years after the war. The consequences of some confounding factors (years of residence in the region, farming, and aging) has been examined. Karyological analysis of buccal and nasal epitheliocytes among healthy adult males living on DCT and control area (26 and 35 persons) was conducted. A wide range of cytogenetic (micronuclei, nuclear protrusions), proliferative (binucleated cells and cells with doubled nucleus) and endpoints of cell death (cells with perinuclear vacuoles, with damaged nucleus membrane, condensed chromatin, pyknosis, karyorrhexis, karyolysis) had been analyzed. The frequent amount of cells with nuclear protrusions in both epithelia was slightly decreased in the DСT group. Biomarkers of early and late stages of nuclear destruction in buccal epithelium (cells with damaged nuclear membrane, karyolysis) were elevated significantly in DCT. Higher level of the same parameters was also identified in nasal epithelium. The cytogenetic status of healthy adult males on DCT had got "normalization" by present moment in comparison with our early data. Nevertheless, in exposed group some alteration of the cytogenetic status was being registered (mostly biomarkers of apoptosis). Years of residence (and exposure to dioxins) affected the cytogenetic status of DCT inhabitants, whereas no influence of farming factors (pesticides, fertilizers, etc.) had been discovered. Some biomarkers of proliferation and cell death were affected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schalk, Catherine; Cognat, Valérie; Graindorge, Stéfanie; Vincent, Timothée; Voinnet, Olivier; Molinier, Jean
2017-01-01
As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites. PMID:28325872
Changing soviet doctrine on nuclear war. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
FitzGerald, M.C.
In January 1977, General Secretary L. I. Brezhnev delivered an address in the city of Tula whose impact on Soviet doctrine and capabilities continues to this day. By rejecting the possibility of a means of defense against nuclear weapons, or a damage-limiting capacity in nuclear war, Brezhnev closed the door on a debate that had lasted for over a decade in Soviet military thought. Since Tula, the Soviet politico-military leadership has presented a consensus on the reality of Mutual Assured Destruction in present-day conditions. The Soviet debate on the viability of nuclear war as an instrument of policy was likewisemore » resolved by a consensus: nuclear war is so unpromising and dangerous that it remains an instrument of policy only in theory, an instrument of policy that cannot be used. While the Soviet consensus on the diminishing military utility of nuclear weapons represents a ground-breaking shift in doctrine since the heyday of Marshal Sokolovskiy, there is scant evidence of any dispute on the new correlation of war and policy in a nuclear age. Marshal N. V. Ogarkov and other hard-minded military figures have themselves emerged as the architects of the Soviet shift away from a nuclear war-fighting and war-winning strategy, while General Secretary Gorbachev has fashioned a corresponding arms control agenda.« less
Griffiths, Malcolm; Walters, L.; Greenwood, L. R.; ...
2017-09-21
The original article addresses the opportunities and complexities of using materials test reactors with high neutron fluxes to perform accelerated studies of material aging in power reactors operating at lower neutron fluxes and with different neutron flux spectra. Radiation damage and gas production in different reactors have been compared using the code, SPECTER. This code provides a common standard from which to compare neutron damage data generated by different research groups using a variety of reactors. This Corrigendum identifies a few typographical errors. Tables 2 and 3 are included in revised form.
Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath
2011-01-01
The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results.
World War II in Social Studies and Science Curricula.
ERIC Educational Resources Information Center
Mayer, Victor J.
2000-01-01
Western educators are forgetting the need to impart knowledge about modern warfare's consequences. Science texts contain little about radiation damage. The nuclear bomb's destructiveness to humans and the biosphere should be a teacher responsibility in several curriculum areas. "War is hell" should be educators' main message. (Contains…
EVALUATION OF ANEUPLOIDY AND DNA DAMAGE IN HUMAN SPERMATOZOA: APPLICATIONS IN FIELD STUDIES
With the goal of incorporating measures of sperm nuclear integrity in an epidemiology study, semen samples from young Czech men were analyzed for sperm anueploidy and sperm chromatin structure in addition to routine measures of sperm production and quality. The exposure in ques...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Reports. 36.83 Section 36.83 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Records § 36.83 Reports. (a) In... position. (2) Any fire or explosion in a radiation room. (3) Damage to the source racks. (4) Failure of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY... Reports. (a) In the event of bodily injury or property damage arising out of or in connection with the... records and furnish such reports to the Commission as the Commission deems necessary for the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY... Reports. (a) In the event of bodily injury or property damage arising out of or in connection with the... records and furnish such reports to the Commission as the Commission deems necessary for the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY... Reports. (a) In the event of bodily injury or property damage arising out of or in connection with the... records and furnish such reports to the Commission as the Commission deems necessary for the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Reports. 140.6 Section 140.6 Energy NUCLEAR REGULATORY... Reports. (a) In the event of bodily injury or property damage arising out of or in connection with the... records and furnish such reports to the Commission as the Commission deems necessary for the...
Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells
Burke, Russell T.; Marcus, Joshua M.; Orth, James D.
2017-01-01
Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801
[Genotoxic damage among artisanal and small-scale mining workers exposed to mercury].
Rosales-Rimache, Jaime A; Elizabeth Malca, Nancy; Alarcón, Jhonatan J; Chávez, Manuel; Gonzáles, Marco Antonio
2013-01-01
To determine the genotoxic damage among artisanal and small-scale mining workers exposed to mercury. Observational cross-sectional study which evaluated mercury-exposed workers (n=83), whose cells were collected by mouth swab for further staining, microscopic observance, micronuclei count, and other nuclear alterations. 24-hour urine was also collected for the determination of inorganic mercury. 68.7% of participants were male, the mean age being 43 ± 12,4 years (range: 16-76). The average time of occupational exposure to mercury was 12,1 ± 6,7 years, and the contact with mercury was 4,1 ± 3,6 kg per person per day. 93% of participants failed to wear personal protection gear while handling mercury. Results of biological monitoring showed that 17% of participants had concentrations of mercury in urine higher than 2,5 µg/L, this value being the detection limit of the measurement technique used. Results of the genotoxic evaluation evidenced that 15% of people with labor exposure to mercury presented micronuclei in mouth epithelial cells, and other indicators of nuclear alteration such as nucleoplasmic bridges, gemmation and binucleation were found, which are also considered genotoxic events associated to the exposure of physical or chemical risk agents. The finding of micronuclei in mouth epithelial cells reflects genotoxic damage associated to the labor exposure of mercury used in artisanal and small-scale mining activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico
2014-04-01
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mo; Nakshatrala, Kalyana; William, Kasper
The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less
Shutthanandan, Vaithiyalingam; Choudhury, Samrat; Manandhar, Sandeep; ...
2017-04-24
The interaction of radiation with materials controls the performance, reliability, and safety of many structures in nuclear power systems. Revolutionary improvements in radiation damage resistance may be attainable if methods can be found to manipulate interface properties to give optimal interface stability and point defect recombination capability. To understand how variations in interface properties such as misfit dislocation density and local chemistry affect radiation-induced defect absorption and recombination, a model system of metallic Cr xV 1-x (0 ≤ x ≤ 1) epitaxial films deposited on MgO(001) single crystal substrates has been explored in this paper. By controlling film composition, themore » lattice mismatch between the film and MgO is adjusted to vary the misfit dislocation density at the metal/oxide interface. The stability of these interfaces under various irradiation conditions is studied experimentally and theoretically. The results indicate that, unlike at metal/metal interfaces, the misfit dislocation density does not dominate radiation damage tolerance at metal/oxide interfaces. Rather, the stoichiometry and the location of the misfit dislocation extra half-plane (in the metal or the oxide) drive radiation-induced defect behavior. Finally, together, these results demonstrate the sensitivity of defect recombination to interfacial chemistry and provide new avenues for engineering radiation-tolerant nanomaterials for next-generation nuclear power plants.« less
Deng, Qianchun; Wang, Yong; Wang, Chengtao; Ji, Baoping; Cong, Renhuai; Zhao, Lei; Chen, Peng; Zang, Xixi; Lu, Feng; Han, Fei; Huang, Fenghong
2018-04-25
The effects of administering omega-3 (ω-3) polyunsaturated fatty acid (PUFA)-rich oils on visible-light-induced retinal damage were investigated in rabbits. The mole percentages of α-linolenic acid in sea buckthorn berry oil, sea buckthorn oil (SO), sea buckthorn seed oil and flaxseed oil (FO) were 2.12%, 12.98%, 31.56% and 55.41%, respectively. Algal oil (AO) contains 33.34% docosahexaenoic acid. SO has the highest total phenolic content (63.42 ± 0.59 mg SAE per 100 g) amongst these oils. The administration of SO, FO and AO provided structural and functional protection to the retina. In the retina, we observed a significant increase in the levels of DHA in the AO group compared with the normal group. The mechanism of retinal protection by SO, FO and AO involves up-regulating the expression of nuclear factor erythroid-2 related factor 2 and haem oxygenase-1. The levels of interleukin-1 β, tumour necrosis factor-alpha, interleukin-8, and cyclooxygenase 2 in the retina were significantly reduced with AO treatment. The administration of AO resulted in the down-regulation of nuclear factor kappa B mRNA expression. In addition, the treatment with AO significantly attenuated the light-induced apoptosis and angiogenesis in the retina. These results suggest that dietary ω-3 PUFA-rich oils protect against visible-light-induced retinal damage.
Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie
2016-04-01
To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos.
Palanikumar, L; Kumaraguru, A K; Ramakritinan, C M
2013-09-01
The present study investigated the acute toxicity, sub-lethal toxicity and biochemical response of naphthalene in fingerlings of milkfish Chanos chanos. The 96 h acute toxicity LC50 values for C. chanos exposed to naphthalene was 5.18 μg l(-1). The estimated no observed effect concentration and lowest observed effect concentration values for naphthalene in C. chanos were 0.42 and 0.69 μg l(-1) respectively for 30 days. The estimated maximum allowable toxicant concentration for naphthalene was 0.53 μg l(-1). Biochemical enzyme markers such as lipid peroxidation, catalase, glutathione S transferase and reduced glutathione were measured in gills and liver tissues of C. chanos exposed to sub-lethal concentrations of naphthalene. Fluctuation in lipid peroxidation and catalase level suggests that naphthalene concentrations play a vital role in induction of oxidative stress in fish. Induction of reduced glutathione level and inhibition of glutathione S-transferase level was observed in naphthalene exposed C. chanos suggesting that there may be enhanced oxidative damage due to free radicals. Increasing concentration increases in number of nuclear abnormalities. The formation of micronuclei and binucleated micronuclei induction by naphthalene confirm its genotoxic potential. The highest levels of DNA damage (% tail length) were observed at 1.24 μg l(-1) of naphthalene. The study suggests that biochemical enzymes, nuclear abnormalities and DNA damage index can serve as a biological marker for naphthalene contamination.
Frequency Domain Reflectometry NDE for Aging Cables in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, Samuel W.; Jones, Anthony M.; Fifield, Leonard S.
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool tomore » locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.« less
Frequency domain reflectometry modeling for nondestructive evaluation of nuclear power plant cables
NASA Astrophysics Data System (ADS)
Glass, S. W.; Fifield, L. S.; Jones, A. M.; Hartman, T. S.
2018-04-01
Cable insulation polymers are among the more susceptible materials to age-related degradation within a nuclear power plant. This is recognized by both regulators and utilities, so all plants have developed cable aging management programs to detect damage before critical component failure in compliance with regulatory guidelines. Although a wide range of tools are available to evaluate cables and cable systems, cable aging management programs vary in how condition monitoring and nondestructive examinations are conducted as utilities search for the most reliable and cost-effective ways to assess cable system condition. Frequency domain reflectometry (FDR) is emerging as one valuable tool to locate and assess damaged portions of a cable system with minimal cost and only requires access in most cases to one of the cable terminal ends. Since laboratory studies to evaluate the use of FDR for inspection of aged cables can be expensive and data interpretation may be confounded by multiple factors which influence results, a model-based approach is desired to parametrically investigate the effect of insulation material damage in a controlled manner. This work describes development of a physics-based FDR model which uses finite element simulations of cable segments in conjunction with cascaded circuit element simulations to efficiently study a cable system. One or more segments of the cable system model have altered physical or electrical properties which represent the degree of damage and the location of the damage in the system. This circuit model is then subjected to a simulated FDR examination. The modeling approach is verified using several experimental cases and by comparing it to a commercial simulator suitable for simulation of some cable configurations. The model is used to examine a broad range of parameters including defect length, defect profile, degree of degradation, number and location of defects, FDR bandwidth, and addition of impedance-matched extensions to minimize the end-shadow effect.
DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.
Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng
2014-07-01
Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. Copyright © 2014 Elsevier B.V. All rights reserved.
Space Fission Propulsion Testing and Development Progress. Phase 1
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.
Phase 1 space fission propulsion system testing and development progress
NASA Astrophysics Data System (ADS)
van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter
2001-02-01
Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .
Uranyl peroxide enhanced nuclear fuel corrosion in seawater.
Armstrong, Christopher R; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E; Burns, Peter C; Navrotsky, Alexandra
2012-02-07
The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances.
Animal cloning by somatic cell nuclear transfer.
Smith, Lawrence C; Yoo, Jae-Gyu
2009-01-01
Animal cloning is becoming increasingly useful for its applications in biological inquiry and for its potential use in pharmaceutical, medical, and agricultural fields. Due to the complexity of the numerous steps required in reconstructing oocytes by nuclear transfer, detailed protocols are required to minimize the developmental damages inflicted during these manipulations and to standardize procedures across laboratories. Moreover, because oogenesis and early embryogenesis differ widely among mammalian species, it is essential that protocols be adapted according to each species concerned. Our objective here is to detail the protocols that have been most successful in producing laboratory and domestic animal clones.
Uranyl peroxide enhanced nuclear fuel corrosion in seawater
Armstrong, Christopher R.; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E.; Burns, Peter C.; Navrotsky, Alexandra
2012-01-01
The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances. PMID:22308442
Severe accident skyshine radiation analysis by MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eurajoki, T.
1994-12-31
If a severe accident with a considerable core damage occurs at a nuclear power plant whose containment top is remarkably thin compared with the walls, the radiation transported through the top and scattered in air may cause high dose rates at the power plant area. Noble gases and other fission products released to the containment act as sources. The dose rates caused by skyshine have been calculated by MCNP3A for the Loviisa nuclear power plant (two-unit, 445-MW VVER) for the outside area and inside some buildings, taking the attenuation in the roofs of the buildings into account.
XRN2 Links Transcription Termination to DNA Damage and Replication Stress
Patidar, Praveen L.; Motea, Edward A.; Dang, Tuyen T.; Manley, James L.
2016-01-01
XRN2 is a 5’-3’ exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability. PMID:27437695
XRN2 Links Transcription Termination to DNA Damage and Replication Stress.
Morales, Julio C; Richard, Patricia; Patidar, Praveen L; Motea, Edward A; Dang, Tuyen T; Manley, James L; Boothman, David A
2016-07-01
XRN2 is a 5'-3' exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability.
Influence of Au ions irradiation damage on helium implanted tungsten
NASA Astrophysics Data System (ADS)
Kong, Fanhang; Qu, Miao; Yan, Sha; Cao, Xingzhong; Peng, Shixiang; Zhang, Ailin; Xue, Jianming; Wang, Yugang; Zhang, Peng; Wang, Baoyi
2017-10-01
The damages of implanted helium ions together with energetic neutrons in tungsten is concerned under the background of nuclear fusion related materials research. Helium is lowly soluble in tungsten and has high binding energy with vacancy. In present work, noble metal Au ions were used to study the synergistic effect of radiation damage and helium implantation. Nano indenter and the Doppler broaden energy spectrum of positron annihilation analysis measurements were used to research the synergy of radiation damage and helium implantation in tungsten. In the helium fluence range of 4.8 × 1015 cm-2-4.8 × 1016 cm-2, vacancies played a role of trappers only at the very beginning of bubble nucleation. The size and density is not determined by vacancies, but the effective capture radius between helium bubbles and scattered helium atoms. Vacancies were occupied by helium bubbles even at the lowest helium fluence, leaving dislocations and helium bubbles co-exist in tungsten materials.
The thyroid hormone receptor β induces DNA damage and premature senescence.
Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana
2014-01-06
There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.
DNA Damage Related Crosstalk Between the Nucleus and Mitochondria
Saki, Mohammad; Prakash, Aishwarya
2017-01-01
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress. PMID:27915046
Understanding and simulating the material behavior during multi-particle irradiations
Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.
2016-01-01
A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems. PMID:27466040
Peng, Lirong; Yuan, Zhigang; Li, Yixuan; Ling, Hongbo; Izumi, Victoria; Fang, Bin; Fukasawa, Kenji; Koomen, John; Chen, Jiandong; Seto, Edward
2015-01-01
Downstream signaling of physiological and pathological cell responses depends on post-translational modification such as ubiquitination. The mechanisms regulating downstream DNA damage response (DDR) signaling are not completely elucidated. Sirtuin 1 (SIRT1), the founding member of Class III histone deacetylases, regulates multiple steps in DDR and is closely associated with many physiological and pathological processes. However, the role of post-translational modification or ubiquitination of SIRT1 during DDR is unclear. We show that SIRT1 is dynamically and distinctly ubiquitinated in response to DNA damage. SIRT1 was ubiquitinated by the MDM2 E3 ligase in vitro and in vivo. SIRT1 ubiquitination under normal conditions had no effect on its enzymatic activity or rate of degradation; hypo-ubiquitination, however, reduced SIRT1 nuclear localization. Ubiquitination of SIRT1 affected its function in cell death and survival in response to DNA damage. Our results suggest that ubiquitination is required for SIRT1 function during DDR. PMID:25670865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattison, M.B.; Thatcher, T.A.; Knudsen, J.K.
The US Nuclear Regulatory Commission (NRC) has been using full-power. Level 1, limited-scope risk models for the Accident Sequence Precursor (ASP) program for over fifteen years. These models have evolved and matured over the years, as have probabilistic risk assessment (PRA) and computer technologies. Significant upgrading activities have been undertaken over the past three years, with involvement from the Offices of Nuclear Reactor Regulation (NRR), Analysis and Evaluation of Operational Data (AEOD), and Nuclear Regulatory Research (RES), and several national laboratories. Part of these activities was an RES-sponsored feasibility study investigating the ability to extend the ASP models to includemore » contributors to core damage from events initiated with the reactor at low power or shutdown (LP/SD), both internal events and external events. This paper presents only the LP/SD internal event modeling efforts.« less
Alloying of steel and graphite by hydrogen in nuclear reactor
NASA Astrophysics Data System (ADS)
Krasikov, E.
2017-02-01
In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.
Stepanova, Ye I; Vdovenko, V Yu; Misharina, Zh A; Kolos, V I; Mischenko, L P
2016-12-01
To study the genetic effects in children exposed to radiation in utero as a result of the Chornobyl nuclear power plant accident accounting the total radiation doses and equivalent radiation doses to the red bone marrow. Incidence of minor developmental anomalies was studied in children exposed to radiation in utero (study group) and in the control group (1144 subjects surveyed in total). Cytogenetic tests using the method of differential G-banding of chromosomes were conducted in 60 children of both study and control groups (10-12-year-olds) and repeatedly in 39 adolescents (15-17-year-olds). A direct correlation was found between the number of minor developmental anomalies and fetal dose of radiation, and a reverse one with fetal gestational age at the time of radiation exposure. Incidence of chromosomal damage in somatic cells of 10-12-year-old children exposed prenatally was associated with radiation dose to the red bone marrow. The repeated testing has revealed that an increased level of chromosomal aberrations was preserved in a third of adolescents. The persons exposed to ionizing radiation at prenatal period should be attributed to the group of carcinogenic risk due to persisting increased levels of chromosome damage. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEISER,J.H.; SIVINTSEV,Y.; ALEXANDROV,V.P.
1999-09-01
Within the course of operating its nuclear navy, the former Soviet Union (FSU) disposed of reactor vessels and spent nuclear fuel (SNF) in three fjords on the east coast of Novaya Zemlya and in the open Kara Sea within the Novaya Zemlya Trough during the period 1965 to 1988. The dumping consisted of 16 reactors, six of which contained SNF and one special container that held ca. 60% of the damaged SNF and the screening assembly from the No. 2 reactor of the atomic icebreaker Lenin. At the time, the FSU considered dumping of decommissioned nuclear submarines with damaged coresmore » in the bays of and near by the Novaya Zemlya archipelago in the Arctic Kara Sea to be acceptable. To provide an additional level of safety, a group of Russian scientists embarked upon a course of research to develop a solidification agent that would provide an ecologically safe barrier. The barrier material would prevent direct contact of seawater with the SNF and the resultant leaching and release of radionuclides. The solidification agent was to be introduced by flooding the reactors vessels and inner cavities. Once introduced the agent would harden and form an impermeable barrier. This report describes the sample preparation of several ``Furfurol'' compositions and their leach testing using cesium 137 as tracer.« less
Fukuda, Tomokazu
2018-06-01
The damage caused by the earthquake on 11 March, 2011 resulted in a serious nuclear accident in Japan. Due to the damage to the Fukushima Daiichi Nuclear Power Plant (FNPP), large amounts of radioactive substances were released into the environment. In particular, one of the largest safety concerns is radioactive cesium ( 134 Cs and 137 Cs). Due to the FNPP nuclear accident, a 20 km area was restricted from human activity, and various types of domestic animals were left in the zone. We collected the organs and tissues from sacrificed animals to obtain scientific data to evaluate the internal deposition of radioactive compounds. At first, we found there is a strong correlation between blood 137 Cs and organ 137 Cs with data from 44 cattle, indicating that skeletal muscle is the target organ of deposition of radioactive cesium. Second, we analyzed the relationship between blood 137 Cs and muscle 137 Cs within relatively lower radioactive concentration, suggesting that estimation of concentration of 137 Cs is possible from blood concentration of 137 Cs. Finally, we developed computer software to estimate the muscle 137 Cs concentration from blood samples. Our study contributes to the food safety of livestock products. © 2018 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Ye, Fei; Zhao, Ting; Liu, Xiongxiong; Jin, Xiaodong; Liu, Xinguo; Wang, Tieshan; Li, Qiang
2015-12-01
To explore charged particle radiation-induced long-term hippocampus damage, we investigated the expression of autophagy and antioxidant Nrf2 signaling-related proteins in the mouse hippocampus after carbon ion radiation. Heads of immature female Balb/c mice were irradiated with carbon ions of different LETs at various doses. Behavioral tests were performed on the mice after maturation. Acute and chronic expression of LC3-II, p62/SQSTM1, nuclear Nrf2, activated caspase-3 and the Bax/Bcl-2 ratio were measured in the hippocampi. Secondary X-ray insult was adopted to amplify potential damages. Long-term behavioral changes were observed in high-LET carbon ion-irradiated mice. There were no differences in the rates of LC3-II induction and p62/SQSTM1 degradation compared to the control group regardless of whether the mice received the secondary X-ray insult. A high nuclear Nrf2 content and low apoptosis level in hippocampal cells subjected to secondary X-rays were observed for the mice exposed to relatively low-LET carbon ions. Therefore, carbon ion exposure in the immature mouse led to an LET-dependent behavioral change after maturation. Although autophagy was intact, the persistently high nuclear Nrf2 content in the hippocampus might account for the unchanged behavioral pattern in mice exposed to the relatively low-LET carbon ions and the subsequent increased radioresistance of the hippocampus.
NASA Astrophysics Data System (ADS)
Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang
2018-06-01
High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.
Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.
2013-01-01
Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552
Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong
2011-12-01
Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.
Al-Quraishy, Saleh; Othman, Mohamed S; Dkhil, Mohamed A; Abdel Moneim, Ahmed Esmat
2017-07-01
Gastritis is preponderantly characterized by inflammation of the lining epithelial layer and the chronic gastritis is considered as a pre-cancer lesion. For many centuries olive (Olea europaea) leaf has been used for its putative health potential, nonetheless, to date, the gastroprotective effects of olive leaves have not been studied yet. Hence, in this study we investigated whether olive leaf extract (OLE) could protect gastric mucosa against HCl/ethanol-induced gastric mucosal damage in rats. Hcl/ethanol administration caused significant damage to the gastric mucosa, as confirmed by gastric ulcer index and histological evaluation. However, this damage was largely prevented by pre-administering 20mg/kg omeprazole or 100mg/kg OLE. Interestingly, the damage was completely prevented by pre-administering 200 and 300mg/kg OLE. Moreover, OLE attenuated the inflammatory response by decreasing nuclear factor-κB (NF-κB), cycloxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) expressions, and down-regulating inducible nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) in gastric mucosa. The gastroprotective mechanism of OLE involved the promotion of enzymatic and nonenzymatic molecules (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione reduced form), promoting nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression, halting lipid peroxidation and preventing the overproduction of nitric oxide. Together, our findings clearly demonstrated that OLE could prevent HCl/ethanol-induced gastritis by attenuating inflammation and oxidant/antioxidant imbalance. Indeed, OLE could potentially be useful as a natural therapy for gastritis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage
Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel
2016-01-01
Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in-trans signaling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identified TCOF1-Treacle, a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle-dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in-trans in the presence of distant chromosome breaks. PMID:25064736
The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage.
Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel
2014-08-01
Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks.
DNA damage talks to inflammation.
Cohen, Idan
2017-02-01
Interleukin-1 alpha (IL-1α) and beta (IL-1β) are pleiotropic cytokines affecting multiple cells and regulating many immune and inflammatory responses. The recent finding that nuclear IL-1α is recruited to sites of DNA damage, and its ability to actively sense and report genotoxic stress to the surrounding tissue, dramatically alters the way we view IL-1 biology. This discovery add a new face to the classical "danger theory" and show that danger signaling is not strictly limited to passive release or dying cells. Most importantly, as now physiological stresses are linked to the release or secretion of IL-1α, chronic danger signaling and the alarmin inhibition should be considered as a new therapeutic approach for many diseases that are characterized by ongoing DNA damage, stress signaling and inflammation. Copyright © 2016. Published by Elsevier Ltd.
UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, H.; Fujiwara, Y.
1991-03-29
The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains,more » and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.« less
NASA Astrophysics Data System (ADS)
Delaye, J. M.; Ghaleb, D.
1998-02-01
We have performed some molecular dynamics calculations of displacement cascades in a simplified nuclear glass (SiO 2 + B 2O 3 + Na 2O + Al 2O 3 + ZrO 2). We have observed that the damaged volume at the end of the collision sequence can be divided into a so called highly damaged volume and lightly damaged volume. The aim of this paper is to propose an explanation of this phenomenon by considering that some regions are easy to cross by the projectile and others are difficult to cross by the projectile. Regions which are easy to cross correspond to those containing Na atoms with a low level of polymerisation, and regions which are difficult to cross are areas no containing Na atoms with a high level of polymerisation.